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Abstract

We describe the extremal positive harmonic functions for finitely sup-
ported measures on the discrete Heisenberg group: they are propor-
tional either to characters or to translates of induced from characters.
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1 Introduction

In this paper, we present the classification of the positive harmonic functions
on the discrete Heisenberg group G = H3(Z).

1.1 Positive harmonic functions

Let µ =
∑

s∈S µsδs be a positive measure on G with finite support S ⊂ G.
We recall that a function h on G is said to be µ-harmonic if it satisfies the
equality h = Pµh where Pµh(g) :=

∑
s∈S µs h(sg) for all g in G. We want to

describe the cone H+
µ of positive µ-harmonic functions h on G. By Choquet

Theorem, it is enough to describe its extremal rays.
The main aim of this paper is to prove that the extremal positive µ-

harmonic functions on G are proportional either to a character of G or to
a translate of a function which is induced from a character of an abelian
subgroup (Theorem 1.1).

The special case where µ is the southwest measure was handled in the
introductory paper [2]. This case was striking because the classical partition
function h(x, y, z) := py(z) with

py(z):= number of partition of z by y non-negative integers

occurs as one of these extremal positive harmonic functions. This partition
function py(z) is the simplest instance of a “harmonic function induced from
the character of an abelian subgroup” that we will introduce in this paper.
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1.2 Construction of harmonic functions

The simplest examples of µ-harmonic functions are µ-harmonic characters.
Those are the characters χ : G → R>0 such that

∑
s∈S µs χ(s) = 1. Such a

function h = χ is an extremal positive µ-harmonic function on G which is
invariant by the center Z of G, see Lemma 2.1.

We now introduce another construction of extremal positive µ-harmonic
functions by inducing harmonic characters. Let S0 ⊂ S be a maximal abelian
subset and G0 be the subgroup of G generated by S0. Denote by µ0 :=∑

s∈G0
µs δs the measure restriction of µ to G0. Let χ0 be a µ0-harmonic

character of G0. We extend χ0 as a function on G, still denoted χ0, which is
0 outside G0. This function χ0 is µ-subharmonic, so that the sequence P n

µχ0

is increasing. We set
hG0 ,χ0

= lim
n→∞

P n
µχ0.

We will tell exactly for which pairs (G0, χ0) the function hG0 ,χ0
is finite, in

Lemma 3.8 and in Propositions 5.1, 5.4 and 5.5. When it is finite, the function
hG0 ,χ0

is an extremal positive µ-harmonic function on G, see Lemma 3.1. We
will call hG0 ,χ0

the harmonic function on G induced from the µ0-harmonic
character χ0 of G0.

For g in G, we denote by ρg : g′ 7→ g′g the right translation by g on
G. Whenever a function h is µ-harmonic, the function hg := h ◦ ρg is also
µ-harmonic.

1.3 Main results

Our main theorem tells us that conversely these three constructions are the
only possible ones.

Theorem 1.1. Let G = H3(Z) be the discrete Heisenberg group and µ be
a positive measure on G whose support S is finite and generates the group
G. Then every extremal positive µ-harmonic function h on G is proportional
either to a character χ of G or to a translate hG0 ,χ0

◦ρg of a function induced
from a harmonic character of an abelian subgroup.

Remark 1.2. - Of course the case where µ(G) = 1 is the major case. However,
even when dealing with a probability measure µ, the induction process forces
us to work with positive measures µ0 which are not probability measures.
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Figure 1: In Case 1 and in Case 2.b of Theorem 5.10, no harmonic function is induced

from a character of an abelian subgroup G0.

Figure 2: In Case 2.a, exactly two harmonic functions are induced from a character of

G0 =Gµ
0

and no other. In Case 3.a, only one harmonic function is induced from a character

of G0 =Gµ
0

and one or infinitely many are induced from a character of G1 =Gµ
1
.

- Theorem 1.1 can not be extended to all nilpotent groups G. Indeed, the
conclusion of Theorem 1.1 is not always valid for a probability measure µ on
the nilpotent group G of rank 4 with cyclic center. See Section 5.5.

Theorem 1.1 has been announced in [2]. It will be proven in Chapter 4.
Indeed it is a direct consequence of Propositions 4.8 and 4.10. We will give
a more precise description of the extremal positive µ-harmonic functions h
in Theorem 5.10. In particular, we will say exactly when and how many
of these new examples occur. This is illustrated in the schematic Figures
1, 2 and 3. In these figures, we have drawn various cases of semigroup G+

µ

generated by S that are described in Theorem 5.10. Note that the support of
a positive µ-harmonic function h is invariant by the opposite semigroup, i.e.
by the semigroup generated by S−1. In particular when G+

µ = G, a positive
harmonic function h is either identically zero or vanishes nowhere. Here are
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Figure 3: In case 3.b, infinitely many harmonic functions are induced from a character

of G0 = Gµ0
and one or infinitely many are induced from a character of G1 = Gµ1

.

two corollaries of Theorem 5.10 that we will prove in Section 5.4. The first
corollary tells us that these new examples always vanish somewhere.

Corollary 1.3. Same notation. Let h be an extremal positive µ-harmonic
function on G which does not vanish. Then h is a character of G.

The second corollary tells us exactly when no new example occurs. We
denote by G+

µ the semigroup generated by S.

Corollary 1.4. Same notation with µ(G) = 1. The following are equivalent:
(i) Every extremal positive µ-harmonic function h on G is a character of G.
(ii) G+

µ contains two non-central elements whose product is in Z r {0}.

1.4 Previous results

The study of harmonic functions on groups has a very long
history. I will just point out the part of it which is relevent for
our purposes.
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As a general motivation, let us recall that the bounded µ-harmonic func-
tions on a group G are described thanks to bounded functions on the Pois-
son boundary of (G, µ). They are used to study random walks on G-spaces.
The extremal positive µ-harmonic functions on G are related to the Martin
boundary of (G, µ). They are used to study more precisely the behavior of
these random walks, see [1], [9], [13] or [15].

1.4.1 Abelian groups

This part of the history begins with the Choquet–Deny Theorem in [5] :
Let G be a finitely generated abelian group and µ be a positive finite mea-

sure on G whose support generates G as a group. Then every extremal posi-
tive µ-harmonic function h on G is proportional to a character.

Indeed the proof of this theorem is very short : one notices that the
harmonicity equation (2.1) is a decomposition of h as a sum of positive har-
monic functions and hence all the terms in this sum are proportional to h.

1.4.2 Bounded harmonic functions

The Choquet-Deny theorem has been extended to nilpotent groups when µ
has mass 1 and h is bounded. This is due to Dynkin and Maljutov in [7] :

Let G be a finitely generated nilpotent group and µ be a probability measure
on G whose support generates G as a group. Then every bounded µ-harmonic
function on G is constant.

1.4.3 When S generates G as a semigroup

The Choquet-Deny theorem has also been extended to nilpotent groups for
h unbounded under an extra assumption. This is due to Margulis in [12] :

Let G be a finitely generated nilpotent group and µ be a positive measure
on G whose support generates G as a semigroup. Then every extremal
positive µ-harmonic function on G is proportional to a character.

1.4.4 The Heisenberg group

The main significance of our Theorem 1.1 is that even though Choquet-Deny
theorem can not be extended to finitely generated nilpotent groups without
this extra assumption, for the Heisenberg group one can describe all the
positive harmonic functions. Note that, because of Margulis theorem, most
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of our paper will deal with a positive measure whose support generates G as
a group but does not necessarily generate G as a semigroup.

Many recent works focus on the random walks on the discrete Heisenberg
group G as in [3], [6] and [8], or on nilpotent groups as in [4] and [10], or on
the geometry of words in G as in [11] and [14]. We mention these related
results even though we will not use them.

1.5 Strategy of proof

We now explain the strategy of proof of Theorem 1.1 and the
organization of the paper.

In Chapter 2, we recall well-known facts on positive harmonic functions
and notations for the discrete Heisenberg group G and its positive measures
µ with a finite support S.

In Chapter 3, we begin the proof of Theorem 1.1. When h is an extremal
µ-harmonic function on G, we focus on the equality h(g) = P n

µ h(g) where
the right-hand side is written as a weighted sum of values h(ẇg) for words
w of length n in S, as in Equation (2.2). In Lemmas 3.1 and 3.2, we check
that when the contribution in this sum of the words w whose letters are in
a proper subgroup of G, is not negligible, then h is an “induced harmonic
function”. In Lemma 3.10, we prove a useful generalization: we allow w to
be a concatenation of k subwords whose letters are in a proper subgroup
with k ≥ 1 fixed. The proofs are very general and do not assume G to be
nilpotent.

In Chapter 4, we assume that “h is not induced”, and we want to prove
that h is invariant by the center Z of G. The main idea is to construct a
symmetric relation Rn among the words in Sn such that two related words
w and w′ have same weight and their image ẇ and ẇ′ in G differ by a non-
trivial element z of Z. A key point is to be able to compare the number
of words related to w and the number of words related to w′, see Lemma
4.4. This allows us to prove that h is proportional to one of its translate
hz, see Proposition 4.3. The last step is to prove that h is indeed equal to
its translate hz. This is done in Propositions 4.8 and 4.10. The key point
there, Lemma 4.11 is based on a counting argument that again involves the
partition function. This finishes the proof of Theorem 1.1.

In Chapter 5, we give a complete classification of the extremal µ-harmonic
functions that are “induced from a character”, see Theorem 5.10. Their ex-
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istence is an important new feature of this article. The proof of this classifi-
cation in Propositions 5.1, 5.4 and 5.5 uses a transience property for random
walks on Z similar to the large deviation inequality, see Lemma 5.3.

