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1. Introduction

Extending a recurrence theorem due to Eskin and Margulis in [9], We proved
with Jean-François Quint in [4] a recurrence theorem for random walks on finite
volume homogeneous spaces. This text is an introduction to these two recurrence
theorems.

We will explain in this preprint the main ideas of the proof of both recurrence
theorems by working on the first non-trivial examples. We will not seek for gen-
erality, but we hope that these examples will help the reader to understand the
meaning of these theorems. For a complete account on these theorems the reader
is refered to [9] and [4].

2. Markov-Feller chains

We first define Markov-Feller operators and their recurrence prop-
erties.

A Markov chain on a space X is a mathematical model which describes the
evolution of a stochastic process (xt)t∈N, for which the position xt+1 at time t+ 1
is chosen randomly according to a law Pxt which depends only on the position xt
at time t. In this paper we will deal only with Markov-Feller chains on second
countable locally compact spaces X, i.e. with Markov chains for which the law Pxt
on X depends continuously on the point xt.

In a more formal way, let X be a second countable locally compact space. A
Markov-Feller chain on X is a continuous map x→ Px from X to the space P(X)
of Borel probability measures on X. As usual, this space P(X) is endowed with
the ∗-weak topology. We also denote by P the induced Markov-Feller operator on



2 Yves Benoist

the Banach space Cb(X) of continuous bounded functions on X. It is given, for f
in Cb(X) and x in X, by Pf(x) =

∫
X
f(y) dPx(y).

Iterating n times this Markov chain, one gets a Markov chain x → Pnx . This
probability Pnx is the law of xn when you know only the position of the chain at
time zero x0 = x. This Markov chain x → Pnx is defined inductively by P 1

x = Px
and, for n ≥ 1, Pn+1

x =
∫
X
Py dPnx (y). Its associated Markov operator on Cb(X)

is nothing but the nth power Pn.
Here are two very strong recurrence property of P .

Definition 2.1. We say that P is recurrent on X if, for every ε > 0 and x in X,
one can find a compact set M ⊂ X and an integer n0 such that, for all n ≥ n0,
one has Pnx (M) ≥ 1− ε.

This means that there is no escape of mass for the laws of the Markov-Feller
chain, i.e. any ∗-weak limit of a subsequence of Pnx will be a probability measure.

Definition 2.2. We say that P is uniformly recurrent on X if, for every ε > 0,
one can find a compact M ⊂ X such that, for all x in X, one can find an integer
n0 such that, for all n ≥ n0, one has Pnx (M) ≥ 1− ε.

This means that the compact set M can be chosen independantly of the starting
point x.

Most of the Markov chains we will study will be obtained in the following way.
Let G be a second countable locally compact group acting continuously on X,
and µ be a Borel probability measure on G. The Markov-Feller chain on X will
be the corresponding random walk on X, i.e. the transition probability will be
x→ Pµ,x := µ ∗ δx. In other words, the corresponding Markov-Feller operator Pµ
is given by, for all f in Cb(X) and x in X, Pµf(x) =

∫
G
f(gx) dµ(g).

3. Finite volume homogeneous spaces

We introduce now the random walk on finite volume homogeneous
spaces and state precisely the two recurrence theorems we want to
explain.

3.1. Recurrence on G/Λ.

The reader non familiar with Lie groups may skip this general sec-
tion. Indeed later on we will mainly focus on examples.

Let G be a connected real algebraic Lie group, let Λ be a lattice in G i.e. Λ is
a discrete subgroup of finite covolume in G and X := G/Λ. Let µ ∈ P(G) be a
probability measure on G, with a finite exponential moment,

∫
G
‖g‖δ dµ(g) < ∞,

for some δ > 0. Let Γµ be the closed subgroup generated by the support of µ and
Hµ be the Zariski closure of Γµ. We will assume that Hµ is semisimple. We will
denote by Hnc

µ the smallest algebraic cocompact normal subgroup of Hµ. In [9]
Eskin and Margulis proved the following:
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Théorème 3.1. (Eskin-Margulis) Assume that µ has exponential moment, that
Hµ is semisimple and that the centralizer of Hnc

µ in G is trivial. Then X is
uniformly Pµ-recurrent.

They conjectured in [9, 2.5] the following statement which we proved in [4].

Théorème 3.2. (Benoist-Quint) Assume that µ has exponential moments and
that Hµ is semisimple. Then X is Pµ-recurrent.

Here is a reformulation of Theorem 3.2.

Corollaire 3.3. Same assumptions as in Theorem 3.2. Let x be in X. Any weak
limit ν∞ of the sequence νn := µ∗n ∗ δx in the space of finite measures on X, is a
probability measure, i.e. ν∞(X) = 1.

