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ABSTRACT. We present a topological proof of the following theorem
of Benoist-Quint: for a finitely generated non-elementary discrete sub-
group I'1 of PSL(2,R) with no parabolics, and for a cocompact lattice
I's of PSL(2,R), any I'1 orbit on I';\ PSL(2, R) is either finite or dense.

1. INTRODUCTION

Let I'; be a non-elementary finitely generated discrete subgroup with no
parabolic elements of PSL(2, R). Let I'y be a cocompact lattice in PSL(2, R).
The following is the first non-trivial case of a theorem of Benoist-Quint [1].

Theorem 1.1. Any I'1-orbit on I';\ PSL(2,R) is either finite or dense.

The proof of Benoist-Quint is quite involved even in the case as simple as
above and in particular uses their classification of stationary measures [2].
The aim of this note is to present a short, and rather elementary proof.

We will deduce Theorem 1.1 from the following Theorem 1.2. Let

e Hy = Hy :=PSL(2,R) and G := Hy x Ho;
o H:= {(h, h) :he PSLQ(R)} and I' :=T"1 x I's.

Theorem 1.2. For any x € I'\G, the orbit xH is either closed or dense.

Our proof of Theorem 1.2 is purely topological, and inspired by the re-
cent work of McMullen, Mohammadi and Oh [5] where the orbit closures
of the PSL(2,R) action on I'p\ PSL(2,C) are classified for certain Kleinian
subgroups I'y of infinite co-volume. While the proof of Theorem 1.2 follows
closely the sections 8-9 of [5], the arguments in this paper are simpler be-
cause of the assumption that I's is cocompact. We remark that the approach
of [5] and hence of this paper is somewhat modeled after Margulis’s original
proof of Oppenheim conjecture [4]. When I'; is cocompact as well, Theorem
1.2 also follows from [6].

Finally we remark that according to [1], both Theorems 1.1 and 1.2 are
still true in presence of parabolic elements, more precisely when I'; is any
non-elementary discrete subgroup and I's any lattice in PSL(2,R). The
topological method presented here could also be extended to this case.
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2. HOROCYCLIC FLOW ON CONVEX COCOMPACT SURFACES

In this section we prove a few preliminary facts about unipo-

tent dynamics involving only one factor H;.
The group PSL2(R) := SLy(R)/{=%e} is the group of orientation-preserving
isometries of the hyperbolic plane H? := {z € C : Imz > 0}. The isometry
¢ Z) € PSLy(R) is 2z — Z:Z It
is implicit in this notation that the matrices ¢ stand for their equivalence
class +¢ in PSLy(R). This group PSLy(R) acts simply transitively on the
unit tangent bundle T (H?) and we choose an identification of PSLy(IR) and
T!(H?) so that the identity element e corresponds to the upward unit vector
at . We will also identify the boundary of the hyperbolic plane with the
extended real line 9H2 = R U {co} which is topologically a circle.

We recall that I'y is a non-elementary finitely generated discrete subgroup
with no parabolic elements of the group H; = PSLy(R), that is, I'; is a
convex cocompact subgroup. Let S; denote the hyperbolic orbifold I'y\H?2,
and let Ar, C OH? be the limit set of I'1. Let A; and U; be the subgroups
of Hy given by

corresponding to the element g =

et/2 0 1 ¢
A =A{a = 0 et/ :t € R} and U = {us = 01 1t e R}

Let
Qp, = {z € I'1\H; : A, is bounded}. (2.1)
As T is a convex cocompact subgroup, {2, is a compact A;-invariant subset
and one has the equality

er = {[h] S Pl\Hl : h(O), h(OO) S Apl}.

In geometric words, seen as a subset of the unit tangent bundle of S, the
set p, is the union of all the geodesic lines which stays inside the convex
core of Sj.

Definition 2.2. Let K > 1. A subset T C R is called K-thick if, for any
t >0, T meets [-Kt,—t] U [t, Kt].

Lemma 2.3. There exists K > 1 such that for any x € Qr,, the subset
T(x):={t € R:azu € Qp,} is K-thick.

Proof. Using an isometry, we may assume without loss of generality that
x = [e]. Since the element e corresponds to the upward unit vector at i, and
since = belongs to €r,, both points 0 and oo belong to the limit set Ar,.
Since u¢(00) = oo and u(0) = ¢, one has the equality

T(x)={teR:teAr,}.

Write R —Ar, as the union U.J, where J,’s are maximal open intervals. Note
that the minimum hyperbolic distance between the convex hulls in H?

0= Ei;élf d(hull(Jy), hull(J,))
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is positive, as 26 is the length of the shortest closed geodesic of the double
of the convex core of S;. Choose the constant K > 1 so that for ¢ > 0, one
has

d(hull[— Kt, —t], hull[t, Kt]) = 6/2.

