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Abstract. We present a topological proof of the following theorem
of Benoist-Quint: for a finitely generated non-elementary discrete sub-
group Γ1 of PSL(2, R) with no parabolics, and for a cocompact lattice
Γ2 of PSL(2, R), any Γ1 orbit on Γ2\PSL(2, R) is either finite or dense.

1. Introduction

Let Γ1 be a non-elementary finitely generated discrete subgroup with no
parabolic elements of PSL(2,R). Let Γ2 be a cocompact lattice in PSL(2,R).
The following is the first non-trivial case of a theorem of Benoist-Quint [1].

Theorem 1.1. Any Γ1-orbit on Γ2\PSL(2,R) is either finite or dense.

The proof of Benoist-Quint is quite involved even in the case as simple as
above and in particular uses their classification of stationary measures [2].
The aim of this note is to present a short, and rather elementary proof.

We will deduce Theorem 1.1 from the following Theorem 1.2. Let
• H1 = H2 := PSL(2,R) and G := H1 ×H2;
• H := {(h, h) : h ∈ PSL2(R)} and Γ := Γ1 × Γ2.

Theorem 1.2. For any x ∈ Γ\G, the orbit xH is either closed or dense.

Our proof of Theorem 1.2 is purely topological, and inspired by the re-
cent work of McMullen, Mohammadi and Oh [5] where the orbit closures
of the PSL(2,R) action on Γ0\PSL(2,C) are classified for certain Kleinian
subgroups Γ0 of infinite co-volume. While the proof of Theorem 1.2 follows
closely the sections 8-9 of [5], the arguments in this paper are simpler be-
cause of the assumption that Γ2 is cocompact. We remark that the approach
of [5] and hence of this paper is somewhat modeled after Margulis’s original
proof of Oppenheim conjecture [4]. When Γ1 is cocompact as well, Theorem
1.2 also follows from [6].

Finally we remark that according to [1], both Theorems 1.1 and 1.2 are
still true in presence of parabolic elements, more precisely when Γ1 is any
non-elementary discrete subgroup and Γ2 any lattice in PSL(2,R). The
topological method presented here could also be extended to this case.
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2. Horocyclic flow on convex cocompact surfaces

In this section we prove a few preliminary facts about unipo-
tent dynamics involving only one factor H1.

The group PSL2(R) := SL2(R)/{±e} is the group of orientation-preserving
isometries of the hyperbolic plane H2 := {z ∈ C : Im z > 0}. The isometry

corresponding to the element g =
(
a b
c d

)
∈ PSL2(R) is z 7→ az + b

cz + d
. It

is implicit in this notation that the matrices g stand for their equivalence
class ±g in PSL2(R). This group PSL2(R) acts simply transitively on the
unit tangent bundle T 1(H2) and we choose an identification of PSL2(R) and
T1(H2) so that the identity element e corresponds to the upward unit vector
at i. We will also identify the boundary of the hyperbolic plane with the
extended real line ∂H2 = R ∪ {∞} which is topologically a circle.

We recall that Γ1 is a non-elementary finitely generated discrete subgroup
with no parabolic elements of the group H1 = PSL2(R), that is, Γ1 is a
convex cocompact subgroup. Let S1 denote the hyperbolic orbifold Γ1\H2,
and let ΛΓ1 ⊂ ∂H2 be the limit set of Γ1. Let A1 and U1 be the subgroups
of H1 given by

A1 := {at =
(
et/2 0
0 e−t/2

)
: t ∈ R} and U1 := {ut =

(
1 t
0 1

)
: t ∈ R}.

Let
ΩΓ1 = {x ∈ Γ1\H1 : xA1 is bounded}. (2.1)

As Γ1 is a convex cocompact subgroup, ΩΓ1 is a compact A1-invariant subset
and one has the equality

ΩΓ1 = {[h] ∈ Γ1\H1 : h(0), h(∞) ∈ ΛΓ1}.
In geometric words, seen as a subset of the unit tangent bundle of S1, the
set ΩΓ1 is the union of all the geodesic lines which stays inside the convex
core of S1.

