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Abstract

We prove that there exists a natural bijection between the set of finite volume oriented
convex projective surfaces with non-abelian fundamental group, and the set of finite volume
hyperbolic Riemann surfaces endowed with a holomorphic cubic differential with poles of
order at most 2 at the cusps.

1 Introduction

A projective structure A on an n–dimensional manifold M is the data of a maximal atlas with
values in the real projective space RPn and with transition functions in the group PGln+1R of
projective transformations. The charts glue together to define the developing map dev : M̃ →
RPn, where M̃ is the universal cover of M . The developing map is well defined up to PGln+1R

and satisfies, for any loop c in the fundamental group π1(M),

dev ◦ c = hol(c) ◦ dev

where hol : π1(M) → PGln+1R is the holonomy representation.
The projective structure is said to be properly convex when the developing map is a diffeo-

morphism onto a properly convex domain Ω ⊂ RPn, namely a domain that reads as a bounded
convex open set in a suitable affine chart. The Hilbert distance on the properly convex subset
Ω ⊂ RPn is defined by

dΩ(x, y) = | log[x, y, a, b]| ,

where [x, y, a, b] denotes the cross ratio of the quadruple (x, y, a, b), and a, b are the points of
intersection of the line (xy) and the boundary ∂Ω of Ω. The Hilbert distance derives from a
Finsler metric, which gives rise to a measure on Ω (section 2.2). This measure, being invariant
under the holonomy group hol(π1(M)), induces a measure µF on M .

In this paper, we will mainly focus on projective surfaces S with finite Finsler volume, namely
such that µF (S) < ∞. When S is an oriented compact surface with negative Euler characteristic,
François Labourie [10] and John Loftin [14] (see also CP Wang [22]) have parameterized the set
of properly convex projective structures on S by the data of a complex structure J on S together
with a holomorphic cubic differential U on (S, J). The aim of this paper is to extend this result
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to non compact projective surfaces with finite Finsler volume, hence positively answering the
conjecture by Loftin in [13].

To an oriented surface S equipped with a properly convex projective structure A, we associate
the following geometric objects. Denote by dev : S̃ → Ω the developing map. Cheng–Yau’s
solution of the Monge–Ampère equation on Ω produces an imbedding S̃ ↪→ R3 as an affine
sphere (Theorem 2.5). Let h be the induced “affine” metric on S (Definition 2.2), J be the
conformal class of h – which is a complex structure on S – and U be the Pick form (Definition
4.9) which is a holomorphic cubic differential on (S, J).

Theorem 1.1 Let S be an oriented surface with non-abelian fundamental group. The map
A → (J,U) is a bijection between :

1. the set of properly convex projective structures A on S with finite Finsler volume
2. the set of hyperbolic Riemann surface structures J on S with finite volume together with a

holomorphic cubic differential U on (S, J) with poles of order at most 2 at the cusps

Remark 1.2 – Theorem 1.1 was conjectured by Loftin in [13], under the condition that S has
finite affine volume, instead of finite Finsler volume. In Proposition 2.6, we will prove these
conditions to be equivalent by using Benzécri’s cocompactness theorem 2.7.

– Note that Marquis proved in [18] that, when π1(S) is not finitely generated, S does not admit
any properly convex projective structure with finite Finsler volume.

– This bijection is a homeomorphism for the natural topologies on the two sets. Indeed, our
construction ensures that the map A → (J,U) is a continuous bijective map between two sets
which are homeomorphic to a real vector space (see Marquis [17]).

Let us review the main ingredients of the proof. In order to prove that the map A → (J,U) is
well defined we must first show that, when (S,A) is assumed to have finite Finsler volume, the
corresponding hyperbolic Riemann surface (S, J) also has finite volume. Then we must control
the Pick form at the cusps. To this end we first remark that, since the affine metric h is complete
(Corollary 3.5) and negatively pinched at infinity (Proposition 3.1), the generalized maximum
principle of Yau ensures that h is conformally quasi-isometric to the hyperbolic metric h0 on
(S, J) (Proposition 5.1). Hence (S, h0) has finite volume, thus the ends of (S, J) are parabolic
(Corollary 5.4). The cocompactness theorem of Benzécri is then used again to provide estimates
for the Pick form U , ensuring that the measure |U |2/3 on S has finite mass : this is the reason
why U will have poles of order no more than 2 at the cusps (Corollary 5.8).

The paper is organized as follows. In section 2, we mainly recall standard material from affine
geometry and Monge–Ampère equations, and prove the equivalence of the finite Finsler volume
condition and the finite affine volume condition. In section 3 we assume that S is non compact,
and study the curvature of the affine metric at infinity. The Pick form of an affine sphere in R3

is defined in section 4, and the estimates for the Pick form that ensure that the map A → (J,U)
in our main theorem 1.1 is well defined are given in section 5. In the final section 6, we prove
that this map is a bijection.

A right inverse map (J,U) → A as in Theorem 1.1 was constructed by Loftin in [13]. This
construction was the motivation for Loftin to state his conjecture. (See also [15], where Loftin
extends this construction to allow cubic differentials U with poles of order at most 3.)
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2 Affine spheres and the real Monge–Ampère equation

In this section, we recall the definition of an affine sphere (references are for example Loftin [16]
or Nomizu and Sasaki [19]) and the fundamental existence and uniqueness theorem by Cheng
and Yau. We then derive from Benzécri’s cocompactness theorem the equivalence of the finite
Finsler volume condition and of the finite affine volume condition (Proposition 2.6).

2.1 Affine spheres

Let M ⊂ Rn+1 be a hypersurface and E = M ×Rn+1 be the trivial vector bundle of rank n+ 1
over M . The standard affine (flat) connection on Rn+1 induces a flat connection ∇ on E. Each
choice of a transverse vector field ξ : M → Rn+1 yields a decomposition E = TM ⊕ L, where L
stands for the trivial line bundle over M spanned by ξ. It also yields a decomposition

{
∇XY = DXY + h(X,Y ) ξ ∈ TM ⊕ L

∇Xξ = −S(X) + τ(X) ξ ∈ TM ⊕ L
(2.1)

where X and Y are tangent vector fields. Observe that D is a torsion-free connection on TM ,
h is a symmetric 2–form on TM , S is an endomorphism of TM and τ is a 1–form on TM .

Recall that an hypersurface M ⊂ Rn+1 is locally strictly convex when it can locally be written
in an affine coordinate system as the graph of a function with positive definite hessian.