Eskin-Margulis recurrence theorem 3.1 is used in [1] as the starting point for
the classifications of both the µ-stationary probability measures on X and the Γµ-
invariant closed subsets of X when G is a simple group and Hµ = G. Benoist-Quint
recurrence theorem 3.2 is used in [2] and [3] to extend these classifications to any
Lie group G as soon as Hµ is semisimple with no compact factor. We recommend
the survey [5] for an introduction to this classification theorem.

Here is a straightforward corollary of Theorem 3.2

Corollaire 3.4. Let Γ be a discrete subgroup of G whose Zariski closure is semisim-
ple. Then any discrete Γ-orbit in G/Λ is finite.

Proof of Corollary 3.4. By the recurrence property such a Γ-orbit supports a sta-
tionary probability measure ν i.e. a measure satisfying µ∗ν = ν. By the maximum
principle, all the points on this Γ-orbit have same mass for ν. Hence this orbit is
finite.

For the sake of simplicity, we always assume from now on that µ has compact
support and that Hµ has no compact factor.

3.2. The space of unimodular lattices in Rd.

The main example of finite volume homogeneous space X = G/Λ
is the space Xd = SL(d,R)/SL(d,Z). In this case, the compact subsets
are described by the Mahler compactness criterion below.

The space Xd is also the space of unimodular lattices ∆ of Rd, i.e. the set of
discrete subgroups of Rd spanned by a basis v1, . . . , vd of Rd of determinant 1.

For 0 ≤ i ≤ d, we define the ith-systole function αi on Xd by

αi(x) = min{‖v‖ | v ∈ Λix non-zero pure tensor}. (3.1)

The minimum is taken among tensor v that can be written as v = v1∧· · ·∧vi with
v1, . . . , vi linearly independant elements of the lattice x. For instance α1(x) is the
length of the shortest non-zero vector in the lattice x ⊂ Rd. By convention we set
α0 ≡ αd ≡ 1. These systole functions are continuous. Their relevance lies in the
following criterion.
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Lemme 3.5. (Mahler compactness criterion) For 0 < i < d, the systole
functions α−1

i are proper.

We recall that a real valued function f is said to be proper if the inverse image
of a bounded set is relatively compact. When i = 1, Lemma 3.5 means that, a
sequence xn in Xd goes to infinity if and only if there exists a sequence of non-zero
vectors vn ∈ xn converging to 0.

4. The contraction properties

We give in this section sufficient conditions for the recurrence and
for the uniform recurrence of a Markov-Feller operator. These condi-
tions called CH and UCH are easy to check since they involve only
one iteration of the Markov chain.

Let X be a second countable locally compact space and P a Markov-Feller
operator on X. We will say that P satisfies the contraction hypothesis if

CH for every compact L of X, there exists a Borel function f = fL : X → [0,∞]
such that,
(i) f takes finite values on L,
(ii) for every M <∞, f−1([0,M ]) is relatively compact in X,
(iii) there exists constants a < 1, b > 0 such that Pf ≤ af + b.

Note that f is not assumed to be finite nor continuous.

This CH means that there exist on X functions f which have a very strong
P -subharmonicity property: the Markov operator contracts f up to an additive
constant.

We will say that P satisfies the uniform contraction hypothesis if

UCH There exists a proper function f : X → [0,∞[ such that Pf ≤ af + b,
where a < 1 and b > 0.

This UCH means that the function f in CH can be chosen to be everywhere
finite. This UCH is a variation of a condition due to Foster that one can find in
[10], [13] and [9]. This UCH is shown in [13] to be related to the existence of an
exponential moment for the first return time in some bounded sets of X.

Lemme 4.1. Let X be a second countable locally compact space and P a Markov-
Feller operator on X.
a) Assume that P satisfies the contraction hypothesis CH on X, then P is recurrent
on X.
b) Assume that P satisfies the uniform contraction hypothesis UCH on X, then
P is uniformly recurrent on X.
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Proof. a) Let x be a point in X and f = fx be the function given by the hypothesis
CH for the compact set L = {x}. Choose for M the closure of the set

{y ∈ X | f(y) ≤ 2B
ε }

so that the indicator function of the complementary set M c satisfies 1Mc ≤ ε
2B f .

According to the hypothesis CH, one has, for every n ≥ 1

Pnf ≤ anf + b(1 + · · ·+ an−1) ≤ anf +B

with B = b
1−a . One then has the inequalities, for all x in X,

Pnx (M c) = Pn(1Mc)(x) ≤ ε

2B
Pnf(x) ≤ εan

2B
f(x) +

ε

2
≤ ε

as soon as n is sufficiently large so that f(x) ≤ B
an .

b) Same proof with a function f which does not depend on the point x.

5. Countable spaces

In this section we give basic examples of Markov operators on count-
able spaces and describe their recurrence properties.

The first example does not satisfy UCH.

Example 5.1. (Random walk on groups) Let G be a discrete infinite group
acting on itself by left multiplication, let µ be a probability measure on G whose
support spans G, then Pµ is not recurrent on G.

Proof. There are no ergodic stationary probability measure ν on G. Indeed, the
set of element g for which ν(g) is maximum is finite and G-invariant.

