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RANDOM WALKS ON PROJECTIVE SPACES
YVES BENOIST AND JEAN-FRANCOIS QUINT

ABSTRACT. Let G be a connected real semisimple Lie group, V'
be a finite dimensional representation of G, and p be a probability
measure on G whose support spans a Zariski dense subgroup. We
prove that the set of ergodic u-stationary probability measures on
the projective space P(V') is in one-to-one correspondance with the
set of compact G-orbits in P(V). When V is strongly irreducible,
we prove the existence of limits for the empirical measures.

We prove related results over local fields as the finiteness of the
set of ergodic u-stationary measures on the flag variety of G.
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1. INTRODUCTION

1.1. Random walks on P(V'). Let K be a local field of characteristic
0,ie. K =R, Cor afinite extension of Q,. Let V' be the K-vector space
V = K9, X be the projective space X = P(V) and u be a probability
measure on the linear group GL(V'). In this text, “probability measure”
will stand for “Borel probability measure”. We set I',, for the smallest
closed subsemigroup of GL(V') such that p(I',) = 1 and G, for the
Zariski closure of I, in GL(V').

We assume that the action of I', on V' is semisimple i.e. every I',-
invariant vector subspace of V' admits a I',-invariant complementary
subspace. Equivalently, the algebraic group G, is reductive.

A Borel probability measure v on X is said to be u-stationary if
uwx v = v. It is said to be p-ergodic if it is extremal among the
p-stationary probability measures. We denote by F, = supp(v) the
support of v.

A closed subset F' C X is said to be I',-invariant if gF" C F' for all
g in T',. Tt is said to be I',-minimal if it is minimal for the inclusion
among the non-empty I',-invariant closed subsets. If v is a py-stationary
Borel probability measure on X, its support F), is a I',-invariant closed
subset.

The aim of this text is to describe the asymptotic properties of the
random walk on P(V') associated to u. We will also describe the p-
ergodic p-stationary Borel probability measures on P(V') and check that
they are in one-to-one correspondence with the I',-minimal subsets of
P(V).

This paper extends previous works of Furstenberg, Guivarc’h and
Raugi.

1.2. Empirical measures on P(V). Let V = K¢ X = P(V) and
x € X. Our first result describes the asymptotic behavior in law at
time n of the random walk induced by p on P(V) starting from z.
This behavior is given by the probability measure p*" *d,. We want to
prove the existence of a limit for this sequence in the set of probability
measures on X endowed with the x-weak topology. We will assume that
'), is strongly irreducible i.e. that the only I',-invariant finite union of
vector subspaces of V' is {0} or V.
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Theorem 1.1. (Asymptotic law) Let K be a local field of character-
istic 0, X := P(K%), pu be a probability measure on GL(K?) such that
the action of I'), on K is strongly irreducible.

(i) Then for every x in X, the limit probability measure

(1.1) Vv o= lim =370 pF x4,

exists, is p-stationary and depends continuously on x.

(i1) When K =R and the Zariski closure of T, is semisimple, one has
(1.2) vy = lim p™" % 0,.

Remarks 1.2. 1. Theorem 1.1 is due to Guivarc’h and Raugi when X
is an “isometric extension” of a flag variety of G and K = R (see [16]
and [14]).

2. Theorem 1.1.i7 can not be extended to any local field K. For
instance when K = Q,, and when the support Supp(y) is included in
the compact open group K = SL(d,Z,) and is equal to a translate of a
small open normal subgroup of K, Equation (1.2) may not be satisfied.

3. When K = R, semisimplicity of the Zariski closure of I, is nec-
essary for Theorem 1.1.7¢ to be true. For instance when p is a Dirac
mass supported by an irrational rotation of R? Equation (1.2) is not
satisfied.

Our second result describes, when V' is strongly irreducible, the as-

ymptotic behavior of the trajectories of the random walk induced by
w on P(V) starting from x. We denote N* = {1,2,...}. This behav-
ior is given by the empirical measures %22:1 Op,--byz fOI a sequence
(bp)n>1 of elements of GL(K?) chosen independently with law p i.e. for
B-almost all such sequences where 3 = V.
Theorem 1.3. (Empirical measures) Let K be a local field of char-
acteristic 0, X = P(K%), u be a probability measure on GL(K?) such
that the action of T'), on K? is strongly irreducible. Then, for every x
in X, for B-almost all sequences b = (b,)n>1, the limit of the empirical
probability measures

(13) Vgb = nh_)nolo % ZZ:l 5bk"'b1x

exists and is a p-ergodic p-stationary probability measure on X. More-
over one has

Uy = fl/va ds(b).

Remarks 1.4. 1. We note that, the assumption “V is strongly irre-
ducible” is crucial for Theorems 1.1 and 1.3 to be true (see Example
3.3).
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2. Even when K = R, the limit measures v, might be non p-ergodic
and hence the limit measures v, ; might not be equal to v,. See Remark
1.9 and Example 2.11 (for a Markov chain which does not come from
a group action).

1.3. Stationary measures on P(V). In our third result, we do not
assume that the representation V' is irreducible, and we describe the
p-stationary probability measures on P(V').

Theorem 1.5. (Stationary measures) Let K be a local field of char-
acteristic 0, X := P(K?), u be a probability measure on GL(K?) such
that the action of T'), on K% is semisimple. Then the map v — supp(v)
s a bijection between the sets

(1.4) {p-ergodic probability on X} «— {I',-minimal subset of X'} .

Remarks 1.6. 1. Theorem 1.5 is due to Furstenberg when the action
of ', on K% is strongly irreducible, and “proximal” i.e. when there
an

exists a sequence g, in I', such that the sequence Mg converges to a
n

rank-one endomorphism 7 in End(V). In this case, P(K9) supports a
unique p-stationary probability measure called “Furstenberg measure”
(see the book [7]).

2. When K = R and the action of T', on K¢ is strongly irreducible,
Theorem 1.5 can also be seen as a corollary of the main result of Y.
Guivarc’h and A. Raugi in [16] where a bijection like (1.4) is obtained
for “isometric extensions” X of flag varieties.

3. We note also that even for a deterministic topological dynamical
system on a compact space X, the support of an ergodic probability
measure is not always minimal. For instance the Lebesgue probability
measure on the circle T = R/Z is ergodic for the map ¢t — 2¢. It might
also happen that X is minimal without being uniquely ergodic (see [10,
p. 585]).

4. We note that, when the action of I, is not supposed to be semisim-
ple, the support of a u-ergodic probability measure is not always I',-
minimal. Here is an example with V' = R? and 4 the finitely supported
measure

o= 1(0ay + 04,) Where ag = <(1) g) and a; = ((1) }) :

In this case one has P(V) = R U {oc} and {oo} is the only minimal
I',-invariant subset of P(V') while there exists a p-ergodic p-stationary
probability on P(V') whose support is [0, oo].

When K = R and X = P(R?Y), applying the following Theorem 1.7
with I' = T",,, one can describe more precisely the p-ergodic probability
measures on X (see Proposition 5.5).



RANDOM WALKS 5

Theorem 1.7. (Minimal subsets) Let I' C GL(RY) be a subsemi-
group whose action on R is semisimple and let G be the Zariski closure
of T'. Every minimal U-invariant subset F' of X := P(RY) is supported
by a compact G-orbit Op, and the map F +— Op s a bijection between
the sets

(1.5) { I'-minimal subset of X} «— {compact G-orbit in X} .

Remark 1.8. It is easy to describe the set of compact orbits of this real
reductive group G. Indeed, let M AN be a minimal parabolic subgroup
of G, AN its maximal R-split solvable subgroup and X4V the set of

fixed point of AN in X. Then, the map O — O N X4V is a bijection
between the sets

(1.6) {compact G-orbit in X} «—— {M-orbit in X4V}

(see Lemma 4.15). In particular, one recovers the well-known fact due
to Furstenberg, Guivarc’h, Raugi, Goldsheid and Margulis ([11], [13],
[15]) : there exists a unique p-stationary probability measure vp on the
flag variety P of GG. This measure is called Furstenberg measure.

Remark 1.9. Even when V is strongly irreducible the sets (1.6) may be
uncountable. For instance for G := SO(n,1) acting on V := ASR"*!
with n > 5. In this case the compact group M is isomorphic to O(n—1),
the set X4V is P(W) where W = A?2R"~! and M has uncountably many
orbits in X4V,

1.4. Stationary measures on the flag variety. Let p be a prime
number. When K = Q, there may exist more than one p-stationary
probability measure on the flag variety P of G (see Section 4.1 for
the definition of P). However one has the following finiteness result.
We recall that the expression K-group is a shortcut for algebraic group
defined over K.

Theorem 1.10. (Finiteness) Let G be the group of Q,-points of a
reductive Qp-group, 1 be a probability measure on G such that I, is
Zariski dense in G. Then there exist only finitely many p-ergodic pi-
stationary probability measures on the flag variety P of G.

1.5. Strategy of proofs. In order to prove Theorems 1.1 and 1.3, we
will introduce the averaging operator

(L7) P C(X) = CX) 5 o= Pul) = [, wlgz) dulg),

and prove in Proposition 3.1 that, as soon as I', acts strongly irre-
ducibly on V', this Markov-Feller operator is equicontinuous (see [23, 22]
and section 2 below for definitions ; this strategy is inspired by the
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work of Guivarc’h and Raugi [16]). When K = R and I', has semisim-
ple Zariski closure, the only eigenvalue of modulus 1 of this operator
P, is 1 (Lemma 5.6). Then Theorems 1.1 and 1.3 will occur as special
cases of statements about equicontinuous Markov-Feller operators.