Proposition 2.1 Assume that the hypersurface M ⊂ Rn+1 is locally strictly convex. Then,
there exists a unique transverse vector field ξ for which :

1. τ = 0
2. h is positive definite
3. |det(Y1, · · · , Yn, ξ)| = 1 for any h–orthonormal frame (Y1, · · · , Yn) of TM

Definition 2.2 This vector field ξ is the “affine normal” of M . The corresponding connection
D on TM is the “Blaschke connection”, the metric h is the “affine metric” on M and the
endomorphism S : TM → TM is the “affine shape operator”. They are invariant under the
action of the group Sl±n+1R of real matrices with determinant ±1.

Proposition 2.1 will be a consequence of the following.

Lemma 2.3 Let ξ and ξ′ be two transverse vector fields on M , respectively associated with
(h, S, τ) and (h′, S′, τ ′).

– If ξ′ = α ξ, where α is a non vanishing function on M , then τ ′(X) = τ(X) + (X ·α)/α and
h′ = h/α.

– If ξ′ = ξ+η with η a tangential vector field on M , then τ ′(X) = τ(X)+h(X, η) and h′ = h.
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Proof Straightforward. !

Proof of Proposition 2.1. SinceM is assumed to be strictly locally convex, h is either positive
or negative definite, and Lemma 2.3 ensures that the conformal class of h does not depend on
the choice of ξ. Now, starting with any transverse vector field ξ, the affine normal will be α ξ+η
where α is the unique non vanishing function on M such that α ξ satisfies the positivity and
normalization conditions 2 and 3, and η is the unique tangent vector field for which the 1–form
ταξ corresponding to αξ reads as τα ξ = −h(·, η). !

Definition 2.4 A locally strictly convex hypersurface M ⊂ Rn+1 with affine normal ξ is an
affine sphere with affine curvature −1 when the affine shape operator S satisfies S = −Id. In
this case, the point O = m − ξ(m) does not depend on m ∈ M : it is called the center of the
affine sphere.

The following existence and uniqueness theorem was conjectured by Calabi in [3], and proved
by Cheng and Yau in [4]. See also Gigena [6].

Theorem 2.5 (Cheng–Yau) Let C ⊂ Rn+1 be an open convex cone that contains no line. There
exists a unique embedded affine sphere H ⊂ Rn+1 with center the origin and affine curvature −1
which is asymptotic to the boundary of C.

In any chart where C reads (with respect to an adapted unimodular frame) as

C = {t (1, x) / x ∈ Ω , t > 0}

where Ω ⊂ Rn is a bounded open convex set, H is the radial graph

H = {
−1

u(x)
(1, x) / x ∈ Ω}

where u := uΩ ∈ C0(Ω̄) ∩ C∞(Ω) is the unique convex solution of the real Monge–Ampère
equation {

detD2u = (−1/u)n+2 in Ω

u|∂Ω = 0 .
(2.2)

Theorem 2.5 will allow us to systematically identify any properly convex open subset Ω ⊂ RPn

with the corresponding affine sphere H with affine curvature −1. The affine metric on H induces
a Riemannian metric on Ω : we still denote it by h, and call it the affine metric on Ω. The
corresponding measure µh is called the affine measure on Ω.

2.2 From properly convex projective manifolds to affine spheres

Assume now that M is an n–dimensional manifold equipped with a properly convex projective
structure. Any of the developing maps identifies its universal cover M̃ with a properly convex
open set Ω ⊂ RPn. Since Ω is invariant under the action of the group hol (π1(M)) ⊂ PGln+1R,
the uniqueness part in Theorem 2.5 ensures that the affine metric on Ω goes to the quotient to
give a metric h on M , that we will also call the “affine metric” on M .
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On the other hand, the Hilbert distance on Ω derives from the Finsler metric defined for any
point x ∈ Ω and any vector X ∈ TxΩ as

||X||F,Ω =
( 1

||x− a||
+

1

||x− b||

)
||X|| ,

where a and b are the points of intersection of ∂Ω with the line defined by (x;X), and || || is any
Euclidean norm on an affine chart with Ω ⊂ Rn. To this Finsler metric, we associate the Borel
measure µF on Ω ⊂ Rn with density (1/m(BF,Ω(x, 1))) with respect to the Lebesgue measure
m on Rn, where BF,Ω(x, 1) = {X ∈ TxΩ , ||X||F,Ω < 1} is the unit ball at the point x for the
Finsler metric (see eg Marquis [18]). The Finsler metric and the corresponding measure µF also
go to the quotient to M .

Observe that both the affine and Finsler metrics on M do not depend on the choice of the
developing map.

Proposition 2.6 Let M be a properly convex projective manifold. Then M has finite Finsler
volume if and only if it has finite affine volume.

The rest of the section is devoted to the proof of this proposition. The proof will rely on the
continuity of the map (x,Ω) → uΩ(x) and on the following cocompactness result due to Benzécri
in [2], which will be used again later in this paper to provide estimates for the Pick measure (see
Lemma 5.7).

Theorem 2.7 (Benzécri) Let E be the set of pairs (x,Ω), where Ω ⊂ RPn is a properly convex
open subset of RPn and x is a point in Ω, equipped with the Hausdorff topology. The natural
action of PGln+1R on E is cocompact.

As a consequence, the ratio of any two continuous PGln+1R invariant positive functions on E
will be bounded.

Let F denote the set of pairs (x,Ω), where Ω ⊂ Rn is a bounded convex domain and x is a
point in Ω.

Proposition 2.8 The value uΩ(x) of the solution of the Monge–Ampère equation (2.2) at point
x depends continuously on (x,Ω) ∈ F .

Proof Let (x0,Ω0) ∈ F . When the convex set Ω is close to Ω0 in the Hausdorff topology,

(1− ε)Ω0 ⊂ Ω ⊂ (1 + ε)Ω0

holds for dilations with center x0 and ε > 0 small. The proposition follows readily from the
continuity of uΩ0

: Ω0 → R, the easy fact that

utΩ0
(tx) = tn/(n+1) uΩ0

(x)

holds for all x ∈ Ω0 and t > 0, and the following lemma. !
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Lemma 2.9 Let Ω1 ⊂ Ω2 be two proper convex open subsets of Rn. Then uΩ2
≤ uΩ1

on Ω1.

