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ABSTRACT. Let G be a real Lie group, A a lattice of G, i a com-
pactly supported probability measure on G, and I' the subgroup
generated by the support of u. We prove that, when the Zariski
closure of the adjoint group Ad(T") is semisimple with no compact
factor, every p-ergodic p-stationary probability measure on G/A is
homogeneous. We prove also similar results for p-adic Lie groups.
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1. INTRODUCTION

This text is part of a series of papers which aim at understanding
some phenomena on the dynamics of subgroups actions on finite volume
homogeneous spaces. We describe in this introduction our main result
for real Lie groups. More general statements are given in Chapter 2.

1.1. Actions on G/A.

Let G be a real Lie group, A be a lattice in G, X =
G/A and p be a probability measure on G. We want to
describe the p-stationary probability measures v on X.

We recall that a probability measure v on X is said to be u-stationary
if one has p* v = v. It is then said to be p-ergodic if it is extremal
among p-stationary probability measures.

We will say that a probability measure v on X is homogeneous if it is
supported by a closed orbit F of its stabilizer G, := {g € G | g.v = v}.
Such a probability is a finite average of probability measures which are
homogeneous under the connected component of G,,.
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Let I',, be the subgroup of G generated by the support of p. Let g

be the Lie algebra of G and H, := Ad(T,)” C GL(g) be the Zariski
closure of the adjoint group Ad(I',).

Theorem 1.1. Let G be a real Lie group, g be its Lie algebra, A be a
lattice in G, X = G/A and p be a compactly supported probability mea-

sure on G such that the group H, = Ad(I',) is semisimple, Zariski
connected with no compact factor. Then every p-ergodic p-stationary
probability measure v on X is I',-invariant and homogeneous.

Note that it is easy to describe these I',-invariant homogeneous prob-
ability measures v on G using the following remarks: since their stabi-
lizer G, is a closed subgroup of G' containing I',,, the connected com-
ponent S of GG, is a subgroup of G whose Lie algebra is stable under
the action of H, and, since v is p-ergodic, one has G, =T',S.

When H,, is not assumed to be Zariski connected and is allowed
to have non-trivial compact factors, we can still describe all the pu-
ergodic p-stationary measures on X even though they might be non-
homogeneous. Such examples are called satellite probability measures
(see [6]).

Corollary 1.2. Let G be a connected semisimple real algebraic group
with no compact factor, A be an irreducible lattice in G and pu be a
probability measure on G whose support is compact and spans a Zariski
dense subgroup of G. Then every non-atomic p-stationary probability
measure on X is G-invariant.

Under the stronger assumption that G is simple, Corollary 1.2 is the
first main result of [4].

1.2. Actions on tori and nilmanifolds.

We describe now the applications of our Theorem 1.1 to
the affine actions on tori and more generally to the affine
actions on nilmanifolds.

Let N be a connected simply connected nilpotent real Lie group, A
be a lattice in N and X be the compact nilmanifold X = N/A. By an
affine submanifold of X, we shall mean a closed subset of X which is an
orbit under a connected subgroup of N. By Mal’cev’s rigidity theorem
(see [24, 11.2.11]), the discrete group Aut(A) of automorphisms of A
embeds in a natural way in the group of automorphisms of N. Define
the group of affine transformations of X to be the semidirect product
G = Aff(X) = Aut(A) x N/Z,, where Z, is the center of A. Then

G acts transitively on X and we may see X as the quotient of G
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by the lattice Aut(A) x A/Z,. The action of Aut(A) C G by left
translations on this quotient is its usual action on X. In this case,
a homogeneous probability measure on X is a finite average of Haar
probability measures carried by affine submanifolds of X.

For example, if N = R? and A = Z%, one has X = T¢, G = Aff(X) =
GL(d,Z) x T? and Aut(A) = GL(d,Z) C Aut(N) = GL(d,R).

By Theorem 1.1, we get the following corollary which gives a partial
answer to [20, Problem 4]:

Corollary 1.3. Let X = N/A be a compact nilmanifold, p be a finitely
supported probability measure on Aut(A) and I',, be the subgroup gen-
erated by the support of . We assume that the Zariski closure of I',,
in Aut(N) is semisimple and Zariski connected with no compact fac-
tor. Then every p-ergodic p-stationary probability measure v on X 1is
', -invariant and homogeneous.

A description of some cases of Corollary 1.3 where X is a Heisenberg
nilmanifold has been obtained by J.-R. Heu in [19] based on [4].

Corollary 1.4. Let X be the torus X = T¢, p be a finitely supported
probability measure on GL(d, Z) and T, be the subgroup generated by the
support of pu. Assume the Zariski closure of T'), is semisimple, Zariski
connected and with no compact factor, and acts irreducibly on Q%. Then
the only atom-free p-stationary probability measure on T? is the Haar
probability on T¢.

To our knowledge, Corollary 1.4 was previously only known under
the additional assumption that T', acts irreducibly on R%: this is due to
[12] in the proximal case and to [4] in general. For instance, the action
of the group SL(2, Z[+/2]) is irreducible on Q* but is not irreducible on
R

1.3. Strategy of the proof.

Since the proof of Theorem 1.1 will last up to the end of
this paper, we begin by a sketch of the main ideas.

As in [4], our approach is based on a study of the random walk
induced by p on G/A, that is the Markov chain with transition proba-
bilities p * 0, x € G/A. We still use the “exponential drift” argument
based on the martingale convergence theorem, that we have introduced
in [4] when G is simple and H, = G.

However, the strategy is different from the one followed in [4]: we
do not use any suspension of Bernouilli shift. Instead, we modify the
“exponential drift” argument, by replacing the tail o-algebra of the
suspension by the tail o-algebra of a fibered dynamical system whose
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fiber has infinite volume. More precisely, we first consider a finite vol-
ume fibered dynamical system (B, BX, 3% TX) with fiber X and with
base the one-sided Bernoulli shift (B, B, 3,T) with alphabet (G, u).

Let g =1® v, & --- D vy be a decomposition of the Lie algebra of
G, where [ is the centralizer of I', and where the v;’s are nontrivial
irreducible I',-modules. The case we were dealing with in [4] is the
case where [ = 0 and ¢ = 1. Each of these representations v; gives us a
function ; on B describing the logarithmic growth of the random walk
on G in the most expanding direction of v;.

We collect these functions as a function # on B with values in a lo-
cally compact group Z. This group Z is a compact extension of a non
compact abelian group. We will consider the function # as a cocycle on
(BX,BX, 3%, T%) and study the corresponding fibered dynamical sys-
tem (B, BX, 30X T%X) with fiber Z. The study of this dynamical
system needs some special care since the invariant measure 3%X has
infinite volume. Hence we introduce an open subset U in Z of finite
volume and the subspace BYX C B%¥ with fiber U over BX.

We introduce the o-subalgebras Q%X = (T%X)="B%X whose inter-
section is the tail o-algebra Q%X. We also introduce the o-algebras
QU which are the restrictions of Q%% to BUX. These o-algebras are
very convenient to us for the following two reasons.

On one hand, in Chapter 3, we prove a very simple formula to express
the conditional expectation ¢, = E(p | QU¥) of a measurable function
¢ on BYX with respect to this o-algebra QU:X.

On the other hand, in Chapter 4, we are able to control the asymp-
totic behavior as n goes to oo of the corresponding conditional proba-
bility measures ﬁf{, ch thanks to the “law of the angles”. To check this
asymptotic law, we use a tricky combination of an iterated logarithm
law, a local limit theorem and a large deviation estimate for random
walks on semisimple groups that we have proved to this purpose in [9].

Chapter 5 is a pot-pourri of preliminary results, including structure
results for real and p-adic Lie groups and their lattices, which will be
used later.

We prove in Chapter 6 a general phenomenon for the random walk on
X = G/A which we have called ”positive p-unstability of the diagonal”
and which is the main input for Chapter 7. To check this phenomenon
holds when the space X = G/A is not compact, we use the exponential
p-recurrence of the random walk on X = G//A that we have proven in
[7].

Chapter 7 contains two important ideas. First we check that if p
is non-atomic, (J-almost surely, the limit probability measures v, are
not supported by the ”stable leaf” of an orbit of the centralizer L of
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I',. Second, we introduce the horocyclic flow and check that the ”con-
ditional measures of 14, along the horocycle flow” map is measurable
for the tail o-algebra Q%X. These two points will be crucial inputs in
Chapter 8.

We develop in Chapter 8 our new ”exponential drift” argument. This
argument should be familiar for a reader who already knows [4], even
though the tools involved in the proof are more sophisticated than in [4].
The main point is to control accurately the size and the direction of the
drift. This control is the purpose of the “the law of the angles” proven
in Chapter 4. As in [4], the aim of the exponential drift argument is
to show that almost surely the conditional measures of v, along the
horocycle flow have a non trivial stabilizer. This piece of information
allows us to write v as an average of non trivial probability measures «
which are invariant and ergodic under a one-parameter Ad-unipotent
subgroup. By Ratner’s theorem [25], such a probability measure is
homogeneous. Thus, this construction provides us with a probability
measure 7 on the set £ of probability measures which are homogeneous
and ergodic under some one-parameter Ad-unipotent subgroup. By the
equivariance properties of this construction, the probability measure n
is itself p-stationary and p-ergodic. By ergodicity this probability n is
supported by some G-orbit Gag in €. The key point is then to check,
using one of the pot-pourri results of Chapter 5, that n is supported
by an orbit of the unimodular normalizer of the connected component
S% of the stabilizer of ay. We conclude then, by a kind of induction
argument, that 7 is homogeneous. Therefore v is homogeneous too.

The results stated in this introduction were announced in [5]. We
will apply them in [6] to the classification of the I' ,-orbit closures in X
which was also announced in [5].

Since our ergodic theorical method is very flexible, our results will
be stronger than the statements in this introduction: we will work with
products of real and p-adic Lie groups. This extension will lengthen this
article only by 12 pages. We have gathered the extra p-adic technics in
sections 2.1, 2.2, 5.1, 5.2, 5.6, and 5.8, that a reader only interested by
real Lie groups can avoid and we have tried to keep notations for the
other sections as light as if we were dealing only with real Lie groups.

2. MAIN RESULTS

In this section we formulate our main result which generalizes The-
orem 1.1. The reader who is only interested in real Lie groups may go
directly to section 2.3.
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2.1. Weakly regular S-adic groups.

We define here a class of S-adic Lie groups to which our
result apply.

For any prime number p, let @, denote the field of p-adic num-
bers and Q,, = R denote the field of real or “oco-adic” numbers. Let
{o0,2,3,5,...} be the set of prime numbers including co and S be a
finite subset of it. We let Qg be the locally compact algebra @pe s Qp.

Definition 2.1 (Ratner, [26]). A p-adic Lie group G is said to be
weakly regular if any two one-parameter subgroups Q, — G with the
same derivative at e are equal.

A weakly regular S-adic Lie group G is a locally compact group which
is isomorphic to a closed subgroup of a product of weakly regular p-adic
Lie groups, with p € S.

For instance, every real Lie group is weakly regular since the one-
parameter subgroups are characterized by their derivative at e.

Ezxample 2.2 ([26, Cor. 1.3 and Prop. 1.5]). Every closed subgroup of
a finite product HpES GL(dp, Q,) is a weakly regular S-adic Lie group.

In this article, all the measures are assumed to be Borel measures.

Let G be a weakly regular S-adic Lie group, A be a discrete subgroup
of G and X = G/A. Let p be a probability measure on G. We denote
by I' = I, the closed subgroup generated by the support of u. Let
g = Dpesg, be the Lie algebra of GG, and Ad be the adjoint action of G

in g (see section 5.1 for more details). We denote by H,, := Ad(FH)Z the
Zariski closure of the group Ad(I",,) in GL(g). This means that H, is the
smallest group containing AdI', which is a product Hy, := [[,cs Hyp
of Zariski closed subgroups H,, C GL(g,). Hence for every p € S,
H,p is the Zariski closure of the group Adg I, C GL(g,). We will say
that H, is semisimple if all the groups H,,;, are semisimple and we will
always assume semisimple algebraic groups to be Zariski conneceted.
We will say that

Definition 2.3. 1 is Ad-semisimple if the group H,, is semisimple.

Let H}° C H, be the intersection of the kernels of the algebraic
representations p : H, — GL(d, Qg) for which p(Ad(T',)) is bounded.
When g is Ad-semisimple and S = {oc}, one has the equivalence

H,= H}° <= H, is Zariski connected with no compact factor.

In this paper, we will always assume that p is Ad-semisimple. Often
we will also assume that H, = H}‘.
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2.2. Stationary probability measures.

We explain in this section our classification of stationary
probability measures.

Definition 2.4. A probability measure v on X is homogeneous if it is
supported on a closed orbit of its stabilizer G, := {g € G | g.v = v}.

Theorem 2.5. Let G be a weakly regular S-adic Lie group, A be a lat-
tice in G, X = G/A and p be an Ad-semisimple compactly supported
probability measure on G such that H, = H,°. Then every u-ergodic
p-stationary probability measure v on X s I',-invariant and homoge-
neous.

Corollary 2.6. Let G be a finite product of Zariski-connected linear
semisimple p-adic Lie groups, A be an irreducible lattice in G, X =
G/A and p be a compactly supported probability measure on G. We
assume that the image of I', in every non-trivial semisimple quotient of
G is Zariski dense and unbounded. Then every atom-free p-stationary

probability measure on X is invariant by some finite index subgroup
G' CcG.

2.3. The case where A is not a lattice.

Even when G is a real Lie group, the reduction process
of the proof of Theorem 2.5 will force us to deal also with
discrete subgroups A which are not lattices.

We choose a norm ||.|| on each of the p-adic Lie algebras g, and, for
v = (Up)pes in g, we set [|v]| := max,es ||v,||. We pick a standard open
subset ) of G with exponential map expg, : O — Q (see section 5.1)
where O is a relatively compact open neighborhood of 0 in g. We fix
ro > 0 such that B(0,7) C O and, for z € X, we define the injectivity
radius at x by

(2.1) rx(z) :=max{r <ry | v— expqg(v)z is injective on B(0,r)}.
A subset F' of X is said to be exponentially ji-recurrent if the sequence

anug(u®”({(gl,...gn)€G”|gj---glx€Ff0rallj:1,...,n}))
TEe

decays exponentially (see Definition 6.1).

We say that the cusps of X are exponentially p-unstable if every
compact subset of X is contained in an exponentially p-recurrent closed
set F' on which the injectivity radius is bounded below (see Definition
6.20).
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Proof of Theorem 2.5. This will follow from Theorem 2.7 since the
main result of [7] tells us that, when A is a lattice, the cusps of X
are exponentially p-unstable (see Lemma 6.21). O

Theorem 2.7. Let G be a weakly reqular S-adic Lie group, A be a
discrete subgroup of G, X = G/A, p be a Ad-semisimple compactly
supported probability measure on G such that H, = H,°. We assume
that the cusps of X are exponentially p-unstable. Then every p-ergodic
p-stationary probability measure v on X s I',-invariant and homoge-
neous.

Theorem 2.7 might be true for any discrete subgroup A of G. Indeed
the cusps of X might always be exponentially pu-unstable. We checked
this when G is a semisimple real Lie group and I',, is a Zariski dense
subgroup of G.

The proof of Theorem 2.7 will last up to the end of this paper.

3. CONDITIONAL MEASURES

The aim of the first four sections of this chapter is to study a non-
invertible fibered dynamical system with an infinite volume fiber. We
study it through its restriction to a well-chosen subset of finite volume
in the fiber. The main output is Lemma 3.6 which gives a very simple
formula for the conditional expectation with respect to the restriction
of the o-algebras of the future events. It will be used in section 8.1.

In Section 3.5, we introduce a useful tool for studying probabil-
ity measures which are invariant by a Markov operator P when this
Markov operator commutes with a group L. This tool will be used in
sections 7.3 and 7.4.

3.1. Restriction and conditional expectation.

We prove in this section a simple formula relating condi-
tional expectation and restriction of o-algebras.

Lemma 3.1. Let (X,B,3) be a o-finite Lebesgue measure space and
A C B be a o-finite o-subalgebra. Let i : Y — X be a B-measurable
subset of X with finite non-zero measure, i ' A be the restriction of A
toY and By = ﬁﬂy

Then, for any non-negative B-measurable function ¢ on X, for By -
almost every x € Y, one has E(1y | A)(x) # 0 and
(3.1) E(poi|i A)(x) By [ A0

Note that every i~ '.A-measurable function ¢y on Y can be expressed
as o = @ o where ¢ is some A-measurable function on X.
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Proof. We first check that the denominator is non-zero for fJy-almost
every y € Y. We want to prove that the set Z := {x € X | E(1y |
A)(z) = 0} satisfies 5(ZNY) = 0. But Z is a A-measurable subset of
X, hence one has 8(ZNY) = [, E(ly | A)(x)df(z) =

We now check equality (3.1). We introduce the A-measurable func-
tion ¢’ on X equal to the right-hand side of (3.1) when the denominator
is non-zero and equal to zero if the denominator is zero. We want to
prove, for fBy-almost every x € Y, the equality E(poi | it A)(x) =
¢'(x). To this aim, we have to check, the equality

Léwwmwziéwwd&q

for every non-negative A-measurable function ¢ on X. We compute

[ [ sEay | awas = [ p1veas
X X X
and get the required equality by dividing by 5(Y). O

3.2. A fibered dynamical system.

In this section, we prove a conditional expectation for-
mula for a fibered dynamical system whose fiber has in-
finite volume.

Let (B,B) be a standard Borel space, i.e. isomorphic as a Borel
space to an interval, # a positive o-finite Borel measure on B and
T be a measurable endomorphism of B preserving 5. Let (X, X) be
a standard Borel space, M(X) the space of positive Borel measures
on X, B¥ the product B x X endowed with the product o-algebra
BX =B® X, m: BxX — B the projection on the first factor and 7%
a measurable transformation of BX such that 7 o 7% = T o 7. Let us
write, for (b,x) in B x X, TX(b,x) = (Tb, p(b)x).

Let b — v, € M(X) be a family of positive o-finite measures on
X. We assume that this family is measurable in the following sense:
there exists an increasing sequence (X,) of Borel subsets of X such
that X = J,, X,, and that, for any n, one has v4,(X,,) < oo for f-almost
any b and the map b — 14|y, is a Borel map from B to the space of
finite Borel measures on X,,, equipped with its natural Borel structure.

Suppose, for f-almost every b in B, one has vy, = p(b).vp. Set
3% to be the Borel measure on BX given by g% = fB a0 @ v, dB(b).
This positive measure 3% is T*-invariant (this follows from the same
computation as in Lemma 2.4 of [4]).

Various fibered dynamical systems (B~,BX, 3% T%) will play an
important role in this paper.
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For (-almost every b in B, let us denote by ] “'B the conditional
probability measure at b of 8 with respect to T!B, so that, for every
B-measurable and 3%-integrable function v : B — C and for 3-almost
every b in B, one has

E(y | T'B)(b) = / B G E ().

The following lemma improves Lemma 2.5 of [4].

Lemma 3.2. Let us assume that, for B-almost every b in B the map
p(b) : X — X is an automorphism of X. Then, for every BX-
measurable and 3% -integrable function ¢ : BX — C and for 3*-almost
every (b, z) in BX, one has the equality

E(p | (T%)71(B%))(b,2) Z/Bso(b’,p(b')lp(b)w) gy B ().

Proof. The only difference with Lemma 2.5 of [4] is that in Lemma 3.2
the positive measures 5 and v, are not assumed to be finite. The proof
is given by the same computation. U

3.3. A conditional expectation formula.

We apply in this section the simple formula (3.1) to ex-
tensions of Bernoulli dynamical systems.

Let (A, A, «) be a Lebesgue probability space and (B, B, 3,T) be
the one-sided Bernoulli shift with alphabet (A, A, «), that is B is the
product space B = AN, B is the product o-algebra, 3 is the product
probability measure 3 = a®Y and T is the shift given by T'(bg, by, ...) =
(b1, b, ...).

Let Z be a second-countable locally compact topological group, with
a given left Haar measure Az, and 6 : B — Z a measurable map. We
introduce the extension

(3.2) (B’,B%,3°,T").
The space B? is the product B x Z, the o-algebra B? is the product
o-algebra, the measure 3% is the product S® A, and the transformation
TY is given by, for (b, 2) € B?,

T%(b, 2) = (Tb,0(b)'2).
As soon as Z is not compact, the measure 3% has infinite volume. The

transformation 7 preserves the measure 3.
For n > 0, let 6, : B — Z be the function given by, for b € B,

0,(b) = O(b)O(T) - - - O(T" D).
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Let QY be the o-subalgebra QY := (T?)™"(B%). The drift argument in
section 8.1 is based on a formula for the conditional expectation with
respect to this o-algebra. Note that the intersection QY := N,5,Q? is
the tail o-algebra.

For a = (ag,...,a,-1) € A" and b € B we set

hpp(a) = aT™b = (ap, a1, - .., an1,bp, byg1, .. .)

As a varies, these elements parametrize the fiber 7-"(T™b) C B. For
B-almost every b in B, the conditional probability measures 3,; of 3
along T~"B are the images

(33) 6n,b = (hnyb)*a‘@”.
For ¢ = (b,z) € BY, we set
(3.4) hoe(a) = (aT™b,0,(aT™b)0,(b) " 2).

As a varies, these elements parametrize the fiber (7%)~"((T?)"c) C
B Lemma 3.3 below tells us that, for 4%-almost every ¢ € B, the
conditional probability measures (9 , of % along Qf are the images

0 = (hne)sa®".

n,c

Lemma 3.3. Let n be a positive integer. The conditional expectation
with respect to the o-algebra QP is given by, for every non-negative
B -measurable function ¢ and for 3?-almost every ¢ = (b, z) in BY,

Blo | @)(e) = | elhna(a)da®(a)
Proof. This follows from Formula (3.3) and Lemma 3.2 with X = Z
and with the constant family of measures b +— Az on Z. O

Since the measure 3% has infinite volume, it will be convenient to
introduce its restriction to a subset of finite volume. Let U be a Borel
subset of Z with 0 < Az(U) < co. We introduce the probability space
(BY,BY,3Y), where BY := B x U, BY is the product of B with the
Borel o-algebra of U and Y is the probability on B x U given by

pY = Az%U) (B® Az)|gv. Let QU be the sub-o-algebra of BY which is

the restriction of Q% to BY. It is the sub-c-algebra of BY generated
by the maps (b,u) — T™b and (b, u) — 6,(b)"*u. For BY-almost every
c=(b,z) in B x U, let ﬂg . be the conditional probability measure of
BY at ¢ = (b,z) € B x U along QY and set

(3.5) Ve=h,o(BY)={a € A" | 6,(aT"b)0,(b) "'z € U}.
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Let ¢ be a non-negative B?-measurable function on BY and denote by
¢, the restriction of ¢ to BY. By definition, for 8Y-almost every ¢ in
BY, one has

Bley 1000 = [ | po(¢) a8,

We introduce the notation
Ck®n<E1 N EQ)

for the conditional probability of two measurable subsets Fy, Fy of A™.

(3.6) a®" (B | Ey) =

Lemma 3.4. The conditional expectation with respect to the o-algebra
QU is given by, for every non-negative B?-measurable function o, for
BY-almost every ¢ = (b, z) in BY,

f v o(hn c(a))da®”(a)

U . Qn,c ’

(37) E(@U | Qn)(c) - Oé®n< g’c) )

hence, in other terms, for every B?-measurable subset K C BY, for
BY-almost every ¢ = (b, z) in BY,

(3.8) (K) =E(1x | Q)(c) = a®"(hy, o (K) | Q).

Proof. We first note that Lemmas 3.1 and 3.3 tell us that the denom-
inator in the right-hand side of (3.7) is non zero for 3Y-almost every
c € BY. These formulae follow also from Lemmas 3.1 and 3.3. U

3.4. Conditional measure, fibration and restriction.

We mix together in this section the results of sections 3.2
and 3.3.

We keep the notations and hypothesis of the previous section 3.3
which are related to the dynamical system (B?, B, 3’ T?) and its re-
striction to B x U. We keep also the data of section 3.2: the space
(X, X) is a standard Borel space, endowed with a B-measurable family
of positive measures b — vy; B — M(X) such that, for f-almost every
b in B, one has vy, = p(b).vp. These data allow us to construct the
dynamical system (B~ BX, X, T%).

We introduce the dynamical system (B%X, B%X %X T0X) where
the space B%X is the product B? x X, the o-algebra B%% is the product
o-algebra, the measure 3% is given by

gOX = /9 O(b,2) @ 1 dﬁe(b, z)
B
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and the transformation T%% is given by, for (c,z) = (b, z,z) € B%X,
T%%(b, z,x) = (Tb,0(b) "2, p(b)z).

As soon as Z is not compact, this measure %X has infinite volume.
The transformation 7% preserves the measure 3%X.
Let Q%X be the sub-o-algebra

(3.9) QiX = (T%%) = (B%X).

