
Geometric and Arithmetic Aspects of Homogeneous Dynamics

- X. During the spring 2015 at MSRI, one of the two programs focused
on Homogeneous Dynamics. Can you explain what the participants in this
program were interested in?

- Y. Homogeneous Dynamics is the study of the stochastic properties of the
action of Lie groups on their homogeneous spaces.

- X. This does not look very concrete to me.

- Y. Quite the contrary! One of the aims of this topic is to solve concrete
questions coming from arithmetic or geometry by using abstract tools that
find their roots in ergodic theory.

- X. What kind of tools?

- Y. Ergodic theorems, mixing properties, invariant measures, entropy and
so on. All these tools are applied to an element g of a group G acting on a
homogeneous space G/Γ.

- X. This is very abstract! Can you show me a simple example?

- Y. The first example is the continued fraction expansion.
Start with an irrational real number x0 and write x0 = [a0, a1, a2, a3, ...],
where this sequence of integers ai is constructed as follows: let a0 be the
integer part of x0, let x1 be the inverse of the fractional part of x0, let a1

be the integer part of x1 and so on.

- X. I remember that Euler and Lagrange proved that this sequence is
periodic if and only if one can write x0 = a + b

√
d for some non-square

positive integer d and some rational numbers a and b. For instance, one has
1
2 + 1

2

√
5 = [1, 1, 1, 1, ...], 1+

√
2 = [2, 2, 2, 2, ...], 1

2 + 1
2

√
3 = [1, 2, 1, 2, ...].

- Y. You are right. But here is an open question. Let d be a non-square
positive integer, do there exist two rational numbers a and b for which the
continued fraction of a+ b

√
d contains only 1’s and 2’s. Can you guess the

answer for d = 7?

- X. One moment please... Using my computer, I find that 5
8 + 3

8

√
7 has

a periodic continued fraction whose period is (1, 1, 1, 1, 1, 1, 1, 2, 1, 2). But I
do not see any homogeneous dynamics in this question.

- Y. This question is related to the excursions of the geodesic flow on the
modular surface. This flow is one of the main source of inspiration in Ho-
mogeneous Dynamics.

- X. Do you have an example with nice pictures?

- Y. The second example is the counting of integer points.
Do you recognize these four curves?
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Figure 1: Can you see the circle in these four pictures?

- X. ???? Those are both nice and messy. The equation might be both
subtle and complicated :o(

- Y. Not at all. Each one of these four curves is just a circle, whose radius
R is approximately 50! I overlaid all that one sees through a square window
of side length 1 successively centered at the integer points in the plane :o)

- X. This reminds me that Gauss proved that the number of integer points
inside this circle is approximately πR2 with an error term bounded by 2πR.

- Y. You are right. But it is not known whether this error term is O(R
1
2
+ε).

One knows that these circles become equidistributed in the square and one
controls their speed of equidistribution.

- X. Does this equidistribution property help to find the best error term in
Gauss approximation?

- Y. Not quite. But for the analogous question with tilings in the hyperbolic
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space, the equidistribution of large spheres allows also to obtain counting
results similar to those of Gauss. The proof relies on the ergodic properties
of the horocyclic flow which is the second main source of inspiration in Ho-
mogeneous Dynamics.

- X. Do you have a simpler example?

- Y. The third example is the ×2×3 question.
One starts with an irrational number x and one denotes by {x} its fractional
part which is x minus its integer part. One looks at the n2 points {2p3qx}
where p and q vary between 1 and n. Here is an open question. Do these
sets of points become equidistributed in the interval [0, 1] for large n.

- X. The word equidistributed seems important. What does it mean?

- Y. Here it means that the proportion of points in these sets that belong
to a given interval I ⊂ [0, 1] is approximatively equal to the volume of I,
with an error term going to 0 when n grows.

- X. You mean the length of I not the volume?

- Y. Correct! But in the interval [0, 1] the words length, volume, mass, and
probability are synonymous! Don’t tell that to a physicist!

- X. This reminds me of a theorem of Borel : almost all real numbers x
are normal, which means that the sets of points {10px} with p ≤ n become
equidistributed in the interval [0, 1] for large n.

- Y. Here we insist on the equidistribution being true for all irrational num-
bers x. This question is also an important source of inspiration in homo-
geneous dynamics where pairs of commuting transformations often occur.

- X. I guess that in your example the pair is the two maps x 7→ {2x} and
x 7→ {3x}. But these two maps are not invertible transformations of the
circle R/Z. Isn’t it a problem?

- Y. We force them to be invertible. We replace this circle by a solenoid:
each point x of the circle is replaced by the Cantor set of all its possible
predecessors!

- X. You mean that this guy x knows its future but has forgotten its past
and you force him to remember it!

- Y. Kind of. Mathematically this solenoid is a compact homogeneous space
G/Γ where G is the product G = R × Q2 × Q3, the Qp’s being the p-adic
fields and Γ the diagonal subgroup Z[16 ]. The use of these local fields is
another important feature in Homogeneous Dynamics.

- X. Do you have another example with nice pictures?

- Y. The fourth example is the equidistribution of lattices.

