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Abstract. Let G be a real Lie group, Λ a lattice of G, µ a com-
pactly supported probability measure on G, and Γ the subgroup
generated by the support of µ. We prove that, when the Zariski
closure of the adjoint group Ad(Γ) is semisimple with no compact
factor, every µ-ergodic µ-stationary probability measure on G/Λ is
homogeneous. We prove also similar results for p-adic Lie groups.
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1. Introduction

This text is part of a series of papers which aim at understanding
some phenomena on the dynamics of subgroups actions on finite volume
homogeneous spaces. We describe in this introduction our main result
for real Lie groups. More general statements are given in Chapter 2.

1.1. Actions on G/Λ.

Let G be a real Lie group, Λ be a lattice in G, X =
G/Λ and µ be a probability measure on G. We want to
describe the µ-stationary probability measures ν on X.

We recall that a probability measure ν on X is said to be µ-stationary
if one has µ ∗ ν = ν. It is then said to be µ-ergodic if it is extremal
among µ-stationary probability measures.

We will say that a probability measure ν on X is homogeneous if it is
supported by a closed orbit F of its stabilizer Gν := {g ∈ G | g∗ν = ν}.
Such a probability is a finite average of probability measures which are
homogeneous under the connected component of Gν .
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Let Γµ be the subgroup of G generated by the support of µ. Let g

be the Lie algebra of G and Hµ := Ad(Γµ)
Z
⊂ GL(g) be the Zariski

closure of the adjoint group Ad(Γµ).

Theorem 1.1. Let G be a real Lie group, g be its Lie algebra, Λ be a
lattice in G, X = G/Λ and µ be a compactly supported probability mea-

sure on G such that the group Hµ := Ad(Γµ)
Z

is semisimple, Zariski
connected with no compact factor. Then every µ-ergodic µ-stationary
probability measure ν on X is Γµ-invariant and homogeneous.

Note that it is easy to describe these Γµ-invariant homogeneous prob-
ability measures ν on G using the following remarks: since their stabi-
lizer Gν is a closed subgroup of G containing Γµ, the connected com-
ponent S of Gν is a subgroup of G whose Lie algebra is stable under
the action of Hµ and, since ν is µ-ergodic, one has Gν = ΓµS.

When Hµ is not assumed to be Zariski connected and is allowed
to have non-trivial compact factors, we can still describe all the µ-
ergodic µ-stationary measures on X even though they might be non-
homogeneous. Such examples are called satellite probability measures
(see [6]).

Corollary 1.2. Let G be a connected semisimple real algebraic group
with no compact factor, Λ be an irreducible lattice in G and µ be a
probability measure on G whose support is compact and spans a Zariski
dense subgroup of G. Then every non-atomic µ-stationary probability
measure on X is G-invariant.

Under the stronger assumption that G is simple, Corollary 1.2 is the
first main result of [4].

1.2. Actions on tori and nilmanifolds.

We describe now the applications of our Theorem 1.1 to
the affine actions on tori and more generally to the affine
actions on nilmanifolds.

Let N be a connected simply connected nilpotent real Lie group, Λ
be a lattice in N and X be the compact nilmanifold X = N/Λ. By an
affine submanifold of X, we shall mean a closed subset of X which is an
orbit under a connected subgroup of N . By Mal’cev’s rigidity theorem
(see [24, II.2.11]), the discrete group Aut(Λ) of automorphisms of Λ
embeds in a natural way in the group of automorphisms of N . Define
the group of affine transformations of X to be the semidirect product
G := Aff(X) = Aut(Λ) n N/ZΛ, where ZΛ is the center of Λ. Then
G acts transitively on X and we may see X as the quotient of G
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by the lattice Aut(Λ) n Λ/ZΛ. The action of Aut(Λ) ⊂ G by left
translations on this quotient is its usual action on X. In this case,
a homogeneous probability measure on X is a finite average of Haar
probability measures carried by affine submanifolds of X.

For example, if N = Rd and Λ = Zd, one has X = Td, G = Aff(X) =
GL(d,Z)n Td and Aut(Λ) = GL(d,Z) ⊂ Aut(N) = GL(d,R).

By Theorem 1.1, we get the following corollary which gives a partial
answer to [20, Problem 4]:

Corollary 1.3. Let X = N/Λ be a compact nilmanifold, µ be a finitely
supported probability measure on Aut(Λ) and Γµ be the subgroup gen-
erated by the support of µ. We assume that the Zariski closure of Γµ
in Aut(N) is semisimple and Zariski connected with no compact fac-
tor. Then every µ-ergodic µ-stationary probability measure ν on X is
Γµ-invariant and homogeneous.

A description of some cases of Corollary 1.3 where X is a Heisenberg
nilmanifold has been obtained by J.-R. Heu in [19] based on [4].

Corollary 1.4. Let X be the torus X = Td, µ be a finitely supported
probability measure on GL(d,Z) and Γµ be the subgroup generated by the
support of µ. Assume the Zariski closure of Γµ is semisimple, Zariski
connected and with no compact factor, and acts irreducibly on Qd. Then
the only atom-free µ-stationary probability measure on Td is the Haar
probability on Td.

To our knowledge, Corollary 1.4 was previously only known under
the additional assumption that Γµ acts irreducibly on Rd: this is due to
[12] in the proximal case and to [4] in general. For instance, the action
of the group SL(2,Z[

√
2]) is irreducible on Q4 but is not irreducible on

R4.

1.3. Strategy of the proof.

Since the proof of Theorem 1.1 will last up to the end of
this paper, we begin by a sketch of the main ideas.

As in [4], our approach is based on a study of the random walk
induced by µ on G/Λ, that is the Markov chain with transition proba-
bilities µ ∗ δx, x ∈ G/Λ. We still use the “exponential drift” argument
based on the martingale convergence theorem, that we have introduced
in [4] when G is simple and Hµ = G.

However, the strategy is different from the one followed in [4]: we
do not use any suspension of Bernouilli shift. Instead, we modify the
“exponential drift” argument, by replacing the tail σ-algebra of the
suspension by the tail σ-algebra of a fibered dynamical system whose
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fiber has infinite volume. More precisely, we first consider a finite vol-
ume fibered dynamical system (BX ,BX , βX , TX) with fiber X and with
base the one-sided Bernoulli shift (B,B, β, T ) with alphabet (G, µ).

Let g = l ⊕ v1 ⊕ · · · ⊕ v` be a decomposition of the Lie algebra of
G, where l is the centralizer of Γµ and where the vi’s are nontrivial
irreducible Γµ-modules. The case we were dealing with in [4] is the
case where l = 0 and ` = 1. Each of these representations vi gives us a
function θi on B describing the logarithmic growth of the random walk
on G in the most expanding direction of vi.

We collect these functions as a function θ on B with values in a lo-
cally compact group Z. This group Z is a compact extension of a non
compact abelian group. We will consider the function θ as a cocycle on
(BX ,BX , βX , TX) and study the corresponding fibered dynamical sys-
tem (Bθ,X ,Bθ,X , βθ,X , T θ,X) with fiber Z. The study of this dynamical
system needs some special care since the invariant measure βθ,X has
infinite volume. Hence we introduce an open subset U in Z of finite
volume and the subspace BU,X ⊂ Bθ,X with fiber U over BX .

We introduce the σ-subalgebras Qθ,Xn = (T θ,X)−nBθ,X whose inter-
section is the tail σ-algebra Qθ,X∞ . We also introduce the σ-algebras
QU,Xn which are the restrictions of Qθ,Xn to BU,X . These σ-algebras are
very convenient to us for the following two reasons.

On one hand, in Chapter 3, we prove a very simple formula to express
the conditional expectation ϕn = E(ϕ | QU,Xn ) of a measurable function
ϕ on BU,X with respect to this σ-algebra QU,Xn .

On the other hand, in Chapter 4, we are able to control the asymp-
totic behavior as n goes to ∞ of the corresponding conditional proba-
bility measures βU,Xn,c,x thanks to the “law of the angles”. To check this
asymptotic law, we use a tricky combination of an iterated logarithm
law, a local limit theorem and a large deviation estimate for random
walks on semisimple groups that we have proved to this purpose in [9].

Chapter 5 is a pot-pourri of preliminary results, including structure
results for real and p-adic Lie groups and their lattices, which will be
used later.

We prove in Chapter 6 a general phenomenon for the random walk on
X = G/Λ which we have called ”positive µ-unstability of the diagonal”
and which is the main input for Chapter 7. To check this phenomenon
holds when the space X = G/Λ is not compact, we use the exponential
µ-recurrence of the random walk on X = G/Λ that we have proven in
[7].

Chapter 7 contains two important ideas. First we check that if µ
is non-atomic, β-almost surely, the limit probability measures νb are
not supported by the ”stable leaf” of an orbit of the centralizer L of
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Γµ. Second, we introduce the horocyclic flow and check that the ”con-
ditional measures of νb along the horocycle flow” map is measurable
for the tail σ-algebra Qθ,X∞ . These two points will be crucial inputs in
Chapter 8.

We develop in Chapter 8 our new ”exponential drift” argument. This
argument should be familiar for a reader who already knows [4], even
though the tools involved in the proof are more sophisticated than in [4].
The main point is to control accurately the size and the direction of the
drift. This control is the purpose of the “the law of the angles” proven
in Chapter 4. As in [4], the aim of the exponential drift argument is
to show that almost surely the conditional measures of νb along the
horocycle flow have a non trivial stabilizer. This piece of information
allows us to write ν as an average of non trivial probability measures α
which are invariant and ergodic under a one-parameter Ad-unipotent
subgroup. By Ratner’s theorem [25], such a probability measure is
homogeneous. Thus, this construction provides us with a probability
measure η on the set E of probability measures which are homogeneous
and ergodic under some one-parameter Ad-unipotent subgroup. By the
equivariance properties of this construction, the probability measure η
is itself µ-stationary and µ-ergodic. By ergodicity this probability η is
supported by some G-orbit Gα0 in E . The key point is then to check,
using one of the pot-pourri results of Chapter 5, that η is supported
by an orbit of the unimodular normalizer of the connected component
Sα0

of the stabilizer of α0. We conclude then, by a kind of induction
argument, that η is homogeneous. Therefore ν is homogeneous too.

The results stated in this introduction were announced in [5]. We
will apply them in [6] to the classification of the Γµ-orbit closures in X
which was also announced in [5].

Since our ergodic theorical method is very flexible, our results will
be stronger than the statements in this introduction: we will work with
products of real and p-adic Lie groups. This extension will lengthen this
article only by 12 pages. We have gathered the extra p-adic technics in
sections 2.1, 2.2, 5.1, 5.2, 5.6, and 5.8, that a reader only interested by
real Lie groups can avoid and we have tried to keep notations for the
other sections as light as if we were dealing only with real Lie groups.

2. Main results

In this section we formulate our main result which generalizes The-
orem 1.1. The reader who is only interested in real Lie groups may go
directly to section 2.3.
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2.1. Weakly regular S-adic groups.

We define here a class of S-adic Lie groups to which our
result apply.

For any prime number p, let Qp denote the field of p-adic num-
bers and Q∞ = R denote the field of real or “∞-adic” numbers. Let
{∞, 2, 3, 5, ...} be the set of prime numbers including ∞ and S be a
finite subset of it. We let QS be the locally compact algebra

⊕
p∈S Qp.

Definition 2.1 (Ratner, [26]). A p-adic Lie group G is said to be
weakly regular if any two one-parameter subgroups Qp → G with the
same derivative at e are equal.

A weakly regular S-adic Lie groupG is a locally compact group which
is isomorphic to a closed subgroup of a product of weakly regular p-adic
Lie groups, with p ∈ S.

For instance, every real Lie group is weakly regular since the one-
parameter subgroups are characterized by their derivative at e.

Example 2.2 ([26, Cor. 1.3 and Prop. 1.5]). Every closed subgroup of
a finite product

∏
p∈S GL(dp,Qp) is a weakly regular S-adic Lie group.

In this article, all the measures are assumed to be Borel measures.
Let G be a weakly regular S-adic Lie group, Λ be a discrete subgroup

of G and X = G/Λ. Let µ be a probability measure on G. We denote
by Γ = Γµ the closed subgroup generated by the support of µ. Let
g = ⊕p∈Sgp be the Lie algebra of G, and Ad be the adjoint action of G

in g (see section 5.1 for more details). We denote by Hµ := Ad(Γµ)
Z

the
Zariski closure of the group Ad(Γµ) in GL(g). This means thatHµ is the
smallest group containing AdΓµ which is a product Hµ :=

∏
p∈S Hµ,p

of Zariski closed subgroups Hµ,p ⊂ GL(gp). Hence for every p ∈ S,
Hµ,p is the Zariski closure of the group AdgpΓµ ⊂ GL(gp). We will say

that Hµ is semisimple if all the groups Hµ,p are semisimple and we will
always assume semisimple algebraic groups to be Zariski conneceted.
We will say that

Definition 2.3. µ is Ad-semisimple if the group Hµ is semisimple.

Let Hnc
µ ⊂ Hµ be the intersection of the kernels of the algebraic

representations ρ : Hµ → GL(d,QS) for which ρ(Ad(Γµ)) is bounded.
When µ is Ad-semisimple and S = {∞}, one has the equivalence

Hµ = Hnc
µ ⇐⇒ Hµ is Zariski connected with no compact factor.

In this paper, we will always assume that µ is Ad-semisimple. Often
we will also assume that Hµ = Hnc

µ .
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2.2. Stationary probability measures.

We explain in this section our classification of stationary
probability measures.

Definition 2.4. A probability measure ν on X is homogeneous if it is
supported on a closed orbit of its stabilizer Gν := {g ∈ G | g∗ν = ν}.

Theorem 2.5. Let G be a weakly regular S-adic Lie group, Λ be a lat-
tice in G, X = G/Λ and µ be an Ad-semisimple compactly supported
probability measure on G such that Hµ = Hnc

µ . Then every µ-ergodic
µ-stationary probability measure ν on X is Γµ-invariant and homoge-
neous.

Corollary 2.6. Let G be a finite product of Zariski-connected linear
semisimple p-adic Lie groups, Λ be an irreducible lattice in G, X =
G/Λ and µ be a compactly supported probability measure on G. We
assume that the image of Γµ in every non-trivial semisimple quotient of
G is Zariski dense and unbounded. Then every atom-free µ-stationary
probability measure on X is invariant by some finite index subgroup
G′ ⊂ G.

2.3. The case where Λ is not a lattice.

Even when G is a real Lie group, the reduction process
of the proof of Theorem 2.5 will force us to deal also with
discrete subgroups Λ which are not lattices.

We choose a norm ‖.‖ on each of the p-adic Lie algebras gp and, for
v = (vp)p∈S in g, we set ‖v‖ := maxp∈S ‖vp‖. We pick a standard open
subset Ω of G with exponential map expΩ : O → Ω (see section 5.1)
where O is a relatively compact open neighborhood of 0 in g. We fix
r0 > 0 such that B(0, r0) ⊂ O and, for x ∈ X, we define the injectivity
radius at x by

(2.1) rX(x) := max{r ≤ r0 | v 7→ expΩ(v)x is injective on B(0, r)}.

A subset F ofX is said to be exponentially µ-recurrent if the sequence

n 7→ sup
x∈F

(
µ⊗n({(g1, . . . gn) ∈ Gn | gj · · · g1x 6∈ F for all j = 1, . . . , n })

)
decays exponentially (see Definition 6.1).

We say that the cusps of X are exponentially µ-unstable if every
compact subset of X is contained in an exponentially µ-recurrent closed
set F on which the injectivity radius is bounded below (see Definition
6.20).
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Proof of Theorem 2.5. This will follow from Theorem 2.7 since the
main result of [7] tells us that, when Λ is a lattice, the cusps of X
are exponentially µ-unstable (see Lemma 6.21). �

Theorem 2.7. Let G be a weakly regular S-adic Lie group, Λ be a
discrete subgroup of G, X = G/Λ, µ be a Ad-semisimple compactly
supported probability measure on G such that Hµ = Hnc

µ . We assume
that the cusps of X are exponentially µ-unstable. Then every µ-ergodic
µ-stationary probability measure ν on X is Γµ-invariant and homoge-
neous.

Theorem 2.7 might be true for any discrete subgroup Λ of G. Indeed
the cusps of X might always be exponentially µ-unstable. We checked
this when G is a semisimple real Lie group and Γµ is a Zariski dense
subgroup of G.

The proof of Theorem 2.7 will last up to the end of this paper.

3. Conditional measures

The aim of the first four sections of this chapter is to study a non-
invertible fibered dynamical system with an infinite volume fiber. We
study it through its restriction to a well-chosen subset of finite volume
in the fiber. The main output is Lemma 3.6 which gives a very simple
formula for the conditional expectation with respect to the restriction
of the σ-algebras of the future events. It will be used in section 8.1.

In Section 3.5, we introduce a useful tool for studying probabil-
ity measures which are invariant by a Markov operator P when this
Markov operator commutes with a group L. This tool will be used in
sections 7.3 and 7.4.

3.1. Restriction and conditional expectation.

We prove in this section a simple formula relating condi-
tional expectation and restriction of σ-algebras.

Lemma 3.1. Let (X,B, β) be a σ-finite Lebesgue measure space and
A ⊂ B be a σ-finite σ-subalgebra. Let i : Y ↪→ X be a B-measurable
subset of X with finite non-zero measure, i−1A be the restriction of A
to Y and βY := 1

β(Y )
β|Y .

Then, for any non-negative B-measurable function ϕ on X, for βY -
almost every x ∈ Y , one has E(1Y | A)(x) 6= 0 and

(3.1) E(ϕ ◦ i | i−1A)(x) =
E(ϕ1Y | A)(x)

E(1Y | A)(x)
.

Note that every i−1A-measurable function ϕ0 on Y can be expressed
as ϕ0 = ϕ ◦ i where ϕ is some A-measurable function on X.
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Proof. We first check that the denominator is non-zero for βY -almost
every y ∈ Y . We want to prove that the set Z := {x ∈ X | E(1Y |
A)(x) = 0} satisfies β(Z ∩ Y ) = 0. But Z is a A-measurable subset of
X, hence one has β(Z ∩ Y ) =

∫
Z
E(1Y | A)(x) dβ(x) = 0.

We now check equality (3.1). We introduce the A-measurable func-
tion ϕ′ on X equal to the right-hand side of (3.1) when the denominator
is non-zero and equal to zero if the denominator is zero. We want to
prove, for βY -almost every x ∈ Y , the equality E(ϕ ◦ i | i−1A)(x) =
ϕ′(x). To this aim, we have to check, the equality∫

Y

ϕψ dβY =

∫
Y

ϕ′ψ dβY ,

for every non-negative A-measurable function ψ on X. We compute∫
X

ϕ1Y ψ dβ =

∫
X

ϕ′E(1Y | A)ψ dβ =

∫
X

ϕ′1Y ψ dβ

and get the required equality by dividing by β(Y ). �

3.2. A fibered dynamical system.

In this section, we prove a conditional expectation for-
mula for a fibered dynamical system whose fiber has in-
finite volume.

Let (B,B) be a standard Borel space, i.e. isomorphic as a Borel
space to an interval, β a positive σ-finite Borel measure on B and
T be a measurable endomorphism of B preserving β. Let (X,X ) be
a standard Borel space, M(X) the space of positive Borel measures
on X, BX the product B × X endowed with the product σ-algebra
BX = B⊗X , π : B×X → B the projection on the first factor and TX

a measurable transformation of BX such that π ◦ TX = T ◦ π. Let us
write, for (b, x) in B ×X, TX(b, x) = (Tb, ρ(b)x).

Let b 7→ νb ∈ M(X) be a family of positive σ-finite measures on
X. We assume that this family is measurable in the following sense:
there exists an increasing sequence (Xn) of Borel subsets of X such
that X =

⋃
nXn and that, for any n, one has νb(Xn) <∞ for β-almost

any b and the map b 7→ νb|Xn is a Borel map from B to the space of
finite Borel measures on Xn, equipped with its natural Borel structure.

Suppose, for β-almost every b in B, one has νTb = ρ(b)∗νb. Set
βX to be the Borel measure on BX given by βX =

∫
B
δb ⊗ νb dβ(b).

This positive measure βX is TX-invariant (this follows from the same
computation as in Lemma 2.4 of [4]).

Various fibered dynamical systems (BX ,BX , βX , TX) will play an
important role in this paper.
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For β-almost every b in B, let us denote by βT
−1B

b the conditional
probability measure at b of β with respect to T−1B, so that, for every
B-measurable and βX-integrable function ψ : B → C and for β-almost
every b in B, one has

E(ψ | T−1B)(b) =

∫
B

ψ(b′) dβT
−1B

b (b′).

The following lemma improves Lemma 2.5 of [4].

Lemma 3.2. Let us assume that, for β-almost every b in B the map
ρ(b) : X → X is an automorphism of X. Then, for every BX-
measurable and βX-integrable function ϕ : BX → C and for βX-almost
every (b, x) in BX , one has the equality

E(ϕ | (TX)−1(BX))(b, x) =

∫
B

ϕ(b′, ρ(b′)−1ρ(b)x) dβT
−1B

b (b′).

Proof. The only difference with Lemma 2.5 of [4] is that in Lemma 3.2
the positive measures β and νb are not assumed to be finite. The proof
is given by the same computation. �

3.3. A conditional expectation formula.

We apply in this section the simple formula (3.1) to ex-
tensions of Bernoulli dynamical systems.

Let (A,A, α) be a Lebesgue probability space and (B,B, β, T ) be
the one-sided Bernoulli shift with alphabet (A,A, α), that is B is the
product space B = AN, B is the product σ-algebra, β is the product
probability measure β = α⊗N and T is the shift given by T (b0, b1, . . .) =
(b1, b2, . . .).

Let Z be a second-countable locally compact topological group, with
a given left Haar measure λZ , and θ : B → Z a measurable map. We
introduce the extension

(3.2) (Bθ,Bθ, βθ, T θ).

The space Bθ is the product B × Z, the σ-algebra Bθ is the product
σ-algebra, the measure βθ is the product β⊗λZ and the transformation
T θ is given by, for (b, z) ∈ Bθ,

T θ(b, z) = (Tb, θ(b)−1z).

As soon as Z is not compact, the measure βθ has infinite volume. The
transformation T θ preserves the measure βθ.

For n ≥ 0, let θn : B → Z be the function given by, for b ∈ B,

θn(b) = θ(b)θ(Tb) · · · θ(T n−1b).
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Let Qθn be the σ-subalgebra Qθn := (T θ)−n(Bθ). The drift argument in
section 8.1 is based on a formula for the conditional expectation with
respect to this σ-algebra. Note that the intersection Qθ∞ := ∩n≥0Qθn is
the tail σ-algebra.

For a = (a0, . . . , an−1) ∈ An and b ∈ B we set

hn,b(a) = aT nb := (a0, a1, . . . , an−1, bn, bn+1, . . .)

As a varies, these elements parametrize the fiber T−n(T nb) ⊂ B. For
β-almost every b in B, the conditional probability measures βn,b of β
along T−nB are the images

(3.3) βn,b = (hn,b)∗α
⊗n.

For c = (b, z) ∈ Bθ, we set

(3.4) hn,c(a) = (aT nb, θn(aT nb)θn(b)−1z).

As a varies, these elements parametrize the fiber (T θ)−n((T θ)nc) ⊂
Bθ. Lemma 3.3 below tells us that, for βθ-almost every c ∈ Bθ, the
conditional probability measures βθn,c of βθ along Qθn are the images

βθn,c = (hn,c)∗α
⊗n.

Lemma 3.3. Let n be a positive integer. The conditional expectation
with respect to the σ-algebra Qθn is given by, for every non-negative
Bθ-measurable function ϕ and for βθ-almost every c = (b, z) in Bθ,

E(ϕ | Qθn)(c) =

∫
An
ϕ(hn,c(a)) dα⊗n(a).

Proof. This follows from Formula (3.3) and Lemma 3.2 with X = Z
and with the constant family of measures b 7→ λZ on Z. �

Since the measure βθ has infinite volume, it will be convenient to
introduce its restriction to a subset of finite volume. Let U be a Borel
subset of Z with 0 < λZ(U) <∞. We introduce the probability space
(BU ,BU , βU), where BU := B × U , BU is the product of B with the
Borel σ-algebra of U and βU is the probability on B × U given by
βU = 1

λZ(U)
(β ⊗ λZ)|BU . Let QUn be the sub-σ-algebra of BU which is

the restriction of Qθn to BU . It is the sub-σ-algebra of BU generated
by the maps (b, u) 7→ T nb and (b, u) 7→ θn(b)−1u. For βU -almost every
c = (b, z) in B × U , let βUn,c be the conditional probability measure of

βU at c = (b, z) ∈ B × U along QUn and set

(3.5) QU
n,c := h−1

n,c(B
U) = {a ∈ An | θn(aT nb)θn(b)−1z ∈ U}.
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Let ϕ be a non-negative Bθ-measurable function on Bθ and denote by
ϕ
U

the restriction of ϕ to BU . By definition, for βU -almost every c in
BU , one has

E(ϕ
U
| QUn )(c) =

∫
BU

ϕ
U

(c′) dβUn,c(c
′).

We introduce the notation

(3.6) α⊗n(E1 | E2) =
α⊗n(E1 ∩ E2)

α⊗n(E2)

for the conditional probability of two measurable subsets E1, E2 of An.

Lemma 3.4. The conditional expectation with respect to the σ-algebra
QUn is given by, for every non-negative Bθ-measurable function ϕ, for
βU -almost every c = (b, z) in BU ,

(3.7) E(ϕ
U
| QUn )(c) =

∫
QUn,c

ϕ(hn,c(a)) dα⊗n(a)

α⊗n(QU
n,c)

,

hence, in other terms, for every Bθ-measurable subset K ⊂ BU , for
βU -almost every c = (b, z) in BU ,

(3.8) βUn,c(K) = E(1K | QUn )(c) = α⊗n(h−1
n,c(K) | QU

n,c).

Proof. We first note that Lemmas 3.1 and 3.3 tell us that the denom-
inator in the right-hand side of (3.7) is non zero for βU -almost every
c ∈ BU . These formulae follow also from Lemmas 3.1 and 3.3. �

3.4. Conditional measure, fibration and restriction.

We mix together in this section the results of sections 3.2
and 3.3.

We keep the notations and hypothesis of the previous section 3.3
which are related to the dynamical system (Bθ,Bθ, βθ, T θ) and its re-
striction to B × U . We keep also the data of section 3.2: the space
(X,X ) is a standard Borel space, endowed with a B-measurable family
of positive measures b 7→ νb;B →M(X) such that, for β-almost every
b in B, one has νTb = ρ(b)∗νb. These data allow us to construct the
dynamical system (BX ,BX , βX , TX).

We introduce the dynamical system (Bθ,X ,Bθ,X , βθ,X , T θ,X), where
the space Bθ,X is the product Bθ×X, the σ-algebra Bθ,X is the product
σ-algebra, the measure βθ,X is given by

βθ,X =

∫
Bθ
δ(b,z) ⊗ νb dβθ(b, z)
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and the transformation T θ,X is given by, for (c, x) = (b, z, x) ∈ Bθ,X ,

T θ,X(b, z, x) = (Tb, θ(b)−1z, ρ(b)x).

As soon as Z is not compact, this measure βθ,X has infinite volume.
The transformation T θ,X preserves the measure βθ,X .

Let Qθ,Xn be the sub-σ-algebra

(3.9) Qθ,Xn := (T θ,X)−n(Bθ,X).

Note again that the intersectionQθ,X∞ := ∩n≥0Qθ,Xn is the tail σ-algebra.
For a = (a0, . . . , an−1) ∈ An and (c, x) = (b, z, x) ∈ Bθ,X , we set

(3.10) hn,c,x(a) = (aT nb, θn(aT nb)θn(b)−1z, ρn(aT nb)−1ρn(b)x),

where ρn(b) = ρ(T n−1b) . . . ρ(b). As a varies, these elements parame-
trize the fiber

(T θ,X)−n((T θ,X)n(c, x)) ⊂ Bθ,X .

The following lemma 3.3 tells us that, for βθ,X-almost every (c, x) ∈
Bθ,X , the conditional probability measures βθ,Xn,c,x of βθ,X along Qθ,Xn are
the images

βθ,Xn,c,x = (hn,c)∗α
⊗n.

Lemma 3.5. The conditional expectation with respect to the σ-algebra
Qθ,Xn is given by, for every non-negative Bθ,X-measurable function ϕ,
and for βθ,X-almost every (c, x) in Bθ,X ,

(3.11) E(ϕ | Qθ,Xn )(c, x) =

∫
An
ϕ(hn,c,x(a)) dα⊗n(a).

