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Yves Benoist, Divisible Convex Sets A. Semisimplicity

We gather here preliminary results used to prove Vey’s semisimplicity theorem. Exercises

with * are more challenging.

Exercise 1. Hilbert metric Let Ω be an open convex set of the real projective
space P(Rd) which is properly convex i.e. Ω contains no projective lines. For
x, y in Ω, we set dΩ(x, y) = log[x, y, b, a] where [ ] stands for the cross-ration
and where the points a, x, y, b are collinear in this order with a, b on ∂Ω.
(i) Prove that dΩ is a distance on Ω which is complete.
(ii) Prove that the straight lines are geodesic for dΩ. Is the converse true?

Exercise 2. Convex hull of orbits Let Ω be an open properly convex cone of
P(Rd) and ∆ ⊂ PGL(Rd) be a discrete subgroup which preserves Ω.
(i) Prove that ∆ acts properly on Ω.
(ii) Assume that ∆ divides Ω i.e. that the quotient ∆\Ω is compact. One
says then that Ω is divisible. Prove that for every x0 in Ω the convex hull
of the ∆-orbit ∆x0 is equal to Ω. (Hint: If not, construct points of Ω whose
Hilbert distance to ∆x0 is arbitrarily large).

Exercise 3. Divisible convex cones and centralizer Let C be an open convex
cone of Rd which is properly convex i.e. C contains no lines. Let Γ ⊂ GL(Rd)
be a discrete subgroup which divides C. One says then that C is divisible.
Let HΓ be the connected component of the centralizer of Γ:
HΓ = {h ∈ GL(Rd) | h ◦ γ = γ ◦ h for all γ ∈ Γ}e.
(i) Prove that C is HΓ-invariant.
(ii) Prove that all the elements of HΓ are diagonalizable over R.
(iii) Prove that the group ΓHΓ is closed in GL(Rd).
(iv) Prove that the discrete group Γ ∩HΓ is cocompact in HΓ.

Exercise 4. Divisible convex cones and divisible convex sets Let C be an
open properly convex cone of Rd and Ω be its image in P(Rd).
(i) Prove that if Ω is divisible then C is divisible.
(ii) Prove that if C is divisible then Ω is divisible. (Hint: Use HΓ).
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Exercise 5. Dual cones Let V = Rd, C ⊂ V be an open properly convex cone and
C∗ ⊂ V ∗ be the dual cone C∗ := {f ∈ V ∗ | f(v) > 0 for all v ∈ C ∖ {0}}.
(i) Let df be a Lebesgue measure on V ∗. Prove that the function φ : C → R
v 7→ φ(v) =

∫
C∗ e

−f(v) df has a positive definite Hessian matrix ( ∂
2φ

∂i∂j
).

(ii) Prove that the map C → C∗; v 7→ v∗ :=
∫
C∗ f e−f(v) df is a diffeomor-

phism.
(iii) Prove that, for γ in SL(V ) preserving C and v in C, (γv)∗ = tγ−1v∗.

Exercise 6. Dual divisible sets Let V = Rd, Ω be an open properly convex set
of P(V ) and Ω∗ ⊂ P(V ∗) the dual convex set Ω∗ = {Rf ∈ P(V ∗) | f(v) ̸=
0 for all Rv ∈ Ω}. Let ∆ ⊂ PGL(V ) be a discrete subgroup which divides
Ω. Prove that the transpose group t∆ ⊂ PGL(V ∗) divides Ω∗. (Hint: Two
strategies are possible. 1. Use the diffeomorphism Ω → Ω∗;Rv 7→ Rv∗ from
the previous exercise. 2. Use a cohomological dimension argument.)

Exercise 7. Invariant subspaces Let C be an open properly convex cone of Rd

and Γ ⊂ GL(Rd) be a discrete subgroup which divides C. Let W ⊂ Rd be a
non-trivial Γ-invariant subspace.
(i) Prove that W ∩ C is empty.
(ii) Prove that W ∩ C is non-zero.

Exercise 8. Compact metric spaces Prove that a bijective contraction φ of a
compact metric space (X, d) is an isometry, i.e. if d(φ(x), φ(y)) ≤ d(x, y) for
all x, y in X, then one has d(φ(x), φ(y)) = d(x, y) for all x, y in X.

