
CONFORMAL AUTOSIMILARITY

YVES BENOIST AND DOMINIQUE HULIN

Abstract. We prove that the conformally autosimilar closed sub-
sets of the Euclidean sphere are exactly the limit sets of convex
cocompact Kleinian groups. We prove also other similar results.
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1. Introduction

In this article we want to describe the compact subsets of the Eu-
clidean sphere that are conformally autosimilar. This means roughly
that after zooming in somewhere in this compact subset using a se-
quence of conformal transformations, what you see looks very much
like the compact set you started with. We will see that these confor-
mally autosimilar compact sets are exactly the limit sets of the convex
cocompact Kleinian groups.

In this introduction G will denote the group G := POe(d + 1, 1) of
conformal transformations of the sphere X := Sd with d ≥ 1. Later
on, in Section 7.2, we will allow G to be any Gromov hyperbolic group
and X will be the boundary of G.

We want to study the dynamics of the group G on the space K1 of
non-empty compact subsets K of X. This space K1 endowed with the
Hausdorff distance is a compact metric space. We first notice that,
when K 6= X, the orbit closure GK in K1 contains all the subsets
{x} with only one element. This is why we introduce the space K2

of compact subsets K of X that contain at least two elements. Let
K ∈ K2. The main question we address in this preprint is :

When is the orbit GK closed in K2?

We can now give a precise definition: A compact subset K ⊂ X is
called conformally autosimilar if GK is closed in K2. This definition
matches the rough intuition above since “what you see after a confor-
mal zooming in of K” is nothing but a limit K∞ in K1 of a sequence
of images gnK of K by conformal transformations gn ∈ G. In our def-
inition, we ask this limit K∞ to be either a point or the image gK of
K by a conformal transformation g ∈ G.

The answer to this question is very simple but seems to be new even
for d = 1 (see Theorem 3.1 and Lemma 3.3) :

The orbit GK is closed in K2 if and only if
K is the limit set of a convex cocompact Kleinian group.

We recall that a Kleinian group is a discrete subgroup Γ of G, and
that such a group is said to be convex cocompact if there exists a Γ-
invariant closed convex subset C of the hyperbolic space Hd+1 such
that Γ\C is compact. The convex cocompact Kleinian groups have
been often studied. They form the simplest class of examples of word-
hyperbolic groups (see [10], [15] and more recently [18]).
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When looking at the pictures in Mumford, Series and Wright’s book,
one can guess that some limit sets of Kleinian groups, as the Schottky
dance [20, p.99-100], are conformally autosimilar while others as the
Indra’s necklace [20, p.158-159], are not. Our Theorem 3.1 corroborates
precisely this guess.

Here are a few comments which enlight the diversity of these con-
formally autosimilar sets. These comments rely on the survey [16,
p.512-517] which contains examples of limit sets of convex cocompact
Kleinian groups.

When d = 1, i.e. when G = PSL(2,R) and X = P1(R), a confor-
mally autosimilar compact set K ( P1(R) is always homeomorphic to
a Cantor set.

When d = 2, i.e. when G = PSL(2,C) and X = P1(C), there are
much more homeomorphism types of conformally autosimilar compact
sets K ⊂ P1(C). There are examples where K is homeomorphic to :
- a Cantor set,
- a Jordan curve,
- a combination of Cantor sets and Jordan curves, i.e. a closed subset
whose connected components are points and Jordan curves.
- a Sierpinsky gasket, i.e. a nowhere dense subset obtained by removing
from X a countable union of open disks with disjoint closures,
- a degenerate Sierpinski gasket i.e. a nowhere dense subset obtained
by removing from X a countable union of disjoint open disks such that
the union of their boundaries is connected,...

When d = 3, i.e. when G = POe(4, 1) and X = S3, there are even
more striking examples. The compact K ⊂ S3 may be :
- a wild knot,
- a wild 2-sphere,
- a Menger curve,
- an unknotted curve whose stabilizer in G is not quasi-Fuchsian,...

When d ≥ 4 more examples arise. In particular the limit sets of the
Coxeter subgroups constructed in [11].

Using similar tools, we will also answer the following question :
When does the orbit closure GK contains nothing but GK and X?
We will see (Theorem 4.1 and Lemma 3.3) that this happens if and

only if
there exists a discrete subgroup Γ of G that

preserves K and acts cocompactly on XrK.

We will also answer the following question :
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When does GK contains nothing but GK and pairs of points?
We will see (Theorem 5.1 and Lemma 3.3) that this happens if and

only if
K is the union of the limit set of a convex cocompact

Kleinian group Γ and of finitely many Γ-orbits.

We will then apply Theorem 3.1 to the study of the dynamics of the
group G on this space K2. In order to emphasize the complexity of this
dynamics we will prove the following three facts (Theorem 6.1) :

The union of the closed G-orbits in K2 is dense.
The group G has a dense orbit in K2.

There exists G-minimal subsets in K2 which are not G-orbits.
We recall that a G-minimal subset is a G-invariant non-empty closed

subset which is minimal for the inclusion.

We thank M. Kapovich for nice discussions on this topic. These
results have been announced and videotaped during the Introductory
workshop 740 at MSRI in January 2015.

2. Notations and preliminary results

For the sake of simplicity we will explain our main results
in the context of “simple Lie groups of real rank one”. In
Section 7.2, we will explain how to extend these results
to the context of “Gromov hyperbolic groups”.

2.1. Action on the boundary. Let M be a Riemannian symmetric
space of negative curvature and G = Isome(M) be the connected com-
ponent of the group of isometries of M . In other terms, G is a simple
Lie group of real rank one.

Let X be the sphere at infinity or visual boundary of M . We will
denote by d+ 1 the dimension of M so that X is homeomorphic to the
sphere Sd.

From the geometric point of view X is the set of equivalence classes
of geodesic rays r : [0,∞)→M where two geodesic rays are said to be
equivalent if they stay within bounded distance from one another.

From the Lie group point of view, X is the boundary of G i.e. it
is the G-homogeneous space X = G/P whose isotropy group P is a
parabolic subgroup of G.

For instance when M is the real hyperbolic space Hd+1, with d ≥ 1,
the group G is the conformal group G = POe(d + 1, 1) and X is the
conformal sphere X := Sd. We will define a conformal transformation
of Sd to be an element of G.
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We recall that the visual compactification M of M is a compact
space containing M as an open dense set and such that MrM = X.
This space M is homeomorphic to the closed (d+ 1)-dimensional ball.
When A is a subset of M , we will denote by A its closure in M .

Let K be a closed subset of X. We denote by ΓK the stabilizer of K
in G :

ΓK := {g ∈ G | gK = K}.
This is a closed subgroup of G.