Note that this choice of K is independent of ¢. If T'(x) does not intersect
[—Kt,—t] U [t, Kt] for some t > 0, then the intervals [-Kt, —t] and [t, Kt]
must be included in two distinct intervals Jy and J,,, since 0 € Ap,. This
contradicts the choice of K. O

Lemma 2.4. Let K > 1 and let T be a K-thick subset of R. For any
sequence hy, in Hy ~\ Uy converging to e, there exists a sequence t,, € T such
that the sequence u_y, hpuy, has a limit point in Uy ~\ {e}.

an by

Proof. Write h,, = (Cn d,

> . We compute

o ~(an —cntn (an — dy — cpty)ty + by
qn = Uftnhnutn = ( Cn d, + cntn ) .
Since the element h,, does not belong to Uy, it follows that the (1, 2)-entries
P, (tn) := (an—dy —cuty)t, + by, are non-constant polynomial functions of ¢,
of degree at most 2 whose coefficients converge to 0. Hence, by Lemma 2.5
below, we can choose t,, € T' going to oo so that k < |P,(t,)| < 1, for some
constant k > 0 depending only on K. Since the entry P,(t,) is bounded
and since h,, converges to e, the product c,t, must converge to 0 and the

sequence ¢, has a limit point in U; — {e}. O
We have used the following basic lemma :

Lemma 2.5. For every K > 1 and d > 1, there exists k > 0 such that, for
every non-constant polynomial P of degree d with |P(0)| < k, and for every
K-thick subset T of R, there exists t in T such that k < |P(t)] < 1.

Proof. Using a suitable homothety in the variable ¢, we can assume with no
loss of generality that P belongs to the set P, of polynomials of degree at
most d such that P(1) = [mlaﬁ |P(t)| = 1.

)

Assume by contradiction that there exists a sequence P, of polynomials

in P, and a sequence of K-thick subsets T;, of R such that sup |P,(¢)]
Tun[—1,1

converge to 0. After extraction, the sequence T, converges to[ a .]K -thick

subset T, and the sequence P, converges to a polynomial P, € P, which

is equal to 0 on the set T, N [—1,1]. This is not possible since this set is

infinite. O

We record also, for further use, the following classical lemma :

Lemma 2.6. Let U1+ be the semigroup {u; : t > 0}. If the quotient space
X1 :=T1\H; is compact, any Ufr—orbit is dense in X;.
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Proof. For z € Xy, set x,, := zu,. We then have :L‘nu,nUfL = for. Hence

if z is a limit point of the sequence x, in X, we have zU C attUlJr . By
Hedlund’s theorem [3], 2U is dense. Hence the orbit zU;" is also dense. [

3. PROOF OF THEOREMS 1.1 AND 1.2

In this section, using minimal sets and unipotent dynamics
on the product space I'\G, we provide a proof of Theorem
1.2.

3.1. Unipotent dynamics. We recall the notation G := PSLy(R)xPSLa(R)
and I' := Fl X FQ. Set

Hy = {(hv 6)}7 Hy = {(eah)}v H = {(h’ h)}v
U= {(utve)}7 Us = {(67ut) , U= {(ut)ut)};
Ay = {(a’tve)}7 Ay = {(e’at)}v A= {(ahat)};
X1 = Fl\H1, X2 = FQ\HQ, X = F\G = Xl X Xz.
Recall that I'7 is a non-elementary finitely generated discrete subgroup of
H, with no parabolic elements and that I's is a cocompact lattice in Ho.
For simplicity, we write u; for (u,us) and a; for (at,a;). Note that the
normalizer of U in G is AU Us.

Lemma 3.1. Let g, be a sequence in G ~ AU Us converging to e, and let
T be a K-thick subset of R for some K > 1. Then for any neighborhood Gg
of e in G, there exist sequences s, € T and t, € R such that the sequence
U—s, gnly, has a limit point q # e in AUy N Gy.

A (5 (@)
Proof. Fix 0 < & < 1. Write g, = ( 7(3),97(12)) with g,(f) = (aa) Z?l)> Then

n n
the products ¢, := u_s, gnuy, are given by

0 s iy = (= s B = AP~ t (s — ar?)
n —snIn Yin C'g) dg) n Cglz)tn .
Set

b= b =dls,
n= M, _ -

n Sn—0n

The differences ¢, — e are now rational functions in s,, of the form

n — €= (U%P’VL(SH))

Cn, sn—aﬁlw
where P,(s,) is a polynomial function of s, of degree at most 2 with values
in My(R) x Ma(R). Since the elements g, do not belong to AU;Us, these
polynomials P, are non-constants. In particular, the real valued polyno-
mial functions s, + ||P,(s,)||? are non-constant of degree at most 4. We
introduce now the subsets T}, of R where the denominators are not too small,

Tp={seT||cVs—all|>1/2}.