For Theorem 1.1, we will use well-known decomposition theorems
for operators in Banach spaces spanning a compact semigroup (Propo-
sitions 2.2 and 2.3), that we will recall in section 2.1, and that we will
apply to equicontinuous Markov Feller operators (Proposition 2.9).

For Theorem 1.3, we will use a general fact due to Raugi [22] about
equicontinuous Markov-Feller operators P : for such operators the em-
pirical measures converge almost surely toward a P-ergodic probability
measure (Proposition 2.9.e).

In the setting of Theorem 1.5 and 1.7, the Markov-Feller opera-
tor P, might be non-equicontinuous. Hence we have to develop new
tools (Lemmas 5.3 and 5.4) to be able to describe the algebraic homo-
geneous (-spaces which support a p-stationary probability measure.
When K = R, those homogeneous spaces are exactly the compact ones,
and each of them supports a unique p-stationary probability measure
(Proposition 5.5). When K is any local field, those homogeneous space
are exactly those containing a I',-invariant compact subset (Proposi-
tion 5.1). The description of these homogeneous spaces (Proposition
4.2) occupies most of Chapter 4. An important tool that we have to
introduce is a compact group M that we associate to any Zariski dense
subsemigroup I' and that we call the limit group of T' (Propositions 4.5
and 4.9).

In the setting of Theorem 1.10, the Markov-Feller operator P, is
again equicontinuous. We can use directly Proposition 2.9 and we only
have to check that there exist only finitely many I',-minimal subsets
in the flag variety (Proposition 4.17) using again the limit group Mr.

2. EQUICONTINUOUS OPERATORS

The aim of this chapter is to recall decomposition theorems for
bounded operators on Banach spaces spanning a compact semigroup
(Propositions 2.2 and 2.3), to recall Breiman law of large numbers for
Markov-Feller operators on a compact space (Proposition 2.4) and the
results of Raugi about equicontinuous Markov-Feller operators (Propo-
sitions 2.7 and 2.9).

2.1. Decomposition theorems. We begin by recalling the JLG de-
composition theorem for bounded operators spanning a compact semi-

group.
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Let (E,|.]|) be a Banach space. We endow the space L(FE) of
bounded linear operators with the strong topology: a sequence P, in
L(E) converges strongly towards P in L(F) if and only if, for any f in
E, one has lim ||P,f — Pf|| =0.

Definition 2.1. We say that an operator P in L(E) spans a strongly
compact semigroup if P belongs to a semigroup of L(E) which is com-
pact for the strong topology. Equivalently, the operators P™ have uni-
formly bounded norms: sup,~, ||P"|| < oo, and for every f in E, the
orbit (P™f),>1 is strongly relatively compact in E.

We endow the dual Banach space E* with the x-weak topology: a
sequence v, in E* converges *-weakly towards v in £* if and only if, for
any f in E, one has lim v,(f) = v(f). For any operator P in L(FE),

n—od

we will write v — vP for the adjoint operator of P in E* , E¥ for the
set of P-invariant vectors and (E*)F for the set of P-invariant linear
forms:

2.1) EfY={feE|Pf=f}, (B ={veE |vP =y}

We also introduce the Banach subspaces

(2.2) Ep:={f€F| 7}1_{20%2::1 P*f =0 strongly}
(2.3) (E")p:={veE"] nh_{EO L3 h_ vP" =0 s-weakly}.

The following proposition is known as “von Neumann functional er-
godic theorem”.

Proposition 2.2. Let E be a Banach space and P € L(E) be an
operator spanning a strongly compact semigroup. Then

a) The restriction map v — v|gr is an isomorphism (E*)F ~ (ET)*.
b) One has the decomposition E = E¥ & Ep.

¢) One also has the decomposition E* = (E*)¥ & (E*)p.

Sketch of proof. a) To prove injectivity, we start with a linear form v
on E which is zero on E”. Since, by [24, Th. 3.20.c)], the convex hull
of a compact subset of E is relatively compact, for any f in E, we can
choose a cluster point y, of the sequence %22:1 P¥f. This point is
P-invariant and one has v(f) = v(y-) = 0. Hence, one has v = 0.

To prove surjectivity, we start with a linear form on E? extend it
by Hahn-Banach Theorem to a linear form v on F and notice that any
cluster point of the weakly relatively compact sequence % S vP"is

P-invariant and has same restriction to E¥ as v.
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b) Again, for f in E, the sequence % > n_, P*f is relatively compact.
If y. is a cluster point of it, for any P-invariant linear form v, one has
V(Yoo) = v(f). Hence the sequence = 37" | P* f admits a unique cluster
point, that is it converges to some npf € E¥. The map np : £ — E
is then a P-invariant projector whose image is E¥ and whose kernel is
Ep.

c¢) This follows from b). The map v +— v7p is a P-invariant projector
E* — E* whose image is (E*)” and whose kernel is (E*)p. O

The following JLG decomposition is a strong improvement of Propo-
sition 2.2. We will only use it to prove Theorem 1.1.73.
For any complex number x we consider the eigenspace

Ev={feE|Pf=xf}
set B, for the linear closure of @,|—;Ey and E; for the space

(2.4) Es:={fe€E| lim P"f =0 strongly}

Proposition 2.3. (Jacobs, de Leeuw, Glicksberg) Let E be a Ba-
nach space and P € L(E) be an operator spanning a strongly compact
semigroup. Then
a) One has the decomposition £ = E, @ Ej.
b) In particular, if 1 is the only eigenvalue of P with modulus 1, then
the following limits exist:

() for every f in E, lim P"f =nwpf strongly,

(13) for every v in E*, lim vP" = vmp *-weakly.
Sketch of proof. Let S be the closure of the semigroup spanned by P
in L(E) for the strong topology. Then one easily checks that S is
compact and that the composition map S x S — S is continuous. We
let T" be a non-empty minimal closed subset of S such that ST C T.
One checks that one has T' = Su where u is an idempotent element
and that the composition map induces a group structure on 7" with
identity element u. We have E = keru @ imu and since S is abelian,
both these subspaces are S-invariant. Since the image of S in L£(im u)
is a strongly compact abelian group, we have imu C FE, and it only
remains to prove one has keru C F,. Indeed, if f belongs to keru,
as u belongs to the strong closure of the sequence P", there exists a
sequence ny of integers with ||P"™ f|| — 0. Now, by Banach-Steinhaus
Theorem, the sequence || P"|| is bounded and hence [|P"f|| — 0, what
should be proved. O

For a detailed proof, see [9, Chap. 12].



RANDOM WALKS 9

2.2. Empirical measures for Markov-Feller operators. For fur-
ther quotation, we recall in this section Breiman law of large numbers.

Let X be a compact metrizable space, E = C°X) be the Ba-
nach space of continuous functions on X endowed with the supremum
norm. Its dual space E* is the space M(X) of complex measures on
X. We denote by X the compact set X = XV of infinite sequences
z = (rg, 71, %2, .. .).

Let P:C%(X) — C%(X) be a Markov-Feller operator i.e. a bounded
operator such that || P|| < 1, P1 = 1 and such that Pf > 0 for all func-
tion f > 0. Such a Markov-Feller operator can be seen alternatively as
a continuous map x — P, from X to the set of probability measures
on X, where P, is defined by P,(f) = (Pf)(x) for all f in C°(X). We
denote by P, the Markov probability measure on X which gives the
law of the trajectories of the Markov chain starting from x associated
to P.

For any trajectory z € X, and n > 1 the probability measures
Vgn = %22:1 0., are called empirical measures. Heuristically this
sequence of measures tells us where the trajectories spend a positive
proportion of their time. We want to understand the behavior of this
sequence of measures. The first result in that direction is Breiman’s
law of large numbers:

Proposition 2.4. (Breiman) Let X be a compact metrizable space
and P be a Markov-Feller operator on X. Then, for every point x in
X, for P.-almost every trajectory x € X, every x-weak cluster point
Vs Of the sequence of empirical measures %ZZ=1 0z, 18 P-invariant.
In particular, if P is uniquely ergodic i.e. admits a unique P-inva-
riant probability measure v on X |, then, for every point x in X, for
P.-almost every trajectory x € X, one has
(2.5) lim L300y, = v

For a proof, see [8] or [4].

Ezample 2.5. When P is not uniquely ergodic, the limit (2.5) does not
always exists. This is already the case for deterministic operators : for
example, if P is the Markov-Feller operator on T = R/Z such that
P, =09, z €T.

2.3. Equicontinuous Markov-Feller operators. We now recall the
description of P-invariant measures of an equicontinuous Markov-Feller
operator P.
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Definition 2.6. We say that the Markov-Feller operator P is equicon-
tinuous if, for every f in C°(X), the family of functions (P"f),>1 is
equicCoONtINUOUS.

Equivalently, by Ascoli Theorem, this means that P spans a strongly
compact semigroup in £(C°(X)).

Let P be a Markov-Feller operator on X. A closed subset FF C X
is said to be P-invariant if, for all = in X, one has P,(F) = 1. A
P-invariant subset F' is said to be P-minimal if it is minimal among
the non-empty closed P-invariant subsets of X.

We shall now describe the structure of the P-minimal subsets of X.
We recall from [24, Th. 11.12] that if A is a commutative C*-algebra,
there exists a unique compact space Z such that A is isomorphic to the
algebra C°(Z). The space Z is called the spectrum of A. If p : A} —
Ag is a morphism of commutative C*-algebras and if Z; and Z, are
the spectra of A; and Ay, then there exists a unique continuous map
0 : Zy — Z such that, for any f in A, one has o(f) = fo#.

Proposition 2.7. Let X be a compact metrizable space and P be an
equicontinuous Markov-Feller operator on X. Let'Y be the closure of
the union of P-minimal subsets of X. Then

a) The restriction map

(2.6) (X)) —c'(m)”

s an isometry of Banach spaces.
b) More generally, when |x| = 1, the restriction map between the
ergenspaces

(2.7) C'(X)y = C(Y)y

1s an isometry of Banach spaces.
c¢) Each P-invariant function f € C°(X)¥ is constant on the P-minimal
subsets and hence C°(Y)F is a Banach sub-C*-algebra of C°(Y).

