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Abstract

We establish the spectral gap property for dense subgroups generated
by algebraic elements in any compact simple Lie group, generalizing earlier
results of Bourgain and Gamburd for unitary groups.

1 Introduction
The purpose of the paper is to study the spectral gap property for measures on
a compact simple Lie group G. If µ is a Borel probability measure on G, we say
that µ has a spectral gap if the spectral radius of the corresponding operator on
L2

0(G) – the space of mean-zero square integrable functions on G – is strictly less
than 1. We also say that µ is almost Diophantine if it satisfies, for some positive
constants C1 and c2, for n large enough and for any proper closed subgroup H,

µ∗n({x ∈ G | d(x,H) ≤ e−C1n}) ≤ e−c2n.

Using the discretized Product Theorem proved in [11] and the techniques de-
velopped by Bourgain and Gamburd in [3] for the group SU(2), we prove the
following theorem.

Theorem 1.1. Let G be a connected compact simple Lie group and µ be a Borel
probability measure on G. Then µ has a spectral gap if and only if it is almost
Diophantine.

A measure µ on the compact simple Lie group G is called adapted if its
support generates a dense subgroup of G. It is not known whether every adapted
probability measure on the compact simple Lie group G is almost Diophantine,
but it is natural to conjecture a affirmative answer to this question. In this
direction, Bourgain and Gamburd proved that if µ is an adapted probability
measure on SU(d) supported on elements with algebraic entries, then µ has a
spectral gap. We generalize their result to an arbitrary simple group, and prove
the following, using the theory of random matrix products over arbitrary local
fields, as exposed in [2].
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Theorem 1.2. Let G be a connected compact simple Lie group and U a fixed
basis for its Lie algebra. Let µ be an adapted probability measure on G and
assume that for any g in the support of µ, the matrix of Ad g in the basis U has
algebraic entries. Then µ is almost Diophantine, and therefore has a spectral
gap.

The plan of the paper is simple: in Section 2, we prove Theorem 1.1, in
Section 3, we prove Theorem 1.2.

For us, a compact simple Lie group will be a compact real Lie group whose
Lie algebra is simple. We will also make use of some classical notation:

- The Landau notation: O(ε) stands for a quantity bounded in absolute
value by Cε, for some constant C (generally depending on the ambient
group G).

- The Vinogradov notation: we write x � y if, x ≤ Cy for some constant
C (again, possibly depending on the ambient group). We will also write
x ' y if x� y and x� y, and similarly. For two real valued functions ϕ
and ψ on G, we write ϕ � ψ if there exists an absolute constant C such
that for all x in G, ϕ(x) ≤ C · ψ(x).

2 The spectral gap property
Let G be a connected compact simple Lie group. If µ is a Borel probability
measure on G, we define an averaging operator Tµ on the space L2

0(G) of mean-
zero square-integrable functions by the formula

Tµf(x) =
∫
G

f(xg) dµ(g), ∀f ∈ L2
0(G).

Definition 2.1. We say that a probability measure µ on G has a spectral gap if
the spectral radius of the averaging operator Tµ on the space L2

0(G) is strictly
less than one.

The purpose of this section is to relate the spectral gap property to the
following Diophantine property of measures.

Definition 2.2. We say that a probability measure µ on G is almost Diophan-
tine if there exist positive constants C1 and c2 such that for n large enough, for
any proper closed connected subgroup H,

µ∗n(H(e−C1n)) ≤ e−c2n. (1)

whereH(ρ) denotes the neighborhood of size ρ of the closed subgroupH: H(ρ) =
{x ∈ G | d(x,H) ≤ ρ}.

With this definition, we have the following theorem.
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Theorem 2.3 (Spectral gap for almost Diophantine measures). Let G be a
connected compact simple Lie group. A Borel probability measure µ on G has a
spectral gap if and only if it is almost Diophantine.

Remark 1. The spectral radius of the averaging operator Tµ on L2
0(G) is less

than one if and only if the spectral radius of TµTµ̌ = Tµ∗µ̌ is less than one.
This shows that it will be enough to prove the Theorem 2.3 in the case µ is
symmetric.

We start by proving the trivial implication: if µ has a spectral gap, then it
must be almost Diophantine.

Spectral gap =⇒ Almost Diophantine. Suppose µ has a spectral gap, and let
c > 0 such that the spectral radius of Tµ satisfies RS(Tµ) ≤ e−c. Let d be
the dimension of G and let H be a maximal proper closed subgroup of G of
dimension p. For δ > 0, we can bound the L2-norm of the indicator function of
the 2δ-neighborhood of H:

‖1H(2δ)‖2 � δ
d−p

2 .

Therefore, for n larger than d−p
2c log 1

δ , we have

‖Tnµ 1H(2δ)‖2 � δd−p.

Making the left-hand side explicit, we find√∫
G

µ∗n(xH(2δ))2 dx� δd−p

and this implies,
µ∗n(H(δ))� δ

d−p
2 .

Choosing C1 ≤ 2c
d−p and c2 = c, and letting δ = e−C1n, this shows that µ is

almost Diophantine.

To prove the converse implication in Theorem 2.3, we use the strategy de-
velopped by Bourgain and Gamburd. If A is a subset of a metric space, for
δ > 0, we denote by N(A, δ) the minimal cardinality of a covering of A by balls
of radius δ. We have the following Product Theorem [11, Theorem 3.9].

