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Abstract

We prove that the harmonic measures on the spheres of a pinched
Hadamard manifold admit uniform upper and lower bounds.

1 Introduction

Let X be a Hadamard manifold. This means that X is a complete simply
connected Riemannian manifold of dimension k ≥ 2 whose curvature is non-
positive KX ≤ 0. For x in X and R > 0, let σx,R be the harmonic measure
on the sphere S(x,R). We refer to Section 3.1 for a precise definition of
σx,R. The aim of these notes is to give uniform upper and lower bounds for
these harmonic measures σx,R.

Theorem 1.1. Let 0 < a < b and k ≥ 2. There exist positive constants
M , N depending solely on a, b, k such that for all k-dimensional Hadamard
manifolds X with pinched curvature −b2 ≤ KX ≤ −a2, all points x in X,
all radius R > 0 and all angles θ ∈ [0, π/2] one has

1
M θN ≤ σx,R(Cθx) ≤M θ

1
N (1.1)

where Cθx stands for any cone with vertex x and angle θ.

These inequalities (1.1) play a crucial role in the extension of the main
result of [4] from rank one symmetric spaces to Hadamard manifolds. Indeed,
using (1.1), we prove in [3] that any quasi-isometric map between pinched
Hadamard manifolds is within bounded distance of a unique harmonic map.
The key point in (1.1) for this application is the fact that the constants M
and N do not depend on x nor R.

The proof of Theorem 1.1 relies on various technical tools of the potential
theory on pinched Hadamard manifolds : the Harnack inequality, the barrier
functions constructed by Anderson and Schoen in [2], and upper and lower
bounds for the Green functions due to Ancona in [1]. Related estimates
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are available, like the one by Kifer–Ledrappier in [6, Theorem 3.1 and 4.1]
where (1.1) is proven for the sphere at infinity, or by Ledrappier–Lim in [7,
Proposition 3.9] where the Hölder regularity of the Martin kernel is proven.
Our approach also gives a non probabilistic proof of the Kifer–Ledrappier
estimates.

Here is the organization of this paper. In Chapter 2, we collect basic facts
on Hadamard manifolds and their harmonic functions. In Chapter 3, we
prove uniform estimates for the normal derivative of the Green functions. In
Chapter 4 and 5 we prove successively the upper bound and the lower bound
in (1.1). We have postponed to Chapter 6 the proof of a few purely geometric
estimates on Hadamard manifolds that were needed in the argument.

2 Pinched Hadamard manifolds

In this chapter, we collect preliminary results on Hadamard
manifolds and their harmonic functions.

Let X be a Hadamard manifold. For instance, the Euclidean space Rk is
a Hadamard manifold with zero curvature KX = 0, and the real hyperbolic
space Hk is a Hadamard manifold with constant curvature KX = −1. We
will say that X is pinched if there exist constants a, b > 0 such that

−b2 ≤ KX ≤ −a2 < 0.

For instance, the non-compact rank one symmetric spaces are pinched Hada-
mard manifolds.

2.1 Laplacian and subharmonic functions

We introduce a few subharmonic functions on X or on open
subsets of X which will play the role of barriers in the following
chapters.

When o is a point in X, we denote by ρo the distance function defined
by ρo(x) = d(o, x) for x in X. When F : X → R is a continuous function,
we denote by ∆F its Laplacian. In local coordinates (x1, . . . , xk) of X,
denoting the coefficients of the metric tensor by gij and the volume density
by v =

√
det(gij), one has

∆F = v−1∂xi(vg
ij∂xjF ).

A real valued function F on X is harmonic if ∆F = 0, subharmonic if
∆F ≥ 0 and superharmonic if ∆F ≤ 0.
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Lemma 2.1. Let X be a Hadamard manifold and o ∈ X. The Laplacian of
the distance function ρo satisfies

∆ρo ≥ (k−1)ρ−1o ,

where k is the dimension of X.
If KX ≤ −a2 < 0, then one has

∆ρo ≥ (k−1) a coth(a ρo) (2.1)

and if −b2 ≤ KX ≤ 0, then one has

∆ρo ≤ (k−1) b coth(b ρo) . (2.2)

These classical inequalities mean that the difference is a positive measure.
See [2, Section 2] and [4, Lemma 3.2].

The following corollary provides useful barriers on X.

Corollary 2.2. Let X be a Hadamard manifold and o ∈ X.
a) For KX ≤ −a2 < 0 and 0 < m0 ≤ (k−1) a,
the function e−m0ρo is superharmonic on X.
b) For −b2 ≤ KX ≤ 0 and M0 ≥ (k−1) b coth(b/4),
the function e−M0ρo is subharmonic on X rB(o, 14).

Proof. For a smooth function f : [0,∞[→ R one has

∆(f ◦ ρo) = f ′′ ◦ ρo + (f ′ ◦ ρo)∆ρo.