Proof. This is a consequence of Lemmas 3.2 and 3.3. �

Let again U be a Borel subset of Z with λZ(U) <∞. We introduce
the following probability space

(3.12) (BU,X ,BU,X , βU,X)

where BU,X := BU ×X, BU,X := BU ⊗ X and βU,X is the probability
measure on BU,X given by βU,X =

∫
BU

δ(b,z) ⊗ νb dβU(b, z). Let QU,Xn
be the sub-σ-algebra of BU,X which is the restriction of Qθ,Xn to BU,X .

The drift argument in section 8.1 is based on a formula for the con-
ditional expectation with respect to this σ-algebra: Formula (3.14).

For βU,X-almost every (c, x) in BU,X , let βU,Xn,c,x be the conditional

probability measure of βU,X at (c, x) along QU,Xn . Let ϕ be a non-
negative Bθ,X-measurable function on Bθ,X and denote by ϕ

U
the re-

striction of ϕ to BU,X . By definition, for βU,X-almost every (c, x) in
BU,X , one has

(3.13) E(ϕ
U
| QU,Xn )(c, x) =

∫
BU×X

ϕ(c′, x′) dβU,Xn,c,x(c
′, x′).
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Lemma 3.6. The conditional expectation with respect to the σ-algebra
QU,Xn is given by, for every non-negative Bθ,X-measurable function ϕ,
for βU,X-almost every (c, x) in BU ×X,

E(ϕ
U
| QU,Xn )(c) =

∫
QUn,c

ϕ(hn,c,x(a)) dα⊗n(a)

α⊗n(QU
n,c)

.

Hence, in other terms, for every Bθ-measurable subset K ⊂ BU × X,
for βU,X-almost every (c, x) in BU ×X, one has

(3.14) βU,Xn,c,x(K) = E(1K | QU,Xn )(c, x) = α⊗n(h−1
n,c,x(K) | QU

n,c) .

We recall that the set QU
n,c has been defined in (3.5) and that the

notation for the conditional probability measure has been introduced
in (3.6).

Proof. This formula follows from Lemmas 3.1 and 3.5. �

3.5. Conditional measure along the centralizer.

In this section we investigate the relationship between
probability measures ν, which are invariant and ergodic
for some Markov operator P , and the orbits of a group
L of transformations commuting with P .

Let (X,X ) be a standard Borel space and P be a Markov operator
on X i.e. a measurable family X → P(X);x 7→ Px of Borel probability
measures on X. It induces a continuous linear map also denoted by
P : L∞(X,X ) → L∞(X,X );ϕ 7→ Pϕ where, for x ∈ X, (Pϕ)(x) =∫
X
ϕ(y) dPx(y). Suppose X is endowed with a Borel action of a locally

compact second countable group L and this action commutes with P
i.e. one has P`x = `∗Px for any ` in L and x in X, that is P (ϕ ◦ `) =
Pϕ ◦ ` for any ϕ in L∞(X,X ) and ` in L. Let ν a Borel probability
measure on X which is P -invariant and P -ergodic, that is, for every ϕ
in L∞(X,X ),

∫
X
Pϕ dν =

∫
X
ϕ dν and, if Pϕ = ϕ, then ϕ is ν-almost

surely constant.

Lemma 3.7. Let Lν := {` ∈ L | `∗ν = ν} be the stabilizer of ν
in L. There exists a Borel subset E of X such that ν(E) = 1, E is
Lν-invariant and, for all ` ∈ Lr Lν, one has `E ∩ E = ∅.

Remark 3.8. Assume L is unimodular and its action on X has discrete
stabilizers and denote, for ν-almost every x in X, by σL(x) the condi-
tional measure at x of ν along the action of L as in [4, Sect. 4.1]. The
Lemma implies that, for ν-almost any x in X, σL(x) is a Haar measure
on L.
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Proof. According to Varadarajan’s theorem (cf. [28]), one can assume
that X is a compact metric space and that the action of L on X is
continuous. Let us denote by C0(X) the set of continuous functions on
X and by E the set of generic points for ν i.e.

E := {x ∈ X | ∀ϕ ∈ C0(X) , 1
n

∑
0≤k<n P

kϕ(x) −−−→
n→∞

∫
X
ϕ dν}.

Since ν is ergodic and since C0(X) contains a countable dense subset,
according to Chacon-Ornstein’s ergodic theorem, one has ν(E) = 1.
Since ν is Lν-invariant and since the action of L commutes with P ,
the set E is also Lν-invariant. Conversely, if ` is in Lr Lν then `E is
the set of generic point for the P -invariant and P -ergodic probability
measure `∗ν. Since `∗ν 6= ν, one has `E ∩ E = ∅. �

4. Random walks on semisimple groups

We develop in this chapter new crucial properties of random walks
on a product H of real and p-adic semisimple groups. We will apply
them in chapters 5, 7 and 8 to the Zariski closure of the adjoint group
Ad Γµ. The reader may concentrate at first glance on the case where
H is a real semisimple group. We will choose notations very similar to
the standard notations in this case.

In sections 4.1, 4.2 and 4.3 we recall basic notations and facts on
semisimple algebraic groups, their random walks, their flag varieties
and their representations.

In sections 4.4 and 4.5 we recall from [9] asymptotic properties of
these random walks: simplicity of the Lyapounov, central limit theo-
rem, law of the iterated logarithm, local limit theorem, large deviation
principle, spectral gap of the transfer operator, and Hölder regularity
of the Furstenberg stationary measure.

All these properties are used in section 4.6 and 4.7 to prove the “law
of the angles” (Theorem 4.19). In section 4.8 we deduce from the law
of the angles a control (Proposition 4.21) of the norm and the direction
of some vector that will be the “drift vector” later on in Lemma 8.2.

4.1. Products of semisimple Qp-groups.

We first recall some basic facts on real and p-adic semisim-
ple algebraic groups. We refer to [27] for a more detailed
account of the structure theory in the p-adic case.

Let Qp be the field of p-adic numbers when p is a prime number and
let Q∞ be the field of real numbers. Let {∞, 2, 3, 5, ...} be the set of
prime numbers including ∞ and S be a finite subset of it. We let QS

be the locally compact algebra
⊕

p∈S Qp.
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For each p in S, let Hp be a connected semisimple algebraic group
defined over Qp and Hp be the group of Qp-points of Hp. Let H =∏

p∈S Hp and H be the Borel σ-algebra of H.
By definition, a minimal parabolic subgroup P of H is the product

P =
∏

p∈S Pp of the groups Pp of Qp-points of minimal parabolic sub-
groups of Hp. Similarly a maximal split subtorus A of H is the product
A =

∏
p∈S Ap of the groups Ap of Qp-points of maximal Qp-split subtori

of Hp and so on, allowing us to use the language of semisimple algebraic
groups in this product situation. We fix such A and P with A ⊂ P
and let U =

∏
Up be the unipotent radical of P . We denote by Σ the

set of restricted roots of A in the Lie algebra of H and by Π ⊂ Σ the
set of restricted simple roots associated to P . The group U is spanned
by the unipotent one-parameter subgroups of H whose Lie algebras are
contained in the union of the weight spaces associated to the elements
of Π. The homogeneous space PΠ := H/P is called the full flag variety.

For Θ ⊂ Π, we let PΘ be the standard parabolic subgroup of H
associated to Θ, that is the subgroup of H spanned by P = PΠ and
the one-parameter unipotent subgroups of H whose Lie algebras are
contained in the union of the weight spaces associated to the −α, α ∈
ΠrΘ. We let UΘ denote the unipotent radical of PΘ, that is the group
spanned by the one-parameter unipotent subgroups of H whose Lie
algebras are contained in the weight spaces associated to the positive
roots α which may not be written as linear combinations of the elements
of ΠrΘ. We set PΘ = H/PΘ and we let ηΘ denote the fixed point of
PΘ in PΘ.

Let Z =
∏
Zp be the centralizer of A, so that P = ZU and Z/A is

compact. Any continuous homomorphism A→ R extends in a unique
way as a continuous homomorphism Z → R. More precisely, let a be
the dual space of the real vector space of continuous homomorphisms
A→ R: the dimension of a is the sum of the relative ranks of the groups
Hp, p ∈ S, and there exists a unique continuous morphism ω : Z → a
whose restriction to A is the natural morphism A→ a. If, for some p in
S, χ : Ap → Q∗p is a rational character, we let χω be the unique linear
form on a such that, for any a in A, χω(ω(a)) = log |χ(ap)|, where ap is
the p-th component of a. We can see Σω as a root system on a and Πω

as a set of simple roots for Σω. We let a+ (resp. a++) denote the Weyl
chamber (resp. the open Weyl chamber) associated to Πω and we set
Z+ = ω−1(a+) (resp. Z++ = ω−1(a++)).

For Θ ⊂ Π, we let ZΘ be the reductive subgroup of PΘ that contains
A and we set AΘ =

⋂
α∈ΠrΘ kerα and aΘ =

⋂
α∈ΠrΘ kerαω. One has
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PΘ = ZΘUΘ. Again, the natural morphism AΘ → aΘ extends in an
unique way as a morphism ωΘ : ZΘ → aΘ.

Let K =
∏
Kp be a good maximal compact subgroup of H, where

good means that the image in Aut(A) of the normalizer of A in K
contains the relative Weyl group. Such a K always exists. One has
the Cartan decomposition H = KZ+K. For every element h ∈ H,
we choose a decomposition h = khzh`h with kh ∈ K, zh ∈ Z+ and
`h ∈ K, even though this decomposition is not unique. We introduce
the Cartan projection κ : H → a;h 7→ κ(h) := ω(zh).

4.2. Random walks on products of semisimple Qp-groups.

We recall now the construction of Furstenberg’s bound-
ary map for products of independent identically distri-
buted elements of H.

Let µ be a Borel probability measure on H, Γ
+

µ be the smallest closed
subsemigroup of H containing the support of µ and Γµ be the smallest
closed subgroup of H containing the support of µ. We assume that,
for all p, the projection Γµ,p of Γµ in Hp is Zariski dense in Hp. We let
µ̌ be the probability measure on H which is the image of µ by the map
h 7→ h−1.

We do not assume in this chapter that µ has compact support, but
from section 4.4 on, we will assume that µ has finite first moment and
from Proposition 4.5 on, that µ has finite exponential moments. All
these integrability conditions are satisfied when µ has compact support.

The main difference between the real case and the non-archimedean
one is that, when p is finite, the action of Γµ,p on the full flag variety
Hp/Pp might be non proximal. We set

Θµ := {α ∈ Π | αω(κ(Γ
+

µ )) is unbounded}.
The set Θµ̌ is then the image of Θµ by the opposition involution ι, that
is the opposite of the unique element of the Weyl group of Σω that
sends a+ to −a+. We write Pµ = PΘµ , Pµ = PΘµ , aµ = aΘµ , etc. We
know from [2] that Θµ is the largest subset of Π such that the action
of Γ+

µ on Pµ = PΘµ is proximal and that, for any α in Π r Θµ, one
has suph∈Γ+

µ
αω(κ(h)) < ∞. According to a result of Goldsheid and

Margulis that we will not use, when S = {∞}, one has Θµ = Π. We
denote by ξM0 = ηΘµ ∈ Pµ the fixed point of Pµ in Pµ. This is the only
attractive fixed point of the elements of Z++ in Pµ. We let Qm0 be the
complement of its attraction region. For h ∈ H we set ξMh := khξ

M
0

and Qmh := `−1
h Qm0 . The set Qmh is a maximal Schubert variety i.e. a

maximal closed subsetQ  Pµ which is invariant under some conjugate
of U . The point ξMh is called the density point of h in Pµ. Similarly,
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we denote by ξm0 ∈ Pµ̌ the repulsive fixed point of all the elements of
Z++ (that is, the fixed point of the parabolic subgroup opposite to Pµ
with respect to A) and, for h in H, we set ξmh := `−1

h ξm0 , so that ξmh is
the density point of h−1 in Pµ̌.

Let (B,B, β, T ) be the one-sided Bernoulli shift whose alphabet is
(H,H, µ). We recall (see [9] for example) that there exists a unique
B-measurable map

ξ : B → Pµ; b 7→ ξb such that ξb = b0ξTb,

for β-almost every b in B. The image probability measure ξ∗β is then
the unique µ-stationary probability measure νµ on Pµ. For any proper
algebraic subvariety Q of Pµ, one has νµ(Q) = 0. In the same way, we
let νµ̌ denote the unique µ̌-stationary probability measure on Pµ̌.

Let s : Pµ → H/Uµ be a Borel section of the projection H/Uµ → Pµ.
The Iwasawa decomposition H = KPΠ allows us to choose the section
s in such a way that, for every k in K,

s(kPµ) = km(k)Uµ with m(k) ∈ Zµ ∩K.

The group Zµ acts simply and transitively by right multiplications on
Pµ/Uµ. One denotes by σ : H × Pµ → Zµ and σR : H × Pµ → aµ the
Borel cocycles given by, for all h in H and all η in Pµ,

h s(η) ∈ s(hη)σ(h, η),

and

σR(h, η) = ωµ(σ(h, η)).

There exists a compact subset L of Zµ such that, for any h in Γ+
µ and

η in the support of νµ, σ(h, η) belongs to LAµ = AµL.
By using the equivariant map ξ and the cocycle σ, we can define

natural maps θ : B → Zµ, θR : B → aµ and, for n ≥ 1, θn : B → Zµ,
θR,n : B → aµ as being the B-measurable functions given, by, for β-
almost every b in B,

θ(b) := σ(b0, ξTb) = σ(b−1
0 , ξb)

−1,(4.1)

θn(b) := θ(b) · · · θ(T n−1b) = σ(b0 · · · bn−1, ξTnb),

θR(b) := σR(b0, ξTb)

and θR,n(b) :=
∑

0≤k<n θR(T kb) = σR(b0 · · · bn−1, ξTnb).

4.3. Flag variety, representations and duality.

In this section we explain the relation between the action
of Γµ on the irreducible representations of H and on the
flag variety of H.
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By a representation of H, we shall mean a finite product V =∏
p∈S Vp of algebraic representations of Hp in a Qp-vector space Vp.

In this section we will only consider irreducible representations of H,
i.e. the case where V is equal to one of the Vp and is an irreducible
representation of Hp.

Let p ∈ {∞, 2, 3, 5, . . .} and V be a finite dimensional Qp-vector
space, endowed with a good norm, that is a euclidean norm if p = ∞
and a ultrametric one if p is finite. We consider V as a QS-module
through the natural projection map QS → Qp. We let V ∗ denote the
dual space of V and, for any subset W of V ∗, W⊥ denote its orthogonal
in V . We also let Gr(V ) denote the Grassmann variety of subspaces
of V . If V = V1 ⊕ · · · ⊕ Vr is a decomposition of V into a direct sum
of subspaces, we say that this decomposition is good, when p = ∞,
if it is an orthogonal decomposition and, when p is finite, if for any
v1, . . . , vr in V1, . . . , Vr, one has ‖v1 + · · ·+ vr‖ = max1≤i≤r ‖vi‖. There
exists a unique good norm on ∧2V such that, for any good direct sum
V1 ⊕ V2 ⊂ V , the direct sum ∧2V1 ⊕ (V1 ∧ V2)⊕ ∧2V2 is good and, for
any v1 ∈ V1 and v2 ∈ V2, one has ‖v1 ∧ v2‖ = ‖v1‖‖v2‖. The distance
associated to the norm on the projective space P(V ) is then given by,
for two lines x1, x2 in P(V ) generated respectively by v1 and v2 in V ,

d(x1, x2) =
‖v1∧v2‖
‖v1‖ ‖v2‖

.

For any v 6= 0 in V and any ϕ 6= 0 in V ∗, the quotient

(4.2) δ (Qpv,Qpϕ) :=
|ϕ(v)|
‖ϕ‖ ‖v‖

.

is equal to the distance in P(V ) between Qpv and kerϕ:

δ (Qpv,Qpϕ) = d (Qpv, kerϕ) .

Note that this equals 1 if and only if ϕ(v) 6= 0 and the decomposition
V = Qpv ⊕ kerϕ is good.

Now let V be an irreducible representation of H, which therefore
factors through Hp for some p in S. We endow V with a good norm
‖.‖. We may assume that this norm is (K,A)-good i.e. that it is
K-invariant, that, on each weight space for the A-action, Z acts by
similarities and that the decomposition of V as the sum of these weight
spaces is good (see [23]). There exists a highest weight χ among the
weights of A in V , in the sense that, for any other weight χ′ of A in
V , χ − χ′ is a linear combination with nonnegative integer entries of
elements of Π. Let Vχ be the corresponding weight space of A in V , so
that PVχ ⊂ Vχ.
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For Θ ⊂ Π, we let χΘ be the restriction of χ to AΘ and VχΘ
be the

corresponding weight space for AΘ in V . Then VχΘ
is the sum of weight

spaces of A in V which are associated to weights χ′ such that χ − χ′
is a linear combination with nonnegative integer entries of elements of
Π r Θ. This space is also exactly the space of fixed points of UΘ in
V . For any point η = hηΘ of the flag variety PΘ, we set Vη to be the
vector subspace of V given by Vη := hVχΘ

: it is invariant under the
stabilizer of η in H. The map η 7→ Vη is a H-equivariant map from PΘ

to Gr(V ).
In case Θ = Θµ, as usual, we write χµ = χΘ, etc. Let us use the

objects defined in this section to give estimates for an element of Γ+
µ

of the growth speed in a given representation and of the contraction
speed in the associated projective space:

Lemma 4.1. (Contraction and growth in P(V )) Let V be an irreducible
representation of H with highest weight χ equipped with a (K,A)-good
norm. There exists C > 1 such that, for any h in Γ+

µ and v in V r{0},
one has

(4.3) d(QShv,P(VξMh )) ≤ max
α∈Θµ

e−α
ω(κ(h))d(QSv,P((V ∗ξmh )⊥))−1

and

(4.4) eχ
ω(κ(h)) ≥ ‖hv‖

‖v‖
≥ 1

C
eχ

ω(κ(h))d(QSv,P((V ∗ξmh )⊥)).

Proof. Writing h = khzhlh, we are brought back to proving analoguous
inequalities when h belongs to Z+, the values αω(κ(h)), α ∈ ΠrΘµ, are
bounded, VξMh is replaced by Vχµ and (V ∗ξmh )⊥ is replaced by the unique

A-invariant complementary subspace to Vχµ . In this case, the result
follows from direct computations using the definition of the distance
in projective space and the fact that the involved decompositions of V
are good ones. �

For β-almost every b ∈ B we set Vb := Vξb , so that Vb = b0VTb.

Lemma 4.2. Let V be an irreducible representation of H with highest
weight χ equipped with a (K,A)-good norm. There exists C > 1 such
that, for β-almost every b in B, for any n ≥ 1 and v in VTnb, one has

eχ
ω(θR,n(b)) ‖v‖ ≥ ‖b0 · · · bn−1v‖ ≥

1

C
eχ

ω(θR,n(b)) ‖v‖ .

Proof. By definition, we have

b0 · · · bn−1s(ξTnb) = s(b0 · · · bn−1ξTnb)θn(b),
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thus, as s takes its values in KUµ, ‖b0 · · · bn−1v‖ = ‖θn(b)s(ξTnb)
−1v‖.

Now, by construction, s(ξTnb)
−1v belongs to Vχµ and θn(b) belongs to

LAµ, where L is a fixed compact subset of Zµ. The result follows. �

Let us now explain how the action of H on Pµ can be described
thanks to the action of H on the projective spaces of finitely many
representations. For each simple root α ∈ Π, there exists an irreducible
representation (ρα, Vα) whose highest weight χα has multiplicity one
and is orthogonal to all the other simple roots α′ 6= α. When α is in
Θµ, this representation is µ-proximal, that is the space (Vα)(χα)µ also
has dimension one. We then have a H-equivariant embedding

Pµ →
∏
α∈Θµ

P (Vα) , η 7→ (Vα,η)α∈Θµ .

In the same way, one has a H-equivariant embedding

Pµ̌ →
∏
α∈Θµ

P (V ∗α ) , η 7→ (V ∗α,η)α∈Θµ .

We endow the representations Vα with (K,A)-good norms and we equip
Pµ and Pµ̌ with the induced distances. For any η in Pµ and ζ in Pµ̌,
we set, using the notation (4.3),

δ(η, ζ) = min
α∈Θµ

δ(Vα,η, V
∗
α,ζ),

in such a way that one has δ(η, ζ) 6= 0 if and only if (η, ζ) belongs to
the open H-orbit in Pµ × Pµ̌. We denote by Qζ  Pµ the maximal
Schubert variety given by

Qζ := {η ∈ Pµ | δ(η, ζ) = 0}.

Note that, by construction, for any h in H, one has Qmh = Qξmh .
If Q is a maximal Schubert variety in Pµ and η belongs to Pµ, we

shall sometimes use the convention δ(η,Q) = δ(η, ζ), where ζ is the
unique element of Pµ̌ with Q = Qζ .

We fix a norm on the real vector space a. We have the classical

Lemma 4.3. (Contraction and growth in Pµ) There exists C > 0 such
that, for all h in Γ+

µ and η in Pµ, one has

d(hη, ξMh ) ≤ max
α∈Θµ

e−α
ω(κ(h))δ(η,Qmh )−1

and

‖κ(h)− σR(h, η)‖ ≤ C| log(δ(η,Qmh ))|.
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Proof. The first inequality is a translation of Lemma 4.1, applied si-
multaneously in the representations Vα, α ∈ Θµ. The second is proved
in the same way, once one has recalled that suph∈Γ+

µ
d(κ(h), aµ) < ∞

and that the linear forms χωα, α ∈ Θµ, span the dual space of aµ. �

4.4. Limit laws.

We now state various limit laws for products of indepen-
dent identically distributed elements of H.

We assume first that µ admits a finite first moment
∫
H
‖κ(h)‖ dµ(h) <

∞. According to Osseledets’ theorem, there exists an element σµ in aµ
such that, for β-almost every b in B, one has

1

n
κ(bn−1 · · · b0) −−−→

n→∞
σµ.

We have σµ =
∫
H×Pµ σR d(µ⊗ νµ) =

∫
B
θR dβ.

The following statement, originally due to Furstenberg, has been
extended to the general case by Guivarc’h and Raugi (see [18] or [9]):

Proposition 4.4 (Simplicity of the Lyapounov exponents). For any
α in Θµ, one has αω(σµ) > 0.

¿From now on, we assume that µ admits a finite exponential moment:∫
H
eτ‖κ(h)‖ dµ(h) <∞, for some τ > 0.

Let bµ be the vector subspace of aµ spanned by the elements of the
form σR(γ, ξ+

γ )−nσµ where γ is an element of Γ+
µ which can be written

as the product of n elements of the support of µ. We set eµ := dimR bµ.

Proposition 4.5 (Central limit theorem). There exists a non degen-
erate positive quadratic form Φµ on bµ such that, denoting by dT the
Haar measure on bµ which gives mass 1 to the unit cube for Φµ, for
β-almost every b, for all ϕ ∈ Cc(aµ), one has

lim
n→∞

∫
H

ϕ(
1√
n

(κ(h)− nσµ)) dµ∗n(h) =
1

(2π)
eµ
2

∫
bµ
ϕ(T )e−

1
2

Φµ(T ) dT.

This proposition is proven in [9].
Here comes the version of the law of the iterated logarithm we will

require.

Proposition 4.6 (Law of the iterated logarithm for κ). For β-almost
every b in B, one has

lim sup
n→∞

Φµ

(
κ(bn−1 · · · b0)− nσµ√

2n log log n

)
= 1.
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This proposition is proven in [9].
We now want to state a local limit theorem.
To deal with the p-adic factors of H, we need to introduce a group

∆µ, a vector vµ, a function ψ and a measure Πµ. If S = {∞}, we will
have ∆µ = aµ, vµ = 0, ψ = 0 and Πµ = dT . In general, according to
[9], there exists a smallest closed subgroup ∆µ of bµ such that there
exists vµ in bµ and a Hölder continuous function ψ : Pµ → aµ such
that, for µ⊗ νµ-almost every (h, η) in H × Pµ,

(4.5) σR(h, η) + ψ(hη)− ψ(η) ∈ σµ + vµ + ∆µ .

The group ∆µ is cocompact in bµ. We let πµ be the Haar measure
of ∆µ which gives mass one to the unit cubes of Φµ in the connected
component of ∆µ. Let Πµ be the measure on aµ, average of translates
of πµ, given, for C ⊂ aµ, by

Πµ(C) =

∫
X

πµ(ψ(η)+C) dνµ(η).

For n ≥ 1 and η ∈ Supp(νµ), we introduce the positive measure λn,η
on aµ given by for every ϕ ∈ Cc(aµ)

(4.6) λn,η(ϕ) =

∫
H

ϕ(σR(h, η)− nσµ) dµ∗n(h) .

Here is the version of the local limit theorem with moderate deviations
that we will need. We keep the notations of Proposition 4.5.

Proposition 4.7 (Local limit theorem). We fix a bounded convex sub-
set C ⊂ aµ, and ε > 0. Then one has the limit,

lim
n→∞

(2πn)
eµ
2 e

Φµ(vn)

2n λn,η(vn+C) − Πµ(vn−nvµ−ψ(η)+C) = 0.

This limit is uniform for η ∈ Supp(νµ) and vn ∈ aµ with ‖vn‖ ≤
ε
√
n log n.

This proposition is proven in [9].

4.5. Large deviations, spectral gap and Hölder regularity.

We pursue our description of the asymptotic behavior for
products of independent identically distributed elements
of H. We recall the large deviation principle for the
norm of this product, the exponential speed of equidis-
tribution on the flag variety and the Hölder regularity
for the Furstenberg stationary measure.

We use then these facts to prove the version of the law
of iterated logarithm that we will use in the proof of the
“law of the angles” in section 4.7.
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Proposition 4.8 (Large deviations principle). For every ε > 0, there
exists α > 0 and n0 > 0 such that, for all n ≥ n0 and all η ∈ Pµ, one
has

µ∗n({h ∈ H | ‖σR(h, η)− nσµ‖ ≥ nε}) ≤ e−nα,

µ∗n({h ∈ H | ‖κ(h)− nσµ‖ ≥ nε}) ≤ e−nα.

This proposition is proven in [9].
For α ∈ (0, 1), let us denote by Hα(Pµ) the Banach space of α-

Hölder continuous functions on Pµ endowed with the norm, given for
all ϕ ∈ Hα(Pµ), by

‖ϕ‖α = sup
η
|ϕ(η)|+ sup

η 6=ζ

|ϕ(η)− ϕ(ζ)|
d(η, ζ)α

.

Proposition 4.9 (Exponential speed of equidistribution). For any
small enough α1 > 0, there exists α2 > 0 and n0 ≥ 1 such that, for all
ϕ ∈ Hα1(Pµ), all n ≥ n0, and all η ∈ Pµ, one has∣∣∣∣∣

∫
H

ϕ(hη) dµ∗n(h)−
∫
Pµ
ϕ(ζ) dνµ(ζ)

∣∣∣∣∣ ≤ e−nα2‖ϕ‖α1 .

This is a direct consequence of the spectal gap for the Markov oper-
ator on the space Hα(H/Pµ) (see [9]).

Proposition 4.10 (Hölder regularity of νµ). For α3 > 0 sufficiently
small, for all ζ ∈ Pµ̌, one has νµ(Qζ) = 0 and∫

Pµ
δ(η, ζ)−α3 dνµ(η) <∞.

This proposition is proven in [9].

Corollary 4.11. For α3 > 0 sufficiently small, there exists a constant
C3 ≥ 1 such that one has, for all ε > 0 and all maximal Schubert
variety Q  Pµ,

νµ({ζ ∈ Pµ | δ(ζ,Q) ≤ ε}) ≤ C3 ε
α3 .

This corollary is a straightforward application of Proposition 4.10.
Note that this corollary is more precise than Corollary 4.2 of [11] since
we give here an upperbound for the mass of a neighborhood of a max-
imal Schubert variety instead of the neighborhood of a point.

Recall the function θ on B has been defined in (4.1).
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Corollary 4.12 (Law of the iterated logarithm for θR). For β-almost
every b in B, one has,

lim sup
n→∞

Φµ

(
θR,n(b)− nσµ√

2n log log n

)
= 1.

The proof relies on the following

Lemma 4.13. For β-almost every b, one has

lim sup
n→∞

| log δ(ξTnb,Qmb0...bn−1
)|

log n
<∞.