Theorem 2.4. Let G be a simple Lie group of dimension d. There exists a
neighborhood U of the identity in G such that the following holds.
Given α ∈ (0, d) and κ > 0, there exists ε0 = ε0(α, κ) > 0 and τ = τ(α, κ) > 0
such that, for δ > 0 sufficiently small, if A ⊂ U is a set satisfying

1. N(A, δ) ≤ δ−d+α−ε0 ,
2. for all ρ ≥ δ, N(A, ρ) ≥ ρ−κδε0 ,
3. N(AAA, δ) ≤ δ−ε0N(A, δ),

then A is included in a neighborhood of size δτ of a proper closed connected
subgroup of G.
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We will use Theorem 2.4 to derive a flattening statement for measures. For
δ > 0, we let

Pδ =
1B(1,δ)

|B(1, δ)|
,

(where | · | is the volume associated to the Haar probability measure on G) and
if µ is a probability measure on G, we denote by µδ the function approximating
µ at scale δ:

µδ = µ ∗ Pδ.

Lemma 2.5 (L2-flattening). Let G be a connected compact simple Lie group.
Given α, κ > 0, there exists ε > 0 such that the following holds for any δ > 0
small enough.
Suppose µ is a symmetric Borel probability measure on G such that one has

1. ‖µδ‖22 ≥ δ−α,
2. for any ρ ≥ δ and any closed connected subgroup H, µ∗µ(H(ρ)) ≤ δ−ερκ.

Then,
‖µδ ∗ µδ‖2 ≤ δε‖µδ‖2.

The proof goes by approximating the measure µδ by dyadic level sets. We
say that a collection of sets {Xi}i∈I is essentially disjoint if for some constant
C depending only on the ambient group G, any intersection of more than C
distinct sets Xi is empty. We will use the following lemma.

Lemma 2.6. Let G be a compact Lie group, µ a Borel probability measure on
G and δ > 0. There exist subsets Ai, 0 ≤ i� log 1

δ such that
1. µδ �

∑
i 2i1Ai � µ4δ

2. Each Ai is an essentially disjoint union of balls of radius δ.

Proof. A proof in the case G = SU(2) is given in [8] and also applies in this
more general setting, mutatis mutandis.

To derive Lemma 2.5, we will also use the non-commutative Balog-Szemerédi-
Gowers Lemma, due to Tao. If A and B are two subsets of a metric group G,
we define the multiplicative energy of A and B at scale δ by

Eδ(A,B) = N({(a, b, a′, b′) ∈ A×B ×A×B | d(ab, a′b′) ≤ δ}, δ).

(See [12] for elementary properties.) We have the following important theorem
(see Tao [12, Theorem 6.10]).

Theorem 2.7 (Non-commutative Balog-Szemerédi-Gowers Lemma). Let G be
a compact Lie group with a Riemannian metric. There exists a constant C > 0
depending only on G such that the following holds for any δ > 0 and any K ≥ 2.
Suppose that A and B are non-empty subsets of G such that

Eδ(A,B) ≥ 1
K
N(A, δ)

3
2N(B, δ)

3
2 .

Then there exists a KC-approximate subgroup H and elements x, y in G such
that
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• N(H, δ) ≤ KC ·N(A, δ)
1
2N(B, δ)

1
2

• N(A ∩ xH, δ) ≥ K−C ·N(A, δ)
• N(B ∩Hy, δ) ≥ K−C ·N(B, δ).

Recall that a subset H of G is called a K-approximate subgroup if it is
symmetric and there exists a finite symmetric set X ⊂ H2 of cardinality at
most K such that HH ⊂ XH. We are now ready to prove Lemma 2.5.

Proof of Lemma 2.5. Write

µδ �
∑
i

2i1Ai � µ4δ

as in Lemma 2.6. Note that for all i, one has

2i|Ai|
1
2 = ‖2i1Ai‖2 � ‖µ4δ‖2 ' ‖µδ‖2,

and
2i|Ai| ' 2iδdN(Ai, δ)� 1.

Assume for a contradiction that for some ε > 0,

‖µδ ∗ µδ‖2 ≥ δε‖µδ‖2,

with δ > 0 arbitrarily small. This gives,

δε‖µδ‖2 � ‖
∑
i,j

2i1Ai ∗ 2j1Aj‖2

≤
∑
i,j

‖2i1Ai ∗ 2j1Aj‖2,

and as the sum on the right-hand side contains at most O((log δ)2) terms, we
must have, for some i and j,

‖2i1Ai ∗ 2j1Aj‖2 �
δε

(log δ)2
‖µδ‖2 ≥ δO(ε)‖µδ‖2.

Therefore,

δO(ε)‖µδ‖2 ≤ ‖2i1Ai ∗ 2j1Aj‖2 ≤ ‖2i1Ai‖1‖2j1Aj‖2 � 2i|Ai|‖µδ‖2. (2)

This implies,

2i|Ai| = δO(ε) and similarly 2j |Aj | = δO(ε). (3)

So we have the following lower bound on the multiplicative energy of Ai and
Aj :

Eδ(Ai, Aj)� δ−3d‖1Ai ∗ 1Aj‖22
≥ δ−3d+O(ε)2−2i−2j‖µδ‖22
≥ δ−3d+O(ε)2−i−j |Ai|

1
2 |Aj |

1
2 = δO(ε)N(Ai, δ)

3
2N(Aj , δ)

3
2 .
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By Theorem 2.7, there exists a δ−O(ε)-approximate subgroup H̃ and elements
x, y in G such that

N(H̃, δ) ≤ δ−O(ε)N(Ai, δ)
1
2N(Aj , δ)

1
2 , (4)

N(xH̃ ∩Ai, δ) ≥ δO(ε)N(Ai, δ) and N(H̃y ∩Aj , δ) ≥ δO(ε)N(Aj , δ). (5)

We may replace H̃ by its δ-neighborhood, and then, µδ(xH̃) ≥ δO(ε). Let U be
a neighborhood of the identity in G as in Theorem 2.4, let r > 0 be such that
B(1, 2r) ⊂ U , and cover xH̃ by O(1) balls of radius r. One of these balls B
must satisfy µδ(xH̃ ∩B) ≥ δO(ε) and thus,

µδ ∗ µδ(H̃2 ∩ U) ≥ µδ(H̃x−1 ∩B−1)µδ(xH̃ ∩B) ≥ δO(ε).