We denote by Conv(K) the convex hull of K in M . It is the smallest
closed convex subset C of M such that CrC = K. It does exist when
K contains at least two points. We will use implicitely the equality
K = X ∩ Conv(K) (see [1]) and the fact that the map K 7→ Conv(K)
is continuous (see [8]).

2.2. Convex cocompact subgroups. The following definitions and
properties are classical for discrete subgroups Γ. One can check that
they are still valuable for closed subgroups.

Definition 2.1. Let Γ be a closed subgroup of G. The limit set ΛΓ is
the closed subset of X given by ΛΓ := ΓmrΓm where m belongs to M .

The domain of discontinuity ΩΓ is the open set ΩΓ := XrΛΓ.

Note that the limit set does not depend on the choice of m in M ,
that the limit set is not empty when the subgroup Γ is not bounded,
and that the group Γ acts properly on the domain of discontinuity ΩΓ.
Note that we kept the classical name domain of discontinuity for ΩΓ

eventhough Γ is not assumed to be discrete.
Note also that, if Γ′ is a cocompact subgroup of Γ, they have same

limit sets ΛΓ′ = ΛΓ.

Definition 2.2. A closed subgroup Γ of G is said to be convex cocom-
pact if there exists a closed nonempty Γ-invariant convex subset C of
M on which Γ acts cocompactly.

When Γ is convex cocompact and unbounded, one can choose C to
be the convex hull of the limit set C = Conv(ΛΓ).

A closed subgroup Γ is said to be non-elementary when it does not
fix a point or a pair of points in M . Equivalently its limit set ΛΓ is
infinite and minimal.

Remark 2.3. It is well-known that a non-elementary closed subgroup
Γ of G is convex cocompact if and only if it acts cocompactly on the
set Θ3(ΛΓ) of distinct triples in ΛΓ. See [9] for a similar statement in
the context of word-hyperbolic groups.



6 YVES BENOIST AND DOMINIQUE HULIN

3. Conformally autosimilar sets

In this chapter, we describe the conformally autosimilar
compact sets.

3.1. Closed orbits in K2. We keep the notations of Chapter 2 and
we denote

K1 = K1(X) := {K non-empty compact subset of X}.

This space K1 is a compact metric space with respect to the Hausdorff
distance. We introduce also the following open subset K2 = K2(X) of
K1,

K2(X) := {K compact subset of X containing at least two points}.

The first theorem of this article is the following

Theorem 3.1. Let G be a simple Lie group of real rank one and X be
its boundary. Let K ⊂ X be a compact subset containing at least two
points. The following are equivalent.
(i) The orbit GK is closed in K2(X).
(ii) There exists a convex cocompact subgroup Γ of G such that K = ΛΓ.
(iii) The stabilizer ΓK is convex cocompact and K is its limit set.

Remark 3.2. In (iii) the subgroup ΓK of G might be non-discrete. How-
ever, in (ii), one can always choose Γ to be discrete since, by Lemma
3.3, the group ΓK always contains a discrete cocompact subgroup.

Lemma 3.3. Let G be a simple Lie group of real rank one and H be
a non-elementary closed subgroup of G. Then the group H contains a
cocompact discrete subgroup Γ.

Sketch of the proof of Lemma 3.3. Let He be the connected component
of H and N be the normalizer in G of He.

We first notice that, since H is non-elementary, the solvable radical
of He has to be compact. Then we distinguish two cases.

When He is non compact. In this case, since the real rank of G is one,
the quotient group N/He is compact. We choose Γ to be a cocompact
lattice in He. Such a group exists by a theorem of Borel in [7], since
He is a reductive Lie group.

When He is compact. In this case, there exists a closed subgroup L
of the connected component Ne such that Ne = LHe and such that the
intersection L ∩He is finite. We choose Γ to be Γ := L ∩H. �

Here is a corollary of Theorem 3.1.
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Corollary 3.4. Let G = PSL(2,C) and c ⊂ P1(C) be a Jordan curve.
Then, the orbit Gc is closed in K2(P1(C)) if and only if c is the limit
set of a quasifuchsian subgroup Γ of G.

We recall that a discrete convex cocompact subgroup Γ of PSL(2,C)
is said to be quasifuchsian if its limit set is a Jordan curve.

Remark 3.5. Corollary 3.4 is a boon companion of the main theorem
of [4] which says that a Jordan curve c ⊂ P1(C) is a quasicircle if and
only if the orbit closure Gc in K2(P1(C)) contains only Jordan curves.

Remark 3.6. The key point in the proof of Theorem 3.1 is the fact
that closed orbits are always homeomorphic to homogeneous spaces
endowed with their quotient topology. Since this key point which is
due to Arens will be used at least four times in this article we quote
it precisely now (see [21, Thm 2.13]): Let G be a second countable
locally compact group acting continuously on a second countable locally
compact space Z. Let z ∈ Z be a point whose G-orbit is closed and
Gz ⊂ G be the stabilizer of z. Then the orbit map G −→ Z given by
g 7→ gz induces an homeomorphism between the quotient space G/Gz

and the orbit Gz.

3.2. Proof of Theorem 3.1. (ii) =⇒ (i) Let K = ΛΓ be the limit
set of a convex cocompact subgroup Γ of G. Let (gn)n≥1 be a sequence
in G such that the limit K∞ = lim

n→∞
gnK exists in K2(X). We want to

find an element h∞ in G such that K∞ = h∞K.
Note that by [8] the sequence of convex hulls also converges

gnConv(K) −−−→
n→∞

Conv(K∞).

Since K∞ contains at least two points, its convex hull Conv(K∞) con-
tains at least one point m∞. Thus, there exists a sequence (mn)n≥1 in
Conv(K) such that

gnmn −−−→
n→∞

m∞.

Since Γ is convex cocompact, there exists a sequence (γn)n≥1 in Γ such
that the sequence γnmn is bounded in M . Then the sequence hn :=
gnγ

−1
n is bounded in G and, after extraction, it converges to an element

h∞ in G. One then has

K∞ = lim
n→∞

hnK = h∞K,

as required.

(i) =⇒ (iii) We want to prove that the stabilizer ΓK acts cocom-
pactly on Conv(K). This will imply simultaneously that ΓK is convex



8 YVES BENOIST AND DOMINIQUE HULIN

cocompact and that K = ΛΓK . Let (mn)n≥1 be a sequence in Conv(K).
We want to find a sequence (γn)n≥1 in ΓK such that, after extraction,
the sequence γnmn converges in M .