Let Z be the spectrum of CO(X)F and 7 : Y — Z be the surjective
continuous map associated with the inclusion C°(Y)? — CO(Y).
d) For any z in Z, the set m=1(2) is P-invariant and contains a unique
P-minimal subset F,.

This result is essentially due to Raugi [22, Th. 2.6].

Ezample 2.8. It might happen that, for some z in Z, the preimage
77 1(2) is not minimal. This is the case when X = N* U {0, 1}, where
N* = N* U {oo} is the one-point compactification of N*, and P is the
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Markov operator such that, for any n in N*, one has
P(n,O) = P(n,l) = %(571,0 + (1 - %)5n,1

and Poo0) = Ploo,1) = 0s0,1- Thenone has Y = X, Z = N* and 7 is the
map (n,u) — n. In particular 77!(c0) = {(00,0), (00, 1)} and this set
is not P-minimal.

Proof of Proposition 2.7. a)&b) We first prove that this restriction map
is injective. Let f be a continuous function on X such that Pf = xf
with |x| = 1. Assume that the restriction of f to Y is zero. We want
to prove that f = 0. The function g := |f| satisfies Pg > g¢. Let
M :=sup,cx g(z). The set g~ (M) is then a closed P-invariant subset
of X and hence contains a P-minimal subset. This proves that M =0
as required.

We now prove that this restriction map is a surjective isometry. Let
g be a continuous function on Y such that Pg = xg. This function can
be extended as a continuous function ~ on X with [|A||cox) = [|g]lco(v)-
Since g is an eigenfunction of P, g is also the restriction of the functions
h, = %22:1 X *P¥h, for n > 1. This sequence is equicontinuous and
admits a cluster value f in C°(X). By construction, this function f
belongs to the eigenspace C°(X),, the restriction of f to Y is equal to
g and one has || f||cocx) = [|g|lco(y) as required.

c¢) Let f be a P-invariant continuous function with real values, F' C
X be a closed P-minimal subset and M = supyp f. Then the set
F~HM)NF is closed and P-invariant, hence f = M on F', what should
be proved.

d) Equip Z with a distance which defines its topology, fix z in Z and,
for y in Y, set f(y) = d(n(y), z). By definition of 7, f is P-invariant,
so that, if f(z) =0, one has f(y) = 0 for P,-almost any y, that is the
set m71(z) is P-invariant.

Let F} # F5 be closed P-minimal subsets. Then, as F; N F3 is closed
and P-minimal, one has F; N Fy, = (. Let f be in C°(Y) with f =0
on Fy and f =1 on F, and set g = nhrgo% Son_, P*f. Then g belongs

to C°(X)? and g does not take the same value on F; and Fy, so that
7w (F1) # 7(Fy), what should be proved. O

Recall a probability measure v on X is said to be P-invariant' if
vP = v. It is then said to be P-ergodic if it is an extremal point of the
compact convex set of P-invariant probability measures on X.

IMany synonyms for the word “invariant” have been used in the litterature like
“stationary”, “harmonic” or even “regular” in [25].
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For an equicontinuous Markov-Feller operator P, one can describe
the P-invariant probability measures. For x in X, we denote by 4, the
Dirac mass at x and §,P* its image by the transpose of P*.

We have the following results by Raugi [22, Prop. 3.2 and 3.3].

From Propositions 2.2 and 2.7, we get

Proposition 2.9. Let X be a compact metrizable space, P be an equi-
continuous Markov-Feller operator on X, Y be the closure of the union
of the P-minimal subsets of X and Z be the spectrum of the Banach
algebra CO(Y)F.

a) Any P-ergodic P-invariant probability measure on X has P-minimal
compact support and any P-minimal closed subset F' of X carries a
unique P-invariant probability measure vp. The set of P-ergodic P-
wmwvariant probability measures on X 1s compact for the weak-x topology.
b) The map

(2.8) M(Z) = M(X)P a0 [,vp da(z)
s an isomorphism.

¢) For every x in X, the limit probability measure
(2.9) vy = lim =370 6, P*

n—oo

exists, is P-invariant and depends continuously on x.
d) Seeing these v, as measures on Z, the map

(210)  CZ) = CUX)Fsp s (= [, (=) dval2))

1s a Banach spaces isomorphism.

e) For every x in X, for P,-almost every trajectory x € X, the limit
(2.11) Vv = lim =370 6,

n—oo

exists, is P-invariant and P-ergodic, and one has the equality
(2.12) Vo = [y Vo APy (2).

Remarks 2.10. 1. In particular, any limit of a sequence of P-ergodic
probability measures on X is also P-ergodic.

2. Formula (2.10) is a kind of Poisson formula expressing harmonic
functions thanks to continuous functions on a “boundary”.

Proof of Proposition 2.9. a), b), ¢) and d) directly follow from Propo-
sitions 2.2 and 2.7. For a), note that, if 7 : Y — Z is the natural map,
necessarily, for any z in Z, the set 771(2) carries a unique P-invariant
probability measure v. Since, by definition, F, C 7~!(z) and F, also
carries a P-invariant probability measure, one has v(F,) = 1, and a)
follows.
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Let us prove e). We fix z in X. By Breiman’s proposition 2.4,
we already know that the cluster points of the sequence of empirical
measures v, , are P-invariant probability measures. Hence, by Propo-
sition 2.2.a and since X is metrizable, to prove convergence in (2.11),
we only have to check that for every P-invariant function f on X, for
P,-almost all trajectories z in X, the sequence v, ,(f) converges. For
that, we note that, since f is P-invariant, the sequence of functions
®, : z — f(x,)is a bounded martingale on X, with respect to the nat-
ural filtration. Hence, by Doob’s martingale theorem, for P, -almost all
z in X, the sequence f(x,) converges. Therefore the Cesaro average
Ve n(f) converges too.

It remains to check that, for P -almost all trajectories z in X, the
limit v, is P-ergodic. Indeed, for any P-invariant continuous function
f on X, for P,-almost all trajectories z in X, the sequence f(z,) con-
verges to ¢ = v,(f). Hence, all the cluster points in X of the trajectory
z belong to the level set f~1(¢) and the support of v, is contained
in this level set. In particular the set m(suppr,) is a singleton z and
ergodicity follows from a). Formula (2.12) is obvious. O

Ezample 2.11. Here is an example where the limits of empirical mea-
sures v, given in (2.11) are not equal to v,. Choose X := ZU{—o00, o0}
to be the two points compactification of Z and P to be the Markov
Feller operator on X such that

Pio = 0100 and P, = a0, 1 + (1 —ay)dpy1 (R € Z)

with a, = % and a_, = % for n > 0, and ayg = % This operator P
is equicontinuous and P has two ergodic measures d_,, and 0. One
computes using (2.10) that for x in Z the limit probability measure v,

in (2.12) is given by
Ve =(1-2"15_ +2° 16, for x <0,
Ve =2""10_oo + (1 —2""H6, forz >0,

and hence v, is not P-ergodic.

A very similar example is obtained by choosing P = P, to be the av-
eraging operator of a Zariski dense probability measure p on the group
S0O(2,1) acting on the projective sphere X = S? of R, In this case, P
is equicontinuous and there exists exactly two P-ergodic measures on
X, vy and v_ and two extremal dual P-invariant continuous functions
p, and p_ on X.

Another very similar example (in the setting of Theorem 1.3) can
be obtained by choosing P = P, to be the averaging operator of a
probability measure p on the group G = SO(5,1) with I',, = G acting
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on the projective space X = P(V) for the irreducible representation
V = A3RS of G introduced in Remark 1.9, and by choosing a point
x = Rov in P(V) for which the orbit closure G contains uncountably
many compact G-orbits. For instance v = vy + wvy where v; and v
are non zero N-invariant vectors in V' belonging to distinct M A-orbits
and where w is the non trivial element of the Weyl group.

Ezxample 2.12. When P has a unique P-ergodic probabilty measure
v, Equation (2.5) gives us an information on the statistical behavior
of a typical trajectory starting from x. In particular this trajectory
spends most of the time near the support of . However, even when P
is equicontinuous, the limit set of (xy)g>1 may be strictly larger than
Supp(v). Here is an example: choose X := ZU{oo} to be the one point
compactification of Z and P to be the Markov Feller operator on X for
which P, = p*d, where p is the probability measure 1 := %((5_1 + 1),
x # 00, and Py, = 0. The operator P is equicontinuous and is
uniquely ergodic with invariant measure d,,, but, for all z in Z, P,-
almost all trajectories visit infinitely often every point in Z.

3. LINEAR RANDOM WALKS

In this chapter, we use the results of Chapter 2 in order to prove
Theorems 1.1.% and 1.3.

3.1. Equicontinuity on the projective spaces. The main step will
be to understand when the Markov-Feller operator P, in (1.7) is equi-
continuous (see Proposition 3.1).

Let K be a local field of characteristic 0, V = K¢, X = P(V) and
i be a probability measure on the linear group GL(V'). We set I';, for
the smallest closed subsemigroup of GL(V') such that u(I',) = 1.

We recall the averaging operator that we introduced in (1.7): this
operator is the Markov-Feller operator P = P, : C°(X) — C°(X) whose
transition probabilities are given by P, = p % d, for all z in X.

We set (B, B, 3,T) to be the one-sided Bernoulli shift with alphabet
(', ). This means that B is the set of sequences b = (b1,...,bp,...)
with b, in GL(V'), B is its Borel o-algebra, (3 is the product probability
measure 3 = u®N and T is the shift: Tb := (by, b3, .. .).