On the other hand, by (2) and (3),

δO(ε)‖µδ‖2 ≤ ‖2i1Ai‖1‖2j1Aj‖2 ≤ ‖2j1Aj‖2 ≤ δ−O(ε)2j/2,

so that 2j ≥ δ−α+O(ε) and similarly 2i ≥ δ−α+O(ε). This implies

N(Aj , δ) ≤ δ−d+α+O(ε) and similarly N(Ai, δ) ≤ δ−d+α−O(ε).

The set H̃ is a δ−O(ε)-approximate subgroup, so N(H̃2, δ) ≤ δ−O(ε)N(H̃, δ).
Recalling Inequality (4), we find

N(H̃2 ∩ U, δ) ≤ N(H̃2, δ) ≤ δ−d+α−O(ε).

On the other hand, µδ ∗ µδ(H̃2 ∩ U) ≥ δO(ε) so the second assumption on
µδ forces, for any ρ ≥ δ (note that any ball of radius ρ is included in the
ρ-neighborhood of some proper closed connected subgroup),

N(H̃2 ∩ U, ρ) ≥ ρ−κδO(ε).

Thus, provided we have chosen ε > 0 small enough, the set H̃2 ∩U satisfies the
assumptions of Theorem 2.4, and so must be included in the δτ -neighborhood
of a proper closed connected subgroup H of G, contradicting the assumption
µ ∗ µ(H(δτ )) ≤ δ−εδκτ .

The idea is now to apply repeatedly that Flattening Lemma to obtain:

Lemma 2.8. Let µ be a symmetric almost Diophantine measure on a connected
compact simple Lie group G. There exists a constant C0 = C0(µ) such that for
any δ = e−C0n > 0 small enough,

‖(µ∗C0 log 1
δ )δ‖2 ≤ δ−

1
4 .

Remark 2. The constant 1
4 could be replaced in this lemma by any fixed

positive constant α. Of course, C0 would then depend on α.
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Proof. We first check that a suitable power ν = µc log 1
δ satisfies the second

condition of Lemma 2.5. Since µ is almost Diophantine, taking n = 1
C1

log 1
δ in

Equation (1) shows that when δ < δ0, for any proper closed connected subgroup
H,

µ∗
1
C1

log 1
δ (H(δ)) ≤ δ

c2
C1 .

If xH is a left coset of a closed subgroup H and m any symmetric measure, we
have

m(xH(δ))2 ≤ m ∗m(H(2δ)).

Therefore, denoting c = 1
4C1

and κ = c2
3C1

, we have, for all δ < δ0, for any left
coset xH of a proper closed connected subgroup,

µ∗2c log 1
δ (xH(δ)) ≤ δκ.

Now, if H is a closed subgroup and m and m′ are any two probability measures
on G, we have

m ∗m′(H(δ)) ≤ sup
x∈G

m′(xH(δ)).

Therefore, if δ < ρ < δ0, we have, for any proper closed connected subgroup H,

µ∗2c log 1
δ (H(ρ)) ≤ max

x
µ∗2c log 1

ρ (xH(ρ)) ≤ ρκ.

In other terms, for δ > 0 small enough, the measure ν := µ∗c log 1
δ satisfies the

second condition of Lemma 2.5.
We now apply Lemma 2.5 repeatedly, starting with the measure ν. If ‖νδ‖2 ≤
δ−

1
4 , then we have what we want. Otherwise, Lemma 2.5 applied to νδ with

α = 1
2 shows that

‖(ν ∗ ν)δ‖2 � ‖νδ ∗ νδ‖2 ≤ δε‖νδ‖2.

We then repeat the same procedure, replacing ν by ν ∗ ν, and so on (note that
the computations made above for ν also show that all the convolution powers of
ν will satisfy the second condition of Lemma 2.5). After at most d

ε iterations,
the procedure must stop, i.e. we must have,

‖(µ∗C0 log 1
δ )δ‖2 = ‖(ν∗2

d
ε )δ‖2 ≤ δ−

1
4 .

The end of the proof of Theorem 2.3 relies on the high-multiplicity of ir-
reducible representations in the regular representation L2(G). Recall that the
irreducible representations of G are in bijection with dominant analytically in-
tegral weights (see e.g. [7]). We denote by πλ the irreducible representation
of G with highest weight λ. If µ is a finite Borel measure on G, the Fourier
coefficient of µ at λ is

µ̂(λ) =
∫
G

πλ(g) dµ(g).

By Lemma 2.8, all we need to show is the following.
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Lemma 2.9. Let µ be a Borel probability measure on a compact semisimple Lie
group G such that for some constant C, for all δ = e−Cn > 0 small enough (n
a positive integer),

‖(µ∗C log 1
δ )δ‖2 ≤ δ−

1
4 .