Definition 2.2. Let K > 1. A subset T ⊂ R is called K-thick if, for any
t > 0, T meets [−Kt,−t] ∪ [t,Kt].

Lemma 2.3. There exists K > 1 such that for any x ∈ ΩΓ1, the subset
T (x) := {t ∈ R : xut ∈ ΩΓ1} is K-thick.

Proof. Using an isometry, we may assume without loss of generality that
x = [e]. Since the element e corresponds to the upward unit vector at i, and
since x belongs to ΩΓ1 , both points 0 and ∞ belong to the limit set ΛΓ1 .
Since ut(∞) =∞ and ut(0) = t, one has the equality

T (x) = {t ∈ R : t ∈ ΛΓ1}.
Write R−ΛΓ1 as the union ∪J` where J`’s are maximal open intervals. Note
that the minimum hyperbolic distance between the convex hulls in H2

δ := inf
` 6=m

d(hull(J`),hull(Jm))
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is positive, as 2δ is the length of the shortest closed geodesic of the double
of the convex core of S1. Choose the constant K > 1 so that for t > 0, one
has

d(hull[−Kt,−t],hull[t,Kt]) = δ/2.

Note that this choice of K is independent of t. If T (x) does not intersect
[−Kt,−t] ∪ [t,Kt] for some t > 0, then the intervals [−Kt,−t] and [t,Kt]
must be included in two distinct intervals J` and Jm, since 0 ∈ ΛΓ1 . This
contradicts the choice of K. �

Lemma 2.4. Let K > 1 and let T be a K-thick subset of R. For any
sequence hn in H1 rU1 converging to e, there exists a sequence tn ∈ T such
that the sequence u−tnhnutn has a limit point in U1 r {e}.

Proof. Write hn =
(
an bn
cn dn

)
. We compute

qn := u−tnhnutn =
(
an − cntn (an − dn − cntn)tn + bn

cn dn + cntn

)
.

Since the element hn does not belong to U1, it follows that the (1, 2)-entries
Pn(tn) := (an−dn−cntn)tn +bn are non-constant polynomial functions of tn
of degree at most 2 whose coefficients converge to 0. Hence, by Lemma 2.5
below, we can choose tn ∈ T going to ∞ so that k ≤ |Pn(tn)| ≤ 1, for some
constant k > 0 depending only on K. Since the entry Pn(tn) is bounded
and since hn converges to e, the product cntn must converge to 0 and the
sequence qn has a limit point in U1 − {e}. �

We have used the following basic lemma :

Lemma 2.5. For every K > 1 and d ≥ 1, there exists k > 0 such that, for
every non-constant polynomial P of degree d with |P (0)| ≤ k, and for every
K-thick subset T of R, there exists t in T such that k ≤ |P (t)| ≤ 1.

Proof. Using a suitable homothety in the variable t, we can assume with no
loss of generality that P belongs to the set Pd of polynomials of degree at
most d such that P (1) = max

[−1,1]
|P (t)| = 1.

Assume by contradiction that there exists a sequence Pn of polynomials
in Pd and a sequence of K-thick subsets Tn of R such that sup

Tn∩[−1,1]
|Pn(t)|

converge to 0. After extraction, the sequence Tn converges to a K-thick
subset T∞ and the sequence Pn converges to a polynomial P∞ ∈ Pd which
is equal to 0 on the set T∞ ∩ [−1, 1]. This is not possible since this set is
infinite. �

We record also, for further use, the following classical lemma :

Lemma 2.6. Let U+
1 be the semigroup {ut : t ≥ 0}. If the quotient space

X1 := Γ1\H1 is compact, any U+
1 -orbit is dense in X1.
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Proof. For x ∈ X1, set xn := xun. We then have xnu−nU
+
1 = xU+

1 . Hence
if z is a limit point of the sequence xn in X1, we have zU ⊂ xU+

1 . By
Hedlund’s theorem [3], zU is dense. Hence the orbit xU+

1 is also dense. �

3. Proof of Theorems 1.1 and 1.2

In this section, using minimal sets and unipotent dynamics
on the product space Γ\G, we provide a proof of Theorem
1.2.