Proof of Lemma 2.9 This assertion is a consequence of the maximum principle. Observe first
that, since the function uΩ2

is convex, uΩ2
≤ uΩ1

holds on ∂Ω1. Assuming that the function
uΩ1

− uΩ2
reaches a negative minimum at an interior point y ∈ Ω1, the hessian D2

y(uΩ1
− uΩ2

)
is positive semi-definite, hence

(−1/uΩ2
)n+2 = det D2

y(uΩ2
) ≤ det D2

y(uΩ1
) = (−1/uΩ1

)n+2 ,

thus |uΩ1
(y)|n+2 ≤ |uΩ2

(y)|n+2 : a contradiction. !

Proof of Proposition 2.6 Let µF and µh denote respectively the Finsler and affine measures
on a proper convex open subset of Ω ⊂ RPn, and let λ be their ratio. It suffices to prove that the
function λ : E →]0,∞[ is bounded, as well as bounded away from zero. This follows immediately
from Benzécri’s Theorem 2.7 since :

– λ is invariant under PGln+1R, as both volume elements are ;
– λ is continuous. Indeed, in a neighborhood of (x0,Ω0) in E , we may work in an affine chart

where Ω0 reads as a bounded set Ω0 ⊂ Rn. It follows immediately from the definition that
the density of the Finsler measure with respect to the Lebesgue measure dx on Rn depends
continuously on (x,Ω). It remains to check that the density of the affine measure also depends
continuously on (x,Ω) : this follows from Proposition 2.8 and the following formula

µh = (−uΩ)
−n−1dx (2.3)

that we now prove. Let H be the affine sphere with affine curvature −1 and center the origin
which is asymptotic to the cone C generated by Ω (Theorem 2.5). Since the affine normal at a
point y ∈ H is ξ(y) = y, the Lebesgue measure dv of Rn+1 reads on the cone, in coordinates
v = sy with (s, y) ∈]0,∞[×H, as dv = sn ds µh. On the other hand, in coordinates v = t(1, x)
with (t, x) ∈]0,∞[×Ω, one has dv = tndt dx. The fact that s = −uΩ(x) t yields (2.3). !

3 Estimates for the affine metric

The aim of this section is to prove the following.

Proposition 3.1 Let S be a non compact properly convex projective surface with finite volume.
Then, the curvature of the affine metric on S tends to a negative constant at infinity.

Proposition 3.1 will rely on a priori interior estimates which were used by Cheng and Yau to
solve the Monge–Ampère equation (see [4]). We recall the by now classical estimates for the
Hölder norms of the solutions. For x ∈ Rn and r > 0, let B(x, r) denote the Euclidean open
ball with center x and radius r.

Proposition 3.2 Let r > 1, δ > 0 and 0 < c0 ≤ c1.
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Assume Ω ⊂ Rn is a convex open subset such that B(0, 1) ⊂ Ω ⊂ B(0, r), and let v ∈
C0(Ω) ∩ C∞(Ω) be a solution of the Monge–Ampère equation

{
detD2v = f in Ω

v|∂Ω = 0 ,
(3.1)

where f ∈ C∞(Ω) satisfies c0 ≤ f ≤ c1. Then, for any k ∈ N, k -= 1, and α ∈]0, 1[, one has

||v||Ck+2,α(Ωδ) ≤ C ,

where Ωδ = {x ∈ Ω / d(x, ∂Ω) ≥ δ}, and C is a constant that depends only on r, δ, c0, c1, k, α,
and ||f ||Ck,α(Ω).

For k = 0 this bound is Caffarelli’s estimate (see Trudinger–Wang [21, Theorem 3.2 ii]). For
k ≥ 2, these bounds result from the uniform ellipticity of the Monge–Ampère operator due to
Pogorelov, and from the Schauder’s estimates (see [21, Theorem 3.1]).

Corollary 3.3 For any k ∈ N, the k–jet Jk(uΩ)(x) of the solution of the Monge–Ampère equa-
tion (2.2) on Ω at point x depends continuously on (x,Ω) ∈ F .

Proof of Corollary 3.3. We may assume k ≥ 1. Let (xj ,Ωj) converge to (x,Ω) in F , and
K ⊂ Ω be a compact neighborhood of x. We may assume that K ⊂ Ωj for every j. Proposition
2.8 ensures that uΩj converges uniformly to uΩ on K and, by convexity of the uΩj ’s, one has
a uniform bound for the first derivative of every uΩj on K. When applied to the function
v := uΩj + ε on the domain Ωj,ε := {uΩj < −ε}, where ε > 0 is small enough, Proposition
3.2 gives a uniform bound for the jet of order k + 1 of every uΩj on K. After extracting a
subsequence, the Ascoli–Arzéla theorem ensures that uΩj , as well as its derivatives of order at
most k, converges uniformly on K. !

As a first consequence, we obtain a uniform control of the affine metric in terms of the Finsler
metric.

Proposition 3.4 There exists a constant c > 0 such that, for any (x,Ω) ∈ E and X ∈ TxΩ :

(1/c) ||X||F,Ω ≤ ||X||h,Ω ≤ c ||X||F,Ω .

Proof One easily verifies that the affine metric on TxΩ can be expressed in terms of the 2–jet
of uΩ at point x. The proposition follows again from Benzécri’s Theorem 2.7 since both metrics
are PGln+1R invariant and depend continuously on (x,Ω) : this is obvious for the Finsler metric
from its definition, and is a consequence of Corollary 3.3 for the affine metric. !

This observation allows us to recover the following, due to Calabi–Nirenberg [5, Corollary 2].

Corollary 3.5 The affine metric on any properly convex domain Ω ⊂ RPn is complete.
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Proof Consequence of Proposition 3.4, and of the completeness of the Finsler metric on Ω. !

From now on, we specialize to surfaces. Before going into the proof of Proposition 3.1, we state
a preliminary result. A projective disk is defined as the orientable component of the complement
of a proper conic in RP2. In a suitable affine chart, it reads as the interior of an ellipse.

Proposition 3.6 Let Γ ⊂ PGl3R be a discrete subgroup preserving a properly convex domain
Ω of RP2.

1. There exists a convex fundamental domain K ⊂ Ω for the action of Γ on Ω, such that the
map K → Γ\Ω is proper.

Assume moreover that the quotient S = Γ\Ω has finite volume. Then :
2. The closure K of K in RP2 is a finite-sided polyhedron. Let p be a point in K ∩ ∂Ω. It

corresponds to a cusp of S. The holonomy γ of the cusp is regular unipotent, namely is generated

by a matrix in the conjugacy class of





1 1 0
0 1 1
0 0 1





.