Therefore, for τ > 0, one has

∆(e−τρo) = (τ −∆ρo) τ e
−τρo .

a) Using (2.1), one gets
∆(e−m0ρo) ≤ (m0 − (k−1) a coth(a ρo))m0 e

−m0ρo ≤ 0.
b) Using (2.2), one gets outside the ball B(o, 14),

∆(e−M0ρo) ≥ (M0 − (k−1) b coth(b ρo))M0 e
−M0ρo ≥ 0.

2.2 Anderson–Schoen barrier

Another very useful barrier is the following function u intro-
duced by Anderson and Schoen in [2].

We denote by ∂X the visual boundary of the Hadamard manifold X.
For each point w in X, this boundary is naturally identified with the set of
geodesic rays wξ starting at w. For 0 < θ ≤ π

2 we denote by Cθwξ the closed
cone with axis wξ and angle θ : it is the union of all the geodesic rays wη
with vertex w and whose angle with the ray wξ is at most θ. Two geodesic
rays with vertex w are said to be opposite if their union is a geodesic i.e. if
their angle is equal to π.
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Lemma 2.3. Let X be a Hadamard manifold with −b2 ≤ KX ≤ −a2 < 0.
There exist constants ε0 > 0 and C0 > 0 such that for every two opposite
geodesic rays wξ+ and wξ− with the same vertex w ∈ X, there exists a
positive superharmonic function u on X such that :

u(x) ≥ 1 for all x in the cone C
π/2
wξ+

(2.3)

u(x) ≤ C0 e
−ε0d(w,x) for all x on the ray wξ−. (2.4)

This function u = uwξ+ will be called the Anderson–Schoen barrier for
the ray wξ+.

Proof. See [2, Proof of Theorem 3.1]. We briefly sketch the construction of
the function u. As shown in Figure 1, let o be the point at distance 1 from
w on the geodesic ray wξ−. Choose a non negative continous function u0

w
xx

-

o

2p/3
p/6

u  =0
0

 =1
0

+

Figure 1: Construction of the Anderson–Schoen barrier.

on X r o which is constant on the rays with vertex o, which is equal to 1

on the cone C
2π/3
oξ+

, and equal to 0 on the cone C
π/6
oξ− as in Figure 1. Then,

consider a function u1 obtained by smoothly averaging u0 on balls of radius
1. It is given by

u1(x) =

∫
X χ(d(x, y))u0(y)dy∫

X χ(d(x, y))dy

where dy is the Riemannian measure on X and χ ∈ C∞(R) is an even pos-
itive function whose support is [−1, 1]. This function u1 has the expected
behavior (2.3) and (2.4) and its second covariant derivative decays exponen-
tially at infinity. Therefore using the same computation as in Corollary 2.2,
one can find explicit constants ε0 > 0 and C ′0 > 0 depending only on a, b
and k such that the function u := u1 + C ′0e

−ε0ρw is superharmonic. This is
the required function u.

2.3 Harnack-Yau inequality

We state without proof a version of Harnack inequality due
to Yau in [9].
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Lemma 2.4. Let X be a Hadamard manifold with −b2 ≤ KX ≤ 0. There
exists a constant C1 = C1(k, b) such that for every open set Ω ⊂ X and
every positive harmonic function u : Ω→]0,∞[, one has

‖Dx log u‖ ≤ C1 for all x in X with d(x, ∂Ω) ≥ 1. (2.5)

This lemma is true for any complete Riemannian manifold whose Ricci
curvature is bounded below. A short proof has been written by Peter Li and
Jiaping Wang in [8, Lemma 2.1].

3 Green functions

We collect in this chapter various estimates for the Green
functions on Hadamard manifolds. We also explain why the
Green functions are useful to compute the harmonic measures.

3.1 Harmonic measures

We first recall the definition of the harmonic measures.

Since X is a Hadamard manifold, for each x in X, the exponential map
expx : TxX → X is a C∞-diffeomorphism. In particular, for all R > 0, the
sphere S(x,R) is a C∞-submanifold of X. Solving the Dirichlet problem on
the closed ball B(x,R) gives rise to a family of Borel probability measures
σyx,R on S(x,R) indexed by y ∈ B(x,R). These measures are called harmonic
measures. Indeed, for every continuous function f on the sphere S(x,R),
there exists a unique continuous function hf on the ball B(x,R) such that

∆hf = 0 in B̊(x,R) and hf = f in S(x,R). (3.1)

The map f 7→ hf (y) is then a probability measure σyx,R on S(x,R). This
probability measure is defined by the equality

hf (y) =
∫
S(x,R) f(η) dσyx,R(η). (3.2)

The harmonic measures that occur in Theorem 1.1 correspond to y = x, that
is σx,R := σxx,R. Our aim is to prove the bound (1.1) for these measures.

Remark 3.1. When X is the hyperbolic space Hk, and more generally when
X is a rank one symmetric space, the harmonic measure σx,R is a multiple of
the Riemannian measure Ax,R on the sphere S(x,R). But for a Hadamard
manifold X these two measures are not always proportional.