Remark 5.2. There is a classical notion of recurrence for a Markov chain that
we will call here 0-recurrence. It says that, for all neighborhood U of the starting
point, almost all trajectories of the Markov chain comes back in U . When G = Z
the above Markov chain Pµ is not recurrent on G eventhough it is 0-recurrent.

The second example is very simple but it gives a fairly good picture of what is
a Markov chain satisfying UCH.

Example 5.3. (Markov chain satisfying UCH) Consider the Markov chain
x→ Px on X = N given by Px = 1

3δx+1 + 2
3δx−1 when x > 0 and Px = δx+1 when

x = 0. This Markov chain satisfies the uniform contraction hypothesis UCH. In
particular it is uniformly recurrent.

Proof. It satisfies UCH with the function f : x → 2x/2. Indeed, one has the
inequality Pf ≤ 2

√
2

3 f + 1.
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The next example enlights the difference between UCH and CH.

Example 5.4. (Markov chain satisfying CH but not UCH) The trivial
Markov chain on X = N given by the transition probabilities Px = δx satisfies
the contraction hypothesis CH. In particular P is recurrent. However P is not
uniformly recurrent.

Proof. It satisfies CH with the functions fn : x→ 1 when x ≤ n and fn : x→∞
otherwise. Indeed, one has the inequality Pfn ≤ 1

2fn + 1.

A Markov chain P on a countable set X is said to be transitive if for all x, y
in X, there exists n ≥ 1 such that Pnx (y) > 0. The following example tells us very
roughly that, except for Example 5.4, the conditions UCH and CH are equivalent.

Example 5.5. (CH + T implies UCH) Let P be a transitive Markov chain on
a countable set X satisfying the contraction hypothesis CH. Then P satisfies also
the uniform contraction hypothesis UCH.

Proof. Since P satisfies CH, there exists a stationary probability measure ν on X.
Since P is transitive on X, this stationary probability measure has full support on
X. By [6, Prop. 1.8], ν is the unique stationary probability measure on X. Hence,
for all x in X, one has

lim
n→∞

1
n

∑
k≤n P

k
x = ν.

For any ε > 0, one can find a finite set F such that ν(F c) ≤ ε/4. In particular, for
all x in X there exists n1 > 0 such that

Pn1
x (F c) ≤ ε/2.

Since P satisfies CH, there exists a finite set M ⊂ X and n2 ≥ 0 such that, for all
n ≥ n2, for all y in F , one has Pny (M c) ≤ ε/2. Then, for all n ≥ n1 + n2, one has
Pnx (M c) ≤ ε. Hence P satisfies UCH.

6. The uniform contraction hypothesis UCH

In this section we sketch the proof of Margulis-Eskin recurrence
theorem. We begin by simpler examples to enlight one by one the
ideas entering the proof.

6.1. Linear random walk.

The first idea is a uniform contraction property for the linear ran-
dom walk on vector spaces which is nothing but a reformulation of the
positivity of the first Lyapounov exponent.

Let H be a real algebraic semisimple Lie group with no compact factor. Let
µ be a Borel probability measure on H which is Zariski dense, i.e. whose support
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spans a Zariski dense subgroup of H. For sake of simplicity we will assume from
now on that this support is compact. Let V be a real finite dimensional algebraic
representation of H. We set V H for the set of fixed points of H in V .

The following functions on V are contracted by the Markov operators Pµ on
V . They will be the building blocks for the construction of f .

Lemme 6.1. ([9, Lemma 4.2]) Let V be a real algebraic representation of H
such that V H = {0}. Let ϕ be the function on V given by ϕ(v) = ‖v‖. Then there
exists δ > 0, a0 < 1 and n0 ≥ 1 such that

Pn0
µ ϕ−δ ≤ a0ϕ

−δ (6.1)

Proof. This Lemma 6.1 is proven in [9, Lemma 4.2]. We can assume that V is
irreducible. The proof relies on Furstenberg theorem on the positivity of the first
Lyapounov exponent of µ which tells us that, uniformly for v in V r 0, the limit
λ1 = lim

n→∞

∫
H

log ‖gv‖‖v‖ dµ∗n(g) exists and is positive. One then write the asymptotic

expansion up to order 2 of e−δ log(‖hv‖/‖v‖) and computes its image by Pnµ .

Since it is harmless to replace µ by the convolution power µ∗n0 , we will always
assume implicitely that n0 = 1.

6.2. The pointed torus.

Before dealing with the spaces X = G/Λ, we explain here on a sim-
pler example how Lemma 6.1 is used to prove the uniform contraction
hypothesis UCH.

Proposition 6.2. Let µ be a probability measure on SL(d,Z) with finite support.
Assume that Hµ is semisimple with no compact factor and has no non-zero in-
variant vectors on Rd. Then the Markov operator Pµ on the pointed torus Td r 0
satisfies UCH.

