Positive harmonic functions
on the Heisenberg group II

Yves Benoist

Abstract
We describe the extremal positive harmonic functions for finitely sup-
ported measures on the discrete Heisenberg group: they are propor-
tional either to characters or to translates of induced from characters.
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1 Introduction

In this paper, we present the classification of the positive harmonic functions
on the discrete Heisenberg group G = H3(Z).

1.1 Positive harmonic functions

Let p1 = ) g is0s be a positive measure on G with finite support S C G.
We recall that a function h on G is said to be p-harmonic if it satisfies the
equality h = P,h where P,h(g) := Y .q fts h(sg) for all g in G. We want to
describe the cone H,\ of positive y-harmonic functions k on G. By Choquet
Theorem, it is enough to describe its extremal rays.

The main aim of this paper is to prove that the extremal positive u-
harmonic functions on G are proportional either to a character of G or to
a translate of a function which is induced from a character of an abelian
subgroup (Theorem 1.1).

The special case where p is the southwest measure was handled in the
introductory paper [2]. This case was striking because the classical partition
function h(z,y, z) := p,(z) with

py(2):= number of partition of z by y non-negative integers

occurs as one of these extremal positive harmonic functions. This partition
function p,(z) is the simplest instance of a “harmonic function induced from
the character of an abelian subgroup” that we will introduce in this paper.



1.2 Construction of harmonic functions

The simplest examples of p-harmonic functions are p-harmonic characters.
Those are the characters y : G — Ry such that > ¢ px(s) = 1. Such a
function h = x is an extremal positive p-harmonic function on G which is
invariant by the center Z of GG, see Lemma 2.1.

We now introduce another construction of extremal positive p-harmonic
functions by inducing harmonic characters. Let Sy C S be a maximal abelian
subset and G be the subgroup of G generated by Sy. Denote by pg =
ZseGO s 05 the measure restriction of u to Gy. Let xo be a pp-harmonic
character of Gy. We extend yq as a function on G, still denoted Y, which is
0 outside Gp. This function xo is pu-subharmonic, so that the sequence P} xo
is increasing. We set

ey, = i P
We will tell exactly for which pairs (Go, xo) the function hg ,, is finite, in
Lemma 3.8 and in Propositions 5.1, 5.4 and 5.5. When it is finite, the function
ha, x, 18 an extremal positive y-harmonic function on G, see Lemma 3.1. We
will call g, the harmonic function on G induced from the pio-harmonic
character xo of Gb.

For g in G, we denote by p, : ¢ — ¢'g the right translation by g on
G. Whenever a function h is p-harmonic, the function h, := h o p, is also
p-harmonic.

1.3 Main results

Our main theorem tells us that conversely these three constructions are the
only possible ones.

Theorem 1.1. Let G = H3(Z) be the discrete Heisenberg group and p be
a positive measure on G whose support S is finite and generates the group
G. Then every extremal positive p-harmonic function h on G is proportional
either to a character x of G or to a translate hg y, ©py of a function induced
from a harmonic character of an abelian subgroup.

Remark 1.2. - Of course the case where p(G) = 1 is the major case. However,
even when dealing with a probability measure p, the induction process forces
us to work with positive measures jiy which are not probability measures.
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Figure 1: In Case 1 and in Case 2.b of Theorem 5.10, no harmonic function is induced
from a character of an abelian subgroup Gp.

Figure 2: In Case 2.a, exactly two harmonic functions are induced from a character of
Go=G, and no other. In Case 3.a, only one harmonic function is induced from a character

of Go=G ™ and one or infinitely many are induced from a character of G; =G by -

- Theorem 1.1 can not be extended to all nilpotent groups . Indeed, the
conclusion of Theorem 1.1 is not always valid for a probability measure p on
the nilpotent group G of rank 4 with cyclic center. See Section 5.5.