Then µ has a spectral gap in L2(G).

Proof. Since the representation Vλ occurs in L2(G) with multiplicity dimVλ,
the Parseval Formula for (µ∗C log 1

δ )δ gives

‖(µ∗C log 1
δ )δ‖22 =

∑
λ

(dimVλ)‖µ̂(λ)C log 1
δ P̂δ(λ)‖2HS , (6)

where ‖ · ‖HS is the Hilbert-Schmidt norm. Moreover, it is easily seen that we
may bound the distance (in operator norm) from P̂δ(λ) to the identity (see for
instance [10, Lemme 3.1]): for some constant c > 0 depending only on G, we
have, whenever ‖λ‖ ≤ cδ−1,

‖P̂δ(λ)− IdVλ‖op ≤
1
2
.

Therefore for any λ such that ‖λ‖ ≤ cδ−1, using (6) and the assumption of the
lemma,

δ−
1
2 ≥ 1

2
(dimVλ)‖µ̂(λ)C log 1

δ ‖2op. (7)

Now, as a consequence of the Weyl dimension Formula, we have, for some con-
stant c depending only on G, for any representation Vλ with highest weight λ
[10, Lemme 3.2],

dimVλ ≥ c‖λ‖.

Taking λ with e−Ccδ−1 ≤ ‖λ‖ ≤ cδ−1 in the above equation (7), we find

‖µ̂(λ)C log 1
δ ‖2op � δ

1
2 .

However, the spectral radius of an operator T satisfies, for any integer,

RS(T ) ≤ ‖Tn‖
1
n
op,

so that for some absolute constant K, we have

RS(µ̂(λ)) ≤ (Kδ
1
4 )

1
C log 1

δ

= e−
1

4CK
1

C log 1
δ

which is bounded away from 1 as long as δ is sufficiently small, i.e. as long
as λ is sufficiently large. As the spectral radius of Tµ in L2

0(G) is equal to the
supremum of all RS(µ̂(λ)) for λ 6= 0, this finishes the proof.

8



3 Measures supported on algebraic elements
In this section, we fix a basis for the Lie algebra g. We say that an element
g ∈ G is algebraic if the entries of the matrix of Ad g in that fixed basis are
algebraic numbers. Recall that a probability measure on G is called adapted if
its support generates a dense subgroup of G. We want to prove the following.

Theorem 3.1. Let G be a connected compact simple Lie group. If µ is an
adapted probability measure on G whose support consists of algebraic elements,
then µ has a spectral gap.

Remark 3. We have already explained in Remark 1 that it is enough to prove
such a theorem for a symmetric measure µ. Moreover, if µ is symmetric, under
the assumptions of the theorem, we may always find a symmetric finitely sup-
ported adapted measure ν that is absolutely continuous with respect to µ. It is
readily seen that if ν has a spectral gap, then so has µ, so we may assume in
the proof of Theorem 3.1 that µ is finitely supported.

The proof has two parts. First, we show that, given a proper closed sub-
group H, the probability µ∗n(H) decays exponentially, with a rate that does not
depend on H. Then, we show that when the support of µ consists of algebraic
elements, the measure µ is almost Diophantine. This second part is based on
an application of the effective arithmetic Nullstellensatz, and relies crucially on
the algebraic assumption on the elements of the support of µ.

3.1 Transience of closed subgroups
We want to prove the following.

Proposition 3.2. Let µ be an adapted finitely supported symmetric probability
measure on a connected compact simple Lie group G. Then, there exists a
constant κ = κ(µ) such that for n ≥ n0, for any proper closed subgroup H < G,

µ∗n(H) ≤ e−κn.

The proposition is based on the following lemma.

Lemma 3.3. Let Γ = 〈S〉 be a finitely generated dense subgroup in G. There
exists a finite collection of vector spaces Si, 1 ≤ i ≤ s, over local fields Ki, such
that the following holds:
• for each i ∈ {1, . . . , s}, the group Γ acts proximally and strongly irreducibly

on Si;
• for any proper closed subgroup H < G such that Γ ∩H is infinite, there

exists an i ∈ {1, . . . , s} for which Γ∩H stabilizes a proper linear subspace
of Si.

Let us explain how this lemma implies Proposition 3.2, when combined with
the following important result of random matrix products theory [2, Proposi-
tion 12.3] (see also [5, Theorem 4.4]).
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Theorem 3.4. Let K be a local field and S be a finite dimensional vector
space over K. Suppose µ is a measure on GL(S) such that the semigroup Γ
generated by the support of µ acts proximally on S. Then, there exists a constant
κ = κ(µ) such that for any integer n large enough, for any vector v ∈ S and
any hyperplane V < S,

µ∗n({g ∈ GL(S) | g · v ∈ V }) ≤ e−κn.

Proof of Proposition 3.2. Let Γ be the group generated by the support of µ.
Given a proper closed connected subgroup H of G, we distinguish two cases.
First case: Γ ∩H is finite.
By Selberg’s Lemma, Γ contains a torsion free subgroup of finite index N0.
Hence the cardinality of Γ ∩H is bounded by N0 and the uniform exponential
decay of µ∗n(H) = µ∗n(Γ ∩H) is a direct consequence of Kesten’s Theorem [6,
Corollary 3] since Γ is not amenable.
Second case: Γ ∩H is infinite.
Let Si, 1 ≤ i ≤ s, be the vector spaces given by Lemma 3.3. For each i, the
measure µ may be viewed as a measure on GL(Si). Choose κ > 0 such that the
conclusion of Theorem 3.4 holds for each Si.
Choose i such that Γ ∩H stabilizes a proper subspace L of Si. We then have,
for n large enough,

µ∗n({g ∈ Γ | g · L = L}) ≤ e−κn,

so that
µ∗n(H) = µ∗n(H ∩ Γ) ≤ e−κn.

