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1 Introduction

Stationary probability measures ν are useful when one wants to understand
the dynamics of the action of a non-abelian group or semigroup Γ on a
compact space X. The reason is that in this situation, there might not exist
any Γ-invariant probability measures on X.

To overcome this issue, one chooses a probability measure µ on Γ and
one defines the stationary measures as the probability measures on X which
are invariant by convolution by µ. These measures control the asymptotic
distributions of the associated random walk on X. Since they exist on the
closure of any Γ-orbit, they are useful to describe the closure of the Γ-orbits
on X. They are also useful to describe equidistribution properties of a
sequence of finite Γ-orbits.

The aim of this arbeitsgemeinschaft is to understand the classification
of stationary measures for semisimple random walks on a finite volume ho-
mogeneous space and its applications as described in [4].

In order to clarify the ideas we will mainly focus on the case where X =
Td is the torus (when the action is proximal, this case is due to Bourgain,
Furman, Lindenstrauss and Mozes in [11]) and also on the case where X =
SL(d,R)/SL(d,Z) is the space of unimodular lattices in Rd.

The structure of this arbeitsgemeinschaft relies mainly on the introduc-
tory text [8] and follows the strategy of [4]. The technical details will rely
also on [3] and on the book [9]. Most of the lectures are expected to be one
hour long. Many references are available on Benoist or Quint website.

2 Lectures

The first lecture is an overview lecture.

Lecture 1. Stationary measures on tori and applications. The aim of
this introductory lecture is to state precisely the main results of [4]. For
instance following the presentation of [8] beginning by the torus X = Td
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then by the space X = SL(d,R)/SL(d,Z) of unimodular lattices of Rd, and
by a general finite volume homogeneous space X. No proof. No strategy of
proof. Follow [8, Section 1].

2.1 Invariant and stationary measures

We begin by a few preliminary lectures.

Lecture 2. Example of invariant measures. This talk is a warm up which
focuses on actions of the group Z. It presents a few classical dynamical
systems and their invariant measure. These examples are relevant here,
since some of the ideas in their proof will be reused later. Follow [8, Sec. 2]

Lecture 3. Dynamics on Heisenberg nilmanifolds. This talk will present
an example of classification of invariant measure in the case of unipotent
flows on the 3-dimensional Heisenberg nilmanifold. Follow [17, Chap. 3].

Lecture 4. Ratner ergodic theorem. Explain Ratner measure rigidity
theorem, focusing mainly on the polynomial drift argument used in the
classification of probability measures on SL(2,R)/SL(2,Z) that are invariant
by a unipotent group. Follow [1, Section 12.1]. See also [17, Chap. 4].

Lecture 5. Examples of stationary measures. The aim of this lecture is
to give examples of stationary measures. Existence on compact set. Max-
imum principle for countable spaces. Choquet-Deny theorem for abelian
groups. Probability measures on compact groups. Follow [8, Sections 3.1 to
3.5].

Lecture 6. Empirical measures. The aim of this lecture is to prove Breiman
law of large number which says that the limits of the empirical measures are
stationary. One could also discuss Raugi theorem for equicontinuous Markov
operator. Follow [8, Sec. 3.7], [9, Cor. 3.7 and 3.8] and [7, Sec. 2].

2.2 Linear random walks

The random walk on linear groups plays a crucial role for controling the
drift in the exponential drift argument.

Lecture 7. Proximal action. The aim is to prove Furstenberg proximality
theorem: a strongly irreducible and proximal action on a projective space
has a unique stationary measure ν. The tools are the limit measures νb,
that, in this case, are Dirac masses. Follow [9, Sec. 2.5 and 4.2]

Lecture 8. Positivity of the first Lyapunov exponent. The aim of this
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lecture is to prove that the first Lyapunov exponent is positive. This implies
a uniform exponential growth for the average size of the image of a vector.
These facts are due to Furstenberg. Follow [9, Thm 4.28 and Corol. 4.32]
or [10, Theorem II.4.1].

Lecture 9. Central Limit theorem. The aim of this lecture is to explain the
central limit theorem and the local limit theorem of Lepage and Guivarch.
Follow [9, Theorem 12.1 (i)] or [10, Theorem V.5.1].

2.3 Recurrence in law

Proving recurrence in law for the random walk will be crucial, both in the
proof of the rigidity of stationary measure but also in the applications of
these rigidity results. Even when the space X is compact!

Lecture 10. Recurrence in law. The aim of this lecture is to prove Eskin–
Margulis recurrence theorem for a Zariski dense random walk, first in the
space SL(2,R)/SL(2,Z), then in SL(d,R)/SL(d,Z) and in arithmetic quo-
tients GR/GZ of semisimple groups. One deduces a new proof (due to Mar-
gulis) that these quotients have finite volume. Follow [2, Section 4, 5 and 6]
and [1, Chapter 1].