Note again that the intersection Q%% := M,50Q%% is the tail o-algebra.
For a = (ag,...,a,_1) € A" and (c,z) = (b, z,x) € B®X, we set

(3.10) Ben(a) = (aT™b, 0, (aT™)0,(b) 2, pn(aT™b)* pn (b)),

where p,(b) = p(T"7'b)...p(b). As a varies, these elements parame-
trize the fiber
(IO (T (e, ) € B,

The following lemma 3.3 tells us that, for 3%*-almost every (¢, x) €
B%* the conditional probability measures 3572, of 3%X along Q% are
the images

bX = (hn,c)*a®n-

Lemma 3.5. The conditional expectation with respect to the o-algebra
QX is given by, for every non-negative B®X -measurable function o,
and for 3%X-almost every (c,z) in B%X,

(311)  E(p| Q%) (ca) = / (T ea(a)) da™(a).

n

Proof. This is a consequence of Lemmas 3.2 and 3.3. U

Let again U be a Borel subset of Z with Az(U) < co. We introduce
the following probability space

(3.12) (BUX, BUX, gUX)

where BYX := BY x X, BUX := BY @ X and BY¥ is the probability
measure on BYX given by gVX = fBU Ob,2) @ Uy dpY (b, z). Let QU~X
be the sub-c-algebra of BYX which is the restriction of Q%X to BYX.

The drift argument in section 8.1 is based on a formula for the con-
ditional expectation with respect to this o-algebra: Formula (3.14).

For YX-almost every (c,z) in BYX, let ﬁf{cxx be the conditional
probability measure of 3YX at (c,z) along QY¥. Let ¢ be a non-
negative B%X-measurable function on B%* and denote by ¢, the re-
striction of ¢ to BYX. By definition, for 3Y*-almost every (c,z) in
BYX  one has

313 Ble, | Qe = [ o) dsiie )

BUxX
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Lemma 3.6. The conditional expectation with respect to the o-algebra
QUAX is given by, for every non-negative B®*-measurable function o,
for Y% -almost every (c,z) in BY x X,

v ©(hnex(a)) da®(a)
By, | QUF)e) = =

n,c

Hence, in other terms, for every B?-measurable subset K C BY x X,
for BYX -almost every (c,z) in BY x X, one has
(3.14) men(K) = E(1x | @0%)(c,2) = o (h e (K) | Qy) -

n,C,T n,C,T

We recall that the set Q. has been defined in (3.5) and that the
notation for the conditional probability measure has been introduced
in (3.6).

Proof. This formula follows from Lemmas 3.1 and 3.5. O

3.5. Conditional measure along the centralizer.

In this section we investigate the relationship between
probability measures v, which are invariant and ergodic
for some Markov operator P, and the orbits of a group
L of transformations commuting with P.

Let (X, X) be a standard Borel space and P be a Markov operator
on X i.e. a measurable family X — P(X);x — P, of Borel probability
measures on X. It induces a continuous linear map also denoted by
P L®X,X) = L®X,X); ¢ — Py where, for z € X, (Py)(x) =
Jx ¢(y) dP,(y). Suppose X is endowed with a Borel action of a locally
compact second countable group L and this action commutes with P
i.e. one has Py, = (P, for any ¢ in L and z in X, that is P(p o) =
Py ol for any ¢ in L>*(X,X) and ¢ in L. Let v a Borel probability
measure on X which is P-invariant and P-ergodic, that is, for every ¢
in L2(X,X), [, Pedv = [ pdv and, if Po = ¢, then ¢ is v-almost
surely constant.

Lemma 3.7. Let L, := {{ € L | l,v = v} be the stabilizer of v
in L. There exists a Borel subset E of X such that v(E) = 1, E is
L,-invariant and, for all ¢ € L~ L, one has {ENE = (.

Remark 3.8. Assume L is unimodular and its action on X has discrete
stabilizers and denote, for v-almost every z in X, by o%(z) the condi-
tional measure at = of v along the action of L as in [4, Sect. 4.1]. The
Lemma implies that, for v-almost any z in X, o¥(z) is a Haar measure
on L.
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Proof. According to Varadarajan’s theorem (cf. [28]), one can assume
that X is a compact metric space and that the action of L on X is
continuous. Let us denote by C°(X) the set of continuous functions on
X and by E the set of generic points for v i.e.

E:={rcX|VpecC'(X), %ZOS,K”P’%D@) — [x pdr}.

Since v is ergodic and since C°(X) contains a countable dense subset,
according to Chacon-Ornstein’s ergodic theorem, one has v(F) = 1.
Since v is L,-invariant and since the action of L commutes with P,
the set F is also L,-invariant. Conversely, if £ is in L ~ L, then /F is
the set of generic point for the P-invariant and P-ergodic probability
measure ,v. Since {,v # v, one has /E N E = (). 0

4. RANDOM WALKS ON SEMISIMPLE GROUPS

We develop in this chapter new crucial properties of random walks
on a product H of real and p-adic semisimple groups. We will apply
them in chapters 5, 7 and 8 to the Zariski closure of the adjoint group
AdT',. The reader may concentrate at first glance on the case where
H is a real semisimple group. We will choose notations very similar to
the standard notations in this case.

In sections 4.1, 4.2 and 4.3 we recall basic notations and facts on
semisimple algebraic groups, their random walks, their flag varieties
and their representations.

In sections 4.4 and 4.5 we recall from [9] asymptotic properties of
these random walks: simplicity of the Lyapounov, central limit theo-
rem, law of the iterated logarithm, local limit theorem, large deviation
principle, spectral gap of the transfer operator, and Holder regularity
of the Furstenberg stationary measure.

All these properties are used in section 4.6 and 4.7 to prove the “law
of the angles” (Theorem 4.19). In section 4.8 we deduce from the law
of the angles a control (Proposition 4.21) of the norm and the direction
of some vector that will be the “drift vector” later on in Lemma 8.2.

4.1. Products of semisimple Q,-groups.

We first recall some basic facts on real and p-adic semisim-
ple algebraic groups. We refer to [27] for a more detailed
account of the structure theory in the p-adic case.

Let Q, be the field of p-adic numbers when p is a prime number and
let Qo be the field of real numbers. Let {00,2,3,5,...} be the set of
prime numbers including oo and S be a finite subset of it. We let Qg
be the locally compact algebra @pe s Qp.
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For each p in S, let H, be a connected semisimple algebraic group
defined over Q, and H, be the group of Q,-points of H,. Let H =
[I,es Hp and H be the Borel o-algebra of H.

By definition, a minimal parabolic subgroup P of H is the product
P = Hpe ¢ P, of the groups P, of Q,-points of minimal parabolic sub-
groups of H,,. Similarly a maximal split subtorus A of H is the product
A= Hpe g A, of the groups A, of Q,-points of maximal Q,-split subtori
of H, and so on, allowing us to use the language of semisimple algebraic
groups in this product situation. We fix such A and P with A C P
and let U = [[ U, be the unipotent radical of P. We denote by X the
set of restricted roots of A in the Lie algebra of H and by Il C X the
set of restricted simple roots associated to P. The group U is spanned
by the unipotent one-parameter subgroups of H whose Lie algebras are
contained in the union of the weight spaces associated to the elements
of IT. The homogeneous space Pr := H/P is called the full flag variety.

For © C II, we let Po be the standard parabolic subgroup of H
associated to O, that is the subgroup of H spanned by P = P and
the one-parameter unipotent subgroups of H whose Lie algebras are
contained in the union of the weight spaces associated to the —a, o €
[T\ 6. We let Ug denote the unipotent radical of Pg, that is the group
spanned by the one-parameter unipotent subgroups of H whose Lie
algebras are contained in the weight spaces associated to the positive
roots aw which may not be written as linear combinations of the elements
of T\ ©. We set Pg = H/Pg and we let ng denote the fixed point of
P@ in P@.

Let Z =[] Z, be the centralizer of A, so that P = ZU and Z/A is
compact. Any continuous homomorphism A — R extends in a unique
way as a continuous homomorphism Z — R. More precisely, let a be
the dual space of the real vector space of continuous homomorphisms
A — R: the dimension of a is the sum of the relative ranks of the groups
H,, p € S, and there exists a unique continuous morphism w : Z — a
whose restriction to A is the natural morphism A — a. If, for some p in
S, x + Ay, — Q5 is a rational character, we let x* be the unique linear
form on a such that, for any a in A, x*(w(a)) = log |x(a,)|, where a, is
the p-th component of a. We can see ¥ as a root system on a and II¢
as a set of simple roots for ¥. We let a™ (resp. a™™) denote the Weyl
chamber (resp. the open Weyl chamber) associated to I1“ and we set
Zt =w(a") (resp. ZTt =w (atT)).

For © C II, we let Zg be the reductive subgroup of Pg that contains
A and we set Ag = (), cn.o kera and ag = (), e o kera®. One has
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Py = ZgUg. Again, the natural morphism Ag — ag extends in an
unique way as a morphism wg : Zg — ag.

Let K =[] K, be a good maximal compact subgroup of H, where
good means that the image in Aut(A) of the normalizer of A in K
contains the relative Weyl group. Such a K always exists. One has
the Cartan decomposition H = KZ"K. For every element h € H,
we choose a decomposition h = kpzpl, with k, € K, 2, € ZT and
¢l € K, even though this decomposition is not unique. We introduce
the Cartan projection x : H — a;h +— k(h) 1= w(zp).

4.2. Random walks on products of semisimple Q,-groups.

We recall now the construction of Furstenberg’s bound-
ary map for products of independent identically distri-
buted elements of H.

Let 1 be a Borel probability measure on H, I’; be the smallest closed
subsemigroup of H containing the support of ;1 and I', be the smallest
closed subgroup of H containing the support of u. We assume that,
for all p, the projection I, of I', in H,, is Zariski dense in H,. We let
i be the probability measure on H which is the image of y by the map
h+— h71L.

We do not assume in this chapter that p has compact support, but
from section 4.4 on, we will assume that p has finite first moment and
from Proposition 4.5 on, that p has finite exponential moments. All
these integrability conditions are satisfied when p has compact support.

The main difference between the real case and the non-archimedean
one is that, when p is finite, the action of I',, on the full flag variety
H,/P, might be non proximal. We set

O, ={acll| ozw(/i(F;)) is unbounded}.

The set © is then the image of ©, by the opposition involution ¢, that
is the opposite of the unique element of the Weyl group of »“ that
sends at to —a*. We write P, = Po,, P, = Peo,, a, = ae,, etc. We
know from [2] that ©, is the largest subset of II such that the action
of Iy on P, = Pe, is proximal and that, for any o in II \ ©,, one
has sup,cpt a?(k(h)) < oo. According to a result of Goldsheid and
Margulis that we will not use, when S = {oo}, one has ©, = II. We
denote by &M = ne, € P, the fixed point of P, in P,. This is the only
attractive fixed point of the elements of Z** in P,. We let Qf be the
complement of its attraction region. For h € H we set &Y := k&
and Q' = E,ZIQB”. The set Qj" is a maximal Schubert variety i.e. a
maximal closed subset Q ¢ P, which is invariant under some conjugate
of U. The point &M is called the density point of h in P,. Similarly,
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we denote by 7" € P, the repulsive fixed point of all the elements of
Z** (that is, the fixed point of the parabolic subgroup opposite to P,
with respect to A) and, for h in H, we set & := ¢, &) so that &7 is
the density point of A1 in Pj.

Let (B, B,3,T) be the one-sided Bernoulli shift whose alphabet is
(H,H,u). We recall (see [9] for example) that there exists a unique
B-measurable map

§: B — P,b— & such that & = boéry,

for B-almost every b in B. The image probability measure &, is then
the unique p-stationary probability measure v, on P,. For any proper
algebraic subvariety Q of P,, one has v,(Q) = 0. In the same way, we
let v; denote the unique fi-stationary probability measure on P.

Let s : P, — H/U, be a Borel section of the projection H/U, — P,,.
The Iwasawa decomposition H = K Py allows us to choose the section
s in such a way that, for every k in K,

s(kP,) = km(k)U, with m(k) € Z, N K.

The group Z,, acts simply and transitively by right multiplications on
P,/U,. One denotes by o : H x P, — Z, and og : H x P, — a,, the
Borel cocycles given by, for all A in H and all n in P,,

hs(n) € s(hn) o(h,n),
and

or(h,n) = wu(o(h, n)).

There exists a compact subset L of Z, such that, for any h in F:j and
n in the support of v,, o(h,n) belongs to LA, = A, L.

By using the equivariant map £ and the cocycle o, we can define
natural maps 0 : B — 7, g : B — a, and, forn > 1,0, : B — Z,,
Orn 1 B — a, as being the B-measurable functions given, by, for (-
almost every b in B,

(4.1) 0(b) == o (bo,&rw) = o(by 5 &),

(
0,(b) == 0(b) - 0(T"'b) = o(bo - - - b1, Erme),
Ox(b) := owr(bo, &7)
and O n(b> Zo<k<n (ka) = UR(bO b, ST”b)'

4.3. Flag variety, representations and duality.

In this section we explain the relation between the action
of I',, on the irreducible representations of H and on the
flag variety of H.
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By a representation of H, we shall mean a finite product V =
[I,esVp of algebraic representations of H,, in a Q,-vector space V.
In this section we will only consider irreducible representations of H,
i.e. the case where V' is equal to one of the V, and is an irreducible
representation of H,.

Let p € {00,2,3,5,...} and V be a finite dimensional Q,-vector
space, endowed with a good norm, that is a euclidean norm if p = oo
and a ultrametric one if p is finite. We consider V as a Qg-module
through the natural projection map Qg — @Q,. We let V* denote the
dual space of V and, for any subset W of V*, W+ denote its orthogonal
in V. We also let Gr(V') denote the Grassmann variety of subspaces
of V. ItV =V, ®---&®V, is a decomposition of V' into a direct sum
of subspaces, we say that this decomposition is good, when p = oo,
if it is an orthogonal decomposition and, when p is finite, if for any
v1,..., 0 in Vi, ..,V one has ||ug + - - - + v, || = max <<, ||v;]]. There
exists a unique good norm on A%V such that, for any good direct sum
Vi @ Va C V, the direct sum A2V @ (Vi A Va) @ A%V, is good and, for
any v; € V; and vy € Vs, one has [|v; A vg]| = ||vr||||ve]l. The distance
associated to the norm on the projective space P(V') is then given by,
for two lines z1, x5 in P(V') generated respectively by v; and vy in V|

[|va Ava|
d — WAl
(@0,22) = o el

For any v # 0 in V and any ¢ # 0 in V*, the quotient

(4.2) 3 (Qpu, Q) := %

is equal to the distance in P(V') between Q,v and ker ¢:

3 (Quu, Qpp) = d (Qpu, ker ).

Note that this equals 1 if and only if ¢(v) # 0 and the decomposition
V = Quv @ ker ¢ is good.

Now let V' be an irreducible representation of H, which therefore
factors through H, for some p in S. We endow V' with a good norm
II.Il. - We may assume that this norm is (K, A)-good i.e. that it is
K-invariant, that, on each weight space for the A-action, Z acts by
similarities and that the decomposition of V' as the sum of these weight
spaces is good (see [23]). There exists a highest weight x among the
weights of A in V, in the sense that, for any other weight x’ of A in
V, x — X' is a linear combination with nonnegative integer entries of
elements of II. Let V) be the corresponding weight space of A in V', so
that PV, C V.
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For © C II, we let xo be the restriction of x to Ag and V, be the
corresponding weight space for Ag in V. Then V, is the sum of weight
spaces of A in V which are associated to weights x’ such that y — x’
is a linear combination with nonnegative integer entries of elements of
IT ~ ©. This space is also exactly the space of fixed points of Ug in
V. For any point n = hne of the flag variety Pg, we set V; to be the
vector subspace of V' given by V, := hV,,: it is invariant under the
stabilizer of n in H. The map n — V;, is a H-equivariant map from Pg
to Gr(V).

In case ©® = ©,, as usual, we write x, = xe, etc. Let us use the
objects defined in this section to give estimates for an element of F;“
of the growth speed in a given representation and of the contraction
speed in the associated projective space:

Lemma 4.1. (Contraction and growth in P(V')) Let V' be an irreducible
representation of H with highest weight x equipped with a (K, A)-good
norm. There exists C' > 1 such that, for any h in '} and v in V \ {0},
one has

(4.3) d(@ShU,PO/{éw)) < max e_aw(ﬁ(h))d(@sv,P((Vin)J'))_l

a€By,
and
w | 1 .
14 o) > 1S L ) g g, B((VE L)),
w2 Qs BV

Proof. Writing h = kp 21, we are brought back to proving analoguous
inequalities when h belongs to Z7, the values a*(k(h)), o € IINO,,, are
bounded, ‘/6}]2/[ is replaced by V., and (Vg’;YLn)l is replaced by the unique
A-invariant complementary subspace to V, . In this case, the result
follows from direct computations using the definition of the distance
in projective space and the fact that the involved decompositions of V'
are good ones. ([l

For -almost every b € B we set V3, := V¢, , so that V; = byVrpy.

Lemma 4.2. Let V be an irreducible representation of H with highest
weight x equipped with a (K, A)-good norm. There exists C > 1 such
that, for B-almost every b in B, for any n > 1 and v in Vpay, one has

) 1 .
e [ L A e ]

Proof. By definition, we have
bo - -+ bu_15(Ems) = 5(bo - - - br—167ms) 0 (D),
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thus, as s takes its values in KU, ||by- - by—10]| = ||0n(b)s(Ernp) 0.
Now, by construction, s({z7ny) v belongs to V,, and 6,,(b) belongs to
LA, where L is a fixed compact subset of Z,. The result follows. [

Let us now explain how the action of H on P, can be described
thanks to the action of H on the projective spaces of finitely many
representations. For each simple root o € II, there exists an irreducible
representation (p,, V,) whose highest weight x, has multiplicity one
and is orthogonal to all the other simple roots o # «. When « is in
©,, this representation is p-proximal, that is the space (V4)(y.), also
has dimension one. We then have a H-equivariant embedding

PM - H P (Va) 1= (Va,n)ae@u'
acO,
In the same way, one has a H-equivariant embedding

Pi— 11 BV 0= (Vi)ace,

a€®,

We endow the representations V,, with (K, A)-good norms and we equip
P, and P, with the induced distances. For any n in P, and ¢ in Py,
we set, using the notation (4.3),

5(777 C) = c{relg,ll §(Va,n7 Voig)a

in such a way that one has d(n, () # 0 if and only if (n, () belongs to
the open H-orbit in P, x P;. We denote by Q¢ & P, the maximal
Schubert variety given by

Q¢ :={n€P.|dn () =0}

Note that, by construction, for any h in H, one has Q)" = Q¢m.

If Q is a maximal Schubert variety in P, and n belongs to P,, we
shall sometimes use the convention 6(n, Q) = d(n, (), where ( is the
unique element of P, with Q = Q..

We fix a norm on the real vector space a. We have the classical

Lemma 4.3. (Contraction and growth in P,) There ezists C > 0 such
that, for all h in F; and n in P, one has

d(hnygﬁj) S m%X e_o‘w(“(h))é(n’ Q;;n)_l
acO,,

and
[k(h) — or(h,n)|| < Cllog(6(n, Q)|
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Proof. The first inequality is a translation of Lemma 4.1, applied si-
multaneously in the representations V,,, o € ©,,. The second is proved
in the same way, once one has recalled that supcp+ d(k(h), a,) < o0
and that the linear forms x¥, o € ©,, span the dual space of a,. U

4.4. Limit laws.

We now state various limit laws for products of indepen-
dent identically distributed elements of H.

We assume first that p admits a finite first moment [, [|x(h)[| du(h) <
0o. According to Osseledets’ theorem, there exists an element o, in a,,
such that, for S-almost every b in B, one has

1
— k(b1 -+ - bg) —— 0.
n n—oo

We have 0, = foPH ord(p®@v,) = [ 0rdS.
The following statement, originally due to Furstenberg, has been
extended to the general case by Guivarc’h and Raugi (see [18] or [9]):

Proposition 4.4 (Simplicity of the Lyapounov exponents). For any
a in ©,, one has a®(c,) > 0.

JFrom now on, we assume that p admits a finite exponential moment:
[i e IF ™l dgu(h) < oo, for some 7 > 0.

Let b, be the vector subspace of a, spanned by the elements of the
form og (7, fj )—no,, where vy is an element of F:j which can be written
as the product of n elements of the support of 1. We set e, := dimg b,,.

Proposition 4.5 (Central limit theorem). There exists a non degen-
erate positive quadratic form ®, on b, such that, denoting by dT the
Haar measure on b, which gives mass 1 to the unit cube for ®,, for
B-almost every b, for all ¢ € C.(a,), one has

1 1
lim [ ¢(—=(k(h) —no,))dp™(h) = ——
i [ A (h) = o)) () =
This proposition is proven in [9)].
Here comes the version of the law of the iterated logarithm we will
require.

/ o(T)e 2% 4T,
b,

Proposition 4.6 (Law of the iterated logarithm for ). For (3-almost
every b in B, one has

, K(bp—1 -+ bo) —noy,
1 ) =1.
1£Ln_>8£p ”( v2nloglogn
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This proposition is proven in [9].

We now want to state a local limit theorem.

To deal with the p-adic factors of H, we need to introduce a group
A, a vector v, a function ) and a measure II,. If S = {oo}, we will
have A, = a,, v, =0, ¥ =0 and II, = dT. In general, according to
9], there exists a smallest closed subgroup A, of b, such that there
exists v, in b, and a Holder continuous function ¢ : P, — a, such
that, for y ® v,-almost every (h,n) in H x P,

(4.5) or(h,n) +(hn) —1(n) € o+ v, + Ay .

The group A, is cocompact in b,. We let 7, be the Haar measure
of A, which gives mass one to the unit cubes of ®, in the connected
component of A,. Let II, be the measure on a,, average of translates
of m,, given, for C' C a,, by

I1,,(C) = /X T () +C) i ().

For n > 1 and n € Supp(v,), we introduce the positive measure A, ,,
on a, given by for every ¢ € C.(a,)

(4.6) M) = /H p(or(hn) — no,) du™(h).

Here is the version of the local limit theorem with moderate deviations
that we will need. We keep the notations of Proposition 4.5.

Proposition 4.7 (Local limit theorem). We fiz a bounded convexr sub-
set C C ay, and € > 0. Then one has the limit,

lim (27rn)67ue%2(sn))\nm(vn+0) — IL,(v,—nv,—(n)+C) = 0.

n—oo

This limit is uniform for n € Supp(v,) and v, € a, with ||v,| <
ey/nlogn.

This proposition is proven in [9)].

4.5. Large deviations, spectral gap and Holder regularity.

We pursue our description of the asymptotic behavior for
products of independent identically distributed elements
of H. We recall the large deviation principle for the
norm of this product, the exponential speed of equidis-
tribution on the flag variety and the Hoélder regularity
for the Furstenberg stationary measure.

We use then these facts to prove the version of the law
of iterated logarithm that we will use in the proof of the
“law of the angles” in section 4.7.
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Proposition 4.8 (Large deviations principle). For every € > 0, there
exists a > 0 and ng > 0 such that, for all n > ng and all n € P,, one
has

W ({h € H | low(h,n) = noul| = ne}) < e,
W ({h € H | ||r(h) — na,|| > ne}) < e .

This proposition is proven in [9].

For o € (0,1), let us denote by H*(P,) the Banach space of a-
Holder continuous functions on P, endowed with the norm, given for
all ¢ € H*(P,), by

lp(n) — ()]
d(n,¢)>

Proposition 4.9 (Exponential speed of equidistribution). For any
small enough aq > 0, there exists ag > 0 and ng > 1 such that, for all
o € H*(P,), all n > ng, and alln € P, one has

[lla = sup |p(n)] + sup
n n#¢

< oo

‘ /H () dp™™ () — /P #(0) A, (Q)

This is a direct consequence of the spectal gap for the Markov oper-
ator on the space H*(H/P,) (see [9]).

Proposition 4.10 (Holder regularity of v,). For ag > 0 sufficiently
small, for all ¢ € Py, one has v,(Q¢) =0 and

/ 51, ¢)~" du(n) < co.
Pu

This proposition is proven in [9].

Corollary 4.11. For az > 0 sufficiently small, there exists a constant
Cs > 1 such that one has, for all € > 0 and all mazimal Schubert
vartety Q & P,

v({CE€PL]6(¢,Q) <e}) < Cse™.

This corollary is a straightforward application of Proposition 4.10.
Note that this corollary is more precise than Corollary 4.2 of [11] since
we give here an upperbound for the mass of a neighborhood of a max-
imal Schubert variety instead of the neighborhood of a point.