In the last Section 5.5, we explain how to construct, for a rank 4 nilpotent
group, new extremal positive µ-harmonic functions that are not induced.

2 Notation and preliminary results

We introduce in this chapter notations that will be used all over this article.

2.1 The cone of µ-harmonic functions

We first recall classical facts on positive µ-harmonic functions.

Let G be a finitely generated group and µ be a positive measure with
finite support S ⊂ G. We denote by G+

µ the subsemigroup of G generated
by S and by Gµ the subgroup of G generated by S.

A positive function h : G→ [0,∞[ is said to be µ-harmonic if it satisfies
the equality

h = Pµh where Pµh : g →
∑
s∈S

µsh(sg). (2.1)

A non-zero positive µ-harmonic function is said to be extremal or µ-extremal
if every smaller positive µ-harmonic function h′ ≤ h is a multiple of h.

A function h is said to be µ-superharmonic, respectively µ-subharmonic,
if it satisfies the inequality h ≥ Pµh, respectively h ≤ Pµh.

We will often write the nth power of the operator Pµ under the form

P n
µ h(g) =

∑
w∈Sn

µwh(ẇg), (2.2)

where, for a word w = s1 . . . sn ∈ Sn of length `w = n, the constant µw > 0
is the product µw := µs1 · · ·µsn > 0 and where the element ẇ ∈ G is the
product ẇ := s1 · · · sn in G.

Let H+
µ be the convex cone of positive µ-harmonic functions h on G and

E be a Borel set of extremal µ-harmonic functions containing exactly one
function in each extremal ray of H+

µ . We endow H+
µ with the topology of the

pointwise convergence. When G+
µ = G the cone H+

µ has a compact basis, this
means that there exists a compact subset of H+

µ that meets all rays of H+
µ .
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In general, the cone H+
µ might not have a compact basis but it is well-capped,

this means that it is a union of closed convex subcones H+
µ,i with compact

basis such that H+
µ rH+

µ,i is also convex. This cone H+
µ is also reticulated,

this means that every two positive µ-harmonic functions h1 and h2 admit a
maximal µ-harmonic lower bound hm and also a minimal µ-harmonic upper
bound hM . Indeed one has

hm = lim
n→∞

P n
µ (min(h1, h2)) ≥ 0; and

hM = lim
n→∞

P n
µ (max(h1, h2)) ≤ h1 + h2 <∞.

By Choquet Theorem, it is enough to describe the extremal rays of this
cone H+

µ . Indeed, since H+
µ is well-capped, this theorem tells us that ev-

ery positive µ-harmonic function h can be written as an integral of non-
proportional extremal µ-harmonic functions : h =

∫
E f dα(f), for a positive

measure α on the set E .
Since H+

µ is reticulated, this theorem also tells us that such a measure α
is unique.

In this paper a character will always mean a multiplicative morphism
χ : G 7→ R>0. A character χ is µ-harmonic if and only if it satisfies the
equation

∑
s∈S µs χ(s) = 1.

2.2 Harmonic characters

We discuss here harmonic characters on nilpotent groups.

Let G be a nilpotent finitely generated group and µ be a positive finite
measure on G with finite support generating G.

Lemma 2.1. Every µ-harmonic character of G is an extremal positive µ-
harmonic function.

Proof of Lemma 2.1. Let χ be a µ-harmonic character such that χ = h′+h′′

with both h′ and h′′ positive and µ-harmonic. We want to prove that the
function h̃′ := χ−1h′ is constant. We notice that the measure µ̃ := χµ on G is
a probability measure and the function h̃′ is a bounded µ̃-harmonic function.
Therefore by Dynkin–Maljutov theorem, see Section 1.4, the function h̃′ is
constant.
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2.3 The Heisenberg group

We gather here notation that we will use in this article for the
discrete Heisenberg group.

Recall that the discrete Heisenberg group G := H3(Z) is the set Z3 of

triples seen as matrices (x, y, z) :=

 1 x z
0 1 y
0 0 1

. It is endowed with the product

(x, y, z) (x′, y′, z′) = (x+ x′, y + y′, z + z′ + xy′) . (2.3)

We will denote by 0 := (0, 0, 0) the identity element of G, and by z0 the
generator z0 := (0, 0, 1) of the center Z of G.

For two elements g = (x, y, z), g′ = (x′, y′, z′) of G, we will denote by cg,g′
the integer cg,g′ := xy′−yx′ so that

gg′g−1g′
−1

= z0
cg,g′ . (2.4)

Let G := G/Z ' Z2 be the abelianization of G that we embed in the real
vector space V := G⊗Z R ' R2.

Let µ be a positive measure on G with finite support S. We denote by µ
the image of µ in G and by S its support.

We denote by Vµ the vector subspace of V generated by S and by V +
µ

the smallest convex cone of V containing S. Note that, when Gµ = G, one
always has Vµ = V , and, when G+

µ = G, one always has V +
µ = V .

The description of H+
µ , when Gµ = G will heavily depend on the shape

of V +
µ . We will often distinguish the three cases :

V +
µ = the plane, a half-plane, or a properly convex cone. (2.5)

3 Induced harmonic functions

In this chapter we present general facts on µ-harmonic functions on a finitely
generated group G. These facts will be particularly useful when G is the
Heisenberg group.

10



3.1 Construction of induced harmonic functions

The following lemma gives us a method to construct µ-harmo-
nic functions starting from a harmonic function for a smaller
measure µ0. This lemma will be mainly useful when µ0 is the
restriction of µ to a proper subgroup G0.

Let G be a finitely generated group and µ and µ0 be positive measures
on G with finite support such that µ0 < µ, i.e. such that µ1 := µ−µ0 is also
a positive measure.

Lemma 3.1. Let h0 be a positive µ0-harmonic function on G such that the
function h := sup

n≥1
P n
µ h0 is finite.

(i) Then one has h = lim
n→∞

P n
µ h0 and h is a positive µ-harmonic function.

(ii) One can recover h0 from h as h0 = lim
n→∞

P n
µ0
h.

(iii) Moreover when h0 is µ0-extremal then h is µ-extremal too.

When it is finite, the function h will be called induced from the harmonic
function h0.

Proof of Lemma 3.1. (i) We first notice that, since h0 = Pµ0h0 ≤ Pµh0,
the sequence P n

µ h0 is increasing. Hence, when this sequence is bounded it
converges to a µ-harmonic function.

(ii) Since h = Pµh ≥ Pµ0h, the sequence P n
µ0
h is decreasing. Since

P n
µ0
h ≥ P n

µ0
h0 = h0, this sequence P n

µ0
h converges to a µ0-harmonic function

h′0 := lim
n→∞

P n
µ0
h such that h′0 ≥ h0.

We want to prove that the function h′′0 := h′0 − h0 is zero. Since h0 ≤
h′0 ≤ h, one has P n

µ h0 ≤ P n
µ h
′
0 ≤ h. Therefore one also has lim

n→∞
P n
µ h
′
0 = h

and hence lim
n→∞

P n
µ h
′′
0 = 0. Since h′′0 is µ0-harmonic, this last sequence is

increasing and hence one has h′′0 = 0.
(iii) Assume now that h0 is µ0-extremal and assume that h is the sum of

two positive µ-harmonic functions h = h′+h′′. We want to prove that h and
h′ are proportional. The functions h′0 = lim

n→∞
P n
µ0
h′ and h′′0 = lim

n→∞
P n
µ0
h′′ are

µ0-harmonic and, by (ii), they give a decomposition h0 = h′0 + h′′0.
Therefore, one has h′0 = λ′h0 and h′′0 = λ′′h0 for positive constants λ′ and

λ′′ with λ′ + λ′′ = 1. One has the inequalities h′ ≥ lim
n→∞

P n
µ h
′
0 = λ′h and

h′′ ≥ lim
n→∞

P n
µ h
′′
0 = λ′′h. Since h = h′ + h′′, these inequalities are equalities:
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one has h′ = λ′h and h′′ = λ′′h. This proves that the function h is µ-
extremal.

3.2 Recognizing induced harmonic functions

The following lemma is a converse of Lemma 3.1. It tells us
how to recognize a µ-harmonic function that is induced from a
µ0-harmonic function.

Let G be a finitely generated group and µ0 < µ be positive measures on
G with finite support.

Lemma 3.2. Let h be a positive µ-harmonic function on G such that the
function h0 := inf

n≥1
P n
µ0
h is non-zero.

(i) Then one has h0 = lim
n→∞

P n
µ0
h and h0 is a positive µ0-harmonic function.

(ii) One has the inequality h ≥ lim
n→∞

P n
µ h0.

(iii) Moreover when h is µ-extremal, one has the equality h = lim
n→∞

P n
µ h0 and

h0 is µ0-extremal too.

In particular, when h is µ-extremal, h0 is supported by a translate Gµ0
g

of the subgroup Gµ0
.

Proof of Lemma 3.2. The argument is very similar to Lemma 3.1
(i) Since the function h is positive and µ-harmonic, the sequence P n

µ0
h is

positive and decreasing. Hence it has a limit h0 which is µ0-harmonic.
(ii) By assumption, this limit h0 is non-zero. By construction, one has

the inequality h ≥ h0. Since h is µ-harmonic, the sequence P n
µ h0 is bounded

by h and, by Lemma 3.1, the limit h′ := lim
n→∞

P n
µ h0 exists, is µ-harmonic and

is bounded by h.
(iii) Assume now that h is µ-extremal. Then one has h′ = λ′h for some

constant λ′ ≥ 0. Again by Lemma 3.1, one also has

h0 = lim
n→∞

P n
µ0
h′ = λ′ lim

n→∞
P n
µ0
h = λ′h0 . (3.1)

Therefore one has λ′ = 1.
It remains to check that h0 is µ0-extremal. Assume that h0 = h′0 + h′′0

with both h′0 and h′′0 positive µ0-harmonic. The limit h′′ := lim
n→∞

P n
µ h
′′
0 is a

µ-harmonic function bounded by h. Hence one has h′′ = λ′′h and by the
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same computation as (3.1), one gets h′′0 = λ′′h0. This proves that h0 is
extremal.