Since G acts cocompactly -and even transitively- on M , there exists a
sequence (gn)n≥1 in G such that the sequence gnmn converges to a point
m∞ in M . After extraction, the sequence gnK converges to a compact
subset K∞ ⊂ X and the sequence of convex hulls also converges

gnConv(K) −−−→
n→∞

Conv(K∞).

Since Conv(K∞) contains the point m∞, the compact set K∞ contains
at least two points. Since the orbit GK is closed in K2(X), there exists
an element h∞ in G such that K∞ = h∞K. The closedness of the orbit
GK in K2(X) also implies that the natural bijection

G/ΓK
∼−→ GK

gΓK 7→ gK

is a homeomorphism. Hence, by the very definition of the quotient
topology on the quotient space G/ΓK , there exists a sequence (γn)n≥1

in ΓK such that the sequence hn := gnγ
−1
n converges to h∞. Then the

following sequence converges

γnmn = h−1
n gnmn −−−→

n→∞
h−1
∞m∞,

as required.

(iii) =⇒ (ii) This implication is clear. �

4. Cocompact actions on open sets

In this chapter we modify slightly Theorem 3.1 by allow-
ing the set X to belong to the orbit closure.

4.1. Closed orbits in K′2. We now introduce the following open sub-
set K′2 = K′2(X) of K2,

K′2(X) := {K ∈ K2(X) | K 6= X}.
The following theorem is an analog of Theorem 3.1.

Theorem 4.1. Let G be a simple Lie group of real rank one and X be
its boundary. Let K ( X be a compact subset containing at least two
points. The following are equivalent.
(i) The orbit GK is closed in K′2(X).
(ii) There exists a closed subgroup Γ of ΓK acting cocompactly on XrK.
(iii) The stabilizer ΓK acts cocompactly on XrK.
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In (ii) one can always choose Γ to be discrete (see Lemma 3.3).

Remark 4.2. - The compact K is not always equal to the limit set of ΓK .
Indeed, it is the union of the limit set ΛΓK and of a ΓK-invariant family
of connected components of the domain of discontinuity ΩΓK . For
instance, when G = PSL(2,C), a closed half-sphere K of X = P1(C)
satisfies these equivalent conditions but K is not the limit set of the
group ΓK ' PSL(2,R).

- Even when K is equal to the limit set ΛΓ and when both ΛΓ and
ΩΓ are connected, the group Γ is not always convex cocompact. Indeed
Γ might be equal to one of the so-called singly degenerate subgroup of
PSL(2,C) discovered by Bers in [6] and called degenerate B-groups by
Maskit in [19, Th. G.3].

- More generally for any simple real rank one Lie group G there
exists a non-elementary discrete subgroup Γ of G which is not convex
cocompact but which acts cocompactly on its domain of discontinuity.
Let K := ΛΓ be the limit set of such a group. As a corollary of both
Theorems 3.1 and 4.1, the G-orbit closure is then equal to

GK = GK ∪ {X}.

In order to construct Γ, one chooses first two opposite maximal unipo-
tent subgroups U1 and U2 of G and, for i = 1, 2, a lattice Γi in Ui and
a compact fundamental domain Di for the action of Γi on ΩΓi . One

can make these choices so that D̊1 ∪ D̊2 = X. In this case the group Γ
generated by Γ1 and Γ2 is a free product of Γ1 and Γ2, it is a discrete
subgroup of G, it contains unipotent elements and acts on ΩΓ with
compact fundamental domain D1∩D2 (these facts rely on a ping-pong
argument).

The proof of Theorem 4.1 is very similar to the proof of Theorem 3.1.

4.2. Action on pointed open sets. We introduce now the space
L = L(X)

L(X) := {(K, x) where K ∈ K′2(X) and x ∈ XrK}

and the diagonal action of G on L(X). While the proof of Theorem
3.1 used the action of G on M , the proof of Theorem 4.1 will use the
action of G on L which, according to the following lemma, has similar
properties.

Lemma 4.3. The group G acts properly cocompactly on L(X).

Restricting this action to the subset of L where the compact sets K
are pairs of points, one gets the following special case of Remark 2.3.
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Corollary 4.4. The group G acts properly cocompactly on the set
Θ3(X) of triples of distinct points of X.

We will need the following well-known fact called the convergence
property : whenever (gn)n≥1 is an unbounded sequence of G then, after
extraction, there exist two points x− and x+ in X, called the repulsing
and attracting points, such that the sequence gnx converges to x+,
uniformly for all x in compact subsets of Xr{x−}.
Proof of Lemma 4.3. We first prove that the action of G on L is proper.
Let (gn)n≥1 be a sequence in G and (Kn, xn)n≥1 be a sequence in L such
that

(Kn, xn) −−−→
n→∞

(K∞, x∞) ∈ L

(gnKn, gnxn) −−−→
n→∞

(K ′∞, x
′
∞) ∈ L.

We want to prove that the sequence gn is bounded. If this is not the
case, after extraction, we denote by x− and x+ the repulsing and at-
tracting points of the sequence gn. Since the compact set K ′∞ contains
at least two points, the compact K∞ must contain the repulsing point
x−. Hence one has

x∞ 6= x− and x′∞ = x+.

Since the compact set K∞ contains at least two points, one of them,
say y∞, is not equal to x−. Then any sequence (yn)n≥1 with yn in Kn

that converges to y∞ has an image gnyn that converges to x+. Hence
x+ belongs to K ′∞. Contradiction.

We now prove that the action of G on the space L is cocompact. Let
(Kn, xn)n≥1 be a sequence in L. We want to find a sequence (gn)n≥1

such that, after extraction, the following sequence converges

(gnKn, gnxn) −−−→
n→∞

(K ′∞, x
′
∞) ∈ L.

Let x− and x+ be two distinct points of X. We can find a sequence
(hn)n≥1 in G such that x− ∈ hnKn and x+ = hnxn. Let g be an
element of G such that the sequence of powers (gn)n≥1 has x− and x+

as repulsing and attracting points. Let F be a compact fundamental
domain for the action of the cyclic group 〈g〉 on Xr{x−, x+}, and let
B be the compact neighborhood of x− given by

B := {x−} ∪
⋃
n≤0 g

nF.

Let n ≥ 1. Since hnKn is compact and contains at least two points,
the integer

pn := max{p ∈ Z | gphnKn ⊂ B}
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is well defined. After extraction, one defines a compact set K ′∞ as the
limit K ′∞ := lim

n→∞
gpnhnKn. This compact set K ′∞ contains at least two

points : x− and a point x0 ∈ F . Moreover K ′∞ does not contain the
point x′∞ := x+ = lim

n→∞
gpnhnxn. Hence (K ′∞, x

′
∞) belongs to L. �

4.3. Proof of Theorem 4.1. (ii) =⇒ (i) Let (gn)n≥1 be a sequence
in G such that the limit K∞ = lim

n→∞
gnK exists in K′2(X). We want to

find an element h∞ in G such that K∞ = h∞K.
Since K∞ 6= X, there exists a point x∞ in the open set XrK∞ and

hence a sequence (xn)n≥1 in the open set Ω := XrK such that

gnxn −−−→
n→∞

x∞.