Recall the function 6 on B has been defined in (4.1).
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Corollary 4.12 (Law of the iterated logarithm for 0g). For (3-almost
every b in B, one has,

. H]Rn(b) — no
1 P, ————=-=t)|=1
e ”<\/2nloglogn>

The proof relies on the following

n—oo

Lemma 4.13. For (3-almost every b, one has

. | log 6(&rms, Dpg. 5, )]
lim sup < 00
n—00 logn

Proof. Fix C' > 1. For any integer n, we have

B({be B | 8(Ern O, ) <n~C}) =
/H B({b € B | 8(Erm, Q) < n~C}) du™ ().

As T B = €8 = v, by Corollary 4.11, there exists a > 0 and ng > 1,
such that, for all n > ng and h € H, one has

B{b€ B 6(&rm, Qi) <n™}) = v,({C € Pu | 0(¢, Q) <n™Y)

g nfCa'

One chooses C' > a~! so that the series Y n~%* converges. Then, by
Borel-Cantelli’s Lemma, for g-almost every b in B, one has, for n large,
5<€T"b7 Qgg...bn_l) Z n_c‘ U

Proof of Corollary 4.12. Recall that ¢ : @ — a denotes the opposition
involution. One easily checks that one has o, = ¢(0,) and ®; = ¢, 0.
Thus, applying Proposition 4.6 to fi, one gets, as, for any h in H,
k(h™1) = u(k(h)), for S-almost any b in B,

. /‘i(bg e bnfl) — no

1 d ) =1.
e “( V2nloglogn

But, from Lemmas 4.3 and 4.13, we get

lim sup q)u <’f(bO e b’il(;g1> - QR,n(b)) < 00.
n

n—oo

n—oo

The conclusion follows. O

4.6. Exponential convergence of the density points &.

We use the results of the previous section 4.5 to get a
control with an exponential precision on the position of
the density point &M of a word h of length n outside a set
whose (-mass decreases exponentially with n (Corollary
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4.18). Similar results when H is a real semisimple group
were obtained independently by Richard Aoun in [1].

We will use this Corollary to prove the “law of the
angle” in section 4.7.

Lemma 4.14. There exist constants oy, s, a3z € (0,1), Cy > 0 and
ny > 1 such that, for all n > ng, € €]0,1[, n € P, and Q & P, a
mazximal Schubert variety, one has

pwm{h e H|d(hn, Q) <e}) < Co(e™ + e "¥2e™).

Proof. Let p: [0,00) — [0, 1] be the piecewise affine function such that
p(t) = 1 for t € [0,1], p(t) = 2 —t for t € [1,2] and p(t) = 0 for
t > 2. We choose positive constants oy, ap from Proposition 4.9 and
positive constants ag, C3 from Corollary 4.11. There exists a constant
Cy > 2C}5 such that for any € €]0, 1], for any maximal Schubert variety
Q ¢ P,, the function ¢ : P, — [0,1];n — ¢(n) = p(2d(n, Q)) is
ai-Hoélder continuous and satisfies ||¢]la, < Coe™®'. Then for n large
enough, for all n € P,, one has

MW%EHMWm®§?D§L¢®WMWM

SLw@MKHfWWM

o

< Co(e* 4 e ¥2e7).
This proves our claim. U

Corollary 4.15. For every ay > 0 there exists a constant as > 0 and
an integer ng > 1 such that, for n > ng, for alln € P, and all mazimal
Schubert variety Q & P, one has

(Z) N*n({h eH | (5(h77, ) < _”a4}) < e e
(ZZ) M*n({h c H | 5(5}1 , ) < _”a4}) < e "o
(ZZZ) ,M*n({h € H | 5(7], Q’,;”) < _"044}) < —naG‘

Proof. (i) This inequality is a consequence of Lemma 4.14 applied with
e = e ", We may assume a4 small enough to have ajay < ay. We
choose then ay = %miIl(Oéqu, g — aqay).

(71) This is a consequence of (i) and of the large deviations principle.
We note that the set of maximal Schubert subvarieties Q@ & P, is
compact for the Hausdorff topology. Hence there exists ¢y > 0 and
a finite set I of points n in P, such that for any maximal Schubert
variety Q & P, some 7 in F' satisfies d(n, Q) > ¢¢. Thus, by Lemma
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4.3, for any h € H, for at least one of these points n € F', one has
d(n, Q1) > e¢ and hence,

(&M hn) < e max e~ (K1)
acB,

Applying Propositions 4.4 and 4.8, one finds constants ¢; > 0, a5 > 0
and ng > 0 such that, for n > ng, one has

:u*n({h e H | \V/T] eFr d(gljy’ hn) > e‘”h}) < 6—na5/2’

By Corollary 4.15.7, after eventually taking a smaller a5 > 0 and a
larger ng > 0 one can also assume that, for n > ng, one has

M*n({h € H | El?’] e F (S(hn’ Q) < Qe—noa;}) < e—na5/2.

Our claim is a consequence of these two inequalities (4.6) and (4.6),
since we can choose a4 such that a4 < t;.
(7i1) This statement follows from (ii) applied to f. O

Corollary 4.16. There exists a constant ag > 0 and an integer ng > 1
such that, for n > ny, for alln € P,,

wr({h € H|d(hn, &) > e ™)) < e s,
Proof. Again by Lemma 4.3, for all » in H and 7n in P, one has

d(hn, &") < max =6 (y, Q).
a€By,

Again by Propositions 4.4 and 4.8, there exist constants ¢; > 0 and
a > 0 and subsets E, of H with p*"(ES) = O(e~*"), such that for all
h € E, one has min,co, a“(k(h)) > tin.

Applying Corollary 4.15 (ii7) with oy < 1, one gets a constant as >
0 and a subset F, of H with p**(FS) = O(e”*"), such that for all
h € F, one has d(n, Q)') > e "*. Hence, using Lemma 4.3, for h in
both E, and F,, one has d(hn,&M) < e~(i=a)n . One chooses ag =
%min(a, as, ) — o). U

The next Proposition is the main result of this section. It gives a
quantitative version of the statement that the density point 5{2{“% of
a random word h; - - - h, mainly depends on the first letters hyq, ..., hy,.

Proposition 4.17. There exists a constant c; > 0 and an integer
ng > 1 such that, for all p > n > ny,

PP {(hay - hy) € HP [ d(&hnys Einpoon,) = €"07}) < €707,
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Proof. Fix a point n € P,. According to Corollary 4.16 applied to the
points hpy1 ... hyn € P, there exist ag > 0 and ny > 1 such that, for
no <n <p,and all (hp41,...,h,) € HP7".

pE ({(has oo b)) € H™ [ d(hy .. hpn, &7, ) > €70 }) < e,
Averaging with respect to the law u®®™ one gets

W ({(hns o hy) € HP [ dlh . o, €10.) = €70)) < e,
In the special case where p = n, this can be written as

pEP{(ha,y o hy) € HP [ d(hy .. hyn, &y ) = e7P00}) < eP0,
Combining these last two inequalities, one gets

W (e, ) € HP (G, 6 ) = 2e790)) < 267,
To conclude, one just has to take a7 = %O{G and n large enough. 0

Corollary 4.18. (Convergence of the density points) There exists a
constant ag > 0 and an integer ng > 1 such that, for all n > ny,

BUbe B Wp=n, dEl, &) <eP}) >1-em.

Proof. Using the equality, & = bg - - - b,_1&rnp, for f-almost every b €
B, and applying Corollary 4.16 with the point n = &nyp, one gets the
existence of a constant ag > 0 such that, for n large,

BHb € B | d(8hy.p,,_, &) > eT"0}) < e

Hence
M —pa —pag e e
ﬁ({b €B ’ Eip >n, d<€bo'~bp_17£b) >e? 6}) < ze P = 1—e "
p=n
One concludes taking again ag = %ozﬁ and n large enough. U

4.7. The law of the angles.

The aim of this section is the law of the angles. This
law is the asymptotic law with respect to the conditional
probability measures 37, as n goes to oo of the density
points 51:54-6; - It plays7 a crucial role in the drift argu-
ment of section 8.1.

Let us consider the dynamical system (B?,B?, 3%, T?) introduced in
section 3.3 where Z = Z,, and 0 : B — Z,, is the function defined in
equation (4.1). The space BY is the product B x Z,, the o-algebra B°
is the product o-algebra, the measure 5? is the product S® A z, and the
transformation T is given, for (b,2) € BY, by T?(b, z) = (Tb,0(b)"'2).
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Let Q% be the o-algebra QY := (T%)~"(B?), let C be a ball of radius
R in a, and set U to be the open neighborhood of the identity in Z,
given by U := w;'(C'). We choose R so that every open ball in b, of
radius R—2|¢||c meets A,. This condition will ensure, at the very end
of this section, that the denominator of the ratio F), 2(a) is uniformly
bounded below. Let Qg be the o-algebra which is the restriction of sz
to BY := B x U and, for gY-almost every ¢ = (b, z) in B x U, let ﬁfl]’c
be the conditional probability measure of 3V at ¢ along QU.

The following Theorem 4.19 identifies the asymptotic law of the den-
sity points fé\,f L the p-stationary probability measure v, and the
law of the density points for the inverses gmebLl = gg‘g[’n_l)‘lm(%)‘l as
the fi-stationary probability measure v;.

Theorem 4.19 (Law of the angles). For 8Y-almost every ¢ = (b, z) in
BY| one has, for any continuous function @ on P,,

(47) /BU @(6%_1“1}6) dﬁg’c(b/’ z/) RN (pdVM,

n—oo P,
o

and, for any continuous function ¢ on Py,

48 [ e ) = [ el

n—00 P
[

Proof of Theorem 4.19. We will only prove (4.7) since the proof of (4.8)
is similar. Set

(4.9) ¢n := [logn]* and p, :=n — q,.

Equation (4.7) is a consequence of the following two equations,

@10) [ el ) = el )| a8 0,

(4.11) / (€N VABUL (W, ) —— v(9).

To prove (4.10), we only have to check that, for any & > 0,
(112) AL ) € BY [ dE &y ) =P —0.
According to (3.8), the left-hand side of (4.12) equals
pE{(h, - ) € Qe L d(Ehony s Ehony, ) 2 E3)

pe(QY,) ’

(4.13)

where, setting zg := w,(2),

7({,0 - {h’ S H" ‘ O-R(h’la cee hnagT"b) € QR,n(b) — 2R + C}
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On one hand, by Proposition 4.17, the numerator in (4.13) is, for n
large, bounded above by e~®7% hence by our choice (4.9) of g,, it
is bounded above by any negative power of n. On the other hand,
according to the law of the iterated logarithm for fx (Corollary 4.12),
for B-almost every b € B, one has

|0r.n(b) — no,|| = O(y/nloglogn)

Thus, by our choice of R and by the local limit theorem (Proposition
4.7), the denominator in (4.13) is, for n large, bounded below by a
negative power of n. This proves (4.10).

Let us now deal with (4.11). For a in B, set
U o=1he " |op(hy-hy a1 ag,Ernp) € Opn(b) — 2r + C}.

n,c,a

Again by (3.7), the left-hand side of (4.11) equals

Rpn U
/ ol ) Cnca) 45y

pE(QF )
As, for f-almost any a in B, fé‘g,,,a —— &, (for example by Corollary
a—1 q—00
4.18) and &, = v, (4.11) follows from Lemma 4.20 below. O

Lemma 4.20. The sequence of functions

PP (@ )
pE Q)

goes to 1 in LY(B,B,3) as n — oc.

EF,:a—

Proof. For n > 0, a in B and hy,...,h,, in H, we have

or(h1 - hp,aq, 1 ao,&rny) = or(ha -~ hy,, ag,—1- - aokrap)
+ or(ag, 1 ag, Erne)-
Now, by the large deviation principle (Proposition 4.8), there exist
subsets £, of B and « > 0 such that B(ES) = O(e”“) and that, for
all @ in E,,
(414) U]R(aqn—l © - Qop, gT"b) —qn0y = O((lOg n)Q)
As above, by Corollary 4.12 and Proposition 4.7, one has

B(EY,)
/E Fadi < s

c
n

Set
Uy, = Op n(b) — noy, — 2w
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and, for a in F,,

(4.15) Wy, = or(Qg,—1 - Ao, ETny) — GOy

By Corollary 4.12 and (4.14), uniformly for a € E,,, we have

(4.16) o]l = O(y/nloglogn) and |Jw,| = O((logn)?),

so that, by Proposition 4.7, on E,,, the function F,, is uniformly equiv-
alent to the product F), ;F,, » where

CHI = Tl 000 O
’ " HM(Un—nUu—¢(anb)+C)

and 7, = ag,—1 - aoérnp. By (4.16), we have

le (CL) =

efﬁ(bu(vn)

Lim anlvnl? = lim llvnlwn |l = lim llwn ]I =0
n—oo n2 n—oo n n—oo n
hence F,1(a) —— 1 uniformly for a in E,. When S = {oo}, the
n—oo

measure II,, = 7, is invariant by all the translations of a, and F,, » = 1.

In general, II, is invariant only by the translations of the cocompact
subgroup A, of b,. However, according to Equations (4.5) and (4.15),
the element w,, +1(n,) — ¢ ({rmp) — ¢uv,, belongs to A,,. Hence one still
has F,, o = 1. O

4.8. Conditional behavior of the random walk.

Using the “law of the angles” (Theorem 4.19) we control
in this section the norms and the attracting directions in
a given representation of H of most of the words with
respect to the conditional probability measures 5,2{ o

The following Proposition 4.21 is similar to Corollary 5.5 of [4]. The
main difference is that we are not dealing with products of independent
identically distributed elements of H anymore.

Proposition 4.21. (Drift control) Let V' be an irreducible representa-
tion of H. For every a > 0, there exists rg > 1 such that, for Y -almost
every ¢ = (b, z) € BY, there exists ng > 1 such that for n > ngy, for any
v in 'V~ {0} and any n in P,, one has, with ¢ = (V',2'),

1
417) B € BY [ bh..0,_yv] = T—Ollbé--bZHHHvH}) >1-a

and

(4.18)  BY.({c' € BY | d(Qgsb}..b,, v, by..b),_P(V;)) < a}) > 1—a.
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Recall that, in section 4.3, we have defined the map
Py — Gr(V)in sV,

as the map sending some 7 = hne, to the space RV, where VUr is
the space of U,-invariant vectors in V.

Proof of Proposition 4.21. We first prove (4.17). For any x in P (V),
set
Q, ={¢ € Pulz C (VI)"}
As Q, is a proper algebraic subvariety of P, we have v;(Q,) = 0. For
e >0, set
QS = {¢ € Puld(x, P((V7)1)) < ¢}
According to Equation (4.4) in Lemma 4.1, to prove (4.17), it suffices
to establish that, for fY-almost any ¢ = (b, z) in BY,
(4.19) lim limsup sup BY {(V,?) € BY|&r., € Q) =0.
e—0 n—00 IGP(V) ’ 0 n—1

We shall prove this statement by contradiction. By Theorem 4.19,
for 3Y-almost every ¢ = (b,2) in BY, (4.8) holds for any continuous
function ¢ on Pj. Assume (4.19) does not hold for such a c. Then,
there would exist sequences (ex) of positive numbers, (ny) of integers

and points zj € P(V') with g — 0 and n; — oo and
p=inf 8Y {(t,2")e BY|&r , € Q%) >0.
k 0 np—1 k

ng,C
After extracting a subsequence, one can suppose x; — x for some point
z € P(V). As 13(Q,) = 0, there exists & > 0 such that v,(Q%) < 1p.
Thus, if we set, for ¢ in Py,
]' *
P(€) = max(0, 1 = Zd(a, P((V))

the nonnegative continuous function ¢ satisfies fpv pdy, < %p. Now,
L
on the one hand, by (4.8), we have

—00

1
e ) dsy (v, dv, < =
[ PG, A o [ edn< g

and on the other hand, by the triangle inequality, as soon as k is large
Qi C Q3/?, hence ¢ > 5 on Q% and

m 1
/BU ¢(§b6...b;k71)d gmc(b,,zl) > §p,

whence a contradiction. This proves (4.19).
We prove now (4.18). For any W :=V, C V, set

Qw = UycwQy and Qj :=U,cw Qy,



34 YVES BENOIST AND JEAN-FRANCOIS QUINT

where the unions are over the lines y € P(V) included in W. As
W =V, Qw is a proper algebraic subvariety of P;, and we still have
vi(Qw) = 0.

According to Equation (4.3) in Lemma 4.1, to prove (4.18), it suffices
to combine (4.19) with the fact that, for 3Y-almost any ¢ = (b, 2) in
BU.

(4.20) lim limsup sup 8Y {(¥,7) e BY|&r ., € Q5 ) =0.
e—0 N—00 Wcv ) 0 n—1
where the sup is over all the subspaces W of the form V;, for some 7 in
P,.. The proof of (4.20) is exactly the same as the one of (4.19).
[

5. DYNAMICS ON HOMOGENEOUS SPACES

The first two sections of this chapter describe the class of S-adic
groups which we will be working with. The other sections contain a
collection of technical facts on the dynamics on homogeneous spaces
that we will use in the proof of Theorem 2.7.

We still let {00,2,3,5, ...} be the set of prime numbers including oo,
S be a finite subset of this set and Qg be the algebra Hpes Qp.

5.1. Semiconnected groups.

The reader who is mainly interested in real Lie groups
may skip this section in which we describe the structure
of S-adic Lie groups. All these structure results are well-
known for real Lie groups.

Definition 5.1. An S-adic Lie group G is a locally compact group
which contains an open subgroup U isomorphic to a group of the form
(I es Gp)/A where, for each p € S, G, is a p-adic Lie group and A is
a discrete normal subgroup of this product (see [3]).

Let G' be an S-adic Lie group. We will denote by g, the Lie algebra
of G, and by g the Lie algebra of G which is the direct sum of the Lie
algebras g,,. We will consider g as a Qgs-module. Then, any submodule
of g is closed and is a direct sum of @QQ,-vector subspaces of g,. We set
g5 = @p <o0 8, for the non-archimedean part of g and we let G, be the
connected analytic subgroup of G with Lie algebra g_.,. We will denote
by Adg, Adgp7 etc. the adjoint action of G on g, g, etc.

If G’ is a closed subgroup of G, it is an S-adic Lie subgroup and its
Lie algebra is a submodule of g (see [26, Prop. 1.5]).

We choose a good norm ||.|| on each of the p-adic Lie algebras g,
and, for v = (v,)pes in g, we set [|v| == max l|Up]|-
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5.1.1. Exponential maps. When G is not a real Lie group, one has to
pay attention to the fact that exponential maps are only defined in a
neighborhood of 0 and that they are not unique.

When S = {0}, we define a standard open set Q0 of G as being a
relatively compact open neighborhood of e which is the diffeomorphic
image of some convex symmetric open neighborhood of 0 in g by the
exponential map.

When S = {p} for some finite p, we say that an element g of G
admits a logarithm if one has g?" —— e: indeed, for such a g, the

n—oo

map n — g" extends as a continuous morphism Z, — G and one
can define the logarithm log g of g as being the derivative at 0 of this
morphism. Now, G is said to be a standard group if there exists a Q,-
Lie algebra [ and a compact open sub-Z,-algebra O of [ such that the
Baker-Campbell-Hausdorff series converges on O and G is isomorphic
to the p-adic Lie group O, equipped with the group law defined by this
formula. In this case, [ identifies canonically with g, every element of
G admits a logarithm and the logarithm map induces an isomorphism
G — O. 1If G is any p-adic Lie group, it admits a standard open
subgroup (see [16, Theorem 8.29]). If € if such a subgroup and if
O is the associated compact open sub-Z,-algebra of g, we denote by
expg : O — (2 the inverse of the logarithm map 2 — O.

In general, a standard open subset €2 of GG is an open neighborhood
of e of the form Q = [] cq 2, where Q is a standard open subset
of G and, for any p # oo in S, 2, is a standard p-adic Lie group
embedded in G, such that QoQo N[, 2 = {e}. We then define
the exponential map expq as the product of the exponential maps of
the ,, p € S. This is a diffeomorphism from a relatively compact
open subset O = Hpe 5O, of g onto €2. The standard open subsets of
G form a basis of neighborhoods of e in G. We set Qy =[], Q.

Note that if © and €' are standard open subsets of GG, the maps expq,
and expg coincide in some neighborhood of 0 in g.

We will need our exponential map to enjoy a nice equivariant prop-
erty under the adjoint action. This equivariance property is automatic
for a real Lie group since the exponential map is uniquely defined.

Lemma 5.2. Let G be an S-adic Lie group, 2 C G a standard open
set and expg : O — € the corresponding exponential map. For every
compact subset K C G, there exists an open subset Ok which is con-
tained in O and in all the translates Adg=*(O), g € K, and such that
one has the equivariance property

expq(Adg(v)) = gexpg(v) g ' foranyv € Ok, g € K.
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Proof. We may assume that K contains e. The intersection Qg :=
Ngercg Qg is an open neighborhood of e in G. We just choose Ok to
be the open set O = log(Qk). O

5.1.2. Unipotent one-parameter subgroups. Assume now G is a closed
subgroup of a product, for pin .S, of p-adic Lie groups. A one-parameter
subgroup ¢ of G, i.e. a continuous morphism ¢ : Q, — G;t — ¢(t) for
some p € S, is said to be Ad-unipotent if, for any ¢ in Q,, ¢(¢) belongs
to the p-adic factor of the product and Adgp(go(t)) is a unipotent au-
tomorphism of g,. Its derivative is a nilpotent derivation of g,. When
G is a p-adic Lie group with p finite, every one-parameter subgroup
v :Q, — G;t— ¢ is Ad-unipotent (see [26, Corollary 1.2]).

Remark 5.3. This definition is the one used by Ratner in [26]. It ac-
tually depends on the closed embedding of G in a product of p-adic
Lie groups (think for example to the group Q, x (R/Z), p < oo, which
admits automorphisms that do not preserve Q,). It would maybe be
more comfortable to work with one-parameter subgroups ¢ : Q, — G
such that, for any ¢, Adg (¢(t)) is a unipotent automorphism of g,
and, for ¢ # p, Adg ((t)) = 0. But there does not exist yet published
reference of Ratner’s Theorem 5.15 for subgroups spanned by such one-
parameter subgroups. The reader will note that all the one-parameter
subgroups which will be constructed in this paper are Ad-unipotent
for any closed embedding of G in a product of p-adic Lie groups (see
Lemma 5.4 below and Lemma 5.12).

Let us give a construction of Ad-unipotent one-parameter subgroups
of G.

Lemma 5.4. (Construction of unipotent subgroups) Let G be an S-
adic Lie group, G' be a normal closed subgroup of G with Lie algebra
g, g be an element of G, p € S and V C g, denote the sum of the
generalized eigenspaces ofAdg; which are associated to eigenvalues with
modulus < 1. Then, there exists a unique Ad g-equivariant map ¢ :
V. — G such that, for any v in V, the map Q, — G;t — p(tv) is
a one-parameter subgroup and that ¢ is equal to an exponential map
in the neighborhood of 0. If G is a closed subgroup of a product of
p-adic Lie groups, p € S, for any v in V, the one-parameter subgroup
t — @(tv) is Ad-unipotent.

Proof. Let us construct this map. We will write g for Adg. We can
assume p < oo, the real case being trivial. Let {2 be a a standard
open subset of G with exponential map expg : O — (2. We assume
expgo(O Ng) C G'. By Lemma 5.2, there exists an open subgroup
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U C O,NV such that gU C O, and that exp,(u) = g~ ' expg(gu)g for
any u in U. After eventually replacing U by (-, g *U, we can assume
gU Cc U. Now, for k in Z, let U, = ¢ *U and define a continuous map
or 1 Uy — G’ by setting op(u) = g% expq(gFu)g” for any u in Up. We
claim that, for any k, one has ¢, = @1 on Ux_1 = gUy. Indeed, let u
be in Uy. As ¢g*u belongs to U, we have

err1(w) = g7 (g7 expg(9g°u)g)g" = 97" expo(gFu)g" = pi(u).

Therefore, as V' = J,cz Uk, the map ¢ : V' — G’ whose restriction to
any Uy, k € Z, is ¢y, satisfies our requirements. Uniqueness is clear.
Now, note that, by uniqueness, if G is a closed subgroup of a product
I,esH,, where, for any ¢ in S, H, is a g-adic Lie group, we have
(V) C H,. Besides, for any v in V, as g"v — 0, one has
— 00

(Adg®)(adv)(Adg™*) ——0
and adv is a nilpotent endomorphism of g. Again by uniqueness, we
have Ad(p(v)) = exp(adv) and the result follows. O

5.1.3. Semiconnected components. We now introduce the notion of a
semiconnected component (see [26, p. 288]). For real Lie groups, a
semiconnected component is nothing but the connected component.

Assume G is a closed subgroup of a product, for p in S, of p-adic Lie
groups. Let () be a standard open set in G. For any closed subgroup
G’ of G, we denote by Gf, the intersection G, := G' N Qy, by G,
the subgroup of G’ generated by all the one-parameter Ad-unipotent
subgroups of G which are contained in G’ and by g/, the Lie algebra
of G,. We denote by G._ the real Lie subgroup of G’ with Lie algebra
g... This group G, is also equal to the connected component of G'.
The groups G! and G/ are normal in G'.