Proof. Fix C > 1. For any integer n, we have

β({b ∈ B | δ(ξTnb,Qmb0...bn−1
) ≤ n−C}) =∫

H

β({b ∈ B | δ(ξTnb,Qmh ) ≤ n−C}) dµ∗n(h).

As ξ∗T
n
∗ β = ξ∗β = νµ, by Corollary 4.11, there exists α > 0 and n0 ≥ 1,

such that, for all n ≥ n0 and h ∈ H, one has

β({b ∈ B | δ(ξTnb,Qmh ) ≤ n−C}) = νµ({ζ ∈ Pµ | δ(ζ,Qmh ) ≤ n−C})
≤ n−Cα.

One chooses C > α−1 so that the series
∑

n n
−Cα converges. Then, by

Borel-Cantelli’s Lemma, for β-almost every b in B, one has, for n large,
δ(ξTnb,Qmb0...bn−1

) ≥ n−C . �

Proof of Corollary 4.12. Recall that ι : a → a denotes the opposition
involution. One easily checks that one has σµ̌ = ι(σµ) and Φµ̌ = Φµ ◦ ι.
Thus, applying Proposition 4.6 to µ̌, one gets, as, for any h in H,
κ(h−1) = ι(κ(h)), for β-almost any b in B,

lim sup
n→∞

Φµ

(
κ(b0 · · · bn−1)− nσµ√

2n log log n

)
= 1.

But, from Lemmas 4.3 and 4.13, we get

lim sup
n→∞

Φµ

(
κ(b0 · · · bn−1)− θR,n(b)

log n

)
<∞.

The conclusion follows. �

4.6. Exponential convergence of the density points ξMh .

We use the results of the previous section 4.5 to get a
control with an exponential precision on the position of
the density point ξMh of a word h of length n outside a set
whose β-mass decreases exponentially with n (Corollary
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4.18). Similar results when H is a real semisimple group
were obtained independently by Richard Aoun in [1].

We will use this Corollary to prove the “law of the
angle” in section 4.7.

Lemma 4.14. There exist constants α1, α2, α3 ∈ (0, 1), C0 > 0 and
n0 ≥ 1 such that, for all n ≥ n0, ε ∈]0, 1[, η ∈ Pµ and Q  Pµ a
maximal Schubert variety, one has

µ∗n({h ∈ H | δ(hη,Q) ≤ ε}) ≤ C0(εα3 + e−nα2ε−α1).

Proof. Let ρ : [0,∞)→ [0, 1] be the piecewise affine function such that
ρ(t) = 1 for t ∈ [0, 1], ρ(t) = 2 − t for t ∈ [1, 2] and ρ(t) = 0 for
t ≥ 2. We choose positive constants α1, α2 from Proposition 4.9 and
positive constants α3, C3 from Corollary 4.11. There exists a constant
C0 ≥ 2C3 such that for any ε ∈]0, 1[, for any maximal Schubert variety
Q  Pµ, the function ϕ : Pµ → [0, 1]; η 7→ ϕ(η) := ρ(1

ε
δ(η,Q)) is

α1-Hölder continuous and satisfies ‖ϕ‖α1 ≤ C0ε
−α1 . Then for n large

enough, for all η ∈ Pµ, one has

µ∗n({h ∈ H | δ(hη,Q) ≤ ε}) ≤
∫
H

ϕ(hη) dµ∗n(h)

≤
∫
Pµ
ϕ(ζ) dνµ(ζ) + e−nα2‖ϕ‖α1

≤ C0(εα3 + e−nα2ε−α1).

This proves our claim. �

Corollary 4.15. For every α4 > 0 there exists a constant α5 > 0 and
an integer n0 ≥ 1 such that, for n ≥ n0, for all η ∈ Pµ and all maximal
Schubert variety Q  Pµ, one has

(i) µ∗n({h ∈ H | δ(hη,Q) ≤ e−nα4}) ≤ e−nα5 ,

(ii) µ∗n({h ∈ H | δ(ξMh ,Q) ≤ e−nα4}) ≤ e−nα5 ,

(iii) µ∗n({h ∈ H | δ(η,Qmh ) ≤ e−nα4}) ≤ e−nα5 .

Proof. (i) This inequality is a consequence of Lemma 4.14 applied with
ε = e−nα4 . We may assume α4 small enough to have α1α4 < α2. We
choose then α5 = 1

2
min(α3α4, α2 − α1α4).

(ii) This is a consequence of (i) and of the large deviations principle.
We note that the set of maximal Schubert subvarieties Q  Pµ is
compact for the Hausdorff topology. Hence there exists ε0 > 0 and
a finite set F of points η in Pµ such that for any maximal Schubert
variety Q  Pµ, some η in F satisfies d(η,Q) ≥ ε0. Thus, by Lemma
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4.3, for any h ∈ H, for at least one of these points η ∈ F , one has
δ(η,Qm

h ) ≥ ε0 and hence,

δ(ξMh , hη) ≤ ε−1
0 max

α∈Θµ
e−α

ω(κ(h))

Applying Propositions 4.4 and 4.8, one finds constants t1 > 0, α5 > 0
and n0 > 0 such that, for n ≥ n0, one has

µ∗n({h ∈ H | ∀η ∈ F d(ξMh , hη) ≥ e−nt1}) ≤ e−nα5/2,

By Corollary 4.15.i, after eventually taking a smaller α5 > 0 and a
larger n0 > 0 one can also assume that, for n ≥ n0, one has

µ∗n({h ∈ H | ∃η ∈ F δ(hη,Q) ≤ 2e−nα4}) ≤ e−nα5/2.

Our claim is a consequence of these two inequalities (4.6) and (4.6),
since we can choose α4 such that α4 < t1.

(iii) This statement follows from (ii) applied to µ̌. �

Corollary 4.16. There exists a constant α6 > 0 and an integer n0 ≥ 1
such that, for n ≥ n0, for all η ∈ Pµ,

µ∗n({h ∈ H | d(hη, ξMh ) ≥ e−nα6}) ≤ e−nα6 .

Proof. Again by Lemma 4.3, for all h in H and η in Pµ, one has

d(hη, ξMh ) ≤ max
α∈Θµ

e−α
ω(κ(h))δ(η,Qmh )−1.

Again by Propositions 4.4 and 4.8, there exist constants t1 > 0 and
α > 0 and subsets En of H with µ∗n(Ec

n) = O(e−αn), such that for all
h ∈ En one has minα∈Θµ α

ω(κ(h)) ≥ t1n.
Applying Corollary 4.15 (iii) with α4 < t1, one gets a constant α5 >

0 and a subset Fn of H with µ∗n(F c
n) = O(e−α5n), such that for all

h ∈ Fn one has δ(η,Qmh ) ≥ e−nα4 . Hence, using Lemma 4.3, for h in
both En and Fn, one has d(hη, ξMh ) ≤ e−(t1−α4)n. One chooses α6 =
1
2

min(α, α5, t1 − α4). �

The next Proposition is the main result of this section. It gives a
quantitative version of the statement that the density point ξMh1···hp of
a random word h1 · · ·hp mainly depends on the first letters h1, . . . , hn.

Proposition 4.17. There exists a constant α7 > 0 and an integer
n0 ≥ 1 such that, for all p ≥ n ≥ n0,

µ⊗p({(h1, . . . , hp) ∈ Hp | d(ξMh1···hp , ξ
M
h1···hn) ≥ e−nα7}) ≤ e−nα7 .
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Proof. Fix a point η ∈ Pµ. According to Corollary 4.16 applied to the
points hn+1 . . . hpη ∈ Pµ, there exist α6 > 0 and n0 ≥ 1 such that, for
n0 ≤ n ≤ p, and all (hn+1, . . . , hp) ∈ Hp−n.

µ⊗n({(h1, . . . , hn) ∈ Hn | d(h1 . . . hpη, ξ
M
h1···hn) ≥ e−nα6}) ≤ e−nα6 .

Averaging with respect to the law µ⊗(p−n), one gets

µ⊗p({(h1, . . . , hp) ∈ Hp | d(h1 . . . hpη, ξ
M
h1···hn) ≥ e−nα6}) ≤ e−nα6 .

In the special case where p = n, this can be written as

µ⊗p({(h1, . . . , hp) ∈ Hp | d(h1 . . . hpη, ξ
M
h1···hp) ≥ e−pα6}) ≤ e−pα6 .

Combining these last two inequalities, one gets

µ⊗p({(h1, . . . , hp) ∈ Hp | d(ξMh1···hp , ξ
M
h1···hn) ≥ 2e−nα6}) ≤ 2e−nα6 .

To conclude, one just has to take α7 = 1
2
α6 and n large enough. �

Corollary 4.18. (Convergence of the density points) There exists a
constant α8 > 0 and an integer n0 ≥ 1 such that, for all n ≥ n0,

β({b ∈ B | ∀p ≥ n , d(ξMb0···bp−1
, ξb) ≤ e−pα8}) ≥ 1− e−nα8 .

Proof. Using the equality, ξb = b0 · · · bn−1ξTnb, for β-almost every b ∈
B, and applying Corollary 4.16 with the point η = ξTnb, one gets the
existence of a constant α6 > 0 such that, for n large,

β({b ∈ B | d(ξMb0···bn−1
, ξb) ≥ e−nα6}) ≤ e−nα6 .

Hence

β({b ∈ B | ∃p ≥ n , d(ξMb0···bp−1
, ξb) ≥ e−pα6}) ≤

∑
p≥n

e−pα6 =
e−nα6

1− e−α6
.

One concludes taking again α8 = 1
2
α6 and n large enough. �

4.7. The law of the angles.

The aim of this section is the law of the angles. This
law is the asymptotic law with respect to the conditional
probability measures βUn,b as n goes to ∞ of the density
points ξmb′0···b′n−1

. It plays a crucial role in the drift argu-

ment of section 8.1.

Let us consider the dynamical system (Bθ,Bθ, βθ, T θ) introduced in
section 3.3 where Z = Zµ and θ : B → Zµ is the function defined in
equation (4.1). The space Bθ is the product B × Zµ, the σ-algebra Bθ
is the product σ-algebra, the measure βθ is the product β⊗λZµ and the
transformation T θ is given, for (b, z) ∈ Bθ, by T θ(b, z) = (Tb, θ(b)−1z).
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Let Qθn be the σ-algebra Qθn := (T θ)−n(Bθ), let C be a ball of radius
R in aµ and set U to be the open neighborhood of the identity in Zµ
given by U := ω−1

µ (C). We choose R so that every open ball in bµ of
radius R−2‖ψ‖∞ meets ∆µ. This condition will ensure, at the very end
of this section, that the denominator of the ratio Fn,2(a) is uniformly
bounded below. Let QUn be the σ-algebra which is the restriction of Qθn
to BU := B × U and, for βU -almost every c = (b, z) in B × U , let βUn,c
be the conditional probability measure of βU at c along QUn .

The following Theorem 4.19 identifies the asymptotic law of the den-
sity points ξMb′n−1···b′0

as the µ-stationary probability measure νµ and the

law of the density points for the inverses ξmb′0···b′n−1
= ξM(b′n−1)−1···(b′0)−1 as

the µ̌-stationary probability measure νµ̌.

Theorem 4.19 (Law of the angles). For βU -almost every c = (b, z) in
BU , one has, for any continuous function ϕ on Pµ,

(4.7)

∫
BU

ϕ(ξMb′n−1···b′0
) dβUn,c(b

′, z′) −−−→
n→∞

∫
Pµ
ϕ dνµ,

and, for any continuous function ϕ on Pµ̌,

(4.8)

∫
BU

ϕ(ξmb′0···b′n−1
) dβUn,c(b

′, z′) −−−→
n→∞

∫
Pµ̌
ϕ dνµ̌.

Proof of Theorem 4.19. We will only prove (4.7) since the proof of (4.8)
is similar. Set

(4.9) qn := [log n]2 and pn := n− qn.
Equation (4.7) is a consequence of the following two equations,

(4.10)

∫
BU

∣∣∣ϕ(ξMb′n−1···b′0
)− ϕ(ξMb′n−1···b′pn

)
∣∣∣ dβUn,c(b

′, z′) −−−→
n→∞

0,

(4.11)

∫
U

ϕ(ξMb′n−1···b′pn
) dβUn,c(b

′, z′) −−−→
n→∞

νµ(ϕ).

To prove (4.10), we only have to check that, for any ε > 0,

(4.12) βUn,c({(b′, z′) ∈ BU | d(ξMb′n−1···b′0
, ξMb′n−1···b′pn

) ≥ ε}) −−−→
n→∞

0.

According to (3.8), the left-hand side of (4.12) equals

(4.13)
µ⊗n({(h1, . . . , hn) ∈ QU

n,c | d(ξMhn···h1
, ξMhn···hpn+1

) ≥ ε})
µ⊗n(QU

n,c)
,

where, setting zR := ωµ(z),

QU
n,c = {h ∈ Hn | σR(h1, . . . hn, ξTnb) ∈ θR,n(b)− zR + C}.



STATIONARY MEASURES 31

On one hand, by Proposition 4.17, the numerator in (4.13) is, for n
large, bounded above by e−α7qn , hence by our choice (4.9) of qn, it
is bounded above by any negative power of n. On the other hand,
according to the law of the iterated logarithm for θR (Corollary 4.12),
for β-almost every b ∈ B, one has

‖θR,n(b)− nσµ‖ = O(
√
n log log n)

Thus, by our choice of R and by the local limit theorem (Proposition
4.7), the denominator in (4.13) is, for n large, bounded below by a
negative power of n. This proves (4.10).

Let us now deal with (4.11). For a in B, set

QU
n,c,a = {h ∈ Hpn | σR(h1 · · ·hpnaqn−1 · · · a0, ξTnb) ∈ θR,n(b)− zR + C}.

Again by (3.7), the left-hand side of (4.11) equals∫
B

ϕ(ξMa0···aqn−1
)
µ⊗pn(QU

n,c,a)

µ⊗n(QU
n,c)

dβ(a).

As, for β-almost any a in B, ξMa0···aq−1
−−−→
q→∞

ξa (for example by Corollary

4.18) and ξ∗β = νµ, (4.11) follows from Lemma 4.20 below. �

Lemma 4.20. The sequence of functions

Fn : a 7→
µ⊗pn(QU

n,c,a)

µ⊗n(QU
n,c)

goes to 1 in L1(B,B, β) as n→∞.

Proof. For n > 0, a in B and h1, . . . , hpn in H, we have

σR(h1 · · ·hpnaqn−1 · · · a0, ξTnb) = σR(h1 · · ·hpn , aqn−1 · · · a0ξTnb)

+ σR(aqn−1 · · · a0, ξTnb).

Now, by the large deviation principle (Proposition 4.8), there exist
subsets En of B and α > 0 such that β(Ec

n) = O(e−αqn) and that, for
all a in En,

(4.14) σR(aqn−1 · · · a0, ξTnb)− qnσµ = O((log n)2).

As above, by Corollary 4.12 and Proposition 4.7, one has∫
Ecn

Fn dβ ≤ β(Ec
n)

µ⊗n(QU
n,c)
−−−→
n→∞

0.

Set

vn = θR,n(b)− nσµ − zR
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and, for a in En,

(4.15) wn = σR(aqn−1 · · · a0, ξTnb)− qnσµ.

By Corollary 4.12 and (4.14), uniformly for a ∈ En, we have

(4.16) ‖vn‖ = O(
√
n log log n) and ‖wn‖ = O((log n)2),

so that, by Proposition 4.7, on En, the function Fn is uniformly equiv-
alent to the product Fn,1Fn,2 where

Fn,1(a) =
e−

1
2pn

Φµ(vn−wn)

e−
1

2n
Φµ(vn)

, Fn,2(a) =
Πµ(vn−wn−pnvµ−ψ(ηn)+C)

Πµ(vn−nvµ−ψ(ξTnb)+C)

and ηn = aqn−1 · · · a0ξTnb. By (4.16), we have

lim
n→∞

qn‖vn‖2
n2 = lim

n→∞
‖vn‖‖wn‖

n
= lim

n→∞
‖wn‖2
n

= 0

hence Fn,1(a) −−−→
n→∞

1 uniformly for a in En. When S = {∞}, the

measure Πµ = πµ is invariant by all the translations of aµ and Fn,2 = 1.
In general, Πµ is invariant only by the translations of the cocompact

subgroup ∆µ of bµ. However, according to Equations (4.5) and (4.15),
the element wn+ψ(ηn)−ψ(ξTnb)− qnvµ belongs to ∆µ. Hence one still
has Fn,2 = 1. �

4.8. Conditional behavior of the random walk.

Using the “law of the angles” (Theorem 4.19) we control
in this section the norms and the attracting directions in
a given representation of H of most of the words with
respect to the conditional probability measures βUn,c.

The following Proposition 4.21 is similar to Corollary 5.5 of [4]. The
main difference is that we are not dealing with products of independent
identically distributed elements of H anymore.

Proposition 4.21. (Drift control) Let V be an irreducible representa-
tion of H. For every α > 0, there exists r0 ≥ 1 such that, for βU -almost
every c = (b, z) ∈ BU , there exists n0 ≥ 1 such that for n ≥ n0, for any
v in V r {0} and any η in Pµ, one has, with c′ = (b′, z′),

(4.17) βUn,c({c′ ∈ BU | ‖b′0..b′n−1v‖ ≥
1

r0

‖b′0..b′n−1‖‖v‖}) ≥ 1− α,

and

(4.18) βUn,c({c′ ∈ BU | d(QSb
′
0..b
′
n−1v, b

′
0..b
′
n−1P(Vη)) ≤ α}) ≥ 1− α.
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Recall that, in section 4.3, we have defined the map

Pµ → Gr(V); η 7→ Vη

as the map sending some η = hηΘµ to the space hV Uµ , where V Uµ is
the space of Uµ-invariant vectors in V .

Proof of Proposition 4.21. We first prove (4.17). For any x in P (V ),
set

Qx := {ζ ∈ Pµ̌|x ⊂ (V ∗ζ )⊥}
As Qx is a proper algebraic subvariety of Pµ̌, we have νµ̌(Qx) = 0. For
ε > 0, set

Qεx = {ζ ∈ Pµ̌|d(x,P((V ∗ζ )⊥)) ≤ ε}
According to Equation (4.4) in Lemma 4.1, to prove (4.17), it suffices

to establish that, for βU -almost any c = (b, z) in BU ,

(4.19) lim
ε→0

lim sup
n→∞

sup
x∈P(V )

βUn,c{(b′, z′) ∈ BU |ξmb′0···b′n−1
∈ Qεx} = 0.

We shall prove this statement by contradiction. By Theorem 4.19,
for βU -almost every c = (b, z) in BU , (4.8) holds for any continuous
function ϕ on Pµ̌. Assume (4.19) does not hold for such a c. Then,
there would exist sequences (εk) of positive numbers, (nk) of integers
and points xk ∈ P(V ) with εk → 0 and nk →∞ and

ρ = inf
k
βUnk,c{(b

′, z′) ∈ BU |ξmb′0···b′nk−1
∈ Qεkxk} > 0.

After extracting a subsequence, one can suppose xk → x for some point
x ∈ P(V ). As νµ̌(Qx) = 0, there exists ε > 0 such that νµ̌(Qεx) < 1

2
ρ.

Thus, if we set, for ζ in Pµ̌,

ϕ(ζ) = max(0, 1− 1

ε
d(x,P((V ∗ζ )⊥))),

the nonnegative continuous function ϕ satisfies
∫
Pµ̌ ϕ dνµ̌ <

1
2
ρ. Now,

on the one hand, by (4.8), we have∫
BU

ϕ(ξmb′0···b′nk−1
) dβUnk,c(b

′, z′) −−−→
k→∞

∫
Pµ̌
ϕ dνµ̌ <

1

2
ρ

and on the other hand, by the triangle inequality, as soon as k is large

Qεkxk ⊂ Q
ε/2
x , hence ϕ ≥ 1

2
on Qεkxk and∫

BU
ϕ(ξmb′0···b′nk−1

) dβUnk,c(b
′, z′) ≥ 1

2
ρ,

whence a contradiction. This proves (4.19).
We prove now (4.18). For any W := Vη ⊂ V , set

QW := ∪y⊂WQy and QεW := ∪y⊂WQεy,
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where the unions are over the lines y ∈ P(V ) included in W . As
W = Vη, QW is a proper algebraic subvariety of Pµ̌, and we still have
νµ̌(QW ) = 0.

According to Equation (4.3) in Lemma 4.1, to prove (4.18), it suffices
to combine (4.19) with the fact that, for βU -almost any c = (b, z) in
BU ,

(4.20) lim
ε→0

lim sup
n→∞

sup
W⊂V

βUn,c{(b′, z′) ∈ BU |ξmb′0···b′n−1
∈ QεW} = 0.

where the sup is over all the subspaces W of the form Vη for some η in
Pµ. The proof of (4.20) is exactly the same as the one of (4.19).

�

5. Dynamics on homogeneous spaces

The first two sections of this chapter describe the class of S-adic
groups which we will be working with. The other sections contain a
collection of technical facts on the dynamics on homogeneous spaces
that we will use in the proof of Theorem 2.7.

We still let {∞, 2, 3, 5, . . .} be the set of prime numbers including∞,
S be a finite subset of this set and QS be the algebra

∏
p∈S Qp.

5.1. Semiconnected groups.

The reader who is mainly interested in real Lie groups
may skip this section in which we describe the structure
of S-adic Lie groups. All these structure results are well-
known for real Lie groups.

Definition 5.1. An S-adic Lie group G is a locally compact group
which contains an open subgroup U isomorphic to a group of the form
(
∏

p∈S Gp)/∆ where, for each p ∈ S, Gp is a p-adic Lie group and ∆ is

a discrete normal subgroup of this product (see [3]).

Let G be an S-adic Lie group. We will denote by gp the Lie algebra
of Gp and by g the Lie algebra of G which is the direct sum of the Lie
algebras gp. We will consider g as a QS-module. Then, any submodule
of g is closed and is a direct sum of Qp-vector subspaces of gp. We set
gf =

⊕
p<∞ gp for the non-archimedean part of g and we let G∞ be the

connected analytic subgroup of G with Lie algebra g∞. We will denote
by Adg, Adgp , etc. the adjoint action of G on g, gp, etc.

If G′ is a closed subgroup of G, it is an S-adic Lie subgroup and its
Lie algebra is a submodule of g (see [26, Prop. 1.5]).

We choose a good norm ‖.‖ on each of the p-adic Lie algebras gp
and, for v = (vp)p∈S in g, we set ‖v‖ := max

p∈S
‖vp‖.
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5.1.1. Exponential maps. When G is not a real Lie group, one has to
pay attention to the fact that exponential maps are only defined in a
neighborhood of 0 and that they are not unique.

When S = {∞}, we define a standard open set Ω of G as being a
relatively compact open neighborhood of e which is the diffeomorphic
image of some convex symmetric open neighborhood of 0 in g by the
exponential map.

When S = {p} for some finite p, we say that an element g of G
admits a logarithm if one has gp

n −−−→
n→∞

e: indeed, for such a g, the

map n 7→ gn extends as a continuous morphism Zp → G and one
can define the logarithm log g of g as being the derivative at 0 of this
morphism. Now, G is said to be a standard group if there exists a Qp-
Lie algebra l and a compact open sub-Zp-algebra O of l such that the
Baker-Campbell-Hausdorff series converges on O and G is isomorphic
to the p-adic Lie group O, equipped with the group law defined by this
formula. In this case, l identifies canonically with g, every element of
G admits a logarithm and the logarithm map induces an isomorphism
G → O. If G is any p-adic Lie group, it admits a standard open
subgroup (see [16, Theorem 8.29]). If Ω if such a subgroup and if
O is the associated compact open sub-Zp-algebra of g, we denote by
expΩ : O → Ω the inverse of the logarithm map Ω→ O.

In general, a standard open subset Ω of G is an open neighborhood
of e of the form Ω =

∏
p∈S Ωp, where Ω∞ is a standard open subset

of G∞ and, for any p 6= ∞ in S, Ωp is a standard p-adic Lie group
embedded in G, such that Ω∞Ω∞ ∩

∏
p<∞Ωp = {e}. We then define

the exponential map expΩ as the product of the exponential maps of
the Ωp, p ∈ S. This is a diffeomorphism from a relatively compact
open subset O =

∏
p∈S Op of g onto Ω. The standard open subsets of

G form a basis of neighborhoods of e in G. We set Ωf =
∏

p<∞Ωp.
Note that if Ω and Ω′ are standard open subsets of G, the maps expΩ

and expΩ′ coincide in some neighborhood of 0 in g.
We will need our exponential map to enjoy a nice equivariant prop-

erty under the adjoint action. This equivariance property is automatic
for a real Lie group since the exponential map is uniquely defined.

Lemma 5.2. Let G be an S-adic Lie group, Ω ⊂ G a standard open
set and expΩ : O → Ω the corresponding exponential map. For every
compact subset K ⊂ G, there exists an open subset OK which is con-
tained in O and in all the translates Adg−1(O), g ∈ K, and such that
one has the equivariance property

expΩ(Adg(v)) = g expΩ(v) g−1 for any v ∈ OK, g ∈ K.
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Proof. We may assume that K contains e. The intersection ΩK :=
∩g∈Kg−1Ωg is an open neighborhood of e in G. We just choose OK to
be the open set OK := log(ΩK). �

5.1.2. Unipotent one-parameter subgroups. Assume now G is a closed
subgroup of a product, for p in S, of p-adic Lie groups. A one-parameter
subgroup ϕ of G, i.e. a continuous morphism ϕ : Qp → G; t 7→ ϕ(t) for
some p ∈ S, is said to be Ad-unipotent if, for any t in Qp, ϕ(t) belongs
to the p-adic factor of the product and Adgp(ϕ(t)) is a unipotent au-

tomorphism of gp. Its derivative is a nilpotent derivation of gp. When
G is a p-adic Lie group with p finite, every one-parameter subgroup
ϕ : Qp → G; t 7→ ϕt is Ad-unipotent (see [26, Corollary 1.2]).

Remark 5.3. This definition is the one used by Ratner in [26]. It ac-
tually depends on the closed embedding of G in a product of p-adic
Lie groups (think for example to the group Qp× (R/Z), p <∞, which
admits automorphisms that do not preserve Qp). It would maybe be
more comfortable to work with one-parameter subgroups ϕ : Qp → G
such that, for any t, Adgp(ϕ(t)) is a unipotent automorphism of gp
and, for q 6= p, Adgq(ϕ(t)) = 0. But there does not exist yet published

reference of Ratner’s Theorem 5.15 for subgroups spanned by such one-
parameter subgroups. The reader will note that all the one-parameter
subgroups which will be constructed in this paper are Ad-unipotent
for any closed embedding of G in a product of p-adic Lie groups (see
Lemma 5.4 below and Lemma 5.12).

Let us give a construction of Ad-unipotent one-parameter subgroups
of G.

Lemma 5.4. (Construction of unipotent subgroups) Let G be an S-
adic Lie group, G′ be a normal closed subgroup of G with Lie algebra
g′, g be an element of G, p ∈ S and V ⊂ g′p denote the sum of the
generalized eigenspaces of Adg′p which are associated to eigenvalues with

modulus < 1. Then, there exists a unique Ad g-equivariant map ϕ :
V → G′ such that, for any v in V , the map Qp → G; t 7→ ϕ(tv) is
a one-parameter subgroup and that ϕ is equal to an exponential map
in the neighborhood of 0. If G is a closed subgroup of a product of
p-adic Lie groups, p ∈ S, for any v in V , the one-parameter subgroup
t 7→ ϕ(tv) is Ad-unipotent.

Proof. Let us construct this map. We will write g for Adg. We can
assume p < ∞, the real case being trivial. Let Ω be a a standard
open subset of G with exponential map expΩ : O → Ω. We assume
expΩ(O ∩ g′) ⊂ G′. By Lemma 5.2, there exists an open subgroup
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U ⊂ Op ∩ V such that gU ⊂ Op and that expΩ(u) = g−1 expΩ(gu)g for
any u in U . After eventually replacing U by

⋂
k≥0 g

−kU , we can assume

gU ⊂ U . Now, for k in Z, let Uk = g−kU and define a continuous map
ϕk : Uk → G′ by setting ϕk(u) = g−k expΩ(gku)gk for any u in Uk. We
claim that, for any k, one has ϕk = ϕk−1 on Uk−1 = gUk. Indeed, let u
be in Uk. As gku belongs to U , we have

ϕk+1(u) = g−k(g−1 expΩ(ggku)g)gk = g−k expΩ(gku)gk = ϕk(u).