Proof. We choose for function f on Td r 0, a small negative power of the distance
to 0, i.e. f(x) = d(x, 0)−δ with δ small enough.

For x in a small neighborhood U of 0, the random walk is linear hence by
Lemma 6.1, one has Pµf(x) ≤ a0f(x), for some constant a0 < 1.

For x in the compact set U c, Pµf is bounded by a constant b > 0.
In both cases, one has Pµf ≤ a0f + b.

6.3. H = SL(2, R) and X = SL(2, R)/SL(2, Z).

We can now give the proof of Margulis-Eskin recurrence theorem in
the simplest case.

Proposition 6.3. Let µ be a Zariski dense compactly supported probability measure
on SL(2,R). The Markov operator Pµ on X = SL(2,R)/SL(2,Z) satisfies UCH.
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Proof. We follow the same strategy. We choose for function f on X, a small
negative power of the systole, i.e. f = α−δ1 with δ small enough.

We want to bound Pµf by a f + b. The difficulty is that in general an average
of maximum is not always bounded by the maximum of the average. We fix a
constant C > 0 such that, for all g in the support of µ, one has ‖g‖ ≤ C and
‖g−1‖ ≤ C. Let v be a vector of x such that α1(x) = ‖v‖. We distinguish two
cases.

First case. If all non-collinear vectors w in x satisfy ‖w‖ ≥ C2‖v‖ . Then one
has ‖gv‖ ≤ ‖gw‖, and hence α1(gx) = ‖gv‖ . Using Lemma 6.1, one gets, with
a0 < 1,

Pµα
−δ
1 (x) = Pµϕ

−δ(v) ≤ a0ϕ
−δ(v) = a0α

−δ
1 (x) . (6.2)

Second case. If there exists a non-collinear vector w in x with ‖w‖ ≤ C2‖v‖.
Then we use the inequality

‖v ∧ w‖ ≤ ‖v‖ ‖w‖ (6.3)

and the fact that, since x has covolume 1, the left-hand side is bounded below
by 1. We deduce that α1(x) ≥ C−1. Hence, by Mahler criterion, x belongs to a
compact subset of X. The continuous function Pµf is bounded on this compact
set by a constant b > 0.

In both cases, one has Pµf ≤ a0f + b.

6.4. H = SL(3, R) and X = SL(3, R)/SL(3, Z).

The main new idea needed to prove Margulis-Eskin recurrence the-
orem in the second simplest case, is the use of all the systole functions
αi.

Proposition 6.4. Let µ be a Zariski dense compactly supported probability measure
on SL(3,R). The Markov operator Pµ on X = SL(3,R)/SL(3,Z) satisfies UCH.

Proof. We follow the same strategy as for Proposition 6.3, but we will use negative
powers of both systole functions. For i = 1 and i = 2, we introduce the functions
fi on X given by fi(x) = αi(x)−δ with δ small enough.

We fix a constant C > 0 such that, for all g in the support of µ, one has
‖g‖ ≤ C and ‖g−1‖ ≤ C. Let v be a vector of x such that α1(x) = ‖v‖. We still
distinguish two cases.

First case. If all non-collinear vectors w in x satisfy ‖w‖ ≥ C2‖v‖ . Then the
same calculation (6.2), gives the bound Pµf1(x) ≤ a0f1(x).

Second case. If there exists a non collinear vector w in x with ‖w‖ ≤ C2‖v‖ .
Then we use the same inequality

‖v ∧ w‖ ≤ ‖v‖ ‖w‖ (6.4)

to deduce α1(x) ≥ C−1α2(x)
1
2 , and then α1(gx) ≥ C−2α2(x)

1
2 . One gets the

bound Pµf1(x) ≤ C2δf
1
2
2 (x).
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In both cases, one has

Pµf1 ≤ a0f1 + C2δf
1
2
2 , (6.5)

for some constants a0 < 1. This is not exactly what we wanted. That is why, we
use the companion inequality obtained by using the systole α2 of the dual lattice

Pµf2 ≤ a0f2 + C2δf
1
2
1 . (6.6)

Note that for every ε0 > 0 and z > 0, one has z
1
2 ≤ ε0 z + ε−1

0 . Setting
f = f1 + f2, one deduces from (6.5) and (6.6), the upper bound

Pµf ≤ af + b ,

for the constants a = a0 + ε0 C
2δ and b = 2 ε−1

0 C2δ. If ε0 is small enough one has
a < 1 as required

6.5. H = SL(d, R) and X = SL(d, R)/SL(d, Z).

For larger d, the main new idea for proving Margulis-Eskin recur-
rence theorem is Inequality (6.7) which allows us to compare the various
systole functions αi.

Proposition 6.5. Let µ be a Zariski dense compactly supported probability measure
on SL(d,R). The Markov operator Pµ on X = SL(d,R)/SL(d,Z) satisfies UCH.