Exercise 9. Vey’s flow * Let C be an open properly convex cone of Rd and Γ ⊂
GL(Rd) be a discrete subgroup which divides C. Assume that Γ preserves
a line D ⊂ Rd. Prove that D has a Γ-invariant complementary subspace
H ⊂ Rd. (Hint: Introduce the flow whose direction is D ∩ ∂C and whose
speed for the Hilbert metric is one. Check that this flow is a contraction for
the Hilbert metric and apply the previous exercise).
For higher-dimensional Γ-invariant vector subspaces D, one needs more tools.
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Gear Junior Retreat, Urbana July 2012
Yves Benoist, Divisible Convex Sets B. Zariski Closure

We gather here preliminary results used to describe the Zariski closures of groups dividing

open properly convex cones.

Exercise 1. Proximality and limit sets Let Γ be a subgroup of GL(Rd) act-
ing strongly irreducibly on Rd i.e. all the finite index subgroups of Γ act
irreducibly on Rd. Assume that Γ is proximal i.e. there exists a sequence
γn in Γ such that the sequence γn

∥γn∥ converges in End(Rd) towards a rank
one operator π. Prove that there exists a unique minimal closed non-empty
Γ-invariant subset ΛΓ in P(Rd).

Exercise 2. Bounded semigroups Let ∆ be a bounded subsemigroup of SL(d,R).
Prove that the group spanned by ∆ is also bounded.

Exercise 3. Invariant cones and positive proximality Let Γ be a subgroup of
GL(Rd) acting strongly irreducibly on Rd.
a) Assume that Γ preserves an open properly convex cone C of Rd.
(i) Prove that the image of Γ in PGL(Rd) is unbounded.
(ii) Prove that Γ is proximal. (Hint: Assume that Γ contains the positive
homotheties and introduce semigroups πΓπ∖{0} with π = lim

n→∞
γn

∥γn∥ , γn ∈ Γ).

(iii) Prove that Γ is positively proximal i.e. Γ is proximal and any rank one
limit π = lim

n→∞
γn

∥γn∥ with γn in Γ has a positive eigenvalue.

b) Conversely, if Γ is positively proximal, prove that Γ preserves an open
properly convex cone C of Rd. (Hint: Use the exercise below).

Exercise 4. Invariant cones and limit sets Let Γ be a subgroup of GL(Rd)
acting strongly irreducibly on V = Rd. Assume that Γ is proximal. Prove
that the following two assertions are equivalent:
(i) The group Γ preserves an open properly convex set Ω of P(V ).
(ii) For any lines Rv1, Rv2 in the limit set Λ ⊂ P(V ) of Γ and any lines Rf1,
Rf2 in the limit set Λ∗ ⊂ P(V ∗) of tΓ, one has f1(v1)f2(v2)f1(v2)f2(v1) ≥ 0.
(Hint: Construct dense sequences xi = Rvi in Λ, and yj = Rfj in Λ∗ such
that fj(vi) ̸= 0 for all i, j).
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Exercise 5. Minimal and maximal invariant cones Let Γ be a subgroup of
GL(Rd) acting strongly irreducibly on Rd. Assume that Γ preserves an open
properly convex cone C of Rd.
(i) Prove that the image of ∂C in P(Rd) contains the limit set ΛΓ.
(ii) Prove that there exists a Γ-invariant open properly convex cone Cmin of
Rd which, up to sign, is included in any Γ-invariant open properly convex
cone C of Rd. Prove that there also exists a maximal one Cmax.
(iv) Assume that Γ divides C. Prove that Cmin = C = Cmax.

Exercise 6. Invariant cones and complex structures Let Γ be a subgroup
of GL(R2d) acting strongly irreducibly on R2d. Assume that Γ preserves an
open properly convex cone of R2d. Prove that Γ does not preserve a complex
structure on R2d. (Hint: Use a previous exercise)

Exercise 7. Invariant cones and symplectic structures Let Γ be a subgroup of
GL(R2d) acting strongly irreducibly on R2d. Assume that Γ preserves an open
properly convex cone of R2d. Prove that Γ does not preserve a symplectic
structure ω on R2d. (Hint: If not, prove that for any three points v1, v2, v3
of ∂C the products ω(v1, v2)ω(v1, v3) has to be non-negative).

Exercise 8. Invariant cones and quadratic forms * (i) Prove that for any
integers p ≥ q ≥ 1, there exists a subgroup ∆ of SO(p, q) acting strongly
irreducibly on Rp+q and preserving an open properly convex set Ω of P(Rp+q).
(Hint: Denote by b the associated bilinear form and construct a sequence of
isotropic vectors vi ∈ Rp+q such that b(vi, vj) > 0 for all i ̸= j).
(ii) Prove that, if moreover ∆ divides Ω then q = 1 and Ω is an ellipsoid.
(Hint: Prove that the boundary ∂Ω is included in the set of isotropic lines).