Since Γ acts cocompactly on Ω, there exists a sequence (γn)n≥1 in Γ
such that the sequence γnxn converges to a point y∞ in Ω. Then the
following two sequences converge

(K, γnxn) −−−→
n→∞

(K, y∞) ∈ L

gnγ
−1
n (K, γnxn) −−−→

n→∞
(K∞, x∞) ∈ L.

Since, by Lemma 4.3, the action of G on L is proper, the sequence
hn := gnγ

−1
n is bounded in G and, after extraction, converges to an

element h∞ in G. One has then

K∞ = lim
n→∞

hnK = h∞K,

as required.

(i) =⇒ (iii) Let (xn)n≥1 be a sequence in the open set Ω := XrK.
We want to find a sequence (γn)n≥1 in ΓK such that, after extraction,
the sequence γnxn converges in Ω.

Since, by Lemma 4.3, the group G acts cocompactly on L, there ex-
ists a sequence (gn)n≥1 in G such that the following sequence converges

(gnK, gnxn) −−−→
n→∞

(K∞, x∞) ∈ L.

The compact set K∞ contains at least two points and is not equal to
X. Since the orbit GK is closed in K′2, there exists an element h∞ in G
such that K∞ = h∞K. The closedness of the orbit GK in K′2(X) also

implies that the natural bijection G/ΓK
∼−→ GK is a homeomorphism.

Hence there exists a sequence (γn)n≥1 in ΓK such that the sequence
hn := gnγ

−1
n converges to h∞. Then the following sequence converges

γnxn = h−1
n gnxn −−−→

n→∞
h−1
∞ x∞,

as required.
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(iii) =⇒ (ii) This implication is clear. �

5. Cocompact actions on triples

In this chapter we modify again Theorem 3.1 by allowing
pairs of points to belong to the orbit closure.

5.1. Closed orbits in K3. We now introduce the following open sub-
set K3 = K3(X) of K2,

K3(X) := {K compact subset of X containing at least three points}.
We also introduce, for any K in K3(X) the set,

Θ3(K) := {(x, y, z) triple of distinct points of K}.
The following theorem is also an analog of Theorem 3.1.

Theorem 5.1. Let G be a simple Lie group of real rank one and X be
its boundary. Let K ⊂ X be a compact subset containing at least three
points. The following are equivalent.
(i) The orbit GK is closed in K3(X).
(ii) There exists a closed subgroup Γ of G acting cocompactly on Θ3(K).
(iii) The stabilizer ΓK acts cocompactly on Θ3(K).
(iv) The stabilizer ΓK is a convex cocompact subgroup of G and K is
the union of its limit set ΛΓK and of a ΓK-invariant discrete subset of
the domain of discontinuity ΩΓK .

In (ii) one can always choose Γ to be discrete (see Lemma 3.3).

Remark 5.2. A finite set K always satisfies these equivalent conditions.
In this case, the group ΓK is finite and its limit set is empty.

The group ΓK might be infinite and cyclic. In this case, the limit
set ΛΓK contains exactly two points and K is the union of ΛΓK and of
finitely many ΓK-orbits.

The proof of Theorem 5.1 is also similar to the proof of Theorem
3.1. We will need the following well-known lemma on the barycenter
map in a Riemannian symmetric space M of negative curvature. We
first define, for m1, m2, m3 in M the barycenter β(m1,m2,m3) ∈ M
as the unique point where the sum of the distance functions m 7→∑

i≤3 d(m,mi) achieves its minimum.

Lemma 5.3. a) The barycenter map β : M3 → M is continuous
and has a unique continuous extension to the visual compactification

β : M
3 →M .

b) Moreover, for x, y, z in M , one has the equivalence

β(x, y, z) ∈ X ⇐⇒ two points among x, y, z are equal and are in X.
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Proof of Lemma 5.3. Fix a point m0 in M and define the Busemann
function b : M ×M → R by

bx(m) = lim
q→x

d(q,m)− d(q,m0), for all x in M and m in M .

The function b is continuous on M ×M and is a convex function of m.
For all x, y, z in M , we consider the convex function on M

m 7→ Φx,y,z(m) := bx(m) + by(m) + bz(m).

The function Φ is also continuous on M
3 ×M .

Here is the definition of the map β :
First case When the three points x, y, z are distinct or when at most

one of them is in X, the function Φx,y,z is a convex and proper function

on M which has a unique minimum point ξ. We define β(x, y, z) to be
this minimum point ξ ∈M .

Second case When at least two points among x, y, z are equal to
a point ξ in X, we define β(x, y, z) to be this point ξ ∈ X.

a) We now check the continuity of the map β at a point (x, y, z) ∈
M

3
. Let (xn, yn, zn) be a sequence in M

3
converging to (x, y, z). We

want to prove that the sequence ξn := β(xn, yn, zn) converges to the
point ξ := β(x, y, z). The case where ξ is in M is rather easy. The
case where all ξn are in X is also rather easy. Let us focus on the
case where ξ is in X and all ξn are in M . In this case, one has, for
instance, ξ = x = y ∈ X. We know that the sequence of proper convex
functions Φn := Φxn,yn,zn converges to the convex function Φ∞ := Φx,y,z.
Let Vξ be a neighborhood of ξ in M . Notice that, the functions Φn are
uniformly bounded below in MrVξ. Notice also that the limit function
Φ∞ is not bounded below in M ∩ Vξ. Hence for n large, the minima
ξn must belong to Vξ. Therefore the sequence ξn converges to ξ as
required.
b) This equivalence follows directly from the definition of β. �

5.2. Proof of Theorem 5.1. (ii) =⇒ (i) Let (gn)n≥1 be a sequence
in G such that the limit K∞ = lim

n→∞
gnK exists in K3(X). We want to

find an element h∞ in G such that K∞ = h∞K.
Since K∞ contains at least three points, there exists a sequence

(xn, yn, zn)n≥1 in Θ3(K) such that the sequence of images converges

(gnxn, gnyn, gnzn) −−−→
n→∞

(x∞, y∞, z∞) ∈ Θ3(K∞).
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Since Γ acts cocompactly on Θ3(K), there exists a sequence (γn)n≥1 in
Γ such that, after extraction, the sequence (γnxn, γnyn, γnzn) converges
to a triple (x′∞, y

′
∞, z

′
∞) ∈ Θ3(K). Since, by Corollary 4.4, the action

of G on Θ3(X) is proper, the sequence hn := gnγ
−1
n is bounded in G

and, after extraction, converges to an element h∞ in G. One has then

K∞ = lim
n→∞

hnK = h∞K,

as required.