Definition 5.5 ([26]). The Q-semiconnected component of G’ is the
subgroup GG, G of G'.

The subgroup G’ is said to be semiconnected if G' = GG G for
some standard open subset Q of G. A semiconnected component of G’
is a semiconnected open subgroup of G’ which contains G,.

When S = {oo}, if a subgroup I' normalizes a closed subgroup G’
of GG, then it normalizes its connected component. In general, we will
need an analogue property to hold under a suitable assumption on I'.

Recall that Ad(F)Z denotes the Zariski closure of AdI' in GL(g), that
is the product of the Zariski closures of the Adg (I') in the GL(g,),
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p € S, and that it is said to be semisimple if all the groups AdgpFZ,
p € S, are semisimple.

Lemma 5.6. (Invariant semiconnected component) Let G be an S-
adic Lie group that is a closed subgroup of a product, for p in S, of
p-adic Lie groups. Let T be a compactly generated subgroup of G such

that Ad(F)Z is semisimple. Then, if G' is a closed subgroup of G which
1s normalized by I', there exists arbitrarily small standard open subsets

Q of G such that T normalizes an C)-semiconnected open subgroup of
G'.

Proof. Let g’ be the Lie algebra of G’ and [ C g’ be the subspace of those
v in g’ whose AdI-orbit is bounded. Then [ is a subalgebra of g’ and
the group m is compact. As I' is compactly generated, by Lemma
5.2, there exists an arbitrarily small standard open subset €2 of GG, with
exponential map expg : O — € such that O N[ is AdI'-invariant and
that, for any v in ONland g in ', one has expq,(gv) = g expg(v)g~'. In
particular, if L., is the connected Lie subgroup of G with Lie algebra
[, the group expo(O N ;) Ly is normalized by I' and has Lie algebra
[.

Since the group Ad(F)Z is semisimple, [ admits a (unique) I'-invariant
complementary submodule v in g’. As the I™-orbits of nonzero vectors in
v are unbounded, the module v is spanned by submodules V' satisfying
the assumptions of Lemma 5.4 for some ¢ in I' (see [2]). Therefore, by
this Lemma, the Lie algebra of the group G, contains v. In other terms,
the Q-semiconnected group G” = expq (O N [¢) Lo G, is normalized by
I. O

Recall weakly regular S-adic Lie groups have been defined in Defini-
tion 2.1. We will need to relate this notion to the one of regular S-adic
Lie groups.

Definition 5.7 (Ratner, [26]). If p < oo, a p-adic Lie group G is said
to be regular if the kernel of the adjoint map Ker(Adg) is equal to
the center Z(G) of G and if the finite subgroups of G have uniformly
bounded order.

If p = 00, every real Lie group will be said to be regular.

An S-adic Lie group is said to be regular if it is isomorphic to a
closed subgroup of a product of regular p-adic Lie groups.

According to [26, Cor. 1.3], regular groups are weakly regular. The
following proposition is a kind of converse which will be useful to extend
the level of generality of Ratner’s theorem 5.15.
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Proposition 5.8. Let G be a weakly reqular semiconnected p-adic Lie
group, then G contains an open finite index subgroup which is reqular.

Proposition 5.8 will be proved in [10].

5.2. Good exponentials.

In this section we define a class of groups which will play
an important role in our proof: the groups with “good
exponentials”. The reader who is only interested in real
Lie group may skip the beginning of this section until
Proposition 5.13.

We will need a local exponential map on G with stronger equivariance
properties than in Lemma 5.2.

Definition 5.9. Let G be an S-adic Lie group and I' C GG a subgroup.
We say that (G,T") has good exponentials if there exists a standard
open subset 2 of G with exponential map expg, : O — (2 satisfying the
following equivariance property: for any v € O and g € I such that
Adg(v) € O, one has

(5.1) expq(Adg(v)) = gexpg(v) g
Such an exponential map expg, will be called a (G, T")-good exponential
map.

-1

Example 5.10. Such an open set {2 may not exist when G is not weakly
regular, even if this group G is compactly generated. For instance it
does not exist when G = I' is the amalgamated product of two copies
of SL(2,Q,) over the open subgroup SL(2,Z,).

Good exponential maps often exist:

Proposition 5.11. (Good exponential maps) Let G be an S-adic Lie

group and I' C G a subgroup such that Ad(F)Z 18 semisimple.

a) Assume that (i): G is a real Lie group, or (ii): G is a closed subgroup
of [1,es GL(dp, Qp), or (iii): G is weakly regular and T is compactly
generated. Then (G,T") has good exponentials.

b) Let G' be a closed subgroup of G containing I'. If (G,T") has good
exponentials, then (G',T") has good exponentials.

c) Let S be a closed normal subgroup of G, G := G/S and I :=T'5/S.
If (G,T) has good exponentials, then (G,I') has good exponentials.

Proof. a) (i) When G is real, there exists only one exponential map.
(1) One uses the usual series for the exponential of matrices.

(77) By Lemma 5.6, there exists a standard open subset € of G, with
exponential map expg : O — 2, such that some (2-semiconnected
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open subgroup G’ of GG is normalized by I'. By Proposition 5.8, after
eventually shrinking 2, we may assume G’ is regular. We can also
assume, for any v in O, the matrix exponential series converges at adv
and

(5.2) Ad(expg v) = exp(adv).

Since G’ is regular, the order of the finite subgroups of G’ is bounded
by some constant n. We set O = (n!)O and Q' = expqg(0’) and we
claim that expg = expg |or is (G, I')-good. Indeed, let v be in O’ and
g be in I' with gv € O'. We set w = T%v, so that w,gw € O. Let
h = gexpg(w)g~'expg(gw)™. By (5.2), we get Adh = e, hence, G’
being regular, h is a central element of G'. Now, there exists an integer
m such that expg(mgw) = gexpg(mw)g™, so that h™ = e, hence
h™ = e, that is, precisely expq(gv) = gexpg(v)g~!, what should be
proved.

b) This is clear.

c) We write g = st where t is a [-invariant complementary subspace
of the Lie algebra s of S in g and we introduce the projection p: G —
G. We fix a standard open subset (2 of G whose exponential map
expg : O — Qs (G,T')-good. We identify the Lie algebra of G with t
and set O := O N t. The good exponential map expg : O — G is then
defined, for v € O, by expq(v) := p(expq(v)). O

If T is a subgroup of G, we introduce the closed cone of I'-unstable
elements of the Lie algebra g

(5.3) Nr(g) :=={veg|3(g.) €T Adgn(v) — 0}.

Its elements are ad-nilpotent elements of g. When (G,IT") has good
exponentials, we can extend the construction in Lemma 5.4:

Lemma 5.12. (Construction of unipotent subgroups (bis)) Let G
be an S-adic Lie group and I' C G a subgroup of G. Assume that
(G,T') has good exponentials. Then there exists a unique map eXpy :
Nr(g) — G satisfying the following equivariance and compatibility
properties: for any v € Ny(g), g € ', one has

(5.4) expy(Adg(v)) = gexpy(v) g~

and for any good exponential map expg : O — 0, any v € O N Nr(g),
one has

(5.5) expy (v) = expg(v).
If G is a closed subgroup of a product of p-adic Lie groups, p € S, for
any v in 'V, the one-parameter subgroup t — o(tv) is Ad-unipotent.
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Proof. For any v in Nr(g), there exists g € I' such that Adg=!(v) € O.
We set then,
expy(v) = gexpg(Adg~" (v)) g7

This definition does not depend on the choice of g because of the equiv-
ariance property (5.1). By construction, it satisfies the equivariance
property (5.4) and the compatibility condition (5.5). Uniqueness is
obtained in the same way.

Now, if v belongs to Nr(g) Ng, for some p in S, by uniqueness we get
Ad(expy(v)) = exp(ad(v)) and then Ad(expy(v)) is unipotent. O

To shorten notations, when there is no ambiguity, we will write e”
or exp(v) for expg(v) or for expy (v).

Let us use these notions to proceed to a construction that will play a
key-role in many of our proofs. Recall that if i is a probability measure
on G, we let I', denote the subgroup of G spanned by the support of
and we say p is Ad-semisimple if the group H,, = AdI‘MZ is semisimple.
In this case, we may freely use the notations and results from sections
4.2 and 4.3 for the probability measure Ad,p on H,. Thus, we get a
map £ : B — P, and, for any H ,-irreducible subrepresentation v of
g, we get a H,-equivariant map P, — Gr(v);n — v,. When v is not
irreducible, we set, for 7 in P, v, = >y, tv,, where tv varies among the
H -irreducible subrepresentations of v. This is the space of invariant
vectors for the action in v of the unipotent radical of the stabilizer of
nin H,. We set v, = v¢, for S-almost every b in B.

Proposition 5.13. (Construction of V;) Let G be an S-adic Lie group
and p be an Ad-semisimple Borel probability measure on G such that
(G,T,) has good exponentials and [, log||Adg||du(g) < co. Let g’ be
a subalgebra of g which is H,-invariant. We set v to be the sum of
the irreducible sub-H,-representations of g’ in which the image of T,
1s unbounded. The following properties hold.

a) For any n in P, v, is an ad-nilpotent subalgebra of g'.

b) For [3-almost any b in B, one has v, = Adbyvry, and the norm of the
restriction of Ad(bg - - - bn,l)_l to vy, goes to 0 as n — oo. In particular,
by C Nr,(9)-

¢) For B-almost any b in B, the set Vi, := expy(vp) is a Lie subgroup
of G and V, = bOVTbbal.

Remark 5.14. Define a Qg-unipotent group to be a product of Q-
unipotent groups for p in S. Then, one could prove that, for S-almost
any b in B, V, is isomorphic to the unique Qg-unipotent group with
Lie algebra v,. We shall not use this fact.
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Proof of Proposition 5.13. a) It suffices to prove this fact when n =
ne,, the fixed point of P, in P,. We set vy = Ve, - By construction,
vo is the Qg-module spanned by the set E of U, -invariant vectors v in
g’ such that there exists a dominant weight x of A whose restriction
to A, is non-trivial and satisfies av = x(a)v for any a in A,. Now,
as H, is semisimple, if x and X’ are dominant weights of A who have
non-trivial restriction to A,,, so does xx’. Therefore, for any v,v" in E,
we have [v,v'] € E' and v is a Lie algebra.

b) The equivariance property follows from the one of the map &.
Since p has a finite first order moment, by Birkhoft’s ergodic Theorem
and Proposition 4.4, for f-almost any b in B, for any dominant weight y
of A whose restriction to A, is not trivial, we have x*(0g (b)) —— .

Now, the result follows from the definition of v, and Lemma 4.2.

¢) The equivariance property of Vj is a consequence of the ones of v,
and of expy. In order to check that V; is a subgroup of G, we write,
for f-almost any b in B, v, = @pes v, the decomposition of v, into
p-adic components and set, for p in S, V,,;, = expy(v,5). As these sets
commute to each other, it suffices to prove that each V, ; is a subgroup.

If p = oo, then V, is the connected Lie subgroup of G with Lie
algebra v, and the result follows from the structure theory of real
nilpotent Lie groups.

If p < oo, we will prove that V,; is an increasing union of compact
open subgroups. Let Q be a (G,T',)-good standard open subset of G,
with exponential map expg : O — (2. For any subalgebra [ of g,,
expg (O N 1) is a compact subgroup of G. Now, for [-almost any b
in B, there exists a sequence (n) of natural integers such that the
sequence by - - - by, —1(O N v, 77ip) 1s an increasing sequence of compact
subalgebras wich exhausts v,. Hence, by the equivariance property of
expy, the sequence

expy (b + bpy—1(O N 0Oy mp)) =
b() cee bnk—l eXpN(O N Up,Tnkb) (bo s bnk_l)_l

is an increasing sequence of compact subgroups wich exhausts V,. [

5.3. Ratner’s measures.

We recall in this section the classification of measures
which are invariant under groups spanned by Ad-unipotent
one-parameter subgroups due to Ratner.

We keep the notations of sections 2.1 and 5.1. Let G be a weakly
regular S-adic Lie group, A a discrete subgroup of G and X = G/A.
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For a Borel probability measure o on X, we set G, to be the stabilizer
of v in G and hence G, , to be the subgroup of GG, generated by the
one-parameter Ad-unipotent subgroups of GG,. We introduce the set £
of Ratner’s probability measures:

(5.6) & :={a € H |supp(a) is a G,-orbit and « is G, ,-ergodic}.
We have Ratner’s Theorem:

Theorem 5.15 (Ratner [26]). Let G be a weakly regular S-adic Lie
group, \ be a discrete subgroup of G and H be a subgroup of G such that
H = H,. Any H-invariant H-ergodic probability measure on X = G /A
belongs to £.

More precisely, Ratner has proved this theorem when the S-adic Lie
group G is reqular. It can be extended to any weakly reqular S-adic Lie
group thanks to our Proposition 5.8.

5.4. Fixed points and orbits of the centralizer.

The following general Lemma compares the set of fixed
points of a subgroup in a homogeneous space and the
orbits of its centralizer.

We will use this lemma to prove Lemma 7.9.

Lemma 5.16. Let G be a second countable S-adic Lie group, A, A C G
discrete subgroups of G and C' the centralizer of A in G. We assume
that G is a real Lie group or that the group A is finitely generated.
Then the set X2 of fived points of A in X = G/A is a countable union
of C-orbits. Moreover, these orbits are open and closed in X*.

Proof of Lemma 5.16. Our assumptions ensure that the centralizer ¢ of
A in g is the Lie algebra of C. Since A and C' commute, the set X4
is a union of C-orbits. The main point is to prove that, for every x in
X2, the C-orbit Cz is a neighborhood of z in X2. We have to find a
small open neighborhood U of e in G such that Uz N X2 C Cz.

We pick a finite subset F' of A such that, in the space of endomor-
phisms of g, AdF spans the same linear subspace as AdA. Thus, ¢ is
the centralizer of F' in g. By Lemma 5.2, we can choose a standard
open subset 2 of G with exponential map expg : O — Q such that, for
any v in O and f in F with fv € O, one has expq(fv) = f expg(v)f~1,
that expo(O N¢) C C and that the natural map Q@ — X;g — gz is
one-to-one. Set 0" = O N[\ f7'O. For any v in O, if expg(v)z
is in X?, one has v = fv for all f € F, hence v is in ¢ and one has
expo(0)z N X2 C Cr as required.
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This proves that the C-orbits are open in X*. Hence they are also
closed and, since X is second countable, there are only countably many
C-orbits in X2, O

5.5. Stationary probability measures on homogeneous spaces.

In the course of the proof of Theorem 2.7 which describes
the stationary probability measures on G /A, we will also
need to understand stationary probability measures on
various G-spaces.

Let V' be a finite dimensional Qs-module, that is a product Hpe s Vp
of finite dimensional vector spaces V,, over Q,, p € S, and Y be the set

of Radon measures Ay on V' which are a Haar measure on some closed
Qs-submodule W =[] W, C V.

For any subgroup I' of GL(V') = [, GL(V},), we set T for the Zariski

closure of T and 7" for the intersection of the kernels of the algebraic

representations p : - GL(d,Qg) for which p(I') is bounded.
Let p be a probability measure on GL(V') and recall I',, denotes the
closed subgroup generated by the support of .

Lemma 5.17. (Stationary measures in V') Let u be a probability mea-
sure on [, GL(V,) and VI and YT be the sets of T -invariant ele-
ments in V and Y respectively.

We assume F_MZ 18 semisimple and F_MZ = F_Mz’m. Then :

(i) Any p-stationary probability measure on V is supported by Ve,

(i1) Any p-stationary probability measure on'Y is supported by Y'n.

Remark 5.18. This is not always the case when the Zariski closure of I',
is only assumed to be reductive. For instance, for V = (Q,)?, p # oo,
and f1 = (8,4, 4 0ay) with

alz((l) 2) and agz(]lg g),

the semigroup of GL(2,Q,) generated by a; and ay acts strongly irre-
ducibly on V. All the vectors of the semiorbit of (1,0) have norm 1
and the closure of this semiorbit supports a p-stationary probability
measure which is not I'-invariant.

We let Qg be the multiplicative group of Qg. For t = (t,) € Qg, we
set [t] = HpES Itplp-
Proof of Lemma 5.17 . (i) We may assume that V' is irreducible and

non-trivial. We want to prove that the only p-stationary probability
measure on V is dyp. Assume 7 is such a probability measure. We
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will again use the one-sided Bernoulli shift (B, B, 3,T) whose alpha-
bet is (GL(V), ). The probability measure 1 being u-stationary, the
transformation R : B x V. — B x V;(b,v) — (Tb,byv) preserves the

probability measure # ® n. Fix a norm on V' an set ¢(b,v) = ||vl,
be B,veV. By|[9], for any v in V ~ {0}, for f-almost any b
in B, one has ¢(R"(b,v)) = |by—1...bv|]| —— o0. By Poincaré’s

recurrence theorem, we get n = dy.

(#7) For any non-zero family n = (n,),ecs of non-negative integers,
we set Y, to be the set of Ay € Y with dim W, = n,, for all p in S.
The space Y is a finite union of such spaces Y;,. We want to prove that
there is no u-stationary probability measure n on Y, \ Y.

First case : Assume that all the n, are equal to 1. In this case, we
set A C QF to be the subgroup A := {t € Qg | |t| = 1} so that the
space Yy is isomorphic to the quotient space ([],c4(V, ~ {0}))/A. The
proof then goes the same way as the one of (i) by using the function

o(b,v) =TT vl
peS
which is well defined on this set of A-orbits.
General case : This can be reduced to the first one by replacing V'
by the product HpE g A"V, and each Ay € Y}, by the associated Haar

measure on [[ g A" W), O

Let G be an S-adic Lie group. Recall a probability measure y on G
is said to be Ad-semisimple if the group H, = AdI',  is semisimple.
In this case, there are strong restrictions on the homogeneous spaces
of G which carry a u-stationary probability measure.

Proposition 5.19. (Stationary measures in G/G’) Let G be a weakly
reqular S-adic Lie group and p be an Ad-semisimple probability mea-
sure on G such that (G,I',) has good exponentials, H, = H¢ and
Jelog |Adg]| dp(g) < oo.

Let G' C G be a unimodular closed subgroup. Assume there exists a
p-ergodic p-stationary probability measure n on the homogeneous space
G/G'. Then, there exists v = gG' in G/G" and a semiconnected compo-
nent S of gG'g™1 such that the unimodular normalizer N1(S) contains
I, and n(N:(S)z) = 1.

By definition, the unimodular normalizer N;(S) of the unimodular
subgroup S is the subgroup of the normalizer of S whose elements
preserve the Haar measure of S. It contains gG’g .

When G is a real Lie group, the conclusion of Proposition 5.19 implies
that the connected component of gG'g~! is normalized by T',,.
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Proof of Proposition 5.19 when G is a real Lie group. We — will use
Lemma 5.17 with V' = g and Y the set of Haar measures Ay on
sub-Qg-modules W C g. Since G’ is unimodular, any Haar measure
y = Ag: € Y is a G'-invariant element of Y. The orbit Gy C Y then
supports a p-stationary probability measure: this is the image 7’ of
n by the natural map G/G’ — Gy. We may assume that y is in the
support of 1'. By Lemma 5.17, this u-stationary probability measure
n' is supported by the set of I',-invariant vectors. In particular, y is
I',-invariant. Since 1’ is also p-ergodic, it is a Dirac mass: 7' = §,,.
This implies that I', is included in the unimodular normalizer Ny(g’)
of g’ and that the probability measure 7 is supported by an orbit of
Ni(g').

This ends the proof when G is a real Lie group, since in this case
Ni(g') is also the unimodular normalizer of the connected component

S of G. U

5.6. Stationary measures for S-adic groups.

The reader who is only interested in real Lie groups may
skip this section.

The strategy for S-adic Lie groups is the same as the one for real
Lie groups. The additional difficulty comes from the existence of the
following example which tells us that we will have to use once more the
existence of n to conclude.

Ezample 5.20. The normalizer of the Lie algebra g’ of a subgroup G’ C
G does not always normalize a semiconnected component of G’.
An example is G = SL(d,Q,) and G’ = SL(d,Z,), for p < cc.
Another example is G = SL(d, Q,) x Qf) and G' =Q, xZ, C @12, for
which the normalizer of a semiconnected component of G’ is not even
open in the normalizer of g'.

We shall need the following

Lemma 5.21. Let G be an S-adic Lie group that is a closed subgroup
of a product, for p in S, of p-adic Lie groups. Assume G’ is a closed
normal subgroup of G and the adjoint action of G on G’ is unimodular.
Then, so is the adjoint action of G on G.,.

Proof. Let g be the Lie algebra of G’ and g, be the one of G/. By
Lemma 5.4, for any g in GG, the sum of the generalized eigenspaces of
Adg which are associated to eigenvalues with modulus # 1 is contained
in g,. Hence, we get [detg (Adg)| = [detg (Adg)|. The result follows.

O
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Proof of Proposition 5.19 in the general case. We may assume that the
base point z of X := G/G’ belongs to the support of 1. Reasoning as
in the real case we get 1(N1(g')xo) = 1 and I', C Ny(g’), where g’ is the
Lie algebra of G’ so that we can assume from now on N;(g’) = G. In
the same way, as, by Lemma 5.21, the action of G’ on g, is unimodular,
we can also assume Np(g/,) = G and hence, G being weakly regular,
Ni1(G),) = G. Let v be the sum of the I' -irreducible sumodules of g’
on which AdI', is unbounded. We want to construct the group S by
applying the same strategy as the one used in the proof of Lemma 5.6.
We will prove that v C gl,.

Since (G,T',,) has good exponentials and 4 has a finite first moment,
we can apply Proposition 5.13 to g’ and the probability measure ji on
G. For (-almost every b in B, we get a subalgebra v; of g’ and a
subgroup Vj = expy(v;) of G, such that, for S-almost any b in B, the
norm of the restriction of Ad(b,_;---by) to v; goes to 0 as n — oo.
We claim that, for g-almost any b in B, Vj is contained in G'. Indeed,
equip the space B x G/G’ with the map R : (b,x) — (Tb, byx) which
preserves the probability measure f®n. For §® n-almost any (b, ) in
B x G/, set

(b, ) = inf{[|v][[v € vy expy(v)x # x} € [0, 00].

As vy C ¢, one has p(b,z) > 0 and we shall prove that ¢ = oo
almost everywhere. But, for # ® n-almost every (b, z), one has, for any
n, p(R™"(b,z)) < [|by_1---bolv,llw(b,x) and therefore, if (b, z) < oo,
©(R™(b,x)) —— 0, which contradicts Poincaré’s recurrence Theorem.

Thus, ¢ = oo and, for f®n-almost any (b, z), Vjz = x. In other terms,
for f-almost any b in B, we have v; C g/. In particular, as, for any
Borel subset E of B with 3(E) = 1, the set |, bj; spans v, we get
vCg,.

We can now finish the construction of the group S. Let [ be the
space of I -invariant vectors of g'. Since H, = H}}, one has g’ = ®o.
Let © be a standard open subset of G with (G,T',)-good exponential
map exp, : O — Q. Then, ', centralizes expn(O N I'). Assume
is small enough to have expo(O Ng') C expy(O NG, so that T,
normalizes exp,(O N g')G!. We set S = expq(O N g )G G.. As G
and G, are normal subgroups of G and € normalizes exp,(O Ng'), S
is normalized by (2, hence the normalizer N;(S) of S is open in G. In
particular, for n-almost any z in X, we have n(N;(S)z) > 0 and, as ',
normalizes unimodularly S, this orbit is I' -invariant. As 7 is ergodic,
we get n(N1(S)xzg) = 1, what should be proved. O

5.7. Convergence of cocompact lattices.
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We prove here a general fact on the restriction of the
Chabauty topology to the set of cocompact lattices. We
will use this fact in section 5.9.

The following proposition 5.22 tells us that for cocompact lattices
“algebraic convergence” coincides with “geometric convergence”.

Proposition 5.22. (Chabauty topology for cocompact lattices) Let G
be a compactly generated locally compact group and A be a cocompact
lattice in G. Then the group Ay is finitely generated.

Let (Ay,) be a sequence of lattices in G which converges to Ay, in the
Chabauty topology. Then, there exists ng and a compact subset C' of G
such that, for n > ngy, A, is cocompact in G and G = CA,,.

Remark 5.23. When G is not compactly generated such a compact
“upper bound” C for suitable fundamental domains of A, may not
exist, even if A,, avoids a fixed neighborhood of e in G and the covolume
of A,, converges to the covolume of A.

Proof of Proposition 5.22. Let B be a symmetric relatively compact
open subset generating G and containing the identity element of G,
so that we have G = Uklek. We may assume that B contains a
fundamental domain for A, i.e. that G = BAL.