For every z in X, the Markov measure P, is the image of 3 by the
map

B — X, b— (iIZ’, blilf, bgblﬂﬁ, bgbgbll’, .. )

Proposition 3.1. Let K be a local field of characteristic 0, V = K¢,
X =P(V), p be a probability measure on GL(V') such that the action



RANDOM WALKS 15

of I'yy on V' is strongly irreducible. Then the Markov-Feller operator P,
on X 18 equicontinuous.

We will need the following lemma.

We introduce a distance on P(V). We fix a norm ||.|| on V: we
choose it to be euclidean when K is R or C, and to be ultrametric
when K is non-archimedean. We endow A%V with a compatible norm
also denoted ||.||. The formula

d(z,y) = 222k for 2 = Kv and y = Kw in P(V),

= Mol el
defines a distance on P(V') which induces the usual compact topology.

Lemma 3.2. Let V = K¢ and u be a probability measure on GL(V)
such that the action of I'), on 'V is strongly irreducible. For all € > 0,
a) there exists c. > 0 such that, for all v in V ~ {0}, one has

(3.1) B({b e B | inf el > ¢ 1) > 1 —¢,

n>1 Mon-bill ]l

b) there exists M. > 0 such that, for all x, y in P(V'), one has
(3.2) pHbe B|supd(by---biz,b,---by) < M.d(z,y)}) > 1 —e.
n>1

We recall that the prozimal dimension of a subsemigroup I' € GL(V)
is the smallest integer » > 1 for which there exists an endomorphism
7 in End(V') of rank r such that 7 = lim A, g,, with A, in K and g, in

n—oo

G. The semigroup I' is proximal if and only if r = 1.

Proof of Lemma 3.2. a) By [7, Th. 3.1], we know that there exists
a Borel map b — W), from B to the Grasmannian variety Gry_,.(V),
where r is the proximal dimension of I',, in V', such that, for 3-almost
all b in B, W, is the kernel of all the matrices 7 € End(V') which are
cluster points of the sequence % By [7, Pr. 2.3], we also know
that, for all  in P(V'), one has

B({be Bz e B} =0.
Hence, for all ¢ > 0, there exists a. > 0, such that, for all z in P(V),
(3.3) B{b e B |d(x,P(Wy)) > a.}) >1—¢/2.

By definition of W}, for all a > 0, for S-almost all b in B, there exists
Cap > 0such that, for all non-zero vector v in V' with d(Kv, P(17})) > «,
one has

. b by o]
3.4 inf Ababiell s .
(3.4) no1 lbnbr]l vl = b
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We choose then the constant ¢, > 0 such that
(3.5) BHbE B | cop>c})>1—¢/2.

Then (3.1) follows from (3.3), (3.4) and (3.5).
b) For p, = b, ---by, vin z and w in y, we have

dPnz,pny) _ [lpnvApnw]| ol - flwl]  ~ [pall[v]] [pn]l{lw]
d(z,y) [orwllllpnoll [lpnwll = el llpawl] 2
hence (3.2) follows from (3.1) with M, = (c.j2) % O

Proof of Proposition 3.1. Let ¢ be a continuous function on X. We
want to prove that the family of functions (P"),>1 is equicontinuous.
We can assume ||¢|l < 1. We fix € > 0. By uniform continuity of ¢,
there exists 7. > 0 such that, for all 2/, 3/ in P(V),

d(z',y') <n. = |e(a) —ey)| < e

Let z, y be in P(V') such that d(z,y) < n./M. where M, is as in Lemma
3.2. We know from this lemma that the set

B. .y ={be B|supd(b,---biz,b,---biy) < M.d(z,y)}
n>1
satisfies 3(B¢ ) < €. We compute then by decomposing the following
integral into two pieces,

[(Pro) (@) = (Pro)W)| < [gleobn - biz) — @by - - - bry)| dB(b)
< eB(Beay) +20(B,,) < 3e.

Since this upperbound does not depend on n, this computation proves
that the family (P"¢),>1 is equicontinuous. O

Example 3.3. Lemma 3.2 and Proposition 3.1 are not always true when
V' is a semisimple representation of I',, which is not strongy irreducible.
For instance, when V' = W&K is a direct sum of an irreducible proximal
representation of I', and the trivial representation, then the operator
P, on P(V) is not equicontinuous. Indeed, in this case there are only
two P,-ergodic probability measures on P(V): v which is supported
by P(W) and the Dirac mass d,, where z is the I' ,-invariant point in
P(V). For every = # xg, one has v, = lim p" % J, = v while v,, = d,,.

n—oo

Hence the map = — v, is not continuous and, according to Proposition
2.9.c, the operator P, is not equicontinuous.

However Proposition 3.1 is also true under a slightly more general
assumption than strong irreducibility. This fact will be useful in the
proof of Proposition 5.1.
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Corollary 3.4. Let K be a local field of characteristic 0, V = K¢,
X :=P(V), u be a probability measure on GL(V'). We assume that V
is a direct sum of strongly irreducible representations V; of I, such that

(3.6) sup ”gJVi” < oo, foralli,j.
ger, 19V

il
Then the Markov-Feller operator P, is equicontinuous.

Remark 3.5. One can prove that the converse is also true: when P, is
equicontinuous, condition (3.6) is satisfied.

Proof of Corollary 3.4. This is a corollary of the proofs of Proposition
3.1, Lemma 3.2 which are true with the same proof under this assump-
tion (3.6). O

3.2. Limit law on projective spaces. We can now prove part of the
first two theorems of the introduction :

Proof of Theorem 1.1.i. By Proposition 3.1, P, is equicontinuous. Our
statement follows then from Proposition 2.9. 0

Proof of Theorem 1.3. Just apply Propositions 2.9.e and 3.1. O

Remark 3.6. When V is not irreducible, the limit (1.1) in Theorem 1.1
does not always exist. Indeed, an example can be constructed with
V = R? and p a probability measure (with infinite moments) on the
group of diagonal matrices I' := {diag(e’,e™") | t € R}.

4. COMPACT MINIMAL SUBSETS IN HOMOGENEOUS SPACES

In this chapter G will be the group of K-points of a reductive K-
group and I' a Zariski-dense subsemigroup of G. Our main goal is to
describe the compact I'-minimal subsets on an algebraic homogeneous
space G/H (Proposition 4.2) and, in particular when K = R, to prove
Theorem 1.7.

Studying the compact I'-minimal subsets on algebraic homogeneous
spaces is equivalent to studying the I'-minimal subsets on projective
spaces. Indeed, by Chevalley theorem, every algebraic homogeneous
space G/H can be realized as an orbit in the projective space P(V)
of an algebraic representation V' of G. Conversely, since the G-orbits
in the projective space P(V') of an algebraic representation of G are
locally closed, any compact I'-minimal subset on P(V') is supported by
a G-orbit i.e. by an algebraic homogeneous space G/H.
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4.1. Zariski-dense subsemigroups. In this section we recall well-
known definitions and properties of reductive groups and their Zariski
dense subsemigroups.

Let K be a local field of characteristic 0, G be the group of K-
points of a connected reductive K-group G, and g be the Lie algebra
of G. Let A be a maximal K-split torus of G, Z be the centralizer of
Ain G, and Z — a;z +— 2* the universal morphism of Z in a real
vector space. Since A is central and cocompact in Z, any continuous
morphism A — R extends in a unique way as a continuous morphism
7 — R and hence defines a linear form on a. Thus, for any algebraic
character y of A, we let x* be the unique linear form on a, such that,
for any z in A, |x(z)| = eX***). Let ¥ be the set of restricted roots of
Ain Z. The set 3¢ is a root system in the real vector space a*. Let
a™ C a be a closed Weyl chamber, Z* :={z € Z | z¢ € a™}, II be the
corresponding set of simple restricted roots, N be the corresponding
maximal unipotent subgroup of GG, P := ZN be the corresponding
minimal parabolic subgroup, P ~ G/P be the full flag variety and
x,, € P be the base point whose stabilizer is P.

Let K be a “good” maximal compact subgroup of G with respect
to a, so that one has the Cartan decomposition G = KZTK and the
Iwasawa decomposition G = KZN. Every element g of G can be
written as

(4.1) g =kga125kgo With kgy € K, 27 € Z%, kg9 € K.

The element r(g) := (z])* € a* is uniquely defined and called the
Cartan projection of g.

For every g in G and x = kx,, in P with k in K, there exists an
element z,, in Z such that

gk € KzgN.

w

The element o(g,z) := (24)* € a is uniquely defined and this map
0:G x P — ais a cocycle which is called the wasawa cocycle

For any set © C II of simple restricted roots, we let Ag be the
centralizer in A of the sum of the root spaces associated to the elements
of ©°, we let Zg be the centralizer in GG of Ag, we let Ng be the smallest
unipotent normal subgroup of N whose Lie algebra contains the root
spaces associated to the elements of ©, we let Po = ZgNgo be the
normalizer in G of Ng, we let Pg = G/Pg be the associated partial
flag variety and xg € Peo be the base point whose stabilizer is Pg. In
particular when © = II, one has

AH:A, ZH:Z, NH:N7 PH:P7 PH:P
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Let I' be a Zariski-dense semigroup in G. Let ©® = ©Op C II be
the set of simple restricted roots a for which the set a(x(I')) C R is
unbounded. Since the action of I' on Pg is proximal, there exists a
unique I'-minimal subset Ar C Pg: it is called the limit set of I' in Pg
(see [2, 3.6]). For a suitable choice of torus A and Weyl chamber a*,
we may assume that

(4.2) the base point xg belongs to the limit set Ar.
Let Ar be the smallest subtorus A’ of A such that
(4.3) k(") stays at bounded distance from w(A’).

and let Hr be the following solvable subgroup of G

(44) HF = AFN@.
Let Zr be the group
(4.5) Zr = Ze[Ar.