Remark 3.2. When solving the Dirichlet problem on the visual compactifi-
cation X = X ∪ ∂X one gets a family of probability measures (σy∞)y∈X on
∂X which are also called harmonic measures. See [2, Theorem 3.1].
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3.2 Estimating the Green functions

Before begining the proof of Theorem 1.1, we recall the defi-
nition and a few estimates of the Green functions.

For any ball B(x,R) in X and any point y in the interior B̊(x,R), one
denotes by Gyx,R the corresponding Green function. It is the unique function
on the ball B(x,R) which is continuous outside y and such that

∆Gyx,R = −δy in B̊(x,R) and Gyx,R = 0 on S(x,R). (3.3)

When X is pinched, for any point y in X, one denotes by Gy∞ the cor-
responding Green function on X. It is the unique function on X which is
continuous outside y and such that

∆Gy∞ = −δy and lim
z→∞

Gy∞(z) = 0.

These Green functions Gyx,R and Gy∞ are positive.
We now state various classical estimates for the Green functions on

Hadamard manifolds.
The first lemma gives a uniform estimate for a fixed radius R0.

Lemma 3.3. Let X be a Hadamard manifold with −b2 ≤ KX ≤ 0. For
each R0 ≥ 1, there exist constants C2 > c2 > 0 such that, for any x in X :

c2 ≤ Gxx,R0
(z) ≤ C2 for all z ∈ S(x, 12). (3.4)

Proof. This is a special case of [5, Theorem 11.4].

The second lemma, due to Ancona in [1], provides estimates for the Green
functions which are uniform in the radius R under pinching conditions.

Lemma 3.4. Let X be a Hadamard manifold with −b2 ≤ KX ≤ −a2 < 0.
a) There exist constants C ′2 > c′2 > 0 such that for any R > 0, x in X and
y in B̊(x,R) with d(x, y) ≤ R−1, one has :

c′2 ≤ Gyx,R(z) ≤ C ′2 for all z ∈ S(y, 12). (3.5)

Similarly, for any y in Y , one has :

c′2 ≤ Gy∞(z) ≤ C ′2 for all z ∈ S(y, 12).

b) One can also choose these constants c′2, C ′2 such that, for any y in X :

c′2 e
−M0d(y,z) ≤ Gy∞(z) ≤ C ′2 e

−m0d(y,z) for all z ∈ X rB(y, 12).

Proof of Lemma 3.4. a) For the lower bound : by the maximum principle,
one has Gyx,R ≥ Gyy,2 and one uses (3.4). For the upper bound : one has

Gyx,R ≤ G
y
∞ and the bounds for Gy∞ are in [1, Prop. 7].

b) One uses the estimation of Gy∞ on the sphere S(y, 12) given in a), the
barriers given in Corollary 2.2 and the maximum principle. See [1, Remark
2.1 p. 505] for more details.
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3.3 Bounding above the gradient of the Green functions

We explain why we are interested in bounding the gradient
of the Green functions, and prove such an upper bound.

Combining equalities (3.1) and (3.3) with Green formula, one gets the
equality

hf (y) =

∫
S(x,R)

f(η)
∂Gyx,R
∂n

(η) dAx,R(η), (3.6)

where ∂G
∂n := gradG.~n denotes the derivative of G in the direction of the

inward normal vector ~n to the sphere S(x,R), and where Ax,R denotes the
Riemannian measure on this sphere. Compared with Formula (3.2), this
gives a formula for the harmonic measure :

σyx,R =
∂Gyx,R
∂n

Ax,R . (3.7)

The following two lemmas provide a uniform upper bound for this normal
derivative when y and η are not too close.

The first lemma gives uniform estimates for a fixed radius R0.

Lemma 3.5. Let X be a Hadamard manifold with −b2 ≤ KX ≤ 0. For each
R0 > 0, there exists C3 > 0 such that for any x ∈ X, η ∈ S(x,R0), one has

∂Gxx,R0

∂n
(η) ≤ C3 . (3.8)

The second lemma gives estimates which are uniform in the radius R
under a pinching condition.

Lemma 3.6. Let X be a Hadamard manifold with −b2 ≤ KX ≤ −a2 < 0.
There exists C ′3 > 0 such that for R ≥ 1, x ∈ X, y ∈ B̊(x,R), η ∈ S(x,R) :

∂Gyx,R
∂n

(η) ≤ C ′3 as soon as d(y, η) ≥ 1. (3.9)

Proof of Lemmas 3.5 and 3.6. The proofs of these two lemmas are the same,
except that they rely either on Lemma 3.3 or on Lemma 3.4. We will only
prove Lemma 3.6.

The strategy is to construct an explicit superharmonic function F on the
ball B(x,R) such that F (η) = 0, such that F ≥ Gyx,R in a neighborhood of
η, and whose normal derivative at η is uniformly bounded.

As shown in Figure 2.A, we introduce the point y0 on the ray xη such
that d(x, y0) = R+ 1

3 . By construction one has d(η, y0) = 1
3 .