The new key point will be to replace Inequality (6.4) by the following key
inequality. We recall that an element u in ΛrRd is a pure tensor, if one can write
u = u1 ∧ · · · ∧ ur with all ui in Rd.

Lemme 6.6. For all pure tensors u ∈ ΛrRd, v ∈ ΛsRd and w ∈ ΛtRd, one has

‖u‖ ‖u ∧ v ∧ w‖ ≤ ‖u ∧ v‖ ‖u ∧ w‖ . (6.7)

Proof of Lemma 6.6. Set 〈u〉 for the vector subspaces spanned by the ui’s. One
can reduce to the case where the subspaces 〈u〉, 〈v〉 and 〈w〉 are orthogonal. Then
we only have to check the easy inequality ‖v ∧ w‖ ≤ ‖v‖ ‖w‖.

Proof of Proposition 6.5. We follow the same strategy as for Proposition 6.4, but
we will use negative powers of all the systole functions. For 0 ≤ i ≤ d, we introduce
the functions fi = α−δi on X with δ small enough. We fix a constant C > 0
such that, for all g in the support of µ and all i ≤ d, one has ‖Λig‖ ≤ C and
‖Λig−1‖ ≤ C.

Fix i with 0 < i < d. Using the key inequality (6.7) with r = i−j and s = t = j
with 0 < j ≤ min(i, d−i), instead of using Inequality (6.4), one replace the bounds
(6.5) and (6.6) by the following bound.

Pµfi ≤ a0fi + C2δ
∑
j>0 f

1
2
i−jf

1
2
i+j , (6.8)
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for some constants a0 < 1.
Setting

f =
∑

0<i<d

ψi where ψi = ε
i(d−i)
0 fi ,

with ε0 very small, one deduces the upper bounds

Pµψi ≤ a0ψi + ε0 C
2δ

∑
j>0

ψ
1
2
i−jψ

1
2
i+j

≤ a0ψi + ε0 C
2δ

∑
0≤k≤d

ψk ,

and hence
Pµf ≤ af + b ,

for the constant a = a0 + d ε0 C
2δ and for b = 2 ε0 C2δ. If ε0 is small enough one

has a < 1 as required

6.6. H irreducible on Rd and X = SL(d, R)/SL(d, Z).

This case is not more difficult than the previous one.

Proposition 6.7. Let µ be a compactly supported probability measure on SL(d,R)
such that Hµ is a semisimple group with no compact factors which acts irreducibly
on Rd. Then the Markov operator Pµ on X = SL(d,R)/SL(d,Z) satisfies UCH.

In this case, the vector space V = ΛiRd is the sum V = V+ ⊕ V0 with V0 the
set of Hµ-invariant vectors and V+ the Hµ-invariant supplementary subspace. We
write v = v+ +v0 for the corresponding decomposition of a vector v in V . The new
feature is that this subspace V0 might be non-trivial. This is harmless because of
the following lemma.

We will write f � g for f ≤ C g where C is a constant.

Lemme 6.8. Keep these notations, in particular, Hµ is irreducible on Rd. For
0 < i < d and all pure tensor v in ΛiRd, one has ‖v‖ � ‖v+‖.
Proof of Lemma 6.8. This follows from a compacity argument, since by the irre-
ducibility assumption, the space V0 does not contain non-zero pure tensors.

Proof of Proposition 6.7. The proof is exactly the same as for Proposition 6.5. We
just notice that, by Lemmas 6.1 and 6.8, the function ϕ : v 7→ ‖v‖ on V = ΛiRd
still satisfies Inequality (6.1) on the set of pure tensors of ΛiRd.

A proof of a more general case of Eskin-Margulis recurrence theorem will be
given in section 7.5.

7. The contraction hypothesis CH

In this section, we want to explain the proof of Benoist-Quint re-
currence theorem.
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7.1. H = SL(2, R) and X = SL(3, R)/SL(3, Z).

We begin by the simplest case. The main new idea is a modifica-
tion of the systole function in which one replaces the lattice x by its
intersection with an ε0-neighborhood of the expanding space.

Proposition 7.1. Let µ be a Zariski dense compactly supported probability measure
on SL(2,R). The Markov operator Pµ on X = SL(3,R)/SL(3,Z) satisfies CH.

Remark 7.2. We consider the group H = SL(2,R) as a subgroup of G = SL(3,R)
fixing the last vector e3 of the standard basis e1, e2, e3 of R3. Since the centralizer
of H in G is non trivial, Margulis-Eskin recurrence theorem does not apply to this
case. Indeed Pµ does not satisfy UCH, because, by Mahler criterion, the closed
H-invariant subsets

Yε := {x ∈ X | ε e3 ∈ x}

are going away from any compact subsets of X when ε↘ 0.

The vector space V = R3 is the sum V = V+ ⊕ V0 with V+ = R2 and V0 = R.
We still write v = v+ + v0 for the corresponding decomposition of a vector v in V .
Same for V ∗ = Λ2V . A new key point will be to replace Inequality (6.4) by the
following inequality (7.1).