(i) =⇒ (iii) Let (xn, yn, zn)n≥1 be a sequence in Θ3(K). We want
to find a sequence (γn)n≥1 in ΓK such that, after extraction, the image
sequence (γnxn, γnyn, γnzn) converges in Θ3(K).

Since, by corollary 4.4, the group G acts cocompactly on Θ3(X),
there exists a sequence (gn)n≥1 in G such that, after extraction, the
sequence (gnxn, gnyn, gnzn) converges to a triple (x∞, y∞, z∞) ∈ Θ3(X).
After reextraction, the sequence gnK converges to a compact subset
K∞ ⊂ X and this compact set K∞ contains at least three points. Since
the orbit GK is closed in K3(X), there exists an element h∞ in G such
that K∞ = h∞K. The closedness of the orbit GK in K3(X) implies

also that the natural bijection G/ΓK
∼−→ GK is a homeomorphism.

Hence there exists a sequence (γn)n≥1 in ΓK such that the sequence
hn := gnγ

−1
n converges to h∞. Then the following sequence converges

γn(xn, yn, zn) = h−1
n gn(xn, yn, zn) −−−→

n→∞
h−1
∞ (x∞, y∞, z∞),

as required.

(iii) =⇒ (ii) This implication is clear.

(iv) =⇒ (iii) Let (xn, yn, zn)n≥1 be a sequence in Θ3(K). We want
to find a sequence (γn)n≥1 in Γ := ΓK such that, after extraction, the
image sequence (γnxn, γnyn, γnzn) converges in Θ3(K).

When K is a finite set and hence ΓK is a finite group and its limit
set ΛΓK is empty, this assertion is clear.

We may assume that K and hence Γ is infinite. Let qn ∈ M be the
barycenter qn := β(xn, yn, zn). Since these three points are distinct, by
Lemma 5.3, the barycenter qn belongs to M . Let pn be the projection
of qn on the convex hull Conv(ΛΓ). Since Γ is convex cocompact, there
exists a sequence (γn)n≥1 in Γ such that, after extraction, the sequence
γnpn converges to a point p∞ ∈ M . After reextraction, the sequences
γnxn, γnyn, and γnzn converge in K respectively to points x∞, y∞, and
z∞. We want to prove that these three points are distinct.
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Assume by contradiction that this is not the case and that, for in-
stance, one has y∞ = z∞. We first notice that the sequence γnqn
converges to the barycenter y∞ = β(x∞, y∞, z∞) and that p∞ is the
projection of y∞ on Conv(ΛΓ). In particular y∞ does not belong to the
limit set ΛΓ. Since KrΛΓ is discrete in the domain of discontinuity,
one must have for n large enough, yn = y∞ = z∞ = zn. Contradiction.

(iii) =⇒ (iv) Since the compact K is invariant under the group
Γ := ΓK , it contains the limit set ΛΓ. Since Γ acts cocompactly on
Θ3(K), it also acts cocompactly on Θ3(ΛΓ) and, by Remark 2.3, the
group Γ is convex cocompact. It only remains to prove that the set
KrΛΓ is discrete in the domain of discontinuity ΩΓ.

Assume, by contradiction, that this is not the case. Then there exists
a sequence (xn)n≥1 of distinct points of K that converges to a point
x∞ in ΩΓ. Since Γ acts cocompactly on Θ3(K), there exists a sequence
(γn)n≥1 in Γ such that the three sequences γnx3n, γnx3n+1, and γnx3n+2

converge to three distinct points of K. After reextraction, we denote
by x− and x+ the repulsing and attracting points of the sequence γn.
Both points belong to ΛΓ. Since the point x∞ belongs to ΩΓ, it is
not equal to x− and the three sequences γnx3n, γnx3n+1, and γnx3n+2

converge to the same point x+. Contradiction. �

6. Dynamics of G on K2

In this chapter we apply Theorem 3.1 to the study of the
dynamics of the group G on the space K2(X).

6.1. Closed, dense and minimal orbits. The following theorem
tells us that this dynamics has features similar to those of Anosov
flows.

Theorem 6.1. Let G be a simple Lie group of real rank one and X be
its boundary. Then
a) The union of closed G-orbits in K2(X) is dense in K2(X).
b) The space K2(X) contains a dense G-orbit.
c) K2(X) contains non-closed G-orbits whose closures are G-minimal.

The proof of Theorem 6.1 will occupy this whole chapter.

6.2. Closed orbits. We first check that the union of closed G-orbits
in K2(X) is dense in K2(X).

Proof of Theorem 6.1.a. Use Theorem 3.1 and Lemmas 6.2, 6.3. �
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Lemma 6.2. Let G be a simple Lie group of real rank one and X be its
boundary. For every finite subset F ⊂ X and every ε > 0, there exists
a free convex cocompact subgroup Γ of G whose limit set ΛΓ contains
F and is contained in the ε-neighborhood Fε of F .

Proof. We may assume that F has even cardinality n = 2p. We then
choose p hyperbolic elements g1,..., gp in G such that

F =
⋃
i≤p{x−gi , x

+
gi
}

where x−gi and x+
gi

are the repulsing and attracting points of gi. Then,
for n large, the group

Γn := 〈gni | i ≤ p〉
is a Schottky subgroup and its limit set satisfies

F ⊂ ΛΓ ⊂ Fε.

Indeed, by the classical ping-pong argument, this is the case as soon
as, for any g 6= h in the finite set S :=

⋃
i≤p{gi, g

−1
i }, one has both

4ε < d(x+
g , x

+
h ),

and

gn(B(x−g , ε)
c) ⊂ B(x+

g , ε)

where B(x, ε) is the open ball of center x and radius ε. �

Lemma 6.3. Let X be a compact metric space. Then the set F of
finite subsets of X is dense in the set K(X) of compact subsets of X.