Therefore, as V =
⋃
k∈Z Uk, the map ϕ : V → G′ whose restriction to

any Uk, k ∈ Z, is ϕk satisfies our requirements. Uniqueness is clear.
Now, note that, by uniqueness, if G is a closed subgroup of a product

Πq∈SHq, where, for any q in S, Hq is a q-adic Lie group, we have
ϕ(V ) ⊂ Hp. Besides, for any v in V , as gkv −−−→

k→∞
0, one has

(Adgk)(adv)(Adg−k) −−−→
k→∞

0

and adv is a nilpotent endomorphism of g. Again by uniqueness, we
have Ad(ϕ(v)) = exp(adv) and the result follows. �

5.1.3. Semiconnected components. We now introduce the notion of a
semiconnected component (see [26, p. 288]). For real Lie groups, a
semiconnected component is nothing but the connected component.

Assume G is a closed subgroup of a product, for p in S, of p-adic Lie
groups. Let Ω be a standard open set in G. For any closed subgroup
G′ of G, we denote by G′Ω the intersection G′Ω := G′ ∩ Ωf , by G′u
the subgroup of G′ generated by all the one-parameter Ad-unipotent
subgroups of G which are contained in G′ and by g′u the Lie algebra
of G′u. We denote by G′∞ the real Lie subgroup of G′ with Lie algebra
g′∞. This group G′∞ is also equal to the connected component of G′.
The groups G′u and G′∞ are normal in G′.

Definition 5.5 ([26]). The Ω-semiconnected component of G′ is the
subgroup G′ΩG

′
uG
′
∞ of G′.

The subgroup G′ is said to be semiconnected if G′ = G′ΩG
′
uG
′
∞ for

some standard open subset Ω of G. A semiconnected component of G′

is a semiconnected open subgroup of G′ which contains G′u.
When S = {∞}, if a subgroup Γ normalizes a closed subgroup G′

of G, then it normalizes its connected component. In general, we will
need an analogue property to hold under a suitable assumption on Γ.

Recall that Ad(Γ)
Z

denotes the Zariski closure of AdΓ in GL(g), that
is the product of the Zariski closures of the Adgp(Γ) in the GL(gp),
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p ∈ S, and that it is said to be semisimple if all the groups AdgpΓ
Z

,

p ∈ S, are semisimple.

Lemma 5.6. (Invariant semiconnected component) Let G be an S-
adic Lie group that is a closed subgroup of a product, for p in S, of
p-adic Lie groups. Let Γ be a compactly generated subgroup of G such

that Ad(Γ)
Z

is semisimple. Then, if G′ is a closed subgroup of G which
is normalized by Γ, there exists arbitrarily small standard open subsets
Ω of G such that Γ normalizes an Ω-semiconnected open subgroup of
G′.

Proof. Let g′ be the Lie algebra ofG′ and l ⊂ g′ be the subspace of those
v in g′ whose AdΓ-orbit is bounded. Then l is a subalgebra of g′ and
the group AdlΓ is compact. As Γ is compactly generated, by Lemma
5.2, there exists an arbitrarily small standard open subset Ω of G, with
exponential map expΩ : O → Ω such that O ∩ l is AdΓ-invariant and
that, for any v in O∩ l and g in Γ, one has expΩ(gv) = g expΩ(v)g−1. In
particular, if L∞ is the connected Lie subgroup of G with Lie algebra
l∞, the group expΩ(O ∩ lf )L∞ is normalized by Γ and has Lie algebra
l.

Since the group Ad(Γ)
Z

is semisimple, l admits a (unique) Γ-invariant
complementary submodule v in g′. As the Γ-orbits of nonzero vectors in
v are unbounded, the module v is spanned by submodules V satisfying
the assumptions of Lemma 5.4 for some g in Γ (see [2]). Therefore, by
this Lemma, the Lie algebra of the group G′u contains v. In other terms,
the Ω-semiconnected group G′′ = expΩ(O ∩ lf )L∞G

′
u is normalized by

Γ. �

Recall weakly regular S-adic Lie groups have been defined in Defini-
tion 2.1. We will need to relate this notion to the one of regular S-adic
Lie groups.

Definition 5.7 (Ratner, [26]). If p <∞, a p-adic Lie group G is said
to be regular if the kernel of the adjoint map Ker(Adg) is equal to
the center Z(G) of G and if the finite subgroups of G have uniformly
bounded order.

If p =∞, every real Lie group will be said to be regular.
An S-adic Lie group is said to be regular if it is isomorphic to a

closed subgroup of a product of regular p-adic Lie groups.

According to [26, Cor. 1.3], regular groups are weakly regular. The
following proposition is a kind of converse which will be useful to extend
the level of generality of Ratner’s theorem 5.15.
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Proposition 5.8. Let G be a weakly regular semiconnected p-adic Lie
group, then G contains an open finite index subgroup which is regular.

Proposition 5.8 will be proved in [10].

5.2. Good exponentials.

In this section we define a class of groups which will play
an important role in our proof: the groups with “good
exponentials”. The reader who is only interested in real
Lie group may skip the beginning of this section until
Proposition 5.13.

We will need a local exponential map onG with stronger equivariance
properties than in Lemma 5.2.

Definition 5.9. Let G be an S-adic Lie group and Γ ⊂ G a subgroup.
We say that (G,Γ) has good exponentials if there exists a standard
open subset Ω of G with exponential map expΩ : O → Ω satisfying the
following equivariance property: for any v ∈ O and g ∈ Γ such that
Adg(v) ∈ O, one has

(5.1) expΩ(Adg(v)) = g expΩ(v) g−1.

Such an exponential map expΩ will be called a (G,Γ)-good exponential
map.

Example 5.10. Such an open set Ω may not exist when G is not weakly
regular, even if this group G is compactly generated. For instance it
does not exist when G = Γ is the amalgamated product of two copies
of SL(2,Qp) over the open subgroup SL(2,Zp).

Good exponential maps often exist:

Proposition 5.11. (Good exponential maps) Let G be an S-adic Lie

group and Γ ⊂ G a subgroup such that Ad(Γ)
Z

is semisimple.
a) Assume that (i): G is a real Lie group, or (ii): G is a closed subgroup
of
∏

p∈S GL(dp,Qp), or (iii): G is weakly regular and Γ is compactly

generated. Then (G,Γ) has good exponentials.
b) Let G′ be a closed subgroup of G containing Γ. If (G,Γ) has good
exponentials, then (G′,Γ) has good exponentials.
c) Let S be a closed normal subgroup of G, G := G/S and Γ := ΓS/S.
If (G,Γ) has good exponentials, then (G,Γ) has good exponentials.

Proof. a) (i) When G is real, there exists only one exponential map.
(ii) One uses the usual series for the exponential of matrices.
(iii) By Lemma 5.6, there exists a standard open subset Ω of G, with
exponential map expΩ : O → Ω, such that some Ω-semiconnected
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open subgroup G′ of G is normalized by Γ. By Proposition 5.8, after
eventually shrinking Ω, we may assume G′ is regular. We can also
assume, for any v in O, the matrix exponential series converges at adv
and

(5.2) Ad(expΩ v) = exp(adv).

Since G′ is regular, the order of the finite subgroups of G′ is bounded
by some constant n. We set O′ = (n!)O and Ω′ = expΩ(O′) and we
claim that expΩ′ = expΩ |Ω′ is (G,Γ)-good. Indeed, let v be in O′ and
g be in Γ with gv ∈ O′. We set w = 1

n!
v, so that w, gw ∈ O. Let

h = g expΩ(w)g−1 expΩ(gw)−1. By (5.2), we get Adh = e, hence, G′

being regular, h is a central element of G′. Now, there exists an integer
m such that expΩ(mgw) = g expΩ(mw)g−1, so that hm = e, hence
hn! = e, that is, precisely expΩ(gv) = g expΩ(v)g−1, what should be
proved.

b) This is clear.
c) We write g = s⊕t where t is a Γ-invariant complementary subspace

of the Lie algebra s of S in g and we introduce the projection p : G→
G. We fix a standard open subset Ω of G whose exponential map
expΩ : O → Ω is (G,Γ)-good. We identify the Lie algebra of G with t
and set O := O ∩ t. The good exponential map expΩ : O → G is then
defined, for v ∈ O, by expΩ(v) := p(expΩ(v)). �

If Γ is a subgroup of G, we introduce the closed cone of Γ-unstable
elements of the Lie algebra g

(5.3) NΓ(g) := {v ∈ g | ∃(gn) ⊂ Γ Adgn(v) −−−→
n→∞

0}.

Its elements are ad-nilpotent elements of g. When (G,Γ) has good
exponentials, we can extend the construction in Lemma 5.4:

Lemma 5.12. (Construction of unipotent subgroups (bis)) Let G
be an S-adic Lie group and Γ ⊂ G a subgroup of G. Assume that
(G,Γ) has good exponentials. Then there exists a unique map expN :
NΓ(g) −→ G satisfying the following equivariance and compatibility
properties: for any v ∈ NΓ(g), g ∈ Γ, one has

(5.4) expN(Adg(v)) = g expN(v) g−1

and for any good exponential map expΩ : O → Ω, any v ∈ O ∩NΓ(g),
one has

(5.5) expN(v) = expΩ(v).

If G is a closed subgroup of a product of p-adic Lie groups, p ∈ S, for
any v in V , the one-parameter subgroup t 7→ ϕ(tv) is Ad-unipotent.
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Proof. For any v in NΓ(g), there exists g ∈ Γ such that Adg−1(v) ∈ O.
We set then,

expN(v) = g expΩ(Adg−1(v)) g−1.

This definition does not depend on the choice of g because of the equiv-
ariance property (5.1). By construction, it satisfies the equivariance
property (5.4) and the compatibility condition (5.5). Uniqueness is
obtained in the same way.

Now, if v belongs to NΓ(g)∩gp for some p in S, by uniqueness we get
Ad(expN(v)) = exp(ad(v)) and then Ad(expN(v)) is unipotent. �

To shorten notations, when there is no ambiguity, we will write ev

or exp(v) for expΩ(v) or for expN(v).
Let us use these notions to proceed to a construction that will play a

key-role in many of our proofs. Recall that if µ is a probability measure
on G, we let Γµ denote the subgroup of G spanned by the support of µ

and we say µ is Ad-semisimple if the group Hµ = AdΓµ
Z

is semisimple.
In this case, we may freely use the notations and results from sections
4.2 and 4.3 for the probability measure Ad∗µ on Hµ. Thus, we get a
map ξ : B → Pµ and, for any Hµ-irreducible subrepresentation v of
g, we get a Hµ-equivariant map Pµ → Gr(v); η 7→ vη. When v is not
irreducible, we set, for η in Pµ, vη =

∑
w wη, where w varies among the

Hµ-irreducible subrepresentations of v. This is the space of invariant
vectors for the action in v of the unipotent radical of the stabilizer of
η in Hµ. We set vb = vξb for β-almost every b in B.

Proposition 5.13. (Construction of Vb) Let G be an S-adic Lie group
and µ be an Ad-semisimple Borel probability measure on G such that
(G,Γµ) has good exponentials and

∫
G

log ‖Adg‖ dµ(g) < ∞. Let g′ be
a subalgebra of g which is Hµ-invariant. We set v to be the sum of
the irreducible sub-Hµ-representations of g′ in which the image of Γµ
is unbounded. The following properties hold.
a) For any η in Pµ, vη is an ad-nilpotent subalgebra of g′.
b) For β-almost any b in B, one has vb = Adb0vTb and the norm of the
restriction of Ad(b0 · · · bn−1)−1 to vb goes to 0 as n→∞. In particular,
vb ⊂ NΓµ(g).
c) For β-almost any b in B, the set Vb := expN(vb) is a Lie subgroup
of G and Vb = b0VTbb

−1
0 .

Remark 5.14. Define a QS-unipotent group to be a product of Qp-
unipotent groups for p in S. Then, one could prove that, for β-almost
any b in B, Vb is isomorphic to the unique QS-unipotent group with
Lie algebra vb. We shall not use this fact.
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Proof of Proposition 5.13. a) It suffices to prove this fact when η =
ηΘµ , the fixed point of Pµ in Pµ. We set v0 = vηΘµ

. By construction,
v0 is the QS-module spanned by the set E of Uµ-invariant vectors v in
g′ such that there exists a dominant weight χ of A whose restriction
to Aµ is non-trivial and satisfies av = χ(a)v for any a in Aµ. Now,
as Hµ is semisimple, if χ and χ′ are dominant weights of A who have
non-trivial restriction to Aµ, so does χχ′. Therefore, for any v, v′ in E,
we have [v, v′] ∈ E and v0 is a Lie algebra.

b) The equivariance property follows from the one of the map ξ.
Since µ has a finite first order moment, by Birkhoff’s ergodic Theorem
and Proposition 4.4, for β-almost any b in B, for any dominant weight χ
of A whose restriction to Aµ is not trivial, we have χω(θR,n(b)) −−−→

n→∞
∞.

Now, the result follows from the definition of vb and Lemma 4.2.
c) The equivariance property of Vb is a consequence of the ones of vb

and of expN . In order to check that Vb is a subgroup of G, we write,
for β-almost any b in B, vb =

⊕
p∈S vp,b the decomposition of vb into

p-adic components and set, for p in S, Vp,b = expN(vp,b). As these sets
commute to each other, it suffices to prove that each Vp,b is a subgroup.

If p = ∞, then V∞,b is the connected Lie subgroup of G with Lie
algebra v∞,b and the result follows from the structure theory of real
nilpotent Lie groups.

If p < ∞, we will prove that Vp,b is an increasing union of compact
open subgroups. Let Ω be a (G,Γµ)-good standard open subset of G,
with exponential map expΩ : O → Ω. For any subalgebra l of gp,
expΩ(O ∩ l) is a compact subgroup of G. Now, for β-almost any b
in B, there exists a sequence (nk) of natural integers such that the
sequence b0 · · · bnk−1(O ∩ vp,Tnk b) is an increasing sequence of compact
subalgebras wich exhausts vb. Hence, by the equivariance property of
expN , the sequence

expN(b0 · · · bnk−1(O ∩ vp,Tnk b)) =

b0 · · · bnk−1 expN(O ∩ vp,Tnk b)(b0 · · · bnk−1)−1

is an increasing sequence of compact subgroups wich exhausts Vb. �

5.3. Ratner’s measures.

We recall in this section the classification of measures
which are invariant under groups spanned by Ad-unipotent
one-parameter subgroups due to Ratner.

We keep the notations of sections 2.1 and 5.1. Let G be a weakly
regular S-adic Lie group, Λ a discrete subgroup of G and X = G/Λ.
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For a Borel probability measure α onX, we setGα to be the stabilizer
of α in G and hence Gα,u to be the subgroup of Gα generated by the
one-parameter Ad-unipotent subgroups of Gα. We introduce the set E
of Ratner’s probability measures:

(5.6) E := {α ∈ H | supp(α) is a Gα-orbit and α is Gα,u-ergodic}.

We have Ratner’s Theorem:

Theorem 5.15 (Ratner [26]). Let G be a weakly regular S-adic Lie
group, Λ be a discrete subgroup of G and H be a subgroup of G such that
H = Hu. Any H-invariant H-ergodic probability measure on X = G/Λ
belongs to E.

More precisely, Ratner has proved this theorem when the S-adic Lie
group G is regular. It can be extended to any weakly regular S-adic Lie
group thanks to our Proposition 5.8.

5.4. Fixed points and orbits of the centralizer.

The following general Lemma compares the set of fixed
points of a subgroup in a homogeneous space and the
orbits of its centralizer.

We will use this lemma to prove Lemma 7.9.

Lemma 5.16. Let G be a second countable S-adic Lie group, Λ,∆ ⊂ G
discrete subgroups of G and C the centralizer of ∆ in G. We assume
that G is a real Lie group or that the group ∆ is finitely generated.
Then the set X∆ of fixed points of ∆ in X = G/Λ is a countable union
of C-orbits. Moreover, these orbits are open and closed in X∆.

Proof of Lemma 5.16. Our assumptions ensure that the centralizer c of
∆ in g is the Lie algebra of C. Since ∆ and C commute, the set X∆

is a union of C-orbits. The main point is to prove that, for every x in
X∆, the C-orbit Cx is a neighborhood of x in X∆. We have to find a
small open neighborhood U of e in G such that Ux ∩X∆ ⊂ Cx.

We pick a finite subset F of ∆ such that, in the space of endomor-
phisms of g, AdF spans the same linear subspace as Ad∆. Thus, c is
the centralizer of F in g. By Lemma 5.2, we can choose a standard
open subset Ω of G with exponential map expΩ : O → Ω such that, for
any v in O and f in F with fv ∈ O, one has expΩ(fv) = f expΩ(v)f−1,
that expΩ(O ∩ c) ⊂ C and that the natural map Ω → X; g 7→ gx is
one-to-one. Set O′ = O ∩

⋂
f∈F f

−1O. For any v in O′, if expΩ(v)x

is in X∆, one has v = fv for all f ∈ F , hence v is in c and one has
expΩ(O′)x ∩X∆ ⊂ Cx as required.



44 YVES BENOIST AND JEAN-FRANÇOIS QUINT

This proves that the C-orbits are open in X∆. Hence they are also
closed and, since X is second countable, there are only countably many
C-orbits in X∆. �

5.5. Stationary probability measures on homogeneous spaces.

In the course of the proof of Theorem 2.7 which describes
the stationary probability measures on G/Λ, we will also
need to understand stationary probability measures on
various G-spaces.

Let V be a finite dimensional QS-module, that is a product
∏

p∈S Vp
of finite dimensional vector spaces Vp over Qp, p ∈ S, and Y be the set
of Radon measures λW on V which are a Haar measure on some closed
QS-submodule W =

∏
p∈SWp ⊂ V .

For any subgroup Γ of GL(V ) =
∏

p GL(Vp), we set Γ
Z

for the Zariski

closure of Γ and Γ
Z,nc

for the intersection of the kernels of the algebraic

representations ρ : Γ
Z → GL(d,QS) for which ρ(Γ) is bounded.

Let µ be a probability measure on GL(V ) and recall Γµ denotes the
closed subgroup generated by the support of µ.

Lemma 5.17. (Stationary measures in V ) Let µ be a probability mea-
sure on

∏
p GL(Vp) and V Γµ and Y Γµ be the sets of Γµ-invariant ele-

ments in V and Y respectively.

We assume Γµ
Z

is semisimple and Γµ
Z

= Γµ
Z,nc

. Then :
(i) Any µ-stationary probability measure on V is supported by V Γµ.
(ii) Any µ-stationary probability measure on Y is supported by Y Γµ.

Remark 5.18. This is not always the case when the Zariski closure of Γµ
is only assumed to be reductive. For instance, for V = (Qp)

2, p 6= ∞,
and µ = 1

2
(δa1 + δa2) with

a1 =

(
1 0
0 p

)
and a2 =

(
1 p
p p

)
,

the semigroup of GL(2,Qp) generated by a1 and a2 acts strongly irre-
ducibly on V . All the vectors of the semiorbit of (1, 0) have norm 1
and the closure of this semiorbit supports a µ-stationary probability
measure which is not Γ-invariant.

We let Q×S be the multiplicative group of QS. For t = (tp) ∈ QS, we
set |t| =

∏
p∈S |tp|p.

Proof of Lemma 5.17 . (i) We may assume that V is irreducible and
non-trivial. We want to prove that the only µ-stationary probability
measure on V is δ0. Assume η is such a probability measure. We
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will again use the one-sided Bernoulli shift (B,B, β, T ) whose alpha-
bet is (GL(V ), µ). The probability measure η being µ-stationary, the
transformation R : B × V → B × V ; (b, v) 7→ (Tb, b0v) preserves the
probability measure β ⊗ η. Fix a norm on V an set ϕ(b, v) = ‖v‖,
b ∈ B, v ∈ V . By [9], for any v in V r {0}, for β-almost any b
in B, one has ϕ(Rn(b, v)) = ‖bn−1 . . . b0v‖ −−−→

n→∞
∞. By Poincaré’s

recurrence theorem, we get η = δ0.
(ii) For any non-zero family n = (np)p∈S of non-negative integers,

we set Yn to be the set of λW ∈ Y with dimWp = np, for all p in S.
The space Y is a finite union of such spaces Yn. We want to prove that
there is no µ-stationary probability measure η on Yn r Y Γ

n .
First case : Assume that all the np are equal to 1. In this case, we

set A ⊂ Q×S to be the subgroup A := {t ∈ Q×S | |t| = 1} so that the
space Yn is isomorphic to the quotient space (

∏
p∈S(Vpr {0}))/A. The

proof then goes the same way as the one of (i) by using the function

ϕ(b, v) =
∏
p∈S

‖vp‖

which is well defined on this set of A-orbits.
General case : This can be reduced to the first one by replacing V

by the product
∏

p∈S ΛnpVp and each λW ∈ Yn by the associated Haar

measure on
∏

p∈S ΛnpWp. �

Let G be an S-adic Lie group. Recall a probability measure µ on G

is said to be Ad-semisimple if the group Hµ = AdΓµ
Z

is semisimple.
In this case, there are strong restrictions on the homogeneous spaces
of G which carry a µ-stationary probability measure.

Proposition 5.19. (Stationary measures in G/G′) Let G be a weakly
regular S-adic Lie group and µ be an Ad-semisimple probability mea-
sure on G such that (G,Γµ) has good exponentials, Hµ = Hnc

µ and∫
G

log ‖Adg‖ dµ(g) <∞.
Let G′ ⊂ G be a unimodular closed subgroup. Assume there exists a

µ-ergodic µ-stationary probability measure η on the homogeneous space
G/G′. Then, there exists x = gG′ in G/G′ and a semiconnected compo-
nent S of gG′g−1 such that the unimodular normalizer N1(S) contains
Γµ and η(N1(S)x) = 1.

By definition, the unimodular normalizer N1(S) of the unimodular
subgroup S is the subgroup of the normalizer of S whose elements
preserve the Haar measure of S. It contains gG′g−1.

WhenG is a real Lie group, the conclusion of Proposition 5.19 implies
that the connected component of gG′g−1 is normalized by Γµ.
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Proof of Proposition 5.19 when G is a real Lie group. We will use
Lemma 5.17 with V = g and Y the set of Haar measures λW on
sub-QS-modules W ⊂ g. Since G′ is unimodular, any Haar measure
y = λg′ ∈ Y is a G′-invariant element of Y . The orbit Gy ⊂ Y then
supports a µ-stationary probability measure: this is the image η′ of
η by the natural map G/G′ → Gy. We may assume that y is in the
support of η′. By Lemma 5.17, this µ-stationary probability measure
η′ is supported by the set of Γµ-invariant vectors. In particular, y is
Γµ-invariant. Since η′ is also µ-ergodic, it is a Dirac mass: η′ = δy.
This implies that Γµ is included in the unimodular normalizer N1(g′)
of g′ and that the probability measure η is supported by an orbit of
N1(g′).

This ends the proof when G is a real Lie group, since in this case
N1(g′) is also the unimodular normalizer of the connected component
S of G′. �

5.6. Stationary measures for S-adic groups.

The reader who is only interested in real Lie groups may
skip this section.

The strategy for S-adic Lie groups is the same as the one for real
Lie groups. The additional difficulty comes from the existence of the
following example which tells us that we will have to use once more the
existence of η to conclude.

Example 5.20. The normalizer of the Lie algebra g′ of a subgroup G′ ⊂
G does not always normalize a semiconnected component of G′.

An example is G = SL(d,Qp) and G′ = SL(d,Zp), for p <∞.
Another example is G = SL(d,Qp)nQ2

p and G′ = Qp ×Zp ⊂ Q2
p for

which the normalizer of a semiconnected component of G′ is not even
open in the normalizer of g′.

We shall need the following

Lemma 5.21. Let G be an S-adic Lie group that is a closed subgroup
of a product, for p in S, of p-adic Lie groups. Assume G′ is a closed
normal subgroup of G and the adjoint action of G on G′ is unimodular.
Then, so is the adjoint action of G on G′u.

Proof. Let g′ be the Lie algebra of G′ and g′u be the one of G′u. By
Lemma 5.4, for any g in G, the sum of the generalized eigenspaces of
Adg which are associated to eigenvalues with modulus 6= 1 is contained
in g′u. Hence, we get | detg′(Adg)| = | detg′u(Adg)|. The result follows.

�
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Proof of Proposition 5.19 in the general case. We may assume that the
base point x0 of X := G/G′ belongs to the support of η. Reasoning as
in the real case we get η(N1(g′)x0) = 1 and Γµ ⊂ N1(g′), where g′ is the
Lie algebra of G′, so that we can assume from now on N1(g′) = G. In
the same way, as, by Lemma 5.21, the action of G′ on g′u is unimodular,
we can also assume N1(g′u) = G and hence, G being weakly regular,
N1(G′u) = G. Let v be the sum of the Γµ-irreducible sumodules of g′

on which AdΓµ is unbounded. We want to construct the group S by
applying the same strategy as the one used in the proof of Lemma 5.6.
We will prove that v ⊂ g′u.

Since (G,Γµ) has good exponentials and µ has a finite first moment,
we can apply Proposition 5.13 to g′ and the probability measure µ̌ on
G. For β-almost every b in B, we get a subalgebra vb̌ of g′ and a
subgroup Vb̌ = expN(vb̌) of G, such that, for β-almost any b in B, the
norm of the restriction of Ad(bn−1 · · · b0) to vb̌ goes to 0 as n → ∞.
We claim that, for β-almost any b in B, Vb̌ is contained in G′. Indeed,
equip the space B × G/G′ with the map R : (b, x) 7→ (Tb, b0x) which
preserves the probability measure β⊗ η. For β⊗ η-almost any (b, x) in
B ×G/G′, set

ϕ(b, x) = inf{‖v‖|v ∈ vb̌ expN(v)x 6= x} ∈ [0,∞].

As vb̌ ⊂ g′, one has ϕ(b, x) > 0 and we shall prove that ϕ = ∞
almost everywhere. But, for β⊗ η-almost every (b, x), one has, for any
n, ϕ(Rn(b, x)) ≤ ‖bn−1 · · · b0|vb̌‖ϕ(b, x) and therefore, if ϕ(b, x) < ∞,
ϕ(Rn(b, x)) −−−→

n→∞
0, which contradicts Poincaré’s recurrence Theorem.

Thus, ϕ =∞ and, for β⊗η-almost any (b, x), Vb̌x = x. In other terms,
for β-almost any b in B, we have vb̌ ⊂ g′u. In particular, as, for any
Borel subset E of B with β(E) = 1, the set

⋃
b∈E vb̌ spans v, we get

v ⊂ g′u.
We can now finish the construction of the group S. Let l′ be the

space of Γµ-invariant vectors of g′. Since Hµ = Hnc
µ , one has g′ = l′⊕v.

Let Ω be a standard open subset of G with (G,Γµ)-good exponential
map expΩ : O → Ω. Then, Γµ centralizes expΩ(O ∩ l′). Assume Ω
is small enough to have expΩ(O ∩ g′) ⊂ expΩ(O ∩ l′)G′u, so that Γµ
normalizes expΩ(O ∩ g′)G′u. We set S = expΩ(O ∩ g′)G′∞G

′
u. As G′∞

and G′u are normal subgroups of G and Ω normalizes expΩ(O ∩ g′), S
is normalized by Ω, hence the normalizer N1(S) of S is open in G. In
particular, for η-almost any x in X, we have η(N1(S)x) > 0 and, as Γµ
normalizes unimodularly S, this orbit is Γµ-invariant. As η is ergodic,
we get η(N1(S)x0) = 1, what should be proved. �

5.7. Convergence of cocompact lattices.
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We prove here a general fact on the restriction of the
Chabauty topology to the set of cocompact lattices. We
will use this fact in section 5.9.

The following proposition 5.22 tells us that for cocompact lattices
“algebraic convergence” coincides with “geometric convergence”.

Proposition 5.22. (Chabauty topology for cocompact lattices) Let G
be a compactly generated locally compact group and Λ∞ be a cocompact
lattice in G. Then the group Λ∞ is finitely generated.

Let (Λn) be a sequence of lattices in G which converges to Λ∞ in the
Chabauty topology. Then, there exists n0 and a compact subset C of G
such that, for n ≥ n0, Λn is cocompact in G and G = CΛn.

Remark 5.23. When G is not compactly generated such a compact
“upper bound” C for suitable fundamental domains of Λn may not
exist, even if Λn avoids a fixed neighborhood of e in G and the covolume
of Λn converges to the covolume of Λ.