The following G-equivariant fibration
(4.6) Yr =G/Hr — Po =G/ Po

is a principal Zp-bundle. This homogeneous space Yr will play a crucial
role in our analysis. We will denote by y. the base point of Y.

Remark 4.1. When K = R, according to [13], one has ©p = II and
according to [2], one has Ar = A, and hence Hr = AN is a maximal

R-split solvable algebraic subgroup of G and the principal bundle (4.6)
is Yr = G/AN — Pn=G/P.

4.2. Minimal subsets in homogeneous spaces. The following Pro-
position 4.2, describes exactly which algebraic homogeneous spaces
support a compact I'-invariant subset.

Proposition 4.2. Let K be a local field of characteristic 0, G be the
group of K-points of a connected reductive K-group, I' be a Zariski-
dense subsemigroup of G, H be an algebraic subgroup of G and X =
G/H. Then the following two assertions are equivalent :

(1) There exists a compact I'-invariant subset in X,

(1) H contains a conjugate of the group Hr := ArNg,..

We will need the following Lemma which does not involve Zariski
dense subsemigroups and which describes the cluster points of a G-
orbit in a projective space.
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Lemma 4.3. Let K be a local field of characteristic 0, G be the group
of K-points of a connected reductive K-group, (V,p) be an algebraic
representation of G and © C 11 a subset of restricted simple roots. Let
gr be a sequence in G such that

(4.7) for all a in ©, one has o (k(g)) .
and 7 be a non zero limit point in End(V') of a sequence A\pp(gy) with
a) For all z in P(V') \P(ker ), the limit klim grx exists and belongs to

the projective space P(im ).

b) This space P(im 1) is included in the set of fized points of a conjugate
of the unipotent group Neg.

c) More precisely, let A C A be the smallest subtorus of A such that
supy, d(k(gr), A') < oo. This space P(im7) is included in the set of
fized points of a conjugate of the solvable group A’ Neg.

Proof of Lemma 4.3. a) The endomorphism 7 induces a well-defined
map from P(V)\IP(ker 7) to P(V') and the sequence g, converges toward
7 uniformly on compact subsets of P(V') \ P(ker 7).

b) and ¢) Using the Cartan decomposition G = K Z* K and using the
compactness of the quotient Z/A, we may assume that the sequence
gr is in AT. We may also assume that, for any pair of weights 1,
X2 of Ain V, the sequence x¥(k(gr)) — x5 (k(gr)) converges to a limit
Ui vo € RU{xoo}. Let S be the non-empty set of weights of A in
V' such that, for all x; in S, when x is also in S, the limit ¢,, ,, is
finite and, when 9 is not in S, the limit ¢,, ,, is +0o. The image
of 7 is then the direct sum im7 = ®,cgV) of the weight spaces V)
of A in V such that y is in S. By definition of O, if x belongs to S
and a € Y1 is a positive root whose decomposition into simple roots
contains elements of O, the character y 4+ « is not a weight of V. This
proves that im 7 is included in the space V¥e of fixed points of Ng.
Moreover, by definition, all the characters of S coincide on A’, hence
this subtorus acts by a character on im 7. O

Proof of Proposition 4.2. We first want to prove (i) = (i7). As the
limit cone /1 of k(I") in a is convex (see [2, § 4]), there exists a sequence
gx in I" such that, for any weight x of A that is non trivial on Ar, one
has |x“(k(gx))| o0 Now, by Chevalley Theorem [6, 5..1], there

exists an algebraic representation (V) p) of G and a point yy in P(V)
such that the stabilizer of y in G is equal to H. We may assume that
the G-orbit Gy, spans the K-vector space V. After extraction, we may
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assume that, for some A\ in K, the sequence A\gp(gx) has a non-zero
limit 7 in End(V).

By assumption there exists a point y on the G-orbit Gyg such that
the orbit closure I'y is a compact subset of Gyy. As Gy spans V and I’
is Zariski dense in G, we can assume y ¢ P(ker 7). According to Lemma
4.3, the limit hy = khrgo gry exists and is invariant by a conjugate of

ArNg. Since this point 7y is still on the G-orbit Gy, this proves that
the group ArNg is contained in a conjugate of H.

Implication (i) = (i) follows from the following more precise Propo-
sition 4.5. U

Remark 4.4. The reader who is only interested in real Lie groups may
avoid the next three Sections 4.3, 4.4 and 4.6 and go directly to Section
4.5. Indeed, when K = R, one has © = Il and Ar = A, so that the
whole space Yr = G/AN is compact and implication (i7) = (i) is
trivial.

4.3. Minimal subsets in Y. We will now describe the set of compact
[-minimal subsets of the homogeneous space Yr = G/Hp. The main
point will be to prove that this set is non empty.

We recall that y. is the base point of Y, that Yr is endowed with a
left-action of G and a commuting free right-action of Zr, and that the
set of Ne-fixed points Y2'® is equal to the fiber 7 (z¢) = Zoy, = ¥, Zr
of the principal Zp-bundle Y = Peg.

Proposition 4.5. Let K be a local field of characteristic 0, G be the
group of K-points of a connected reductive K-group, I' be a Zariski-
dense subsemigroup of G and © = ©r. Let Hr = ArNe, Yr := G/Hr
and y be a point of Yr whose image w(y) in Peg is in the limit set Ar.
a) The orbit closure T'y is compact and T'-minimal.

b) The set M, = {z € Zr | yz € Ty} is a compact subgroup of Zp.

c) For any y' in Ty, one has M, = M,

d) For every z in Zy, one has M,, = z~'M,z. Wheny = y,., the group
My = M,_ is called the limit group of T'.

e) The map F +— {z € Zv | yrz € F'} is a bijection between the sets

{compact T'-minimal subset in Yr} «— Mp\Zr

In case K = R, the limit group was introduced by Benoist [3] and
Proposition 4.5 was proved by Guivarc’h and Raugi [16].

We will need a few lemmas. First, to exhibit compact orbits on non
compact homogeneous spaces, we will use Lemma 4.6 below, which, in
a given linear representation, produces subspaces where I' almost acts
by similarities:
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Lemma 4.6. Let K be a local field of characteristic 0, V =K%, T be a
subsemigroup of GL(V') and r be its proximal dimension. There ezists
C > 1 such that, for every v in T, m in KU with rank v and v,v' # 0
m W =imm, one has

(4.8) [lvo'll < ol Ll

[0l l[oll *

Proof. First, note that, for any € > 0, there exists a > 0 such that, for
any z € P(V) and 7 in KT with rank r, if d(z,P (ker 7)) > ¢, one has
|lmw| > a||«] ||w|. Indeed, if this were not the case, one could find
a sequence of elements of KI' with rank 7 but with a non zero cluster
point of rank < r.

Using the compactness of the Grassmann varieties, we pick ¢ > 0
such that, for any U in G,_,.(V) and U’ in G,,_,,1(V'), there exists x
in P(U’) with d(x,P(U)) > ¢, and we let « be as above. For v in T,
W =im7 in A} and v # 0 in W, we can find w in V such that 7w = v
and d(Kw,P (kerm)) > . We get

a7 fwll < o]l < [} [[wl]
allyr| flwll < llyoll < flyll {lwl)

hence

Glml < Il 1l
Iel = ol = al

(4.8) follows immediately. O

Now, the following Lemma constructs a representation that is adap-
ted to the setting of Proposition 4.5.

Lemma 4.7. Let K be a local field of characteristic 0, G be the group
of K-points of a connected reductive K-group, I' be a Zariski-dense
subsemigroup of G and H be an algebraic subgroup containing the group
HF = AI‘N@.

a) Then there exists an algebraic representation V' of G and a point x
in P(V) whose stabilizer in G is equal to H and whose orbit spans V.
b) For such a representation V', the group Ar acts by a character on
the space VNe.

c¢) There exists C > 1 such that, for every v in I', and v, v' non-zero
in Ve one has

(4.9) 'l < o el

flv’l flv]]
Proof of Lemma 4.7. a) This is a special case of Chevalley Theorem [6,
5.1].
b) We write z = Kv and V' = €D, Vi, where each V; is an irreducible
subrepresentation with highest weight x;. We have Ve = @, V;-Ne
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and, for any 7, V;N@ is the sum of the weight spaces V; ,» of V; associated
to characters x’ of A such that y; — x’ is a sum of elements of ©¢. In
particular, since Ar C Ag, Ar acts by a character on VZ-NQ. Now, write
v = .v. Since Gv spans V, for any i, we have v; # 0. As Ar fixes
Kuv, Ar acts by a character on this line, hence all the characters x; have
the same restriction to Ar, what should be proved.

¢) Let us prove that the proximal dimension of p(I") is the dimension
of VNe and that, due to (4.2), V¢ is the image of an element of Kp(T'):
this and Lemma 4.6 will imply the result.

Indeed, let g; be a sequence in I" and assume, for some )\, in K, the
sequence A\,p(gi) converges towards a non zero endomorphism 7 of V.
For any k, let g, = hipzilr be a Cartan decomposition of g, with hy,
(, in K and z;, in ZT. After extracting a subsequence, we may assume
Aip(z) converges towards a non zero endomorphism w of V and 7 and
w have the same rank. Since w is not zero, we must have

Sl;pllog lp(2x)[] —log [ Ax]] < o0.

Now, since A is cocompact in Z and acts by characters on the weight
spaces of V', we have

sup |log [[p(z)[| — max x7 ()| < oo.

zeZt t
As, for any k, 2¢ = k(gr) and all the characters x; have the same
restriction to Ar, we get

Sup X7 (2) — log [ Akl < o0.