Proof. This is well-known. One approximates any compact set K ⊂ X
by the set F of centers of a finite cover of K by balls of radius ε. �

6.3. Dense orbits. We now check that the space K2(X) contains a
dense G-orbit.

Proof of Theorem 6.1.b. Fix two distinct points x− and x+ in X, let g
be an element of G with x− and x+ as repulsing and attracting fixed
points, let F be a compact fundamental domain for the action of the
cyclic group 〈g〉 onXr{x−, x+} chosen so that the sequence of compact
sets

Fn :=
⋃

−n<k<n

gkF

which covers X r {x−, x+} also satisfies Fn ⊂ F̊n+1. Let Kx−,x+ be
the set of compact subsets K ⊂ X containing both x− and x+, and
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let (Kn)n≥1 be a dense sequence in Kx−,x+ . Then the compact set K
defined as a disjoint union

K :=
⋃
n≥1

gn
2

(Kn ∩ Fn) ∪ {x−, x+}

has a dense 〈g〉-orbit in Kx−,x+ .
Indeed, for any Y ∈ Kx−,x+ , one can find a sequence S ⊂ N such that

the subsequence (Kn)n∈S of compact sets converges to Y . But then,

since, for all n ≥ 1, the compact set g−n
2
(K) coincides with Kn on

Fn and contain {x−, x+}, the sequence of compact sets (g−n
2
(K))n∈S

converges also to Y .
This proves that K has a dense G-orbit in K2(X). �

6.4. Minimal subsets for the free group. Finally, we check that
K2(X) contains non-closed orbits GK whose closure are minimal. We
want to construct a compact set K ∈ K2(X) such that the orbit GK
is not closed but the orbit closure GK is G-minimal. This means that,
for every K∞ in the orbit closure GK, the element K belongs to the
orbit closure GK∞.

We begin with a special case. Let G0 be the free group with three
generators S0 = {a, b, c}, i.e. the set of reduced finite words

G0 := {w = s1 · · · sn | n ≥ 0, si ∈ S±1
0 and si+1 6= s−1

i }.

Let X0 be the Gromov boundary of G0, i.e. the set of reduced infinite
words

X0 := {w = s1 · · · sn · · · | si ∈ S±1
0 and si+1 6= s−1

i }.

We set as before

K2(X0) := {K compact subsets of X0 containing at least two points.}

Lemma 6.4. The space K2(X0) contains a non-closed G0-orbit G0K
whose closure is G0-minimal.

We need to introduce more notations. Let Z be the compact set

Z = {0, 1}Z , and Σ = 〈σ〉

be the infinite cyclic group generated by the shift σ : Z → Z, which is
defined, for ε = (εn)n∈Z, by (σε)n = εn+1. Let

G(0) := 〈b〉 and G(1) := 〈c〉
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be the cyclic subgroups of G0 generated respectively by b and c. For
each ε in Z we define a compact subset Kε ∈ K2(X0) by

Kε := {reduced infinite words w in X0 of the form

an1γ1a
n2γ2 · · · ankγk · · · with nk ∈ Z

and γk ∈ G(εn1+···+nk) for all k ≥ 1.}

It is useful to notice that the compact sets Kε depend continuously
on their parameter ε ∈ Z. Indeed, by definition of Kε, for all N ≥ 1,
the set Sε,N of reduced word of length N that appear at the beginning
of a word w ∈ Kε depends only on the finite sequence (εn)−N≤n≤N .

Remark 6.5. Before going on, we give an intuitive and hand-waving way
to recognize that an infinite reduced word w belongs to Kε. I think of
ε as a biinfinite sequence of bits written on the line Z. Meanwhile I am
reading the word w from the beginning, I ask a friend to move on this
line starting from the spot s = 0. When my friend is at the spot s he
can read the bit εs.
- If I read the letter a, I ask my friend to move one step forward.
- If I read the letter a−1, I ask him to move one step backward.
- If I read the letter b or b−1, I check that he reads the bit 0.
- If I read the letter c or c−1, I check that he reads the bit 1.
The word w belongs to Kε if and only if it passes all these checks.

Proof of Lemma 6.4. We will choose the compact K to be Kε for an
element ε in Z whose orbit Σε is not closed in Z but whose orbit closure
Σε is Σ-minimal. The claim of Lemma 6.4 follows then from Lemma
6.6 below. �

Lemma 6.6. Let G0 be the free group on three generators a, b, c, X0

be its boundary, and ε, ε′ be elements of Z.
a) The compact Kε′ belongs to G0Kε if and only if ε′ belongs to Σε.
b) The orbit closure of Kε in K2(X0) is equal to

G0Kε = {gKε′ | g ∈ G0 and ε′ ∈ Σε}.

Proof of Lemma 6.6. We first notice the following facts :
- One always has the equality aKσ(ε) = Kε.
- When ε0 = 0, one has the equality bKε = Kε, the compactKε contains
no word beginning with c or c−1, and hence all reduced words of c±1Kε

begin with the letter c±1 .
- When ε0 = 1, one has the equality cKε = Kε, the compactKε contains
no word beginning with b or b−1, and hence all reduced words of b±1Kε

begin with the letter b±1 .
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a) Let g ∈ G0 be an element such that Kε = gKε′ . The previous
remarks prove that the element g belongs to the set

(6.1) Sε := {g = an1γ1 · · · anpγp with nk ∈ Z and γk ∈ G(εn1+···+nk) }
and that, for such a g, one has ε = σn1+···+np(ε′).
b) Since the map Z → K2(X0); ε 7→ Kε is continuous, all compact

sets gKε′ with ε′ in Σε belong to the orbit closure G0Kε.
Conversely, let K∞ ∈ K2(X0) be a compact set belonging to the orbit

closure G0Kε. We want to prove that K∞ = h∞Kε′ , for some h∞ in
G0 and ε′ in Σε. Let gn be a sequence of elements of G0 such that

gnKε −−−→
n→∞

K∞.

Write the reduced word gn as a product gn = hnjn where jn is the
longest possible word such that j−1

n belongs to the set Sε. According
to the previous discussion, one has the equality

gnKε = hnKε(n) ,

where ε(n) belongs to Σε.
We first check that the length of hn is bounded. By construction, for

every x in Kε(n) , the concatenated word hnx is a reduced word. Hence
the diameter of hnKε(n) goes to zero when the length of hn goes to ∞.
Since the limit compact set K∞ contains at least two points, the length
of hn must be bounded.

Since the length of hn is bounded, after extracting, the sequence hn
is constant hn = h∞, the sequence ε(n) converges to an element ε′ ∈ Σε,
and one has K∞ = h∞Kε′ as required. �

Remark 6.7. One can prove that the compact set Kε is equal to the
limit set of the subgroup of G0

Hε := {g = an1γ1 · · · anpγp ∈ Sε | n1 + · · ·+ np = 0 }.
However using a similar construction, one can also produce compact
subsets K of X0 that satisfy the conditions of Lemma 6.4 and whose
stabilizer in G0 is trivial.