Proof of Proposition 5.22. Let B be a symmetric relatively compact
open subset generating G and containing the identity element of G,
so that we have G = ∪k≥1B

k. We may assume that B contains a
fundamental domain for Λ∞, i.e. that G = BΛ∞.

As B2 is compact, there exists a finite subset F∞ of Λ∞ such that

(5.7) B2 ⊂ B F∞.

By induction on k ≥ 1, one gets the inclusions

Bk ⊂ B (F∞)k−1.

Indeed, one has Bk+1 = BBk ⊂ BB(F∞)k−1 ⊂ B(F∞)k. Let Λ′∞ be the
subgroup of Λ∞ generated by F∞. One gets G = BΛ′∞ and Λ′∞ is thus
a cocompact lattice in G. Hence Λ′∞ has finite index in Λ∞ and Λ∞ is
finitely generated.

Since the lattice Λn converges to Λ∞ in the Chabauty topology there
exist finite subsets Fn ⊂ Λn which converge to F∞. Using inclusion
(5.7) in which B2 is compact and B is open, we deduce that, for n
large enough, one has

B2 ⊂ BFn.

The same induction argument gives, for all k ≥ 1,

Bk ⊂ B(Fn)k−1,

hence, G = BΛn. The result follows. �
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5.8. Lattices in S-adic Lie groups.

The reader who is only interested in real Lie groups may
skip this section. We show in Corollary 5.24 how to
extend Proposition 5.22 to S-adic Lie groups. We also
prove a version of Auslander Theorem for lattices in S-
adic Lie groups. We will use these facts in section 5.9.

A weakly regular semiconnected S-adic Lie group may fail to be com-
pactly generated, as for instance G = R×Qp which contains the lattice
Λ = Z[1

p
]. Even though the lattices in G are not finitely generated, the

conclusion of Proposition 5.22 is still true for these groups.

Corollary 5.24. Let G be a weakly regular semiconnected S-adic Lie
group such that Gu is nilpotent, Λ∞ be a lattice in G and (Λn) be
a sequence of lattices in G which converges to Λ∞ in the Chabauty
topology. Then there exists a compact subset C ⊂ G such that, for all
n ≥ 1, G = CΛn.

Note that, by [8, Prop. 5.1], lattices in G are necessarily cocompact.
To get Corollary 5.24 from Proposition 5.22, we will need to use some
facts on the structure of these groups G.

Lemma 5.25. Let Z be an abelian S-adic Lie group which is isomor-
phic to a product of vector spaces over the fields Qp, p ∈ S. Let K be a
compact abelian group. If there exists a morphism Z → K with dense
image, then K is connected.

Proof. As any nonconnected group admits proper open subgroups, it
suffices to prove that, if K is finite, K is trivial. But in this case the
morphism Z → K is onto and its kernel is a finite index subgroup of Z.
By assumption, such a subgroup equals Z, what should be proved. �

We can now begin the study of cocompact groups in nilpotent semi-
connected groups.

Lemma 5.26. Let G be a nilpotent weakly regular S-adic Lie group
with G = Gu and G∞ = {e}. Then G admits no proper cocompact
closed subgroups.

Proof. We argue by induction on the dimension of G. If it is zero, there
is nothing to prove. If not, we consider the center Z of G. By [26, Prop.
2.1], it is isomorphic to a product of vector spaces over Qp, p ∈ S. Let
H be a closed cocompact subgroup of G and set L = ZH. As H is
contained in L, L/H is compact. As [L,L] ⊂ H, H is normal in L.
Now, the morphism Z → L/H has dense image so that, by Lemma
5.25, L/H is connected. As G∞ = {e}, L/H is trivial, that is Z ⊂ H.
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Now, we may view H as a closed cocompact subgroup of G/Z which,
by [26, Prop. 2.1], is still a weakly regular group. By induction, we get
H = G, what should be proved. �

¿From this, we deduce

Lemma 5.27. Let G be a weakly regular semiconnected S-adic Lie
group such that Gu is nilpotent and H ⊂ G a closed cocompact subgroup
containing G∞. Then H contains Gu.

Proof. Let Ω be a standard open subset of G. We assume G is Ω-
semiconnected. We have G = ΩfGu,fG∞. By [26, Prop. 2.1 and
Th. 2.1], we may write Gu,f as the union of an increasing sequence of
compact subgroups (Kn). As Ωf is compact, we may suppose, for any
n, Ωf normalizes Kn.

We may view H as a closed cocompact subgroup of ΩfGu,f . We
claim that the group L = HGu,f is closed. Indeed, for any n, the group
(H ∩ (ΩfKn))Kn is closed since it is compact and we have HGu,f =⋃
n(H ∩ (ΩfKn))Kn. Now, ΩfGu,f having no real factor, by [26, Cor

1.1], the union of an increasing sequence of closed subgroups of ΩfGu,f

is still closed. Hence L = HGu,f is closed.
In particular, H ∩Gu,f is a cocompact subgroup of Gu,f . By Lemma

5.26, we have Gu,f ⊂ H, what should be proved. �

This gives

Lemma 5.28. Let G be a weakly regular semiconnected S-adic Lie
group such that Gu is nilpotent. There exists a compactly generated
open subgroup G′ of G such that, for any cocompact closed subgroup H
of G, one has G = G′H.

Proof. Let G′ be an open compactly generated subgroup of G which
maps onto the compact group G/GuG∞ and let H be a cocompact
closed subgroup of G. By Lemma 5.27, we have Gu ⊂ G∞H hence, G′

being open and containing G∞, Gu ⊂ G′H. We get G = G′Gu ⊂ G′H,
what should be proved. �

Proof of Corollary 5.24. Let G′ be as in Lemma 5.28. The intersections
Λ′n := Λn ∩ G′ and Λ′∞ = Λ∞ ∩ G′ are lattices in G′. By [8, Prop.
5.1], these lattices are cocompact. By Proposition 5.22, there exists a
compact subset C of G′ such that, for all n ≥ 1, one has G′ = CΛ′n.
But then, one also has G = CΛn. �

We end this section by a few structure results on semiconnected
groups and their lattices that we will need in the course of the proof
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of Proposition 5.32. We recall that the amenable radical of a locally
compact group is its largest amenable closed normal subgroup.

Lemma 5.29. (Structure of the amenable radical) Let G be a weakly
regular semiconnected S-adic Lie group with Lie algebra g. Let r be the
smallest ideal of g containing the solvable radical r0 of g such that g =
r + gu, let l := g/r and R be the kernel of the adjoint map G→ Aut(l).
Then R is the amenable radical of G. If Ω is a standard open subset
of G such that G is Ω-semiconnected and RΩ is the Ω-semiconnected
component of R, then RΩ is normal in G and R/RΩ centralizes an open
finite index subgroup of G/RΩ.

Proof. By [26, Sect. 2] one has ru = r ∩ gu. By definition of R, for
any r in R and X in gu, one has Adr(X) − X ∈ ru; hence for any
g in Gu, one has rgr−1 ∈ gRu, therefore [Gu, R] ⊂ Ru ⊂ RΩ and Gu

normalizes RΩ. Let expΩ : O → Ω be the exponential map of Ω. We
have R∩Ω = expΩ(O∩r), so that Ω normalizes R∩Ω and hence RΩ. As
G = ΩGuG∞ and, by standard real Lie groups theory, G∞ ⊂ GuR∞,
G normalizes RΩ. Besides, G1 = GuRΩ is a finite index open subgroup
of G and [G1, R] ⊂ RΩ, that is R/RΩ centralizes G1/RΩ. In particular,
setting R1 := R ∩ G1, we get [R1, R1] ⊂ RΩ and, as RΩ is a compact
extension of a solvable group, R1 is amenable. Since R1 has finite
index in R, R is amenable. Now, G/R is isomorphic to an open finite
index subgroup of Aut(l). As the group Aut(l) is semisimple with no
anisotropic factor, the amenable radical of G/R is trivial, hence R is
the amenable radical of G. �

For semiconnected groups, we have the following analogue of Aus-
lander’s projection Theorem.

Lemma 5.30. (Projection of lattices) Let G be a weakly regular semi-
connected S-adic Lie group with amenable radical R and Λ be a lattice
in G. Then ΛR/R is a lattice in G/R and R ∩ Λ is a lattice in R.

Proof. The proof follows the same lines as the one of Auslander’s The-
orem in the real case (see [24, Th. 8.24]) by using the structure results
of [26, Sect. 2] and Lemma 5.29. We fix a standard open subset Ω of
G such that G is Ω-semiconnected. By Lemma 5.29, we can assume
[G,R] ⊂ RΩ. We let r be the Lie algebra of R, r0 ⊂ r be the solvable
radical of g and Nu be the subgroup of G spanned by the Ad-unipotent
one-parameter subgroups of G whose derivative belongs to r0. By [26,
Prop. 2.1 and Th. 2.1], the group Nu is isomorphic to a product of
algebraic unipotent groups over Qp, p ∈ S. Let R0,∞ be the radical
of G∞, that is the closed connected subgroup of G∞ with Lie algebra
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r0,∞ and set R2 := NuR0,∞. Let F be the closure of the group ΛR2 in
G. Reasoning as in the proof of [24, Th. 8.24], one proves that the Lie
algebra f of F is solvable. As RΩ is a compact extension of R2 and, by
Lemma 5.29, RΩ is a normal subgroup of G, FRΩ is a closed subgroup
of G which is the closure of ΛRΩ. By Borel’s density Theorem and
Lemma 5.29, the Lie algebra (f + r)/r = f/(f ∩ r) is a solvable ideal of
the semisimple Lie algebra g/r, therefore it is trivial and f is contained
in r, that is RΩ is open hence closed in FRΩ and FRΩ = ΛRΩ. In
other terms, the image of Λ in G/RΩ is discrete and Λ∩RΩ is a lattice
in RΩ. Now the group G/RΩ is a central extension of G/R, which is
isomorphic to an open finite index subgroup of Aut(g/r). Thus, again
reasoning as in the proof [24, Th. 8.24], we get that Λ ∩ R is a lattice
in R. �

5.9. Quotient space and injectivity radius.

The following proposition compares the injectivity radius
in a quotient X = X/S of X with the injectivity radius
in X. It will be used in the proof of Proposition 7.8.

Fix a standard open subset Ω of G and r0 > 0 such that B(0, r0) ⊂
O = log Ω. We recall from (2.1) that, for every x in X, the injectivity
radius rX(x) of X at x, is the upper bound of the radii r ≤ r0 for which
the map g 7→ X; v 7→ expΩ(v)x is injective on the ball B(0, r) ⊂ g. Let
S be a closed normal subgroup of G such that S ∩ Λ is a lattice in S.
Then, we set X → X := X/S = G/SΛ and we define the injectivity
radius rX by using the Lie algebra g/s of G/S.

Definition 5.31. We will say that rX controls rX if rX is bounded
below when rX is bounded below, i.e., with quantifiers,

∀ε > 0 ∃α > 0 ∀x ∈ X (rX(x) ≥ ε =⇒ rX(x) ≥ α).

Proposition 5.32. (Control of the injectivity radius) Let G be a
weakly regular S-adic Lie group, Λ be a discrete subgroup of G, X =
G/Λ and S ⊂ G a semiconnected closed normal subgroup of G such
that S ∩ Λ is a lattice in S and the adjoint action of G on S is uni-
modular. Let X := G/SΛ. Then the injectivity radius of X controls
the injectivity radius of X.

Remark 5.33. It is important to assume that the action of G on S
by conjugation is volume preserving. For example, if G is the real Lie
groupG := R2oR× where the adjoint action of t ∈ R× on R2 is given by
the diagonal matrix diag(t, t−1), if Λ is the discrete subgroup Λ := Z2

and if S is the normal subgroup S := R×{0}, one has inf
X
rX > 0 while

inf
X
rX = 0.
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The following Corollary is an immediate consequence of Proposition
5.32 and of the definition of exponential µ-unstability of the cusps (see
Section 2.3).

Corollary 5.34. Let G, Λ, S, X, X be as in Proposition 5.32. Let
µ be a probability measure on G. If the cusps of X are exponentially
µ-unstable, then so are the cusps of X.

In order to prove Proposition 5.32, one first control the injectivity
radius in the quotient of X by the amenable radical R of S.

Lemma 5.35. Let G be a weakly regular S-adic Lie group, Λ be a
discrete subgroup of G and S be a semiconnected normal subgroup of
G such that S ∩Λ is a lattice in S and the adjoint action of G on S is
unimodular. Let R be the amenable radical of S. Then the injectivity
radius of G/Λ controls the injectivity radius of G/RΛ.

Proof. By Lemma 5.30, Λ ∩ R is a lattice in R. Let Ω be a standard
open subset of G such that S is Ω-semiconnected and let RΩ be the
Ω-semiconnected component of R. By Lemma 5.29, RΩ is normal in S.

Assume by contradiction there exists a sequence xn = gnΛ in X and
ε0 > 0 such that, setting x′n := gnRΛ for the images in X ′ := G/RΛ,

(5.8) inf
n≥1

rX(xn) ≥ ε0 and rX′(x
′
n ) −−−→

n→∞
0 .

By definition rX(xn) is bounded by the systole of the lattice Λn :=
gnΛg−1

n , i.e. one has

(5.9) rX(xn) ≤ inf{‖v‖ ≤ r0 | v ∈ gr {0} , ev ∈ Λn} .

We set ∆ = Λ ∩ R, ∆n = Λn ∩ R = gn∆g−1
n and Γn = ∆n ∩ RΩ. Since

the actions of G by conjugation on s and the one of Aut(s/r) on s/r
are unimodular, so is the action of G on R and the lattices ∆n, n ≥ 1,
all have the same covolume in R. As RΩ is an open subgroup of R, for
any n, Γn is a lattice in RΩ.

Now, the first condition in (5.8) implies that these lattices ∆n avoid
a fixed neighborhood of e in R. According to Mahler-Chabauty’s com-
pactness Theorem (see [13]), after eventually extracting a subsequence,
we can assume the sequence of lattices ∆n converges in Chabauty’s
topology towards a lattice ∆∞ of R. As RΩ is open in R, Γn converges
to the lattice Γ∞ = ∆∞ ∩RΩ of RΩ.

By Corollary 5.24 and Lemma 5.29, there exists a compact subset C
of RΩ such that,

RΩ = CΓn for all n ≥ 1.
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Since the number of disjoint ε-balls in C is uniformly bounded, looking
at representatives in C modulo Γn of powers rN of an element r ∈ RΩ,
one deduces the folowing fact.

For any ε > 0, there exists N ≥ 1 such that for all r ∈ RΩ, one can
find distinct integers N1, N2 bounded by N , and v ∈ r with ‖v‖ ≤ ε
such that

(5.10) rN1 ∈ evrN2∆n .

The second condition in (5.8) tells us that there exist a sequence

(5.11) λn = ewnrn ∈ Λn , with rn ∈ R, wn ∈ gr r and lim
n→∞

wn = 0 .

Since the lattices ∆n have the same covolume in R, the subgroups
∆n/Γn = ∆nRΩ/RΩ, n ≥ 1, of the discrete group R/RΩ have uniformly
bounded index. Hence, after raising Equation (5.11) to a fixed power,
we can assume, for any n, rn ∈ RΩ∆n. Using (5.10) with ε = ε0/4
and r = rn, and after again eventually extracting a subsequence, we
can suppose there exists distinct integers N1, N2, such that, for every
n ≥ 1, one can write

rN1
n ∈ evnrN2

n ∆n with vn ∈ r, ‖vn‖ ≤ ε0/4 .

Hence, using (5.11), for n large enough, one has

λN1
n ∈ ev

′
nλN2

n ∆n with v′n ∈ g, ‖v′n‖ ≤ ε0/2 .

In particular, the element ev
′
n belongs to Λn, hence according to (5.8)

and (5.9), one has v′n = 0. That is

λN1−N2
n ∈ ∆n .

Since R is normal in G, this tells us that, for n large, one has

e(N1−N2)wn ∈ R.

Hence wn = 0 for n large enough, which is a contradiction. �

To deal with the general case of Proposition 5.32, we will study the
quotient G/R.

Lemma 5.36. Let G be an S-adic Lie group and L be a closed normal
subgroup of G. Assume the Lie algebra l of L is semisimple with no
anisotropic factor and the adjoint map L→ Aut(l) is an isomorphism
onto a finite index subgroup. Let C be the centralizer of L in G, so
that CL has finite index in G. Then, if Λ is a discrete subgroup of G
such that L∩Λ is a lattice in L, the subgroup (C ∩Λ)(L∩Λ) has finite
index in Λ.



STATIONARY MEASURES 55

Proof. Consider the adjoint map ϕ : G→ Aut(l). As ϕ(Λ) normalizes
ϕ(Λ ∩ L), by [8, Cor. 4.8] (which directly follows from Borel’s density
Theorem), ϕ(Λ∩L) has finite index in ϕ(Λ), what should be proved. �

We can now give the

Proof of Proposition 5.32. In this proof, we may freely replace G or
Λ by a finite index subgroup. In particular, let as above R be the
amenable radical of S. We can assume G = CS, where C is the group
of elements g of G whose image in G/R commutes with S/R. As, by
Lemma 5.29 and [26, Cor. 2.1], the image of S in G/R satisfies the
assumptions of Lemma 5.36, we can also assume that Λ = (Λ∩C)(Λ∩
S).

Now, by Lemma 5.30, R∩Λ is a lattice in R and the quotient space
X1 = G/RΛ identifies with C/R(C ∩ Λ) × S/R(S ∩ Λ). Set X2 =
C/R(C ∩ Λ) = G/SΛ and X3 = S/R(S ∩ Λ) = G/CΛ. For any
x1 = (x2, x3) in X1, one has

(5.12) rX1(x1) ≤ min(rX2(x2), rX3(x3)).

By Lemma 5.35, for any ε > 0, there exists α > 0 such that, if x is in
X = G/Λ and rX(x) ≥ ε, then if x1 is the image of x in X1, one has
rX1(x1) ≥ α. Thus, if x2 is the image of x in G/SΛ, by (5.12), we get
rX2(x2) ≥ α, what should be proved. �

6. The first return Markov chain

The results of this chapter are particularly useful when the space
X = G/Λ is not compact. To deal with this non-compactness issue,
we study the random walk on X thanks to a regeneration method i.e.
through the Markov chain given by the first return map in a “suitable
subset” of X. This method will apply to more general G-spaces than X.
Indeed we will apply it in section 6.6 to the product X ×X. The main
input of this method is the exponential µ-recurrence of suitable subsets
of X. These suitable subsets are the sublevel sets XM of a function u
satisfying a contraction property with respect to the averaging operator
Aµ. This method avoids the use of any other arithmetico-geometric
information on X.

We will first check in section 6.1 that, uniformly for x ∈ XM , the law
of the first return time τM,x in XM starting from a point x ∈ X has
a finite exponential moment. We will then check in section 6.2 that
the laws µM,x ∈ P(Γ) of the corresponding first return cocycle have
also a finite exponential moment uniformly for x in XM . We will then
introduce the averaging operator corresponding to this first return co-
cycle and study the action of this averaging operator in an unbounded
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irreducible representation V of the group Γµ. We will give in section
6.3 a uniform lower bound for the average logarithmic growth of a non
zero vector in V . We will deduce in section 6.4 that the function on V
given by a suitably small negative power of the norm satisfies a con-
traction property with respect to these averaging operators uniformly
for x in XM . We will introduce in section 6.5 the notion of “positive
µ-unstability” and give a criterion to check this condition. We explain
in section 6.6 one of the main applications of positive µ-unstability: we
will prove that, when the diagonal is positively µ-unstable, the limit
probability measures of any atom-free stationary probability measure
do not charge the relative stable leaves. In section 6.7 we explain why,
when Λ is a lattice, the cusps of X = G/Λ are exponentially µ-unstable.
Using the exponential µ-unstapility of the cusps of X = G/Λ, we check,
in section 6.8, the criterion which ensures the positive µ-unstability of
any Γ-invariant homogeneous subset of X = G/Λ.

All the results of this chapter will be used in chapter 7 in order to
prove Proposition 7.8.

To our knowledge, the first occurrence of exponential µ-recurrence in
the context of homogeneous spaces is due to Eskin and Margulis [17].
We then repeatedly used this phenomenon without explicitly charac-
terizing it in [4]. The systematic approach which is developed here is
greatly influenced by Meyn and Tweedie [22].

6.1. Exponential µ-recurrence.

In this section we describe the notion of an exponentially
µ-recurrent subset.

Let G be a locally compact second countable group, G its Borel
σ-algebra, µ a Borel probability measure on G and (B,B, β, T ) the
one-sided Bernoulli shift with alphabet (G,G, µ).

Let (X,X ) be a standard Borel space endowed with a Borel action
of G. The measurable family of probability measure X → P(X);x 7→
µ ∗ δx induces a Markov operator Aµ on X given by, for every non-
negative Borel function ϕ on X and every x in X,

Aµϕ(x) =

∫
G

ϕ(gx) dµ(g).

Let Y ⊂ X be a Borel subset. For x ∈ X, we set σY,x : B → N∪{∞}
to be the first hitting time of Y and τY,x : B → N≥1 ∪ {∞} to be the
first return time in Y , given by, for b in B,

σY,x(b) = inf{n ≥ 0 | bn−1 · · · b0x ∈ Y },(6.1)

τY,x(b) = inf{n ≥ 1 | bn−1 · · · b0x ∈ Y }.
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To understand our choices in these definitions, the reader has to keep
in mind that, for the trajectory b, the “nth-jump” is given by bn−1.

A function τ : B → N∪{∞} is a stopping time if, for all 0 ≤ i <∞,
the function 1{τ=i} is independent from the family of functions bj with
j ≥ i. For instance, the first hitting time function σY,x and the first
return time function τY,x defined in (6.1) are stopping times.

Definition 6.1. We say that Y is exponentially µ-recurrent if, for some
a0 < 1, one has

C0 := sup
x∈Y

∫
B

a
−τ

Y,x
(b)

0 dβ(b) <∞.

This means that the first return time in Y has a finite exponential
moment uniformly for x in Y . We choose such a constant a0 < 1 and
introduce the following function

(6.2) uY : X → [0,∞] ; x 7→ uY (x) =

∫
B

a
−σ

Y,x
(b)

0 dβ(b),

which is an expected exponential of the first hitting time in Y .

Lemma 6.2. Let Y be an exponentially µ-recurrent subset of X. Then
one has the inequality

AµuY ≤ a0uY + C0.

Proof. If x is in Y , one has AµuY (x) =
∫
B
a
−τ

Y,x
(b)

0 dβ(b) ≤ C0.
If x is not in Y , one has σ

Y,b0x
(Tb) = σ

Y,x
(b) − 1 for β-almost every

b in B and hence AµuY (x) = a0uY (x). �

The following Proposition 6.3 is a kind of converse to Lemma 6.2. It
gives us a way to construct exponentially µ-recurrent subsets.

Let u : X → [0,∞] be a non-negative Borel function on X and set,
for M <∞,

(6.3) XM := {x ∈ X | u(x) ≤M}.

We assume that there exists a < 1 and C > 0 such that

(6.4) Aµu ≤ a u+ C.

For x ∈ X, we write τM,x := τX
M
,x for the first return time in XM .

The following proposition tells us in particular that, for large M , the
set XM is exponentially µ-recurrent.

Proposition 6.3. Let G, µ, B, X, u, a, C be as above and satisfy the
contraction hypothesis (6.4). Let a0 be a constant such that a < a0 < 1
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and let M ≥M0 := C+1
a0−a . Then, for all x in X, one has∫

B

a
−τM,x(b)
0 dβ(b) ≤ max(M,u(x)).

In particular, if u(x) is finite, then the function τM,x is finite β-almost
everywhere on B.

The results of this section are inspired by [22, Ch.15]. The main
difference with [22] is that we do not assume ”ϕ-irreducibility” of the
Markov chain, since this property is not satisfied in our applications.

Proof. We fix x in X such that u(x) < ∞. We first note that, by an
induction argument using (6.4), for all i ≥ 1, one has∫

B

u(bi−1 · · · b0x) dβ(b) ≤ aiu(x) + (1 + a+ · · ·+ ai−1)C.

Hence all the integrals involved in the computations below are finite.
To simplify notations, we will write τ for τM,x. The main point of the
proof is to consider the following averaged weighted Birkhoff sums, for
n ≥ 1:

Un(x) :=

∫
B

∑
1≤i≤min(τ,n)

a1−i
0 u(bi−1 · · · b0x) dβ(b).

These sums can be rewritten as

Un(x) =
n∑
i=1

a1−i
0

∫
{τ≥i}

u(bi−1 · · · b0x) dβ(b).

Since the first hitting time is a stopping time, the function 1{τ≥i} is
independant from bi−1. Integrating first in bi−1 and using (6.4), one
gets

Un(x) =
n∑
i=1

a1−i
0

∫
{τ≥i}

(Aµu)(bi−2 · · · b0x) dβ(b)

≤
n∑
j=0

a−j0

∫
{τ≥j+1}

(a u(bj−1 · · · b0x) + C) dβ(b).

As M ≥ C+1
a0−a , one has

au(y) + C ≤ a0 max(u(y),M)− 1,

hence

Un(x) ≤ a0 max(u(x),M)− 1

+
n∑
j=1

a−j0

∫
{τ≥j+1}

(a0u(bj−1 · · · b0x)− 1) dβ(b)
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and

Un(x) ≤ a0 max(u(x),M) + Un(x)−
n∑
j=0

a−j0 β({τ ≥ j + 1}).

Therefore, substracting Un(x) from both sides and letting n go to in-
finity, one gets

∞∑
j=0

a−j0 β({τ ≥ j + 1}) ≤ a0 max(u(x),M).

In particular, since u(x) is finite, τ is finite β-almost everywhere and
one has ∫

B

a−τ0 − 1

a−1
0 − 1

dβ ≤ a0 max(u(x),M)

and hence ∫
B

a
−τ(b)
0 dβ(b) ≤ max(u(x),M)

as required. �

Remark 6.4. Similarly we could say that Y is linearly µ-recurrent if one
has supx∈Y

∫
B
τY,x(b) dβ(b) < ∞. By the same method as above, one

could characterize the linearly µ-recurrent subsets Y of X as being the
sublevel sets of the non-negative functions u : X → [0,∞] satisfying
Aµu ≤ u − 1 + C1Y for some constant C > 0 (see [22, Ch. 11]). But
this property would not be strong enough to prove unstability results
as in section 6.5 below.

6.2. Law of the first return cocycle.

In this section, we give a sufficient condition for the ex-
istence of finite exponential moments for the law of the
first return cocycle.

We keep the notations of section 6.1. Let Y be a subset of X. For any
points x in X and b in B such that the first return time τ(b) = τY,x(b)
is finite, we define the first return cocycle to be the product bτ−1 . . . b0.

For a point x ∈ X such that β({b ∈ B | τY,x(b) <∞}) = 1, we set

Definition 6.5. The laws of the first return cocycle are the probability
measures µY,x ∈ P(G) which are the image of β by the first return co-
cycle B → G; b 7→ bτ−1 . . . b0. In other terms, µY,x =

∫
B
δbτ−1··· b0 dβ(b).

Hence, the Markov operator AY describing the first return on this
set Y for our random walk on X is the Markov operator given by the
transition probabilities Y → P(Y );x 7→ µY,x ∗ δx. When Y = XM as
in section 6.1, we will write AM := AXM .



60 YVES BENOIST AND JEAN-FRANÇOIS QUINT

Definition 6.6. A submultiplicative function on G is a Borel function
N : G→ [1,∞) such that

N(g1g2) ≤ N(g1)N(g2) for all g1, g2 in G.

For example, when ρ : G→ GL(V ) is a continuous finite dimensional
representation of G in a Qp-vector space V , where p is a prime number
or p = ∞, and when ‖.‖ is an algebra norm on End(V ), the function
g 7→ N(g) = ‖ρ(g)‖+ ‖ρ(g−1)‖ is submultiplicative.

Given a submultiplicative function on G, we will say that µ has finite
exponential moments (with respect to N) if there exists δ > 0 such that

(6.5)

∫
G

N(g)δ dµ(g) <∞ .

The following proposition tells us that if, µ has finite exponential
moments, the laws of the first return cocycle in an exponentially µ-
recurrent subset Y of X also have finite exponential moments uniformly
for x ∈ Y .