Theorem 1.1 has been announced in [2]. It will be proven in Chapter 4.
Indeed it is a direct consequence of Propositions 4.8 and 4.10. We will give
a more precise description of the extremal positive u-harmonic functions A
in Theorem 5.10. In particular, we will say exactly when and how many
of these new examples occur. This is illustrated in the schematic Figures
1, 2 and 3. In these figures, we have drawn various cases of semigroup G:[
generated by S that are described in Theorem 5.10. Note that the support of
a positive u-harmonic function A is invariant by the opposite semigroup, i.e.
by the semigroup generated by S~!. In particular when G;: = (&, a positive
harmonic function h is either identically zero or vanishes nowhere. Here are
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Figure 3: 1In case 3.b, infinitely many harmonic functions are induced from a character

of Gy = G, and one or infinitely many are induced from a character of G; = G, .

two corollaries of Theorem 5.10 that we will prove in Section 5.4. The first
corollary tells us that these new examples always vanish somewhere.

Corollary 1.3. Same notation. Let h be an extremal positive p-harmonic
function on G which does not vanish. Then h is a character of G.

The second corollary tells us exactly when no new example occurs. We
denote by G:[ the semigroup generated by S.

Corollary 1.4. Same notation with u(G) = 1. The following are equivalent:
(1) Every extremal positive p-harmonic function h on G is a character of G.
(i) G contains two non-central elements whose product is in Z ~ {0}.

1.4 Previous results

The study of harmonic functions on groups has a very long

history. I will just point out the part of it which is relevent for
our purposes.



As a general motivation, let us recall that the bounded p-harmonic func-
tions on a group G are described thanks to bounded functions on the Pois-
son boundary of (G, ). They are used to study random walks on G-spaces.
The extremal positive p-harmonic functions on G are related to the Martin
boundary of (G, ). They are used to study more precisely the behavior of
these random walks, see [1], [9], [13] or [15].

1.4.1 Abelian groups

This part of the history begins with the Choquet—Deny Theorem in [5] :
Let G be a finitely generated abelian group and p be a positive finite mea-
sure on G whose support generates G as a group. Then every extremal posi-
tive p-harmonic function h on G is proportional to a character.
Indeed the proof of this theorem is very short : one notices that the
harmonicity equation (2.1) is a decomposition of h as a sum of positive har-
monic functions and hence all the terms in this sum are proportional to h.

1.4.2 Bounded harmonic functions

The Choquet-Deny theorem has been extended to nilpotent groups when pu
has mass 1 and h is bounded. This is due to Dynkin and Maljutov in [7] :

Let G be a finitely generated nilpotent group and p be a probability measure
on G whose support generates G as a group. Then every bounded p-harmonic
function on G is constant.

1.4.3 When S generates GG as a semigroup

The Choquet-Deny theorem has also been extended to nilpotent groups for
h unbounded under an extra assumption. This is due to Margulis in [12] :

Let G be a finitely generated nilpotent group and p be a positive measure
on G whose support generates G AS A SEMIGROUP. Then every extremal
positive p-harmonic function on G s proportional to a character.

1.4.4 The Heisenberg group

The main significance of our Theorem 1.1 is that even though Choquet-Deny
theorem can not be extended to finitely generated nilpotent groups without
this extra assumption, for the Heisenberg group one can describe all the
positive harmonic functions. Note that, because of Margulis theorem, most



of our paper will deal with a positive measure whose support generates G as
a group but does not necessarily generate G as a semigroup.

Many recent works focus on the random walks on the discrete Heisenberg
group G as in [3], [6] and [8], or on nilpotent groups as in [4] and [10], or on
the geometry of words in G as in [11] and [14]. We mention these related
results even though we will not use them.

1.5 Strategy of proof

We now explain the strategy of proof of Theorem 1.1 and the
organization of the paper.

In Chapter 2, we recall well-known facts on positive harmonic functions
and notations for the discrete Heisenberg group G and its positive measures
1 with a finite support S.

In Chapter 3, we begin the proof of Theorem 1.1. When h is an extremal
p-harmonic function on G, we focus on the equality h(g) = P;h(g) where
the right-hand side is written as a weighted sum of values h(wg) for words
w of length n in S, as in Equation (2.2). In Lemmas 3.1 and 3.2, we check
that when the contribution in this sum of the words w whose letters are in
a proper subgroup of (G, is not negligible, then A is an “induced harmonic
function”. In Lemma 3.10, we prove a useful generalization: we allow w to
be a concatenation of k£ subwords whose letters are in a proper subgroup
with k£ > 1 fixed. The proofs are very general and do not assume G to be
nilpotent.