The following definition relies on the previous lemmas :

Definition 3.3. A µ-harmonic function h on G is said to be induced from a
subgroup G0 if

lim
n→∞

P n
µ0
h 6= 0. (3.2)

where µ0 is the restriction of µ to G0.
By Lemma 3.2, when h is µ-extremal this limit (3.2) is equal to h0 ◦ g

where g is in G and h0 is an extremal µ0-harmonic function supported on
G0. Therefore one has h = hG0 ,h0

◦ ρg where hG0 ,h0
:= lim

n→∞
P n
µ h0. In this

case the function h is a translate of the harmonic function induced from h0.
Equivalently, the function h is induced from h0 ◦ ρg.

Definition 3.4. A µ-harmonic function is said to be induced, if there exists
a subgroup G0 of infinite index in G such that h is induced from G0. It is
said to be non-induced otherwise.

Remark 3.5. The reason why we require in this definition G0 to have infinite
index will be explained in Lemma 4.1.

A posteriori, for an extremal positive µ-harmonic function h on the Heisen-
berg group G with Gµ = G, this requirement is not so useful. Indeed, by
Corollary 3.6, the characters of G are not induced from proper finite index
subgroups. Moreover, by Definition 3.3, if h is induced from an infinite index
subgroup G0, it is also induced from all the finite index subgroup of G that
contain G0.

Corollary 3.6. Let G be a finitely generated group and µ a positive measure
on G with finite support such that Gµ = G. A µ-harmonic character χ of G
is never induced from a proper subgroup G0 ⊂ G.

Proof. Since Gµ = G, the restriction µ0 of µ to G0 satisfies µ0 < µ. Since χ is
a character, one has Pµ0χ = αχ with some constant α > 0. Since Pµχ = χ,
one has α < 1. Therefore, one has lim

n→∞
P n
µ0
χ = 0, and the µ-harmonic

function χ is not induced from G0.
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3.3 Double induction

The following lemma tells us that two successive inductions of
a positive harmonic function is equivalent to a direct induction.

Let G be a finitely generated group.

Lemma 3.7. Let µ0 < µ′0 < µ be positive measures on G with finite support.
Let h0 be a positive µ0-harmonic function on G. The following are equivalent:
(i) the function h := lim

n→∞
P n
µ h0 is finite.

(ii) the functions h′0 := lim
n→∞

P n
µ′
0
h0 and h′ := lim

n→∞
P n
µ h
′
0 are finite.

In this case, the two induced µ harmonic functions are equal h = h′.

Proof of Lemma 3.7. (i) =⇒ (ii) Since h0 ≤ h, one has the inequalities
P n
µ′0
h0 ≤ P n

µ′0
h ≤ P n

µ h = h and h′0 ≤ h. Therefore, one also has the inequalities

P n
µ h
′
0 ≤ P n

µ h = h and h′ ≤ h.
(ii) =⇒ (i) Since h0 ≤ h′0, one has P n

µ h0 ≤ P n
µ h
′
0 and h ≤ h′.

3.4 Induction of characters

We give now a few conditions that have to be satisfied in order
for the induction of a harmonic character to be a finite function.

Let G be a finitely generated group and µ be a positive measure on G
with finite support S such that G = Gµ. We write µ = µ0 + µ1 as a sum
of two positive measures and set S0 := suppµ0 and G0 := Gµ0

. Let χ0 be a
µ0-harmonic character of G0 that we extend by 0 as a function on G. We
denote by

ZG(G0) := {g ∈ G | gg0 = g0g for all g0 in G0}
the centralizer of G0 in G, and by

NG(G0, χ0) := {g ∈ G | gg0g−1∈G0 and χ0(gg0g
−1) = χ0(g0) for all g0 in G0}

the normalizer of (G0, χ0) in G.

Lemma 3.8. If the induced µ-harmonic function hG0 ,χ0
is finite, then :

(i) The measure µ0 is the restriction of µ to G0 and S0 = S ∩G0.
(ii) The subgroup G0 has infinite index in G.
(iii) One has G+

µ1
∩G0 = ∅.

(iv) One has G+
µ1
∩ ZG(G0) = ∅.

(v) One has G+
µ1
∩NG(G0, χ0) = ∅.
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Remark 3.9. - In particular, the supports S0 of µ0 and S1 of µ1 are disjoint
and the semigroup G+

µ1
does not meet the center Z of G.

- Note also that if one wants hG0 ,χ0
to be µ-extremal, the groupG0 must be

generated by S0. Indeed if this is not the case, the µ0-harmonic character χ0

is not µ0-extremal and, by Lemma 3.2, the function hG0 ,χ0
is not µ-extremal.

- The above conditions are not the only necessary conditions, as we will
see in Chapter 5.

Proof of Lemma 3.8. (i) This is equivalent to µ1(G0) = 0 which follows from
(iii).

(ii) This follows from (iii). Indeed pick an element s1 in the support of
µ1, if the index were finite, there would exist a positive power sd1 belonging
to G0.

(iii) This follows from (v) because G0 ⊂ NG(G0, χ0).
(iv) This follows from (v) because ZG(G0) ⊂ NG(G0, χ0).
(v) This point is the main content of Lemma 3.8. We proceed by contra-

position. Let S1 be the support of µ1 and w1 = s1 . . . s` ∈ S`1, with ` ≥ 1 be
a word such that ẇ1 belongs to NG(G0, χ0).

The proof relies on a cautious analysis of the words that occur in Equality
(2.2). We recall the notation µ1,w1

:= µ1,s1
· · ·µ1,s

`
> 0. We will denote Pw1

for the operator of left translation by ẇ1 := s1 · · · s` ∈ G; it is given by
Pw1

h(g) = h(ẇ1g) for all function h on G and all g in G. One computes

P n+`
µ χ0(ẇ

−1
1 ) ≥

∑
1≤i≤n

µ1,w1
P i
µ0
Pw1

P n−i
µ0

χ0(ẇ
−1
1 )

=
∑

1≤i≤n
µ1,w1

P i
µ0
Pw1

χ0(ẇ
−1
1 ) because χ0 is µ0-harmonic

=
∑

1≤i≤n
µ1,w1

∑
w0∈S

i
0

µ0,w0
χ0(ẇ1ẇ0ẇ

−1
1 ) by definition of Pµ0

=
∑

1≤i≤n
µ1,w1

∑
w0∈S

i
0

µ0,w0
χ0(ẇ0) because ẇ1 normalizes χ0

=
∑

1≤i≤n
µ1,w1

χ0(0) = nµ1,w1
because χ0 is µ0-harmonic.

This goes to infinity with n, and the induced function is not finite.

3.5 Negligible trajectories

We now discuss a lemma on non-induced extremal positive
µ-harmonic functions. This lemma will be useful for the proof of
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the Z-semiinvariance of these functions on the Heisenberg group.

Let G be a finitely generated group and µ be a positive measure on G
with finite support S generating G.

For every word w = s1 . . . sn ∈ Sn, we define kw ≥ 0 to be the smallest
integer k for which we can write w = w0 . . . wk as a concatenation of strongly
non-generating subwords wj. Strongly non-generating means that there exists
an infinite index subgroup Gj of G containing all the letters si occuring in the
subword wj. The following lemma tells us that the words with kw bounded
are negligible in the sum (2.2) for a non-induced µ-harmonic function.

Lemma 3.10. Let h be a non-induced positive µ-harmonic function on G
Then, for all k ≥ 0, and g in G, the partial sums

In,k(g) :=
∑

w∈Sn , kw≤k
µw h(ẇg) . (3.3)

converge to 0 when n→∞.

Proof of Lemma 3.10. Fix g in G. For w in Sn we introduce the maximal
strongly non-generating suffix σ of w. Suffix means that one can write w =
w′σ. We denote by S0,w the set of letters of σ and by `0,w the length of σ.
Since there are only finitely many subsets S0 of S, we can write In,k(g) as
a finite sum In,k(g) =

∑
In,k,S0

(g) where In,k,S0
(g) involves the words w for

which S0,w = S0. Here this finite sum is indexed by the subsets S0 of S that
generates an infinite index subgroup of G. We argue by induction on k.

First assume k = 0. For such S0 ⊂ S one has

In,0,S0
(g) ≤

∑
w0∈Sn0

µw0
h(ẇ0g) = P n

µ0
h(g),

where µ0 is the restriction of µ to S0. By Definitions 3.3 and 3.4, since h
is non-induced and since S0 generates an infinite index subgroup of G, the
sequence P n

µ0
h(g) converges to 0 when n → ∞, and the claim (3.3) is true

for k = 0.

Now assume k ≥ 1. Fix ε0 > 0. Since h is non-induced, as above, we
can choose `0 such that, for any subset S0 of S that generates an infinite
index subgroup of G, one has P `0

µ0
h(g) ≤ ε0 where µ0 is the restriction of µ

to S0. We decompose the sum In,k,S0
(g) as a sum of two terms

In,k,S0
(g) = I ′n,k,S0 ,`0

(g) + I ′′n,k,S0 ,`0
(g)
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where I ′n,k,S0 ,`0
(g) involves the words w for which `0,w ≥ `0 and I ′′n,k,S0 ,`0

(g)
involves the words w for which `0,w < `0.