Lemme 7.3. For every v, w in R3, one has

‖(v ∧ w)+‖ ≤ ‖v+‖ ‖w0‖ + ‖v0‖ ‖w+‖ (7.1)

Proof of Lemma 7.3. One has (v ∧ w)+ = v+ ∧ w0 + v0 ∧ w+.

Proof of Proposition 7.1. We follow the same strategy as for Proposition 6.4. Since
the positivity of the Lyapounov exponent occurs only in the V+ direction and since
the projection of a lattice in V+ might be dense, we have to introduce the following
modification of the systole functions. We fix ε0 > 0 small, and we set, for x in X,

αε0,1(x) = min{‖v+‖ | v ∈ xr {0} , ‖v0‖ < ε0}. (7.2)

The minimum is taken among all non zero vectors v of x belonging to the ε0-
neighborhood of the plane V+. The new feature is that this quantity αε0,1(x) is
not always positive, indeed

αε0,1(x) = 0⇐⇒ x ∈ Yε for some ε < ε0.

Similarly using the dual lattice x∗ = Λ2x in the dual space V ∗ = V ∗+ ⊕ V ∗0 , we set

αε0,2(x) = min{‖v+‖ | v ∈ x∗ r {0} , ‖v0‖ < ε0}. (7.3)

We introduce the functions fε0,i = α−δε0,i with δ small enough. We fix a constant
C > 0 such that, for all g in the support of µ, one has ‖g‖ ≤ C and ‖g−1‖ ≤ C.
Let v be a vector of x such that ‖v0‖ < ε0 and αε0,1(x) = ‖v+‖.
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First case. If all the non collinear vector w = w+ + w0 in x with ‖w0‖ <
ε0 satisfy ‖w+‖ ≥ C2‖v+‖ . The same arguments as in (6.2), gives the bound
Pµfε0,1(x) ≤ a0fε0,1(x) with a0 < 1.

Second case There exists a non collinear vector w with ‖w0‖ < ε0 satisfying
‖w+‖ ≤ C2‖v+‖ .

In case ‖v+‖ < ε0, we have ‖(v ∧ w)0‖ < ε0, and we use Inequality (7.1) to
deduce 2ε0C2αε0,1(x) ≥ αε0,2(x) and get the bound Pµfε0,1(x) ≤ (2ε0C3)δfε0,2(x).

In case ‖v+‖ ≥ ε0, one has the bound Pµfε0,1(x) ≤ ε−δ0 Cδ.

In all these three cases, one has

Pµfε0,1 ≤ a0fε0,1 + (2ε0C3)δfε0,2 + ε−δ0 Cδ , (7.4)

for some constant a0 < 1. Similarly, one has

Pµfε0,2 ≤ a0fε0,2 + (2ε0C3)δfε0,1 + ε−δ0 Cδ . (7.5)

Setting fε0 = fε0,1 + fε0,2, one deduces then from (7.4) and (7.5), the upper
bound

Pµfε0 ≤ a fε0 + b ,

for the constants a = a0 + (2ε0 C3)δ and b = 2 ε−δ0 Cδ. If ε0 is small enough one
has a < 1 as required.

7.2. H = SL(d1, R) × SL(d2, R) and X = SL(d, R)/SL(d, Z).

In this case the main new idea is to replace the norm by a func-
tion ϕε0 which takes into account suitable powers of the norm in the
irreducible subrepresentations of Hµ.

Proposition 7.4. Let d = d1 + d2. Let µ be a Zariski dense compactly supported
probability measure on SL(d1,R) × SL(d2,R). Then the Markov operator Pµ on
X = SL(d,R)/SL(d,Z) satisfies CH.

We will need a stronger inequality generalizing both (6.7) and (7.1).
Let Rd := Rd1 ⊕ Rd2 be the associated orthogonal decomposition. For any

couple λ = (λ1, λ2) ∈ N2, we denote by u → uλ the projector of Λ∗Rd on the
component Λλ1Rd1 ⊗ Λλ2Rd2 . We endow N2 with the partial order

λ ≤ µ⇐⇒ (λ1 ≤ µ1 and λ2 ≤ µ2). (7.6)

For any λ, µ in N2 we denote by mλ,µ the minimum and Mλ,µ the maximum of λ
and µ, that is mλ,µ = (min(λ1, µ1),min(λ2, µ2)) and similarly for the maximum.
We denote by

R(λ, µ) := {ν ∈ N2 | mλ,µ ≤ ν ≤Mλ,µ}

the “rectangle” between mλ,µ and Mλ,µ, and by R the rectangle

R := {ν ∈ N2 | ν ≤ (d1, d2)}.
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Lemme 7.5. (Mother Inequality for SL × SL) For any pure tensors u, v, w
in Λ∗(Rd1 ⊕ Rd2), and λ, µ in R, one has

‖uλ‖ ‖(u ∧ v ∧ w)µ‖ � max
ν,ρ∈R(λ,µ)
ν+ρ=λ+µ

‖(u ∧ v)ν‖ ‖(u ∧ w)ρ‖. (7.7)

The only proof of Lemma 7.5 that I know relies on representation theory. We
will explain this proof in Section 7.3.