Proposition 6.7. Let G be a locally compact second countable group,
N a submultiplicative function on G and µ a Borel probability measure
on G with finite exponential moments with respect to N as in (6.5).
Let X be a standard Borel space endowed with a Borel action of G and
Y be an exponentially µ-recurrent subset of X. Then there exists δ > 0
such that

sup
x∈Y

∫
G

N(g)δ dµY,x(g) <∞ .

Remark 6.8. We will apply this proposition to the sublevel sets Y =
XM of a function u on X satisfying the contraction hypothesis (6.4)
when M is large enough.

Proof. Just apply the following technical lemma 6.9 to the functions
τ = τY,x, using the definition of µY,x and the fact that Y is exponentially
µ-recurrent. �

Lemma 6.9. Let G be a locally compact second countable group, G its
Borel σ-algebra, N : G→ [1,∞) a submultiplicative function on G and
µ a Borel probability measure on G with a finite exponential moment

(6.6)

∫
G

N(g)δ0 dµ(g) ≤ I0 <∞ ,

for some constants δ0 > 0 and I0 ≥ 1. Let (B,B, β, T ) be the one-sided
Bernoulli shift with alphabet (G,G, µ) and τ : B → N≥1 be a Borel
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function with a finite exponential moment

(6.7)

∫
B

et0τ(b) dβ(b) ≤ D0 <∞ ,

for some constants t0 > 0 and D0 ≥ 1.
Then there exists δ = δ(δ0, I0, t0) > 0 and D = D(δ0, I0, t0, D0) ≥ 1

such that ∫
B

N(b
τ(b)−1

· · · b0)δ dβ(b) ≤ D <∞ ,

Proof. We will choose

δ =
t0δ0

2(t0 + log I0)
and D =

D
1−δ/δ0
0

et0/2 − 1
.

We want to dominate the integral Iδ :=
∫
B
N(b

τ(b)−1
· · · b0)δ dβ(b). By

(6.7), one has the upper bound, for every k ≥ 1,

β({τ = k}) ≤ D0e
−kt0 .

Hence, using successively Hölder inequality, the submultiplicativity of
N and majoration (6.6), one gets

Iδ =
∞∑
k=1

∫
B

1{τ=k}(b) N(b
k−1
· · · b0)δ dβ(b)

≤
∞∑
k=1

β({τ = k})1−δ/δ0
(∫

B

N(b
k−1
· · · b0)δ0 dβ(b)

)δ/δ0
≤

∞∑
k=1

(D0e
−kt0)1−δ/δ0 I

kδ/δ0
0 = D

1−δ/δ0
0

∞∑
k=1

e−kt0/2 = D.

This ends the proof of Lemma 6.9. �

6.3. Growth of the first return cocycle.

In this section we give a lower bound for the expected log-
arithmic growth of a vector under the action of a random
walk on the linear group up to some integrable stopping
time.

Let G be a locally compact second countable group, G its Borel σ-
algebra, ρ : G→ GL(V ) a continuous finite dimensional representation
of G in a normed Qp-vector space V , where p is a prime number or
∞, and let N be the submultiplicative function N : G → [1,∞); g 7→
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N(g) := ‖ρ(g)‖ + ‖ρ(g−1)‖. Let µ be a Borel probability measure on
G with finite first moment:

L :=

∫
G

logN(g) dµ(g) <∞.

We set

(6.8) L0 = L0(µ) := inf
w∈Vr0

∫
G

log
‖gw‖
‖w‖

dµ(g) ≥ −L.

Let (B,B, β, T ) be the one-sided Bernoulli shift whose alphabet is
the space (G,G, µ). For any Borel function τ : B → N≥1 we let,
as in Definition 6.5, µτ ∈ P(G) be the image of β by the map b 7→
bτ(b)−1 · · · b0. We recall that τ is a stopping time if, for all i, the function
1{τ=i} is independent from the family of functions bj with j ≥ i.

Lemma 6.10. We assume that µ ∈ P(G) has finite first moment and
that τ : B → N is a β-integrable stopping time. Then µτ has finite
first moment, i.e. one has

∫
G

logN(g) dµτ (g) < ∞. Moreover, for all
v ∈ V r 0, one has

(6.9)

∫
G

log
‖gv‖
‖v‖

dµτ (g) ≥ L0

∫
B

τ dβ

In section 6.4, we will use Lemma 6.10 with τ equal to a first return
time and with L0 > 0. In this case, one has τ ≥ 1 and the right-hand
side of (6.9) is bounded below by L0 > 0.

Proof. The proof is a variation of Wald’s Lemma. Since τ is a stopping
time, the functions 1{τ≥i} and bi−1 are independent. Hence, one has∫

G

logN(g) dµτ (g) =

∫
B

N(b
τ(b)−1

· · · b0) dβ(b)

≤
∫
B

τ(b)∑
i=1

logN(bi−1) dβ(b)

=
∞∑
i=1

∫
{τ≥i}

logN(bi−1) dβ(b)

=L
∞∑
i=1

β({τ ≥ i}) = L

∫
B

τ dβ <∞ ,

since τ is β-integrable.
This proves also that the left-hand side M∞ of (6.9) is well defined

and, by the dominated convergence theorem, that, as n→∞, it is the
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limit of Mn, where

Mn :=

∫
{τ≤n}

log
‖b

τ(b)−1
· · · b0v‖
‖v‖

dβ(b).

As above one has

Mn =
n∑
i=1

∫
{τ≥i}

log
‖b

i−1
· · · b0v‖

‖b
i−2
· · · b0v‖

dβ(b).

Using again the independance of 1{τ≥i} and bi−1, integrating first in
bi−1 and using (6.8) with g = bi−1 and w = bi−2 · · · b0v, one gets

Mn ≥
n∑
i=1

L0 β({τ ≥ i}) = L0

∫
B

min(τ, n) dβ.

Hence, letting n go to infinity, one gets M∞ ≥ L0

∫
B
τ dβ as required.

�

Remark 6.11. If V is a representation of G such that the subgroup
spanned by the image of supp(µ) has semisimple Zariski closure H
in GL(V ) and has unbounded action in any H-submodule of V , by
Furstenberg and Kesten’s Theorem on the positivity of the first Lya-
pounov exponent (see 4.4), there exists n0 ≥ 1 such that, for all n ≥ n0,
the constant L0(µ∗n) is positive, i.e. if we replace µ by a suitable power
µ∗n we may assume that L0 > 0.

6.4. Contraction property for the first return cocycle.

In this section, we first recall the contraction property
for linear random walks. Then we prove that this con-
traction property is also satisfied for the law of the first
return cocycle associated to an exponentially µ-recurrent
subset.

Let G be a locally compact second countable group and ρ : G →
GL(V ) a continuous finite dimensional representation of G in a normed
Qp-vector space V , where p is either a prime number or ∞. Set ϕ
to be the function ϕ : V r 0 → R∗; v 7→ ‖v‖−1 and N to be the
submultiplicative function N : G → [1,∞); g 7→ N(g) := ‖ρ(g)‖ +
‖ρ(g−1)‖.

Lemma 6.12. Let µ be a Borel probability measure on G with finite
exponential moments

(6.10)

∫
G

N(g)δ0 dµ(g) ≤ I0 <∞
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and with

(6.11) inf
w∈Vr0

∫
G

log
‖gw‖
‖w‖

dµ(g) ≥ L0 > 0

for some constants δ0 > 0, I0 ≥ 1 and L0 > 0.
Then there exists δ1 = δ1(δ0, I0, L0) such that, for any δ ∈ (0, δ1],

one has, with a := 1− L0δ/2 < 1

Aµ(ϕδ) ≤ aϕδ

Proof. This lemma is an extension of Lemma 4.2 of [17]. We will repeat
the proof which is based on an asymptotic expansion of order 2 of
e−δ log(‖gv‖/‖v‖), as δ → 0, in order to check that the constants δ and a
can be chosen uniformly for all probability measures µ satisfying (6.10)
and (6.11).

We set δ1 := min( δ0
2
,
L0δ2

0

4I0
). We want to dominate the integral

I :=

∫
G

‖gv‖−δ

‖v‖−δ
dµ(g).

To this aim, we use the inequalities, for all x in R,

ex ≤ 1 + x+
x2

2
e|x| and x2 ≤ e|x|,

and we compute

I =

∫
G

e−δ log
‖gv‖
‖v‖ dµ(g)

≤ 1− δ
∫
G

log
‖gv‖
‖v‖

dµ(g) +
δ2

2

∫
G

(logN(g))2N(g)
δ0
2 dµ(g)

≤ 1− δL0 +
2δ2

δ2
0

∫
G

N(g)δ0 dµ(g) = 1− δL0 +
2δ2

δ2
0

I0 ≤ 1− δ

2
L0,

which is the required inequality. �

As a corollary, we get the following

Proposition 6.13. Let µ be a Borel probability measure with finite
exponential moments on G and with

(6.12) inf
w∈Vr0

∫
G

log
‖gw‖
‖w‖

dµ(g) > 0.

Let X be a standard Borel space endowed with a Borel action of G and
Y be an exponentially µ-recurrent subset of X. Then for δ > 0 small
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enough, there exists a0 < 1, such that, for all x in Y and all v ∈ V ,
one has ∫

G

‖gv‖−δ dµY,x(g) ≤ a0‖v‖−δ.

Proof. This is a consequence of Lemma 6.12 applied to all the prob-
ability measures µY,x with x in Y . Indeed, the uniform upper bound
(6.10) for all these probability measures µY,x is given in Proposition 6.7
while the uniform lower bound (6.11) for all these probability measures
µY,x is given in Lemma 6.10. �

6.5. A criterion for positive µ-unstability.

In this section we introduce the notion of positive µ-
unstability and give a handleable criterion for a subset
to be positively µ-unstable (Proposition 6.16).

Let G be a locally compact second countable group, µ be a Borel
probability measure on G and X be a locally compact second countable
space endowed with a continuous action of G.

Definition 6.14. A closed Γµ-invariant subset Y of X is said to be
positively µ-unstable if, for every ε > 0 and any compact subset Z ⊂
X r Y , there exists a closed subset F ≡ FZ,ε of X r Y such that, for
all x ∈ Z , for all n ≥ 1, one has

(6.13)
1

n

∑
0≤k<n

(µ∗k ∗ δx)(F ) ≥ 1− ε.

Here is a straightforward consequence of Definition 6.14:

Lemma 6.15. Let n0 ≥ 1. A closed Γµ-invariant subset Y of X is
positively µ-unstable if and only if it is positively µ∗n0-unstable.

Proof. On the one hand, for a subset F of X, and n ≥ 1,the bound
1
n

∑
0≤k<n(µ∗k ∗ δx)(F c) ≤ ε implies 1

n

∑
0≤k<n(µ∗kn0 ∗ δx)(F c) ≤ n0ε.

On the other hand, let K be a compact subset of Γµ such that
µ∗`(K) ≥ 1 − ε, for all 0 ≤ ` < n0. For every closed subset F of
X r Y , KF is also a closed subset of X r Y and, for every probability
measure ν on X,

1

n0

∑
0≤`<n0

(µ∗` ∗ ν)(KF ) ≥ (1− ε)ν(F ).

The results follows by applying this inequality to the probability mea-
sure ν = 1

n

∑
0≤k<n µ

∗kn0 ∗ δx. �
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For any Borel function u : X → [0,∞] satisfying Aµu ≤ a u + C for
some a < 1, C > 0, we set, for M < ∞, as in (6.3), XM := {x ∈ X |
u(x) ≤ M} and AM := AXM the first return Markov operator on XM

i.e. the Markov operator with transition probabilities x 7→ µXM ,x ∗ δx
as in Definition 6.5.

Proposition 6.16. Assume that, for any compact subset Z ⊂ X,
there exists a lower semi-continuous function u : X → [0,∞] which
is bounded on Z and such that

(6.14) Aµu ≤ a u+ C

for some constants a < 1, C > 0. Let AM := AXM be the first return
Markov operator on the sublevel sets XM := {x ∈ X | u(x) ≤M}.

Let Y be a closed Γµ-invariant subset of X. Assume that, when M
is large enough, for any compact subset Z ⊂ XM r Y , there exists a
lower semicontinuous function vM : XM → [0,∞] which is bounded on
Z, infinite on Y ∩XM and such that,

(6.15) AMvM ≤ aMvM + CM

for some constants aM < 1, CM > 0.
Then Y is positively µ-unstable.

Proof. We denote as usual by (B,B, β, T ) the one-sided Bernoulli shift
with alphabet (G,G, µ) and we recall that the operator AM is given by,
for any non-negative Borel function ϕ on XM and any x in XM ,

(AMϕ)(x) =

∫
B

ϕ(bτ(b)−1 · · · b0x) dβ(b)

where τ = τM,x ≥ 1 is the first return time in XM .
We will prove the following statement, which in view of our assump-

tions, implies the result : for any ε > 0 and M0 > 0, there exists
M > 0, such that, for any M ′

0 > 0 there exists M ′ > 0 such that, for
any x ∈ XM0 with vM(x) ≤ M ′

0 and any n ≥ 1, inequality (6.13) is
satisfied with

F = XM,M ′ = {y ∈ XM | vM(y) ≤M ′}.

We will choose

M ≥ 16(M0 + C)

(1− a)ε2
and M ′ ≥ 16(M ′

0 + CM)

(1− aM)ε2
.
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We will first use inequality (6.14) to control the density of the visits
in XM . For x in XM0 and n ≥ 1, one has

1

n

n−1∑
k=0

(Akµu)(x) ≤ 1

(1− a)n
u(x) +

C

1− a
≤ M0 + C

(1− a)
≤ ε2M/16,

which can be rewritten as∫
B

1

n

n−1∑
k=0

u(bk−1 · · · b0x) dβ(b) ≤ ε2M/16.

By applying Chebyshev’s inequality twice, we get from this

β({b ∈ B | #InM(b) ≥ (1−ε/4)n}) ≥ 1−ε/4.
where

InM(b) := {k ∈ [0, n−1] | u(bk−1 · · · b0x) ≤M}.
If, for t ≥ 0, we set dte for the smallest integer p ≥ t and we denote by
τ tM,x(b) the dteth-return time in XM starting from x on the trajectory
b, we can rewrite (6.5) as,

(6.16) β({b ∈ B | τ (1−ε/4)n
M,x (b) < n}) ≥ 1−ε/4.

Following similar computations, we will now use inequality (6.15) to
control the density of the visits in XM,M ′ among the return times in
XM . Since vM(x) ≤M ′

0, for n ≥ 1, one has

1

n

n−1∑
k=0

(AkMvM)(x) ≤ 1

(1− aM)n
vM(x) +

CM
1− aM

≤ ε2M ′/16,

which can also be rewritten as∫
B

1

n

n−1∑
k=0

vM(bτkM,x(b)−1 · · · b0x) dβ(b) ≤ ε2M ′/16.

Again by Chebyshev’s inequality, this gives

(6.17) β({b ∈ B | #JnM,M ′(b) ≥ (1−ε/4)n}) ≥ 1−ε/4,
where

JnM,M ′(b) := {k ∈ [0, n−1] | vM(bτkM,x(b)−1 · · · b0x) ≤M ′}.

By (6.16) and (6.17), the set of b in B such that

τ
(1−ε/4)n
M,x (b) < n and #J

d(1−ε/4)ne
M,M ′ (b) ≥ (1− ε/4)d(1− ε/4)ne

has measure ≥ 1− ε/2. Thus, setting

Kn
M,M ′(b) := {k ∈ [0, n−1] | bk−1 · · · b0x ∈ XM,M ′},
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we get

β({b ∈ B | #Kn
M,M ′(b) ≥ (1−ε/2)n}) ≥ 1−ε/2,

from which we deduce

1

n

n−1∑
k=0

(µ∗k ∗ δx)(XM,M ′) ≥ (1− ε/2)2 ≥ 1− ε,

which is the required inequality (6.13). �

6.6. Measure of the relative stable leaves.

In this section we prove that, for a G-space X, the posi-
tive µ-unstability of the diagonal in X ×X ensures that
the limit probability measures νb of any atom-free sta-
tionary probability measure ν on X do not charge the
relative stable leaves.

Let G be a locally compact second countable group, G its Borel σ-
algebra, µ a Borel probability measure on G, Γµ the smallest closed
subgroup of G containing the support of µ and (B,B, β, T ) the one-
sided Bernoulli shift with alphabet (G,G, µ).

Let X be a locally compact second countable space endowed with a
continuous action of G. Let ν be a Borel probability measure on X.
We recall that ν is said to be atom-free if, for every x in X, one has
ν({x}) = 0. We assume that ν is µ-stationary, i.e. that µ ∗ ν = ν.

Let us denote, by b 7→ νb the family of limit probability measures of ν,
so that, for every nonegative Borel function f on X and β-almost every
b in B, one has

∫
X
f dνb = limn→∞

∫
X
f d(b0 · · · bn)∗ν. The existence of

this family is due to Furstenberg and, for β-almost every b in B, one
has νb = b0∗νTb (see [4, Sect. 3.2]).

Here is a criterion which ensures that these limit probability mea-
sures are atom-free. This criterion reinforces [4, Prop. 3.9].

Proposition 6.17. (The νb’s are atom-free) Let G be a locally compact
second countable group, X be a locally compact second countable space
endowed with a continuous action of G and µ be a Borel probability
measure on G. Assume that the diagonal ∆X of X × X is positively
µ-unstable.

Then, for any atom-free µ-stationary Borel probability measure ν on
X, for β-almost every b in B, the probability measure νb is also atom-
free.

Proof of Proposition 6.17. We begin the proof with a special case.
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First step : If, for β almost every b, νb is a Dirac mass, then so is ν.
We assume in this first step that, for β-almost every b in B, the prob-
ability measure νb is a Dirac mass δκ(b) where κ : B → X is a B-
mesurable map. We will then prove by contradiction that ν is a Dirac
mass. To get a contradiction, we study the random walk associated
to µ on X × X. We will use the existence of κ and Chacon-Ornstein
ergodic Theorem to see that this random walk converges towards the
diagonal ∆X , which will contradicts the positive µ-instability of the
diagonal. To make this precise, we need more notations.

For g in G and b = (b0, b1, . . .) in B, we set gb = (g, b0, b1, . . .).
One then has, for µ-almost every g in G and β-almost every b in B,
κ(gb) = gκ(b).

We endow B = GN with the product topology. According to Lusin’s
theorem, for every ε > 0, there exists a compact subset K ⊂ B such
that β(K) ≥ 1− ε and the restriction of κ to K is continuous.

We introduce the transfer operator Lµ on B given by, for ϕ in
L1(B, β), for β-almost every b in B,

(Lµϕ)(b) =

∫
G

ϕ(gb)dµ(g).

Since Lµ is the adjoint of the shift T , it is ergodic. The Chacon-
Ornstein ergodic theorem [14], applied to the function ϕ = 1K , tells us
that, for b outside a β-null subset N ⊂ B, one has the equality

(6.18) lim
n→∞

1

n

∑
n≤k<2n

(Lkµ1K)(b) = β(K) ≥ 1− ε.

Enlarging the β-null set N , we may also assume that, for every b in
BrN , for every integer k ≥ 0, for µ⊗k-almost every (g1, . . . , gk) in Gk,
one has κ(g1 . . . gkb) = g1 . . . gkκ(b).

Assume by contradiction that ν is not a Dirac mass. Then, as ν =
κ∗β, the set E := {(b, b′) ∈ B × B | κ(b) 6= κ(b′)} is not β ⊗ β-null.
Hence one can find two points b and b′ outside N such that the images
x := κ(b) and x′ := κ(b′) are distinct.

Since the diagonal ∆X is positively µ-unstable, for every ε > 0, there
exists a closed subset Fε of X ×X r∆X such that, for all n ≥ 1, one
has

(6.19)
1

n

∑
n≤k<2n

(µ∗k ∗ δ(x,x′))(Fε) ≥ 1− ε.

Since the restriction of κ to K is continuous, one has

(6.20)
∃nε > 0, ∀n ≥ nε, ∀g1, . . . , gn ∈ G such that g1 · · · gnb ∈ K
and g1 · · · gnb′ ∈ K, one has (κ(g1 · · · gnb), κ(g1 · · · gnb′)) 6∈ Fε.



70 YVES BENOIST AND JEAN-FRANÇOIS QUINT

By (6.18), there exists an integer n0 ≥ nε such that, for every n ≥ n0,

1

n

∑
n≤k<2n

µ⊗k({(g1, . . . , gk) ∈ Gk | g1 · · · gkb ∈ K}) ≥ 1− ε,

1

n

∑
n≤k<2n

µ⊗k({(g1, . . . , gk) ∈ Gk | g1 · · · gkb′ ∈ K}) ≥ 1− ε.

Hence, using (6.20), one gets

1

n

∑
n≤k<2n

µ⊗k({(g1, . . . , gk) ∈ Gk |(g1 · · · gkx, g1 · · · gkx′) 6∈Fε}) ≥ 1−2ε.

This gives a contradiction with (6.19) as soon as ε < 1
3
. Hence ν is

a Dirac mass.

Second step : We will reduce the general case to the first one.
We assume that the set D := {b ∈ B | νb has atoms} satisfies

β(D) > 0 and we shall prove that ν has atoms. Since νb = b0∗νTb, this
set D is T -invariant. Since β is T -ergodic, one has β(D) = 1. The
same argument shows also that the maximal mass mb of the atoms of
νb is β-almost everywhere constant on B and that the number Nb of
atoms of νb whose mass is mb is also β-almost everywhere constant.
We set m0 > 0 for this mass and N0 ≥ 1 for this number of atoms.
Let ν ′b be the probability measure which is equidistributed on these N0

atoms of νb whose mass is m0. One also has ν ′b = b0∗ν
′
Tb. Hence the

probability ν ′ on X given by ν ′ :=
∫
B
ν ′b dβ(b) is also µ-stationary and

one can write ν as the sum of m0N0ν
′ and of a µ-stationary measure

with total mass (1−N0m0). By construction, the probability measures
ν ′b are the limit probability measures of ν ′, and it suffices to prove that
ν ′ has atoms.

The group G acts naturally on the set X ′ of finite subsets of X with
N0 elements. The support x′b of ν ′b is an element of X ′, and the family
b 7→ ν ′′b of probability measures on X ′ where ν ′′b is the Dirac mass at x′b,
still satisfies the equality ν ′′b = b0∗ν

′′
Tb, for β-almost all b in B. Hence

the probability measure ν ′′ :=
∫
B
ν ′′b dβ(b) on X ′ is µ-stationary.

We want to apply the first case to the action of G on X ′. To this
aim, we now check that the diagonal ∆X′ of X ′ ×X ′ is also positively
µ-unstable. Indeed, let Z ′ be a compact subset of X ′ ×X ′ r∆X′ and
ε > 0. There exists a compact subset Z of X ×X r∆X such that

(6.21)
for all (x, x′) = ({x1, . . . , xN0}, {x′1, . . . , x′N0

}) ∈ Z ′, there
exists 1 ≤ i ≤ N0 such that, for all 1 ≤ j ≤ N0, one has
(xi, x

′
j) ∈ Z.
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Let F be a closed subset of X ×X r∆X satisfying (6.13) and

F ′ := {(x, x′) ∈ Z ′ | ∃1 ≤ i ≤ N0, ∀1 ≤ j ≤ N0, (xi, x
′
j) ∈ F}.

Then, for any (x, x′) in Z ′, and n ≥ 1 one has, choosing i as in (6.21),

1

n

∑
0≤k<n

(µ∗k ∗ δ(x,x′))(F
′c) ≤ 1

n

∑
1≤j≤N0

∑
0≤k<n

(µ∗k ∗ δ(xi,x′j)
)(F c) ≤ N0 ε.

This proves that ∆X′ is positively µ-unstable.
According to the first case, the probability measure ν ′′ is a Dirac

mass δy. Hence, ν has finite support, what should be proved. �

Let BX be B ×X, BX the product σ-algebra B ⊗ X , βX the prob-
ability measure on BX given by βX :=

∫
B
δb ⊗ νb dβ(b) and TX the

transformation of BX given, for (b, x) in BX , by TX(b, x) = (Tb, b−1
0 x).

As in section 3.2 (see also [4, Sect. 3.1]), this transformation preserves
βX .

Let d be a distance on X inducing the topology of X. For (b, x) in
B ×X, set

(6.22) Wb(x) = {x′ ∈ X | d(b−1
p . . . b−1

0 x, b−1
p . . . b−1

0 x′) −−−→
p→∞

0}

which is the relative stable leaf of (b, x). When X is compact, this leaf
does not depend on the choice of d, but it might in general.

The following Proposition 6.18, combined with Proposition 6.17, will
be used in the course of the proof of Proposition 7.8.

Proposition 6.18. Let G be a locally compact second countable group,
X be a locally compact second countable metric space endowed with a
continuous action of G and µ be a Borel probability measure on G. Let
ν be a µ-stationary Borel probability measure on X. Let L be a second
countable locally compact group acting continuously on X. Assume that
the actions of L and Γµ commute. Then, for βX-almost every (b, x) in
BX , one has νb(LWb(x)r Lx) = 0.

Proof. Let R be the transformation of B×X×X given by, for (b, x, x′)
in B ×X ×X,

R(b, x, x′) = (Tb, b−1
0 x, b−1

0 x′).

The Borel probability measure

Λ =

∫
B

δb ⊗ νb ⊗ νb dβ(b).

on B × X × X is R-invariant. Write L = ∪n≥1Ln where (Ln) is an
exhaustive sequence of compact subsets of L. Let us introduce the
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R-invariant subsets

Z = {(b, x, x′) ∈ B ×X ×X | x′ ∈ LWb(x)r Lx}
and, for n ≥ 1,

Zn = {(b, x, x′) ∈ Z | x′ ∈ LnWb(x)}.
Let ϕn be the function on B ×X ×X given by

ϕn(b, x, x′) = inf
`∈Ln

d(`x, x′).

This function ϕn is non zero on Zn. By definition, for Λ-almost every
z in Zn, one has ϕn(Rp(z)) −−−→

p→∞
0, hence, according to Poincaré re-

currence theorem, one has Λ(Zn) = 0. Since this is true for all n ≥ 1,
one has Λ(Z) = 0. This proves our claim. �

6.7. Exponential µ-unstability of the cusps.

Going back to the framework of homogeneous spaces,
we give in this section two equivalent definitions for the
exponential µ-unstability of the cusps of X = G/Λ and
we check that they are satisfied for finite volume spaces.

Let G be an S-adic Lie group, Λ a discrete subgroup of G, X = G/Λ
and µ ∈ P(G) an Ad-semisimple Borel probability measure on G with
finite exponential moments in g.

Fix a standard open subset Ω of G. We recall from Definition 2.1
that, for every x in X, we denote by rX(x) the injectivity radius in
x, that is the supremum of the radii r ≤ r0 for which the map g →
X;w 7→ expΩ(w)x is one-to-one on the ball B(0, r) ⊂ g.

Lemma 6.19. The following are equivalent.
(i) For every compact subset K of X, there exists an exponentially µ-
recurrent (see Definition 6.1) closed set F ⊂ X containing K on which
rX is bounded below i.e. such that inf

x∈F
rX(x) > 0.

(ii) For every compact subset K in X, there exists a lower semicontin-
uous function u : X → [0,∞] which is bounded on K and such that rX
is bounded below on every sublevel set XM := {x ∈ X | u(x) ≤M} and
there exist constants a < 1, C > 0 with Aµu ≤ a u+ C.

Definition 6.20. When either of the equivalent conditions of Lemma
6.19 is satisfied, we shall say that the cusps of X are exponentially
µ-unstable.

Proof of Lemma 6.19. (ii)⇒(i) Given a compact set K in X, let u :
X → [0,∞] be a function as in (ii). We choose F to be a sublevel
set {x ∈ X | u(x) ≤ M} containing K. By Proposition, 6.3, F is an
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exponentially µ-recurrent subset. Since u is lower semicontinuous, F
is closed and, by assumption, the injectivity radius is bounded below
on F .

(i)⇒(ii). Given a compact set K in X, let F ⊂ X be a closed
subset as in (i). The injectivity radius rX is bounded below on F
and there exists a < 1 and C > 0, such that, for all x ∈ F , one has∫
B
a−τF,x(b) dβ(b) ≤ C.
We choose u : X → [0,∞] to be the expected exponential of the first

hitting time in F , u(x) =
∫
B
a−σF,x(b) dβ(b), as in Equation (6.2). Since

F is closed, by Fatou’s Lemma, this function u is lower semicontinuous
and, by Lemma 6.2, one has Aµu ≤ au + C. In particular, for every x
in X, one has

(6.23) β({b ∈ B | ∃ 0 ≤ j ≤ n− 1 bj−1 · · · b0x ∈ F}) ≥ 1− u(x)an.