Bounding I ′n. One computes, using the µ-harmonicity of h,

I ′n,k,S0 ,`0
(g) ≤

∑
w0∈S

`0
0

µw0

∑
w1∈Sn−̀ 0

µw1
h(ẇ1ẇ0g)

≤
∑

w0∈S
`0
0

µw0
h(ẇ0g) ≤ ε0

Bounding I ′′n. One decomposes I ′′n,k,S0 ,`0
as a finite sum

I ′′n,k,S0 ,`0
(g) =

∑
σ µσI

′′
n,k,σ(g)

over the finitely many words σ of length ` < `0 where

I ′′n,k,σ(g) ≤
∑

w′∈Sn−` , kw′≤k−1
µw′ h(ẇ′σ̇g)

≤ In−`,k−1(σ̇g) .

Therefore by the induction hypothesis one has lim
n→∞

I ′′n,k,σ(g) = 0. Since ε0

can be chosen arbitrarily small, one deduces that lim
n→∞

In,k(g) = 0.

3.6 When G+
µ meets the center

There is a simple case where the semiinvariance of µ-harmonic
functions is easy to prove, namely when G+

µ meets the center.

Let G be a finitely generated group, Z be the center of G and µ be a
finite positive measure on G.

Lemma 3.11. Assume that an element z of Z belongs to the semigroup G+
µ .

Then, for every extremal positive µ-harmonic function h on G there exists a
constant q > 0 such that hz = qh.

We recall that hz is the function g 7→ h(gz).

Proof of Lemma 3.11. This is a slight generalization of the Choquet–Deny
Theorem. Let n ≥ 1 be an integer such that z is in the support of µ∗n.
The equality h = P n

µ h is of the form h = αhz + h′ where α > 0 and h′ is a
positive function. Since the function hz is also µ-harmonic, the extremality
of h implies that hz is proportional to h.

17



4 Z-Invariance of harmonic functions

In all this chapter we keep the following notation :

G is a finite index subgroup in H3(Z), Z is the center of G,
µ is a positive measure with finite support S such that Gµ = G,
h is a positive µ-harmonic function on G.

(4.1)

In this chapter we will mainly focus on non-induced µ-harmonic functions
(see Definitions 3.3 and 3.4) and we will prove that they are Z-invariant.

We begin by a lemma that explain our choices in Definition 3.4.

Lemma 4.1. The positive µ-harmonic function h is non-induced if and only
if lim

n→∞
P n
µ0
h = 0, for all restriction µ0 of µ to an abelian subset S0 of S.

Proof. By Definition 3.4, “h non-induced” means that h is non-induced from
an infinite index subgroup G0 of G. Note that the subgroups G0 ⊂ G of infi-
nite index are exactly the abelian subgroups. Indeed any two non-commuting
elements of H3(Z) generate a finite index subgroup of H3(Z).

Remark 4.2. A finite index subgroup G of H3(Z) is not always isomorphic to
H3(Z), but it contains a finite index subgroup that is isomorphic to H3(Z).
Extending our theorem 1.1 to these groups G would be straightforward but
not so interesting.

The main reason we want to work with this slightly larger class of group
G in this chapter is that, in the “proof by induction” of Proposition 4.10, we
need to apply the “induction hypothesis” to a finite index subgroup of G.

4.1 Semiinvariance of harmonic functions

In this section we prove that h is semiinvariant by one central
element. The proofs below are self-contained. They are inspired
by the more intuitive proofs for the south-west measure in [2] that
rely on Young diagrams.

Proposition 4.3. Keep notation (4.1) and assume that h is µ-extremal and
non-induced. Then there exist z 6= 0 in Z and q > 0 such that hz = qh.
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Proof of Proposition 4.3. By Lemma 3.11, we can assume S ∩ Z = ∅.
For n ≥ 2, we introduce a symmetric relation on Sn given by

Rn : = {(w,w′) ∈ Sn × Sn | w = w0ss
′w′0 and w′ = w0s

′sw′0 where

w0 ∈ Si, w′0 ∈ Sn−i−2 , s ∈ S, s′ ∈ S with ss′ 6= s′s}.

This means that w and w′ are obtained from one another by switching two
consecutive non-commuting letters. For a word w ∈ Sn we let

kw = the number of pairs of consecutive non-commuting letters in w.

Since G is the Heisenberg group H3(Z) and since S ∩Z = ∅, this number kw
is the same as the one occuring in Lemma 3.10. Indeed, there exists a unique
partition S = S0 ∪ . . . ∪ S` of S such that two elements s, s′ of S commute
if and only if they belong to the same Si. To go on the proof of Proposition
4.3, we will need the following two lemmas. Proof to be continued.

We denote by p0 := max
s,s′∈S

|cs,s′ | where the integers cs,s′ are defined in (2.4).

Lemma 4.4. For (w,w′) ∈ Rn, one has
(i) ẇ = ẇ′zp0 for some integer p with 0 < |p| ≤ p0,
(ii) µw′ = µw and
(iii) |kw′ − kw| ≤ 2.

Proof of Lemma 4.4. (i) This follows from the equality ss′ = s′s z
cs,s′
0 .

(ii) The same letters occur in w and w′.
(iii) The pairs of adjacent letters in w and w′ are the same except for at

most two of them.

Lemma 4.5. For g in G, one has h(g) ≤
∑

0<|p|≤p0
h(zp0g).

Proof of Lemma 4.5. Replacing h by its translate hg, we can assume that
g = 0. We want to prove that the following difference is non-positive :

D := h(0)−
∑

0<|p|≤p0
h(zp0) ≤ 0 .

Using notations (2.2), we compute D as

D =
∑
w∈Sn

µwh(ẇ)−
∑

0<|p|≤p0

∑
w′∈Sn

µw′h(ẇ′zp0) .
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We fix ε0 > 0 and k0 ≥ 2 + 2ε−10 . By Lemma 3.10, one can find an integer
n ≥ 1 such that the first sum limited at the trajectories w for which kw < k0
is bounded by ε0. Using the fact that, for w in Sn, the fiber

{(w,w′) | w′ ∈ Sn , (w,w′) ∈ Rn}

of the maps Rn 7→ Sn; (w,w′) 7→ w has cardinality kw, one gets

D ≤ ε0 +
∑

(w,w′)∈Rn ,
kw≥k0

(
µw
kw

h(ẇ)− µw′

kw′

∑
0<|p|≤p0

h(ẇ′zp0) ) .

By Lemma 4.4, the element ẇ is equal to at least one of those ẇ′zp0 , therefore
one gets

D ≤ ε0 +
∑

(w,w′)∈Rn ,
kw≥k0

µw
kw′ − kw
kwkw′

h(ẇ) .

By Lemma 4.4, one has |kw′−kw| ≤ 2, and 2/kw′ ≤ 2/(k0−2) ≤ ε0, and

D ≤ ε0 + ε0
∑

(w,w′)∈Rn

µw
kw

h(ẇ) .

Using again that kw is the cardinality of the fiber and using the harmonicity
of h, one gets

D ≤ ε0 + ε0
∑
w∈Sn

µwh(ẇ) = ε0 + ε0 h(0) .

Since ε0 can be chosen arbitrarily small, this gives D ≤ 0 as expected.

End of proof of Proposition 4.3. Lemma 4.5 tells us that there exists a finite
subset F ⊂ Z r {0} and a positive µ-harmonic function h′ such that∑

z∈F hz = h+ h′.

Since the cone H+
µ is well-capped and reticulated, both the function h′ and

the sum
∑

z∈F hz admit a unique desintegration in µ-extremal functions (see
Section 2.1). Hence, since all the positive µ-harmonic functions h and hz are
µ-extremal, the function h has to be proportional to one of these translates
hz.
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Remark 4.6. We now want to deduce from the semi-invariance of h proven
in Proposition 4.3, the Z-invariance of h. This is not a general fact. Indeed,
the harmonic function h in Case 3.b) of Theorem 5.10 can be Z-semiinvariant
but is not Z-invariant. Hence, we have to use once more the assumption that
h is not induced. One technical difficulty comes from the fact that, when
G+
µ 6= G, the cone H+

µ often does not have a compact basis. This prevents
us from using the same arguments as in [12].

4.2 z-invariance and Z-invariance

We first notice that in order to prove the Z-invariance of a
positive µ-harmonic function h on the Heisenberg group G, it is
enough to check that it is invariant under one non trivial element
of Z.

Lemma 4.7. Keep notation (4.1) and assume that there exists z 6= 0 in Z
such that hz = h. Then h is Z-invariant. In particular, if h is µ-extremal,
it is proportional to a µ-harmonic character of G.

Note that in this lemma the positive µ-harmonic function h is not assumed
to be µ-extremal.

Proof of Lemma 4.7. We write z = zp0 . We can assume that p is the smallest
positive integer for which hz = h. We can also assume that h is extremal in
the convex cone

H+
µ,z := {positive, µ-harmonic and z-invariant functions on G}.

Therefore the functions hzi
0
, for i = 1, . . . , p, are non-proportional functions

which are extremal in this cone, and the function f := hz0 + · · · + hzp0 is
µ-harmonic and Z-invariant.

We claim that f is extremal among the µ-harmonic functions on G/Z.
Indeed, assume that one can write f = f ′+ f ′′ with both f ′ and f ′′ positive,
µ-harmonic and Z-invariant. We argue as in the proof of Proposition 4.3
with the well-capped and reticulated cone H+

µ,z. Both the function f ′ and f
admit a unique desintegration in extremal functions in this cone (see Section
2.1). Hence, since all the functions hz are extremal in this cone, one must
have f ′ =

∑
1≤i≤p λihzi0 for some constants λi ≥ 0. Since f ′ is z0-invariant,

all these constants are equal to some λ ≥ 0 and one has f ′ = λf . This proves
that f is extremal among the µ-harmonic functions on G/Z.
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Since G/Z is abelian, by the Choquet–Deny Theorem, this function f is
a µ-harmonic character of G. Therefore, by Lemma 2.1, this function f is
µ-extremal and one has p = 1. This means that h is Z-invariant.