Before turning to the proof of Lemma 3.3, let us recall the setting. The
group Γ is a dense finitely generated free subgroup of the connected compact
simple group G, and k is the field generated by the coefficients of the elements
Ad g, for g in Γ. As Γ is dense in G, we may view G as the group of real points
of an algebraic group G defined over k. Whenever K is a field containing k,
we will denote by G(K) the group of K-points of G. Similarly, if V is a linear
representation of G defined over K, we will write V (K) for the associated K-
vector space, on which G(K) acts.
In the case when Γ acts proximally on the adjoint representation g(K), for some
local field K containing k, the proof of Lemma 3.3 is substantially simpler. This
is the content of the next lemma.

Lemma 3.5. Assume that Γ acts proximally on g(K), for some local field K
containing k. Then,
• the group Γ acts proximally and strongly irreducibly on g(K);
• for any proper closed subgroup H < G such that Γ ∩H is infinite, Γ ∩H

stabilizes a proper linear subspace of g(K).
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Proof. By assumption, Γ acts proximally on g(K). As Γ is dense in G, it is
Zariski dense in G(K), and therefore Γ acts strongly irreducibly on g(K).
Now if H is a proper closed infinite subgroup of G such that Γ ∩H is infinite,
then Γ∩H stabilizes the (complex) Lie algebra of the Zariski closure of Γ∩H.
This is a proper subspace L < gC defined over k (and hence, over K), so that
Γ ∩H stabilizes a proper subspace of g(K).

Let ∆ ⊂ E (E a Euclidean space of dimension rkG) be the root system of
G, choose a basis Π for ∆, and let C be the associated Weyl chamber. If ω
is a dominant weight, with associated irreducible representation V ω, we denote
by ω∗ the dominant weight of the dual irreducible representation (V ω)∗. We
observe the following:

Lemma 3.6. Let α̃ be the largest root of ∆. Either α̃ = ω is a fundamental
weight, or α̃ = ω + ω∗ is the sum of a fundamental weight and its dual (those
two might coincide).

Proof. Let ρ be the sum of all fundamental weights of ∆. Choose a fundamental
weight ω minimizing 〈ω, ρ〉. The adjoint representation can be viewed as a
subrepresentation of EndV ω ' V ω ⊗ (V ω)∗. Comparing the highest weights,
we find that α̃ can be written

α̃ = ω + ω∗ −
∑
i

niαi, ni ∈ N, αi simple roots.

Taking the inner product with ρ, we find that 〈α̃, ρ〉 ≤ 2〈ω, ρ〉 and in case of
equality, we must have all ni equal to zero i.e. α̃ = ω+ ω∗. On the other hand,
if the inequality is strict, by minimality of 〈ω, ρ〉, the dominant weight α̃ must
be fundamental (not necessarily ω, though). This proves the lemma.

Finally, we recall the following fact.

Lemma 3.7. Assume Γ acts proximally on V ω(K), for some local field K
containing k. Then, Γ acts proximally on V ω+ω∗(K).

Proof. This is an immediate consequence of the fact that if Γ acts proximally
on a vector space V , then we may find an element γ in Γ such that both γ and
γ−1 act proximally on V , see [1, Lemme 3.9].

According to Lemma 3.6, write α̃ = ω or α̃ = ω + ω∗. Putting together
Lemma 3.5 and Lemma 3.7, we find that Lemma 3.3 holds whenever Γ acts
proximally on V ω(K) (or V ω

∗
(K)) for some local field K. Therefore, for the

rest of the proof of Lemma 3.3, we assume (writing the largest root α̃ = ω+ω∗

or α̃ = ω, for some fundamental weight ω):

There is no local field K such that Γ acts proximally on V ω(K). (8)
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To prove Lemma 3.3, we start by defining a certain family of irreducible
complex representations of G. For any nonzero vector X in the Weyl chamber
C of ∆, we let

EX = {α ∈ ∆ | 〈α,X〉 is maximal}

and
mX = card EX .

Note that the largest root α̃ of ∆ always belongs to EX so that EX = {α ∈
∆ | 〈α̃− α,X〉 = 0}.
Finally, we define a dominant weight ωX by

ωX =
∑
α∈EX

α,

and denote by SX the irreducible representation of G with highest weight ωX .
A simple way to check that ωX is indeed a dominant weight is to construct SX
explicitly as follows. Write the decomposition of gC into root spaces for some
maximal torus T :

gC = tC ⊕

(⊕
α∈∆

gα

)
.

Each gα is one-dimensional, so write gα = CEα. The representation SX is the
subrepresentation of

∧mX gC generated by the vector

ξX =
∧
α∈EX

Eα ∈
mX∧

gC.

The spaces Si of Lemma 3.3 will be constructed as representations SX(K),
where the local field K will be suitably chosen as to arrange that the action
of Γ is proximal. The difficult point will be to prove the existence of a proper
stable subspace under Γ∩H, when H is a closed subgroup. For that, one crucial
observation is the following fact about faces of root systems.