Pick M > 0 and set XM := {x ∈ X | u(x) ≤M}. We have to prove
that the injectivity radius is bounded below on XM . By (6.23), for n
large enough, uniformly for x in XM , one has

β({b ∈ B | ∃0 ≤ j ≤ n− 1 bj−1 · · · b0x ∈ F}) ≥ 1/2.

Now, choose a compact subset K of G such that, for any 0 ≤ j ≤ n−1,
one has µ∗j(K) > 1− 1/2n. As a consequence, for any x in XM , there
exists g in K such that gx ∈ F . But by Lemma 5.2, there exists ε > 0
such that, for any x in X with rX(x) < ε, for any g in K, one has
rX(gx) ≤ ‖Adg‖rX(x). Since rX is bounded below on F , it is also
bounded below on XM . �

When Λ is a non cocompact lattice, exponential µ-unstability of
the cusps of X follows from an extension of a result by Eskin and
Margulis which constructs a proper function u on X satisfying (6.4).
The following Lemma was used in section 2.3 to prove that Theorem
2.5 follows from Theorem 2.7.

Lemma 6.21. Let G be an S-adic Lie group, Λ a lattice of G, X =
G/Λ and µ an Ad-semisimple probability measure on G which admits
finite exponential moments in g. Then the cusps of X are exponentially
µ-unstable.

Proof. According to [7, Proposition 7.3], which extends Eskin-Margulis’
main result in [17], given a compact subset K of X, there exists a lower
semicontinuous function u : X → [0,∞] which is bounded on K such
that, for any M ∈ [0,∞), the sublevel set u−1([0,M ]) is compact and
there exists constants a < 1, C > 0 with Aµ(u) ≤ au + C. The result
follows, as the injectivity radius is bounded below on every compact
subset of X. �
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6.8. Positive µ-unstability of homogeneous subspaces.

In this section we apply the criterion of section 6.5 to
proving that the Γµ-invariant homogeneous subsets of
X = G/Λ are positively µ-unstable.

Let G be an S-adic Lie group, Λ be a discrete subgroup of G and
X = G/Λ. As in section 6.7, we fix a standard open subset Ω of G
with exponential map expΩ : O → Ω and we set rX for the injectivity
radius in X

Let Y ⊂ X be a homogeneous closed subset of X and S = {g ∈ G |
gY = Y } be the stabilizer of Y . We choose a complementary subspace
t of the Lie algebra of S in the Lie algebra of G. We fix ε0 > 0 such
that O ∩ t contains the closed ball with radius ε0 in t. For every x in
Y we set rX,Y (x) to be the transverse injectivity radius at x, that is

rX,Y (x) = sup

({
0 < ε ≤ ε0

∣∣∣∣expΩ(Bt(ε))x ∩ Y con-
tains at most one point

})
.

Definition 6.22. We will say that rX controls rX,Y if, for every η > 0,
there exists γ > 0 such that, for all x ∈ Y with rX ≥ η, one has
rX,Y ≥ γ.

Remark 6.23. This definition does not depend on the choices of t, Ω
and ε0.

¿From Proposition 6.16, we deduce the following general criterion for
positive µ-unstability in the homogeneous setting.

Proposition 6.24. Let G be an S-adic Lie group, Λ be a discrete sub-
group of G, X = G/Λ and µ ∈ P(G) be an Ad-semisimple probability
measure on G such that Hµ = Hnc

µ which admits finite exponential mo-
ments in g. We assume that (G,Γµ) has good exponentials and that the
cusps of X are exponentially µ-unstable (see Definitions 5.9 and 6.20).
Let Y ⊂ X be a Γµ-invariant homogeneous closed subset of X such that
rX controls rX,Y . Let KL be a compact subset of the centralizer L of
Γµ. Then the subset KLY ⊂ X is positively µ-unstable.

In particular, Y itself is positively µ-unstable. Before proving this
proposition we state two nice corollaries of it.

Corollary 6.25. Let G be a weakly regular S-adic Lie group, Λ a lattice
of G, X = G/Λ and µ ∈ P(G) a compactly supported Ad-semisimple
probability measure on G with Hµ = Hnc

µ . Then every Γµ-invariant
homogeneous closed subset Y of X is positively µ-unstable.

Proof of Corollary 6.25 . We just check that the assumptions of Propo-
sition 6.24 are satisfied.
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By Proposition 5.11, since G is weakly regular and Γµ is compactly
generated, (G,Γµ) has good exponentials.

Besides, Λ being a lattice, on one hand, by Lemma 6.21, the cusps
of X are exponentially µ-unstable and, on the other hand, for η > 0,
the set Xη := {x ∈ X | rX(x) ≥ η} is compact and the function rX,Y
is bounded below on Xη. Hence rX controls rX,Y . �

Corollary 6.26. Let G be an S-adic Lie group, Λ a discrete subgroup
of G, X = G/Λ, µ ∈ P(G) an Ad-semisimple probability measure on
G with Hµ = Hnc

µ which admits finite exponential moments in g, KL a
compact subset of the centralizer L of Γµ and

∆KL
X := {(x, y) ∈ X ×X | ∃` ∈ KL y = `x}.

We assume that (G,Γµ) has good exponentials and that the cusps of

X are exponentially µ-unstable. Then the subset ∆KL
X of X × X is

positively µ-unstable.

Proof of Corollary 6.26 . We just have to check that rX×X controls
the transverse spectral radius rX×X,∆X

. Indeed, choose g × {0} as
the complementary subspace t, then, for (x, y) in X × X, one has
rX×X,∆X

(x, y) ≥ rX(x). �

Proof of Proposition 6.24. We aim at applying the criterion of Propo-
sition 6.16. Since the cusps of X are exponentially µ-unstable, if Z is
some compact subset of X, there exists a lower semi-continuous func-
tion u : X → [0,∞] such that Aµu ≤ a u+C for some constants a < 1,
C > 0, which is bounded on Z and such that, on the sublevel sets
XM := {x ∈ X | u(x) ≤ M}, the injectivity radius rX is bounded
below. Let AM := AXM be the first return Markov operator on XM .

For any large enough M > 0 and any compact subset Z ⊂ XM r
KLY , we aim at constructing a function vM : XM → [0,∞] which is
bounded on Z, infinite on KLY ∩XM and such that

(6.24) AMvM ≤ aMvM + CM

for some constants aM < 1, CM > 0.
To this aim, we will apply Proposition 6.13 to the subset XM , for

large enough M > 0. We first recall that, by Proposition 6.3, XM is
exponentially µ-recurrent. We now check that the assumption (6.12)
of Proposition 6.13 is satisfied. First, we fix some δ0 > 0 such that∫
G
N(g)δ0 dµ(g) < ∞, where, as in section 6.3, N(g) = ‖Adg‖ +

‖Adg−1‖. Let l be the Lie algebra of L. As (G,Γµ) has good ex-
ponentials, l is the space of Γµ-invariant elements of g. Let v be its
unique Γµ-invariant complementary subspace. Since, by Lemma 6.15,
we can replace µ by a suitable power, we may assume, according to
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Furstenberg-Kesten’s theorem on the positivity of the first Lyapounov
exponent (see Proposition 4.4), that the expected logarithmic growth
of any non-zero vector in v is uniformly bounded below as in (6.11),
that is

inf
w∈vr0

∫
G

log
‖gw‖
‖w‖

dµ(g) > 0.

By Proposition 6.13, if δ < δ0 is small enough, there exists a0 < 1 such
that, for all x in XM and all w ∈ v, one has

(6.25)

∫
G

‖gw‖−δ dµM,x(g) ≤ a0‖w‖−δ.

By Proposition 6.7, one can assume

(6.26) IM = sup
x∈XM

∫
G

N(g)2δ dµM,x(g) <∞.

We can now give the formula which defines the functions vM we are
looking for. We fix a (G,Γµ)-good standard open subset Ω of G and
we set O = log Ω. Let Z be a compact subset of XM rKLY . Let S be
the stabilizer of Y in G, s be its Lie algebra and choose a Γµ-invariant
complementary subspace t′ ⊂ v of s∩v so that g = (s+ l)⊕ t′. Since rX
controls rX,Y and rX is bounded below on XM , rX,Y is also bounded
below on XM . We can find an open neighborhood U of e in L and
ε > 0 with Bt′(ε) ⊂ O such that, for any x in XM and ` in L, there
exists at most one w in t with ‖w‖ ≤ ε and x ∈ expΩ(w)U`Y . By
shrinking U , we can assume Z ∩UKLY = ∅. Pick `1, . . . , `r in KL with
KL ⊂ U`1 ∪ . . . ∪ U`r.

For x ∈ XM and 1 ≤ i ≤ r, set

vi(x) =

{
‖w‖−δ if x ∈ ewU`iY with w ∈ t′ and ‖w‖ ≤ ε,

ε−δ else

and vM(x) = v1(x) + . . .+ vr(x).
By construction, the function vM : XM → [ε−δ,∞] is lower semi-

continuous, bounded on Z and infinite on KLY . To conclude, we will
check that the function vM satisfies inequality (6.24) with aM = 1+a0

2

and CM = rR2δ
Mε
−δ, where RM := ( 2IM

1−a0
)δ
−1

.
We fix 1 ≤ i ≤ r and x in XM . First, let us note that, for any g in

Γµ with gx ∈ XM , we have

(6.27) vi(gx) ≤ N(g)δvi(x).

Indeed, if vi(gx) ≤ N(g)δε−δ, this follows from the fact that vi(x) ≥
ε−δ. Else, one has gx ∈ ewU`iY with w ∈ t′ and ‖w‖ ≤ N(g)−1ε and
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therefore, as Ω is (G,Γµ)-good, x ∈ eg−1wU`iY and

vi(x) = ‖g−1w‖−δ ≥ N(g)−δ‖w‖−δ = N(g)−δvi(gx).

Now, let us decompose the probability measure µM,x on G as a sum
µM,x = µ1 + µ2 where

µ1 = 1{N(g)≤RM}µ and µ2 = 1{N(g)>RM}µ.

We will first dominate Aµ1vi. On one hand, if vi(x) ≤ Rδ
Mε
−δ, one

has, by (6.27), (Aµ1vi)(x) ≤ R2δ
Mε
−δ. On the other hand, if vi(x) ≥

Rδ
Mε
−δ then, writing x ∈ ewU`iY , with w ∈ t′, ‖w‖ ≤ R−1

M ε, one has
again, for all g in Γµ with norm ≤ RM and gx ∈ XM , gx ∈ egwU`iY
and hence vi(gx) = ‖gw‖−δ and, according to (6.25),

(Aµ1vi)(x) ≤ a0‖w‖−δ = a0vi(x).

In both cases, one has the upper bound

(6.28) Aµ1vi ≤ a0vi +R2δ
Mε
−δ.

We will now dominate Aµ2vi. Using (6.26), we get∫
G

N(g)δ dµ2(g) ≤ R−δM

∫
G

N(g)2δ dµM,x(g) ≤ IMR
−δ
M = 1−a0

2
.

By (6.27), this gives

(6.29) Aµ2vi(x) ≤ 1−a0

2
vi(x).

Adding (6.28) and (6.29) and summing over i, one gets AµvM ≤
aMvM + CM as required. �

7. Before the drift

In this chapter, we begin the proof of Theorem 2.7. We introduce the
main notations and we explain the structure of the reduction process.

The main output of this chapter is the fact that, roughly speaking,
one can find in X pairs of points close to each other which are generic
for νb and which are not on the same stable leaf (Corollary 7.11). This
is a consequence of the non-degeneracy of the νb’s (Proposition 7.8).

We end this chapter by the equivariance properties of the horocyclic
flow Φ and the associated conditional measure map σ (Lemmas 7.14
and 7.15).
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7.1. Preliminary reductions.

In this section, we reduce the proof of Theorem 2.7 to
the case where ν fills X, that is, roughly speaking, when
the stationary probability measure ν is not supported by
a smaller dimensional orbit.

¿From now on, G is an S-adic Lie group, g is its Lie algebra, Λ is a
discrete subgroup of G, X = G/Λ, µ is an Ad-semisimple probability
measure on G and ν is a µ-ergodic µ-stationary probability measure on
X. We still let Γµ be the closed subgroup of G generated by the support
of µ and Hµ ⊂ GL(g) be the Zariski closure of the group Ad(Γµ). We
assume that Hµ = Hnc

µ .
We may assume that G is second countable. Indeed we may al-

ways replace G by an open second countable subgroup containing the
support of µ, since such a subgroup intersects Λ in a lattice.

We also assume that (G,Γµ) has good exponentials. Recall from
Proposition 5.11 this is the case as soon as G is a real Lie group or
a closed subgroup of some GL(d,QS). In particular, if l denotes the
centralizer of Γµ in g and L the centralizer of Γµ in G, l is the Lie
algebra of L.

Definition 7.1. We will say that ν fills X if, for every closed non-open
subgroup G′ of G containing Γµ and every x ∈ X, one has ν(G′x) = 0.

Remark 7.2. There might not exist a smallest open subgroup G′ ⊃ Γµ
of G such that ν(G′x) = 1. For example, if G is SL(2,R)× SL(2,Qp),
Λ is the lattice SL(2,Z[1

p
]) in G, X = G/Λ, µ ∈ P(G) is a probability

measure such that Γµ = SL(2,R) and ν is the G-invariant probability
measure on X, then ν fills X, but for every open subgroup G′ of G,
one has Γµ ⊂ G′ and G′Λ = G.

Proposition 7.3. To prove Theorem 2.7, it is enough to prove it when
ν fills X.

Proof of Proposition 7.3. Let G′ be a non-open closed subgroup of G
which supports the probability µ and such that some orbit X ′ of G′

in X supports the stationary probability measure ν. Choose G′ to
have the smallest possible dimension. This orbit X ′ may not be closed
nor have finite volume, however since the injectivity radius of X ′ is
bounded below by the injectivity radius of X, i.e. since

rX′(x) ≥ rX(x) for all x ∈ X ′,

(G′, X ′, µ) inherits exponential µ-unstability of the cusps from
(G,X, µ). By construction, ν fills X ′. We can then apply Theorem
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2.7 to (G′, µ,X ′, ν) and we get that ν is Γµ-invariant and homoge-
neous. �

7.2. Construction of S.

We explain in this section how to construct a nice sub-
group S of G which preserves ν and whose normalizer G′

is open in G. Most of the proof of Theorem 2.7 in the fol-
lowing sections will then take place in the quotient group
G := G′/S.

We set Gν := {g ∈ G | g∗ν = ν} for the stabilizer of ν in G,

G′ν :=
⋂
g∈Γµ

gGνg
−1,

and Lν := L ∩ Gν . The strategy of the proof consists in constructing
Adg-unipotent one-parameter subgroups of G′ν . We hence let Smax =
(G′ν)u be the closed subgroup of G′ν which is generated by the Adg-
unipotent one-parameter subgroups contained in G′ν . By construction,
the group Smax is normalized by Γµ.

Here comes the second reduction step in the proof of Theorem 2.7.

Proposition 7.4. Let G be a weakly regular S-adic Lie group, Λ be a
discrete subgroup of G, X = G/Λ, µ be an Ad-semisimple probability
measure on G such that (G,Γµ) has good exponentials, Hµ = Hnc

µ and∫
G

log ‖Adg‖ dµ(g) <∞.
Let ν ∈ P(X) be a µ-stationary µ-ergodic probability measure that

fills X. Then there exists a closed subgroup S of G and x = gΛ in X
such that
(i) The unimodular normalizer G′ = N1(S) ⊂ G is open, contains Γµ
and ν(G′x) = 1.
(ii) The group S is semiconnected and Smax ⊂ S ⊂ Gν.

(iii) The group S ∩ gΛg−1 is a lattice in S and S = Smax (S ∩ gΛg−1).

Denoting this group S by the same letter as the first letter of “S-
adic” should not induce any confusion.

Proof of Proposition 7.4. To construct the subgroup S, we use Ratner’s
Theorem 5.15. Let E be, as in (5.6), the set of Ratner’s probability
measures on X. Since the group Smax is generated by Adg-unipotent
one-parameter subgroups, one can write the decomposition of ν into
Smax-ergodic components as

ν =

∫
X

αx dν(x),
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where the map x 7→ αx ∈ E is Borel and constant on Smax-orbits. Since
Γµ normalizes Smax and since this ergodic decomposition is unique, for
every g ∈ Γµ, for ν-almost every x ∈ X, one has αgx = g∗αx.

Hence the probability measure η ∈ P(E), which is the image of ν
by the map x 7→ αx, is also µ-stationary and µ-ergodic. Since G\E is
countable, η is supported by a G-orbit Gα0 ' G/Gα0

. As Gα0 admits
a lattice, it is unimodular. By Proposition 5.19, we can choose α0 in
such a way that there exists a semi-connected component S = Sα0 of
the stabilizer Gα0 such that the group G′ := N1(S) contains Γµ and
the stationary measure η is supported by G′α0. In other terms, for
ν-almost every x in X, we have η(G′αx) = 1, hence, as G′ contains
Gα0

, ν(G′x) = 1 (one can prove that the orbit G′x is closed in X –
see [15, Th. 3.4] when G is a real Lie group – but we will not use this
fact). Since ν fills X, the group G′ is open in G. By construction,
since α0 is a Ratner probability measure, for ν-almost any x = gΛ in
X, S ∩ gΛg−1 is a lattice in S and S = Smax (S ∩ gΛg−1). �

The case where Smax = {1} is the crucial one in Theorem 2.7. We
state it as a Corollary of Theorem 2.7.

Corollary 7.5. Let G be a weakly regular S-adic Lie group, Λ be a
discrete subgroup of G, X = G/Λ, µ be an Ad-semisimple compactly
supported probability measure on G such that Hµ = Hnc

µ and L be the
centralizer of Γµ in G. We assume that the cusps of X are exponen-
tially µ-unstable. Let ν ∈ P(X) be a µ-stationary µ-ergodic probability
measure. If one has Smax = {1}, then ν is Γµ-invariant, homogenous
and supported by a finite union of L-orbits.

We will see in Lemma 7.6 that the conclusion of Theorem 2.7 implies
that ν is homogeneous under the group ΓµLνS.

When proving Theorem 2.7, we may assume that G′ = G i.e. that S
is normal in G. Since Λ ∩ S is a lattice in S, the group Λ := ΛS/S is
a lattice in G := G/S. Let X be the quotient space X := G/Λ and µ
and ν be the probability measures on G and X which are the images
of µ and ν by the natural maps G→ G and X → X. The probability
measure ν is µ-stationary and µ-ergodic.

When G is a real Lie group, Theorem 2.7 is a direct consequence of
Corollary 7.5 applied to (G,Λ, X, µ, ν).

When G is a weakly regular S-adic Lie group, the quotient group G
might not be weakly regular. This is why we have to be a little bit more
careful. By Proposition 5.11.c, (G,Γ) has good exponentials. Hence
we will be able to work out the main part of the proof of Theorem 2.7
in this quotient. It is only at the very end of the proof in section 8.3
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that we will lift the informations obtained so far to the weakly regular
group G.

The proof of Theorem 2.7 will last up to the end of this paper.
Using Proposition 7.3, we can assume that ν fills X. Using Lemma 7.6
below, we can assume that for all x ∈ X one has ν(LSx) = 0. Our
aim will then be to get a contradiction by constructing Γµ-unstable
one-parameter subgroups of G preserving ν.

7.3. Stationary measures on orbits of the centralizer.

In this section we study those stationary probability mea-
sures ν on X for which some L-orbit satisfies ν(Lx) > 0.

We point out that this group L, which is the centralizer of Γµ in
G, is not assumed to be compact, hence its dynamics on X might be
intricate.

Lemma 7.6. Let G be a locally compact second countable group, Λ be
a discrete subgroup of G, X = G/Λ, µ be a probability measure on G
and L be the centralizer of Γµ in G. Let ν ∈ P(X) be a µ-stationary
µ-ergodic probability measure on X. If one has ν(Lx) > 0 for some x
in X, then ν is Γµ-invariant and homogenous.

More precisely, ν is homogeneous under the closed group ΓµL0 where
L0 is any open subgroup of the stabilizer Lν of ν in L.

Proof. By Lemma 3.7, for ν-almost any x in X, one has ν(Lx) =
ν(Lνx). By assumption, there exists a point x in X with ν(Lx) > 0.
As L0 is open in Lν , there exists a point x such that ν(L0x) > 0. Let
Y be the set of those x in X such that ν(L0x) takes its maximal value
M . Since every L0-orbit of finite volume in X is closed and since Y is
a finite union of L0-orbits, this set Y is closed. As ν is µ-stationary, for
any x in X we have ν(L0x) =

∫
G
ν(L0g

−1x) dµ(g) so that, if x belongs
to Y , by the maximum principle, ν(L0g

−1x) = M for µ-almost any g
in G. As Y is closed, Y is invariant by the semigroup generated by
the support of µ̌. As Y is a union of finitely many L0-orbits, Y is also
invariant by the group Γµ̌ = Γµ. As ν is µ-ergodic, ν is then supported
by Y , ν gives equal mass to the L0-orbits and Γµ permutes transitively
these L0-orbits. Hence Γµ permutes also the L0-invariant probability
measures supported by these L0-orbits. Hence ν is invariant under the
group ΓµL0.

This group ΓµL0 is closed. Indeed its closure G′ := ΓµL0 acts tran-
sitively on Y with discrete stabilizers and the L0-orbits in Y are open.
Hence the group L0 is open in G′ and the group ΓµL0 is also open in
G′. This proves that ΓµL0 is closed. �
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Remark 7.7. The group L0 may happen to be non trivial. For example,
let G = G1×G2 where G1 = SL(2,R) and G2 is compact and Λ ⊂ G is
a lattice whose projection on G2 is dense. We let Γµ be the projection
of Λ on G1, which is a lattice in G1. Then the orbit closure of the base
point of G/Λ under Γµ is its orbit under G2 and Γµ acts on it through
a morphism with dense image in G2. In particular, the G2-invariant
probability measure on this orbit is µ-stationary and concentrated on
an orbit of the centralizer of Γµ.

7.4. Where we use the positive µ-unstability of the diagonal.

The aim of this section is to show that if ν does not give
mass to the L-orbits, then so do the limit probability
measures νb.

We will use freely the dynamical systems
(B,B, β, T ), (BX ,BX , βX , TX) (Bθ,Bθ, βθ, T θ), (Bθ,X ,Bθ,X , βθ,X , T θ,X)
introduced in sections 3.2, 3.3 and 3.4 for those values of G and µ
and where, for b in B, ρ(b) is the automorphism x 7→ b−1

0 x of X,
νb is the limit probability measure of ν associated to b and θ(b) =
σ(b0, ξTb) ∈ Zµ is as in (4.1). We may apply the results of section 4
since all the representations of Γµ that we will consider are restrictions
of representations of the semisimple linear group Hµ.

Proposition 7.8. (Non-degeneracy of the νb’s) Let G be an S-adic Lie
group, Λ be a discrete subgroup of G, X = G/Λ, µ be an Ad-semisimple
probability measure on G such that (G,Γµ) has good exponentials, Hµ =
Hnc
µ , the cusps of X are exponentially µ-unstable, and µ admits finite

exponential moments in g. Let ν be a µ-stationary µ-ergodic probability
measure on X and L be the centralizer of Γµ in G. Suppose, for every
x in X, one has ν(Lx) = 0. Then, for βX-almost every (b, x) in BX ,
one has νb(LWb(x)) = 0.

Here, we have equipped G/Λ with the distance coming from a right-
invariant distance on G. We recall that Wb(x) has been defined in
(6.22). We have explained in Lemma 7.6 what happens when some
L-orbit satisfies ν(Lx) > 0.

We will need the following Lemma 7.9. Let L0 be an open subgroup
of the stabilizer Lν of ν in L generated by some compact standard
neighborhood of e.

Lemma 7.9. Let G be an S-adic Lie group, Λ be a discrete subgroup
of G, X = G/Λ, µ be a probability measure on G, L be the centralizer
of Γµ in G and ν be a µ-stationary µ-ergodic probability measure on
X. Assume ν fills X and, for βX-almost every (b, x) ∈ BX , one has
νb(L0x) > 0. Then there exists a cocompact subgroup Λ0 ⊂ L0 which
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fixes every point of the support of ν and whose centralizer G′ is open
in G and contains Γµ

The conclusion means that the group G′ acts on the support of ν
through the group G′/(G′ ∩ Λ0).

Remark 7.10. We have introduced this open subgroup L0 of Lν because
we do not know wether the lattices in Lν are finitely generated. Since
any lattice in a connected real Lie group is finitely generated [24, 6.18],
any lattice in L0 is also finitely generated.

Proof of Lemma 7.9. Since the probability measure ν onX is L0-invariant
and the actions of Γµ and L commute, for β-almost every b ∈ B, the
limit probability measure νb is also L0-invariant.

By assumption, for β-almost every b ∈ B, the limit probability νb
is supported by countably many L0-orbits. Hence, for νb-almost every
x ∈ X, the stabilizer Λ0(x) of x in L0 is a lattice in L0. Since ν is the
average of the νb’s, for ν-almost every x in X, Λ0(x) is also a lattice in
L0.

The map x 7→ Λ0(x) takes values in the set of lattices of L0 and
is measurable for the Borel structure induced by the Chabauty topol-
ogy. This Borel structure is standard. Since the actions of Γµ and L
commute, this map is constant on the Γµ-orbits. Since ν is µ-ergodic,
there exists a lattice Λ0 ⊂ L0 such that, for ν-almost every x in X,
Λ0(x) = Λ0. Hence the support of ν is contained in the set XΛ0 of
fixed points of Λ0 in X. The centralizer G′ of Λ0 contains the group
Γµ. Since the lattice Λ0 is finitely generated, according to Lemma 5.16,
the set XΛ0 is a countable union of G′-orbits. By µ-ergodicity of ν, the
support of ν is included in a G′-orbit G′x. Since ν fills X, the group
G′ is open in G. The group Λ′0 = Λ0 ∩G′ is also a lattice in the group
L′0 = L0 ∩G′. Since Λ′0 is central in L′0, this lattice Λ′0 is cocompact in
L′0. Since L0 contains a cocompact connected subgroup, L′0 has finite
index in L0. Hence the lattice Λ0 also is cocompact in L0. �

Proof of Proposition 7.8. As in Proposition 7.3, we may assume that ν
fills X. By Proposition 6.18, it is enough to check that

(7.1) for βX-almost every (b, x) in BX , one has νb(Lx) = 0.

We will argue by contradiction. By ergodicity of ν, we may assume
that, for βX-almost every (b, x) ∈ BX , one has νb(Lx) > 0. We want
to check that, for ν-almost every x ∈ X, one has ν(Lx) > 0.

Again by Lemma 3.7, there exists an Lν-invariant Borel subset E of
X such that ν(E) = 1 and, for all l ∈ L r Lν , one has lE ∩ E = ∅.
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In particular, one has νb(E) = 1 for β-almost every b in B. Hence, for
βX-almost every (b, x) in BX , one has νb(L0x) > 0.

By Lemma 7.9, there exists a cocompact subgroup Λ0 ⊂ L0 whose
centralizer G′ is open in G, contains Γµ and acts trivially on Supp(ν).
As ν is ergodic, ν is supported by a G′-orbit and we may assume that
G′ = G. Then Λ0 is a central subgroup of G which acts trivially on
X. Since the group L0/Λ0 is compact, we may consider the quotient
X ′ := L0\X which is a locally compact space. The group Γµ still
acts on X ′ and the image ν ′ of ν by the natural map X → X ′ is
still µ-stationary and µ-ergodic and atom free. We set ν ′b for its limit
probabilities. To prove (7.1), we have to check that

(7.2) for β-almost every b in B, the probability ν ′b is atom free.

Here comes the main argument which is a combination of Corollary
6.26 and Proposition 6.17. Since (G,Γµ) has good exponentials and
the cusps of X are exponentially µ-unstable, we can apply Corollary
6.26 and prove that the orbit of the diagonal (L0×L0)∆X is positively
µ-unstable in X ×X. This means that the diagonal ∆X′ is positively
µ-unstable in X ′ ×X ′.

Hence, since ν ′ is atom free, by Proposition 6.17, for β-almost every
b in B, the probability ν ′b is also atom free. This proves (7.2). �

7.5. Narrowing the leaves.

We apply in this section Proposition 7.8 in order to ob-
tain the starting point of the exponential drift argument
in section 8.1: roughly speaking, for any positive mea-
sure subset F of Bθ,X , βθ,X-almost every point (b, x) of
F can be reached by points (b, x′) of F which lie outside
the stable leaf of (b, x).