4.3 Z-invariance when V +
µ contains a line

In this section, we finish the proof of our main Theorem 1.1
when the cone V +

µ is the plane or a half-plane, see (2.5).

Proposition 4.8. Keep notation (4.1), assume that V +
µ contains a line and

that the µ-harmonic function h is not induced. Then h is Z-invariant.

Proof of Proposition 4.8. We can assume that h is µ-extremal and apply
Proposition 4.3. Then our claim follows from the following slightly stronger
Proposition 4.9. This stronger version will also be useful in Chapter 5.

Proposition 4.9. Keep notation (4.1) and assume that the cone V +
µ contains

a line. Assume also that there exists z 6= 0 in Z and q > 0 such that hz = qh.
Then the function h is Z-invariant.

Proof of Proposition 4.9. According to Lemma 4.7, it is enough to prove that
q = 1. Replacing h by a multiple of a suitable translate, we can assume that
h(0) = 1. Replacing z by its inverse if necessary, we can also assume that
q ≥ 1. Since the cone V +

µ contains a line, there exists two words w0 in Sn0

and w′0 in Sn
′
0 whose product is in the center:

ẇ0ẇ
′
0 = za for some a in Z.

Since the cone V +
µ is not a line, there exists also a word w1 in Sn1 such that

ẇ0ẇ1ẇ
−1
0 ẇ−11 = zb for some b ≥ 1. (4.2)

Note that one might have to switch w0 and w′0 to ensure that b ≥ 1.
Assume, for a contradiction, that q 6= 1, so that q > 1. Choose an integer

` ≥ 1 such that C := µw0
µw′

0
qa+b` > 1. Notice the equality, for all k ≥ 1,

ẇk0 ẇ
`
1 ẇ
′
0
k
ẇ−`1 = zak+b`k. (4.3)
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Note that both Equations (4.2) and (4.3) rely on the bilinear formula (2.4)
for the commutators in the Heisenberg group. Now we can compute with
n := kn0+`n1+kn′0,

h(ẇ−`1 ) = P n
µ h(ẇ−`1 )

≥ µkw0
µ`w1

µkw′
0
h(ẇk0 , ẇ

`
1 ẇ
′
0
k
ẇ−`1 )

≥ µkw0
µ`w1

µkw′
0
qak+b`k = µ`w1

Ck

Since C > 1 and since this inequality is valid for all integer k ≥ 1 one gets a
contradiction. This proves that q = 1.

4.4 Z-invariance when V +
µ contains no line

In this section, we finish the proof of our main Theorem 1.1
when the cone V +

µ is properly convex, see (2.5).

Proposition 4.10. Keep notation (4.1), assume that V +
µ contains no line

and that the µ-harmonic function h is not induced. Then h is Z-invariant.

Beginning of proof of Proposition 4.10. The proof is by induction on the
cardinality of the support S of µ, simultaneously for all the finite index
subgroups G of H3(Z). We will use the induction hypothesis inside the proof
of Lemma 4.12.

First step We begin the proof by a few reduction steps.
We can assume that h is µ-extremal. Indeed by Definitions 3.3 and 3.4,

almost all the µ-extremal µ-harmonic positive functions f that occur in the
desintegration h =

∫
E f dα(f) of h are non-induced. In this case, by Proposi-

tion 4.3, there exist z = zp0 6= 0 in Z and q > 0 such that hz = qh. According
to Lemma 4.7, it is enough to prove that q = 1.

a. We can assume z = z0. Because we can replace h by the function
f := q−10 hz0 + · · · + q−p0 hzp0 where q0 > 0 is chosen so that qp0 = q. This
function f is µ-harmonic and Z-semiinvariant. It might not be µ-extremal,
but this property will not be used in the argument below.

b. We can assume S ∩ Z = ∅. Indeed, by a, if µZ is the restriction of
µ to the center, one has Pµ

Z
h = λh for a constant 0 ≤ λ < 1. But then the

function h is harmonic for the measure (1 − λ)−1(µ − µZ). It might not be
extremal for this measure, but, as we just said, this is not important.
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c. We can assume h(0) = 1. Because we can replace h by a multiple
of a suitable translate.

d. We can assume q < 1. Because we can replace the generator z0 by
its inverse. We are now looking for a contradiction.

Second step We now can enter the key argument of the proof. Since
the cone V +

µ is properly convex and since S ∩Z = ∅, we can find a partition
of the support of µ in two non-empty subsets

S = S1 ∪ S2 , (4.4)

such that

cs1,s2 ≥ 1 for all s1 in S1 and s2 in S2. (4.5)

The partition (4.4) is given by a suitable decomposition V +
µ = V +

1 ∪ V +
2 of

the properly convex cone V +
µ in two cones V +

1 and V +
2 of disjoint interior so

that the inequalities (4.5) will follow from the bilinear formula (2.4) for the
commutators in the Heisenberg group.

We will use the decomposition µ = µ1 + µ2 where µ1 := 1S1
µ and where

µ2 := 1S2
µ. The proof again starts with the equality (2.2) which tells us

that, for all n ≥ 1,

1 = h(0) =
∑
w∈Sn

µwh(ẇ) . (4.6)

We will cut this sum into pieces parametrized by pairs (w1, w2) ∈ Sn1
1 × Sn2

2 ,
with n1 + n2 = n. We define

Bw1,w2 = {w ∈ Sn containing w1 and w2 as subwords}

For instance when w1 = 11 and w2 = 23, one has

Bw1,w2 = {1123, 1213, 1231, 2113, 2131, 2311}.

This allows us to write the above sum (4.6) as

1 =
∑

n1+n2=n

∑
w1∈S

n1
1

∑
w2∈S

n2
2

∑
w∈Bw1,w2

µwh(ẇ) . (4.7)

For every w in Bw1 ,w2
, we write, using iteratively (2.4) and (4.5),

ẇ = ẇ2ẇ1z
nw
0 for some integer nw ≥ 1. (4.8)
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Then Equality (4.7) becomes

1 =
∑

n1+n2=n

∑
w1∈S

n1
1

∑
w2∈S

n2
2

µw1
µw2

h(ẇ2ẇ1) (
∑

w∈Bw1,w2

qnw ) . (4.9)

To pursue our analysis, we will need the following lemma which bounds this
last sum. Proof to be continued.

Lemma 4.11. For all w1 in Sn1
1 and w2 in Sn2

2 , one has∑
w∈Bw1,w2

qnw ≤ η(q)−1 <∞. (4.10)

where η(q) :=
∏
i≥1

(1− qi) > 0.

Note that this upper bound does not depend on (w1, w2).

Proof of Lemma 4.11. For each word w = s1 . . . sn in Bw1,w2
, we set

mw := |{(i, j) | 1 ≤ i < j ≤ n and si ∈ S1, sj ∈ S2}|.

Condition (4.5) implies that

mw ≤ nw for all w in Bw1,w2

A word w = s1 . . . sn in Bw1,w2
is determined by the increasing sequence

1 ≤ i1 < i2 < . . . < in2
≤ n of places i where si belongs to S2, and mw is

given by

mw = (in2
−n2) + · · ·+ (i2−2) + (i1−1) .

Therefore, for all m ≥ 1, the number

p(n1, n2,m) := |{w ∈ Bw1 ,w2
| mw = m}|

is equal to the number of partitions of m by n2 non-increasing integers
a1, . . . , an2

bounded by n1 :

p(n1, n2,m) = |{n1 ≥ a1 ≥ . . . ≥ an2
≥ 0 and m = a1 + · · ·+ an2

}| .

This quantity is bounded by the partition function

p(m) = |{a1 ≥ . . . ≥ ak ≥ . . . ≥ 0 and m = a1 + · · ·+ ak + · · · }|.
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The generating function of the partition function is∑
m≥0

p(m)qm =
∏
i>0

(1 + qi + q2i + · · · ) =
∏
i>0

(1− qi)−1 = η(q)−1 .

We now collect the sequence of inequalities we have just proven∑
w∈Bw1,w2

qnw ≤
∑

w∈Bw1,w2

qmw =
∑
m≥0

p(n1, n2,m)qm ≤
∑
m≥0

p(m)qm = η(q)−1

and we obtain the bound (4.10) we were looking for.