As B? is compact, there exists a finite subset F., of Ay such that

(5.7) B? C BF,.
By induction on k£ > 1, one gets the inclusions
B¥ ¢ B(F,)" .

Indeed, one has B¥™ = BB* C BB(F,,)*' C B(F.)*. Let A/_ be the
subgroup of A generated by Fi. One gets G = BA/_ and A/_ is thus
a cocompact lattice in G. Hence A/ has finite index in Ao, and A is
finitely generated.

Since the lattice A,, converges to A, in the Chabauty topology there
exist finite subsets F,, C A, which converge to F,,. Using inclusion
(5.7) in which B2 is compact and B is open, we deduce that, for n
large enough, one has

B? C BE,.
The same induction argument gives, for all £ > 1,
B* ¢ B(F,)" ™,
hence, G = BA,,. The result follows. 0
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5.8. Lattices in S-adic Lie groups.

The reader who is only interested in real Lie groups may
skip this section. We show in Corollary 5.24 how to
extend Proposition 5.22 to S-adic Lie groups. We also
prove a version of Auslander Theorem for lattices in S-
adic Lie groups. We will use these facts in section 5.9.

A weakly regular semiconnected S-adic Lie group may fail to be com-
pactly generated, as for instance G = R x Q, which contains the lattice
A= Z[]l)]. Even though the lattices in G are not finitely generated, the
conclusion of Proposition 5.22 is still true for these groups.
Corollary 5.24. Let G be a weakly regular semiconnected S-adic Lie
group such that G, is nilpotent, Ao be a lattice in G and (A,) be
a sequence of lattices in G which converges to Ay in the Chabauty
topology. Then there exists a compact subset C' C G such that, for all
n>1, G=CA,.

Note that, by [8, Prop. 5.1], lattices in G are necessarily cocompact.
To get Corollary 5.24 from Proposition 5.22; we will need to use some
facts on the structure of these groups G.

Lemma 5.25. Let Z be an abelian S-adic Lie group which is isomor-
phic to a product of vector spaces over the fields Q,, p € S. Let K be a
compact abelian group. If there exists a morphism Z — K with dense
image, then K is connected.

Proof. As any nonconnected group admits proper open subgroups, it
suffices to prove that, if K is finite, K is trivial. But in this case the
morphism Z — K is onto and its kernel is a finite index subgroup of Z.
By assumption, such a subgroup equals Z, what should be proved. [

We can now begin the study of cocompact groups in nilpotent semi-
connected groups.

Lemma 5.26. Let G be a nilpotent weakly regular S-adic Lie group
with G = G, and G« = {e}. Then G admits no proper cocompact
closed subgroups.

Proof. We argue by induction on the dimension of GG. If it is zero, there
is nothing to prove. If not, we consider the center Z of G. By [26, Prop.
2.1], it is isomorphic to a product of vector spaces over Q,, p € S. Let
H be a closed cocompact subgroup of G and set L = ZH. As H is
contained in L, L/H is compact. As [L,L] C H, H is normal in L.
Now, the morphism Z — L/H has dense image so that, by Lemma
5.25, L/H is connected. As G, = {e}, L/H is trivial, that is Z C H.
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Now, we may view H as a closed cocompact subgroup of G/Z which,
by [26, Prop. 2.1], is still a weakly regular group. By induction, we get
H = G, what should be proved. O

JFrom this, we deduce

Lemma 5.27. Let G be a weakly reqular semiconnected S-adic Lie
group such that G, is nilpotent and H C G a closed cocompact subgroup
containing Go. Then H contains G.,,.

Proof. Let €2 be a standard open subset of G. We assume G is ()-
semiconnected. We have G = Q;G, ;G. By [26, Prop. 2.1 and
Th. 2.1], we may write G, s as the union of an increasing sequence of
compact subgroups (K,). As € is compact, we may suppose, for any
n, {1y normalizes K,.

We may view H as a closed cocompact subgroup of Q;G, ;. We
claim that the group L = HG,, ¢ is closed. Indeed, for any n, the group
(H N (QsK,))K, is closed since it is compact and we have HG,, ; =
U, (H N (QK,))K,. Now, Q;G, ¢ having no real factor, by [26, Cor
1.1], the union of an increasing sequence of closed subgroups of QG ¢
is still closed. Hence L = HG,, 5 is closed.

In particular, H NG, s is a cocompact subgroup of G, y. By Lemma
5.26, we have G, y C H, what should be proved. O

This gives

Lemma 5.28. Let G be a weakly reqular semiconnected S-adic Lie
group such that G, is nilpotent. There exists a compactly generated
open subgroup G' of G such that, for any cocompact closed subgroup H
of G, one has G = G'H.

Proof. Let G' be an open compactly generated subgroup of G which
maps onto the compact group G/G,G+ and let H be a cocompact
closed subgroup of G. By Lemma 5.27, we have G, C G, H hence, G’
being open and containing G, G, C G'H. We get G = G'G, C G'H,
what should be proved. O

Proof of Corollary 5.24. Let G’ be as in Lemma 5.28. The intersections
A=A, NG and A, = A, NG’ are lattices in G'. By [8, Prop.
5.1], these lattices are cocompact. By Proposition 5.22, there exists a
compact subset C' of G’ such that, for all n > 1, one has G' = CAJ,.
But then, one also has G = CA,,. O

We end this section by a few structure results on semiconnected
groups and their lattices that we will need in the course of the proof
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of Proposition 5.32. We recall that the amenable radical of a locally
compact group is its largest amenable closed normal subgroup.

Lemma 5.29. (Structure of the amenable radical) Let G be a weakly
reqular semiconnected S-adic Lie group with Lie algebra g. Let ¢ be the
smallest ideal of g containing the solvable radical vy of g such that g =
t+g,, let [:= g/t and R be the kernel of the adjoint map G — Aut(l).
Then R is the amenable radical of G. If Q is a standard open subset
of G such that G is Q-semiconnected and Rq is the 2-semiconnected
component of R, then Rq is normal in G and R/ Rgq centralizes an open
finite index subgroup of G/Rq.

Proof. By [26, Sect. 2] one has t, = tNg,. By definition of R, for
any 7 in R and X in g,, one has Adr(X) — X € t,; hence for any
g in G, one has rgr=' € gR,, therefore [G,, R] C R, C Rq and G,
normalizes Rq. Let expg : O — () be the exponential map of 2. We
have RN = expq(ONt), so that 2 normalizes RN and hence Rq. As
G = QGG and, by standard real Lie groups theory, Go, C G, R,
G normalizes Rq. Besides, G; = G, R, is a finite index open subgroup
of G and [G1, R] C Rq, that is R/Rq centralizes G1/Rq. In particular,
setting Ry := RN Gy, we get [Ry, R1] C Rq and, as Rq is a compact
extension of a solvable group, R; is amenable. Since R; has finite
index in R, R is amenable. Now, G/R is isomorphic to an open finite
index subgroup of Aut(l). As the group Aut([) is semisimple with no
anisotropic factor, the amenable radical of G/R is trivial, hence R is
the amenable radical of G. U

For semiconnected groups, we have the following analogue of Aus-
lander’s projection Theorem.

Lemma 5.30. (Projection of lattices) Let G be a weakly reqular semi-
connected S-adic Lie group with amenable radical R and A be a lattice
in G. Then AR/R is a lattice in G/R and RN A is a lattice in R.

Proof. The proof follows the same lines as the one of Auslander’s The-
orem in the real case (see [24, Th. 8.24]) by using the structure results
of [26, Sect. 2] and Lemma 5.29. We fix a standard open subset € of
G such that G is 2-semiconnected. By Lemma 5.29, we can assume
|G, R] C Rg. We let t be the Lie algebra of R, vy C t be the solvable
radical of g and N, be the subgroup of G spanned by the Ad-unipotent
one-parameter subgroups of G whose derivative belongs to to. By [26,
Prop. 2.1 and Th. 2.1], the group N, is isomorphic to a product of
algebraic unipotent groups over Q,, p € S. Let Ry be the radical
of G, that is the closed connected subgroup of G, with Lie algebra
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0,00 and set Ry := N, Ry . Let F' be the closure of the group AR, in
G. Reasoning as in the proof of [24, Th. 8.24], one proves that the Lie
algebra f of F'is solvable. As R is a compact extension of Ry and, by
Lemma 5.29, Rq is a normal subgroup of G, F R is a closed subgroup
of G which is the closure of ARq. By Borel’s density Theorem and
Lemma 5.29, the Lie algebra (f 4+ t)/t = f/(f N t) is a solvable ideal of
the semisimple Lie algebra g/t, therefore it is trivial and f is contained
in t, that is Rq is open hence closed in FRg and FRg = ARq. In
other terms, the image of A in G/ Ry, is discrete and AN Ry, is a lattice
in Rg. Now the group G/Rq is a central extension of G/R, which is
isomorphic to an open finite index subgroup of Aut(g/t). Thus, again
reasoning as in the proof [24, Th. 8.24], we get that A N R is a lattice
in R. U

5.9. Quotient space and injectivity radius.

The following proposition compares the injectivity radius
in a quotient X = X/S of X with the injectivity radius
in X. It will be used in the proof of Proposition 7.8.

Fix a standard open subset Q2 of G and rq > 0 such that B(0,ry) C
O =log Q). We recall from (2.1) that, for every = in X, the injectivity
radius 7y (x) of X at x, is the upper bound of the radii r < ry for which
the map g — X;v — expg(v)z is injective on the ball B(0,r) C g. Let
S be a closed normal subgroup of GG such that S N A is a lattice in S.
Then, we set X — X := X/S = G/SA and we define the injectivity
radius rx by using the Lie algebra g/s of G/S.

Definition 5.31. We will say that rx controls rx if ry is bounded
below when rx is bounded below, i.e., with quantifiers,
Ve>0 Ja>0 VeeX (rx(z)>e=rx(z)>a).

Proposition 5.32. (Control of the injectivity radius) Let G be a
weakly regular S-adic Lie group, A be a discrete subgroup of G, X =
G/A and S C G a semiconnected closed normal subgroup of G such
that S A is a lattice in S and the adjoint action of G on S is uni-
modular. Let X := G/SA. Then the injectivity radius of X controls
the injectivity radius of X.

Remark 5.33. 1t is important to assume that the action of G on S
by conjugation is volume preserving. For example, if G is the real Lie
group G := R?xR* where the adjoint action of t € R* on R? is given by
the diagonal matrix diag(¢,t'), if A is the discrete subgroup A := Z?
and if S is the normal subgroup S := R x {0}, one has i&f rx > 0 while

infrx =0.
X
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The following Corollary is an immediate consequence of Proposition
5.32 and of the definition of exponential p-unstability of the cusps (see
Section 2.3).

Corollary 5.34. Let G, A, S, X, X be as in Proposition 5.32. Let
1 be a probability measure on G. If the cusps of X are exponentially
pu-unstable, then so are the cusps of X.

In order to prove Proposition 5.32, one first control the injectivity
radius in the quotient of X by the amenable radical R of S.

Lemma 5.35. Let G be a weakly reqular S-adic Lie group, A be a
discrete subgroup of G and S be a semiconnected normal subgroup of
G such that SN A is a lattice in S and the adjoint action of G on S is
unimodular. Let R be the amenable radical of S. Then the injectivity
radius of G/ controls the injectivity radius of G/RA.

Proof. By Lemma 5.30, AN R is a lattice in R. Let Q be a standard
open subset of G such that S is {2-semiconnected and let R be the
()-semiconnected component of R. By Lemma 5.29, R, is normal in S.
Assume by contradiction there exists a sequence x,, = g, A in X and
g0 > 0 such that, setting z], := g, RA for the images in X’ := G/RA,

(58) H;fi Tx(l'n) Z o and TX/(QT,IQ) — 0.
By definition rx(x,) is bounded by the systole of the lattice A, :=
gn\g; 1, i.e. one has

(5.9) rx(z,) <inf{||v]| <ro|veg~ {0}, e €A,}.

Weset A=ANR,A,=A,NR=g,Ag,' and T, = A, N Rq. Since
the actions of G by conjugation on s and the one of Aut(s/t) on s/t
are unimodular, so is the action of G on R and the lattices A,,, n > 1,
all have the same covolume in R. As Rgq is an open subgroup of R, for
any n, [', is a lattice in Rq.

Now, the first condition in (5.8) implies that these lattices A,, avoid
a fixed neighborhood of e in R. According to Mahler-Chabauty’s com-
pactness Theorem (see [13]), after eventually extracting a subsequence,
we can assume the sequence of lattices A, converges in Chabauty’s
topology towards a lattice A, of R. As Rq is open in R, I';, converges
to the lattice I'sy = A N R of Rq.

By Corollary 5.24 and Lemma 5.29, there exists a compact subset C'
of Rq such that,

Rq=CT,, foralln>1.
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Since the number of disjoint e-balls in C' is uniformly bounded, looking
at representatives in C' modulo I',, of powers 7V of an element r € Rq,
one deduces the folowing fact.

For any € > 0, there exists N > 1 such that for all r € Rq, one can
find distinct integers Ny, Ny bounded by N, and v € v with ||v]| < ¢
such that

(5.10) Mg etr2 A,
The second condition in (5.8) tells us that there exist a sequence

(5.11) A\, =e""r, € A, , withr, € R, w, €g~tand lim w, =0

Since the lattices A, have the same covolume in R, the subgroups
A, /T, = Ay Ro/Rg, n > 1, of the discrete group R/ Rg have uniformly
bounded index. Hence, after raising Equation (5.11) to a fixed power,
we can assume, for any n, 7, € RoA,. Using (5.10) with ¢ = ¢¢/4
and r = r,, and after again eventually extracting a subsequence, we
can suppose there exists distinct integers Ny, No, such that, for every
n > 1, one can write

Ve AL with v, €, o < e0/4 .
Hence, using (5.11), for n large enough, one has
AV e e\ AL with o e g, [0 < 0/2 .

In particular, the element e’ belongs to A,, hence according to (5.8)
and (5.9), one has v/, = 0. That is

AN e AL
Since R is normal in G, this tells us that, for n large, one has

eMNi—N2Jun ¢ R
Hence w,, = 0 for n large enough, which is a contradiction. U

To deal with the general case of Proposition 5.32, we will study the
quotient G//R.

Lemma 5.36. Let G be an S-adic Lie group and L be a closed normal
subgroup of G. Assume the Lie algebra | of L is semisimple with no
anisotropic factor and the adjoint map L — Aut(l) is an isomorphism
onto a finite index subgroup. Let C' be the centralizer of L in G, so
that C'L has finite index in G. Then, if A is a discrete subgroup of G
such that LN A is a lattice in L, the subgroup (CNA)(LNA) has finite
index in A.
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Proof. Consider the adjoint map ¢ : G — Aut(l). As ¢(A) normalizes
©(AN L), by [8, Cor. 4.8] (which directly follows from Borel’s density
Theorem), ¢(ANL) has finite index in ¢(A), what should be proved. O

We can now give the

Proof of Proposition 5.32. In this proof, we may freely replace G or
A by a finite index subgroup. In particular, let as above R be the
amenable radical of S. We can assume G = C'S, where C' is the group
of elements g of G whose image in G/R commutes with S/R. As, by
Lemma 5.29 and [26, Cor. 2.1], the image of S in G/R satisfies the
assumptions of Lemma 5.36, we can also assume that A = (ANC)(AN
S).
Now, by Lemma 5.30, RN A is a lattice in R and the quotient space
X; = G/RA identifies with C/R(C NA) x S/R(SNA). Set Xy =
C/R(CNA) = G/SA and X3 = S/R(SNA) = G/CA. For any
x1 = (29, 23) in X7, one has

(5.12) rx, (z1) < min(rx,(z2), rx,(zs)).

By Lemma 5.35, for any € > 0, there exists a > 0 such that, if x is in
X = G/A and rx(x) > e, then if x; is the image of x in X7, one has
rx,(z1) > . Thus, if 9 is the image of x in G/SA, by (5.12), we get
rx,(z2) > a, what should be proved. O

6. THE FIRST RETURN MARKOV CHAIN

The results of this chapter are particularly useful when the space
X = G/A is not compact. To deal with this non-compactness issue,
we study the random walk on X thanks to a regeneration method i.e.
through the Markov chain given by the first return map in a “suitable
subset” of X. This method will apply to more general G-spaces than X.
Indeed we will apply it in section 6.6 to the product X x X. The main
input of this method is the exponential u-recurrence of suitable subsets
of X. These suitable subsets are the sublevel sets X;; of a function u
satisfying a contraction property with respect to the averaging operator
A,. This method avoids the use of any other arithmetico-geometric
information on X.

We will first check in section 6.1 that, uniformly for x € X}, the law
of the first return time 7/, in X,; starting from a point x € X has
a finite exponential moment. We will then check in section 6.2 that
the laws ppr,. € P(I') of the corresponding first return cocycle have
also a finite exponential moment uniformly for x in X,;. We will then
introduce the averaging operator corresponding to this first return co-
cycle and study the action of this averaging operator in an unbounded
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irreducible representation V' of the group I',. We will give in section
6.3 a uniform lower bound for the average logarithmic growth of a non
zero vector in V. We will deduce in section 6.4 that the function on V'
given by a suitably small negative power of the norm satisfies a con-
traction property with respect to these averaging operators uniformly
for z in X,;. We will introduce in section 6.5 the notion of “positive
p-unstability” and give a criterion to check this condition. We explain
in section 6.6 one of the main applications of positive py-unstability: we
will prove that, when the diagonal is positively p-unstable, the limit
probability measures of any atom-free stationary probability measure
do not charge the relative stable leaves. In section 6.7 we explain why;,
when A is a lattice, the cusps of X = G/A are exponentially p-unstable.
Using the exponential g-unstapility of the cusps of X = G /A, we check,
in section 6.8, the criterion which ensures the positive p-unstability of
any [-invariant homogeneous subset of X = G/A.

All the results of this chapter will be used in chapter 7 in order to
prove Proposition 7.8.

To our knowledge, the first occurrence of exponential y-recurrence in
the context of homogeneous spaces is due to Eskin and Margulis [17].
We then repeatedly used this phenomenon without explicitly charac-
terizing it in [4]. The systematic approach which is developed here is
greatly influenced by Meyn and Tweedie [22].

6.1. Exponential y-recurrence.

In this section we describe the notion of an exponentially
p-recurrent subset.

Let G be a locally compact second countable group, G its Borel
o-algebra, u a Borel probability measure on G and (B,B,3,T) the
one-sided Bernoulli shift with alphabet (G, G, ).

Let (X, X) be a standard Borel space endowed with a Borel action
of G. The measurable family of probability measure X — P(X);x —
i * 5 induces a Markov operator A, on X given by, for every non-
negative Borel function ¢ on X and every x in X,

Aup(r) = /G p(gz)du(g).

Let Y C X be a Borel subset. For x € X, we set oy, : B — NU{oo}
to be the first hitting time of Y and 7y, : B — Nx; U {o0} to be the
first return time in Y, given by, for b in B,

(61) O'Y@(b) = 1nf{n >0 | bp_1---box € Y},
Ty (b) =inf{n > 1| b,_1---box € Y}.
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To understand our choices in these definitions, the reader has to keep
in mind that, for the trajectory b, the “n**-jump” is given by b,_;.

A function 7 : B — NU{oc} is a stopping time if, for all 0 < i < oo,
the function 1y, is independent from the family of functions b; with
j > 4. For instance, the first hitting time function oy, and the first
return time function 7y, defined in (6.1) are stopping times.

Definition 6.1. We say that Y is exponentially p-recurrent if, for some
ap < 1, one has

Co:= Sup/ aaTY’z(b) dgs(b) < oc.
B

zeY

This means that the first return time in Y has a finite exponential
moment uniformly for z in Y. We choose such a constant ay < 1 and
introduce the following function

(62)  uy: X —[0,00] : 7 uy(x) = / o d5(s),

B

which is an expected exponential of the first hitting time in Y.

Lemma 6.2. Let Y be an exponentially p-recurrent subset of X. Then
one has the inequality

AHUY < QoUy + CO.

Proof. If  is in Y, one has A uy (z) = [, a(;TY’””(b) ds(b) < Cp.
If z is not in Y, one has o,, (1) = o, (b) — 1 for -almost every
b in B and hence A, uy (x) = aguy (). O

The following Proposition 6.3 is a kind of converse to Lemma 6.2. It
gives us a way to construct exponentially p-recurrent subsets.

Let u : X — [0, 00] be a non-negative Borel function on X and set,
for M < oo,
(6.3) Xy ={re X |ulz) < M}.
We assume that there exists ¢ < 1 and C' > 0 such that
(6.4) Au<au+C.

For x € X, we write Ty, = TX,, for the first return time in X,,.
The following proposition tells us in particular that, for large M, the
set X is exponentially p-recurrent.

Proposition 6.3. Let G, u, B, X, u, a, C be as above and satisfy the
contraction hypothesis (6.4). Let ay be a constant such that a < ay < 1
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and let M > M, := Citl . Then, for all x in X, one has

a

/ ag ™" dB(b) < max(M, u(x)).
B

In particular, if u(x) is finite, then the function 7/, is finite S-almost
everywhere on B.

The results of this section are inspired by [22, Ch.15]. The main
difference with [22] is that we do not assume ” p-irreducibility” of the
Markov chain, since this property is not satisfied in our applications.

Proof. We fix x in X such that u(x) < oco. We first note that, by an
induction argument using (6.4), for all ¢ > 1, one has

/ w(bi s -+ box) dB0) < a'u(z) + (1 +a+ - +a")C.

Hence all the integrals involved in the computations below are finite.
To simplify notations, we will write 7 for 73, ,,. The main point of the
proof is to consider the following averaged weighted Birkhoff sums, for
n > 1:

/ a=u(bi - - box) AB(D).
B 1<i<min(7,n)

These sums can be rewritten as

Za /{m} 1 box) AB(D).

Since the first hitting time is a stopping time, the function 1y;>; is
independant from b;_;. Integrating first in b;_; and using (6.4), one
gets

Za / (Ayu) (b - - - box) dB(b)

{rzi}
< Z ag? / (au(bj_y ---box) + C) dB(b).
=0 {r=j+1}
As M > C+1 , one has
au(y) + C < agmax(u(y), M) — 1,
hence

Un(x) < agmax(u(z), M) —1

+ Z / (agu(bj—1---box) — 1) dB(b)

j=1 {r>j+1}
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and
Un(z) < agmax(u(z), M) + U, (z) — Zaajﬁ({T > 5+ 1}).

Therefore, substracting U, (x) from both sides and letting n go to in-
finity, one gets

Zaajﬁ({T > j+1}) < ap max(u(x), M).

5=0
In particular, since u(z) is finite, 7 is finite S-almost everywhere and
one has

ag’ — 1
[ 2 45 < agma(uta), 1)
and hence
/ aaT(b) dp(b) < max(u(x), M)
B
as required. O

Remark 6.4. Similarly we could say that Y is linearly p-recurrent if one
has sup,ey [ Tv,2(b) d3(b) < oo. By the same method as above, one
could characterize the linearly p-recurrent subsets Y of X as being the
sublevel sets of the non-negative functions u : X — [0, 00| satisfying
A <u—1+ Cly for some constant C' > 0 (see [22, Ch. 11]). But
this property would not be strong enough to prove unstability results
as in section 6.5 below.

6.2. Law of the first return cocycle.

In this section, we give a sufficient condition for the ex-
istence of finite exponential moments for the law of the
first return cocycle.

We keep the notations of section 6.1. Let Y be a subset of X. For any
points = in X and b in B such that the first return time 7(b) = 7y, (b)
is finite, we define the first return cocycle to be the product b,_1 ... by.

For a point € X such that S({b € B | 7y.(b) < o0}) = 1, we set

Definition 6.5. The laws of the first return cocycle are the probability
measures fy, € P(G) which are the image of 3 by the first return co-
cycle B — G;b— b._y...by. In other terms, piy,; = [ 0,_,...5, dB(D).

Hence, the Markov operator Ay describing the first return on this
set Y for our random walk on X is the Markov operator given by the
transition probabilities Y — P(Y);z — py, * d,. When Y = X, as
in section 6.1, we will write Ay := Ax,,.
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Definition 6.6. A submultiplicative function on G is a Borel function
N : G — [1,00) such that

N(g192) < N(g1)N(g2) for all g1, g2 in G.

For example, when p : G — GL(V) is a continuous finite dimensional
representation of G in a Q,-vector space V', where p is a prime number
or p = 0o, and when ||.|| is an algebra norm on End(V'), the function
9= N(g) = llp(g)ll + [lp(¢g~ )]l is submultiplicative.

Given a submultiplicative function on GG, we will say that u has finite
exponential moments (with respect to V) if there exists § > 0 such that

(6.5) LN@%mm<m.