6.5. Minimal subsets. We now relate orbit closures in K2(X0) and
K2(X) thanks to the following lemma.

Lemma 6.8. Let G be a simple Lie group of real rank one and X be
its boundary. Let G0 be a closed convex cocompact subgroup of G and
X0 be its limit set. Let K ⊂ X0 be a compact subset containing at least
two points.
a) If the orbit G0K is closed in K2(X0), then the orbit GK is also
closed in K2(X).
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b) If the orbit closure G0K is G0-minimal in K2(X0), then the orbit
closure GK is also G-minimal in K2(X).

Proof of Lemma 6.8. Both a) and b) will follow from the following
claim : For every limit K∞ = lim

n→∞
gnK in K2(X) with gn in G, there

exist h∞ ∈ G and K ′∞ ∈ G0K such that K∞ = h∞K
′
∞.

We first prove this claim. After extraction, the sequence gnX0 con-
verges to a compact subset X0,∞ ⊂ X that contains at least two points.
Since, by Theorem 3.1, the orbit GX0 is closed in K2(X), the limit X0,∞
belongs to the orbit GX0. By remark 3.6, the closedness of the orbit
GX0 in K2(X) implies also that the map G/G0

∼−→ GK is proper.
Hence there exists a sequence (γn)n≥1 in G0 such that the sequence
hn := gnγ

−1
n converges to an element h∞ in G. Then the following

sequence converges

γnK = h−1
n gnK −−−→

n→∞
h−1
∞K∞.

This proves our claim.
a) We assume that G0K is closed. Let K∞ ∈ GK. We want to check

that K∞ ∈ GK. According to our claim, one can write K∞ = h∞K
′
∞

with h∞ ∈ G and K ′∞ ∈ G0K. Since G0K is closed, the compact set
K ′∞ belongs to the orbit G0K and hence the compact set K∞ belongs
to the orbit GK.
b) We assume that G0K is minimal. Let K∞ ∈ GK. We want to

check that K ∈ GK∞. According to our claim, one can write K∞ =
h∞K

′
∞ with h∞ ∈ G and K ′∞ ∈ G0K. Since G0K is minimal, the

compact set K belongs to G0K ′∞, and hence the compact set K also
belongs to GK∞. �

Finally, we can check that K2(X) contains non-closed orbits GK
whose closure GK are G-minimal.

Proof of Theorem 6.1.c. We keep the notations of both Lemmas 6.6
and 6.8. We choose G0 ⊂ G to be a Schottky subgroup on three
generators S0 := {a, b, c}. This implies that G0 is a free group on these
generators, that G0 is a discrete convex cocompact subgroup of G and
that the boundary X0 of G0 is nothing but the limit set X0 = ΛG0 ⊂ X.

We can choose the group G0 and its generators so that

the centralizer in G of the group 〈b, aca−1〉 is trivial.(6.2)

We choose the compact K to be Kε for an element ε in Z whose
orbit Σε is not closed in Z but whose orbit closure Σε is Σ-minimal.
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According to Lemma 6.6, the orbit closure G0Kε in K2(X0) is G0-
minimal. Hence by Lemma 6.8, the orbit closure GKε in K2(X) is
G-minimal.

It remains to check that the orbit GKε is not closed in K2(X). As-
sume, by contradiction, that this orbit GKε is closed. Since Kε is
totally disconnected, the stabilizer GKε is a discrete subgroup of G.
Since this orbit GKε is closed there exists for any η ∈ Σε, an element
gη in G such that

Kη = gηKε.

Choose an integer n = n(η) such that ηn = 0 and ηn+1 = 1. By
definition of Kη, the following elements belong to its stabilizer,

anba−n ∈ GKη and an+1ca−n−1 ∈ GKη .

Hence their conjugates belong to the stabilizer of Kε,

g−1
η anba−ngη ∈ GKε and g−1

η an+1ca−n−1gη ∈ GKε .

According to (6.2), the element gη is determined by the value of n
and by these two elements of GKε . This leaves only countably many
possibilities for the element gη, and hence for the compact set Kη and
also for the parameter η. Since the orbit closure Σε is uncountable,
this gives a contradiction. �

7. Concluding remarks

In this chapter, we briefly discuss without proof various
analogs of our results.

7.1. Closed orbits in Ki. In the context of Theorems 3.1 and 4.1, it
is natural to look for a similar characterization of closed G-orbits GK
in the space

Ki(X) := {compact subset K of X containing at least i points}

when i ≥ 4. Unfortunately, one can check that there are many closed
orbits in Ki(X) which are not related to discrete subgroups of G. In-
deed, for any finite subset F0 ⊂ X containing at least three points, there
exist compact subsets K in Ki(X) whose orbit closure in K3(X) is equal
to GK = GK ∪ GF0 and whose stabilizer ΓK is trivial. For example,
using the notations of Section 6.3, one can assume that {x+, x−} ⊂ F0

and choose K =
⋃
n≥1 g

n2
F0.
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7.2. Gromov hyperbolic groups. Let (M,d) be a proper geodesic
Gromov hyperbolic space. Let X be the Gromov boundary of M and
G ⊂ Isom(M) be a non-elementary closed subgroup that acts cocom-
pactly on M (see [15], [13], or [24] for precise definitions). Such a
locally compact group G will be called a Gromov hyperbolic group. In
this setting the notion of convex cocompact subgroup of G has been
replaced by the notion of quasiconvex subgroup. This is a closed sub-
group Γ of G that acts cocompactly on the union of geodesics joining
points of its limit set (see the main theorem of [22] for various equiv-
alent definitions of a quasiconvex subgroup). With this modification,
one can check that Theorems 3.1, 4.1, 5.1, and 6.1 are still valid for
such a group G and its boundary X. For instance, one has

Theorem 7.1. Let G be a Gromov hyperbolic group and X be its bound-
ary. Let K ⊂ X be a compact subset containing at least two points.
The following are equivalent.
(i) The orbit GK is closed in K2(X).
(ii) There exists a quasiconvex subgroup Γ of G such that K = ΛΓ.
(iii) The stabilizer ΓK is a quasiconvex subgroup and K is its limit set.

Indeed the proof of Theorem 3.1 still work in this general context
even though the ”convex cocompact” subgroups ΓK might not contain
any cocompact discrete subgroup. We do not repeat this proof.

Important examples of such Gromov hyperbolic spaces M are
(a) Cayley graphs of finitely generated word-hyperbolic groups G.
(b) Universal covers of compact Riemannian manifolds with negative
curvature.

In all this paper we have used implicitely the point of view of “con-
vergence groups” (see [12] or [23]). Note that according to theorem 8.1
of [9], the words “Gromov hyperbolic groups” are synonymous to the
words “uniform convergence groups”.