We will choose the function F to be

F (z) = C4(e
−M0/3 − e−M0 d(y0,z)) ,
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Figure 2: Proofs of uniform majoration and minoration for
∂Gyx,R
∂n

(η).

for a constant C4 that we will soon determine.
We first notice that, according to Lemma 2.2,

F is a positive superharmonic function on the ball B(x,R). (3.10)

Moreover, since the point y ∈ B(x,R) satisfies d(y, η) ≥ 1 and since KX ≤ 0,
one must have d(y, y0) ≥ 1. We now bound uniformly the Green function
Gyx,R on the sphere S(y0,

1
2). By the maximum principle, one has

Gyx,R(z) ≤ Gyx,R+1(z) for all z in B(x,R). (3.11)

Moreover, using the bound (3.5) in Lemma 3.4, one gets

Gyx,R+1(z) ≤ C
′
2 for all z in S(y, 12). (3.12)

Combining (3.11) and (3.12) with the maximum principle, one infers that

Gyx,R(z) ≤ C ′2 for all z in B(x,R) rB(y, 12).

In particular, one has

Gyx,R ≤ F on S(y0,
1
2) ∩B(x,R) (3.13)

for the choice of the constant

C4 :=
C ′2

e−M0/3 − e−M0/2
.

Combining (3.10), (3.13) and the maximum principle it follows that, on the
grey zone of Figure 2.A :

Gyx,R ≤ F on B(y0,
1
2) ∩B(x,R).

Therefore, one has the inequality between the normal derivatives

∂Gyx,R
∂n

(η) ≤ ∂F

∂n
(η) =

C ′2M0

1− e−M0/6
.

This proves the bound (3.9).
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3.4 Bounding below the gradient of the Green functions

We will also need a lower bound for the gradient of the Green
functions.

The following two lemmas provide a uniform lower bound for the normal
derivative when y is not too far from η and not too close to the sphere.

The first lemma gives uniform estimates for a fixed radius R0.

Lemma 3.7. Let X be a Hadamard manifold with −b2 ≤ KX ≤ 0. For
each R0 ≥ 1, there exists c3 > 0 such that for x ∈ X, η ∈ S(x,R0), one has

∂Gxx,R0

∂n
(η) ≥ c3 . (3.14)

The second lemma gives estimates which are uniform in the radius R
under a pinching condition.

Lemma 3.8. Let X be a Hadamard manifold with −b2 ≤ KX ≤ −a2 < 0.
There exists c′3 > 0 such that for R ≥ 1, x ∈ X, y ∈ B(x,R−1), η ∈ S(x,R):

∂Gyx,R
∂n

(η) ≥ c′3 as soon as d(y, η) ≤ 4. (3.15)

Proof of Lemmas 3.7 and 3.8. The proofs of these two lemmas are the same,
except that they rely either on Lemma 3.3 or on Lemma 3.4. We will only
prove Lemma 3.8.

The strategy is as in Section 3.3. We construct a subharmonic function
f on the ball B(x,R) such that f(η) = 0, such that f ≤ Gyx,R in a small
ball tangent at η to the sphere S(x,R), and whose normal derivative at η is
uniformly bounded below.

As shown in Figure 2.B, we introduce the point y0 on the ray xη such
that d(x, y0) = R− 1. By construction one has d(η, y0) = 1. We will choose
the function f to be

f(z) = c4(e
−M0 d(y0,z) − e−M0) ,

for a constant c4 that we will soon determine.
We first notice that, according to Lemma 2.2,

f is subharmonic outside B(y0,
1
2) and f ≡ 0 on S(y0, 1). (3.16)

We now give a uniform lower bound for the Green function Gyx,R(w) for all

points w in S(x,R− 1
2) ∩B(y0, 1). Since d(x, y) ≤ R−1, we observe that it

follows from Lemma 3.4 that, for all z in S(y, 12) :

Gyx,R(z) ≥ c′2.
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For w ∈ S(x,R− 1
2) ∩B(y0, 1), pick z ∈ S(y, 12) on the segment [yw]. Since

the segment [zw] is included in the ball B(x,R− 1
2) and has length at most

6, it follows from Harnack inequality (2.5) that :

Gyx,R(w) ≥ c′2 e−12C1 .

This means that

Gyx,R ≥ f on S(x,R− 1
2) ∩B(y0, 1) (3.17)

for the choice of the constant

c4 :=
c′2 e
−12C1

e−M0/2 − e−M0
.

Combining (3.16), (3.17) and the maximum principle, one gets the bound
on the grey zone of Figure 2.B

Gyx,R ≥ f on B(y0, 1) rB(x,R− 1
2).

Therefore, one has the inequality between the normal derivatives

∂Gyx,R
∂n

(η) ≥ ∂f

∂n
(η) =

c′2M0 e
−12C1

eM0/2 − 1

This proves the bound (3.9).

4 Upper bound for the harmonic measures

The aim of this chapter is to prove the upper bound in (1.1).