The following proposition tells us that if, x4 has finite exponential
moments, the laws of the first return cocycle in an exponentially pu-
recurrent subset Y of X also have finite exponential moments uniformly
forz eY.

Proposition 6.7. Let G be a locally compact second countable group,
N a submultiplicative function on G and p a Borel probability measure
on G with finite exponential moments with respect to N as in (6.5).
Let X be a standard Borel space endowed with a Borel action of G and
Y be an exponentially p-recurrent subset of X. Then there exists § > 0
such that

zeY

sup /G N(g)’ dprya(g) < oo

Remark 6.8. We will apply this proposition to the sublevel sets ¥ =
Xy of a function w on X satisfying the contraction hypothesis (6.4)
when M is large enough.

Proof. Just apply the following technical lemma 6.9 to the functions
T = Ty, using the definition of iy, and the fact that Y is exponentially
p-recurrent. 0

Lemma 6.9. Let G be a locally compact second countable group, G its
Borel o-algebra, N : G — [1,00) a submultiplicative function on G and
i a Borel probability measure on G with a finite exponential moment

(6.6) LN@%wm§m<m,

for some constants &g > 0 and Iy > 1. Let (B,B,3,T) be the one-sided
Bernoulli shift with alphabet (G,G,u) and 7 : B — Nxy be a Borel
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function with a finite exponential moment

(6.7) /B 0 43(b) < Dy < o0,

for some constants to > 0 and Dy > 1.
Then there exists § = 0(0g, Lo, to) > 0 and D = D(dy, Iy, to, Dy) > 1
such that

/ N(b,, b))’ dB(b) < D < o0,
B
Proof. We will choose

B todo
N 2(t0 + log Ig) Coeto/2 -1

We want to dominate the integral I5 := [, N(b , _, - bo)’ dB3(b). By
(6.7), one has the upper bound, for every k > 1,

B{T = k}) < Doe o,

Hence, using successively Holder inequality, the submultiplicativity of
N and majoration (6.6), one gets

=) /B 11y (b) N(b,_, -+ bo)’ dB(b)

00 d/60
6({7— 1 5/80 N . 60 dﬁ( )

> (e )

Z ¢ Ko YL=3/00 pko/d0 _ i 5/502 —kto/2 _ ).
k=1 k=1

This ends the proof of Lemma 6.9. U

IN

6.3. Growth of the first return cocycle.

In this section we give a lower bound for the expected log-
arithmic growth of a vector under the action of a random
walk on the linear group up to some integrable stopping
time.

Let G be a locally compact second countable group, G its Borel o-
algebra, p : G — GL(V') a continuous finite dimensional representation
of G in a normed Q,-vector space V', where p is a prime number or
0o, and let N be the submultiplicative function N : G — [1,00); g +—
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N(g) := |lp(g)|l + llp(¢g7)||. Let u be a Borel probability measure on
G with finite first moment:

L:= /Glog N(g)du(g) < oc.
We set

(6.8) Lo = Lo(p) := inf /1 lgwll g,y > — 1.

weV~\0 || ||

Let (B, B,3,T) be the one-sided Bernoulli shift whose alphabet is
the space (G,G,u). For any Borel function 7 : B — Ns; we let,
as in Definition 6.5, pu, € P(G) be the image of 3 by the map b —
brp)—1 - - - bp. Werecall that 7 is a stopping time if, for all 7, the function
14— is independent from the family of functions b; with j > i.

Lemma 6.10. We assume that u € P(G) has finite first moment and
that 7 : B — N is a (-integrable stopping time. Then ., has finite
first moment, i.e. one has [,log N(g)du-(g) < oo. Moreover, for all
ve V0, one has

llgell 4
(6.9) /1 S ()ZLO/BTCW

In section 6.4, we will use Lemma 6.10 with 7 equal to a first return
time and with Ly > 0. In this case, one has 7 > 1 and the right-hand
side of (6.9) is bounded below by Ly > 0.

Proof. The proof is a variation of Wald’s Lemma. Since 7 is a stopping
time, the functions 1¢,>; and b;_; are independent. Hence, one has

/logN )dpr(g /N -1 Do) dB(D)
G
</ ZlogN bi1) dB(b)
B =1

o0

:Z/{ >‘}logN(bi—1)dﬁ(b)

:L25({72¢}):L/Tdﬁ<oo,

B

since 7 is [-integrable.
This proves also that the left-hand side M, of (6.9) is well defined
and, by the dominated convergence theorem, that, as n — oo, it is the
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limit of M,,, where

M. = log ||b-r(b)7l T bUU”
" {r<n} o]l

dB(b).

As above one has

n

b .- bovl|

7

M, = / log it " 200N G gy,
2 o B T 90

Using again the independance of 1;,>; and b;_;, integrating first in
b;—1 and using (6.8) with ¢ = b; 1 and w = b;_5 - - - byv, one gets

M, > ZLO B{r >1i}) = Ly /B min(7, n) dg.

Hence, letting n go to infinity, one gets My > Ly |, 5 T df as required.
O

Remark 6.11. If V is a representation of G such that the subgroup
spanned by the image of supp(u) has semisimple Zariski closure H
in GL(V) and has unbounded action in any H-submodule of V', by
Furstenberg and Kesten’s Theorem on the positivity of the first Lya-
pounov exponent (see 4.4), there exists ng > 1 such that, for all n > ny,
the constant Lo(u*™) is positive, i.e. if we replace p by a suitable power
W we may assume that Ly > 0.

6.4. Contraction property for the first return cocycle.

In this section, we first recall the contraction property
for linear random walks. Then we prove that this con-
traction property is also satisfied for the law of the first
return cocycle associated to an exponentially p-recurrent
subset.

Let G be a locally compact second countable group and p : G —
GL(V') a continuous finite dimensional representation of G in a normed
Q,-vector space V, where p is either a prime number or co. Set ¢
to be the function ¢ : V0 — R%v — |jv]|7! and N to be the
submultiplicative function N : G — [1,00);9 — N(g) := ||p(g)| +

(g~ ")

Lemma 6.12. Let pu be a Borel probability measure on G with finite
exponential moments

(6.10) /GN(g)‘S“ du(g) < Ip < o0
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and with

(6.11) inf / tog 190 4,1(0) > Ly > 0
G [Jw]]
for some constants 69 > 0, Iy > 1 and Ly > 0.
Then there exists 01 = 01(do, Lo, Lo) such that, for any § € (0,01],
one has, with a :=1— Lyd/2 < 1

AM(¢5) < aSO(S

Proof. This lemma is an extension of Lemma 4.2 of [17]. We will repeat
the proof which is based on an asymptotic expansion of order 2 of
e~01oellgvll/Iv) "as § — 0, in order to check that the constants § and a
can be chosen uniformly for all probability measures pu satisfying (6.10)
and (6.11).

We set &; := min(%2, Iflig ). We want to dominate the integral
lgvll =
I = du(g).
a Il

To this aim, we use the inequalities, for all x in R,

2
x
e" <l+x+ ?em and 22 < el

and we compute

= / e ()
G

<15 1ol aug) + 5 [ 108107V (0)® auto)

2
252 262 )
< 1—5L0+—2/ N(g)*du(g) =1—06Ly+ —51Io < 1— Lo,
% Ja 5 2
which is the required inequality. U

As a corollary, we get the following

Proposition 6.13. Let pu be a Borel probability measure with finite
exponential moments on G and with

(6.12) inf /logMdu(g)>O.
G [|w]]

Let X be a standard Borel space endowed with a Borel action of G and
Y be an exponentially p-recurrent subset of X. Then for 6 > 0 small
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enough, there exists ag < 1, such that, for all x in'Y and all v € V,
one has

/ Lol duya(g) < aollol .
G

Proof. This is a consequence of Lemma 6.12 applied to all the prob-
ability measures py, with  in Y. Indeed, the uniform upper bound
(6.10) for all these probability measures uy, is given in Proposition 6.7
while the uniform lower bound (6.11) for all these probability measures
[y is given in Lemma 6.10. U

6.5. A criterion for positive p-unstability.

In this section we introduce the notion of positive u-
unstability and give a handleable criterion for a subset
to be positively p-unstable (Proposition 6.16).

Let GG be a locally compact second countable group, i be a Borel
probability measure on G and X be a locally compact second countable
space endowed with a continuous action of G.

Definition 6.14. A closed I',-invariant subset ¥ of X is said to be
positively p-unstable if, for every € > 0 and any compact subset Z C
X \'Y, there exists a closed subset ' = F;, of X \'Y such that, for
all x € Z |, for all n > 1, one has

(6.13) % S (Wt ad)(F) > 1—e.

0<k<n

Here is a straightforward consequence of Definition 6.14:

Lemma 6.15. Let ng > 1. A closed I',-invariant subset Y of X is
positively p-unstable if and only if it is positively p*"*°-unstable.

Proof. On the one hand, for a subset F' of X, and n > 1,the bound
%Zogk<n(ﬂ*k * 0, )(F) < € implies %Zogk<n(ﬂ*kno * 0g ) (F7°) < moe.

On the other hand, let K be a compact subset of I', such that
N*Z(K) > 1—¢, forall 0 < ¢ < ng. For every closed subset F' of
XNY, KF is also a closed subset of X \'Y and, for every probability
measure v on X,

ST ) (KF) > (1 <)u(F).

n
0 0<t<no

The results follows by applying this inequality to the probability mea-
sure v = =30 0k by O
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For any Borel function v : X — [0, oo] satisfying A,u < au+ C for
some a < 1, C' > 0, we set, for M < oo, as in (6.3), Xy := {z € X |
u(z) < M} and Ay := Ax,, the first return Markov operator on X,
i.e. the Markov operator with transition probabilities z — jix,, » * 05
as in Definition 6.5.

Proposition 6.16. Assume that, for any compact subset Z C X,
there ezists a lower semi-continuous function v : X — [0, 00] which
1s bounded on Z and such that

(6.14) Au<au+C

for some constants a < 1, C' > 0. Let Ay = Ax,, be the first return
Markov operator on the sublevel sets Xy :={z € X | u(x) < M}.

Let Y be a closed I',-invariant subset of X. Assume that, when M
1s large enough, for any compact subset Z C Xy Y, there exists a
lower semicontinuous function vy : Xy — [0, 00] which is bounded on
Z, infinite on' Y N Xy and such that,

(615) AMUM S CLMUM+CM

for some constants apr < 1, Cpy > 0.
Then 'Y is positively p-unstable.

Proof. We denote as usual by (B, B, 3,T) the one-sided Bernoulli shift
with alphabet (G, G, 1) and we recall that the operator A, is given by,
for any non-negative Borel function ¢ on X,; and any x in Xj,,

(Au)@) = [ Plbrpr-+bu) A5
where 7 = T)s, > 1 is the first return time in X,.

We will prove the following statement, which in view of our assump-
tions, implies the result : for any € > 0 and My > 0, there exists
M > 0, such that, for any M} > 0 there exists M' > 0 such that, for
any x € Xy, with vy (z) < M) and any n > 1, inequality (6.13) is
satisfied with

F = XM,M’ = {y e Xy | UM(y) < M/}

We will choose

16(Mo+C) o 16(M + Car)

M=z (1= an)22
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We will first use inequality (6.14) to control the density of the visits
in X;s. For  in Xy, and n > 1, one has

n—1
1 5 1 C My+C
Z < < <
- kgzo(A#u)(x) S Az a)nu(x) + —aST-a = e“M/16,

which can be rewritten as
n—1
1
/ = u(bgy - - boz) dB(b) < £2M/16.
B

By applying Chebyshev’s inequality twice, we get from this
BHbe B | #Iy(b) = (1—¢/4)n}) > 1—-c/4.

where

I3 (0) :={k € [0,n—1] | u(bg_1 - box) < M}.
If, for t > 0, we set [t] for the smallest integer p > ¢ and we denote by
7t (b) the [t]"-return time in X, starting from z on the trajectory
b, we can rewrite (6.5) as,

(6.16) B{be B[,V (b) < n}) > 1—¢/4.

Following similar computations, we will now use inequality (6.15) to
control the density of the visits in X, among the return times in
Xp. Since vy (x) < Mj, for n > 1, one has

1 Cym

va(x) + < €2M//16,

n—1
1
- Ak <
2 2 An)(e) < T

which can also be rewritten as
n—1
1
/ = wn(byr, g1 -box) dB(b) < 2M'/16.
B *

Again by Chebyshev’s inequality, this gives
(6.17) BHb € B | #Jyar(b) = (1—e/4)n}) = 1—¢/4,
where

Tiau®) = {k € 0.0=1] [ oaby,
By (6.16) and (6.17), the set of b in B such that
T M) <nand #0N0) > (1 - /)1 - e/4)n]
has measure > 1 — ¢/2. Thus, setting
K () :=A{k € [0,n—=1] | by - - box € Xpsar},

-1 bor) < M'}.
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we get
B({b € B | #K3;,0(b) > (1—£/2)n}) > 1-¢/2,

from which we deduce

3
—

(0 % 00) (Xpparr) > (1 —¢/2)> > 1 —¢,
0

S|
il

which is the required inequality (6.13). O

6.6. Measure of the relative stable leaves.

In this section we prove that, for a G-space X, the posi-
tive p-unstability of the diagonal in X x X ensures that
the limit probability measures v, of any atom-free sta-
tionary probability measure v on X do not charge the
relative stable leaves.

Let GG be a locally compact second countable group, G its Borel o-
algebra, p a Borel probability measure on G, I', the smallest closed
subgroup of G containing the support of p and (B,B,3,T) the one-
sided Bernoulli shift with alphabet (G, G, 11).

Let X be a locally compact second countable space endowed with a
continuous action of G. Let v be a Borel probability measure on X.
We recall that v is said to be atom-free if, for every x in X, one has
v({z}) = 0. We assume that v is p-stationary, i.e. that u*v = v.

Let us denote, by b — v, the family of limit probability measures of v,
so that, for every nonegative Borel function f on X and [-almost every
bin B, one has [, fduy, = lim, . [y fd(bo---by)sv. The existence of
this family is due to Furstenberg and, for (-almost every b in B, one
has v, = bo.vrp (see [4, Sect. 3.2]).

Here is a criterion which ensures that these limit probability mea-
sures are atom-free. This criterion reinforces [4, Prop. 3.9].

Proposition 6.17. (The v;,’s are atom-free) Let G be a locally compact
second countable group, X be a locally compact second countable space
endowed with a continuous action of G and p be a Borel probability
measure on G. Assume that the diagonal Ax of X x X is positively
p-unstable.

Then, for any atom-free u-stationary Borel probability measure v on
X, for B-almost every b in B, the probability measure vy is also atom-
free.

Proof of Proposition 6.17. We begin the proof with a special case.
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First step : If, for B almost every b, vy, is a Dirac mass, then so is v.
We assume in this first step that, for S-almost every b in B, the prob-
ability measure v, is a Dirac mass d,3 where k : B — X is a B-
mesurable map. We will then prove by contradiction that v is a Dirac
mass. To get a contradiction, we study the random walk associated
to pon X x X. We will use the existence of x and Chacon-Ornstein
ergodic Theorem to see that this random walk converges towards the
diagonal Ay, which will contradicts the positive p-instability of the
diagonal. To make this precise, we need more notations.

For g in G and b = (by,by,...) in B, we set gb = (g,bo,b1,...).
One then has, for p-almost every g in G and (-almost every b in B,
k(gb) = gr(b).

We endow B = G" with the product topology. According to Lusin’s
theorem, for every ¢ > 0, there exists a compact subset K C B such
that G(K) > 1 — ¢ and the restriction of x to K is continuous.

We introduce the transfer operator L, on B given by, for ¢ in
LY(B,f3), for 3-almost every b in B,

(Lup)(b) = /G ©(gb)du(g).

Since L, is the adjoint of the shift 7', it is ergodic. The Chacon-
Ornstein ergodic theorem [14], applied to the function ¢ = 1k, tells us
that, for b outside a B-null subset N C B, one has the equality

(6.18) lim 1 Z (Li1g)(b) = B(K) > 1 —e.

n—oo M,
n<k<2n

Enlarging the g-null set N, we may also assume that, for every b in
B~ N, for every integer k > 0, for u®*-almost every (gi,...,gx) in G,
one has k(g1 ... gxb) = g1 ... grk(b).

Assume by contradiction that v is not a Dirac mass. Then, as v =
k., the set E := {(b,b') € B x B | k(b) # k(V)} is not f ® B-null.
Hence one can find two points b and &’ outside N such that the images
x = k(b) and z’ := k(b') are distinct.

Since the diagonal Ay is positively u-unstable, for every € > 0, there
exists a closed subset F, of X x X ~. Ax such that, for all n > 1, one
has

1 k
) — * / >1—c.
(6.19) S S () 21—

n<k<2n
Since the restriction of x to K is continuous, one has

dn. > 0, Vn > n., VYgi,...,9, € G such that ¢;---¢,b € K

(620) and g1+ gnbl c K’ one has (/‘f(gl . gnb)a /.{,(gl e gnb/)) g Fa'
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By (6.18), there exists an integer ng > n. such that, for every n > ny,

1
=N 1 {(gr ) €CT g1 g e KY) > 1—¢,

n<k<2n

1
- Z {1 ) €GT g b € KY) > 1 —e.

n<k<2n

Hence, using (6.20), one gets

]' /
— > P {lgr o) €GM (g gr ) €Y > 12

n<k<2n

This gives a contradiction with (6.19) as soon as ¢ < % Hence v is
a Dirac mass.

Second step : We will reduce the general case to the first one.

We assume that the set D := {b € B | v, has atoms} satisfies
B(D) > 0 and we shall prove that v has atoms. Since v, = by, V7, this
set D is T-invariant. Since [ is T-ergodic, one has G(D) = 1. The
same argument shows also that the maximal mass my of the atoms of
vy is [-almost everywhere constant on B and that the number N, of
atoms of v, whose mass is m; is also 3-almost everywhere constant.
We set mg > 0 for this mass and Ny > 1 for this number of atoms.
Let v}, be the probability measure which is equidistributed on these Ny
atoms of v, whose mass is mg. One also has v} = by,v/,. Hence the
probability +/ on X given by v/ := [, 1} d3(b) is also p-stationary and
one can write v as the sum of mgNy/' and of a p-stationary measure
with total mass (1 — Nymyg). By construction, the probability measures
v, are the limit probability measures of v/, and it suffices to prove that
V' has atoms.

The group G acts naturally on the set X’ of finite subsets of X with
Ny elements. The support zj of v/ is an element of X', and the family
b — v} of probability measures on X’ where v’ is the Dirac mass at xj,
still satisfies the equality v} = bg,/]y, for G-almost all b in B. Hence
the probability measure v” := [, 1,/ d3(b) on X' is p-stationary.

We want to apply the first case to the action of G on X’. To this
aim, we now check that the diagonal Axs of X’ x X’ is also positively
p-unstable. Indeed, let Z’ be a compact subset of X' x X'\ Axs and
g > 0. There exists a compact subset Z of X x X ~ Ay such that

for all (z,2") = ({z1,..., 25}, {21, ..., 2y, }) € Z', there
(6.21) exists 1 < i < Ny such that, for all 1 < j < Ny, one has
(zi,7}) € Z.
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Let F' be a closed subset of X x X \ Ay satisfying (6.13) and
Fro={(z,2") € Z' | I <i < Ny, V1 <5 < Ny, (w3, 25) € F).

Then, for any (z,2) in Z’, and n > 1 one has, choosing i as in (6.21),

1 * /c 1 * C
~ D W0 (F) S = DY (0 G (FY) < Noe.

0<k<n 1<j< Ny 0<k<n

This proves that Ax is positively u-unstable.
According to the first case, the probability measure v’ is a Dirac
mass d,. Hence, v has finite support, what should be proved. O

Let BX be B x X, B¥ the product o-algebra B ® X, 5% the prob-
ability measure on BX given by 6% := [, 6 ® 1, d3(b) and T the
transformation of B given, for (b, z) in BX, by TX (b, x) = (Tb, by 'x).
As in section 3.2 (see also [4, Sect. 3.1]), this transformation preserves
Bx.

Let d be a distance on X inducing the topology of X. For (b, z) in
B x X, set
(6.22) Wy(z) = {z' € X [d(b," ... by a, b .. by'a’) — 0}

p—o0
which is the relative stable leaf of (b, ). When X is compact, this leaf
does not depend on the choice of d, but it might in general.

The following Proposition 6.18, combined with Proposition 6.17, will
be used in the course of the proof of Proposition 7.8.

Proposition 6.18. Let G be a locally compact second countable group,
X be a locally compact second countable metric space endowed with a
continuous action of G and p be a Borel probability measure on G. Let
v be a p-stationary Borel probability measure on X . Let L be a second
countable locally compact group acting continuously on X . Assume that
the actions of L and T, commute. Then, for 3X-almost every (b, ) in
BX, one has vy(LWy(z) \ Lz) = 0.

Proof. Let R be the transformation of B x X x X given by, for (b, z, x)
in BxXxX,

R(b,x,2') = (Th,by 'z, by'a).
The Borel probability measure

A= / 51, RV & I/bdﬂa))
B

on B x X x X is R-invariant. Write L = U,>;L, where (L,) is an
exhaustive sequence of compact subsets of L. Let us introduce the
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R-invariant subsets
Z={(b,z,7') € Bx X x X |2/ € LWy(x) \ Lz}
and, for n > 1,
Zn=A{(byx,2") € Z | 2" € L, W,(x)}.
Let ¢,, be the function on B x X x X given by
On(b,z, ") = Zler}:fn d(lx,x).

This function ¢,, is non zero on Z,. By definition, for A-almost every
z in Z,, one has ¢,(RP(z)) —— 0, hence, according to Poincaré re-
p—00

currence theorem, one has A(Z,) = 0. Since this is true for all n > 1,
one has A(Z) = 0. This proves our claim. O

6.7. Exponential y-unstability of the cusps.

Going back to the framework of homogeneous spaces,
we give in this section two equivalent definitions for the
exponential p-unstability of the cusps of X = G/A and
we check that they are satisfied for finite volume spaces.

Let G be an S-adic Lie group, A a discrete subgroup of G, X = G/A
and p € P(G) an Ad-semisimple Borel probability measure on G with
finite exponential moments in g.

Fix a standard open subset 2 of G. We recall from Definition 2.1
that, for every z in X, we denote by rx(z) the injectivity radius in
x, that is the supremum of the radii » < rg for which the map g —
X;w — expo(w)x is one-to-one on the ball B(0,7) C g.

Lemma 6.19. The following are equivalent.
(i) For every compact subset K of X, there exists an exponentially -
recurrent (see Definition 6.1) closed set F' C X containing K on which

rx 15 bounded below i.e. such that inlfw rx(xz) > 0.
Te

(ii) For every compact subset K in X, there ezists a lower semicontin-
uous function u : X — [0, 00| which is bounded on K and such that rx
is bounded below on every sublevel set Xy :={x € X | u(x) < M} and
there exist constants a <1, C > 0 with A,u < au+ C.

Definition 6.20. When either of the equivalent conditions of Lemma
6.19 is satisfied, we shall say that the cusps of X are exponentially
p-unstable.

Proof of Lemma 6.19. (ii)= (i) Given a compact set K in X, let u :
X — [0,00] be a function as in (%). We choose F' to be a sublevel
set {zx € X | u(x) < M} containing K. By Proposition, 6.3, F' is an
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exponentially p-recurrent subset. Since u is lower semicontinuous, F
is closed and, by assumption, the injectivity radius is bounded below
on F.

(i)=(ii). Given a compact set K in X, let F' C X be a closed
subset as in (i). The injectivity radius rx is bounded below on F
and there exists a < 1 and C' > 0, such that, for all x € F', one has
I a~ =) dB(b) < C.

We choose u : X — [0, 00] to be the expected exponential of the first
hitting time in F, u(z) = [, a7+ d3(b), as in Equation (6.2). Since
Fis closed, by Fatou’s Lemma, this function u is lower semicontinuous
and, by Lemma 6.2, one has A,u < au + C. In particular, for every x
in X, one has

(6.23) p{beB|30<j<n—1 bj_q---byx € F})>1—u(x)a".

Pick M > 0 and set Xy, := {z € X | u(z) < M}. We have to prove
that the injectivity radius is bounded below on X,,;. By (6.23), for n
large enough, uniformly for x in X};, one has

Now, choose a compact subset K of G such that, for any 0 < j <n—1,
one has u*(K) > 1—1/2n. As a consequence, for any z in Xy, there
exists g in K such that gr € F. But by Lemma 5.2, there exists € > 0
such that, for any = in X with rx(z) < ¢, for any ¢ in K, one has
rx(gz) < ||Adg|/rx(x). Since rx is bounded below on F, it is also
bounded below on X,,. O

When A is a non cocompact lattice, exponential p-unstability of
the cusps of X follows from an extension of a result by Eskin and
Margulis which constructs a proper function v on X satisfying (6.4).
The following Lemma was used in section 2.3 to prove that Theorem
2.5 follows from Theorem 2.7.