Finally, for any 7, we let X; be the set of characters of A such that
xi — X' is a sum of elements of ©°. By definition of ©, and still since
¢ = K(gr), we get

sup sup |(x")“(z¢) — log | \e|| < oc.
i,k X/EXi

Hence, we have @, cx, Viy = VNe C imw and w has rank >
dim VNe. Conversely, since the limit cone / of (') in a is convex (see
2, § 4]), we can chose gy in such a way that, for any « in ©, one has
a”(k(gr)) — oo. Since by (4.2) xyy belongs to the inverse image of Ar
in P, we can assume g Ve — Ve Then, we get im7 = imw = Ve
and we are done. U

Proof of Proposition 4.5. We will first prove that the orbit closure I'yp
in Yr is compact. We pick a representation V' of G as in Lemma 4.7
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with H = Hp and we let d = dimV"e. We set

R ={(21,...,2411) € P(V)*! invariant by a conjugate of Ng
and d by d linearly independant}.

We claim that the G-orbit of any element x = (x1,...,2411) € R is
closed in R. Indeed, we will check that the stabilizer Gx of such an
element x is conjugate to Hp. We can assume X to be Ng-invariant.
But then, Gy acts trivially on P (V™°). Since by assumption P (V)
contains a point whose stabilizer in G is exactly Hr, and since Hr acts
trivially on P (VN 9), we get Gx = Hp. This proves our claim.

By Lemma 4.7.c, if (x1,...,2441) is in R and xy, ..., x4y belong to
Ve the I'-orbit of (z1,...,24:1) in R has compact closure. Hence
the orbit closure I'yp in Yr = G/ Hry is compact.

The remaining statements follow from the following Lemma 4.8, ap-
plied to the principal Zp-bundle 7= (Ap) = Ar. O

Lemma 4.8. Let I' and Z be locally compact topological groups. Let
Y be a locally compact topological space, equipped with a continuous
left-action of I' and a continuous right-action of Z that commute to
each other, such that the action of Z is proper and cocompact and the
action of T' on X =Y /Z is minimal. Assume that there exists a point
Yo in Y such that the orbit closure Ty is compact. Then, for all y in

¢) For any y' in Ty, one has My = M,.
For every z in Z, one has M, = z~'M,z.
e) The map F +— {z € Z|yoz € F'} is a bijection between the sets

Y,

a) The orbit closure T'y is also compact and is I'-minimal.

b) The set M, = {z € Z | yz € I'y} is a compact subgroup of Z.
)

d)

{compact I'-minimal subset in Y} «—— M, \Z.

Proof of Lemma 4.8. a) Since Fy = TI'yy contains a I'-minimal closed
subset, we may assume it is [-minimal. Since X is ['-minimal, one has
m(Fy) = X. Hence for every y in Y, there exists z in Z such that y
belongs to Fyz. Since the actions of I' and Z commute the set Fyz is
I-invariant and I-minimal and the orbit closure I'y is equal to Fyz.

b) Since Ty is [-minimal, the set M, can also be defined as

(4.10) M,={z€ Z|Tyz=Ty}.

Hence M, is a compact subgroup of Z.
c), d) and e) follow also from (4.10). O
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4.4. Limit group of a Zariski dense semigroup. In this section we
give another definition of the limit group Mr of a Zariski dense subgroup
that will be useful for the proof of Theorem 1.10. This definition is
similar to the one which has been introduced for real Lie groups in the
appendix of [3, Th. 8.2].

Let K be a local field of characteristic 0, G' be the group of K-points of
a connected reductive K-group and I' be a Zariski dense subsemigroup
of G. We keep the notations

0 = @F72@7N97P@7x@7ZFaYF7yF7 s

from Section 4.1. Let Cr be the center of Zr. By construction this
group Cr is compact modulo Ag/Ar.

Let Ng be the A-invariant unipotent subgroup of G opposite to Pg.
According to the Bruhat decomposition [6, 21.15], the set

(4.11) Uo = Ng ZeNe

is a Zariski open subset of G and every element g of Ug can be written
in a unique way as a product g = n,z,n, with n, z, and n, in Ng,
Zo and Ng respectively. We introduce the Bruhat projection m as the
map

(4.12) m:Ug — Zr; g — m(g) := z,Ar = image of z, in Zr.

By definition of © = O, we can find a semisimple element vy of I
whose action on Pg is proximal (see [2, 3.6]). Hence, for a suitable
choice of a torus A and Weyl chamber a™ we may assume a stronger
condition than (4.2), namely that

(4.13)  there exists 79 € Zg NI with zg as attractive fixed point.

Here are the alternative definition and the main properties of the
limit group Mrp.

Proposition 4.9. Let K be a local field of characteristic 0, G be the
group of K-points of a connected reductive K-group, I' be a Zariski-
dense subsemigroup of G. We choose A and a™ satisfying (4.13).

a) The limit group Mr is equal to the closure My = m(I' N Ug).

b) This group My is a Zariski dense and compact subgroup of Zy.

c) Moreover, if K =R or Q,, the group CrMr is open in Zy.

Remark 4.10. By reasoning as in the proof of [20, 1.3], one could also
prove that if K =R or Q, the group Mr is open in Zr.

We need the following Lemma
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Lemma 4.11. Let K=R or Q,, G be the group of K-points of a con-
nected semisimple K-group and H be a compact Zariski-dense subgroup
of G. Then H is open in G.

An example of such a group is H = SL(d, Z,) in G = SL(d, Q,).

Proof of Lemma 4.11. Since K = R or Q,, the Lie algebra h of H is a
K-subspace of the Lie algebra g of G. Since H is Zariski dense in G, b
is AdG-invariant and hence b is an ideal of g. Let H' be the Kernel of
the adjoint action in g/f. This group H' is an algebraic subgroup of G
with Lie algebra h. Since H is compact, and since H N H' is open in H,
the group H N H' has finite index in H. Since H is Zariski dense in G,
H N H' and also H' are Zariski dense in G. Hence one has h =g. [

Proof of Proposition 4.9. a) We set M]. = m(I' " Ug). We want to
prove that My = M].. We only have to check

(4.14) Ty, N Y = 0}

We first prove the inclusion C in (4.14). Let g be a sequence in
I such that the limit y,, = klim grY, exists and belongs to the fiber

y.Zr. We want to prove that y,, belongs to the set y.Mp. We first
notice that, for k large, g belongs to Ug and we write as in (4.11)
Gk = Ny 2g,Ng,. Since Yo, belongs to the fiber y.Zr, we must have

klim N, =€ and the sequence m(gy) must converge to some my, € Mr.
—00

But then, one has the equality
Yoo = I}Lrizgkyr = kh_)rgoyrm(gk) = YrMoo

and Yy, belongs to y. M.

Finally, we prove the inverse inclusion D in (4.14). By construction
the image m(~g) of 7 in Zr is an elliptic element. In particular, there
exists a sequence k; — oo such that

(4.15) lim m(y)" = e.

Because of (4.13), the Bruhat decomposition (4.11) is related to the
element 7y by the formulas

(4.16) No :={g € G| lim 597" = e},
(4.17) Zo = {g € G| limyg'gng™ = limyg"gy" = g},

(4.18) No :={g € G| lim 7% g5 = e}
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In particular, for g in I' N Ug, one has y.m(g) = 2.y, = ‘limvgigyr,

hence yr M} C Tyr.

b) By Proposition 4.5, Mr is a compact subgroup of Zr. Since I is
Zariski dense in G and m is a rational map, it follows from a), that My
is Zariski dense in Zr.

¢) Since the quotient group Zr/Cr is a finite index subgroup in the
group of K-points of a semisimple K-group and since the image of M

in this quotient is compact and Zariski dense, our claim follows from
Lemma 4.11. U

This ends the proof of Proposition 4.2.

4.5. Minimal subsets and compact orbits for real groups. In
this section one has K = R and we prove Theorem 1.7.

Proof of Theorem 1.7. Since the G-orbits in P(V') are locally closed,
any [-minimal closed subset of P(V') is contained in a G-orbit and
Theorem 1.7 follows from Proposition 4.12 below. U

Proposition 4.12 strengthens Proposition 4.2 when K = R.

Proposition 4.12. Let G be the group of real points of a connected
reductive R-group, I be a Zariski-dense subsemigroup of G, H be an
algebraic subgroup of G and X = G/H.

a) X contains a compact I'-minimal subset if and only if X is compact.
b) In this case, there ezists a unique I'-minimal subset in X.

Proof. a) If X is compact, it contains a I'-minimal subset. Conversely,
if X contains a compact ['-minimal subset, by Proposition 4.2, we can
assume ArNg,. C H. Since K = R, one has Op = II, Ar = A and
Ng = N. As P = ZN is cocompact in G and A is cocompact in 7,
AN is cocompact in G and X is compact.

b) If the homogeneous space X = G/H is compact, by Proposition
4.2 applied to I' = G, the algebraic group H contains a conjugate of
AN. The last statement then follows from Lemma 4.13 below. 0

Lemma 4.13. Let G be the group of real points of a connected reductive
R-group, H = AN be a maximal R-split solvable algebraic subgroup of
G and T' be a Zariski-dense subsemigroup of G. Then there exists a
unique I'-minimal subset F' in G/AN.

This Lemma is a special case of a result of Guivarc’h and Raugi in
[16, Th. 2] relying on the appendix of [3].

Remark 4.14. Since A is an R-split torus, the number of connected
components of A is 244 There may exist more than one I'-minimal
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subset in G/A.N where A, is the connected component of A. For
instance, when G = SL(3,R) and I" preserves a properly convex subset
Q C P(R?), there are exactly four I'-minimal subsets in G/A.N. See
[16] for more details.