We recall that X is a k-dimensional Hadamard manifold satisfying the
pinching condition −b2 ≤ KX ≤ −a2 < 0. Let x be a point in X. We will
denote by ξ a point on the sphere S(x,R), by xξ the ray with vertex x that
contains ξ, and by Cθxξ the cone with axis xξ and angle θ. We want to bound

σxx,R(Cθxξ) ≤Mθ1/N (4.1)

where the constants M and N depend only on a, b and k. It is not restrictive
to assume that b = 1. We will distinguish three cases, setting

θR := 10−3 e−(R−2) :

? Bounded radius : R ≤ 2.
? Large angle : R ≥ 2 and θ ≥ θR.
? Small angle : R ≥ 2 and θ ≤ θR.
Without loss of generality, we may assume that θ ≤ 10−3.
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4.1 Upper bound for a bounded radius

We prove (4.1) when R ≤ 2.

More precisely, when R ≤ 2, we will prove the upper bound (4.1) under
the weaker pinching condition −1 ≤ KX ≤ 0. This allows us to multiply
the metric by a ratio 2/R, while preserving this pinching condition. Hence
we can assume that the radius is R0 = 2. Using the expression (3.7) for the
density of the harmonic measure, the bound (3.8) for this density and the
bound (6.7) for the volume Ax,R0(Cθxξ), we get

σxx,R0
(Cθxξ) =

∫
Cθxξ

∂Gxx,R0

∂n
(η) dAx,R0(η) ≤ C3 Ax,R0(Cθxξ) ≤ C3 Vk θ

k−1.

This proves (4.1) when R ≤ 2.

4.2 Upper bound for a large angle

We prove (4.1) when R ≥ 2 and θ ≥ θR.

As shown in Figure 3.A, we introduce the point w on the ray xξ such
that d(x,w) = r where r is given by

θ = 10−3 e−r. (4.2)

Since θR ≤ θ ≤ 10−3, one has 0 ≤ r ≤ R−2. In particular the point w is at
distance at least 2 from every point η on the sphere S(x,R). According to
Lemma 6.1, since 4 er θ ≤ π

2 , one has

Cθxξ ∩ S(x,R) ⊂ Cπ/2wξ ∩ S(x,R) .

We now introduce the Anderson–Schoen barrier u = uwξ for the ray wξ, as

x

q r

xw

q x
w

S(x,R)

x

xS(  ,2)

j

h

y

S(x,R)

(A) (B)

Figure 3: Majoration of σxx,R(Cθxξ) for a large angle θ, and for a small angle θ.

constructed in Lemma 2.3. Since u is superharmonic, since u ≥ 0 everywhere
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and since u ≥ 1 on the cone C
π/2
wξ , one infers from the maximum principle

that, for all y in B̊(x,R) :

σyx,R(Cθxξ) ≤ σ
y
x,R(C

π/2
wξ ) ≤ u(y).

Applying this equality with y = x, remembering the exponential decay (2.4)
of the Anderson–Schoen barrier on the ray wx, and using (4.2), one gets,

σxx,R(Cθxξ) ≤ u(x) ≤ C0e
−ε0r ≤ 103ε0 C0 θ

ε0 .

This proves (4.1) when R ≥ 2 and θ ≥ θR.

4.3 Upper bound for a small angle

We prove (4.1) when R ≥ 2 and θ ≤ θR. The argument will
combine both the arguments used in Sections 4.1 and 4.2.

As shown in Figure 3.B, we introduce the point w on the ray xξ such
that d(x,w) = R− 2, and the angle ϕ given by

ϕ := 4 eR−2 θ. (4.3)

Since θ < θR, one has ϕ ≤ 1/100. According to Lemma 6.1, one has

Cθxξ ∩ S(x,R) ⊂ Cϕwξ ∩ S(x,R) .

First step : We estimate the measure of the cone Cϕwξ for the harmonic

measure σyx,R at a point y within bounded distance from ξ.

Lemma 4.1. Let X be a Hadamard manifold with −1 ≤ KX ≤ −a2 < 0.
Keep the above notation x ∈ X, ξ ∈ S(x,R), w ∈ [xξ] with d(w, ξ) = 2 and
ϕ ≤ 1/100 as in Figure 3.B. Then there exists a constant C5 > 0 depending
only on a, b, k such that for all y in B̊(x,R) ∩ S(ξ, 2) one has

σyx,R(Cϕwξ) ≤ C5 ϕ
k−1 . (4.4)

Proof of Lemma 4.1. One uses again the expression (3.7) for the density of
the harmonic measure. Since ϕ ≤ 1/100, it follows from Lemma 6.3.a that,
for all η in Cϕwξ ∩ S(x,R), one has d(ξ, η) ≤ 1 hence d(y, η) ≥ 1. Therefore
the bound (3.9) is valid for this density. Hence one computes

σyx,R(Cϕwξ) =

∫
Cϕwξ

∂Gyx,R
∂n

(η) dAx,R(η) ≤ C ′3 Ax,R(Cϕwξ) ≤ C ′3 V
′
k ϕ

k−1 ,

thanks to the bound (6.9) for the volume Ax,R(Cϕwξ).
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Second step : We need again the Anderson–Schoen barrier u = uwξ for
the ray wξ, that we constructed in Lemma 2.3. Since u is superharmonic,

since u ≥ 0 everywhere and since u ≥ 1 on the sphere S(ξ, 2) ⊂ C
π/2
wξ , it

follows from (4.4) and the maximum principle that, for all y in B̊(x,R) r
B̊(ξ, 2) :

σyx,R(Cθxξ) ≤ σ
y
x,R(Cϕwξ) ≤ C5 ϕ

k−1 u(y) ≤ C5 ϕ
ε0 u(y).