Lemma 6.21. Let G be an S-adic Lie group, A a lattice of G, X =
G/A and p an Ad-semisimple probability measure on G which admits
finite exponential moments in g. Then the cusps of X are exponentially
p-unstable.

Proof. According to [7, Proposition 7.3], which extends Eskin-Margulis’
main result in [17], given a compact subset K of X, there exists a lower
semicontinuous function u : X — [0, 0o] which is bounded on K such
that, for any M € [0, 00), the sublevel set u~'([0, M]) is compact and
there exists constants a < 1, C' > 0 with A,(u) < au+ C. The result
follows, as the injectivity radius is bounded below on every compact
subset of X. U
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6.8. Positive p-unstability of homogeneous subspaces.

In this section we apply the criterion of section 6.5 to
proving that the I',-invariant homogeneous subsets of
X = G/A are positively p-unstable.

Let G be an S-adic Lie group, A be a discrete subgroup of G and
X = G/A. As in section 6.7, we fix a standard open subset Q of G
with exponential map expg : O — €2 and we set rx for the injectivity
radius in X

Let Y C X be a homogeneous closed subset of X and S = {g € G |
gY =Y} be the stabilizer of Y. We choose a complementary subspace
t of the Lie algebra of S in the Lie algebra of G. We fix g5 > 0 such
that O Nt contains the closed ball with radius ¢y in t. For every x in
Y we set rxy(z) to be the transverse injectivity radius at x, that is

expq(Bg(e))z N'Y con- }) |

tains at most one point

rxy () = sup ({0 <e<eg

Definition 6.22. We will say that rx controls rx y if, for every n > 0,
there exists v > 0 such that, for all x € Y with rx > 7, one has
rxy = -

Remark 6.23. This definition does not depend on the choices of t,
and &g.

From Proposition 6.16, we deduce the following general criterion for
positive p-unstability in the homogeneous setting.

Proposition 6.24. Let G be an S-adic Lie group, A be a discrete sub-
group of G, X = G/A and pn € P(G) be an Ad-semisimple probability
measure on G such that H, = H,° which admits finite exponential mo-
ments in g. We assume that (G,T",) has good exponentials and that the
cusps of X are exponentially p-unstable (see Definitions 5.9 and 6.20).
LetY C X be aT',-invariant homogeneous closed subset of X such that
rx controls rxy. Let K be a compact subset of the centralizer L of
I'y. Then the subset K1Y C X s positively p-unstable.

In particular, Y itself is positively p-unstable. Before proving this
proposition we state two nice corollaries of it.

Corollary 6.25. Let G be a weakly regular S-adic Lie group, A a lattice
of G, X = G/A\ and pn € P(G) a compactly supported Ad-semisimple
probability measure on G with H, = H,°. Then every I, -invariant
homogeneous closed subsetY of X is positively p-unstable.

Proof of Corollary 6.25 . We just check that the assumptions of Propo-
sition 6.24 are satisfied.
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By Proposition 5.11, since G is weakly regular and I',, is compactly
generated, (G,I',) has good exponentials.

Besides, A being a lattice, on one hand, by Lemma 6.21, the cusps
of X are exponentially u-unstable and, on the other hand, for n > 0,
the set X, := {z € X | rx(z) > n} is compact and the function rx y
is bounded below on X,,. Hence rx controls rxy. O

Corollary 6.26. Let G be an S-adic Lie group, A a discrete subgroup
of G, X = G/A, p € P(G) an Ad-semisimple probability measure on
G with H, = H}}° which admits finite exponential moments in g, K, a
compact subset of the centralizer L of '), and

AR = {(z,y) e X x X | € K, y = Lx}.

We assume that (G,T',) has good exponentials and that the cusps of
X are exponentially p-unstable. Then the subset Ag’: of X x X 1s
positively p-unstable.

Proof of Corollary 6.26 . We just have to check that rx.x controls
the transverse spectral radius rxxxa,. Indeed, choose g x {0} as
the complementary subspace t, then, for (z,y) in X x X, one has

rxxx,ax(@,Y) > rx(x). U

Proof of Proposition 6.24. We aim at applying the criterion of Propo-
sition 6.16. Since the cusps of X are exponentially u-unstable, if Z is
some compact subset of X, there exists a lower semi-continuous func-
tion u : X — [0, oo] such that A,u < au+ C for some constants a < 1,
C > 0, which is bounded on Z and such that, on the sublevel sets
Xy = {z € X | u(x) < M}, the injectivity radius ryx is bounded
below. Let Ay := Ax,, be the first return Markov operator on X),.

For any large enough M > 0 and any compact subset Z C X \
K1Y, we aim at constructing a function vy, : Xy — [0, 00] which is
bounded on Z, infinite on K Y N X,; and such that

(624) AMUM < apuy + CM

for some constants ay; < 1, Cyy > 0.

To this aim, we will apply Proposition 6.13 to the subset X,;, for
large enough M > 0. We first recall that, by Proposition 6.3, X, is
exponentially p-recurrent. We now check that the assumption (6.12)
of Proposition 6.13 is satisfied. First, we fix some d; > 0 such that
JoN(g)®du(g) < oo, where, as in section 6.3, N(g) = [Adg| +
|Adg'||. Let [ be the Lie algebra of L. As (G,T',) has good ex-
ponentials, [ is the space of I',-invariant elements of g. Let v be its
unique I',-invariant complementary subspace. Since, by Lemma 6.15,
we can replace p by a suitable power, we may assume, according to
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Furstenberg-Kesten’s theorem on the positivity of the first Lyapounov
exponent (see Proposition 4.4), that the expected logarithmic growth
of any non-zero vector in v is uniformly bounded below as in (6.11),

that is
inf /log lgw H du(g) > 0.

weVN0 H H

By Proposition 6.13, if § < d is small enough, there exists ag < 1 such
that, for all x in Xj; and all w € v, one has

(6.25) [ lwl* dusealo) < aolu]
a
By Proposition 6.7, one can assume
(6.26) Iy = sup / N(g)% dpnrz(g) < o0
xGXM G

We can now give the formula which defines the functions v,, we are
looking for. We fix a (G,I',)-good standard open subset 2 of G' and
we set O = log (). Let Z be a compact subset of X3, ~ K Y. Let S be
the stabilizer of Y in G, s be its Lie algebra and choose a I',-invariant
complementary subspace ¥ C v of sNv so that g = (s +[)@®t. Since rx
controls rxy and ry is bounded below on Xj, rxy is also bounded
below on X,;. We can find an open neighborhood U of e in L and
e > 0 with By(e) C O such that, for any x in X, and ¢ in L, there
exists at most one w in t with ||w|| < ¢ and = € expo(w)ULY. By
shrinking U, we can assume ZNUK Y = (). Pick ¢1,...,¢, in K, with
Kp,cUlhu...uUY,.

For x € Xy and 1 <i <, set

-4

vilz) = |w]|=°  ifx € e?ULY with w € ¥ and |Jw|| < ¢,
I = else

and vy (x) = vi(z) + ... +v.(2).
By construction, the function vy @ X — [e7°, 00] is lower semi-
continuous, bounded on Z and infinite on K Y. To conclude, we will

)

check that the function vy satisfies inequality (6.24) with ay = —H'Q“O
and Oy = rR¥e~° where Ry := (12]240)571-

We fix 1 <@ <r and z in Xj;. First, let us note that, for any ¢ in
I, with gz € X, we have

(6.27) vi(gr) < N(g)*vi(x).

Indeed, if v;(gz) < N(g)°c~°, this follows from the fact that v;(z) >
e7%. Else, one has gr € e*U{;Y with w € t and ||w| < N(g)~'e and
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therefore, as Q is (G,I",)-good, = € ed LY and
vi(x) = |lg™ || ° > N(g)~|lw]| = = N(g)*vi(ga).

Now, let us decompose the probability measure ji5;, on G as a sum
Ptz = pa + p2 where

= LiN(g) <R} and  po = Lin(g)> Ry} -

We will first dominate A, v;. On one hand, if v;(z) < R3;e7%, one
has, by (6.27), (A, v;)(x) < R33¢°. On the other hand, if v;(z) >
R3,e79 then, writing x € e*U4Y, with w € ¥, ||w|| < R}, one has
again, for all g in I', with norm < Ry, and gz € Xy, gz € e9°ULY
and hence v;(gx) = ||gw|~® and, according to (6.25),

(A vi) (@) < aollw|| ™ = agui(x).
In both cases, one has the upper bound
(6.28) A vi < agu; + R3e™.

We will now dominate A,,v;. Using (6.26), we get

/GN(g)‘sdm(g) < RAf/GN(g)% dpnre(g) < IR, = 5.

By (6.27), this gives

(6.29) Apvi(z) < H500().
Adding (6.28) and (6.29) and summing over ¢, one gets A,vy <
apyvy + Chyr as required. O

7. BEFORE THE DRIFT

In this chapter, we begin the proof of Theorem 2.7. We introduce the
main notations and we explain the structure of the reduction process.

The main output of this chapter is the fact that, roughly speaking,
one can find in X pairs of points close to each other which are generic
for v, and which are not on the same stable leaf (Corollary 7.11). This
is a consequence of the non-degeneracy of the v,’s (Proposition 7.8).

We end this chapter by the equivariance properties of the horocyclic
flow ® and the associated conditional measure map o (Lemmas 7.14
and 7.15).
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7.1. Preliminary reductions.

In this section, we reduce the proof of Theorem 2.7 to
the case where v fills X, that is, roughly speaking, when
the stationary probability measure v is not supported by
a smaller dimensional orbit.

JFrom now on, G is an S-adic Lie group, g is its Lie algebra, A is a
discrete subgroup of G, X = G/A, u is an Ad-semisimple probability
measure on GG and v is a pu-ergodic p-stationary probability measure on
X. Westill let T, be the closed subgroup of G generated by the support
of u and H, C GL(g) be the Zariski closure of the group Ad(T",). We
assume that H, = H}°.

We may assume that G is second countable. Indeed we may al-
ways replace GG by an open second countable subgroup containing the
support of u, since such a subgroup intersects A in a lattice.

We also assume that (G,I',) has good exponentials. Recall from
Proposition 5.11 this is the case as soon as G is a real Lie group or
a closed subgroup of some GL(d,Qg). In particular, if [ denotes the
centralizer of I', in g and L the centralizer of I', in G, [ is the Lie
algebra of L.

Definition 7.1. We will say that v fills X if, for every closed non-open
subgroup G’ of G containing I';, and every x € X, one has v(G'z) = 0.

Remark 7.2. There might not exist a smallest open subgroup G’ DT,
of G such that v(G'x) = 1. For example, if G is SL(2,R) x SL(2,Q,),
A is the lattice SL(2,Z[}]) in G, X = G/A, p € P(G) is a probability
measure such that I', = SL(2,R) and v is the G-invariant probability
measure on X, then v fills X, but for every open subgroup G’ of G,

one has I'), C G" and G'A = G.

Proposition 7.3. To prove Theorem 2.7, it is enough to prove it when
v fills X.

Proof of Proposition 7.3. Let G’ be a non-open closed subgroup of G
which supports the probability x and such that some orbit X’ of G’
in X supports the stationary probability measure v. Choose G’ to
have the smallest possible dimension. This orbit X’ may not be closed
nor have finite volume, however since the injectivity radius of X’ is
bounded below by the injectivity radius of X, i.e. since

rx/(x) > rx(z) forallze X',

(G', X', ) inherits exponential p-unstability of the cusps from
(G, X, ). By construction, v fills X’. We can then apply Theorem
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2.7 to (G',p, X',v) and we get that v is I',-invariant and homoge-
neous. U

7.2. Construction of S.

We explain in this section how to construct a nice sub-
group S of G which preserves v and whose normalizer G’
is open in G. Most of the proof of Theorem 2.7 in the fol-
lowing sections will then take place in the quotient group

G :=G'/S.
We set G, := {g € G | g.v = v} for the stabilizer of v in G,

G;/ = mger# gGl/g_17

and L, := L NG,. The strategy of the proof consists in constructing
Adg-unipotent one-parameter subgroups of (. We hence let Syax =
(G},)u be the closed subgroup of G, which is generated by the Adg-
unipotent one-parameter subgroups contained in G’,. By construction,
the group Smax is normalized by T',,.

Here comes the second reduction step in the proof of Theorem 2.7.

Proposition 7.4. Let G be a weakly reqular S-adic Lie group, A be a
discrete subgroup of G, X = G /A, p be an Ad-semisimple probability
measure on G such that (G,T'),) has good exponentials, H, = HJ¢ and
Je log |Adg]| du(g) < oo.

Let v € P(X) be a p-stationary p-ergodic probability measure that
fills X. Then there exists a closed subgroup S of G and x = g\ in X
such that
(i) The unimodular normalizer G' = N1(S) C G is open, contains I',
and v(G'z) = 1.

(17) The group S is semiconnected and Spax C S C G,,.
(i11) The group SN gAg™! is a lattice in S and S = Spax (S N gAg™).

Denoting this group S by the same letter as the first letter of “S-
adic” should not induce any confusion.

Proof of Proposition 7.4. To construct the subgroup S, we use Ratner’s
Theorem 5.15. Let & be, as in (5.6), the set of Ratner’s probability
measures on X. Since the group Spax is generated by Adg-unipotent
one-parameter subgroups, one can write the decomposition of v into
Smax-€rgodic components as

v — /X oy dv(z),
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where the map = — a, € £ is Borel and constant on Sp,.-orbits. Since
', normalizes Spax and since this ergodic decomposition is unique, for
every g € I, for v-almost every € X, one has oy, = g.a,.

Hence the probability measure n € P(E), which is the image of v
by the map = +— «, is also p-stationary and p-ergodic. Since G\E is
countable, 7 is supported by a G-orbit G o >~ G/Gao. As G, admits
a lattice, it is unimodular. By Proposition 5.19, we can choose «g in
such a way that there exists a semi-connected component S = S,, of
the stabilizer G,, such that the group G’ := N;(S) contains I', and
the stationary measure 7 is supported by G’ag. In other terms, for
v-almost every z in X, we have n(G'a,) = 1, hence, as G’ contains
Ga,, V(G'r) = 1 (one can prove that the orbit G’z is closed in X —
see [15, Th. 3.4] when G is a real Lie group — but we will not use this
fact). Since v fills X, the group G’ is open in G. By construction,
since «y is a Ratner probability measure, for v-almost any x = gA in
X, SNgAg~!is alattice in S and S = Spay (S N gAg™1). O

The case where Spa.x = {1} is the crucial one in Theorem 2.7. We
state it as a Corollary of Theorem 2.7.

Corollary 7.5. Let G be a weakly reqular S-adic Lie group, A be a
discrete subgroup of G, X = G/A, p be an Ad-semisimple compactly
supported probability measure on G such that H, = H}¢ and L be the
centralizer of I', in G. We assume that the cusps of X are exponen-
tially p-unstable. Let v € P(X) be a p-stationary p-ergodic probability
measure. If one has Smax = {1}, then v is I',-invariant, homogenous
and supported by a finite union of L-orbits.

We will see in Lemma 7.6 that the conclusion of Theorem 2.7 implies
that v is homogeneous under the group I', L, S.

When proving Theorem 2.7, we may assume that G’ = G i.e. that S
is normal in G. Since A NS is a lattice in S, the group A := AS/S is
a lattice in G := G/S. Let X be the quotient space X := G/A and p
and v be the probability measures on G and X which are the images
of ;1 and v by the natural maps G — G and X — X. The probability
measure v is u-stationary and p-ergodic.

When G is a real Lie group, Theorem 2.7 is a direct consequence of
Corollary 7.5 applied to (G, A, X, u,v).

When G is a weakly regular S-adic Lie group, the quotient group G
might not be weakly regular. This is why we have to be a little bit more
careful. By Proposition 5.11.c, (G,I') has good exponentials. Hence
we will be able to work out the main part of the proof of Theorem 2.7
in this quotient. It is only at the very end of the proof in section 8.3
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that we will lift the informations obtained so far to the weakly regular
group G.

The proof of Theorem 2.7 will last up to the end of this paper.
Using Proposition 7.3, we can assume that v fills X. Using Lemma 7.6
below, we can assume that for all z € X one has v(LSxz) = 0. Our
aim will then be to get a contradiction by constructing I',-unstable
one-parameter subgroups of GG preserving v.

7.3. Stationary measures on orbits of the centralizer.

In this section we study those stationary probability mea-
sures v on X for which some L-orbit satisfies v(Lx) > 0.

We point out that this group L, which is the centralizer of I', in
(G, is not assumed to be compact, hence its dynamics on X might be
intricate.

Lemma 7.6. Let G be a locally compact second countable group, A be
a discrete subgroup of G, X = G/A, p be a probability measure on G
and L be the centralizer of '), in G. Let v € P(X) be a p-stationary
p-ergodic probability measure on X . If one has v(Lz) > 0 for some x
in X, then v is I')-invariant and homogenous.

More precisely, v is homogeneous under the closed group I', Lo where
Ly is any open subgroup of the stabilizer L, of v in L.

Proof. By Lemma 3.7, for v-almost any x in X, one has v(Lz) =
v(L,z). By assumption, there exists a point x in X with v(Lz) > 0.
As Ly is open in L, there exists a point x such that v(Loz) > 0. Let
Y be the set of those z in X such that v(Lyz) takes its maximal value
M. Since every Lg-orbit of finite volume in X is closed and since Y is
a finite union of Lg-orbits, this set Y is closed. As v is u-stationary, for
any x in X we have v(Loz) = [, v(Log~'z)du(g) so that, if z belongs
to Y, by the maximum principle, v(Log~'z) = M for p-almost any g
in G. As Y is closed, Y is invariant by the semigroup generated by
the support of fi. As Y is a union of finitely many Lgy-orbits, Y is also
invariant by the group I'; = I',. As v is p-ergodic, v is then supported
by Y, v gives equal mass to the Ly-orbits and I', permutes transitively
these Loy-orbits. Hence I', permutes also the Lg-invariant probability
measures supported by these Lg-orbits. Hence v is invariant under the
group I', Lg.

This group I', Ly is closed. Indeed its closure G’ := m acts tran-
sitively on Y with discrete stabilizers and the Ly-orbits in Y are open.
Hence the group Ly is open in G’ and the group I', Ly is also open in
G'. This proves that I', L is closed. O
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Remark 7.7. The group Ly may happen to be non trivial. For example,
let G = G x G5 where Gy = SL(2,R) and G is compact and A C G is
a lattice whose projection on G is dense. We let I', be the projection
of A on GGy, which is a lattice in G;. Then the orbit closure of the base
point of G/A under I', is its orbit under G5 and I',, acts on it through
a morphism with dense image in GG5. In particular, the Gs-invariant
probability measure on this orbit is p-stationary and concentrated on
an orbit of the centralizer of T',,.

7.4. Where we use the positive p-unstability of the diagonal.

The aim of this section is to show that if v does not give
mass to the L-orbits, then so do the limit probability
measures V.

We will use freely the dynamical systems

(B, 37 67 T), (BX7 BX, 6X> TX) (BQ7 Bé?7 667 TQ)’ (BH’X, BG’X, 697)(7 TQ,X)
introduced in sections 3.2, 3.3 and 3.4 for those values of G and p
and where, for b in B, p(b) is the automorphism z — bglx of X,
vy is the limit probability measure of v associated to b and 6(b) =
o(bo, &) € Z, is as in (4.1). We may apply the results of section 4
since all the representations of I', that we will consider are restrictions
of representations of the semisimple linear group H,,.

Proposition 7.8. (Non-degeneracy of the v,’s) Let G be an S-adic Lie
group, A be a discrete subgroup of G, X = G /A, p be an Ad-semisimple
probability measure on G such that (G,T',) has good exponentials, H,, =
H¢, the cusps of X are exponentially p-unstable, and p admits finite
exponential moments in g. Let v be a p-stationary p-ergodic probability
measure on X and L be the centralizer of I, in G. Suppose, for every
x in X, one has v(Lz) = 0. Then, for 3~ -almost every (b, z) in B¥,
one has vp(LWy(x)) = 0.

Here, we have equipped G/A with the distance coming from a right-
invariant distance on G. We recall that Wj(z) has been defined in
(6.22). We have explained in Lemma 7.6 what happens when some
L-orbit satisfies v(Lz) > 0.

We will need the following Lemma 7.9. Let Ly be an open subgroup
of the stabilizer L, of v in L generated by some compact standard
neighborhood of e.

Lemma 7.9. Let G be an S-adic Lie group, A be a discrete subgroup
of G, X = G/A, p be a probability measure on G, L be the centralizer
of I'y in G and v be a p-stationary p-ergodic probability measure on
X. Assume v fills X and, for 3% -almost every (b,x) € BX, one has
vp(Loz) > 0. Then there exists a cocompact subgroup Ny C Lo which
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fizes every point of the support of v and whose centralizer G’ is open
in G and contains I',,

The conclusion means that the group G’ acts on the support of v
through the group G'/(G' N Ay).

Remark 7.10. We have introduced this open subgroup L, of L, because
we do not know wether the lattices in L, are finitely generated. Since
any lattice in a connected real Lie group is finitely generated [24, 6.18],
any lattice in Lg is also finitely generated.

Proof of Lemma 7.9. Since the probability measure v on X is Ly-invariant
and the actions of I', and L commute, for $-almost every b € B, the
limit probability measure v, is also Lg-invariant.

By assumption, for (-almost every b € B, the limit probability v,
is supported by countably many Lg-orbits. Hence, for vp-almost every
x € X, the stabilizer Ag(z) of x in Ly is a lattice in Ly. Since v is the
average of the 1’s, for v-almost every x in X, Ag(z) is also a lattice in
LO.

The map = +— Ag(z) takes values in the set of lattices of Ly and
is measurable for the Borel structure induced by the Chabauty topol-
ogy. This Borel structure is standard. Since the actions of I', and L
commute, this map is constant on the I',-orbits. Since v is p-ergodic,
there exists a lattice Ag C Lg such that, for r-almost every x in X,
Ao(z) = Ag. Hence the support of v is contained in the set X0 of
fixed points of Ay in X. The centralizer G’ of Ay contains the group
I',,. Since the lattice A is finitely generated, according to Lemma 5.16,
the set X is a countable union of G’-orbits. By pu-ergodicity of v, the
support of v is included in a G'-orbit G'z. Since v fills X, the group
G’ is open in G. The group Aj = Ag N G is also a lattice in the group
Ly = LyNG'. Since Aj is central in Lj, this lattice A{ is cocompact in
Lj. Since Ly contains a cocompact connected subgroup, L{ has finite
index in Lg. Hence the lattice A also is cocompact in L. ]

Proof of Proposition 7.8. As in Proposition 7.3, we may assume that v
fills X. By Proposition 6.18, it is enough to check that

(7.1) for X -almost every (b, x) in BX, one has vy(Lx) = 0.

We will argue by contradiction. By ergodicity of v, we may assume
that, for 3%-almost every (b,z) € B~ one has v,(Lz) > 0. We want
to check that, for v-almost every x € X, one has v(Lz) > 0.

Again by Lemma 3.7, there exists an L,-invariant Borel subset E of
X such that v(E) = 1 and, for all l € L \ L, one has I[ENE = ().
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In particular, one has v,(E) = 1 for f-almost every b in B. Hence, for
pX-almost every (b, z) in BX, one has v;(Lox) > 0.

By Lemma 7.9, there exists a cocompact subgroup Ay C Ly whose
centralizer G’ is open in G, contains I', and acts trivially on Supp(v).
As v is ergodic, v is supported by a G'-orbit and we may assume that
G' = G. Then Ay is a central subgroup of G which acts trivially on
X. Since the group Lg/Aq is compact, we may consider the quotient
X' := Lo\X which is a locally compact space. The group I', still
acts on X' and the image v/ of v by the natural map X — X' is
still p-stationary and p-ergodic and atom free. We set v} for its limit
probabilities. To prove (7.1), we have to check that

(7.2) for B-almost every b in B, the probability v, is atom free.

Here comes the main argument which is a combination of Corollary
6.26 and Proposition 6.17. Since (G,I',) has good exponentials and
the cusps of X are exponentially p-unstable, we can apply Corollary
6.26 and prove that the orbit of the diagonal (Lo x Lo)Ax is positively
p-unstable in X x X. This means that the diagonal Ay is positively
p-unstable in X’ x X'

Hence, since v/ is atom free, by Proposition 6.17, for G-almost every
b in B, the probability v; is also atom free. This proves (7.2). O

7.5. Narrowing the leaves.

We apply in this section Proposition 7.8 in order to ob-
tain the starting point of the exponential drift argument
in section 8.1: roughly speaking, for any positive mea-
sure subset F' of B%X 3%X_almost every point (b,7) of
F can be reached by points (b, ') of F' which lie outside
the stable leaf of (b, x).

We will use notions and notations of sections 4.2, 4.3, 5.1 and 5.2.