We claim that for n large these subsets T}, are 4K2-thick. Indeed, since T
is K-thick, the set log|T| C R meets every interval of size log K. Since for
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n large, one has ]aq(ll) — 1] < 1/10, the set log|T},| is obtained by removing
from log |T| an interval of size at most log 4, therefore log |T,,| meets every
interval of size log(4K?) and T,, is 4K?-thick.

Hence, by Lemma 2.5, we can choose s, € T}, going to co so that ke <
| Pn(sn)| < e for some constant k& > 0 depending only on K. In particular,
using the definition of 7;, and the bound on the (1, 1)-entry of P,(s,) we get
the inequalities

1/2 < |cMs, —all] <3
so that
ke/3 < |lgn —el| < 2e.

By construction, when ¢ is small enough, the sequence ¢, has a limit point
q # e in A1 AsUs N Gy.
We claim that this limit ¢ = (¢, ¢®) belongs to the group AU,. It

suffices to check that the diagonal entries of ¢() and ¢(? are equal. If not,

the two sequences cg )sn converge to real numbers ¢ with ¢!) #£ ¢2), and

a simple calculation shows that the (1,2)- entries of q,(f) are comparable to

(2 _o(D)
(M1

Sn, which tends to co. Contradiction. Hence ¢ belongs to AU;. 0O

3.2. H-minimal and U-minimal subsets. Let
Q= er X X2

where Qr, C G is defined in (2.1). Note that, since I'y is cocompact, one
has the equality Qr, = X5.

Let x = (x1,22) € I'\G and consider the orbit xH. Note that xH in-
tersects ) non-trivially. Let Y be an H-minimal subset of the closure zH
with respect to €2, i.e., Y is a closed H-invariant subset of xH such that
Y NQ # 0 and the orbit yH is dense in Y for any y € Y N Q. Since any
H orbit intersects €2, it follows that yH is dense in Y for any y € Y. Let
Z be a U-minimal subset of Y with respect to 2. Since (2 is compact, such
minimal sets Y and Z exist. Set

Y*=YNQOQ and Z*=ZnNAO.
In the following, we assume that
the orbit xH is not closed

and aim to show that zH is dense in X.

Lemma 3.2. For any y € Y, the identity element e is an accumulation
point of the set {g € G~ H :yg € zH}.

Proof. If y does not belong to x H, there exists a sequence h,, € H such that
xh,, converges to y. Hence there exists a sequence g, € G converging to e
such that xh,, = yg,. These elements g,, do not belong to H; hence proving
the claim.

Suppose now that y belongs to xH. If the claim does not hold, then for a
sufficiently small neighborhood Gg of e in G, the set yGoNY is included in
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the orbit yH. This implies that the orbit yH is an open subset of Y. The
minimality of Y implies that Y = yH, contradicting the assumption that
the orbit yH = xH is not closed. O

Lemma 3.3. There exists an element v € Uy \ {e} such that Zv C xH.

Proof. Choose a point z = (z1,29) € Z*. By Lemma 3.2, there exists a
sequence g, in G ~ H converging to e such that zg, € xH. We may assume
without loss of generality that g, belongs to Ho.

Suppose first that at least one g, belongs to Us. Set v = g, be one of those
belonging to Us, so that the point zv belongs to zH. Since v commutes with
U and Z is U-minimal with respect to €2, one has the equality Zv = zvU,
hence the set Zv is included in zH.

Now suppose that g, does not belong to Us. Then, since the set T'(z;)
is K-thick for some K > 1 by Lemma 2.3, it follows from Lemma 2.4 that
there exist a sequence t, — oo in T'(z1) such that, after extraction, the
products u_¢, gnty, converge to an element v € Us \ {e}.

Since the points 2wy, belong to 2, this sequence has a limit point 2’ € Z*.
Since one has the equality

Zv = lim zuy, (U_¢, gnliy, ) = lim (2g,)uy, ,
n—oo n—oo

the point z'v belongs to @ We conclude as in the first case that the set
Zv = z'vU is included in xH. O

Lemma 3.4. For any z € Z*, there exists a sequence g, in GNU converging
to e such that zg, € Z for all n.