Proof of Lemma 4.13. By Proposition 4.5, this amounts to proving that
Mr = Zr = Z/A. Now, by definition, Mr is a compact subgroup of Zr,
so that, by Godement Theorem, it is Zariski closed. The result follows
since, by Proposition 4.9, it is also Zariski dense. 0

To conclude this section, we will establish bijection (1.6). This will
follow from Proposition 4.2 applied to I' = G and the following

Lemma 4.15. Let G be the group of real points of a connected reductive
R-group, P = MAN a minimal parabolic subgroup, H an algebraic
subgroup containing AN and X = G/H. Then, the set XN of fized
points of AN in X is an M-orbit.

This will be a consequence of the following classical

Lemma 4.16. Let K be a field, G be the group of K-points of a con-
nected reductive K-group and P be the group of K-points of a minimal
parabolic K-subgroup. Then, for any g in G, g belongs to the subgroup

of G spanned by P and gPg~*.

Proof. We let A be the group of K-points of a maximal K-split torus
contained in P, X be the set of restricted roots of A in the Lie algebra
of G, X7 be the set of positive roots associated to the choice of P, II
be the basis of X7 and W = Ng(A)/Zg(A) be the Weyl group of A.
For w in W, let us prove by induction on ¢, = (X" Nw(—X*)) that
w may be written as a product of reflections s, associated to elements
aof IINw(—=XT).

Indeed, if ¢, = 0, there is nothing to prove. If ¢, > 0, we have
necessarily II N w(—=X%) # (. We pick a € II N w(—X*). For any
B € YT N Ra, since s,(8) = 0 — Q%a may be written as linear
combination of elements of II in which either all coefficients are >0
or all coefficients are < 0, we have s,(3) € £*. Thus s, permutes the

elements of ¥ \ Ra and, if v’ = s,w, we have
STNw' (=X =2 nw(—2") N\ Ra.
The result follows by induction.
Now, let g be in G and let us prove g belongs to the subgroup @
spanned by P and gPg~'. By Bruhat decomposition, we can assume

g normalizes A. Set w = gZg(A) € W. By construction, for any « in
Yt Nnw(=X"), Ng(A)/Zz(A) contains the reflection s, associated to
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a. Since we have proved that w may be written as the product of such
reflections, we get w € Ng(A)/Zs(A), hence g € Q. O

Proof of Lemma 4.15. Let x and 2’ = gx be two points of X4V, Still
by Bruhat decomposition, we can assume ¢ normalizes A and hence
M. We get P = MAN and g7'Pg = MA(g7'Ng). As 2’ = gz is
N-invariant,  is ¢~ Ng-invariant and Mz = Pz = ¢ 'Pgx. Since, by
Lemma 4.16, g belongs to the subgroup spanned by P and g~'Pg, we
get gMx = Mz, hence 2’ € Mz. O

4.6. Minimal subsets on the flag variety. In this section K = R
or Q, for a prime number p. We prove that the flag variety P = G/P
supports only finitely many ['-minimal subsets. This result is easier to
prove when K = R since in this case there exists only one I'-minimal
subset on the flag variety.

Proposition 4.17 (Finiteness). Let K =R or Q,, G be the group of
K-points of a reductive K-group, I' be a Zariski dense subsemigroup in
G and P be a minimal parabolic subgroup of G. Then there exists only
finitely many I'-minimal subsets in the flag variety P = G/P.

Remarks 4.18. 1. When the field K is R, or more generally when the
set Or is the whole set II of simple restricted roots, the action on the
full flag variety is proximal and there exists only one I'-minimal subset
n P.

2. When the field K is C, there exists also only one I'-minimal
subset in P. Indeed the Zariski closure H of I' in G for the real Zariski
topology is a reductive group which contains a real form of G. Such
a group H has only one compact orbit in the flag variety P and this
orbit is a partial flag variety H/Q of H. Hence our claim follows from
the first remark combined with Proposition 4.12.

3. When the field K is Q,, there may exist more than one I'-minimal
subset tn P. This is the case when I' is a small open compact subgroup
of G.

4. When the field K is an extension of Q,, there may exist uncount-
ably many I'-minimal subsets in P. This is the case, when G = SL(2, K)
and I' = SL(2,Z,) as soon as K is an extension of Q,, of degree d > 4,
because, in this example, dimg, P = d > dimg, I' = 3.

Proof of Proposition 4.17. We set © = O and we use freely the nota-
tions from the previous sections. We consider the fibrations

Yy = G/ArNe = P = G/P 5 Pg = G/ Po.

Let  be in P = G/P be such I'z is minimal. Then by uniqueness
of the I'-minimal subset in G/Pg, we get w(l'z) = Ar and we can
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assume w(r) = ze. Note that the left action of Zg on the fibers
w!(x) and (mw)~!(z) factors as an action of Zr. Pick y in Yr such
that 7(y) = z. By Proposition 4.5.e, we have I'y N Zry = Mpy, hence
Tx N Zpx contains Mpz. Now, by Proposition 4.9.¢, the group M has
open orbits in w™!(zg) which is a compact set. The result follows. [

5. FINITE STATIONARY MEASURES ON HOMOGENEOUS SPACES

In this chapter we describe the stationary probability measures on
projective spaces and prove Theorems 1.1.2¢, 1.5 and 1.10. More pre-
cisely we describe exactly which algebraic homogeneous spaces support
a stationary probability measure. Those are the ones that support a
compact minimal subset and that were described in Chapter 4.

We keep the notations of Chapter 4. Let p be a Zariski-dense proba-
bility measure on G i.e. a probability measure such that the semigroup
I' =T, is Zariski-dense in G. We will shorten the notations, writing

0, = Or,.

5.1. Stationary measures on homogeneous spaces. Studying u-
ergodic probability measures on projective spaces is equivalent to study-
ing p-ergodic probability measures on homogeneous algebraic spaces.
Indeed, by Chevalley Theorem [6, 5.1], every algebraic homogeneous
space G/H can be realized as an orbit in the projective space P(V)
of an algebraic representation V' of G. Conversely, since the G-orbits
in the projective space P(V') of an algebraic representation of G are
locally closed, any p-ergodic probability measure on P(V') is supported
by a G-orbit i.e. by an algebraic homogeneous space G/H.

Proof of Theorem 1.5. According to the previous discussion, Theorem
1.5 follows from Proposition 5.1 below. U

Proposition 5.1. Let K be a local field of characteristic 0, G be the
group of K-points of a connected reductive K-group, p be a Zariski-
dense probability measure on G, H be an algebraic subgroup of G and
X =G/H.

a) The following three assertions are equivalent :

(1) There exists a p-stationary probability measure on X,

(it) There exists a compact I',-invariant subset in X,

(ii1) H contains a conjugate of the group Hr, = Ar,Neg, .

b) Every p-ergodic probability measure on G/H has compact support.
¢) The map v — supp(v) is a bijection between the sets

-ergodic probability on X} «— {I',-minimal compact subset of X} .
2 I3
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Remark 5.2. When K = R, one can improve the statement of Proposi-
tion 5.1: see Proposition 5.5.

The proof of Proposition 5.1 will occupy the next three sections.

5.2. Ng, is in the stabilizer. The aim of this section is to prove part
of the implication (¢) = (¢i¢) in Proposition 5.1.a. More precisely, we
will check that a conjugate of Ng, is included in H or equivalently we
will prove the following

Lemma 5.3. Let K be a local field of characteristic 0, G be the group
of K-points of a connected reductive K-group, p be a Zariski-dense
probability measure on G, V = K% be an algebraic representation of
G and v be a p-stationary probability measure on P(V'). Let Y be the
set of points of P(V') wich are invariant by a conjugate of Ne,. Then
we have v(Y) = 1.

Proof. We can assume v to be p-ergodic and, by induction on the
dimension of V', for any proper subspace W of V', one has v(P (W)) < 1.
Let us prove this implies, for any such W, one has v(IP (W)) = 0. This
is a variation on a classical argument due to Furstenberg.

Indeed, let r be the smallest integer > 0 such that there exists an
r-dimensional subspace W of V' with v(P (W)) > 0. For any W # W’
in G,(V), one has v(P (W) NP ((W')) = 0, hence, if W; is a finite or

countable family of distinct elements of G, (V'),one has

v(U; P(W5)) = 22 v(P(W3)).
Thus, if, for any subset E of G,(V), we set v/(E) = >y V(P (W),

the function ¢/ is a finite measure defined on all the subsets of G, (V).
Moreover, the measure v/ is atomic and p-stationary. Hence, it may
be written as a countable sum of invariant measures carried by finite
orbits of I', in G, (V). (see for example [7, Prop 2.3] or [5]). Since v is
ergodic, v/ is ergodic, hence it is supported on a unique finite I',-orbit
W C G,(V). Now, as I, is Zariski dense in G, W is also G-invariant,
and, as G is Zariski connected, W is a singleton {I¥'}. In other terms,
there exists a G-invariant subspace W € G, (V') with v(P (W)) > 0. By
ergodicity of v, we get v(P(W)) = 1, hence by assumption, W =V
that is r = d and we are done.

Let B = GV and 8 = p®Y". According to a result of Furstenberg
and Guivarc’h-Raugi , for S-almost any b in B, for any « in ©,, one
has a(k(b; ...b,)) —— oo (see [7, Prop. 3.2] or [5]). Thus, by Lemma

4.3.b, for B-almost all b in B, the image P(im ) of any non-zero limit
point 7 in End (V') of a sequence Agby ...b,, with Ay in K is contained
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in Y. Now, according to another result of Furstenberg and Guivarc’h-
Raugi, for (-almost any b in B, the measure (by---b,).v converges
towards a probability measure v, on P (V) and v = [, 15, d3(b) (see [7,
Lem. 2.1]). If 7 is as above, since v(ker7) = 0, we get vp(im7) = 1,
hence v,(Y) = 1. Thus v(Y) = 1 and we are done. O

5.3. Ar, is in the stabilizer. The aim of this section is to prove the
second half of the implication (i) = (i7i) in Proposition 5.1.a, namely,
that a conjugate of Ar, is contained in H.