Let v be the I' -invariant complementary subset of the centralizer [ of
I', in g. We decompose v as a direct sum of irreducible representations
v; of H,, where i varies in a finite set /. Note that each subspace v; is
contained in some factor g,,, p; € S, and hence is a Q,,-vector space.
We choose a (K, A)-good norm ||.|| on each of the v; and we equip v
with the norm given, for v = (v;), by ||v|| = max; ||v;]|.

For 7 in I, we denote by x; the unique morphism Z,, — R* whose
restriction to A, is the modulus of the highest weight of A in v;, so that,
for any a in A, and v in the highest weight space of v;, |lav|| = x;(a)||v||.
For (-almost every b € B, we set

;) = {v € v; | sup,en(xi(6,(0)) Hb;l . bgl”u”) < oo}
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and to, = @;er;p. This space does not depend on the choice of the
decomposition of v. In particular, it is stable by the adjoint action of
L. For ¢ = (b, z) in B?, we set w, = o, and v, = 1,

The following corollary of Proposition 7.8 extends [4, Corol.6.15].

Corollary 7.11. (Construction of nearby points) We keep the nota-
tions and assumptions of Proposition 7.8. Let F C B%X be a B%X-
measurable subset such that 3%*(F) > 0. Then, for %X -almost every
(c,z) € F, there exists a sequence (u,) of elements of g\ ([&1o..) con-
verging to 0 such that, for every integer p > 0, one has (¢, exp(u,)x) €
F.

Proof. By Proposition 4.4, for any ¢ in I, for -almost every b in B,
one has x;(6,(b)) —— oo. Therefore, for every v in to,, one has

Hbgl . .bglvH —— 0 and v is [',-unstable. Let us choose a distance

n—oo

d on X, which comes from a right-invariant distance on the group G.
For 3-almost every b € B, all x € X and all v € t;, one has

d(b, ' .. byt exp(v)x, bt .. byle) —— 0,

that is exp(top)r C Wy(x). By Proposition 7.8, for 3¥-almost every
(b,x) € BX, one has

(7.3) vp(Lexp(ro,)x) < v (LW, (z)) = 0.
Now let (U,) be a basis of neighborhoods of 0 in g. For 3%-almost

every ¢ in B, the slice F. = {z € X|(c,z) € F} satisfies v.(F.) > 0.
Therefore, for 3%X-almost every (c,z) in F, for all p > 0, one has

ve(F. Nexp(U,)zx) > 0.
As L normalizes ., if p is large enough, one has
exp(U, N (I t,)) C Lexp(ro,).

By Equation (7.3), one has v.(exp(U, N ([&1,))z) = 0. Therefore, one
gets v.(F. Nexp(U, \ (I w.)x)) > 0. O

7.6. Horocyclic flow and conditional measures.

The aim of this section is to construct a multiparameter
flow ® on B%* which commutes with the transformation
T9%X. We call it the horocyclic flow since it plays the
same role as the horocyclic flow in [4]. We then define the
associated conditional measures map 0. We compare the
value of this map ¢ at two points on the same horocyclic
orbit and we show that this map o is T%*-invariant.
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For (-almost any b in B, we let v, and V}, be as in Proposition 5.13,
with g’ = g. We set vy = v,,. By replacing A by a conjugate maximal
split torus of H,,, we can assume v, = v, for some b in B which satisfies
all the conclusions of Proposition 5.13. We then set V = exp(vg).

Definition 7.12. The horocyclic flow is the action ® of V; on B%X
given by, for every v in vy, 3’-almost every ¢ = (b, z) in BY and every
T in X,
s(&p)z
éexp(vo) (C7 l’) = <C7 eXp(UO( 2 )ZE)

In this definition, vg(g”)z denotes the element of g which is the image
of vy by the action of s(&,)z € H,,. We emphasize the fact that the flow
® might not preserve the measure 3%X.

Lemma 7.13. We assume that (G,I',) has good exponentials. For all
Vg € by, one has Pexp(yy) © 79X = 79X ¢ D (vo) -

Proof. For 3%*-almost any (c,z) = (b, z,z) in B%¥X, one has
Pexp(oe) © TV (¢, ) = (T, 0(b) ' 2, exp(vs 0O )10y
= (Tb,0(b) 2, b," exp(vg(g”)z)x)
=T%% 0 ®, (c,z),

in which we used the equality bys(&ry) = $(£)0(b) which holds for
[-almost every b € B (see (4.1)). O

Let M;(Vp) be the space of positive Radon measure on V up to
normalization: two positive Radon measure o; and o5 are equal up to
normalization and one writes

01 ~ 09 if there exists C' > 0 such that o3 = Co;y.

We denote by o : B%X — M;(V;) the map which, to a given (c, z)
in B%X  assigns the conditional measure of the measure 3% along the
horocyclic action of Vj, which is defined, for instance, in [4, Sect. 4.1].
In loco citato, one defines the conditional measure of a finite measure A
along the orbits of a Borel action of a locally compact unimodular group
R with discrete stabilizers. Eventhough the measure 3% is infinite, the
space B%X is a countable union of Vj-invariant finite measure subsets,
so that the definition of o makes sense.

The following lemma compares the values of ¢ at two points on the
same horocyclic orbit. For v in Vj, let ¢, be the right translation by v,
that is t,(v") = v'v for every v' € Vj.

Lemma 7.14. There exists a Borel subset E C B%X with %X (E¢) = 0
such that, for every v € Vy and (c,x) € E with ®,(c,x) € E, one has

Lo (Py(c, ) >~ o(c, ).
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Proof. This is Proposition 4.2 of [4]. O
The following lemma tells us that the map o is T%*-invariant:

Lemma 7.15. For %% -almost every (c,x) in B%X, one has
o(T"*(c,z)) ~ o(c, ).

Proof. Note that, for 3%%-almost every (b, z, z) in B®X, o (b, 2, z) is the
conditional measure of () ® 1, along the action of V4 on {(b,2)} x
X. Now the action of T%X on {(b,2)} x X is the map (b, z,)
(Th,0(b)~'2,by' ) which maps isomorphically the measure ) ® v
to the measure d7o(;, .y @ vry. As, by Lemma 7.13, this map commutes
with the action of V), the result follows. O

As in section 3.4, we introduce the tail o-algebra Q%% of the dynam-
ical system (B%X K BOX g0X T9X)

QZ&X = ngl QZ’Xa
where Q%% is the sub-g-algebra given by (3.9).
Corollary 7.16. The map o : B*X — My (Vy) is Q%X -measurable.

8. INVARIANCE OF STATIONARY PROBABILITY MEASURES

We end now the proof of Theorem 2.7. Here are the main steps.

Using the “drift control” (Proposition 4.21) and the “construction
of nearby points” (Corollary 7.11), we explain the exponential drift
argument in Proposition 8.1.

We apply in section 8.2 this Proposition 8.1 to the “horocyclic con-
ditional measure” map. This proves some invariance properties for
these conditional measures (Proposition 8.5) that we use to disinte-
grate v into probability measures v, which are invariant under some
Ad-unipotent one-parameter subgroups (Corollary 8.4).

Using the equivariance of this disintegration and Proposition 5.19,
we prove in section 8.3 that these probability measures v, , are indeed
invariant under a common Ad-unipotent one-parameter subgroup.

8.1. The exponential drift.

The following Proposition 8.1 is the turning point of our
method. We will apply it in section 8.3 to the quotients
(G,A, X, p,v) and to the map f = o introduced in sec-
tion 7.2.
We keep the notations of the previous chapters. In particular, G is
an S-adic Lie group, p is an Ad-semisimple probability measure on G
with H, = H}, v is a p-stationary p-ergodic probability measure on X
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and the symbols s, &, 0, B, 3%, 39X, o, etc... have the same meaning
as above.

Proposition 8.1. (Exponential drift) We assume p has compact sup-
port, the cusps of X are exponentially pi-unstable, (G,I',) has good
exponentials and, for any x in X, one has v(Lz)=0. Let (Y,)) be
a standard Borel space, f : B* — Y be a Q%* -measurable map and
E C B%X be a B**-measurable subset with 3°*(E¢) = 0. Then, for
B9X -almost every (¢, x) in BYX, for every e > 0, there exist a non-zero
element v € Vpy such that || logv|| < e and an element (¢',2') of E such
that ®,(c, ") also belongs to E and

(8.1) F(@u(ca)) = F(,a') = fle,a).

Proof. Since one can cover Z by countably many relatively compact
open sets U, it is enough to fix such a set U and to prove (8.1) for
Y% almost every (c, ) € BYX. We will look then for a point (¢, z') €
E N BYX.

By definition, one may consider Y as a compact metric space whose
Borel g-algebra is . Similarly, we may endow BY with the topology of
a compact metric space whose Borel g-algebra is equal, up to subsets
of measure zero, to BY and such that the natural projection BY — U
is continuous, and endow BY x X with the product topology of this
topology on BY and the usual one on X.

Let a > 0 be very small. By Lusin’s theorem, there exists a compact
K C En BYX such that g¥*(K) > 1 — a? and such that the maps f
and (b, z, x) — &, are continuous on K.

The proof relies on a cautious study of the function E(1x | Q%%).
This function is bounded above by 1 and its average is bounded below
by 1 — a? because:

/ E(1x | Q%) (c,2)dp" (e, x) = 87 (K) > 1 - o,
BU,X

therefore, by Tchebyshev’s inequality, the function E(1x | Q%¥) is
bounded below by 1 —« on a set of measure at least 1 —a. Hence there
exists a compact set K’ C E N BYX such that BYX(K’) > 1 — « and
that, for every (c,z) in K’, one has

E(1k | Qgéx)(c,x) >1—a.

Again by Lusin’s theorem, we may also assume that f is continuous on
K'.
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Moreover, by to the martingale convergence theorem, for %X -almost
every (c,z) in BYX one has,

(82)  B(le| Q%) (er) — Bl | Q%)(c )

By Lemma 3.6, we may also assume that, for every (c,z) € K’ and
every n > 0, the left-hand side in this equality (8.2) is given by formula
(3.14):

(8.3) E(lx | Q") (e, @) = 1" (hy o0 (K) | Q)

According to Formulas (3.4) and (3.10), for ¢ = (b, 2) € BY, z € X and
a = (ag,...,a, 1) € G", the elements h,, .(a) € B’ and h,, . .(a) € B%X
which parametrize the atom of QUX at z are given by

B o(a) = (aT™, 0, (aT"b)0,,(b) " '2).

and
hpex(a) = (hpe(a),ao- - -an_lb;il e bglm).

Besides, since f is QUX-measurable, it is QU*-measurable for all
n > 0 and, hence, using Lemma 3.5 , we may also assume that, for
all (¢,z) in K, for all n > 0, for p®"-almost every a in G™, one has
[ en(a)) = fle @)

Finally, by Egoroft’s theorem, we may also assume that the conver-
gence in (8.2) is uniform on K’. Therefore there exists ny > 0 such
that for every integer n > ng, for every (c,z) € K’, one has

(8.4) E(1g | QV%)(c,z) > 1 -«

Since the fYX-measure of K is at least 1 —« and « is arbitrarily small,
it is enough to prove (8.1) for 3Y*-almost every (c,z) of K.
Corollary 7.11 allows us to assume that, for these points (¢, z) of K,
there exists a sequence (u,,) of elements of g\ (I & t,) converging to 0
and such that the points (c,y,) := (¢, exp(u,)z) also belong to K’
We apply Formulae (8.3) and (8.4) to both points (¢, z) and (¢, y,).
For n > ng, we then get

(8.5) P (e o (K) [ Q) 21—«
and

n(y—1 U
(86) /1“® (hn,c,yp(K) | Qn,c) >1—-a

The remaining part of the proof is motivated by the following strat-
egy. By construction, when y = exp(u)x with u € g, the parametriza-
tions of the two fibers of (TVX)" containing (c,z) and (c,y) are re-
lated by a drift that can easily be computed: if (¢, z’) = hy.(a) and
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(c,y') = hpcy(a), for the same a € G™, one has
/

y' = exp(Fyc(a)u)x
where the drift is given by
Fooa)u=ag...a, 1, ... by (u),

as soon as this element is small enough to belong to the logarithm of
a (G,T',)-good standard open subset, which will be ensured for most
of the relevant a by the computations below. We have just seen that,
for the parametrization of the two fibers of (TYX)" containing the
points (¢, z) and (c,y,), a large proportion of the parameters a € G"
corresponds to points (¢, x;) and (¢’,y,) which both belong to K. We
will now adapt the time n = n, to the sequence u, in such a way that
we will control both the norm and the direction of the drift between
these two points. This will be possible thanks to the following lemma
that we will derive from the law of the angles through Proposition 4.21.

Lemma 8.2. For all « > 0 and n > 0, there exists rqg > 1, such that,
for BY-almost every ¢ € BY, for n large enough, one has, for any i in
I and any u; in v; N0,

Xn n | 1 |1 Fn, e (@)ui | U _
B7) w7 (e € G5 < Saoni, T e = Mok @ne) 21—

and

(8.8) u*"({a € G" | dA(R Fyc(a)ui, P(viar)) <n} | Q) > 1—a.
We recall that QF , has been defined in (3.5).

Proof. As
Fn,c(a)ui =ao- - @n—l(bn—l T bouz‘) and V;,aT”b =aQao- - an—l‘/;,Tnb,

by Formula (3.8), (8.7) and (8.8) follow directly from Proposition 4.21,
applied to the vector v; = b,,_1 - - - byu;. O

We can now end the proof of Proposition 8.1. We adjust the param-
eter n = n, in the following way. Since the probability measure p on
G has compact support and since the section s introduced in 4.2 has
bounded image, there exists a constant C\y > 0 such that, for S-almost
every b € B, for any i, any vector u; in V; \. 0 and any n € N, one has

Xi(On1 (0)) (|05 - 05 |
Xi (0 (D)) |07 - - b |
Set My := max.cpeep, [|[Ad(s(£)z)71]|. We decompose the vectors wu,

as a sum
Up = Up+ § :Up,i
i

< Cp.
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with u,( € land u,; € v;, ¢ € I. Since the elements u, do not belong to
[Bw,, the sequence n — max; x;(6n(b)) ||b5" - - - by "up,i | is not bounded.
For p large enough, there exists an integer n, such that

3

C()ToMO
Hence as soon as a < =—————_ there exist an element a = a, in G™
242 card(])”’ p

which is simultaneously and for all ¢ € I for which u,; # 0, in the sets
described in (8.5), (8.6), (8.7) and (8.8) with n = n,, u; = u,,; and
n =1, — 0. One has then

(8'9) f(hnp,c,x<ap)) = f(C, I) and f(hnp,c,yp (ap)> = f(cpa yp)'

After extracting a subsequence,

€
< .
ro Mo

b*l

np—1 "

< (0, ()

-1
- bO Up.i

(1) the sequence (c,,, 7)) := hn, .2 (a,) has a limit (¢, 2) in K,
(2) the sequence (¢, y,,):="hn, cy,(ap) has a limit (¢’,y') in K and

(3) the limit of the drift w = plglglo F, (ay)u, exists, is non-zero,

with norm bounded by Mio and belongs to v..
As a consequence, by passing to the limit in (8.9), since all the se-
quences involved there takes their values in K or K’ and since f is
continuous on these sets, one has

f(C,,l‘,) = ILIH f(C;,ZE;) = 11_)II1 f(C, I) = f(C, l‘),
£, y) = Z,Ii_{gof(cé”yll’) = plggo fle,yp) = f(c,z) and
y' = exp(w)x’.

Moreover, writing ¢/ = (¥, 2') and denoting by v € vy the non-zero
element such that w = exp(s(§y)z’) v, one has

lo]l <& and (¢, y) = Pexp(w) (¢, ).

This ends the proof of Proposition 8.1. O

8.2. The stabilizer of conditional measures.

In this section, we apply the drift argument to the horo-
cyclic conditional measures map and we express this ap-
plication in terms which do not involve the extension BY.
We desintegrate the limit measures v}, according to the
values of the stabilizer V4, in V; of the horocyclic condi-
tionals. Using the Poincaré recurrence Theorem thrice,
we show that V;, is a non-trivial Ad-unipotent subgroup
of V3, which leaves invariant the probability measure v .
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For $X-almost every (b,xz) € BX, we denote by o3, € M;(V}) the
conditional measure of v, at x for the action of V, on X. By abuse
of notations, we also denote by o}, any element of this class modulo
normalization and we let V;, be the stabilizer of oy, in M;(V}), that
is the group of those v in V, such that t,,04, >~ 03, ,. We let v, be the
Lie algebra of V.

As, for B-almost any b in B, the action of by ! induces an isomorphism
between the measure spaces (X, X, v,) and (X, X, vp,) and as Vi, =
by ' Vibo, one has, for vy-almost any z in X,

VTX(b,ac) = balx/b’mbo and O'TX(bw) ~ (Adbgl)*ab@.

Lemma 8.3. Assume (G,T,) has good exponentials. For (3~ -almost
any (b,z) in BX, one has V,, = exp(vy.) and, for any v in V,,,
tv*gb,z = Obx-

Proof. The proof relies on successive applications of Poincaré’s recur-
rence Theorem.

First let us prove that, for $X-almost every (b, z) in B¥X, one has
exp(vy,) C Vi Set

o(b,z) = inf{||v|| | v € vy, , exp(v) & V}.} € [0, 00].

As vy, is the Lie algebra of Vj, ., one has ¢ > 0 almost everywhere.
Besides, by the equivariance property, for any n in N, one has

P((T)" (b, 2)) < [[(bo -+ ba1) o, 0B, @),
hence, by Proposition 5.13, if p(b, x) < oo, o((T*)"(b, )) — 0 and,
by Poincaré’s recurrence Theorem, ¢ = oo almost everywhere, that is
exp(vy.) C Vi, for B%-almost every (b, z) in B.
Now let us prove that, for %-almost every (b,x) in BX, one has
Vow C exp(0p). Set

P(b,x) = inf{||v|| | v € v, \ 0y , exp(v) € Vi, } € (0, 00].

Again, if ¥(b,z) < oo, one has ¥((T%)"(b,z)) —— 0, hence, by
Poincaré’s recurrence Theorem, @) = oo almost everywhere and, for
pX-almost any (b, z) in BX, V;,, = exp(vp.).

Lastly, set, for 3%-almost any (b,z) in BX, ap, : Vo, — (0,00)
to be the multiplicative group morphism such that, for any v in Vj ,,
one has t,,04, = ap.(v)op,. To finish the proof, we shall prove that
a = 1 almost everywhere. As V;, = exp(by.), there exists a unique
homomorphism of real Lie algebras ay, : (954) — R such that, for
any v in v,,, one has o, ,(exp(v)) = e®=(*=). By the equivariance
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property, one has, for 4%-almost all (b, z) in BX, for any n in N,
(8.10) Upe = QX yn(pz) © (Do~ - - bu_1)" "
For any M > 0, let

An = {(b,2) € BY | [|ape|| < M}.

By Poincaré’s recurrence Theorem, for $X-almost any (b,x) in Ay,
there exists infinitely many n in N with (7%)"(b, z) € Ay. By (8.10),
we get a = 0, almost everywhere on A,;, what should be proved. [

For (-almost any b in B, we disintegrate the probability measure v,
along the Borel map X — Gr(g);z — vp,. This gives us a decomposi-
tion

(8.11) I/b:/XVb,zdl/b(:B)

where, for 4%-almost every (b, z) in B¥, the probability measure v,
on X is supported by the fiber {2’ € X | vy, = 05, }.

Corollary 8.4. Assume (G,T',,) has good exponentials. For 3~ -almost
every (b,z) in BX, the probability measure Upg 18 Vi z-tnvariant and
one has the equivariance property

(8.12) Ve = bo.Vrx (b 2)-

Proof. As, by Lemma 8.3, V;, preserves every element of the class
Ob.z, the first statement follows from [4, Prop 4.3]. The equivariance
property follows from those of the maps b — 1}, and (b, z) — vp,. O

Now, by Proposition 8.1, we know that, under suitable assumptions,
0y, 18 ION ZETO.

Proposition 8.5. We assume p has compact support, the cusps of
X are exponentially p-unstable, (G,T',) has good exponentials and, for
every x in X, one has v(Lx) = 0. Then, for 3% -almost every (b,x) €
B¥X, Voo 15 a non trivial subgroup of V.

Proof. Comparing the definitions of o(c, z) in section 7.6) and of oy, in
section 8.2, one gets, for 3%X-almost every (c,r) € B*X with ¢ = (b, 2),
108, 4 = (5(65)2). log. (¢, @),

Hence, it suffices to prove that the stabilizer of o(c, z) in V; is non zero.

By Corollary 7.14, there exists a Borel subset £ of B%X such that

B%%(E¢) = 0 and that, for every v € V; and (c/,2') € E such that
®,(d,2") € E, one has

(8.13) oy (@, (', 2")) = o(d, 2).
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By Corollary 7.16, the map (c,z) — o(c,z) is Q%¥-measurable.
Proposition 8.1 applied to this set £ and to the map f = o gives us,
for B%X-almost every (c,z) in B*X, a non-trivial element v in V; and
an element (¢, 2') in E such that ®,(c, 2’) also belongs to £ and that

(P, (, 7)) = o(d, ") ~a(c, ).

Applying equality (8.13) to the element (¢, '), one gets the result :
tyo(c,z) ~ t,,0(P,(d,2")) ~o(d,2") ~ o(c,x). O

8.3. Invariance of v under a one-parameter subgroup.

In this section, we finish the proof of Theorem 2.7 which
classifies p-stationary p-ergodic probability measures on
X. To this aim, we construct a p-stationary probability
measure 7 on the set £ of Ratner probability measures
by disintegrating the probability measures v, into Vj, .-
ergodic components and we analyse n thanks to Propo-
sition 5.19.

Proof of Theorem 2.7. We recall the strategy described in sections 7.1,
7.2 and 7.3 that we have been following since then. Using Proposition
7.3, we can assume that v fills X. We can then introduce the groups
Smax and S from Proposition 7.4 and assume that S is normal in G.
Using Lemma 7.6, we assume, by contradiction, that for all z in X,
one has v(LSz) = 0. We want to get a contradiction.

We apply Corollary 8.4 and Proposition 8.5 to the quotients
(G, A, X, p,v) introduced in section 7.2 . This is possible since, by
Proposition 5.11.c, (G,I') has good exponentials, and, by Corollary
5.34, the cusps of X are exponentially pu-unstable.

By definition of S, the limit probabilities v}, are S-invariant. Lifting
in X Equations (8.11) and (8.12), we get a decomposition

(8.14) Vb:/XVb,deb@)

where for 3%-almost every (b, z) in BX, one has
(815) Vpo = bO*VTX(b,m)'

We choose a I',-invariant complementary subspace to s, so that
v identifies to a subspace of g. Hence, we get a map BY —
Gr(g); (b,x) — vy,. For pX-almost any (b,z), vy, is contained in
Nr(g). We let V;,, be the subgroup of G spanned by exp(v,,) and
Smax- Then, for 3¥-almost every (b,x) in B¥, Sp.y is a proper subr-
goup of Vj, », 1, i Vj p-invariant and one has

(8.16) Voo = bo Virx (p.)bp -
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As 'V, , is spanned by Ad-unipotent one-parameter subgroups, by Rat-
ner’s Theorem 5.15, the decomposition of v, into V}, ,-ergodic compo-
nents can be written, in a simultaneous way, as

(8.17) Ve = /X C(b,2) dvya(2).

where ( : BX — £ is a BX-measurable map which is Vi z-invariant v, .-
almost everywhere. As, for $%-almost any (b, ) in BY, Sy is a proper
subgroup of V,,, the stabilizer of {(b,z) in G contains Ad-unipotent
one-parameter subgroups which are not contained in S.

The end of the proof is analoguous to the proof of Proposition 7.4.
Uniqueness of the ergodic decomposition and Equations (8.15) and
(8.16) imply that, for 4%-almost every (b, x) in B, one has

C(ba CL’) = (bO)*C(TX (bv x))

Hence the probability measure n := (.3~ is a p-stationary u-ergodic
probability measure on €. By (8.14) and (8.17), one has

(8.18) V:/gadn(a).

By Ratner’s Theorem 5.15, there are only countably many G-orbits
in £. Since the p-stationary probability measure 7 is p-ergodic, it is
supported by an orbit Gay ~ G/G,,. Since the stabilizer G,, contains
a lattice, it is unimodular. According to Proposition 5.19, we can
assume the group G,, contains a semiconnected component S,, such
that the unimodular normalizer G’ := N;(S,,) contains I', and 7 is
supported by an orbit of G'. Therefore, by (8.18), the probability v is
also S,,-invariant, being an average of S, -invariant measures. Now,
the subgroup S, of S,, generated by the one-parameter Ad-unipotent
subgroups of S,, is not contained in S. But S,, , is included in G, and
is normalized by I',. By Proposition 7.4, this group is contained in S.
This contradiction ends the proof of Theorem 2.7. O
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