Lecture 11. Orbit closure on Td. The aim of this lecture is to explain three
applications of the rigidity of stationary measures on the torus Td. First the
equidistribution of random trajectories. Second the finiteness or denseness
of Γ-orbits ( a theorem originally due to Muchnik–Guivarch–Starkov). Third
the equidistribution of sequence of distinct finite orbits. The key point is a
recurrence in law away from 0. Follow [8, Sec. 4.1 and 4.2].

Lecture 12. Non degeneracy of the limit measures νb. The aim of this
talk is the fact that when a stationary measure on Td is non atomic, the
limit measures νb are also non atomic. This non degeneracy is the starting
point to apply the exponential drift. The key point is a recurrence in law
away from the diagonal. Follow [8, Lemma 4.5] which relies on [3, Prop.
3.9] or [4, Prop. 6.17 and Corol. 6.26].

2.4 The exponential drift

The key point of the proof of the rigidity of stationary measures is an ex-
ponential drift argument based on the martingale theorem which will be
explained in the following five lectures. This argument is reminiscent of the
polynomial drift argument in the proof of Ratner’s measure rigidity theorem
which was based on Birkhof ergodic theorem.

3



Lecture 13. The conditional measure along a group action. The aim
of this talk is to define the conditional measures of a measure along the
leaves of a locally free action, to explain how they can be seen as a map to
a Borel space, and to prove their basic properties. Follow [3, Section 4].

Lecture 14. The exponential drift argument on Td. This talk explains
what the exponential drift is, and why it implies the rigidity of stationary
measures. It should also explain how all the arguments we have seen so
far are used in this proof and also why we need the following two technical
facts, the “equidistribution of pieces of fibers” and the “law of the angle”,
that will be explained in the next two lectures. Follow [8, Section 4.3]

Lecture 15. Equidistribution of pieces of fibers. This talk is devoted
to the proof of the “equidistribution of pieces of fibers” which is used in
the exponential drift argument. It will introduce the fibered dynamical
system, prove a formula for the conditional expectation, and relate it to the
martingale theorem. Follow [4, Sections 3.1 to 3.4].

Lecture 16. The law of the angles. The aim is to present the “law of the
angle” which is used in the exponential drift argument. This law tells that
the Furstenberg stationary measure on the projective space describes also
the asymptotic law of the random walk on the projective space when one
condition it by the size of the “norm cocycle”. Follow [4, Sections 4.7, 4.8]
using the results on random walks proven in the book [9].

Lecture 17. Stationary measures on the space of lattices. This talk
should reexplain in detail the whole strategy of the classification of sta-
tionary measures, focusing on the space X = SL(d,R)/SL(d,Z) instead of
X = Td. It also points out the new difficulties that occur and explains how
one overcome them thanks to Ratner’s measure rigidity theorem. Follow [8,
Section 4.4] which relies on [4, Section 8].

2.5 Beyond the exponential drift

We will end the week by a few lectures presenting without proof recent
rigidity results for stationary measures and various applications based on
the exponential drift argument.

Lecture 18. Diophantine approximation on Cantor sets. The aim of
this talk is to present the paper by D. Simmons and B. Weiss which relates
“random walks on homogeneous spaces and diophantine approximation on
fractals”. Follow arXiv:1611.05899.

Lecture 19. Space of rank two discrete subgroups in R3. The aim of
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this talk is to present the paper by O. Sargent and U. Shapira which extends
the classification of stationary measures to an homogeneous space with non-
discrete stabilizer and studies the “dynamics on the space of 2-lattices in
3-space”. Follow arXiv:1708.04464.

Lecture 20. Patterns in large subsets of Zn. The aim of this talk is to
present the paper by M. Bjorklund and K. Bulinski which gives some appli-
cation of the classification of stationary measures on the torus to the values
taken by an integral quadratic forms on a large subset of Zn by studying
“Twisted patterns in large subsets of Zn”. Follow arXiv:1512.01719.

Lecture 21. Stationary measures on moduli spaces. The aim of this
talk is to present the celebrated work of A. Eskin, M. Mirzakhani and A.
Mohammadi which describes the “invariant and stationary measures for the
SL(2,R) action on moduli space”. Follow arXiv:1302.3320.

Lecture 22. Stationary measures for group action on surfaces. The
aim of this talk is to present the paper of A. Brown and F. Rodriguez Hertz,
which replaces the space X by a compact surface and focuses on “measure
rigidity for random dynamics on surfaces and related skew products”. Follow
arXiv:1506.06826.
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