Applying this equality with y = x, remembering again the exponential decay
(2.4) of the Anderson–Schoen barrier on the ray wx and using (4.3), one
finally gets :

σxx,R(Cθxξ) ≤ C5 ϕ
ε0 u(x) ≤ C0C5 ϕ

ε0 e−ε0(R−2) ≤ C0C5 4ε0 θε0 .

This proves (4.1) when R ≥ 2 and θ ≤ θR.

5 Lower bound for the harmonic measures

The aim of this chapter is to prove the lower bound in (1.1).

The structure of this chapter is very similar to the structure of Chapter
4. We recall that X is a k-dimensional Hadamard manifold satisfying the
pinching condition −b2 ≤ KX ≤ −a2 < 0, x is a point on X, ξ a point on
the sphere S(x,R) and Cθxξ the cone with axis xξ and angle θ. We want to
prove that

σxx,R(Cθxξ) ≥ 1
M θ

N (5.1)

where the constants M and N depend only on a, b and k. It is not restrictive
to assume that b = 1. Fix a length l0 ≥ 2 such that

1
2 ≥ C0 e

−ε0(l0−1) . (5.2)

We will distinguish three cases, setting

θ′R = 2πe−a(R−l0) :

? Bounded radius : R ≤ l0.
? Large angle : R ≥ l0 and θ ≥ θ′R.
? Small angle : R ≥ l0 and θ ≤ θ′R.

5.1 Lower bound for a bounded radius

We prove (5.1) when R ≤ l0.
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As in Section 4.1, when R ≤ l0, we will prove the lower bound (5.1) under
the weaker pinching condition −1 ≤ KX ≤ 0. This allows us to multiply the
distance by a ratio l0/R, while preserving this pinching condition. Hence
we can assume that the radius is R0 = l0. Using the expression (3.7) for the
density of the harmonic measure, the bound (3.14) for this density, and the
bound (6.7) for the volume Ax,R0(Cθxξ), one estimates

σxx,R0
(Cθxξ) =

∫
Cθxξ

∂Gxx,R0

∂n
(η) dAx,R0(η) ≥ c3 Ax,R0(Cθxξ) ≥ c3 vk θ

k−1.

This proves (5.1) when R ≤ l0.

5.2 Lower bound for a large angle

We prove (5.1) when R ≥ l0 and θ ≥ θ′R.

As shown in Figure 4.A, we introduce the point w on the ray xξ such
that d(x,w) = r where r is given by

θ = 2π e−ar. (5.3)

Since θ′R ≤ θ ≤ π/2, one has 0 ≤ r ≤ R−l0.
In particular the point w is at distance at least l0 from every point η on

the sphere S(x,R). Since 1
4 e

ar θ ≥ π/2, it follows from Lemma 6.1 that

Cθxξ ∩ S(x,R) ⊃ Cπ/2wξ ∩ S(x,R) .

vx

q r

xw x

q
x

w

S(x,R)

j

h

S(x,R)

0l -1

(A) (B)

Figure 4: Minoration of σxx,R(Cθxξ) for a large angle θ, and for a small angle θ.

First step : We first estimate the measure of the cone Cθxξ for the
harmonic measure σvx,R at a point v suitably chosen on the ray xξ.

Here we need the Anderson–Schoen barrier u = uwx for the ray wx i.e.
the ray opposite to wξ. Since u is superharmonic, since u ≥ 0 everywhere
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and since u ≥ 1 on the cone C
π/2
wx , it follows from the maximum principle

that, for all y in B̊(x,R) :

σyx,R(Cθxξ) ≥ σ
y
x,R(C

π/2
wξ ) = 1− σyx,R(Cπ/2wx ) ≥ 1− u(y).

Applying this equality with the point y = v on the ray wξ such that d(w, v) =
l0−1 and remembering the exponential decay (2.4) of the Anderson–Schoen
barrier on the ray wξ, one gets, using (5.2) :

σvx,R(Cθxξ) ≥ 1− u(v) ≥ 1− C0e
−ε0(l0−1) ≥ 1

2 . (5.4)

Second step : We now apply Harnack inequality (2.5) to the positive
harmonic function y 7→ σyx,R(Cθxξ) on the ball B̊(x,R). Since the segment
[xv] stays at distance at least 1 from the sphere S(x,R) and has length
bounded by r + l0, it follows from (5.3) and (5.4) that :

σxx,R(Cθxξ) ≥ σvx,R(Cθxξ)e
−C1l0−C1r ≥ 1

2e
−C1l0 ( θ

2π )C1/a .