End of proof of Proposition 4.10. We plug Inequality (4.10) in Formula (4.9)
and we obtain, for all n ≥ 1∑

n1+n2=n

P n1
µ1
P n2
µ2
h(0) ≥ η(q) > 0 . (4.11)

This contradicts the following Lemma 4.12

Lemma 4.12. With the same notation. In particular µ = µ1 + µ2 with S1

and S2 disjoint, and h is a non-induced µ-harmonic function on G.
a) One has lim

n→∞
P n
µ1
h = 0 and lim

n→∞
P n
µ2
h = 0.

b) One also has

lim
n→∞

∑
n1+n2=n

P n1
µ1
P n2
µ2
h = 0 . (4.12)

Proof of Lemma 4.12. a) Let us prove it for µ1.
If S1 is abelian, this follows from the assumption that h is non-induced.
If S1 is not abelian, we will use our induction hypothesis. Assume, for a

contradiction, that the µ1-harmonic function h′ := lim
n→∞

P n
µ1
h is non-zero. By

Lemma 3.2, this function h′ is µ1-extremal and satisfies

lim
n→∞

P n
µ h
′ = h. (4.13)

By Lemma 3.7, this µ1-harmonic function h′ is not induced and, since S1 is
smaller than S, the function h′ is a µ1-harmonic character of the group Gµ1

.
Since this group Gµ1

has finite index in the group Gµ, Lemma 3.8.ii tells us
that the function lim

n→∞
P n
µ h
′ is not finite. This contradicts (4.13).

b) The argument is the same as for Lemma 3.10, but is simpler. We fix
g in G and ε0 > 0. According to point a), there exists N1 ≥ 1 such that
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PN1
µ1
h(g) ≤ ε0. Let In be the left-hand side of (4.12). We decompose In(g)

as the sum of two terms

In(g) = I ′n(g) + I ′′n(g)

where I ′n(g) involves the terms with n1 ≥ N1 and I ′′n(g) involves the terms
with n1 < N1

Bounding I ′n. One computes, using the µ-harmonicity of h,

I ′n(g) =
∑

n′
1
+n2=n−N1

PN1
µ1
P
n′1
µ1
P
n2
µ2
h(g)

≤ PN1
µ1
P n−N1
µ h(g) = PN1

µ1
h(g) ≤ ε0 .

Bounding I ′′n. One decomposes I ′′n(g) as a finite sum

I ′′n(g) =
∑

n1<N1

∑
w1∈S

n1
1

µw1
P n−n1
µ2

(ẇ1g)

over the finitely many words w1 of length n1 < N1. By point a), all terms of
the sum go to 0 so that one has lim

n→∞
I ′′n(g) = 0.

Since ε0 can be chosen arbitrarily small, one deduces lim
n→∞

In(g) = 0.

This ends the proof of Proposition 4.10.
We can now complete the proof of our main theorem 1.1.

Proof of Theorem 1.1. Let h be an extremal positive µ-harmonic function on
G. By Propositions 4.8 and 4.10, either h is Z-invariant or h is induced.

Assume first that h is Z-invariant, then h is an extremal positive harmonic
function on the abelian group G/Z and, by Choquet-Deny theorem (see
Section 1.4), h is proportional to a character of G.

Assume now that h is induced. Since h is extremal, as we have seen in
Lemma 3.2 and Definitions 3.3 and 3.4, there exist an infinite index sub-
group G0 of G and an extremal µ0-harmonic function on G0 where µ0 is the
restriction of µ to G0, such that the function h is a translate of the function
hG0 ,h0

induced from h0. Since G is the Heisenberg group, this group G0 is
abelian and, by Choquet-Deny theorem, the extremal µ0-harmonic function
h0 is proportional to a character of G0.
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5 Existence of induced harmonic functions

In this chapter, except for Section 5.5, we will keep the following notations :

G = H3(Z) is the Heisenberg group, Z is the center of G,
µ is a positive measure with finite support S such that Gµ = G,
S0 ⊂ S is a maximal abelian subset, µ0 := 1S0

µ, G0 := Gµ0
,

χ0 is a µ0-harmonic character of G0 and µ1 := µ− µ0.

(5.1)

By Theorem 1.1, we know that an extremal positive µ-harmonic functions on
G which is not proportional to a character is proportional to a translate of an
induced µ-harmonic function of the form hG0,χ0 . Note that the maximality
of S0 is guaranteed by Lemma 3.8.iv.

We will give in this chapter a necessary and sufficient condition for the
induced µ-harmonic function hG0,χ0 to be finite.

In Lemma 3.8.iv, we have already found that the following condition is
necessary : G+

µ1
∩ ZG(G0) = ∅. Since Vµ0 is a line, one can check that this

condition is equivalent to :

S1 ∩ Z = ∅ and V +
µ1
∩ Vµ0 = {0} . (5.2)

We will assume that it is satisfied.
We distinguish two cases according to the rank of the abelian group G0.

5.1 Induction of characters when rankG0 = 1

In this section we give the necessary and sufficient condition
for the induced function hG0 ,χ0

to be finite when rankG0 = 1.

Note that, since S0 is maximal abelian in S, one has the equivalence :

rankG0 = 1⇐⇒ G0 ∩ Z = {0}.

Proposition 5.1. Keep notation (5.1). Assume (5.2) and rankG0 = 1.
Then the induced harmonic function h := hG0 ,χ0

is finite if and only if the
probability measure µ̃0 := χ0µ0 on G0 is not centered.

Remark 5.2. - The measure µ̃0 = χ0µ0 is a probability measure because χ0

is a µ0-harmonic character.
- The condition µ̃0 centered means, as usual, that

∑
s∈S0

µ̃0,s s = 0 in V ,

where s is the image of s in V .
- This condition µ̃0 non-centered is always satisfied when V +

µ contains no line.
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Proof of Proposition 5.1. Using (5.2) and rankG0 = 1, we can assume that

S0 ⊂ {(x, 0, 0) | x ∈ Z} and S1 ⊂ {(x, y, z) ∈ G | y ≥ 1}.

Let τ : G0 7→ Z be the morphism given by τ(g0) = x for g0 = (x, 0, 0).

First case When µ̃0 is centered.
We fix s1 in S1 and we compute, as in Lemma 3.8, for n ≥ 1,

h(s−11 ) ≥ P n+1
µ χ0(s

−1
1 ) (5.3)

≥ µs1
∑
k≤n

P k
µ0
Ps1P

n−k
µ0

χ0(s
−1
1 )

= µs1
∑
k≤n

P k
µ0
Ps1χ0(s

−1
1 )

= µs1
∑
k≤n

∑
w∈Sk

0

µ0,w χ0(s1ẇs
−1
1 )

The words w that contribute to this sum are those for which s1ẇs
−1
1 ẇ−1 ∈ G0,

i.e. ẇ = 0 or, equivalently, τ(ẇ) = 0. Hence letting n go to ∞, one gets

h(s−11 ) ≥ µs1
∑
k≥0

∑
w∈Sk

0

µ̃0,w1{τ(ẇ)=0}.

If we write w = s1 . . . sn and xi := τ(si), and if we think of these letters si
as independent random variables with same law µ̃0, this inequality can be
rewritten as

h(s−11 ) ≥ µs1
∑
k≥0

P(x1 + · · ·+ xk = 0).

But since the random variables xi ∈ Z are centered, the expected number of
passage at 0 of the walk x1 + · · · + xk is infinite, and the function h is not
finite.

Second case When µ̃0 is not centered.
The computation is similar but more involved since we want to prove finite-
ness of h(g) at every point g in G.

We want a uniform upper bound for

P n
µχ0(g) =

∑
w∈Sn

µw χ0(ẇg).
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The only words w that contribute to this sum are those for which ẇg is in G0.
By assumption (5.2), if we extract from w the maximal subword σ = s1 . . . s`
whose letters are in S1, the length ` of σ is uniformly bounded by an integer
`0. Therefore we can split the above sum into a finite sum

P n
µχ0(g) =

∑
`≤`0

∑
σ∈S`

1

µσQσ,n−` χ0(g),

where

Qσ,n χ0(g) =
∑

k0+···+k`=n
P k`
µ0
Ps

`
· · ·P k1

µ0
Ps1P

k0
µ0
χ0(g) (5.4)

=
∑

k1+···+k`≤n
P k`
µ0
Ps

`
· · ·P k1

µ0
Ps1 χ0(g)

We want to bound the limit

Q∞(g) := lim
n→∞

Qσ,n χ0(g) (5.5)

=
∑
k1≥0
· · ·

∑
k
`
≥0

∑
w1∈S

k1
0

· · ·
∑

w
`
∈Sk`0

µw1
· · ·µw

`
χ0(s1ẇ1 · · · s` ẇ` g).

For i ≤ `, let σi := s1 · · · si ∈ G and bi ≥ 1 be the integer given by

σig0σ
−1
i g−10 = z0

−biτ(g0) for all g0 in G0,

so that one has

s1ẇ1 · · · s` ẇ` g = ẇ1 · · · ẇ` σ` g z0−b1τ(ẇ1)−···−b`τ(ẇ`). (5.6)

Writing σ` g = g0 z
c
0 with g0 in G0 and c in Z one gets

Q∞(g)=χ0(g0)
∑
k1≥0

. . .
∑
k
`
≥0

∑
w1∈S

k1
0

. . .
∑

w
`
∈Sk`0

µ̃0,w1
· · · µ̃0,w

`
1{b1τ(ẇ1)+···+b`τ(ẇ`)=c}.

If we think of all the letters occuring in one of the words w1, . . . , w` as inde-
pendent random variables with same law µ̃0, this equality can be written as

Q∞(g) = χ0(g0)
∑
k1≥0

. . .
∑
k
`
≥0

P(b1S1,k1
+ · · ·+ b`S`,k

`
= c)

where Si,ki := τ(ẇi). Then the finiteness of Q∞(g) follows from the following
Lemma 5.3.
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Lemma 5.3. Let (Xi,k)i≤` , k≥1, be independent real variables with same law.
Assume this law has finite support and is not centered. Let (bi)i≤` be positive
numbers and c be a real number. Set Si,k := Xi,1 + · · ·+Xi,k. Then one has∑

k1≥0
· · ·

∑
k
`
≥0

P(b1S1,k1
+ · · ·+ b`S`,k

`
= c) < ∞ . (5.7)

Proof of Lemma 5.3. We adapt the classical proof of the large deviation in-
equality. We set X = X1,1. Assume for instance that E(X) > 0. One can
choose ε > 0 so that all the expectations

αi := E(e−εbiX)

are smaller than 1. Then one computes

P(b1S1,k1
+ · · ·+ b`S`,k

`
= c) ≤ E(eε (c−b1S1,k1

−···−b`S`,k
`
))

= eεc E(e−εb1X)k1 · · ·E(e−εb`X)k`

= eεc αk11 · · ·α
k`
`

and therefore, summing all these inequalities, we find the following upper
bound for the left-hand side L of (5.7)

L ≤ eεc (1− α1)
−1 · · · (1− α`)−1 <∞ .