Proof. Since the group I's is cocompact, it does not contain unipotent el-
ements and hence the orbit zU is not compact. By Lemma 2.3, the orbit
zU is recurrent in Z*, hence the set Z* \ zU contains at least one point.
Call it 2. Since the orbit z’U is dense in Z, there exists a sequence u, € U
such that z = lim 2’w;,. Hence one can write 2'uy, = zg, with g, in G\ U
converging to e. O

Proposition 3.5. There exists a one-parameter semi-group L™ C AUy such
that ZL* C Z.

Proof. Tt suffices to find, for any neighborhood Gg of e, an element ¢ # e in
AUy N Gy such that the set Zq is included in Z; then writing ¢ = exp w for
an element w of the Lie algebra of G, we can take L' to be the semigroup
{exp(swoo) : s > 0} where wq is a limit point of the elements m when the
diameter of G shrinks to 0.

Fix a point z = (z1,22) € Z*. According to Lemma 3.4 there exists a
sequence g, € G \ U converging to e such that zg, € Z.

Suppose first that g, belongs to AU1Us for infinitely many n; then one
can find u;, € U such that the product ¢, := gnuy, belongs to AUz \ {e}
and zq, belongs to Z. Since ¢, normalizes U and since Z is U-minimal with
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respect to €2, one has the equality Zq¢, = 2Uq, = 2¢,U, hence the set Zq,
is included in Z.

Now suppose that g, is not in AU1Us. By Lemmas 2.3 and 3.1, there exist
sequences s, € T'(z1) and t, € R such that, after passing to a subsequence,
the products u_s, gnus, converge to an element ¢ # e in AU N Gy. Since
the elements zu,, belong to Z*, they have a limit point 2’ € Z*. Since we
have

Z'q= lim 2us, (U_s, gutiy,) = lim (zg,)u,
n—oo n—oo

the element z’q belongs to Z. We conclude as in the first case that the set
Zq = 2'qU is included in Z. O

Proposition 3.6. There exist an element z € zH and a one-parameter
Semi-group U2Jr C Us such that ZU2Jr CzH.

Proof. By Proposition 3.5 there exists a one-parameter semigroup L™ C AU,
such that ZL* C Z. This semigroup L™ is equal to one of the following:
U;, AT or v61A+vo for some element vy € Us \ {e}, where U2+ and At are
one-parameter semigroups of Us and A respectively.

When Lt = U2Jr , our claim is proved.

Suppose now LT = A'. By Lemma 3.3 there exists an element v €
Uz ~ {e} such that Zv C zH. Then one has the inclusions

ZAT™WA c ZvA Cc xHA C zH.

Choose a point 2/ € Z* and a sequence a;, € AT going to co. Since 2'ay,
belong to Q, after passing to a subsequence, the sequence z'a;, converges to
a point z € xH N . Moreover, since the Hausdorff limit of the sets a_;, AT
is A, one has the inclusions

zAvA C nlir{:o Zay, (a_y, AT WA =2 ATvA C zH.
Now by a simple computation, we can check that the set AvA contains a
one-parameter semigroup U2Jr of Us, and hence the orbit zU2Jr is included in
xH as desired.

Suppose finally Lt = vy ATvy for some vy in Us \ {e}. We can write
AT = {ag : t > 0} with e = £1 and vy = (e,us) with s # 0. A simple
computation shows that the set U} := {(e, uzst) : 0 < ¢ < 1} is included in
vy L A+t A. Hence one has the inclusions

ZUy C Zvy'AtwA C ZAC zH.

Choose a point 2/ € Z* and let z € xH be a limit of a sequence 2/a_y,
with t,, going to +o0o. Since the Hausdorff limit of the sets a;, Usa_y, is the
semigroup U, := {(e,uest) : t > 0}, one has the inclusions

ZU2+ C lim (z'?i,tn)&’tnUé?i,tn C ZUéA C zH. |
n—00
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3.3. Conclusion.

Proof of Theorem 1.2. Suppose that the orbit xH is not closed. By Propo-
sition 3.6, the orbit closure H contains an orbit ZU2+ of a one-parameter
subsemigroup of Us. Since I's is cocompact in Hs, by Lemma 2.6, this orbit
zU2+ is dense in zH>. Hence we have the inclusions

X =2G =2HyH C 2UfH C zH.
This proves the claim. U

Proof of Theorem 1.1. Let x = [g] be a point of Xy = I's\ Hy. By replacing
I'y by g7 'T'1g, we may assume without loss of generality that g = e. One
deduces Theorem 1.1 from Theorem 1.2 thanks to the following equivalences:
The orbit [e]H is closed (resp. dense) in I'\G <=

The orbit I'[e] is closed (resp. dense) in G/H <=

The product I'oT'; is closed (resp. dense) in PSLa(R) <=

The orbit [e]T'; is closed (resp. dense) in I's\ PSLa(R). O
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