We will use notions and notations of sections 4.2, 4.3, 5.1 and 5.2.
Let v be the Γµ-invariant complementary subset of the centralizer l of

Γµ in g. We decompose v as a direct sum of irreducible representations
vi of Hµ, where i varies in a finite set I. Note that each subspace vi is
contained in some factor gpi , pi ∈ S, and hence is a Qpi-vector space.
We choose a (K,A)-good norm ‖.‖ on each of the vi and we equip v
with the norm given, for v = (vi), by ‖v‖ = maxi ‖vi‖.

For i in I, we denote by χi the unique morphism Zµ → R∗+ whose
restriction to Aµ is the modulus of the highest weight of A in vi, so that,
for any a in Aµ and v in the highest weight space of vi, ‖av‖ = χi(a)‖v‖.
For β-almost every b ∈ B, we set

wi,b =
{
v ∈ vi | supn∈N(χi(θn(b))

∥∥b−1
n . . . b−1

0 v
∥∥) <∞

}
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and wb = ⊕i∈Iwi,b. This space does not depend on the choice of the
decomposition of v. In particular, it is stable by the adjoint action of
L. For c = (b, z) in Bθ, we set wc = wb and νc = νb.

The following corollary of Proposition 7.8 extends [4, Corol.6.15].

Corollary 7.11. (Construction of nearby points) We keep the nota-
tions and assumptions of Proposition 7.8. Let F ⊂ Bθ,X be a Bθ,X-
measurable subset such that βθ,X(F ) > 0. Then, for βθ,X-almost every
(c, x) ∈ F , there exists a sequence (up) of elements of gr (l⊕wc) con-
verging to 0 such that, for every integer p ≥ 0, one has (c, exp(up)x) ∈
F .

Proof. By Proposition 4.4, for any i in I, for β-almost every b in B,
one has χi(θn(b)) −−−→

n→∞
∞. Therefore, for every v in wb, one has∥∥b−1

n . . . b−1
0 v
∥∥ −−−→

n→∞
0 and v is Γµ-unstable. Let us choose a distance

d on X, which comes from a right-invariant distance on the group G.
For β-almost every b ∈ B, all x ∈ X and all v ∈ wb, one has

d(b−1
n . . . b−1

0 exp(v)x, b−1
n . . . b−1

0 x) −−−→
n→∞

0,

that is exp(wb)x ⊂ Wb(x). By Proposition 7.8, for βX-almost every
(b, x) ∈ BX , one has

(7.3) νb(L exp(wb)x) ≤ νb(LWb(x)) = 0.

Now let (Up) be a basis of neighborhoods of 0 in g. For βθ-almost
every c in Bθ, the slice Fc = {x ∈ X|(c, x) ∈ F} satisfies νc(Fc) > 0.
Therefore, for βθ,X-almost every (c, x) in F , for all p ≥ 0, one has

νc(Fc ∩ exp(Up)x) > 0.

As L normalizes wc, if p is large enough, one has

exp(Up ∩ (l⊕wc)) ⊂ L exp(wc).

By Equation (7.3), one has νc(exp(Up∩ (l⊕wc))x) = 0. Therefore, one
gets νc(Fc ∩ exp(Up r (l⊕wc)x)) > 0. �

7.6. Horocyclic flow and conditional measures.

The aim of this section is to construct a multiparameter
flow Φ on Bθ,X which commutes with the transformation
T θ,X . We call it the horocyclic flow since it plays the
same role as the horocyclic flow in [4]. We then define the
associated conditional measures map σ. We compare the
value of this map σ at two points on the same horocyclic
orbit and we show that this map σ is T θ,X-invariant.
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For β-almost any b in B, we let vb and Vb be as in Proposition 5.13,
with g′ = g. We set v0 = vηµ . By replacing A by a conjugate maximal
split torus of Hµ, we can assume v0 = vb for some b in B which satisfies
all the conclusions of Proposition 5.13. We then set V0 = exp(v0).

Definition 7.12. The horocyclic flow is the action Φ of V0 on Bθ,X

given by, for every v0 in v0, βθ-almost every c = (b, z) in Bθ and every
x in X,

Φexp(v0)(c, x) = (c, exp(v
s(ξb)z
0 )x).

In this definition, v
s(ξb)z
0 denotes the element of g which is the image

of v0 by the action of s(ξb)z ∈ Hµ. We emphasize the fact that the flow
Φ might not preserve the measure βθ,X .

Lemma 7.13. We assume that (G,Γµ) has good exponentials. For all
v0 ∈ v0, one has Φexp(v0) ◦ T θ,X = T θ,X ◦ Φexp(v0).

Proof. For βθ,X-almost any (c, x) = (b, z, x) in Bθ,X , one has

Φexp(v0) ◦ T θ,X (c, x) = (Tb, θ(b)−1z, exp(v
s(ξTb)θ(b)

−1z
0 )b−1

0 x)

= (Tb, θ(b)−1z, b−1
0 exp(v

s(ξb)z
0 )x)

= T θ,X ◦ Φv0 (c, x),

in which we used the equality b0s(ξTb) = s(ξb)θ(b) which holds for
β-almost every b ∈ B (see (4.1)). �

Let M1(V0) be the space of positive Radon measure on V0 up to
normalization: two positive Radon measure σ1 and σ2 are equal up to
normalization and one writes

σ1 ' σ2 if there exists C > 0 such that σ2 = Cσ1.
We denote by σ : Bθ,X →M1(V0) the map which, to a given (c, x)

in Bθ,X , assigns the conditional measure of the measure βθ,X along the
horocyclic action of V0, which is defined, for instance, in [4, Sect. 4.1].
In loco citato, one defines the conditional measure of a finite measure λ
along the orbits of a Borel action of a locally compact unimodular group
R with discrete stabilizers. Eventhough the measure βθ,X is infinite, the
space Bθ,X is a countable union of V0-invariant finite measure subsets,
so that the definition of σ makes sense.

The following lemma compares the values of σ at two points on the
same horocyclic orbit. For v in V0, let tv be the right translation by v,
that is tv(v

′) = v′v for every v′ ∈ V0.

Lemma 7.14. There exists a Borel subset E ⊂ Bθ,X with βθ,X(Ec) = 0
such that, for every v ∈ V0 and (c, x) ∈ E with Φv(c, x) ∈ E, one has

tv∗σ(Φv(c, x)) ' σ(c, x).
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Proof. This is Proposition 4.2 of [4]. �

The following lemma tells us that the map σ is T θ,X-invariant:

Lemma 7.15. For βθ,X-almost every (c, x) in Bθ,X , one has

σ(T θ,X(c, x)) ' σ(c, x).

Proof. Note that, for βθ,X-almost every (b, z, x) in Bθ,X , σ(b, z, x) is the
conditional measure of δ(b,z) ⊗ νb along the action of V0 on {(b, z)} ×
X. Now the action of T θ,X on {(b, z)} × X is the map (b, z, x) 7→
(Tb, θ(b)−1z, b−1

0 x) which maps isomorphically the measure δ(b,z) ⊗ νb
to the measure δT θ(b,z) ⊗ νTb. As, by Lemma 7.13, this map commutes
with the action of V0, the result follows. �

As in section 3.4, we introduce the tail σ-algebra Qθ,X∞ of the dynam-
ical system (Bθ,X ,Bθ,X , βθ,X , T θ,X),

Qθ,X∞ := ∩n≥1Qθ,Xn ,

where Qθ,Xn is the sub-σ-algebra given by (3.9).

Corollary 7.16. The map σ : Bθ,X →M1(V0) is Qθ,X∞ -measurable.

8. Invariance of stationary probability measures

We end now the proof of Theorem 2.7. Here are the main steps.
Using the “drift control” (Proposition 4.21) and the “construction

of nearby points” (Corollary 7.11), we explain the exponential drift
argument in Proposition 8.1.

We apply in section 8.2 this Proposition 8.1 to the “horocyclic con-
ditional measure” map. This proves some invariance properties for
these conditional measures (Proposition 8.5) that we use to disinte-
grate ν into probability measures νb,x which are invariant under some
Ad-unipotent one-parameter subgroups (Corollary 8.4).

Using the equivariance of this disintegration and Proposition 5.19,
we prove in section 8.3 that these probability measures νb,x are indeed
invariant under a common Ad-unipotent one-parameter subgroup.

8.1. The exponential drift.

The following Proposition 8.1 is the turning point of our
method. We will apply it in section 8.3 to the quotients
(G,Λ, X, µ, ν) and to the map f = σ introduced in sec-
tion 7.2.

We keep the notations of the previous chapters. In particular, G is
an S-adic Lie group, µ is an Ad-semisimple probability measure on G
with Hµ = Hnc

µ , ν is a µ-stationary µ-ergodic probability measure on X
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and the symbols s, ξ, θ, Bθ, βθ, βθ,X , σ, etc... have the same meaning
as above.

Proposition 8.1. (Exponential drift) We assume µ has compact sup-
port, the cusps of X are exponentially µ-unstable, (G,Γµ) has good
exponentials and, for any x in X, one has ν(Lx) = 0. Let (Y,Y) be
a standard Borel space, f : Bθ,X → Y be a Qθ,X∞ -measurable map and
E ⊂ Bθ,X be a Bθ,X-measurable subset with βθ,X(Ec) = 0. Then, for
βθ,X-almost every (c, x) in Bθ,X , for every ε > 0, there exist a non-zero
element v ∈ V0 such that ‖ log v‖ ≤ ε and an element (c′, x′) of E such
that Φv(c

′, x′) also belongs to E and

(8.1) f(Φv(c
′, x′)) = f(c′, x′) = f(c, x).

Proof. Since one can cover Z by countably many relatively compact
open sets U , it is enough to fix such a set U and to prove (8.1) for
βU,X-almost every (c, x) ∈ BU,X . We will look then for a point (c′, x′) ∈
E ∩BU,X .

By definition, one may consider Y as a compact metric space whose
Borel σ-algebra is Y . Similarly, we may endow BU with the topology of
a compact metric space whose Borel σ-algebra is equal, up to subsets
of measure zero, to BU and such that the natural projection BU → U
is continuous, and endow BU × X with the product topology of this
topology on BU and the usual one on X.

Let α > 0 be very small. By Lusin’s theorem, there exists a compact
K ⊂ E ∩BU,X such that βU,X(K) > 1− α2 and such that the maps f
and (b, z, x) 7→ ξb are continuous on K.

The proof relies on a cautious study of the function E(1K | QU,X∞ ).
This function is bounded above by 1 and its average is bounded below
by 1− α2 because:∫

BU,X
E(1K | QU,Xn )(c, x) dβU,X(c, x) = βU,X(K) > 1− α2,

therefore, by Tchebyshev’s inequality, the function E(1K | QU,X∞ ) is
bounded below by 1−α on a set of measure at least 1−α. Hence there
exists a compact set K ′ ⊂ E ∩ BU,X such that βU,X(K ′) > 1 − α and
that, for every (c, x) in K ′, one has

E(1K | QU,X∞ )(c, x) > 1− α.

Again by Lusin’s theorem, we may also assume that f is continuous on
K ′.
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Moreover, by to the martingale convergence theorem, for βU,X-almost
every (c, x) in BU,X , one has,

(8.2) E(1K | QU,Xn )(c, x) −−−→
n→∞

E(1K | QU,X∞ )(c, x).

By Lemma 3.6, we may also assume that, for every (c, x) ∈ K ′ and
every n ≥ 0, the left-hand side in this equality (8.2) is given by formula
(3.14):

(8.3) E(1K | QU,Xn )(c, x) = µ⊗n(h−1
n,c,x(K) | QU

n,c).

According to Formulas (3.4) and (3.10), for c = (b, z) ∈ BU , x ∈ X and
a = (a0, . . . , an−1) ∈ Gn, the elements hn,c(a) ∈ Bθ and hn,c,x(a) ∈ Bθ,X

which parametrize the atom of QU,Xn at x are given by

hn,c(a) = (aT nb, θn(aT nb)θn(b)−1z).

and

hn,c,x(a) = (hn,c(a), a0 · · · an−1b
−1
n−1 · · · b−1

0 x).

Besides, since f is QU,X∞ -measurable, it is QU,Xn -measurable for all
n ≥ 0 and, hence, using Lemma 3.5 , we may also assume that, for
all (c, x) in K, for all n ≥ 0, for µ⊗n-almost every a in Gn, one has
f(hn,c,x(a)) = f(c, x).

Finally, by Egoroff’s theorem, we may also assume that the conver-
gence in (8.2) is uniform on K ′. Therefore there exists n0 ≥ 0 such
that for every integer n ≥ n0, for every (c, x) ∈ K ′, one has

(8.4) E(1K | QU,Xn )(c, x) ≥ 1− α

Since the βU,X-measure of K ′ is at least 1−α and α is arbitrarily small,
it is enough to prove (8.1) for βU,X-almost every (c, x) of K ′.

Corollary 7.11 allows us to assume that, for these points (c, x) of K ′,
there exists a sequence (up) of elements of gr (l⊕wc) converging to 0
and such that the points (c, yp) := (c, exp(up)x) also belong to K ′.

We apply Formulae (8.3) and (8.4) to both points (c, x) and (c, yp).
For n ≥ n0, we then get

(8.5) µ⊗n(h−1
n,c,x(K) | QU

n,c) ≥ 1− α

and

(8.6) µ⊗n(h−1
n,c,yp(K) | QU

n,c) ≥ 1− α.

The remaining part of the proof is motivated by the following strat-
egy. By construction, when y = exp(u)x with u ∈ g, the parametriza-
tions of the two fibers of (TU,X)n containing (c, x) and (c, y) are re-
lated by a drift that can easily be computed: if (c′, x′) = hn,c,x(a) and
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(c′, y′) = hn,c,y(a), for the same a ∈ Gn, one has

y′ = exp(Fn,c(a)u)x′

where the drift is given by

Fn,c(a)u = a0 . . . an−1b
−1
n−1 . . . b

−1
0 (u),

as soon as this element is small enough to belong to the logarithm of
a (G,Γµ)-good standard open subset, which will be ensured for most
of the relevant a by the computations below. We have just seen that,
for the parametrization of the two fibers of (TU,X)n containing the
points (c, x) and (c, yp), a large proportion of the parameters a ∈ Gn

corresponds to points (c′, x′p) and (c′, y′p) which both belong to K. We
will now adapt the time n = np to the sequence up in such a way that
we will control both the norm and the direction of the drift between
these two points. This will be possible thanks to the following lemma
that we will derive from the law of the angles through Proposition 4.21.

Lemma 8.2. For all α > 0 and η > 0, there exists r0 > 1, such that,
for βU -almost every c ∈ BU , for n large enough, one has, for any i in
I and any ui in vi r 0,

(8.7) µ⊗n({a ∈ Gn | 1
r0
≤ ‖Fn,c(a)ui‖

χi(θn(b))‖b−1
n−1···b

−1
0 ui‖

≤ r0} | QU
n,c) ≥ 1− α,

and

(8.8) µ⊗n({a ∈ Gn | d(RFn,c(a)ui,P(vi,aTnb)) ≤ η} | QU
n,c) ≥ 1− α.

We recall that QU
n,c has been defined in (3.5).

Proof. As

Fn,c(a)ui = a0 · · · an−1(bn−1 · · · b0ui) and Vi,aTnb = a0 · · · an−1Vi,Tnb,

by Formula (3.8), (8.7) and (8.8) follow directly from Proposition 4.21,
applied to the vector vi = bn−1 · · · b0ui. �

We can now end the proof of Proposition 8.1. We adjust the param-
eter n = np in the following way. Since the probability measure µ on
G has compact support and since the section s introduced in 4.2 has
bounded image, there exists a constant C0 > 0 such that, for β-almost
every b ∈ B, for any i, any vector ui in Vi r 0 and any n ∈ N, one has

χi(θn+1(b))
∥∥b−1

n . . . b−1
0 ui

∥∥
χi(θn(b))

∥∥b−1
n−1 . . . b

−1
0 ui

∥∥ ≤ C0.

Set M0 := maxz∈U,ξ∈Pµ ‖Ad(s(ξ)z)−1‖. We decompose the vectors up
as a sum

up = up,l +
∑
i

up,i
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with up,l ∈ l and up,i ∈ vi, i ∈ I. Since the elements up do not belong to
l⊕wc, the sequence n 7→ maxi χi(θn(b))

∥∥b−1
n . . . b−1

0 up,i
∥∥ is not bounded.

For p large enough, there exists an integer np such that

ε

C0r0M0

≤ max
i
χi(θnp(b))

∥∥∥b−1
np−1 . . . b

−1
0 up,i

∥∥∥ ≤ ε

r0M0

.

Hence as soon as α < 1
2+2 card(I)

, there exist an element a = ap in Gnp

which is simultaneously and for all i ∈ I for which up,i 6= 0, in the sets
described in (8.5), (8.6), (8.7) and (8.8) with n = np, ui = up,i and
η = ηp → 0. One has then

(8.9) f(hnp,c,x(ap)) = f(c, x) and f(hnp,c,yp(ap)) = f(cp, yp).

After extracting a subsequence,

(1) the sequence (c′p, x
′
p) :=hnp,c,x(ap) has a limit (c′, x′) in K,

(2) the sequence (c′p, y
′
p) :=hnp,c,yp(ap) has a limit (c′, y′) in K and

(3) the limit of the drift w = lim
p→∞

Fnp,c(ap)up exists, is non-zero,

with norm bounded by ε
M0

and belongs to vc′ .

As a consequence, by passing to the limit in (8.9), since all the se-
quences involved there takes their values in K or K ′ and since f is
continuous on these sets, one has

f(c′, x′) = lim
p→∞

f(c′p, x
′
p) = lim

p→∞
f(c, x) = f(c, x),

f(c′, y′) = lim
p→∞

f(c′p, y
′
p) = lim

p→∞
f(c, yp) = f(c, x) and

y′ = exp(w)x′.

Moreover, writing c′ = (b′, z′) and denoting by v ∈ v0 the non-zero
element such that w = exp(s(ξb′)z

′) v, one has

‖v‖ ≤ ε and (c′, y′) = Φexp(v)(c
′, x′).

This ends the proof of Proposition 8.1. �

8.2. The stabilizer of conditional measures.

In this section, we apply the drift argument to the horo-
cyclic conditional measures map and we express this ap-
plication in terms which do not involve the extension Bθ.
We desintegrate the limit measures νb according to the
values of the stabilizer Vb,x in Vb of the horocyclic condi-
tionals. Using the Poincaré recurrence Theorem thrice,
we show that Vb,x is a non-trivial Ad-unipotent subgroup
of Vb which leaves invariant the probability measure νb,x.
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For βX-almost every (b, x) ∈ BX , we denote by σb,x ∈ M1(Vb) the
conditional measure of νb at x for the action of Vb on X. By abuse
of notations, we also denote by σb,x any element of this class modulo
normalization and we let Vb,x be the stabilizer of σb,x in M1(Vb), that
is the group of those v in Vb such that tv∗σb,x ' σb,x. We let vb,x be the
Lie algebra of Vb,x.

As, for β-almost any b in B, the action of b−1
0 induces an isomorphism

between the measure spaces (X,X , νb) and (X,X , νTb) and as VTb =
b−1

0 Vbb0, one has, for νb-almost any x in X,

VTX(b,x) = b−1
0 Vb,xb0 and σTX(b,x) ' (Adb−1

0 )∗σb,x.

Lemma 8.3. Assume (G,Γµ) has good exponentials. For βX-almost
any (b, x) in BX , one has Vb,x = exp(vb,x) and, for any v in Vb,x,
tv∗σb,x = σb,x.

Proof. The proof relies on successive applications of Poincaré’s recur-
rence Theorem.

First let us prove that, for βX-almost every (b, x) in BX , one has
exp(vb,x) ⊂ Vb,x. Set

ϕ(b, x) = inf{‖v‖ | v ∈ vb,x , exp(v) /∈ Vb,x} ∈ [0,∞].

As vb,x is the Lie algebra of Vb,x, one has ϕ > 0 almost everywhere.
Besides, by the equivariance property, for any n in N, one has

ϕ((TX)n(b, x)) ≤ ‖(b0 · · · bn−1)−1|vb‖ϕ(b, x),

hence, by Proposition 5.13, if ϕ(b, x) <∞, ϕ((TX)n(b, x)) −−−→
n→∞

0 and,

by Poincaré’s recurrence Theorem, ϕ = ∞ almost everywhere, that is
exp(vb,x) ⊂ Vb,x for βX-almost every (b, x) in BX .

Now let us prove that, for βX-almost every (b, x) in BX , one has
Vb,x ⊂ exp(vb,x). Set

ψ(b, x) = inf{‖v‖ | v ∈ vb r vb,x , exp(v) ∈ Vb,x} ∈ (0,∞].

Again, if ψ(b, x) < ∞, one has ψ((TX)n(b, x)) −−−→
n→∞

0, hence, by

Poincaré’s recurrence Theorem, ψ = ∞ almost everywhere and, for
βX-almost any (b, x) in BX , Vb,x = exp(vb,x).

Lastly, set, for βX-almost any (b, x) in BX , αb,x : Vb,x → (0,∞)
to be the multiplicative group morphism such that, for any v in Vb,x,
one has tv∗σb,x = αb,x(v)σb,x. To finish the proof, we shall prove that
α = 1 almost everywhere. As Vb,x = exp(vb,x), there exists a unique
homomorphism of real Lie algebras ab,x : (vb,x)∞ → R such that, for
any v in vb,x, one has αb,x(exp(v)) = eab,x(v∞). By the equivariance
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property, one has, for βX-almost all (b, x) in BX , for any n in N,

(8.10) ab,x = a(TX)n(b,x) ◦ (b0 · · · bn−1)−1.

For any M > 0, let

AM = {(b, x) ∈ BX | ‖ab,x‖ ≤M}.
By Poincaré’s recurrence Theorem, for βX-almost any (b, x) in AM ,
there exists infinitely many n in N with (TX)n(b, x) ∈ AM . By (8.10),
we get a = 0, almost everywhere on AM , what should be proved. �

For β-almost any b in B, we disintegrate the probability measure νb
along the Borel map X → Gr(g);x 7→ vb,x. This gives us a decomposi-
tion

(8.11) νb =

∫
X

νb,x dνb(x)

where, for βX-almost every (b, x) in BX , the probability measure νb,x
on X is supported by the fiber {x′ ∈ X | vb,x′ = vb,x}.

Corollary 8.4. Assume (G,Γµ) has good exponentials. For βX-almost
every (b, x) in BX , the probability measure νb,x is Vb,x-invariant and
one has the equivariance property

(8.12) νb,x = b0∗νTX(b,x).

Proof. As, by Lemma 8.3, Vb,x preserves every element of the class
σb,x, the first statement follows from [4, Prop 4.3]. The equivariance
property follows from those of the maps b 7→ νb and (b, x) 7→ vb,x. �

Now, by Proposition 8.1, we know that, under suitable assumptions,
vb,x is non zero.

Proposition 8.5. We assume µ has compact support, the cusps of
X are exponentially µ-unstable, (G,Γµ) has good exponentials and, for
every x in X, one has ν(Lx) = 0. Then, for βX-almost every (b, x) ∈
BX , Vb,x is a non trivial subgroup of Vb.

Proof. Comparing the definitions of σ(c, x) in section 7.6) and of σb,x in
section 8.2, one gets, for βθ,X-almost every (c, x) ∈ Bθ,X with c = (b, z),

log∗ σb,x = (s(ξb)z)∗ log∗ σ(c, x).

Hence, it suffices to prove that the stabilizer of σ(c, x) in V0 is non zero.
By Corollary 7.14, there exists a Borel subset E of Bθ,X such that

βθ,X(Ec) = 0 and that, for every v ∈ V0 and (c′, x′) ∈ E such that
Φv(c

′, x′) ∈ E, one has

(8.13) tv∗σ(Φv(c
′, x′)) ' σ(c′, x′).
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By Corollary 7.16, the map (c, x) 7→ σ(c, x) is Qθ,X∞ -measurable.
Proposition 8.1 applied to this set E and to the map f = σ gives us,
for βθ,X-almost every (c, x) in Bθ,X , a non-trivial element v in V0 and
an element (c′, x′) in E such that Φv(c

′, x′) also belongs to E and that

σ(Φv(c
′, x′)) ' σ(c′, x′) ' σ(c, x).

Applying equality (8.13) to the element (c′, x′), one gets the result :
tv∗σ(c, x) ' tv∗σ(Φv(c

′, x′)) ' σ(c′, x′) ' σ(c, x). �

8.3. Invariance of ν under a one-parameter subgroup.

In this section, we finish the proof of Theorem 2.7 which
classifies µ-stationary µ-ergodic probability measures on
X. To this aim, we construct a µ-stationary probability
measure η on the set E of Ratner probability measures
by disintegrating the probability measures νb,x into Vb,x-
ergodic components and we analyse η thanks to Propo-
sition 5.19.

Proof of Theorem 2.7. We recall the strategy described in sections 7.1,
7.2 and 7.3 that we have been following since then. Using Proposition
7.3, we can assume that ν fills X. We can then introduce the groups
Smax and S from Proposition 7.4 and assume that S is normal in G.
Using Lemma 7.6, we assume, by contradiction, that for all x in X,
one has ν(LSx) = 0. We want to get a contradiction.

We apply Corollary 8.4 and Proposition 8.5 to the quotients
(G,Λ, X, µ, ν) introduced in section 7.2 . This is possible since, by
Proposition 5.11.c, (G,Γ) has good exponentials, and, by Corollary
5.34, the cusps of X are exponentially µ-unstable.

By definition of S, the limit probabilities νb are S-invariant. Lifting
in X Equations (8.11) and (8.12), we get a decomposition

(8.14) νb =

∫
X

νb,x dνb(x)

where for βX-almost every (b, x) in BX , one has

(8.15) νb,x = b0∗νTX(b,x).

We choose a Γµ-invariant complementary subspace to s, so that
v identifies to a subspace of g. Hence, we get a map BX →
Gr(g); (b, x) 7→ vb,x. For βX-almost any (b, x), vb,x is contained in
NΓ(g). We let Vb,x be the subgroup of G spanned by exp(vb,x) and
Smax. Then, for βX-almost every (b, x) in BX , Smax is a proper subr-
goup of Vb,x, νb,x is Vb,x-invariant and one has

(8.16) Vb,x = b0 VTX(b,x)b
−1
0 .
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As Vb,x is spanned by Ad-unipotent one-parameter subgroups, by Rat-
ner’s Theorem 5.15, the decomposition of νb,x into Vb,x-ergodic compo-
nents can be written, in a simultaneous way, as

(8.17) νb,x =

∫
X

ζ(b, x′) dνb,x(x
′).

where ζ : BX → E is a BX-measurable map which is Vb,x-invariant νb,x-
almost everywhere. As, for βX-almost any (b, x) in BX , Smax is a proper
subgroup of Vb,x, the stabilizer of ζ(b, x) in G contains Ad-unipotent
one-parameter subgroups which are not contained in S.

The end of the proof is analoguous to the proof of Proposition 7.4.
Uniqueness of the ergodic decomposition and Equations (8.15) and
(8.16) imply that, for βX-almost every (b, x) in BX , one has

ζ(b, x) = (b0)∗ζ(TX(b, x)).

Hence the probability measure η := ζ∗β
X is a µ-stationary µ-ergodic

probability measure on E . By (8.14) and (8.17), one has

(8.18) ν =

∫
E
α dη(α).

By Ratner’s Theorem 5.15, there are only countably many G-orbits
in E . Since the µ-stationary probability measure η is µ-ergodic, it is
supported by an orbit Gα0 ' G/Gα0 . Since the stabilizer Gα0 contains
a lattice, it is unimodular. According to Proposition 5.19, we can
assume the group Gα0 contains a semiconnected component Sα0 such
that the unimodular normalizer G′ := N1(Sα0) contains Γµ and η is
supported by an orbit of G′. Therefore, by (8.18), the probability ν is
also Sα0-invariant, being an average of Sα0-invariant measures. Now,
the subgroup Sα0,u of Sα0 generated by the one-parameter Ad-unipotent
subgroups of Sα0 is not contained in S. But Sα0,u is included in Gν and
is normalized by Γµ. By Proposition 7.4, this group is contained in S.
This contradiction ends the proof of Theorem 2.7. �
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homogènes (I), CRAS (2008) and Annals of Math. (2011).
[5] Y. Benoist, J.-F. Quint Mesures stationnaires et fermés invariants des espaces
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