This ends the proof of the lemma and of Proposition 5.1.

5.2 Induction of characters when rankG0 = 2

In this section we give the necessary and sufficient condition
for the induced function hG0 ,χ0

to be finite when rankG0 = 2 or
equivalently when G0 ∩ Z 6= {0}.

We split the statement into two cases depending on the shape of the
convex cone V +

µ .

Proposition 5.4. Keep notation (5.1). Assume (5.2) and rankG0 = 2. As-
sume moreover that the cone V +

µ contains a line. Then the induced harmonic
function h := hG0 ,χ0

is not finite.
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Proof of Proposition 5.4. This follows from Proposition 4.9. Indeed, let z be
a non-zero element of G0 ∩ Z and q := χ0(z). Assume, for a contradiction,
that the function h is finite. By Lemmas 2.1 and 3.1, this function h is µ-
extremal. By construction this function h is semiinvariant : one has hz = qh.
Hence by Proposition 4.9, one has q = 1 and by Lemma 4.7 the µ-harmonic
function h is Z-invariant. Therefore, by the Choquet–Deny Theorem, this
function h is a µ-harmonic character ofG. But by Corollary 3.6, a µ-harmonic
character is never induced. Contradiction.

Proposition 5.5. Keep notation (5.1). Assume (5.2) and rankG0 = 2.
Assume moreover that the cone V +

µ contains no line. Then the induced har-
monic function h := hG0 ,χ0

is finite if and only if

there exist s0 in S0 and s1 in S1 such that χ0(s0s1s
−1
0 s−11 ) > 1 . (5.8)

Remark 5.6. Eventhough we will not use this remark, it is interesting to
notice that, since Assumption (5.2) is satisfied and since the cone V +

µ is
properly convex, this condition (5.8) is equivalent to

for all s0 in S0 r Z and s1 in S1 one has χ0(s0s1s
−1
0 s−11 ) > 1 . (5.9)

Proof of Proposition 5.5. The calculation is the same as for Proposition 5.1,
but the interpretation is different. Using (5.2) and the proper convexity of
the cone V +

µ , we can assume that

S0 ⊂ {(x, 0, z) ∈ G | x ≥ 0} and S1 ⊂ {(x, y, z) ∈ G | y ≥ 1}. (5.10)

Let τ : G0 7→ Z be the morphism given by τ(g0) = x for g0 = (x, 0, z).

Proof of =⇒ By (5.10), we know that the half-line V +
µ0

is extremal in

the properly convex cone V +
µ . Assume by contraposition, that for all s0 in

S0 and s1 in S1 one has χ0(s0s1s
−1
0 s−11 ) ≤ 1. In particular, one has

χ0(s1ẇs
−1
1 ) ≥ χ0(ẇ) for all s1 ∈ S1 and w ∈ Sk0 . (5.11)

We fix s1 in S1 and, using (5.11), we compute, for n ≥ 1, as in (5.3),

h(s−11 ) ≥ µs1
∑
k≤n

∑
w∈Sk

0

µ0,w χ0(s1ẇs
−1
1 )

≥ µs1
∑
k≤n

∑
w∈Sk

0

µ0,w χ0(ẇ)

≥ µs1
∑
k≤n

χ0(0) ≥ nµs1
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Letting n go to ∞, one gets h(s−11 ) =∞.

Proof of ⇐= As for Proposition 5.1, one can find an integer `0 and one
can split P n

µχ0(g) as a sum parametrized by words σ = s1 . . . s` with letters
in S1 and ` ≤ `0 :

P n
µχ0(g) =

∑
`≤`0

∑
σ∈S`

1

µσQσ,n−` χ0(g), where, as in (5.4),

Qσ,n χ0(g) =
∑

k1+···+k`≤n
P k`
µ0
Ps

`
· · ·P k1

µ0
Ps1 χ0(g) .

As in (5.5) , we want to bound the limit

Q∞(g) := lim
n→∞

Qσ,n χ0(g) .

The only words w that contribute to this sum are those for which ẇg is in
G0. For i ≤ `, let σi := s1 · · · si ∈ G and bi ≥ 1 be the integer given by

σi g0 σ
−1
i g−10 = z

−biτ(g0)
0 for all g0 in G0,

so that one has

s1ẇ1 · · · s` ẇ` g = σ1ẇ1σ
−1
1 · · · σ` ẇ` σ−1` σ` g . (5.12)

Hence, one gets

Q∞(g) = µσ χ0(σ` g)F1 · · ·F`

where, for all i ≤ `,

Fi :=
∑
k≥0

∑
w∈Sk

0

µ0,w χ0(σi ẇ σ
−1
i ) .

We want to prove that the sums Fi are finite. We will denote by q0 > 0 the
real number such that for all i in Z such that zi0 is in G0, one has χ0(z

i
0) = qi0 .

By assumption, one has q0 > 1. One computes then

Fi =
∑
k≥0

∑
w∈Sk

0

µ̃0,w q
−biτ(ẇ)
0 ,
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where, as before, µ̃0 is the probability measure χ0µ0. Let pw be the number
of letters of w that belong to S0rZ and α := µ̃0(S0rZ) < 1. One goes on :

Fi ≤
∑
k≥0

∑
w∈Sk

0

µ̃0,w q
−pw
0

=
∑
k≥0

∑
j≤k

(
j
k

)
αj(1− α)k−jq−j0

=
∑
k≥0

(1− α + αq−10 )k = α−1(1− q−10 )−1 < ∞ .

This proves the finiteness of Fi, of Q∞(g) and of the function hG0 ,χ0
.

5.3 Existence of harmonic characters

We explain in this section when µ0-harmonic characters on
abelian groups do exist.

Let G0 = Zd and µ0 be a positive measure with finite support S0 gener-
ating G0 as a group. For a character χ0 of G0 we set

E(χ0) :=
∑
s∈S0

µ0,sχ0(s).

The map χ0 → E(χ0) is the Laplace transform of µ0. We denote by

λ(µ0) := inf
χ0

E(χ0) (5.13)

the minimum of this Laplace transform. Here is an example where it is easy
to compute λ(µ0).

Remark 5.7. If S0 is included in a properly convex cone of Rd, one has
λ(µ0) = µ0(0).
More generally, if S0 is included in a half-space bounded by a hyperplane H0,
one has λ(µ0) = λ(µ0|H0

).

Lemma 5.8. There exists a µ0-harmonic character if and only if λ(µ0) ≤ 1.
We can choose it so that µ̃0 := χ0µ0 is not centered if and only if λ(µ0) < 1.

Proof. Lemma 5.8 follows from the following three remarks:
- A character χ0 is µ-harmonic if and only if E(χ0) = 1.
- The group of characters is isomorphic to Rd, hence it is connected.
- Since S0 contains non-zero elements one has supχ0

E(χ0) =∞.

34



Corollary 5.9. a) If µ0(S0) ≤ 1, µ0-harmonic characters exist.
b) If µ0(S0) < 1, we can choose it so that µ̃0 := χ0µ0 is not centered.
c) If µ0(S0) > 1 and µ0 is centered, µ0-harmonic characters do not exist.

Proof. This follows from Lemma 5.8 and the inequality λ(µ0) ≤ µ0(S0).

5.4 Conclusion

We sum up in the following theorem the main results we have
obtained in this paper.

Let G = H3(Z) be the Heisenberg group, Z be the center of G, µ be a
positive measure on G with finite support S such that Gµ = G. We use the
notation of Section 2.3.

Theorem 5.10. The extremal positive µ-harmonic functions on G are pro-
portional either to a character of G or to a translate of a function h induced
from a character on an abelian subgroup. Here is the list when µ(G)=1.
1) When V +

µ is the plane. There is no induced µ-harmonic function.
2) When V +

µ is a half-plane. Let V0 be the boundary line of V +
µ and G0 ⊂ G

be the subgroup generated by the elements of S above V0 and µ0 := µ|G0
. Then

h is equal to a function hG0 ,χ0
induced from a µ0-harmonic character χ0 of

G0.
a) If G0 ∩ Z = {0} there are exactly two such hG0 ,χ0

.
b) If G0 ∩ Z 6= {0} there is no such hG0 ,χ0

.
3) When V +

µ is properly convex. Let V +
i , i = 0, 1, be the two extremal

rays of V +
µ , let Gi ⊂ G, be the two subgroups generated by the elements of S

above V +
i and µi := µ|Gi . Then h is equal to a function hGi ,χi induced from

a µi-harmonic character χi of Gi, i = 0 or 1.
a) If Gi ∩ Z = {0} there is exactly one such hGi ,χi .
b) If Gi ∩ Z 6= {0} there are uncountably many such hGi ,χi .

Remark 5.11. Theorem 5.10 is illustrated in the schematic Figures 1, 2 and
3 of the introduction. We have drawn a rough approximation of the shape
of the semigroup G+

µ ⊂ G and its subsemigroups G+
µ0

and G+
µ1

, in order to
illustrate the different cases that occur in Theorem 5.10. In these pictures
the center Z is the vertical axis.