Exercise 9. Zariski closure * Let d = 3, 4 or 5. Let ∆ be a discrete subgroup of
SL(d,R) which acts strongly irreducibly on Rd and divides an open properly
convex set Ω in P(Rd). Assume that Ω is not an ellipsoid. Prove that ∆ is
Zariski dense in SL(d,R). For d ≥ 6, one needs more tools.
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Gear Junior Retreat, Urbana July 2012
Yves Benoist, Divisible Convex Sets C. Closedness

We gather here preliminary results used to prove the closedness of the moduli space of

properly convex projective structures on a compact manifold.

Exercise 1. Dimension 2 Let Γ be an infinite non-solvable subgroup of SL(2,R).
(i) Prove that the group Γ is Zariski dense in SL(2,R).
(ii) Prove that the group Γ is either discrete or dense.
(iii) Prove that the group Γ contains a matrix whose eigenvalues are real and
positive.
(iv) Prove that the group Γ contains a matrix whose eigenvalues are real and
negative.

Exercise 2. Invariant convex cone and positive semiproximality Let Γ be a
subgroup of GL(d,R) which preserves an open properly convex cone C of Rd.
Prove that every element g of Γ is positively semiproximal i.e. the spectral
radius of g is an eigenvalue of g.

Exercise 3. Cohomological dimension Let ∆ be a subgroup of SL(d,R) which
divides an open properly convex subset Ω of P(Rd).
(i) Prove that ∆ is finitely generated.
(ii) Prove that ∆ contains a torsion-free finite index subgroup.
(iii) Prove that the cohomological dimension of ∆ is d− 1.

Exercise 4. Normal subgroups in Zariski dense groups Let Γ be a Zariski
dense subgroup of SL(d,R). Prove that the group Γ does not contain any
infinite abelian normal subgroup.

Exercise 5. Zassenhaus neighborhoods Prove that every Lie group G contains
a neighborhood U of e such that, for every discrete subgroup Γ of G, the
intersection Γ ∩ U is included in a connected nilpotent subgroup of G.
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Exercise 6. Limits of discrete faithful morphisms Let Γ be a finitely generated
group which does not contain any infinite abelian normal subgroup.
(i) Prove that the set of faithful morphisms is closed in Hom(Γ, SL(d,R)).
(ii) Prove that the set of faithful morphisms with discrete image is also closed
in Hom(Γ, SL(d,R)).

Exercise 7. Auslander projection theorem Let Γ be a discrete subgroup of
SL(d,R) which does not contain any infinite abelian normal subgroup. Let
G be the Zariski closure of Γ and N a normal abelian subgroup of G.
(i) Prove that the intersection N ∩ Γ is finite.
(ii) Prove that the image of Γ in G/N is also discrete. (Hint: Prove this first
when N is the center Z of G. Then notice that the adjoint group Ad(G)
is included in the group P := {φ ∈ GL(g) | φ(n) = n}, use a Zassenhaus
neighborhood in P and use an automorphism of P which contracts Ad(N)).

Exercise 8. Positive semiproximality and invariant convex sets Let ∆ be
a Zariski dense subgroup of SL(d,R) all of whose elements are positively
semiproximal.
(i) Prove that ∆ preserves a properly convex open subset Ω of P(Rd).
(ii) Prove that the cohomological dimension of ∆ is at most d− 1.

Exercise 9. Limits of groups dividing convex sets * Let ∆ be a finitely gen-
erated group. Assume that the centers of the finite index subgroups of ∆ are
trivial. Let ρn ∈ Hom(∆, SL(d,R)) be a sequence of faithful discrete mor-
phisms such that ρn(∆) divides an open properly convex set Ωn of P(Rd). As-
sume that the sequence ρn converges to a morphism ρ∞ ∈ Hom(∆, SL(d,R)).
Let ∆∞ be the discrete group ∆∞ := ρ∞(∆). We want to prove the assertion

(A) : ∆∞ divides an open properly convex set Ω∞ of P(Rd).
(i) Prove that all the elements of ∆∞ are positively semiproximal.
(ii) Prove that ∆∞ does not contain infinite abelian normal subgroups.
(iii) Prove that if ∆∞ acts irreducibly on Rd then (A) is true.
(iv) Prove (A) when d = 3. (due to Goldman and Choi in this case).
(v) Prove (A) when d = 4. For d ≥ 5, one needs more tools.
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Gear Junior Retreat, Urbana July 2012
Yves Benoist, Divisible Convex Sets D. Hyperbolicity

We gather here preliminary results used to describe the geometry of an open divisible

properly convex set.