This proves (5.1) when R ≥ l0 and θ ≥ θ′R.

5.3 Lower bound for a small angle

We prove (5.1) when R ≥ l0 and θ ≤ θ′R. The argument will
be similar to those in Section 4.3.

As shown in Figure 4.B, we introduce the point w on the ray xξ such that
d(x,w) = R− 2. Let ϕ be the angle given by

ϕ := 10−3 ea(R−l0) θ. (5.5)

Since θ ≤ θ′R, one has ϕ ≤ 1
100 , and, since 1

4e
a(R−2)θ ≥ ϕ, according to

Lemma 6.1, one has

Cθxξ ∩ S(x,R) ⊃ Cϕwξ ∩ S(x,R) .

First step : We estimate the measure of the cone Cϕwξ for the harmonic
measure σwx,R seen from the point w.

Lemma 5.1. Let X be a Hadamard manifold with −1 ≤ KX ≤ −a2 < 0.
Keep the above notation x ∈ X, ξ ∈ S(x,R), w ∈ [xξ] with d(w, ξ) = 2 and
ϕ ≤ 1/100 as in Figure 4.B. Then there exists a constant c5 > 0 depending
only on a, b, k such that

σwx,R(Cϕwξ) ≥ c5 ϕ
k−1 . (5.6)
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Proof of Lemma 5.1. One again uses the expression (3.7) for the density
of the harmonic measure. Since ϕ ≤ 1/100, by Lemma 6.3.a, for all η in
Cϕwξ ∩ S(x,R), one has d(ξ, η) ≤ 1. Therefore one has 2 ≤ d(w, η) ≤ 3 and
the bound (3.15) with y = v is valid for this density. Hence one computes

σwx,R(Cϕwξ) =

∫
Cϕwξ

∂Gwx,R
∂n

(η) dAx,R(η) ≥ c′3 Ax,R(Cϕwξ) ≥ c′3 v
′
k ϕ

k−1,

thanks to the bound (6.9) for the volume Ax,R(Cϕwξ).

Second step : We apply again Harnack inequality (2.5) to the positive
harmonic function y 7→ σyx,R(Cϕwξ) on the ball B̊(x,R). Since the segment
[xw] stays at distance at least 1 from the sphere S(x,R) and has length
smaller than R, this gives, using (5.6),

σxx,R(Cθxξ) ≥ σxx,R(Cϕwξ) ≥ σwx,R(Cϕwξ)e
−C1R ≥ c5 ϕk−1e−C1R

Increasing C1, one can assume C1/a ≥ k. Hence one gets, using also (5.5),

σxx,R(Cθxξ) ≥ c′5 ϕC1/a ( θϕ)C1/a = c′5 θ
C1/a ,

with c′5 := 10−3C1/ae−C1l0c5. This proves (5.1) when R ≥ l0 and θ ≤ θ′R.

6 Geometry of Hadamard manifold

This last chapter is self-contained. We collect here two basic
geometric estimations in Hadamard manifolds that we used in
the previous chapters.

6.1 Geometry of triangles

We first compare the angles in a triangle.

We will denote by H2(−a2) the real hyperbolic plane with curvature −a2.

Lemma 6.1. Let X be a Hadamard manifold with −b2 ≤ KX ≤ −a2 < 0.
Let r, R, L be the side lengths of a geodesic triangle in X and let θ, ϕ be
the two angles as in Figure 5. Assume that 0 ≤ ϕ ≤ π/2 and bL ≥ 2. Then
one has the following angle estimates

1
4 e

ar ≤ ϕ

θ
≤ 4 ebr. (6.1)
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Figure 5: A triangle in X and its comparison triangles in H2(−a2) and H2(−b2).

Proof. The proof relies on comparison triangles in the hyperbolic planes
H2(−a2) and H2(−b2) i.e. the triangles with same side lengths r, R and L.

We denote by θa and ϕa the angles and by ha, la the lengths seen in
H2(−a2) as in Figure 1. We use similar notations in H2(−b2). The pinching
assumption tells us that

θb ≤ θ ≤ θa and ϕa ≤ ϕ ≤ ϕb. (6.2)

We will use the following equalities for the right triangle of H2(−a2) with
side lengths L, la and ha,

sinh(aL) sinϕa = sinh(aha) and cosh(aL) = cosh(ala) cosh(aha). (6.3)

Taking the ratio of these two equalities and repeating this computation for
the right triangle with side lengths R, r + la and ha, one gets

sinϕa
sin θa

=
tanh(aR)

tanh(aL)

cosh(ar+ala)

cosh(ala)
. (6.4)

We will also use the easy inequalities for t ≥ 0 and 0 ≤ α ≤ π
2 ,

1
2e
t ≤ cosh(t) ≤ et and 2

πα ≤ sinα ≤ α. (6.5)

We first prove the lower bound in (6.1). We notice that, by (6.2) the
angle ϕa is acute, and hence the angle θa is also acute. One computes using
(6.2), (6.4), (6.5) and the bound L ≤ R,

ϕ

θ
≥ ϕa
θa
≥ 2

π

sinϕa
sin θa

=
2

π

tanh(aR)

tanh(aL)

cosh(ar+ala)

cosh(ala)
≥ ear

π
≥ 1

4 e
ar.