Proof of Theorem 5.10. The first claim follows from Proposition 4.8 and Pro-
position 4.10. Moreover, Case 1) and the first claims of Cases 2) and 3) follow
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from Lemma 3.8.iv.
- Case 2.a) Since rank G0 = 1, by Proposition 5.1, χ0 must be a µ0-harmo-
nic character of G0 with χ0µ0 non centered. Since µ0(G0) < 1 and since µ0

is not supported by a half-line, there are exactly two such χ0.
- Case 2.b) Since rank G0 = 2, this follows from Proposition 5.4.
- Case 3.a) Since rank Gi = 1, by Proposition 5.1, χi must be a µi-harmonic
character of Gi with χiµi non centered. Since µi(Gi) < 1 and since µi is
supported by a half-line, there is exactly one such χi.
- Case 3.b) Since rank Gi = 2, by Proposition 5.5, χi must be a µi-harmonic
character of Gi satisfying (5.8). Since µ(Gi) < 1, and since µi is supported
by a half-space delimited by Z, there are uncountably many such χi.

Remark 5.12. - When µ is not assumed to be a probability measure, the
formulation of Theorem 5.10 has to be modified. Indeed, if µ({0}) ≥ 1,
positive µ-harmonic functions cannot exist. More precisely, each of the three
cases 2.a), 3.a) and 3.b) has to be split into two subcases :
2.a′) If G0 ∩ Z = {0} and λ(µ0) < 1, there are exactly two such hG0 ,χ0

.
2.a′′) If G0 ∩ Z = {0} and λ(µ0) ≥ 1, there are no such hG0 ,χ0

.
3.a′) If Gi ∩ Z = {0} and µ({0}) < 1 there is exactly one such hGi ,χi .
3.a′′) If Gi ∩ Z = {0} and µ({0}) ≥ 1 there are no such hGi ,χi .
3.b′) If Gi∩Z 6= {0} and λ(µ

Z
)i<1, there are uncountably many such hGi ,χi .

3.b′′) If Gi ∩ Z 6= {0} and λ(µ
Z
)i ≥ 1, there are no such hGi ,χi .

- Here is the definition, motivated by Condition (5.8), of the constants λ(µ
Z
)i.

For instance, for i = 0, we choose sj ∈ supp(µj) r Z, j = 0 or 1, and set
λ(µ

Z
)0 := inf{

∑
s∈Z µsχZ (s) | χ

Z
character of Z, χ

Z
(s0s1s

−1
0 s−11 ) > 1} .

- Note that Cases 2.a′′), 3.a′′) and 3.b′′) do not occur when µ is a probability
measure.

We now can deduce from Theorem 5.10 the corollaries in the introduction :

Proof of Corollary 1.3. The support of hG0 ,χ0
is the semigroup generated by

G0 and S−1. In the cases where a µ-harmonic function hG0 ,χ0
induced from

a character is finite, by Lemma 3.8.iv, one has V +
µ1
∩ Vµ0 = {0}, and this

semigroup is never equal to G.

Proof of Corollary 1.4. Both conditions (i), (ii) are true in Cases 1) and 2.b).
Both conditions are not true in Cases 2.b), 3.a) and 3.b).

One also has the following variation of Corollary 1.4.
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Corollary 5.13. Same notation and µ(G) = 1. The following are equivalent:
(i) Extremal positive µ-harmonic functions are Zp-semiinvariant for a p ≥ 1.
(ii) G+

µ ∩ Z 6⊂ {0}.
Condition (i) means that there exist q > 0 and a non-zero element z in

Z such that hz = qh.

Proof of Corollary 5.13. Both conditions (i), (ii) are true in Cases 1), 2.b)
and 3.b). Both conditions are not true in Cases 2.a) and 3.a).

5.5 A nilpotent group of rank 4

In this section, we explain why Theorem 1.1 can not be ex-
tended to all nilpotent groups.

In this section G = N4(Z) will be the nilpotent group equal to the set Z4

of quadruples seen as matrices (t, x, y, z) :=


1 t t2/2 z
0 1 t y
0 0 1 x
0 0 0 1

. The product is

(t, x, y, z) (t′, x′, y′, z′) = (t+ t′, x+ x′, y + y′ + tx′, z + z′ + ty′ + 1
2
t2x′) .

The center Z of G is generated by z0 := (0, 0, 0, 1). Let µ be the measure

µ :=
1

2
(δa + δb) where a := (1, 0, 0, 0) and b = (0, 1, 0, 0).

A µ-harmonic function h on G is a function that satisfies, for all g in G,

2h(g) = h(ag) + h(bg) or, equivalently,

2h(t, x, y, z) = h(t+1, x, y + x, z+y+x/2) + h(t, x+1, y, z).

We now construct extremal positive µ-harmonic functions on G.
Fix a sequence σ of rapidly increasing integers 1 ≤ σ0 ≤ σ1 ≤ σ2 ≤ · · · .

We introduce the left-infinite word wσ in a and b of the form

wσ = · · · a(σλ)ba(σλ−1)b · · · ba(σ1)ba(σ0)

where the notation a(m) means that the letter a is repeated m-times. For
each k ≥ 0 we denote by wσ,k the suffix of length k of wσ, i.e. the word given
by the k last letters of wσ. We introduce the functions on G

ψσ :=
∑
k≥0

2k1ẇσ,k and hσ := sup
n≥1

P n
µψσ .

As before, the dot means that we replace the word by its image in G.
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Lemma 5.14. Let G = N4(Z) and µ and σ be as above. Assume that

σλ+1 ≥ 2σ2
λ for all λ ≥ 0. (5.14)

a) The function ψσ is subharmonic and the sequence P n
µψσ is increasing.

b) The limit hσ = lim
n→∞

P n
µψσ is finite.

c) The function hσ is an extremal positive µ-harmonic function on G.
d) The function hσ is not Z-invariant.
e) The function hσ is not induced.

Note that Condition (5.14) is not optimized.

Proof. a) One has ψσ ≤ Pµψσ and therefore P n
µψσ ≤ P n+1

µ ψσ.
b) This is the key point. Fix g = (t, x, y, z) ∈ G. Fix also two words u

and v in a and b such that g = u̇v̇−1. Such words always exist. By definition
of hσ, one has

hσ(g) = 2t+x lim
λ→∞

(number of words w such that ẇu̇ = ẇσ,n
λ
v̇), (5.15)

where wσ,n
λ

is the suffix of wσ of length nλ := λ+
∑

i≤λ σi, i.e.

wσ,n
λ

= a(σλ)ba(σλ−1)b · · · ba(σ1)ba(σ0). (5.16)

We also write

w := a(k`)ba(k`−1)b · · · ba(k1)ba(k0), (5.17)

with all ki ≥ 0. We denote by `(w) the length of a word w.
We want to prove, using Condition (5.14), that the quantity (5.15) is

finite. We will see that there exists λ0 = λ0(g) such that the number of
words w such that

ẇu̇ = ẇσ,n
λ
v̇ (5.18)

does not depend on λ for λ ≥ λ0(g). More precisely, we will see below that,
for λ ≥ λ0(g), Equality (5.18) implies that k` = σλ, so that we could remove
the prefix a(σλ)b in both words and replace λ by λ−1.

Equality (5.18) gives four equations. We could write them down but we
will not need to. The first two equations tell us that the same number of a’s
and the same number of b’s occur in the words wu and wσ,n

λ
v. In particular,

those words have same length. The third equation tells us that the sum
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of the positions of the b’s in these words are the same. Once these three
equations are satisfied, one can write ẇu̇ = ẇσ,n

λ
v̇zNw0 with Nw ∈ Z. The

fourth equation tells us that this integer Nw is zero.
We claim that, for λ ≥ λ0(g), if k` 6= σλ then Nw 6= 0. The reason is that

we can go from the word wu to the word wσ,n
λ
v by a (minimal) succession

of “moves” that changes only the central component. These “moves” are

w1abw2baw3 ←→ w1baw2abw3.

The images inG are modified by a factor z
`a(w2)+1
0 , where `a(w2) is the number

of a’s occuring in the word w2:

ẇ1baẇ2abẇ3 = ẇ1abẇ2baẇ3z
`a(w2)+1
0 .

Therefore, by (5.14), the largest contributions to Nw come from the
“moves” that involve the first b on the left of the word wσ,n

λ
. Hence, when

k` 6= σλ one has

|Nw| ≥ σλ−1 − (`(v) +
∑

i≤λ−2
σi)

2

which is non zero for λ large enough by Condition (5.14).
c) By construction hσ is µ-harmonic. We want to prove that hσ is ex-

tremal. Assume that hσ = h′ + h′′ with h′ and h′′ positive µ-harmonic. It
follows also from the previous computations that

2−khσ(ẇσ,k) = 1 for all k ≥ 0.

Introduce the two limits

α′ := lim
k→∞

2−kh′(ẇσ,k) and α′′ := lim
k→∞

2−kh′′(ẇσ,k).

These limits exist since by harmonicity of h′ and h′′ these sequences are
non-increasing. Moreover, one has α′ + α′′ = 1 and

h′ ≥ α′ψσ and h′′ ≥ α′′ψσ.

Using again the harmonicity of h′ and h′′, one deduces

h′ ≥ α′hσ and h′′ ≥ α′′hσ.
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Since α′ + α′′ = 1, these inequalities must be equalities. This proves that h
is extremal.

d) The above computation also tells us that supp(hσ) ∩ Z = {0}. This
prevents hσ to be Z-invariant.

e) If the function hσ were induced, it would be the translate by an element
g ∈ G of a function induced from a character of the cyclic group Ga generated
by a or of the cyclic group Gb generated by b. Since hσ(wk) 6= 0, for all k ≥ 1,
all the sets G+

µwk would meet Gag
−1 or Gbg

−1, which is impossible since both
lim
k→∞

`b(wk) = +∞ and lim
k→∞

`a(wk) = +∞.
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