In Chapter 4, we assume that “h is not induced”, and we want to prove
that h is invariant by the center Z of G. The main idea is to construct a
symmetric relation R, among the words in S™ such that two related words
w and w’ have same weight and their image w and @’ in G differ by a non-
trivial element z of Z. A key point is to be able to compare the number
of words related to w and the number of words related to w’, see Lemma
4.4. This allows us to prove that h is proportional to one of its translate
h., see Proposition 4.3. The last step is to prove that A is indeed equal to
its translate h,. This is done in Propositions 4.8 and 4.10. The key point
there, Lemma 4.11 is based on a counting argument that again involves the
partition function. This finishes the proof of Theorem 1.1.

In Chapter 5, we give a complete classification of the extremal y-harmonic
functions that are “induced from a character”, see Theorem 5.10. Their ex-



istence is an important new feature of this article. The proof of this classifi-
cation in Propositions 5.1, 5.4 and 5.5 uses a transience property for random
walks on Z similar to the large deviation inequality, see Lemma 5.3.

In the last Section 5.5, we explain how to construct, for a rank 4 nilpotent
group, new extremal positive p-harmonic functions that are not induced.

2 Notation and preliminary results

We introduce in this chapter notations that will be used all over this article.

2.1 The cone of y-harmonic functions

We first recall classical facts on positive u-harmonic functions.

Let G be a finitely generated group and g be a positive measure with
finite support S C G. We denote by G;“ the subsemigroup of GG generated
by S and by G, the subgroup of G generated by S.

A positive function h : G — [0, 00| is said to be p-harmonic if it satisfies
the equality

h = P,h where P,h:g— Y psh(sg). (2.1)
ses
A non-zero positive p-harmonic function is said to be extremal or p-extremal
if every smaller positive p-harmonic function A" < h is a multiple of h.

A function h is said to be p-superharmonic, respectively p-subharmonic,
if it satisfies the inequality h > P,h, respectively h < P,h.

We will often write the n'™ power of the operator P, under the form

Pih(g) = > pwh(ig), (2.2)

weSsn

where, for a word w = s1...s, € S" of length ¢,, = n, the constant p,, > 0
is the product ju, := s ---ps, > 0 and where the element w € G is the
product w :=s1---s, in G.

Let 7—[:[ be the convex cone of positive u-harmonic functions h on G and
& be a Borel set of extremal p-harmonic functions containing exactly one
function in each extremal ray of H;7. We endow H,; with the topology of the
pointwise convergence. When G:[ = (7 the cone H:[ has a compact basis, this
means that there exists a compact subset of 4 that meets all rays of H.



In general, the cone ’H:[ might not have a compact basis but it is well-capped,
this means that it is a union of closed convex subcones #H, with compact
basis such that H} ~ H:Z is also convex. This cone H,| is also reticulated,
this means that every two positive p-harmonic functions hy; and hy admit a
maximal g-harmonic lower bound 4, and also a minimal pg-harmonic upper

bound h,;. Indeed one has

hm = lim P}(min(hy, he)) >0, and
n—»00

hy = lim Pg(max(hl,hQ)) < hy+ hy < .
n—00

By Choquet Theorem, it is enough to describe the extremal rays of this
cone H: Indeed, since 'H:[ is well-capped, this theorem tells us that ev-
ery positive p-harmonic function h can be written as an integral of non-
proportional extremal p-harmonic functions : h = fg fda(f), for a positive
measure o on the set €.

Since H:j is reticulated, this theorem also tells us that such a measure o
is unique.

In this paper a character will always mean a multiplicative morphism
X : G — Rog. A character x is p-harmonic if and only if it satisfies the

equation ) ¢ s x(s) = 1.

2.2 Harmonic characters

We discuss here harmonic characters on nilpotent groups.

Let G be a nilpotent finitely generated group and p be a positive finite
measure on G with finite support generating G.

Lemma 2.1. Fvery p-harmonic character of G is an extremal positive -
harmonic function.

Proof of Lemma 2.1. Let x be a y-harmonic character such that y = h' 4+ h”
with both h' and h" positive and p-harmonic. We want to prove that the
function A’ := x A’ is constant. We notice that the measure /1 := yp on G is
a probability measure and the function A’ is a bounded fi-harmonic function.
Therefore by Dynkin-Maljutov theorem, see Section 1.4, the function A’ is
constant. [



2.3 The Heisenberg group

We gather here notation that we will use in this article for the
discrete Heisenberg group.