3. There exist two projective disks D1 and D2 with

D1 ⊂ Ω ⊂ D2 ,

and such that ∂D1 and ∂D2 osculate each other at the point p ∈ K ∩ ∂Ω, namely the disks have
a contact of order at least 2 at this point.

Remark 3.7 As a consequence, the curve ∂Ω not only admits a tangent at point p, but also
osculating conics.

Assertion 1 is due to Lee [11], and assertion 2 to Marquis [18].









 

Figure 1: a. The pencil of conics – b. The disks D1 and D2

Proof We only have to prove assertion 3. We develop a strategy initiated by Benzécri in [2] (see
Goldman [8, Proposition 6.14] and Marquis [18, Proposition 5.21]). We choose homogeneous
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coordinates [x, y, z] with p = [1, 0, 0], and where the holonomy of the cusp is generated by

γ =





1 1 0
0 1 1
0 0 1



. The holonomy preserves each quadratic form in the pencil generated by z2 and

y2− (y+2x)z. The corresponding pencil of conics has base point p and reads in the chart x = 1
(see Figure 1a) as {

z2 = 0

(y − z/2)2 + (µ− 1/4) z2 − 2z = 0 (µ ∈ R) .

All these conics admit the line z = 0 as a tangent at the point p and, except for the singular
one, they do osculate each other at this point.

Now pick an affine chart containing Ω as a bounded subset and new affine coordinates (y, z)
on this chart for which p = (0, 0) and the degenerate conic of the pencil still reads as z2 = 0.
In this chart the bounded domain Ω, being invariant under γ, lies in the half-plane (say z > 0)
containing the ellipses in the pencil.

• We first build the exterior disk D2. Choose m ∈ Ω and let ∆ be the sector in the half-plane
{z > 0} delimited by the line (pm) and its image γ(pm) = pγ(m). One of the conics in
the pencil (actually, one of the hyperbolas) contains ∆ in its interior D2. This obviously
gives Ω ∩∆ ⊂ D2 hence, by invariance under γ,

γk(Ω ∩∆) = Ω ∩ γk(∆) ⊂ D2 ∀k ∈ Z ,

and finally Ω ⊂ D2.

• We now construct the interior disk. The domain Ω, being convex, contains the triangle
with vertices p,m, γ(m). Since the ellipses in the pencil become tiny when the parameter
µ goes to infinity, there exists one of them, say D1, for which D1 ∩ ∆ is included is this
triangle. We conclude as above that D1 ⊂ Ω. !

Observe that the affine metric on a projective disk has constant negative curvature : this
follows from the fact that SO(2, 1) ⊂ Sl3R acts transitively on each sheet of the hyperboloid.
This observation will be crucial in the following.

Proof of Proposition 3.1 We use the notations and conclusion of the previous proposition.
Let us focus on the cusp p ∈ K∩Ω. Choose a second point q -= p on the boundary of the exterior
disk D2. Let r be the point of intersection of the tangent lines to D2 at points p and q, and

(ψt)t∈R be the 1–parameter group of projective transformations that read as ψt =





e
−t 0 0
0 e

t 0
0 0 1





with respect to the frame (p, q, r).
In the corresponding homogeneous coordinates [x, y, z], this 1–parameter group preserves both

quadratic forms z2 and xy. Hence, each orbit of (ψt) is an arc delimited by p and q either on
a conic through p and q and with tangent (pr) at p and (qr) at q, or on the line (pq). Observe
that, except for ∂D2 itself, none of these conics osculate ∂D2 at the point p (Figure 2a).
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













Figure 2: The orbits of (ψt)

Since ∂D1 does osculate ∂D2 at p, this implies that the orbit of any point m in D2 meets D1

or, more specifically, that

∀m ∈ D2 , ∃T ∈ R / ∀t ≤ T , ψt(m) ∈ D1 .

We infer that ψt(D1) converges to D2 in the Hausdorff topology when t goes to +∞. Since
D1 ⊂ Ω ⊂ D2, ψt(Ω) also converges to D2. Thus, by Corollary 3.3, the curvature of the affine
metric hψt(Ω) converges uniformly to the curvature of hD2

, that is to a negative constant, on
compact subsets of D2 when t → +∞.

Let T be a triangular neighborhood of p in K with interior T̊ ⊂ D1. There exists a compact
subset C ⊂ D2 such that each orbit (ψt(m))t∈R of a point m ∈ T ∩ Ω intersects C (Figure 2b).
The farther m ∈ T is in the cusp (that is, the closer to p), the greater the values of t for which
ψt(m) ∈ C. Since the curvature of hΩ at the point m equals the curvature of hψt(Ω) at the point
ψt(m), this concludes the proof. !

4 The Pick tensor

The aim of this section, which basically follows the presentation by Labourie in [10], is to
define the Pick form U of an affine 2–dimensional sphere (Definition 4.9) – which is the second
component of the map A → (J,U) in Theorem 1.1.

4.1 From affine spheres to properly convex projective manifolds

To an n–dimensional properly convex projective manifold M with developing map dev : M̃ →
Ω ⊂ RPn, Theorem 2.5 associates an embedding of the universal cover M̃ ↪→ Rn+1 as the affine
sphere with affine curvature −1 asymptotic to the boundary of the cone over Ω. Moreover, the
affine metric on M̃ is complete (Corollary 3.5).

On the other hand, all complete affine spheres of Rn+1 have been described by Cheng–Yau
and An-Min Li in [5], [12] as follows, thus complementing Theorem 2.5 and proving the whole
Calabi’s conjecture stated in [3].
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Theorem 4.1 (Cheng and Yau, An-Min Li) Let H ⊂ Rn+1 be an immersed hypersurface, which
is an affine sphere with constant curvature −1 and center the origin. Assume that the corres-
ponding affine metric on H is complete. Then H is embedded, and is asymptotic to the boundary
of a convex cone C ⊂ Rn+1 which contains no line.

Thus, the data of a properly convex projective structure on the manifold M is equivalent
to the data of an immersion M̃ ↪→ Rn+1 of its universal cover as a complete affine sphere
with affine curvature −1 and center the origin, which is equivariant under a representation
π1(M) → Sl±n+1R.