7.3. Divisible Convex sets. Let G = SL(d+1,R), X = P(Rd+1) and

Kc(X) := {K properly convex compact subset of X}.
Recall that a compact convex subset K of X is said to be properly
convex if K is included in an affine chart of X and if its interior Ω := K̊
is not empty. The following theorem is an analog of Theorem 4.1.

Theorem 7.2. Let G = SL(d+1,R), X = P(Rd+1), K ⊂ X be a prop-

erly convex compact subset and Ω = K̊. The following are equivalent.
(i) The orbit GK is closed in Kc(X).
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(ii) There exists a closed subgroup Γ of ΓK acting cocompactly on Ω.
(iii) The stabilizer ΓK acts cocompactly on Ω.

In (ii) the group Γ can not always be chosen to be discrete.
The implication (ii) ⇒ (i) is due to Benzecri (see [2, Cor. 2.4] or

[5]). Proving the converse implication was indeed the starting point of
our investigations.

The proof of Theorem 7.2 is the same as the proof of Theorem 4.1,
replacing Lemma 4.3 by the following analog fact which is due to Ben-
zecri (see loc. cit. or [3]) : the group G acts properly cocompactly on
the set Lc(X) of pointed open properly convex subsets (Ω, x) of X.

Since a few readers asked us to repeat this same proof in this new
context, here it is:

Proof of Theorem 7.2. (ii) =⇒ (i) Let K be the closure of a properly
convex open set Ω of X on which a subgroup Γ of G acts cocompactly.
Let (gn)n≥1 be a sequence in G such that the limit K∞ = lim

n→∞
gnK

exists in Kc(X). We want to find an element h∞ in G such that K∞ =

h∞K. The open set Ω∞ := K̊∞ contains at least one point x∞. Thus,
there exists a sequence (xn)n≥1 in Ω such that

gnxn −−−→
n→∞

x∞.

Since Γ acts cocompactly on Ω, there exists a sequence (γn)n≥1 in Γ
such that the sequence γnxn is bounded in Ω. Then, since the action of
G on Lc(X) is proper, the sequence hn := gnγ

−1
n is bounded in G and,

after extraction, it converges to an element h∞ in G. One then has

K∞ = lim
n→∞

hnK = h∞K.

(i) =⇒ (iii) We want to prove that the stabilizer ΓK acts cocom-

pactly on Ω := K̊. Let (xn)n≥1 be a sequence in Ω. We want to find a
sequence (γn)n≥1 in ΓK such that, after extraction, the sequence γnxn
converges in Ω. Since G acts cocompactly on Lc(X), there exists a
sequence (gn)n≥1 in G such that the sequence gn(Ω, xn) converges to
a couple (Ω∞, x∞) in Lc(X). Since the orbit GK is closed in Kc(X),
there exists an element h∞ in G such that Ω∞ = h∞Ω. The closed-
ness of the orbit GK in Kc(X) also implies that the natural bijection

G/ΓK
∼−→ GK is a homeomorphism. Hence, there exists a sequence

(γn)n≥1 in ΓK such that the sequence hn := gnγ
−1
n converges to h∞.

Then the following sequence converges

γnxn = h−1
n gnxn −−−→

n→∞
h−1
∞ x∞ ∈ Ω.

(iii) =⇒ (ii) This implication is clear. �
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7.4. Higher rank. For a higher rank semisimple Lie group G, its flag
variety X, and a well-chosen G-invariant open subset K′ ⊂ K(X), the
analogous question is appealing: can one describe the compact subset
K ∈ K′ such that GK is closed in K′?

Note that in this setting the notion of convex cocompact subgroups
is replaced with the notion of Anosov subgroups. See [14] and [17].

Here is an answer to this question when G is a product of rank-one
Lie groups G = G1 ×G2, and hence X is the product X = X1 ×X2 of
their boundaries. We will say that a compact subset of X is degenerate
if it is included in a cross {x1}×X2∪X1×{x2}. We first notice that, when
K 6= X, the orbit closure GK in K(X) always contains a degenerate
compact subset. This is why it is natural to introduce the set K′ of
nondegenerate compact subset of X:

K′ := {K ∈ K(X) | K 6⊂ {x1}×X2 ∪X1×{x2} ∀x1 ∈ X1 , x2 ∈ X2}.

We just state here the final result without proof.

Theorem 7.3. Let G = G1 × G2 be the product of two rank one Lie
groups and K ∈ K′. If the orbit GK is closed in K′, we are in one of
the following four cases, modulo exchange of the factors :
(i) K is elementary i.e. K is included in a finite union of crosses
{x1}×X2 ∪X1×{x2}.
(ii) There exist a convex cocompact subgroup Γ1 ⊂ G1, a Γ1-invariant
compact set K1 ⊂ X1 and x2 ∈ X2 such that K = ΛΓ1×X2∪K1×{x2}.
(iii) There exist convex cocompact subgroups Γ1 ⊂ G1 and Γ2 ⊂ G2

such that K is the product of their limit sets K = ΛΓ1 × ΛΓ2.
(iv) There exist convex cocompact subgroups Γ1 ⊂ G1 and Γ2 ⊂ G2 such
that K is the limit set of the graph of an isomorphism ϕ : Γ1 → Γ2.

One can also list the compact sets K that occur in case (i). In
particular, either K is finite, or it is contained in the union of two
crosses.

In case (iii), it is interesting to notice that the stabilizer ΓK is not
an Anosov subgroup of G.
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[14] O. Guichard, A. Wienhard, Anosov representations: domains of discontinuity
and applications, Invent. Math. 190 (2012) 357-438.

[15] M. Gromov, Hyperbolic groups, MSRI Publ. 8 (1987) 75-263.
[16] M. Kapovich, Kleinian Groups in Higher Dimensions, PM 265 (2007)485-562.
[17] M. Kapovich, B. Leeb, J. Porti, Dynamics at infinity of regular discrete sub-

groups of isometries of higher rank symmetric spaces, arXiv:1306.3837.
[18] P. Haissinsky, Hyperbolic groups with planar boundaries, Inv. Math. (2014)
[19] B. Maskit, Kleinian groups, Grundlehren 287 Springer (1987).
[20] D. Mumford, C. Series, D. Wright, Indra’s Pearls Camb. Univ. Press (2002).
[21] D. Montgomery, L. Zippin, Topological transformation groups (1955).
[22] E. Swenson, Quasi-convex groups of isometries of negatively curved spaces,

Topology and its applications 110 (2001) 119-129.
[23] P. Tukia, Convergence groups and Gromov’s metric hyperbolic spaces, New

Zealand J. Math. 23 (1994) 157-187.
[24] J. Vaisala, Gromov hyperbolic spaces, Expos. Math. 23 (2005) 187-231.
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