Recall that the discrete Heisenberg group G := H3(Z) is the set Z3 of

1 =z =z
triples seen as matrices (x,y, z) 1= ( 0o 1 y |.Itisendowed with the product
00 1

(z,y,2) (@9, 2) = (e + 2"y +y, 2+ 2 +ay). (2.3)

We will denote by 0 := (0,0,0) the identity element of G, and by z, the
generator 2 := (0,0, 1) of the center Z of G.

For two elements g = (x,y,2), ¢ = (2',y/, ') of G, we will denote by ¢,
the integer ¢, o 1= 2y’ —ya’ so that

99'g7" g = 2 (2.4)

Let G := G/Z ~ 7Z? be the abelianization of G that we embed in the real
vector space V = G ®z R ~ R2.

Let u be a positive measure on G with finite support S. We denote by 1
the image of i in G and by S its support.

We denote by V), the vector subspace of V' generated by S and by V}f
the smallest convex cone of V containing S. Note that, when G, = G, one
always has V, = V, and, when G} = G, one always has V} = V.

The description of ’H:[, when G, = G will heavily depend on the shape
of Vj. We will often distinguish the three cases :

Vj = the plane, a half-plane, or a properly convex cone. (2.5)

3 Induced harmonic functions
In this chapter we present general facts on p-harmonic functions on a finitely

generated group G. These facts will be particularly useful when G is the
Heisenberg group.

10



3.1 Construction of induced harmonic functions

The following lemma gives us a method to construct p-harmo-
nic functions starting from a harmonic function for a smaller
measure fip. This lemma will be mainly useful when g is the
restriction of y to a proper subgroup Gy.

Let G be a finitely generated group and p and pg be positive measures
on GG with finite support such that py < p, i.e. such that py := p — g is also
a positive measure.

Lemma 3.1. Let hy be a positive jo-harmonic function on G such that the
Junction h := sup Phg is finite.

n>1
() Then one has h = lim Plhy and h is a positive p-harmonic function.
n—oo
(17) One can recover hy from h as hg = lim P[ h.

n—oo Mo
(1i1) Moreover when hg is pg-extremal then h is p-extremal too.

When it is finite, the function h will be called induced from the harmonic
function hg.

Proof of Lemma 3.1. (i) We first notice that, since hy = By ho < PLho,
the sequence Pj'hg is increasing. Hence, when this sequence is bounded it
converges to a pu-harmonic function.

(i) Since h = P,h = P, h, the sequence P h is decreasing. Since

P/foh > P;‘O ho = hg, this sequence P:oh converges to a p-harmonic function
hg = lim P! h such that hy > hy.
n—oo Ho

We want to prove that the function hy := h{ — ho is zero. Since hy <

hi, < h, one has P[jho < P[}hg < h. Therefore one also has lim P:‘h{) =h
n—oo
and hence lim Phg = 0. Since hg is po-harmonic, this last sequence is
n—oo

increasing and hence one has hy = 0.

(77i) Assume now that hg is pg-extremal and assume that h is the sum of
two positive p-harmonic functions h = '+ h”. We want to prove that h and
h' are proportional. The functions hy = lim P} h" and hg = lim P; h" are

n—o00 0 n—oo 0
po-harmonic and, by (i7), they give a decomposition hg = hy + hy.

Therefore, one has hy = XN'hy and hj = A"hg for positive constants A" and
N with X + X’ = 1. One has the inequalities 2’ > lim Pghg = Mh and

n—o0

A" > lim P'hg = X"h. Since h = I’ 4 1", these inequalities are equalities:

n—oo

11



one has h¥ = XNh and h” = X'h. This proves that the function h is u-
extremal. O

3.2 Recognizing induced harmonic functions

The following lemma is a converse of Lemma 3.1. It tells us
how to recognize a p-harmonic function that is induced from a
to-harmonic function.

Let G be a finitely generated group and o < p be positive measures on
G with finite support.

Lemma 3.2. Let h be a positive p-harmonic function on G such that the
function hgy := 1I;f1 Pﬁoh 1S MON-zero.

(1) Then one has hy = lim Pﬁoh and hg is a positive pg-harmonic function.
n—oo

(44) One has the inequality h > lim Pph.

n—oo

(#4i) Moreover when h is pi-extremal, one has the equality h = lim Phg and
n—oo

ho s po-extremal too.