When M ⊂ Rn+1 is an affine sphere with affine curvature −1 and ξ is the affine normal, recall
that the affine flat connection ∇ on Rn+1 induces a torsion-free connection D on TM as well
as a positive definite 2–form h on TM which satisfy Equation (4.1) below. Indeed, in this case,
Equation (2.1) holds with S = −Id and τ = 0 (see Proposition 2.1(1) and Definition 2.4). In
the following subsection, we will study in an intrinsic way such pairs (D,h) on M , where D is
a torsion-free connection and h is a Riemannian metric.

4.2 The intrinsic geometry of an affine sphere

Let M be an n–dimensional manifold. The letters X,Y,Z,W will denote tangent vector fields
on M .

Let D be a torsion-free connection on TM , h be a positive definite symmetric 2–form on TM
and ξ be a non vanishing section of the trivial line bundle L over M . To these data, we associate
a torsion-free connection ∇ on TM ⊕ L by letting

{
∇XY = DXY + h(X,Y ) ξ

∇Xξ = X .
(4.1)

In the next three lemmas, we will explore the conditions under which the connection ∇ will be
flat and volume preserving.

Lemma 4.2 The curvature R∇ of the connection ∇ is given by

{
R∇(X,Y )Z = R(X,Y )Z − h(Y,Z)X + h(X,Z)Y + dDh(X,Y,Z) ξ

R∇(X,Y ) ξ = 0 ,
(4.2)

where R is the curvature of D and dDh(X,Y,Z) := (DXh)(Y,Z)− (DY h)(X,Z).

Proof Use the definition R∇(X,Y )Z := ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z. !

Lemma 4.3 Write D = Dh + A, where Dh is the Levi–Civita connection of the Riemannian
metric h and A is a section of the bundle T ∗M ⊗ EndTM . Then :

1. A(X)Y = A(Y )X

11



2. The connection ∇ defined by Equation (4.1) is flat if and only if :
a. each endomorphism A(X) is symmetric with respect to h

b. dD
h
A = 0, where dD

h
A(X,Y ) := (Dh

XA)(Y )− (Dh
Y A)(X)

c. Rh(X,Y )Z+[A(X), A(Y )]Z = h(X,Z)Y −h(Y,Z)X, where Rh is the curvature of Dh

Proof 1. Both connections D and Dh are torsion-free.
2. The normal part of R∇ vanishes if and only if dDh = 0 (Lemma 4.2). Since Dhh = 0,

(DXh)(Y,Z) = −h(A(X)Y,Z) − h(Y,A(X)Z)

holds thus (1.) yields

dDh(X,Y,Z) = h(X,A(Z)Y )− h(Y,A(Z)X) ,

which proves (a).
The tangential part of R∇ vanishes if and only if R(X,Y )Z = h(Y,Z)X−h(X,Z)Y . A simple

computation gives

R(X,Y )Z = Rh(X,Y )Z + (dD
h
A(X,Y ))Z + [A(X), A(Y )]Z (4.3)

hence the result since, for fixed X and Y , the endomorphism Z → h(X,Z)Y −h(Y,Z)X as well
as those defined by each term in the right-hand side of Equation (4.3) are skew symmetric with

respect to h, except for Z → (dD
h
A(X,Y ))Z which is symmetric. !

Lemma 4.4 Assume that M is oriented. Define a volume form ω on TM ⊕L by imposing that
ω(X1, · · · ,Xn, ξ) = 1, whenever (X1, · · · ,Xn) is a positive h–orthonormal frame of TM . Then

∇ω = 0 iff Dωh = 0 iff ∀X , TrA(X) = 0 ,

where ωh denotes the volume form of h and Tr is the trace operator.

Remark 4.5 This lemma is motivated by condition (3) in Proposition 2.1, where a constant
volume form on Rn+1 is used to normalize the affine normal vector.

Proof Observe that, since ∇XY −DXY is colinear to ξ and ∇Xξ is a tangent vector field, one
has

DXωh(X1, · · · ,Xn) = X · ω(X1, · · · ,Xn, ξ)−
n∑

i

ω(X1, · · · ,∇XXi, · · · ,Xn, ξ)

= ∇Xω(X1, · · · ,Xn, ξ) .

This proves the first equivalence. On the other hand, since D = Dh+A and Dhωh = 0, one has

DXωh(X1, · · · ,Xn) = −
n∑

i=1

ωh(X1, · · · , A(X)Xi, · · · ,Xn) = −Tr A(X) ωh(X1, · · · ,Xn) ,

which concludes the proof. !
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Corollary 4.6 Define a tensor C on TM by letting

C(X,Y,Z) := h(A(X)Y,Z) .

The 3–tensor C is symmetric if and only if each endomorphism A(X) is symmetric with respect
to h. In that case, one also has (DXh)(Y,Z) = −2C(X,Y,Z).

Proof The first assertion immediately follows from Lemma 4.3 (1), and the second from the
fact that Dhh = 0. !

Remark-Definition 4.7 Assume that M ⊂ Rn+1 is an affine sphere, and that D and h are
respectively the Blaschke connection and the affine metric on M . Then the corresponding 3–
tensor C is symmetric. It is called the “Pick tensor” of M . The Pick tensor C vanishes if and
only if the affine sphere M is part of an hyperquadric (see Cheng–Yau [5, Theorem 1]).

4.3 The Pick form

When specializing the previous section to surfaces, we have the following.

Lemma 4.8 Assume that the manifold M is 2–dimensional and oriented. Let J denote the
underlying complex structure to h and suppose that the 3–tensor C is symmetric. Then, one has
the equivalence : each endomorphism A(X) is trace-free and dD

h
A = 0 if and only if C is the

real part of a holomorphic cubic differential U on (M,J).

Proof Pick local isothermal coordinates (x, y) where the affine metric reads as h = e2w(dx2 +
dy2), and let z = x + iy. Observe that both endomorphisms A(∂x) and A(∂y) are trace-free if
and only if the symmetric tensor C reads in this chart as

C = P dx3 − 3P dx dy2 − 3Qdx2 dy +Qdy3

where P and Q are real-valued functions or, in other words, if

C = Re ((P + iQ)(dx+ idy)3) = Re (f(z) dz3)

where f = P + iQ is complex-valued. Assume that these conditions are satisfied. It remains to
check under which condition dD

h
A = 0 holds. Observe first that this is equivalent to requiring

that dD
h
C = 0, where dD

h
C(X,Y,Z,W ) := (Dh

XC) (Y,Z,W )− (Dh
Y C) (X,Z,W ).