3.1. Unipotent dynamics. We recall the notationG := PSL2(R)×PSL2(R)
and Γ := Γ1 × Γ2. Set

• H1 = {(h, e)}, H2 = {(e, h)}, H = {(h, h)};
• U1 = {(ut, e)}, U2 = {(e, ut)}, U = {(ut, ut)};
• A1 = {(at, e)}, A2 = {(e, at)}, A = {(at, at)};
• X1 = Γ1\H1, X2 = Γ2\H2, X = Γ\G = X1 ×X2.

Recall that Γ1 is a non-elementary finitely generated discrete subgroup of
H1 with no parabolic elements and that Γ2 is a cocompact lattice in H2.

For simplicity, we write ũt for (ut, ut) and ãt for (at, at). Note that the
normalizer of U in G is AU1U2.

Lemma 3.1. Let gn be a sequence in G r AU1U2 converging to e, and let
T be a K-thick subset of R for some K > 1. Then for any neighborhood G0

of e in G, there exist sequences sn ∈ T and tn ∈ R such that the sequence
ũ−sngnũtn has a limit point q 6= e in AU2 ∩G0.

Proof. Fix 0 < ε ≤ 1. Write gn = (g(1)
n , g

(2)
n ) with g(i)

n =

(
a

(i)
n b

(i)
n

c
(i)
n d

(i)
n

)
. Then

the products qn := ũ−sngnũtn are given by

q(i)
n = u−sng

(i)
n utn =

(
a

(i)
n − c(i)

n sn (b(i)n − d(i)
n sn)− tn(c(i)

n sn − a(i)
n )

c
(i)
n d

(i)
n + c

(i)
n tn

)
.

Set
tn = b

(1)
n −d

(1)
n sn

c
(1)
n sn−a

(1)
n

.

The differences qn − e are now rational functions in sn of the form

qn − e = 1

c
(1)
n sn−a

(1)
n

Pn(sn),

where Pn(sn) is a polynomial function of sn of degree at most 2 with values
in M2(R) ×M2(R). Since the elements gn do not belong to AU1U2, these
polynomials Pn are non-constants. In particular, the real valued polyno-
mial functions sn 7→ ‖Pn(sn)‖2 are non-constant of degree at most 4. We
introduce now the subsets Tn of R where the denominators are not too small,

Tn := {s ∈ T | |c(1)
n s− a(1)

n | ≥ 1/2}.
We claim that for n large these subsets Tn are 4K2-thick. Indeed, since T
is K-thick, the set log |T | ⊂ R meets every interval of size logK. Since for
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n large, one has |a(1)
n − 1| ≤ 1/10, the set log |Tn| is obtained by removing

from log |T | an interval of size at most log 4, therefore log |Tn| meets every
interval of size log(4K2) and Tn is 4K2-thick.

Hence, by Lemma 2.5, we can choose sn ∈ Tn going to ∞ so that kε ≤
‖Pn(sn)‖ ≤ ε for some constant k > 0 depending only on K. In particular,
using the definition of Tn and the bound on the (1, 1)-entry of Pn(sn) we get
the inequalities

1/2 ≤ |c(1)
n sn − a(1)

n | ≤ 3
so that

kε/3 ≤ ‖qn − e‖ ≤ 2ε.
By construction, when ε is small enough, the sequence qn has a limit point
q 6= e in A1A2U2 ∩G0.

We claim that this limit q = (q(1), q(2)) belongs to the group AU2. It
suffices to check that the diagonal entries of q(1) and q(2) are equal. If not,
the two sequences c(i)

n sn converge to real numbers c(i) with c(1) 6= c(2), and
a simple calculation shows that the (1, 2)- entries of q(2)

n are comparable to
c(2)−c(1)

c(1)−1
sn which tends to ∞. Contradiction. Hence q belongs to AU2. �

3.2. H-minimal and U-minimal subsets. Let

Ω := ΩΓ1 ×X2

where ΩΓ1 ⊂ G1 is defined in (2.1). Note that, since Γ2 is cocompact, one
has the equality ΩΓ2 = X2.