In particular, when h is p-extremal, hg is supported by a translate G, g
of the subgroup G, .

Proof of Lemma 3.2. The argument is very similar to Lemma 3.1

() Since the function h is positive and p-harmonic, the sequence P/Z)h is
positive and decreasing. Hence it has a limit Ay which is pg-harmonic.

(77) By assumption, this limit hq is non-zero. By construction, one has
the inequality i > hg. Since h is p-harmonic, the sequence Pjhg is bounded
by h and, by Lemma 3.1, the limit A’ := lim Plhg exists, is p-harmonic and

n—oo
is bounded by h.
(737) Assume now that h is p-extremal. Then one has A’ = X'h for some
constant A’ > 0. Again by Lemma 3.1, one also has
1 RN ARVART no. o \/
hg—nh_{gOP%h = JLIEOPMOh—)\hO. (3.1)
Therefore one has \' = 1.

It remains to check that hg is pg-extremal. Assume that hy = hy + h{

with both hg and hg positive po-harmonic. The limit A" := lim Plhg is a

n—o0

p-harmonic function bounded by h. Hence one has h” = X’h and by the

12



same computation as (3.1), one gets hy = A’hg. This proves that hg is
extremal. O]

The following definition relies on the previous lemmas :

Definition 3.3. A p-harmonic function h on G is said to be induced from a
subgroup Gy if
lim PP h 7 0. (3.2)

n—oo

where i is the restriction of p to Gj.

By Lemma 3.2, when h is p-extremal this limit (3.2) is equal to hgo g
where ¢ is in G and hg is an extremal pg-harmonic function supported on
Go. Therefore one has h = hg, n, o py where hg p, = nh_)n;o Plhg. In this

case the function h is a translate of the harmonic function induced from hy.
Equivalently, the function h is induced from hg o pg.

Definition 3.4. A p-harmonic function is said to be induced, if there exists
a subgroup Gy of infinite index in G such that h is induced from G,. It is
said to be non-induced otherwise.

Remark 3.5. The reason why we require in this definition GGy to have infinite
index will be explained in Lemma 4.1.

A posteriori, for an extremal positive u-harmonic function i on the Heisen-
berg group G with G, = G, this requirement is not so useful. Indeed, by
Corollary 3.6, the characters of G are not induced from proper finite index
subgroups. Moreover, by Definition 3.3, if A is induced from an infinite index
subgroup Gy, it is also induced from all the finite index subgroup of G that
contain Gj.

Corollary 3.6. Let G be a finitely generated group and p a positive measure
on G with finite support such that G, = G. A p-harmonic character x of G
is never induced from a proper subgroup Go C G.

Proof. Since G,, = G, the restriction pig of u to Gy satisfies p19 < pu. Since x is
a character, one has P, x = ay with some constant a > 0. Since P,x = X,

one has a < 1. Therefore, one has lim P;‘O x = 0, and the p-harmonic
n—oo

function y is not induced from Gj. n

13



3.3 Double induction

The following lemma tells us that two successive inductions of
a positive harmonic function is equivalent to a direct induction.

Let G be a finitely generated group.

Lemma 3.7. Let iy < 1, < p be positive measures on G with finite support.
Let hy be a positive pg-harmonic function on G. The following are equivalent:
(1) the function h := nangO Plhy is finite.
(it) the functions hy := lim Py ho and W' = lim Pphg are finite.
n—oo n—oo
In this case, the two induced p harmonic functions are equal h = h'.

Proof of Lemma 3.7. (i) = (i) Since hy < h, one has the inequalities
P;]6 hy < ng)h < Pﬁh = hand hy < h. Therefore, one also has the inequalities
Prhy < Pth =h and b’ < h.

(44) = (i) Since ho < hy, one has Pithg < Pithy and h < 1. O

3.4 Induction of characters

We give now a few conditions that have to be satisfied in order
for the induction of a harmonic character to be a finite function.