Exercise 1. Affine zooming semigroup Let P be the set of Borel probability
measures on [0, 1] endowed with the weak topology. Let P ′ be the subset of
probability measures with dense support. For 0 ≤ a < b ≤ 1 and µ in P ′, we
denote Φa,b(µ) the measure φ 7→ µ([a, b])−1

∫ 1

0
φ(a+(b−a)t) dµ(t) for φ Borel

function on [0, 1]. The set S := {Φa,b} is a semigroup of transformations of
P ′. Let C > 0. A probability measure µ on [0, 1] is C-doubling if for every
x ∈ [0, 1] and ε > 0, one has µ(B(x, 2ε)) ≤ Cµ(B(x, ε)).
(i) Prove that a C-doubling measure µ is atom-free i.e. µ({x}) = 0 for all
point x.
(ii) Let Q be a closed subset of P which is included in P ′ and is S-invariant.
Prove that there exists C > 0 such that for any µ in Q, the measure µ is
C-doubling.
(iii) Conversely, the set QC of C-doubling measures on [0, 1] is a closed S-
invariant subset of P which is included in P ′.

Exercise 2. Right-angle pentagons Let P be a convex pentagon in the projective
plane P(R3). For i = 1, . . . , 5, let σi ∈ GL(3,R) be the projective reflection
fixing pointwise the ith-side of P and preserving the two lines supporting the
adjacent sides.

Let Γ be the group generated by these five reflections. Prove that the
set Ω := ∪γ∈ΓγP is an open divisible convex subset of P(R3).

Exercise 3. Benzecri compactness theorem Let Gd = PGL(d+1,R), Xd be the
set of open properly convex subset of P(Rd+1) endowed with the Hausdorff
topology and, Yd = {(Ω, x) | Ω ∈ Xd , x ∈ Ω}. Prove that the group Gd acts
properly and cocompactly on Yd. (Hint: Prove first, using John ellipsoid,
that the group Hd = Aff(Rd) of affine transformations of Rd acts properly
and cocompactly on the set Zd of open bounded convex subsets of Rd).
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Exercise 4. Triangles in the orbit closure Assume d = 2 and let Ω ∈ X2.
(i) Prove that if Ω is not strictly convex, i.e. if ∂Ω contains open segments,
then the orbit closure GdΩ contains a triangle.
(ii) Prove that if ∂Ω is not C1 then the orbit closure GdΩ also contains a
triangle.

Exercise 5. Ellipsoids in the orbit closure Let Ω ∈ Xd.
(i) Prove that if ∂Ω is C2 then the orbit closure GdΩ contains an ellipsoid.
(ii) Describe GdΩ when d = 2 and Ω is either a polygon or a quarter disk.

Exercise 6. Closed subsets and Gromov hyperbolicity (i) Let F be a closed
Gd-invariant subset of Xd all of whose elements Ω are strictly convex. Prove
that there exists δ > 0 such that for all Ω in F , the Hilbert metric dΩ on Ω
is δ-hyperbolic i.e. all geodesic triangles in (Ω, dΩ) are δ-thin.
(ii) Conversely the set Fδ := {Ω ∈ Xd | dΩ is δ-hyperbolic} is a closed
Gd-invariant subset of Xd all of whose elements Ω are strictly convex.

Exercise 7. Closed orbits Let Ω ∈ Xd. Prove that if Ω is divisible then the orbit
GdΩ in Xd is closed.

Exercise 8. Strictly convex divisible sets Let ∆ be a subgroup of SL(d,R)
which divides an open properly convex subset Ω of P(Rd). Prove that the
following statement are equivalent.
(i) Ω is strictly convex.
(ii) The Hilbert metric dΩ on Ω is Gromov hyperbolic.
(iii) The group ∆ is Gromov hyperbolic.
(iv) The boundary ∂Ω is C1.

Exercise 9. Hyperbolicity and doubling measure * Assume d = 2 and let
Ω ∈ Xd. Prove that the Hilbert metric dΩ is Gromov hyperbolic if and only
if the curvature measure on ∂Ω is locally doubling.
For d ≥ 3, one needs more tools.
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Gear Junior Retreat, Urbana July 2012
Yves Benoist, Divisible Convex Sets E. Open Questions

Problem 1. Divisible non convex sets Let d = 3. Describe all the open subsets
U of Rd for which there exists a discrete group Γ of affine transformations of
Rd preserving U and acting properly on U with a compact quotient Γ\U .
When d = 2, the sets U are known to be either the plane, the half-plane, the
quarter-plane or the punctured plane.