Let x = (x1, x2) ∈ Γ\G and consider the orbit xH. Note that xH in-
tersects Ω non-trivially. Let Y be an H-minimal subset of the closure xH
with respect to Ω, i.e., Y is a closed H-invariant subset of xH such that
Y ∩ Ω 6= ∅ and the orbit yH is dense in Y for any y ∈ Y ∩ Ω. Since any
H orbit intersects Ω, it follows that yH is dense in Y for any y ∈ Y . Let
Z be a U -minimal subset of Y with respect to Ω. Since Ω is compact, such
minimal sets Y and Z exist. Set

Y ∗ = Y ∩ Ω and Z∗ = Z ∩ Ω.

In the following, we assume that

the orbit xH is not closed

and aim to show that xH is dense in X.

Lemma 3.2. For any y ∈ Y , the identity element e is an accumulation
point of the set {g ∈ GrH : yg ∈ xH}.

Proof. If y does not belong to xH, there exists a sequence hn ∈ H such that
xhn converges to y. Hence there exists a sequence gn ∈ G converging to e
such that xhn = ygn. These elements gn do not belong to H; hence proving
the claim.

Suppose now that y belongs to xH. If the claim does not hold, then for a
sufficiently small neighborhood G0 of e in G, the set yG0 ∩ Y is included in
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the orbit yH. This implies that the orbit yH is an open subset of Y . The
minimality of Y implies that Y = yH, contradicting the assumption that
the orbit yH = xH is not closed. �

Lemma 3.3. There exists an element v ∈ U2 r {e} such that Zv ⊂ xH.

Proof. Choose a point z = (z1, z2) ∈ Z∗. By Lemma 3.2, there exists a
sequence gn in GrH converging to e such that zgn ∈ xH. We may assume
without loss of generality that gn belongs to H2.

Suppose first that at least one gn belongs to U2. Set v = gn be one of those
belonging to U2, so that the point zv belongs to xH. Since v commutes with
U and Z is U -minimal with respect to Ω, one has the equality Zv = zvU ,
hence the set Zv is included in xH.

Now suppose that gn does not belong to U2. Then, since the set T (z1)
is K-thick for some K > 1 by Lemma 2.3, it follows from Lemma 2.4 that
there exist a sequence tn → ∞ in T (z1) such that, after extraction, the
products ũ−tngnũtn converge to an element v ∈ U2 r {e}.

Since the points zũtn belong to Ω, this sequence has a limit point z′ ∈ Z∗.
Since one has the equality

z′v = lim
n→∞

zũtn(ũ−tngnũtn) = lim
n→∞

(zgn)ũtn ,

the point z′v belongs to xH. We conclude as in the first case that the set
Zv = z′vU is included in xH. �

Lemma 3.4. For any z ∈ Z∗, there exists a sequence gn in GrU converging
to e such that zgn ∈ Z for all n.

Proof. Since the group Γ2 is cocompact, it does not contain unipotent el-
ements and hence the orbit zU is not compact. By Lemma 2.3, the orbit
zU is recurrent in Z∗, hence the set Z∗ r zU contains at least one point.
Call it z′. Since the orbit z′U is dense in Z, there exists a sequence ũtn ∈ U
such that z = lim z′ũtn . Hence one can write z′ũtn = zgn with gn in Gr U
converging to e. �

Proposition 3.5. There exists a one-parameter semi-group L+ ⊂ AU2 such
that ZL+ ⊂ Z.

Proof. It suffices to find, for any neighborhood G0 of e, an element q 6= e in
AU2 ∩G0 such that the set Zq is included in Z; then writing q = expw for
an element w of the Lie algebra of G, we can take L+ to be the semigroup
{exp(sw∞) : s ≥ 0} where w∞ is a limit point of the elements w

‖w‖ when the
diameter of G0 shrinks to 0.

Fix a point z = (z1, z2) ∈ Z∗. According to Lemma 3.4 there exists a
sequence gn ∈ Gr U converging to e such that zgn ∈ Z.

Suppose first that gn belongs to AU1U2 for infinitely many n; then one
can find ũtn ∈ U such that the product qn := gnũtn belongs to AU2 r {e}
and zqn belongs to Z. Since qn normalizes U and since Z is U -minimal with
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respect to Ω, one has the equality Zqn = zUqn = zqnU , hence the set Zqn
is included in Z.