Let GG be a finitely generated group and p be a positive measure on GG
with finite support S such that G = G,,. We write pn = po + 11 as a sum
of two positive measures and set Sy := suppp and Gy := Guo' Let xo be a
po-harmonic character of Gy that we extend by 0 as a function on G. We
denote by

Za(Go) =={g € G | gg0 = gog for all gy in Go}
the centralizer of GGy in GG, and by

Ne(Go, x0) = {9 € G | ggog™"€ Go and xo(990g™*) = X0(go) for all go in Gy}
the normalizer of (G, xo) in G.

Lemma 3.8. [f the induced p-harmonic function hg s finite, then :
(1) The measure pg is the restriction of p to Go and Sy =S N Gy.

(13) The subgroup Gy has infinite indez in G.

(iii) One has G} N Go = 0.

(iv) One has G; N Zg(Go) = 0.

(v) One has G; N Ng(Go, xo) = 0.

14



Remark 3.9. - In particular, the supports Sy of o and S of py are disjoint
and the semigroup G:[l does not meet the center Z of G.

- Note also that if one wants h¢, ,, to be p-extremal, the group G must be
generated by Sy. Indeed if this is not the case, the pp-harmonic character xg
is not pp-extremal and, by Lemma 3.2, the function hg , is not p-extremal.

- The above conditions are not the only necessary conditions, as we will
see in Chapter 5.

Proof of Lemma 3.8. (i) This is equivalent to p;(Go) = 0 which follows from
(ii).

(27) This follows from (7iz). Indeed pick an element s; in the support of
1, if the index were finite, there would exist a positive power s¢ belonging
to Go.

(73i) This follows from (v) because Gy C Ng(Go, Xo)-

(1v) This follows from (v) because Zg(Goy) C Na(Go, Xo)-

(v) This point is the main content of Lemma 3.8. We proceed by contra-
position. Let S; be the support of p; and w; =s7...5, € Sf, with ¢ > 1 be
a word such that w; belongs to Ng(Go, xo)-

The proof relies on a cautious analysis of the words that occur in Equality
(2.2). We recall the notation M, = His, - s, > 0. We will denote P,
for the operator of left translation by w; := s;---s, € G it is given by
Py, h(g) = h(ung) for all function h on G and all g in G. One computes

PS—MXO(wl_l) > ) H1w, P,io Pw1 P;Z:ixo(wl_l)

1<i<n
= > M, Pﬁo Py, Xo(uwy b because xq is po-harmonic
1<i<n
= > Hiw, D, How, Yo(tn gy ) by definition of P,
1<i<n wy €SY
= > Miw, D, How,Xo(Wo) because 1, normalizes xo
1<i<n w,y €SY
= > 1w, X0(0) = npi., because xq is prp-harmonic.
1<i<n
This goes to infinity with n, and the induced function is not finite. m

3.5 Negligible trajectories

We now discuss a lemma on non-induced extremal positive
p-harmonic functions. This lemma will be useful for the proof of

15



the Z-semiinvariance of these functions on the Heisenberg group.

Let G be a finitely generated group and p be a positive measure on G
with finite support S generating G.

For every word w = s;1...s, € S", we define k,, > 0 to be the smallest
integer k for which we can write w = wy ... wy as a concatenation of strongly
non-generating subwords w;. Strongly non-generating means that there exists
an infinite index subgroup G; of G containing all the letters s; occuring in the
subword w;. The following lemma tells us that the words with &, bounded
are negligible in the sum (2.2) for a non-induced p-harmonic function.

Lemma 3.10. Let h be a non-induced positive p-harmonic function on G
Then, for all k > 0, and g in G, the partial sums
Lni(g) = > pw h(ug). (3.3)

WES™ ki <k
converge to 0 when n — o0.

Proof of Lemma 3.10. Fix ¢g in G. For w in S™ we introduce the maximal
strongly non-generating suffix o of w. Suffix means that one can write w =
w'o. We denote by Sp,, the set of letters of o and by ¢y, the length of o.
Since there are only finitely many subsets Sy of S, we can write I, x(g) as
a finite sum I, x(g) = >_ Inx.s, (9) where I, ;. 5 (g) involves the words w for
which Sy, = Sp. Here this finite sum is indexed by the subsets Sy of .S that
generates an infinite index subgroup of G. We argue by induction on k.

First assume k = 0. For such Sy C S one has

In,O,S(J (g) S Z Nwo h(wﬂg) - Pgoh(g)a
wy €SP

where po is the restriction of u to Sy. By Definitions 3.3 and 3.4, since h

is non-induced and since S generates an infinite index subgroup of G, the

sequence P! h(g) converges to 0 when n — oo, and the claim (3.3) is true

for k = 0.