Lemma 3.8. Let ∆ be an irreducible root system with a given basis Π. Denote
by α̃ the largest root of ∆, and let X be a nonzero vector in the Weyl chamber
C. In the case α̃ = ω+ω∗ and ω 6= ω∗, assume X not collinear to ω nor to ω∗.
We define the face of ∆ associated to X by

EX = {α ∈ ∆ | 〈α̃− α,X〉 = 0},

and denote by Wα̃ the stabilizer of α̃ in the Weyl group W of ∆. Then,⋂
w∈Wα̃

w · EX = {α̃}.

Proof. Letting E ′X = α̃− EX , we want to check that⋂
w∈Wα̃

w · E ′X = {0}.

12



For sake of clarity, we deal first with the case when α̃ is proportional to some
fundamental weight ω = ωi0 . Any element u in E ′X can be written u = α̃ − α,
so that

〈u, α̃〉 = ‖α̃‖2 − 〈α, α̃〉,

and, as α̃ has maximal norm among the roots, this shows,

∀u ∈ E ′X\{0}, 〈u, α̃〉 > 0. (9)

On the other hand, since the largest root α̃ is proportional to a fundamental
weight, the elements of E invariant underWα̃ are proportional to α̃. This implies
that the element 1

|Wα̃|
∑
w∈Wα̃

w ∈ EndE is just the orthogonal projection to
Rα̃, so that

1
|Wα̃|

∑
w∈Wα̃

w ·X = 〈X, α̃

‖α̃‖2
〉α̃,

is a nonzero multiple of α̃. This implies in particular that⋂
w∈Wα̃

w ·X⊥ ⊂ α̃⊥.

Recalling (9), we indeed find⋂
w∈Wα̃

w · E ′X ⊂ E ′X ∩
⋂

w∈Wα̃

w ·X⊥ ⊂ E ′X ∩ α̃⊥ = {0}.

We deal now with the case α̃ = ω+ω∗, with ω 6= ω∗. This means that the group
G is of type A`, i.e. locally isomorphic to SU(` + 1). Note that this is exactly
the case studied by Bourgain and Gamburd in [4]. We may modify the above
argument in the following way. The element 1

|Wα̃|
∑
w∈Wα̃

w is the orthogonal
projection on the subspace Rω⊕Rω∗. As X is not collinear to ω nor to ω∗, we
have

1
|Wα̃|

∑
w∈Wα̃

w ·X = aω + bω∗, for some a, b > 0

so that ⋂
w∈Wα̃

w ·X⊥ ⊂ (aω + bω∗)⊥.

Then we observe that any element u in E ′X is a sum of simple roots:

u =
∑
α∈Π

nαα

and as α̃ = ω + ω∗ has maximal norm among the roots, we must have nα ≥ 1
for α the simple root corresponding to ω or ω∗. This implies in particular

∀u ∈ E ′X\{0}, 〈u, aω + bω∗〉 > 0.

13



As before, this yields⋂
w∈Wα̃

w · E ′X ⊂ E ′X ∩
⋂

w∈Wα̃

w ·X⊥ ⊂ E ′X ∩ (aω + bω∗)⊥ = {0}.

This property of root systems implies the following result about non-irreducibility
of the representations SX under proper subgroups of G.

Lemma 3.9. Let G be a connected compact simple Lie group with root system
∆, let X be a nonzero vector in the Weyl chamber C. In the case α̃ = ω + ω∗

and ω 6= ω∗, assume X is not collinear to ω nor to ω∗. If H is a proper closed
positive dimensional subgroup of G such that for some γ in H, the vector ξX
above is an eigenvector of γ whose associated eigenvalue has multiplicity one.
Then, the representation SX is not irreducible under the action of H.

Proof. Denote by L the complexification of the Lie algebra of H, by L⊥ its
orthogonal for the Killing form, and write∧mXgC =

⊕mX
j=0

∧j
L ∧

∧mX−j L⊥.
All the subspaces on the right-hand side of the formula are stable under the ac-
tion of γ (in fact, of H), so that the eigenvector ξX , whose associated eigenvalue
has multiplicity one, must belong to one of them, say

ξX ∈
∧j

L ∧
∧mX−j L⊥. (10)

The subspace SX ∩
∧j

L ∧
∧mX−j L⊥ is a nonzero subspace of SX that is

invariant under H. Suppose for a contradiction that it is equal to the whole of
SX , i.e. that

SX ⊂
∧j

L ∧
∧mX−j L⊥. (11)

Let F be the subspace of gC generated by the Eα, for α in EX . By (10), we have

F = F ∩ L⊕ F ∩ L⊥.

As the largest root α̃ is always in EX , the vector Eα̃ is in F , and therefore,

pL(Eα̃) ∈ F,

where pL denotes the orthogonal projections from gC to L. Now, let w be an
element of the Weyl group of ∆ fixing α̃. By (11) and the fact that SX is stable
under G, we have

w · ξX ∈
∧j

L ∧
∧mX−j L⊥.

Reasoning as before, this yields, since α̃ is invariant under w,

pL(Eα̃) ∈ w · F.

14



Therefore, letting w describe the stabilizer Wα̃ of the largest root, we obtain

pL(Eα̃) ∈
⋂

w∈Wα̃

w · F.

However, by Lemma 3.8, the intersection on the right reduces to CEα̃. If
pL(Eα̃) 6= 0, we find Eα̃ ∈ L. Otherwise, Eα̃ ∈ L⊥. To conclude, we ob-
serve that by (11) and the fact that SX is stable under G, we have, for any g in
G,

g · ξX ∈
j∧
L ∧

mX−j∧
L⊥,

so that we can reason exactly as before, just conjugating the maximal torus T ,
the root-spaces and the space F by the element g. This yields

g · Eα̃ ∈ L or g · Eα̃ ∈ L⊥.