Now suppose that gn is not in AU1U2. By Lemmas 2.3 and 3.1, there exist
sequences sn ∈ T (z1) and tn ∈ R such that, after passing to a subsequence,
the products ũ−sngnũtn converge to an element q 6= e in AU2 ∩ G0. Since
the elements zũsn belong to Z∗, they have a limit point z′ ∈ Z∗. Since we
have

z′q = lim
n→∞

zũsn(ũ−sngnũtn) = lim
n→∞

(zgn)ũtn ,

the element z′q belongs to Z. We conclude as in the first case that the set
Zq = z′qU is included in Z. �

Proposition 3.6. There exist an element z ∈ xH and a one-parameter
semi-group U+

2 ⊂ U2 such that zU+
2 ⊂ xH.

Proof. By Proposition 3.5 there exists a one-parameter semigroup L+ ⊂ AU2

such that ZL+ ⊂ Z. This semigroup L+ is equal to one of the following:
U+

2 , A+ or v−1
0 A+v0 for some element v0 ∈ U2 r {e}, where U+

2 and A+ are
one-parameter semigroups of U2 and A respectively.

When L+ = U+
2 , our claim is proved.

Suppose now L+ = A+. By Lemma 3.3 there exists an element v ∈
U2 r {e} such that Zv ⊂ xH. Then one has the inclusions

ZA+vA ⊂ ZvA ⊂ xHA ⊂ xH.

Choose a point z′ ∈ Z∗ and a sequence ãtn ∈ A+ going to ∞. Since z′ãtn

belong to Ω, after passing to a subsequence, the sequence z′ãtn converges to
a point z ∈ xH ∩Ω. Moreover, since the Hausdorff limit of the sets ã−tnA

+

is A, one has the inclusions

zAvA ⊂ lim
n→∞

z′ãtn(ã−tnA
+)vA = z′A+vA ⊂ xH.

Now by a simple computation, we can check that the set AvA contains a
one-parameter semigroup U+

2 of U2, and hence the orbit zU+
2 is included in

xH as desired.
Suppose finally L+ = v−1

0 A+v0 for some v0 in U2 r {e}. We can write
A+ = {ãεt : t ≥ 0} with ε = ±1 and v0 = (e, us) with s 6= 0. A simple
computation shows that the set U ′2 := {(e, uεst) : 0 ≤ t ≤ 1} is included in
v−1

0 A+v0A. Hence one has the inclusions

ZU ′2 ⊂ Zv−1
0 A+v0A ⊂ ZA ⊂ xH.

Choose a point z′ ∈ Z∗ and let z ∈ xH be a limit of a sequence z′ã−tn

with tn going to +∞. Since the Hausdorff limit of the sets ãtnU
′
2ã−tn is the

semigroup U+
2 := {(e, uεst) : t ≥ 0}, one has the inclusions

zU+
2 ⊂ lim

n→∞
(z′ã−tn)ãtnU

′
2ã−tn ⊂ ZU ′2A ⊂ xH. �
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3.3. Conclusion.

Proof of Theorem 1.2. Suppose that the orbit xH is not closed. By Propo-
sition 3.6, the orbit closure xH contains an orbit zU+

2 of a one-parameter
subsemigroup of U2. Since Γ2 is cocompact in H2, by Lemma 2.6, this orbit
zU+

2 is dense in zH2. Hence we have the inclusions

X = zG = zH2H ⊂ zU+
2 H ⊂ xH.

This proves the claim. �

Proof of Theorem 1.1. Let x = [g] be a point of X2 = Γ2\H2. By replacing
Γ1 by g−1Γ1g, we may assume without loss of generality that g = e. One
deduces Theorem 1.1 from Theorem 1.2 thanks to the following equivalences:
The orbit [e]H is closed (resp. dense) in Γ\G ⇐⇒
The orbit Γ[e] is closed (resp. dense) in G/H ⇐⇒
The product Γ2Γ1 is closed (resp. dense) in PSL2(R) ⇐⇒
The orbit [e]Γ1 is closed (resp. dense) in Γ2\PSL2(R). �
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