Let ∂z = (1/2) (∂x − i∂y) and ∂z̄ = (1/2) (∂x + i∂y). Since h(∂z , ∂z) = h(∂z̄ , ∂z̄) = 0 while
h(∂z , ∂z̄) = (1/2) e2w , and since the connection Dh is torsion-free, we infer that Dh

∂z∂z and
Dh
∂z̄∂z̄ are respectively colinear to ∂z and ∂z̄, and that Dh

∂z̄∂z = Dh
∂z∂z̄ = 0.

The definition of C ensures that, for any vector field Y , one has C(Y, ∂z, ∂z̄) = 0. It then
follows from the expression of the Levi–Civita connection Dh with respect to the frame (∂z̄ , ∂z̄)

that (Dh
XC) (Y, ∂z , ∂z̄) = 0 holds for any vector fields X and Y . Since the tensor dD

h
C is

skew-symmetric with respect to the first couple of variables, and symmetric with respect to the
second, it follows that dD

h
C = 0 if and only if

dD
h
C(∂z̄, ∂z, ∂z , ∂z) = 0 .

The easy fact that dD
h
C(∂z̄, ∂z, ∂z, ∂z) = ∂f/∂z̄ now ends the proof. !
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Remark-Definition 4.9 It follows from Lemma 4.8 that, when H ⊂ R3 is a 2–dimensional
affine sphere, the Pick tensor C reads as C = ReU where the “Pick form” U is a holomorphic
cubic differential on (H, J). We will also denote by U the Pick form on any properly convex
domain of RP2, and on any properly convex projective surface.

5 The conformal structure of (S, h) and the Pick form

Let S be an oriented surface with non-abelian fundamental group, equipped with a finite volume
properly convex projective structure. We first explore the conformal structure of the affine metric
on S, and show that it has only parabolic ends (Corollary 5.4). Then, we prove the estimates
for the Pick form at the cusps (Corollary 5.8) that will ensure that the map A → (J,U) of our
main theorem 1.1 is well-defined.

Proposition 5.1 Let S be an oriented finite volume properly convex projective surface with non-
abelian fundamental group, h be the affine metric on S and write h = e2vh0 (with v ∈ C∞(S))
where h0 is the hyperbolic metric in the conformal class of h. Then h and h0 are “conformally
quasi-isometric”, namely the conformal factor v is bounded.

Proof Since S has non-abelian fundamental group, the uniformization theorem ensures that
there exists an hyperbolic metric h0 in the conformal class of h. The affine metric is complete
(Corollary 3.5) and its curvature is negatively pinched at infinity (Proposition 3.1). This makes
Proposition 5.1 a special case of the following version of the Ahlfors–Schwarz lemma [1]. !

Lemma 5.2 Let h = e2vh0 be two conformal metrics on a non compact surface S, and with
respective curvatures K and K0. Assume that both metrics are complete and that

−a ≤ K,K0 ≤ −b < 0

holds at infinity for some positive constants a and b. Then h and h0 are conformally quasi-
isometric.

This lemma will be, as in Troyanov [20], a consequence of the generalized maximum principle
of Yau [23].

Theorem 5.3 (Yau) Let w be a smooth function on a complete Riemannian manifold (M,h0)
whose Ricci curvature is bounded below. If w is bounded above and does not reach its maximum,
there exists a sequence of points pn ∈ M going to infinity, and such that w(pn) → supM w,
|∇0w(pn)| → 0, and with lim∆0w(pn) ∈ [0,∞].

Here ∇0 and ∆0 respectively denote the gradient and the Laplace operator with respect to the
metric h0, with the sign convention ∆0 := −TrDh0∇0.

Proof of Lemma 5.2 By symmetry, it is sufficient to prove that v is bounded above. If this
is not the case, the function w := 1/(1 + e−v) does not reach its maximum, and there exists a
sequence pn ∈ S as in Theorem 5.3, with w(pn) → 1. A simple computation yields

∆0w = ∆0v
e−v

(1 + e−v)2
− |∇0w|

2 (ev − e−v) .
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Plugging the equation for curvatures

∆0v = K e2v −K0 (5.1)

into this expression gives

∆0w = K
ev

(1 + e−v)2
−K0

e−v

(1 + e−v)2
− |∇0w|

2 (ev − e−v) ,

hence a contradiction when evaluated at the points pn, since the first term goes to −∞, the
second one goes to zero and the third one is non positive when n → ∞. !

Corollary 5.4 Let S be an oriented finite volume properly convex projective surface with non-
abelian fundamental group. Let J be the underlying complex structure to the affine metric h on
S. Then S has finite topological type and the Riemann surface (S, J) has only parabolic ends.
In other words, there exist a compact Riemann surface S and a finite set {p1, · · · , pk} ⊂ S such
that (S, J) identifies with S \ {p1, · · · , pk}.

The fact that S has finite topological type is due to Marquis, and was used in the proof of
Proposition 3.1.
Proof Since h has finite volume, Proposition 5.1 ensures that the hyperbolic metric h0 on (S, J)
also has finite volume, hence all its ends are parabolic. !

Remark 5.5 In a complex chart {z ∈ C , 0 < |z| ≤ 1/2} around a puncture, both metrics h

and h0 will be conformally quasi-isometric to the Beltrami metric g = |dz|2

|z|2 | log |z||2 . This is again

a consequence of Lemma 5.2.

To conclude this section, it only remains to prove that the Pick form U on S (Definition 4.9)
is a meromorphic form on the compactification S of S, with a pole of order at most 2 at each
puncture p.

Definition 5.6 Let Ω be a properly convex open subset of RP2 and U be the corresponding Pick
form on Ω. We define the Pick measure µP := |U |2/3 on Ω by

µP = |f(z)|2/3 |dz|2

in any complex chart where U reads as U(z) = f(z) dz3.

Lemma 5.7 There exists a constant C > 0 such that, for any properly convex open subset Ω of
RP2, the ratio Λ ∈ [0,∞[ of the Pick measure µP by the affine measure µh is uniformly bounded
above by C.

Proof Since the Pick measure can be expressed in terms of the 3–jet of uΩ, Corollary 3.3 and
Equation (2.3) ensure that the ratio Λ depends continuously on (x,Ω) ∈ E . This ratio being
invariant under the action of PGl3R, we conclude by Benzécri’s cocompactness theorem 2.7 that
Λ is bounded. !