Now assume k£ > 1. Fix ¢35 > 0. Since h is non-induced, as above, we
can choose fy such that, for any subset Sy of S that generates an infinite
index subgroup of GG, one has Pﬁgh(g) < g¢ where g is the restriction of u
to Sp. We decompose the sum Lk,s, (9) as a sum of two terms

L5y (9) = Iy s, 0, (9) + Lo s, 0, (9)
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where I ; ¢ , (g) involves the words w for which lo., > €y and Iy, o , (9)
involves the words w for which ¢y ,, < /.
Bounding /. One computes, using the p-harmonicity of h,

Lk, (9) < 20w, Do Hw, h(d1ting)

wOESéO w, €50
<Y hling) <
woesﬁo

3 " 2 3
Bounding ;). One decomposes I/, g , as a finite sum

Ig,k,so,eo (9) = 20 tolnrq(9)

over the finitely many words o of length ¢ < ¢, where
I o(9) < > o D(10'5g)
w'eSn—* k, 1<k—1
< Taoer-1(09).

Therefore by the induction hypothesis one has nh_g)lo I vo(g) = 0. Since g

can be chosen arbitrarily small, one deduces that lim I, ;(g) = 0. O]
n—oo

3.6 When GZ meets the center

There is a simple case where the semiinvariance of p-harmonic
functions is easy to prove, namely when G:[ meets the center.

Let G be a finitely generated group, Z be the center of G and u be a
finite positive measure on G.

Lemma 3.11. Assume that an element z of Z belongs to the semigroup G;’.
Then, for every extremal positive p-harmonic function h on G there exists a
constant ¢ > 0 such that h, = qh.

We recall that h, is the function g — h(gz).

Proof of Lemma 3.11. This is a slight generalization of the Choquet—Deny
Theorem. Let n > 1 be an integer such that z is in the support of pu*".
The equality h = P'h is of the form h = ah, + b’ where a > 0 and h' is a
positive function. Since the function h, is also p-harmonic, the extremality
of h implies that h, is proportional to h. O
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4 /-Invariance of harmonic functions

In all this chapter we keep the following notation :

G is a finite index subgroup in H3(Z), Z is the center of G,
i is a positive measure with finite support S such that G, = G, (4.1)
h is a positive p-harmonic function on G.

In this chapter we will mainly focus on non-induced p-harmonic functions
(see Definitions 3.3 and 3.4) and we will prove that they are Z-invariant.
We begin by a lemma that explain our choices in Definition 3.4.

Lemma 4.1. The positive p-harmonic function h is non-induced if and only
if lim PR h =0, for all restriction po of p to an abelian subset So of S.
n—oo

Proof. By Definition 3.4, “h non-induced” means that h is non-induced from
an infinite index subgroup G of GG. Note that the subgroups Gy C G of infi-
nite index are exactly the abelian subgroups. Indeed any two non-commuting
elements of H3(Z) generate a finite index subgroup of Hs(Z). ]

Remark 4.2. A finite index subgroup G of H3(Z) is not always isomorphic to
H3(Z), but it contains a finite index subgroup that is isomorphic to H3(Z).
Extending our theorem 1.1 to these groups GG would be straightforward but
not so interesting.

The main reason we want to work with this slightly larger class of group
G in this chapter is that, in the “proof by induction” of Proposition 4.10, we
need to apply the “induction hypothesis” to a finite index subgroup of G.

4.1 Semiinvariance of harmonic functions

In this section we prove that h is semiinvariant by one central
element. The proofs below are self-contained. They are inspired
by the more intuitive proofs for the south-west measure in [2] that
rely on Young diagrams.

Proposition 4.3. Keep notation (4.1) and assume that h is p-extremal and
non-induced. Then there exist z # 0 in Z and q > 0 such that h, = qh.
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Proof of Proposition 4.3. By Lemma 3.11, we can assume SN Z = ().
For n > 2, we introduce a symmetric relation on S™ given by

Ry: = {(w,w) eS8 xS"|w=wyss'wy and w' = wys'sw, where
wy € S, wy € ST s€ S, 8 €S with ss’ # s's}.