Exchanging if necessary L and L⊥, we may assume without loss of generality
that for a set A ⊂ G of positive Haar measure in G, we have

∀g ∈ A, g · Eα̃ ∈ L,

which is easily seen to imply L = gC contradicting the assumption that H is a
proper closed connected subgroup of G.
Thus, we have shown that SX ∩

∧j
L ∧

∧mX−j L⊥ is a proper subspace of SX
that is invariant under H. In particular, SX is not irreducible under H.

Remark 4. Note that the fact that SX is not irreducible under H also implies
that it is not irreducible under any conjugate aHa−1 of H.

We are now ready to conclude the proof of Proposition 3.2 by deriving
Lemma 3.3.

Proof of Lemma 3.3. Clearly, it suffices to deal with maximal proper closed sub-
groups H. There are only finitely many such maximal subgroups, up to con-
jugation by elements of G. Denote by T a finite set of representatives modulo
conjugation of all maximal closed subgroups H that admit a conjugate H0 such
that H0 ∩ Γ is infinite. We may require that for each H0 in T , the intersection
Γ ∩H0 is infinite. For each such H0, we will construct a vector space S over a
local field K and a representation of Γ in S such that:
• the group Γ acts proximally and strongly irreducibly on S,
• if H is any conjugate of H0, then H ∩Γ stabilizes a proper subspace of S.

As Γ ∩ H0 is infinite, it contains a non-torsion element γ. Then, Ad γ has
an eigenvalue λ that is not a root of unity. If k is the field generated by the
coefficients of all Ad g, g ∈ Γ, by [13, Lemma 4.1], we may choose an embedding
of k(λ) into a local field Kv such that |λ|v > 1.
Denote by ∆ the root system of G and by E the Euclidean space containing it.
For some X0 ∈ E, the eigenvalues of Ad γ are: 1 (with multiplicity rkG) and
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the ei〈α,X0〉, α ∈ ∆.
As | · |v is multiplicative, there exists a unique X ∈ E such that

∀α ∈ ∆, log |ei〈α,X0〉|v = 〈α,X〉.

We choose a basis for ∆ such that X lies in the Weyl chamber C and consider
the associated complex irreducible representation of G introduced earlier as SX .
We choose a finite extension K of Kv containing all extensions of k of degree at
most dimSX and such that G is split over K. The representation SX is then
defined over K, and we set S = SX(K). As Γ is a Zariski dense subgroup of
G(K), S is a strongly irreducible and proximal representation of Γ.
On the other hand, writing the largest root α̃ = ω or α̃ = ω+ω∗, Assumption (8)
implies that the element X is not collinear to ω nor to ω∗. Moreover, the
vector ξX is the eigenvector of γ associated to the unique eigenvalue of maximal
modulus in Kv, so that Lemma 3.9 shows that SX is not irreducible under H0.
As we already observed, this implies that whenever H is conjugate to H0, SX
is not irreducible under H.
Thus, if H is any conjugate of H0, applying Lemma 3.10 below to the set of
Ad g, for g ∈ Γ ∩H, we obtain an extension K ′ > K of degree at most dimSX
and a proper subspace of SX defined over K ′ that is stable under Γ ∩H. This
yields a proper subspace of S stable under Γ ∩H and finishes the proof.

For convenience of the reader, we recall the following easy linear algebra
lemma, which we just used in the above proof.

Lemma 3.10. Let A be a subset of SU(d) whose elements have coefficients in
a field k < C, and suppose A stabilizes a proper subspace V of Cd. Then there
exists an extension k′ > k of degree at most d and a proper subspace V ′ defined
over k′ and stable under A.

Proof. The set of solutions x ∈ End(Cd) to

∀a ∈ A, ax = xa, (12)

is a vector space defined over k, it contains both the identity and the orthogonal
projection on the proper stable subspace, so it has dimension at least two.
Therefore, we may find a solution x that has coefficients in k and is not a
homethety. Then, pick an eigenvalue λ of x, let k′ = k(λ) and V ′ = ker(x−λI);
this solves the problem.

3.2 From a closed subgroup to a small neighborhood
Let S be a finite set of algebraic elements in G, and let Γ = 〈S〉 be the subgroup
generated by S. We endow Γ with the word metric associated to the generating
system S, and denote by BΓ(n) the ball of radius n centered at the identity, for
that metric. If L is a proper subspace of the Lie algebra g of G, we let

HL = {g ∈ G | (Ad g)L = L}.

The key proposition is the following.
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Proposition 3.11. Let G be a connected compact simple group and Γ a dense
subgroup generated by a finite set S of algebraic elements of G. There exist a
constant C1 = C1(S) and an integer n0 such that for any integer n ≥ n0, for
any proper subspace L0 < g, there exists a proper closed subgroup H1 < G such
that

BΓ(n) ∩H(e−C1n)
L0

⊂ BΓ(n) ∩H1.

With this proposition, let us prove Theorem 3.1.