Proof of Proposition 5.1.a. The equivalence (i) < (iit) follows from
Proposition 4.2. The implication (i) = (i) is clear since any compact
I' -invariant set supports a p-stationary probability measure.

It only remains to prove the implication (i) = (iii). By Lemma 5.3,
we can assume that H contains Ng,. Since every algebraic subgroup H
of GG contains a cocompact algebraic subgroup which is K-split solvable,
we can assume that H is K-split solvable. Since AN is a maximal K-
split solvable subgroup of GG, after conjugation, we may assume that
H = A'N’ with N’ a unipotent subgroup such that No, C N’ C N
and A’ a subtorus of A normalizing N'. Enlarging H, we may assume
that N C H.

Now, according to Lemma 5.4 below, the torus A’ contains Ar, and
we are done. O

In this proof, we used the following

Lemma 5.4. Let K be a local field of characteristic 0, G be the group
of K-points of a connected reductive K-group, p be a Zariski-dense
probability measure on G. Let A be a maximal K-split torus of G, N
be a mazximal unipotent subgroup normalized by A, A’ be a subtorus of
A and H=A'N. If G/H supports a p-ergodic p-stationary probability
measure v then v has compact support and the torus A" contains Ar, .

Proof of Lemma 5.4. We let @ = w(A") and Z' = w™!(d’), so that A’ is
a cocompact subgroup of Z’. We consider the action of G on P x a/a’
such that, for any ¢ in G,  in P and ¢ in a/d’, one has

g(z,t) = (gz,t +0(g,2)),
where 0 : G X P — a is the Iwasawa cocycle and & denotes its compo-
sition with the natural map a — a/a’.

We claim the stabilizer of (zy,0) for this action is Z'N and the
orbit map G/Z'N — P x a/a’ is proper. Indeed, if, for some g in
G, one has g(z1,0) = (z1,0), then g = zn belongs to P = ZN and
w(z) = o(g,zn) € /. Now, if g, is a sequence in G such that g,Z'N
leaves every compact subset of G/Z'N, since GG/P is compact, we can
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assume ¢, belongs to ZN. Since N is normal in Z, we can assume
Jn = Z, belongs to Z and z, leaves every compact subset of Z. Now,
since w is a proper morphism Z — a, the image of w(z,) in a/a’ leaves
every compact subset and we are done.

We let v/ be the image of v under the maps

G/A'N — G/Z'N — P x a/d,

so that v/ is a p-ergodic p-stationary probability measure on P x a/da’
and we will prove v/ has compact support. Since A’ is cocompact in Z’
and the orbit map G/Z'N — P x a/da’ is proper, this will imply v has
compact support too.

The dynamical system

Bx (Pxa/d)— Bx (P xa/d)
(b, (z,t)) — (Th,by(z,t)) = (Tb, (byx,t +7(b1,7)))
preserves the probability measure 5 ® v/ and is ergodic. Hence by

Birkhoff ergodic theorem, for all M > 0, for v/-almost all (z,t) in
P x a/d’, for f-almost all b in B, one has

lim %ZZ:I 1{Ht+5(bk~~b1,x)IISM} = IJ(P X B(O, M)),

n—oo

where B(0, M) is the ball of radius M and center 0 in a/a’.

We will need the following fact which is an intrinsic reformulation of
(3.1), and relates the Iwasawa cocycle and the Cartan projection for
a random trajectory (see also [5]): for all € > 0, there exists M. > 0,
such that, for all x in P,

(5.1) pHbe B|supllo(by---bi,x) —k(by---b1)|| < M.}) >1—e.
n>1
Fix € > 0. One can find M; > 0 such that, for v/-almost all (z,t) in
P xald,
(5.2) liminf 237  B({be B| [|t+5(by---by,x)| < M}) >1—e.

Then, using (5.1), one can find My > 0 such that,
(5.3) liminf £ 3 B({b€ B| ||[R(by---b1)|| < Ma}) > 1—2¢

(where & denotes the image of the Cartan projection in a/a’). Using
again (5.1), one can find M3 > 0 such that, for all z in P,

(5.4) Timinf 1S B({b € B [|5(be-- b o) < M}) > 1-3e.

If supp(v’) were not compact, the number ¢ in (5.2) could be chosen

to be arbitrarily large. This would contradict (5.4) when ¢ < § and
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t > M+ M;. Hence v/ has compact support and so does v as remarked
above.

In particular, I',-preserves a compact subset in G/A’N, so that, by
Proposition 4.2, Ar,Ng, fixes a point in G/A'N. Since, by Bruhat
decomposition, the set of fixed points of Ng, in P = G/ZN is Zg,x,
we get Ap, C A’, what should be proved. O

5.4. Equicontinuity on homogeneous spaces. In this section we
finish the proof of the classification of u-stationary probability measures
on a homogeneous space GG/H by using a compactification of G/H for
which the Markov-Feller operator P, is equicontinuous.

Proof of Proposition 5.1.b and c. By point a), one can assume that H
contains Hyp,. By Lemma 4.7, the homogeneous space G'/H occurs as a
G-orbit in a projective space P(V') where (p, V') is a representation of G
which is the direct sum of strongly irreducible representations (p;, V;)
with highest weight y;, such that all the x; have the same restriction
to Ar,. By Cartan decomposition, for any 4, there exists C; > 0 such
that, for any ¢ in G, one has

pi(9)]l < exp(xy(k(9))) < Cillpi(g)ll -

Thus, the assumptions of Corollary 3.4 are satisfied and hence the
Markov-Feller operator P, on P(V') is equicontinuous. Our statement
then follows from Proposition 2.9.a. U

1
C;

We end this chapter by discussing a few properties of stationary
measures which are different over the real numbers and over the non-
archimedean local fields: we conclude the proof of Theorem 1.1.77, The-
orem 1.7 and Theorem 1.10.

5.5. Stationary measures for real groups. We strengthen here
Proposition 5.1 when K = R.

Proposition 5.5. Let G be the group of real points of a connected
reductive R-group, p be a Zariski-dense probability measure on G, H
be an algebraic subgroup of G and X = G/H.

a) There exists a p-stationary probability measure on X if and only if
X 1s compact.

b) In this case, (i) the Markov-Feller operator P, on X is equicontinous,
(1) there exists a unique p-stationary probability measure on X.

Proof of Proposition 5.5. a) Since K = R, one knows that ©, = II,
Ar, = Aand Ng, = N and our claims follow from Proposition 5.1 and
the compactness of G/AN.
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b) When the homogeneous space X = GG/ H is compact, the algebraic
group H contains a conjugate of AN. By Lemma 4.7 and Corollary
3.4, the Markov-Feller operator P, on X is equicontinuous. The last
statement then follows from Proposition 2.9.a and Lemma 4.13. 0

5.6. Eigenvalues of F,. In this section one has K = R and we end
the proof of Theorem 1.1.

Proof of Theorem 1.1.12. Our statement will follow from Proposition
2.3.b and the following Lemma 5.6. U

Lemma 5.6. Let X = P(RY) and u be a probability measure on GL(R?)
such that the action of T, on R® is strongly irreducible and the Zariski
closure of Iy, is semisimple. Then, the only eigenvalue of modulus 1 of
the averaging operator P, in C°(X) is 1.

Proof of Lemma 5.6. Let ¢ be a non-zero continuous function on X
such that P,p = x¢ with x € St := {z € C | |2] = 1}. We want
to prove that x = 1. According to Proposition 2.7.b, there exists a
' ,-minimal subset of X on which ¢ is non-zero. By Theorem 1.7, this
minimal subset is supported by a compact orbit G/H of the Zariski clo-
sure G of I',. By Lemma 4.15, H contains a conjugate of the maximal
R-split solvable subgroup AN of G.

We construct this way a non-zero continuous function @ on Y =
G/AN such that P,y = x¢ with x € S'. We want to prove that
x = 1. This space Y is then an isometric extension of the flag variety
P and this statement is due to Guivarc’h and Raugi in [16, Th. 3].
Here is a short proof of it.

We assume first that y is a n'-root of unity. We note that P« = ¢
and, since G is semisimple, that the probability measure p*" is still
Zariski dense in G. Hence, by Propositions 2.7.c and 4.12, the Pn-
invariant function v is constant and x = 1.

We assume now that x is not a root of unity. We introduce the
probability measure

W=p®d, on G':=G xS

Since G is semisimple and since y is not a root of unity, the probability
measure y' is Zariski dense in the real algebraic reductive group G’. We
also introduce the continuous function ¢’ on Y’ := G'/JAN ~ Y x S!
given by

V'(y,2) =2 "(y) forall yinY, zin S".
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This function v’ is P, -invariant since one has

Py (y, 2 fG gyxz ) dpu(g)
= 2T Bab(y) = 2 (y) = 9y, 2).

Hence, by Propositions 2.7.c and 4.12, the P, -invariant function ¢’ is
constant. Contradiction. O

5.7. Stationary measures on the flag variety. In this section K =
R or Q,. We prove Theorem 1.10 which says that the flag variety
P = G/P supports only finitely many p-stationary measures. This
statement is interesting only when K is non-archimedean since, when
K = R, one knows that there exists only one pu-stationary measure on
the flag variety (see for instance Proposition 5.5).

Proof of Theorem 1.10. By Proposition 5.1, the set of u-ergodic proba-
bility measures on X is in bijection with the set of I',-minimal subsets
of X. According to Proposition 4.17 this set is finite. U
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