15



Corollary 5.8 Let S be an oriented finite volume properly convex projective surface with non-
abelian fundamental group. Then the Pick form U is a meromorphic cubic differential on the
compactification S of (S, J), and with poles of order at most 2 at each puncture pi (1 ≤ i ≤ k).

Proof Work in a complex chart D∗ = {z ∈ C , 0 < |z| ≤ 1/2} around a cusp of (S, J) and let

U(z) = f(z) dz3 ,

where f is a holomorphic function on the punctured disk D∗. Since the affine metric h is
conformally quasi-isometric to the Beltrami metric in the cusp (Remark 5.5), the boundedness
of Λ (Lemma 5.7) implies that there exists a constant c > 0 such that

|f(z)| ≤
c

|z|3 | log |z||3
holds for 0 < |z| ≤ 1/2.

Hence f is meromorphic on the disk D = {|z| ≤ 1/2}, with a pole of order at most 2 at the
origin. !

We just proved that the map A → (J,U) is well-defined. This concludes the first part of the
proof of Theorem 1.1.

6 Wang’s equation

In this final section, we wrap up the proof of our main theorem 1.1 by constructing the inverse
map (J,U) → A as in Loftin’s thesis [13].

6.1 Retrieving the projective structure

In this subsection, we continue the discussion in section 4, and characterize those pairs (D,h)
of a torsion-free connection D and a positive symmetric 2–form h on the tangent bundle of a
manifold M which come from an immersion M ↪→ Rn+1 as an affine sphere.

Proposition 6.1 Let M be an n–dimensional manifold endowed with a torsion-free connection
D and h be a positive definite symmetric 2–form on M . Write D = Dh +A, where Dh denotes
the Levi–Civita connection of h and A is a section of T ∗M ⊗ EndTM .

Assume the manifold M to be simply-connected. Then D is the Blaschke connection and h is
the affine metric corresponding to an immersion M ↪→ Rn+1 as an affine sphere with constant
curvature −1 if and only if the following hold :

a. each endomorphism A(X) is trace-free and symmetric with respect to h

b. dD
h
A = 0

c. Rh(X,Y )Z + [A(X), A(Y )]Z = h(X,Z)Y − h(Y,Z)X, where Rh is the curvature of Dh

Proof Lemmas 4.3 and 4.4 ensure that conditions a,b and c are necessary.
Assume now that these conditions are satisfied and choose a non vanishing section ξ of the

trivial line bundle over M . Then, the connection ∇ on TM ⊕ L defined by (4.1) is flat, hence
it identifies the bundle TM ⊕ L with the trivial bundle Rn+1 ×M → M and the section

m ∈ M → ξ(m) ∈ TmM ⊕ Lm 2 R
n+1
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provides an immersion of M in Rn+1 such that the connection ∇ derives from the affine flat
connection on Rn+1. Moreover since each endomorphism A(X) is supposed to be trace-free, the
form ω in Lemma 4.4, being parallel with respect to ∇, is the restriction to M of a multiple of
the constant volume form det on Rn+1. Hence, after renormalizing the determinant, ξ identifies
with the affine normal of this immersion (Proposition 2.1). Equation (4.1) now tells us that the
affine shape operator of this immersion is S = −Id, that is, M is immersed in Rn+1 as an affine
sphere with affine curvature −1. !

6.2 Stating Wang’s equation

We now specialize to surfaces and introduce Wang’s equation, which relates the Pick form U of
an affine sphere (Definition 4.9) and the conformal factor between the affine metric h and its
uniformization h0.

Let S be an oriented surface with non-abelian fundamental group. The construction of the
reciprocal map (J,U) → A in theorem 1.1 goes as follows. Given a pair (J,U), where J is a
complex structure on S and U is a holomorphic cubic differential on (S, J), we want to retrieve
the properly convex projective structure A. As explained in subsection 4.1, this boils down to
constructing a suitable embedding S̃ ⊂ R3 of the universal cover of S as an affine sphere.

We first define a symmetric 3–tensor on S by letting C = ReU . Let h0 be the hyperbolic
metric on (S, J). To each conformal metric h = e2vh0 on S we associate the section A of the
bundle T ∗S⊗EndTS for which C(X,Y,Z) := h(A(X)Y,Z) (see Corollary 4.6). We then define a
torsion-free connection D on TS by D := Dh+A, where Dh denotes the Levi–Civita connection
of h. These data (D,h) lift to the universal cover S̃, and Proposition 6.1 gives necessary and
sufficient conditions for this pair to correspond to an immersion of S̃ in R3 as an affine sphere.

Remark 6.2 When dealing with surfaces, we have proved in Lemma 4.8 that the above condi-
tions a and b in Proposition 6.1 amount to saying that the tensor C(X,Y,Z) = h(A(X)Y,Z) is
the real part of a holomorphic cubic differential U on (S, J). Thus, it only remains to examine
condition c, which we will do in the next corollary.

Let A0 be the section of T ∗S ⊗ EndTS corresponding to the hyperbolic metric h0, namely
such that C(X,Y,Z) := h0(A0(X)Y,Z), and let ∆0 := −TrDh0∇0 denotes the Laplace operator
on (S, h0).

Corollary 6.3 Let the function k : S → R be defined as

k := −h0([A0(X
0
1 ), A0(X

0
2 )]X

0
2 ,X

0
1 ) , (6.1)

where (X0
1 ,X

0
2 ) is any orthonormal frame for the hyperbolic metric h0.

The pair (D,h) derives from an immersion of S̃ in R3 as an affine sphere with affine curvature
−1 if and only if the conformal factor v is solution of Wang’s equation

∆0v = −e2v + 1 + k e−4v . (6.2)
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Proof Condition c is equivalent to

h(Rh(X1,X2)X2,X1) + h([A(X1), A(X2)]X2,X1) = −1 , (6.3)

where (X1,X2) is any orthonormal basis for the metric h. It is elementary to check that

−h([A(X1), A(X2)]X2,X1) = e−6v k .

Taking into account the equation for curvature ∆0v = Kh e2v + 1 – where Kh is the curvature
of the affine metric h – reduces this condition to Wang’s equation (6.2). !

6.3 Solving Wang’s equation

In this section, we finally end the proof of Theorem 1.1 by proving that Wang’s equation admits
a unique bounded solution.