- X. By a lattice you mean a subgroup of Rd generated by a basis of Rd as
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for instance the lattice Zd of integer points in Rd?

- Y. Exactly. We will assume d = 2 to make it simple. We will focus on
the shape of the lattices, not on their size. Thus we consider as equal two
lattices which are images of one another by a homothety. Do you know how
to parametrize the set X of these lattices Λ?

- X. Yes, one has X = SL(2,R)/SL(2,Z). After a homothety and a rotation
by the angle a ∈ [−π

2 ,
π
2 ], one can assume that the vector (1, 0) is one of the

shortest non-zero vectors of Λ and one let (x, y) with y > 0 be a shortest
non-horizontal vector of Λ. This vector is in the strip given by |x| ≤ 1

2 and
x2 + y2 ≥ 1.

Figure 2: Equidistribution of finite index lattices
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- Y. Very good. We will use (a, x, y′) with y′ = 1/y as parameters for Λ
so that our set of parameters is bounded. Now we consider the set Fn of
sublattices Λ of index n in Z2. This is a finite set. Do you know why?

- X. Yes, Λ must contain nZ2 and is determined by its image in (Z/nZ)2.

- Y. The theorem is that these sets Fn become equidistributed in X for large
n, and, more precisely, one can bound effectively the error term.

- X. What does equidistributed mean here?

- Y. The same as before: the proportion of points of Fn that belong to
a given ball B in X converges to m(B)/m(X) where m is the measure
m = dadx dy′. This is illustrated in the two upper pictures where n is the
prime number n = 3061. First for the parameters (x, y′) then for (a, y′).

- X. Why did you draw almost the same pictures twice?

- Y. The lower pictures show that this equidistribution occurs also with a
non-prime integer n. Here n = 2048 is a power of 2. To be precise, we have
only drawn here the sublattices Λ ∈ Fn that are not included in 2Z2.

- X. Can you explain the nice structures on the right-hand side pictures?

- Y. Here is a hint: the vectors
√
ny′(cos a, sin a) belong to Z2.

- X. I guess the homogeneous dynamics hidden in this example is again the
geodesic flow on the modular surface...

- Y. Not quite! The homogeneous space here is SL(2,A)/SL(2,Q) where A
is the ring of adèles of Q.

- X. Why does one need such a strange ring?

- Y. The ring of adèles is a very natural object: it is a locally compact ring
that contains Q as a discrete subring and such that the quotient A/Q is
both compact and connected.

- X. It behaves like the field R of real numbers for the ring Z of integers!

- Y. Precisely. Another key tool in the proof is the uniform mixing property,
also called spectral gap or uniform decay of matrix coefficients.

- X. This looks tough... Do you have a simpler example?

- Y. The fifth example is the normal subgroup theorem.
I will just describe a special case of this theorem. Consider a finite dimen-
sional division algebra L over Q whose center is equal to Q.

- X. You mean like the quaternion algebras over Q.

- Y. The quaternion algebras are those L for which dimQ L = 4. The di-
mension dimQ L is always a square d2. Here we will assume d ≥ 3.

- X. But the quaternion algebras are the only examples I know!

- Y. Yet, there are many others. Indeed, these division algebras L are de-

5



scribed by the so-called Brauer group of Q.

- X. The very Brauer group which plays a role in the class field theory?

- Y. Yes. Now choose a basis of L in which the multiplication of L has in-
teger coefficients and let Γ be the multiplicative subgroup of Lr {0} whose
elements and their inverses have integer coordinates.

- X. This group Γ is a non-commutative analogue of the group of units in
a number field. Is this group Γ infinite as in Dirichlet’s units theorem?

- Y. Yes for d ≥ 3. Indeed, Γ is a discrete cocompact subgroup of the group
G = SL(d,R). One wants to describe the normal subgroups of Γ.

- X. This group Γ cannot be simple because a congruence condition like
being equal to 1 modulo n defines a finite index normal subgroup of Γ.

- Y. Exactly. The theorem says that the normal subgroups of Γ are either
finite or have finite index in Γ.

- X. You mean Γ is almost simple! What happens for the quaternion divi-
sion algebras?

- Y. In this case the group Γ is either finite or a finite extension of the fun-
damental group of a higher genus surface. It has lots of normal subgroups.

- X. I guess the homogeneous space in this example is G/Γ.

- Y. Yes. But another important homogeneous space in this context is the
so-called flag variety F of G. One of the key points in the proof is to classify
the Γ-invariant sub-σ-algebras of the Lebesgue σ-algebra of F .

- X. Do you have another example with nice pictures?

- Y. Yes, many! The Apollonian circles, the integer points on spheres, the
gaps in

√
n modulo one, the random walks on tori, the space of quasicristals,

the irrational quadratic forms ... but we are running out of time.

- X. Thanks for your answers. How can I learn more on this topic?

- Y. It’s up to you to decide. Some PhD students first study either the
Margulis arithmeticity theorem or the Ratner classification theorem. Oth-
ers focus directly on one of the many concrete remaining open questions.

- X. Like the ones you explained to me. Where did you find these five
examples?

- Y. The first one is due to McMullen, the second and fifth to Margulis, the
third to Furstenberg, and the fourth to Clozel, Oh and Ullmo.
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