Exemple 7.1. For u, v, w vectors in Rd = Rd1 ⊕ Rd2 , one has

‖u1,0‖ ‖(u∧v∧w)3,0‖ � ‖(u∧v)2,0‖ ‖(u∧w)2,0‖,
‖u1,0‖ ‖(u∧v∧w)2,1‖ � ‖(u∧v)2,0‖‖(u∧w)1,1‖+‖(u∧v)1,1‖‖(u∧w)2,0‖,
‖u1,0‖ ‖(u∧v∧w)1,2‖ � ‖(u∧v)1,1‖‖(u∧w)1,1‖,
‖u1,0‖ ‖(u∧v∧w)0,3‖ � ‖(u∧v)0,2‖‖(u∧w)1,1‖+‖(u∧v)1,1‖‖(u∧w)0,2‖.

Among these inequalities, the most one inequality is the third one since the terms
‖(u∧ v)0,2‖ ‖(u∧w)2,0‖+ ‖(u∧ v)2,0‖ ‖(u∧w)0,2‖ do not occur on the right hand
side.

For λ ∈ R we set
|λ| := (d1−λ1)λ1 + (d2−λ2)λ2.

Let ε0 > 0. For v in ΛiE, with 0 < i < d, we define

ϕε0 (v) = max
λ∈R,|λ|6=0

ε
−(d−i)i
|λ|

0 ‖vλ‖
1
|λ| . (7.8)

Note that this function is the inverse of the function denoted ϕε0 in [4].

Lemme 7.6. There exists δ > 0, a0 < 1 and n0 ≥ 1 such that,

Pn0
µ ϕ−δε0 ≤ a0ϕ

−δ
ε0

for any ε0 > 0. (7.9)

Proof of Lemma 7.6. This follows from Lemma 6.1.

Proof of Proposition 7.4. The proof is the same as for Proposition 7.1, replacing
Inequality (6.1) by (7.9) and Inequality (7.1) by (7.7). We define for x in X

αε0(x) = min{ϕε0(v) | v ∈ Λ•xr 0 , pure tensor with ‖v0‖ < ε0},

where the minimum is taken over all the non-zero pure tensor v in some Λix for
which ‖v0‖ < ε0. We also introduce the function on X

fε0(x) = αε0(x)−δ.

If δ and ε0 are small enough, this function fε0 satisfies

Pµfε0 ≤ a fε0 + b

for some constants a < 1 and b > 0. Moreover, for x in X, one has the equivalence :
fε0 (x) = ∞ if and only if, for some i, Λix contains an H-invariant pure tensor v

with ‖v‖ < ε
(d−i)i
0 .

This proves that Pµ satisfies CH on X.
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7.3. Mother Inequality.

In this section, we sketch the proof of Inequality (7.7). We will
see that it is a special case of the Mother Inequality (7.11) based on
Representation Theory.

Let H ⊂ SL(Rd) be a semisimple algebraic subgroup, A ⊂ H be a maximal
split subtorus of H, Σ = Σ(A,H) be the set of (restricted) roots, i.e. Σ is the set
of non-zero weights of A in the Lie algebra h of H. We choose a system Σ+ ⊂ Σ
of positive roots. Let P be the set of algebraic characters of A. We endow P with
the partial order given, for λ, µ in P , by

λ ≤ µ⇐⇒ µ− λ is a sum of positive roots. (7.10)

For any real algebraic irreducible representation of H, the set of weights of A in
this representation has a unique maximal element λ called the (restricted) highest
weight of the representation. Let P+ be the set of all these highest weights. For
any algebraic representation of H in a real finite dimensional vector space V , for
λ in P+, we denote by v 7→ vλ the H-equivariant projection on the sum of all the
irreducible subrepresentations of V whose highest weight is equal to λ.

Lemme 7.7. (Mother Inequality) Let H ⊂ SL(Rd) be a semisimple algebraic
subgroup. For pure tensors u, v, w in Λ∗Rd and λ, µ in P+, one has

‖uλ‖ ‖(u ∧ v ∧ w)µ‖ � max
ν,ρ∈P+

ν+ρ≥λ+µ

‖(u ∧ v)ν‖ ‖(u ∧ w)ρ‖. (7.11)

Proof of Lemma 7.7 ⇒ Lemma 7.5. Let H = SL(d1,R) × SL(d2,R), d = d1 +d2.
We choose the Lie algebra a to be the set of diagonal matrices in h, and we choose
the positive roots of h to be the linear forms e∗i − e∗j with either 1 ≤ i < j ≤ d1

or d1 < i < j ≤ d. We can embed the rectangle R as a subset of the set P+ of
dominant weights. Indeed, for λ in R, the representation of H in Λλ1Rd1 ⊗Λλ2Rd2
is irreducible with highest weight

λ̃ = e∗1 + · · ·+ e∗λ1
+ e∗d1+1 + · · ·+ e∗d1+λ2

.