Problem 2. Fundamental groups of surfaces Describe the possible Zariski clo-
sures of discrete subgroups Γ of GL(Rd) which act irreducibly on Rd, which
are isomorphic to the fundamental group of a compact surface and which pre-
serve an open properly convex cone C of Rd. Can Γ preserve a quadratic form
of signature (p, q) with p ≥ q ≥ 2? [Partial results obtained by Danciger-
Guéritaud-Kassel in 2017]

Problem 3. Real projective and real hyperbolic structures Prove that every
connected component of the moduli space of strictly convex projective struc-
tures on a compact 3-dimensional manifold contains an hyperbolic structure.
Equivalently, deform continuously any 3-dimensional divisible strictly con-
vex set Ω to an ellipsoid through a family of divisible convex sets. The same
statement is true in dimension 2 and false in dimension 4. [A counterexample
has been announced to exist by Ballas-Danciger-Lee-Marquis in 2023]

Problem 4. Real projective and complex hyperbolic structures Prove that
a group isomorphic to a lattice of SU(2,1) can not divide an open properly
convex set Ω of the 4-dimensional real projective space P(R5). Equivalently
Ω is not quasiisometric to the complex hyperbolic space H2

C. One knows that
Ω is not always quasiisometric to the real hyperbolic space H4

R.

Problem 5. Density of the limit set Let ∆ be a discrete subgroup of GL(Rd)
which acts irreducibly on Rd and divides an open properly convex subset Ω
of P(Rd). Assume that Ω is not homogeneous. Prove that the limit set ΛΩ is
equal to the boundary ∂Ω. This is known only when Ω is strictly convex or
when Ω is 3-dimensional. [Solved positively by Piere-Louis Blayac in 2022,
relying on the rank dichotomy due to Andrew Zimmer in 2020]
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Problem 6. Curvature of the boundary Let Ω ⊂ P(Rd) be an open properly
convex set which is divisible. Assume that Ω is not the ellipsoid. Prove that
the curvature of ∂Ω is supported by a subset of Lebesgue measure zero. This
is known only when Ω is strictly convex. This is not known even for Ω in
dimension 3. [Solved positively by M. Crampon in 2013]

Problem 7. Dynamics of the geodesic flow Let ∆ be a discrete subgroup of
GL(Rd) which acts irreducibly on Rd and divides an open properly convex
subset Ω of P(Rd). Prove that the geodesic flow of the Hilbert metric in the
quotient ∆\Ω has a dense orbit. Does this flow have a measure of maximum
entropy? A unique one? All this is known only when Ω is strictly convex.
This is not known even for Ω in dimension 3. [Solved positively in dimension
3 by Harrison Bray in 2018 and in general by Pierre-Louis Blayac in 2021]

Problem 8. Property T Let ∆ be a discrete subgroup of GL(Rd) which acts irre-
ducibly on Rd and divides an open properly convex subset Ω of P(Rd) which
is not homogeneous. Is it true that ∆ does not satisfy Kazhdan property T?
This is not known even when Ω is strictly convex. There are examples of
homogeneous divisible convex open sets Ω, for which ∆ has property T .

Problem 9. Z2-subgroups Let ∆ be a discrete subgroup of GL(Rd) which acts
irreducibly on Rd and divides an open properly convex subset Ω of P(Rd)
which is not strictly convex. Is it true that ∆ contains a subgroup isomorphic
to Z2? This is known only for 3-dimensional Ω. When Ω is strictly convex, ∆
does not contain subgroups isomorphic to Z2 since ∆ is Gromov hyperbolic.

Problem 10. Construction of divisible convex sets Prove that for any integer
d ≥ 4 there exists a discrete subgroup ∆ of GL(Rd) which acts strongly
irreducibly on Rd and divides an open properly convex subset Ω of P(Rd)
which is not homogeneous and which is not strictly convex. Many examples
are known with Ω of low dimension 3, 4, 5, 6, ... [Solved positively by
Blayac-Viaggi in 2023]
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Yves Benoist, Divisible Convex Sets F. Pictures

We draw first a few 2-dimensional divisible sets:

We draw now various views of a 3-dimensional divisible convex set associated to

the following Coxeter group and the following prismatic fundamental domain:
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