Let S be an oriented surface equipped with a pair (J,U), where J is a complex structure and
U is a holomorphic cubic differential as in Theorem 1.1. If these data derive (by the construction
of sections 2–4) from a properly convex structure on S with finite volume, we have seen that the
corresponding affine metric h is complete and must read as h = e2vh0, where h0 is the hyperbolic
metric on (S, J) and the function v is a bounded solution of Wang’s equation (Proposition 5.1
and Corollary 6.3).

Lemma 6.4 Let (S, J) be a hyperbolic Riemann surface with finite volume, and U be a holo-
morphic cubic differential with poles of order at most 2 at the cusps. Then, the function k
defined by Equation (6.1) is non negative and bounded.

Proof It is elementary to check that k reads as k = 2e−6ϕ|f |2 in isothermal coordinates where
h0 = e2ϕ(dx2 + dy2) and U = f(z) dz3. The hypothesis on U and Remark 5.5 ensure that k is
bounded on S. !

Proposition 6.5 (Loftin [13]) Let (S, h0) be a Riemannian surface, and k : S → R+ be a
smooth non negative bounded function. Then, Wang’s equation (6.2)

∆0v = −e2v + 1 + k e−4v

admits bounded solutions, which are C∞. When S is compact, or the metric h0 is complete and
with curvature bounded from below, such a bounded solution is unique.

End of proof of Theorem 1.1 Let v be the unique bounded solution of Wang’s equation (6.2).
The conformal metric h = e2vh0 on S is complete. The affine metric h and the Pick form U lift
to S̃, and Corollary 6.3 and Theorem 4.1 ensure that these data correspond to an embedding of
S̃ ↪→ R3 which is asymptotic to a convex cone C ⊂ R3. Such a bounded solution being unique,
this embedding is equivariant under a representation π1(S) → Sl±3 R, hence provides the desired
properly convex projective structure on S. !
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For the sake of completeness we now give a proof of Proposition 6.5, which relies on the
classical so-called method of upper and lower solutions.

Proof of Proposition 6.5 Define f : S ×R → R by f(x, t) := −e2t + 1 + k(x) e−4t. Since k is
positive and bounded, there exist constant functions v− ≤ v+ which provide respectively lower
and upper solutions for Equation (6.2), namely such that ∆0v− ≤ f(x, v−) and ∆0v+ ≥ f(x, v+).
Moreover, there exists a constant c > 0 such that, for any v− ≤ s < t ≤ v+ and x ∈ S,

f(x, s)− c(t− s) ≤ f(x, t) < f(x, s) (6.4)

holds.

• Assume first that the surface S is non compact, and choose an exhaustion Σk ⊂ Σ̊k+1,
∪Σk = S of S by compact surfaces with smooth boundaries.

Lemma 6.6 Let Σ be a compact surface with smooth boundary. Let ψ, v+ be two functions in
C∞(Σ) and c > 0 be a constant. Then, there exists a solution w ∈ C∞(Σ) of the linear Dirichlet
problem {

∆0w = −cw + ψ on Σ̊

w = v+ on ∂Σ .

Proof Let H̊2
1 be the Hilbert completion of the space C∞

0 (Σ̊) of smooth functions with compact
support in Σ̊ for the inner product (f, g)L2

+ c (∇0f,∇0g)L2
. The Riesz representation theorem

in H̊2
1 yields a solution ŵ ∈ H̊2

1 for the equation ∆0ŵ = −cŵ + ψ̂, where ψ̂ := ψ − c v+ −∆0v+
lies in C∞(Σ). Standard elliptic regularity and Sobolev embedding (see eg Gilbarg– Trudinger
[7, 8.13 and 7.26]) ensure that ŵ ∈ C∞(Σ). The function w := ŵ + v+ is the desired solution.
!

Corollary 6.7 Let Σ be a compact surface with smooth boundary, f ∈ C∞(R × Σ) and c > 0
be a constant such that (6.4) holds. Let ψ, v+ and v− be functions in C∞(Σ), and assume that
v− ≤ v+, and that ∆0v+ ≥ f(x, v+) holds while ∆0(x, v−) ≤ f(x, v−). Then, the non-linear
Dirichlet problem {

∆0v = f(x, v) on Σ̊

v = v+ on ∂Σ
(6.5)

admits a solution v ∈ C∞(Σ) with v− ≤ v ≤ v+.

Proof We use an iterative scheme. Begin with w0 ≡ v+, and let wj ∈ C∞(Σ) (j ≥ 1) be the
solution of the linear Dirichlet problem

{
∆0wj = −cwj + f(x,wj−1) + cwj−1 on Σ̊

wj = v+ on ∂Σ

provided by Lemma 6.6. The maximum principle and property (6.4) ensure recursively that
(wj) is a decreasing sequence, that the wj are upper solutions for Equation (6.5), and that
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v− ≤ wj ≤ v+ holds for j ≥ 1. Global elliptic estimates and Kondrakov embedding (Gilbarg–
Trudinger [7, 9.14 and 7.26]) show that the sequence wj is bounded in C1,α (0 < α < 1). Hence
a subsequence of (wj) converges uniformly on Σ to a weak solution v of Equation (6.5). Elliptic
regularity ensures that v is smooth. !

End of proof of Proposition 6.5. For each compact surface Σk ⊂ S, let vk ∈ C∞(Σk) with
v− ≤ vk ≤ v+ be the solution of the Dirichlet problem (6.5) on Σk given by Corollary 6.7. The
maximum principle ensures that the sequence (vk) is decreasing, namely that vk+1 ≤ vk holds on
Σk. Since the sequence is bounded below, it converges to a weak bounded solution v of Wang’s
equation. Elliptic regularity again shows that v is smooth.

Uniqueness of a bounded solution for Equation (6.2) is an immediate consequence of the
generalized maximum principle of Yau (Theorem 5.3).

•When the surface S is compact, a bounded solution is provided by the same recursive scheme
– without boundary conditions – and uniqueness of a bounded solution follows from the classical
maximum principle. !

Remark 6.8 Denote by G the set of properly convex projective structures with finite volume
on S, quotiented by the natural action of the group Diff0(S) of diffeomorphisms isotopic to the
identity map (see Goldman [9]). One of the interesting features of Theorem 1.1 is that, by
applying Riemann-Roch, it allows to identify G with C8(g−1)+3r, where g is the genus of the
compactification S of S, and r is the number of punctures. In particular, it endows G with a
canonical complex structure.
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