Proof of Theorem 3.1. By Theorem 2.3, it suffices to check that µ is almost
Diophantine. Let C1 be the constant given by Proposition 3.11. For H a proper
closed subgroup of G we want to bound µ∗n(H(e−C1n)). IfH is finite we conclude
as in the proof of Lemma 3.3 using Selberg’s Lemma and Kesten’s Theorem, so
we may as well assume that H is positive dimensional. Denote by L0 its Lie
algebra. By Proposition 3.11,

BΓ(n) ∩H(e−C1n)
L0

⊂ BΓ(n) ∩H1,

and therefore, by Proposition 3.2 (taking c2 = κ > 0),

µ∗n(H(e−C1n)) ≤ µ∗n(H1) ≤ e−c2n,

and µ is almost Diophantine.

To prove Proposition 3.11 we want to use an effective version of Hilbert’s
Nullstellensatz. For that, we need to set up some notation.

Let ei, 1 ≤ i ≤ d, be a basis for gC, and define, for I ⊂ {1, . . . , d},

eI =
∧
i∈I

ei.

The family (eI)|I|=l is a basis for
∧`

gC. Denote W` ⊂
∧`

gC the set of pure
tensors, i.e. the set of elements in

∧`
gC that can be written v1 ∧ v2 ∧ · · · ∧ v`

for some vi’s in gC. It is easy to check that W` is an algebraic subvariety of∧`
gC defined over the rationals and therefore, we may choose a finite collection

of polynomials (Rj)1≤j≤C with integer coefficients in
(
d
`

)
variables such that for

any v =
∑
vIeI in

∧`
gC,

v ∈ W` ⇐⇒ ∀j, Rj((vI)|I|=`) = 0.

We also define a family of polynomial maps PI0,g : C(d`)−1 →
∧`

gC for I0 ⊂
{1, . . . , d} with |I0| = ` and g ∈ G, in the following way. The polynomial PI0,g
has

(
d
`

)
− 1 variables vI , indexed by all subsets I of {1, . . . , d} of cardinality `

except I0, and is defined by

PI0,g((vI)) = g · v − v,

where v = eI0 +
∑
I 6=I0 vIeI .
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Definition 3.12. If P is a polynomial map Ca → Cb with coefficients in a
number field k (in the canonical bases), we define the size of P by

‖P‖ = max{|σ(c)| ; c coefficient of P, σ ∈ HomQ(k,C)}.

Let k be the number field generated by the coefficients of all Ad g, for g ∈ Γ,
and denote by Ok its ring of integers. We have the following obvious lemma.

Lemma 3.13. There exists a positive integer q = q(S) such that if g ∈ BΓ(n),
then qnPI0,g has coefficients in Ok and

‖qnPI0,g‖ ≤ q2n.

We are now ready to derive Proposition 3.11. The letter C denotes any
constant that depends only on G; this constant will change along the proof.

Proof of Proposition 3.11. Let L0 be an `-dimensional subspace of g with or-
thonormal basis (ui)1≤i≤`. Write u = u1 ∧ · · · ∧ u` =

∑
I uIeI . As L0 is defined

over the reals, HL0 · u = ±u. We assume for simplicity that HL0 · u = u. 1

For some I0, we have |uI0 | ≥ 1
C for some constant C depending only on dimG.

We let u′ = 1
|uI0 |

u, so that ‖u′‖ ≤ C. We claim that if we choose C1 large
enough, then, for n ≥ n0 (C1, n0 independent of L0), the family of polynomials
P = {Ri} ∪ {PI0,g}g∈H(e−C1n)

L0
∩BΓ(n)

must have a common zero in C(d`)−1.

Suppose for a contradiction that this is not the case. By the above lemma, there
is a positive integer q depending only on S such that for all P in P, qnP has
coefficients in Ok and for all P in P,

‖qnP‖ ≤ q2n.

As the PI0,g have bounded degree (in fact, degree 1) we may extract from the
family qnP polynomials Pj , 1 ≤ j ≤ C generating the same ideal as P. By
the effective Nullstellensatz [9, Theorem IV], if the family of polynomials P has
no common zero, then there exist an element a ∈ Ok and polynomials Qj with
coefficients in Ok, such that

a =
∑

QjPj (13)

and
∀j, ‖Qj‖ ≤ qCn degQj ≤ C and ‖a‖ ≤ qCn. (14)

Now, we want to evaluate (13) at u′ to get a contradiction.
First, we observe that for any P in qnP (in particular, for any Pj),

|P (u′)| ≤ Cqne−C1n.

Indeed, if P is one of the Ri’s, we have P (u′) = 0 because u′ is a pure tensor;
and if P = PI0,g, using that g ∈ H(e−Cn)

L0
and that HL0 fixes u′, we also find the

1Otherwise, one should use polynomials PI0,g(v) defining the subvariety {v | g · v± v = 0}.
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desired estimate.
Second, by (14) and the fact that ‖u′‖ ≤ C, we have, for each j,

|Qj(u′)| ≤ CqCn.

Finally, as a is a nonzero element of Ok of size at most qCn, we have a lower
bound on its complex absolute value (for a constant M depending only on Ok):

q−Mn ≤ |a|.

Thus,
q−Mn ≤ |a| ≤

∑
|Qj(u′)||Pj(u′)| ≤ CqCne−C1n,

which yields a contradiction provided we have chosen C1 large enough (in terms
of C, q and M).
Now let (vI)I 6=I0 be a common zero for the family P. As, for each i, Ri((vI)) = 0,
the vector v = eI0 +

∑
I 6=I0 vIeI is a pure tensor: v = v1∧· · ·∧v`. Moreover, for

all g in BΓ(n) ∩H(e−Cn)
L0

, g · v = v, so that the subspace L1 = Span vi is stable
under g. In other terms, g ∈ HL1 , which is what we wanted to show.
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