One can describe the restriction to the subset R̃ + R̃ ⊂ P+ of the partial order
(7.10). Indeed, one has the equivalence, for λ, µ, ν, ρ in R,

ν̃ + ρ̃ ≥ λ̃+ µ̃⇐⇒ ( ν + ρ = λ+ µ and min(λ, µ) ≤ ν ≤ max(λ, µ) ).

In the left-hand side, the inequality is defined by (7.10) while, in the right-hand
side, it is defined by (7.6). This proves that the bound (7.11) can be reformulated
as the bound (7.7).

Proof of Lemma 7.7. Follows directly from the next two lemmas.

Lemme 7.8. Let H be a real algebraic reductive group, V be a real algebraic
representation of H. For λ, µ in P+ and v, w in V , one has

‖vλ‖ ‖wµ‖ � ‖(v ⊗ w)λ+µ‖ .
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Proof. This bound follows by a compacity argument, once one has noticed that
Equality (v ⊗ w)λ+µ = 0 implies vλ ⊗ wµ = 0.

Lemme 7.9. Let V = Rd and r, s, t ≥ 0. There exists a linear map

Ψ : Λr+sV ⊗ Λr+tV → ΛrV ⊗ Λr+s+tV such that
(u ∧ v)⊗ (u ∧ w) 7→ u⊗ (u ∧ v ∧ w) ,

for all pure tensors u ∈ ΛrV , v ∈ ΛsV and w ∈ ΛtV .
This map Ψ is unique and is GL(V ) equivariant.

Proof. This exercise in exterior algebra is left to the reader. See [4].

7.4. Benoist-Quint recurrence theorem.

We show how Theorem 3.2 can be deduced from the previous ideas.

We will only deal with the following case which, thanks to Margulis Arithmetic-
ity Theorem (see [12]), is the most important one.

Proposition 7.10. Let G ⊂ SL(d,R) be a semisimple algebraic subgroup defined
over Q and Λ = G ∩ SL(d,Z). Let µ be a Zariski dense compactly supported
probability measure on a semisimple subgroup H with no compact factors. Then
the Markov operator Pµ on X = G/Λ satisfies CH.

Proof. We recall that the quotient X = G/Λ is closed in Xd = SL(d,R)/SL(d,Z)
(see [7]). Hence, we can assume that G = SL(d,R) and X = Xd. We keep the
notation of Section 7.3. We choose an element H0 in the interior of the Weyl
chamber, and set, for λ in P+, |λ| = λ(H0). Let ε0 > 0. Exactly as in Formula
(7.8), for v in ΛiRd with 0 < i < d, we define

ϕε0 (v) = max
λ∈P+r0

ε
−(d−i)i
|λ|

0 ‖vλ‖
1
|λ|

so that Lemma 7.6 is still true with this function ϕε0 . As in the proof of Proposition
7.4, we define, for x in X,

αε0(x) = min{ϕε0(v) | v ∈ Λ•xr 0 , pure tensor with ‖v0‖ < ε0}.

and check the condition CH with the same functions fε0 = α−δε0 provided that δ
and ε0 are small enough.

7.5. Eskin-Margulis recurrence theorem.

We show how Theorem 3.1 can be deduced from Theorem 3.2.

We will again only deal with the most important case.

Proposition 7.11. Let G ⊂ SL(d,R) be a semisimple algebraic subgroup defined
over Q and Λ = G ∩ SL(d,Z). Let µ be a Zariski dense compactly supported
probability measure on a semisimple subgroup H with no compact factors and with
trivial centralizer in G. Then the Markov operator Pµ on X = G/Λ satisfies UCH.
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Proof. We consider the function fε0 of Section 7.4 restricted to the finite volume G-
orbit G/Λ ⊂ SL(d,R)/SL(d,Z). We only have to check that, for ε0 small enough,
fε0 is everywhere finite on G/Λ.

Assume by contradiction that this is not the case, then there exists a sequence
of H-invariant non-zero vectors vn ∈ ΛiRd such that ‖vn‖ ↘ 0 and gn ∈ G such
that gnvn belongs to the lattice ΛiZd. As a consequence, there exists n0 such that,
for n ≥ n0, every G-invariant polynomial F on ΛiRd with F (0) = 0 satisfies also
F (vn) = 0. This means that vn is an unstable vector. By Kempf Theorem in
[11], the stabilizer of an unstable vector is a parabolic subgroup P 6= G. Hence
the semisimple group H is included in P . As a consequence H has a non-trivial
centralizer. Contradiction.

We conclude this survey by an open question: it is very likely that Theorems
3.1 and 3.2 are still true without any moment assumption on µ.
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