We now prove the upper bound in (6.1) when the angle ϕb is acute. The
computation is similar, using also the assumption bL ≥ 2,

ϕ

θ
≤ ϕb
θb
≤ π

2

sinϕb
sin θb

=
π

2

tanh(bR)

tanh(bL)

cosh(br+blb)

cosh(blb)
≤ πebr

tanh(2)
≤ 4 ebr.

Finally, we prove the upper bound in (6.1) when the angle ϕb is obtuse.
We notice that since the angle ϕ is acute, one has r ≤ R and therefore

2hb ≥ R+ L− r ≥ L (6.6)
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and bhb ≥ 1. The computation is similar using equalities analog to (6.3),

ϕ

θ
≤ π

2θb
≤ π

2

1

sin θb
=
π

2

tanh(bR)

tanh(bhb)
cosh(br−blb) ≤

πebr

2 tanh(1)
≤ 4 ebr.

Note that the constants in (6.1) are not optimal.

6.2 Volume estimates

We now estimate the Riemannian measures on spheres.

As before, for x in X and R > 0, we denote by Ax,R the Riemannian
measure of the sphere S(x,R).

The first lemma gives volume estimates for a fixed radius R0 ≥ 1.

Lemma 6.2. Let X be a Hadamard manifold with −1 ≤ KX ≤ 0 and fix
R0 ≥ 1. There exist constants Vk > vk > 0 depending only on k and R0,
such that for every x in X, ξ in S(x,R) and ϕ ≤ π

2 , one has

vk ϕ
k−1 ≤ Ax,R0(Cϕxξ) ≤ Vk ϕ

k−1. (6.7)

Proof. Because of the pinching assumption, the exponential map expx :
TxX → X is a diffeomorphism and its restriction to the ball B(0, R0) ⊂ TxX
induces a diffeomorphism Φx : B(0, R0) → B(x,R0) whose derivatives are
uniformly bounded

‖DΦx‖ ≤ eR0 and ‖DΦ−1x ‖ ≤ 1 . (6.8)

The bounds (6.7) follow.

The second lemma gives volume estimates which are uniform in R.

Lemma 6.3. Let X be a Hadamard manifold with −1 ≤ KX ≤ 0. Let
R ≥ 2, x ∈ X, ξ ∈ S(x,R), w ∈ [xξ] with d(w, ξ) = 2 and ϕ ≤ ϕ0 := 1/100
as in Figure 6.
a) One has the inclusion Cϕwξ ∩ S(x,R) ⊂ B(ξ, 1).
b) There exist constants V ′k > v′k > 0 depending only on k such that

v′k ϕ
k−1 ≤ Ax,R(Cϕwξ) ≤ V ′k ϕ

k−1. (6.9)

Proof. a) Let η be a point on S(x,R) such that the angle ϕ between wξ and
wη is bounded by 1/100. The triangle (w, ξ, η) satisfies also the following
properties :

d(w, ξ) = 2, d(w, η) ≥ 2, and the angle between ξw and ξη is acute.
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Figure 6: Estimation of the volume Ax,R(Cϕwξ).

Since −1 ≤ KX ≤ 0, the comparison triangle (w′, ξ′, η′) in H2 satisfies
the same properties. A direct computation in H2 gives then d(η′, ξ′) ≤ 1.
Therefore one also has d(η, ξ) ≤ 1.

b) As shown in Figure 6, sinceX is a Hadamard manifold, the intersection
S(x,R)∩Cϕ0

wξ is a hypersurface that can be parametrized in polar coordinates
seen from w : there exists a C∞ diffeomorphism

Ψw : S(w, 1) ∩ Cϕ0

wξ −→ S(x,R) ∩ Cϕ0

wξ

ν 7→ η = Ψw(ν) = expw(ρν exp−1w ν) ,

where ρ is a C∞ function on S(w, 1) ∩Cϕ0

wξ with values in the interval [2, 3].
Since X is a Hadamard manifold, at every point of this hypersurface

S(x,R) ∩ Cϕ0

wξ the angle ψ between the normal vector to S(x,R) and the
radial vector seen from w is at most ϕ0. Therefore, using Jacobi fields, one
checks that the derivatives of Ψw and its inverse are uniformly bounded

‖DΨw‖ ≤ e2

cos(ϕ0)
≤ 10 and ‖DΨ−1w ‖ ≤ 1 .

Therefore, one has

Aw,1(C
ϕ
wξ) ≤ Ax,R(Cϕwξ) ≤ 10k−1Aw,1(C

ϕ
wξ)

The bounds (6.9) follow then from (6.7).
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