This means that w and w’ are obtained from one another by switching two
consecutive non-commuting letters. For a word w € S™ we let

k., = the number of pairs of consecutive non-commuting letters in w.

Since G is the Heisenberg group H3(Z) and since SN Z = (), this number &,
is the same as the one occuring in Lemma 3.10. Indeed, there exists a unique
partition S = Sy U ... U S, of S such that two elements s, s’ of S commute
if and only if they belong to the same S;. To go on the proof of Proposition
4.3, we will need the following two lemmas. Proof to be continued.

We denote by py := max |cs,s| where the integers ¢, ¢ are defined in (2.4).
s,8'€

Lemma 4.4. For (w,w') € R,, one has

(i) w=w'z] for some integer p with 0 < |p| < po,
(17) oy = Hy and

(119) |kw — kw| < 2.

Proof of Lemma 4.4. (i) This follows from the equality ss’ = ¢'s zSS’S'.

(77) The same letters occur in w and w'.

(77i) The pairs of adjacent letters in w and w’ are the same except for at
most two of them. ]

Lemma 4.5. For g in G, one has h(g) < Y. h(zg).
0<|p|<po

Proof of Lemma 4.5. Replacing h by its translate hy, we can assume that
g = 0. We want to prove that the following difference is non-positive :

D = h0)— > h(z) <O0.

0<p[<po

Using notations (2.2), we compute D as

D = 3 puh(w)— 3 > purh(i'z).

wes™ 0<|p|<po w'eS™
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We fix g9 > 0 and ko > 2 + 2¢;,*. By Lemma 3.10, one can find an integer
n > 1 such that the first sum limited at the trajectories w for which k,, < kg
is bounded by ¢y. Using the fact that, for w in S™, the fiber

{(w,w") |w €S, (w,w') € R,}

of the maps R,, — S™; (w,w’) — w has cardinality k,,, one gets

D < s+ ¥ (Ehw) -2 S h@)) .
(w,w’)ERn, kw kw, 0<\P|SP0
szk()

By Lemma 4.4, the element w is equal to at least one of those 1z}, therefore
one gets

kw — Ky
D < e+ > pw—po—
(ww)ER,, R Ko

kakO

h(w) .

By Lemma 4.4, one has |k, —ky| < 2, and 2/k, < 2/(ko—2) < &9, and

D < e +e ) 'u—wh(w)
(w,w")eR,, kw

Using again that k,, is the cardinality of the fiber and using the harmonicity
of h, one gets

D < ey+eo Y, ph(w) = eo+eoh(0).

weS™
Since €y can be chosen arbitrarily small, this gives D < 0 as expected. O]

End of proof of Proposition 4.3. Lemma 4.5 tells us that there exists a finite
subset F' C Z ~ {0} and a positive g-harmonic function A’ such that

Yovephe=h+N.

Since the cone ’;’-[;r is well-capped and reticulated, both the function A’ and
the sum ) _, h. admit a unique desintegration in p-extremal functions (see
Section 2.1). Hence, since all the positive p-harmonic functions h and h, are
p-extremal, the function h has to be proportional to one of these translates

h. []
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Remark 4.6. We now want to deduce from the semi-invariance of h proven
in Proposition 4.3, the Z-invariance of h. This is not a general fact. Indeed,
the harmonic function h in Case 3.b) of Theorem 5.10 can be Z-semiinvariant
but is not Z-invariant. Hence, we have to use once more the assumption that
h is not induced. One technical difficulty comes from the fact that, when
G’:j # (G, the cone H:[ often does not have a compact basis. This prevents
us from using the same arguments as in [12].

4.2 z-invariance and Z-invariance

We first notice that in order to prove the Z-invariance of a
positive py-harmonic function h on the Heisenberg group G, it is

enough to check that it is invariant under one non trivial element
of Z.

Lemma 4.7. Keep notation (4.1) and assume that there exists z # 0 in Z
such that h, = h. Then h is Z-invariant. In particular, if h is p-extremal,
it is proportional to a p-harmonic character of G.

Note that in this lemma the positive g-harmonic function A is not assumed
to be p-extremal.

Proof of Lemma 4.7. We write z = z. We can assume that p is the smallest
positive integer for which h, = h. We can also assume that h is extremal in
the convex cone

H,; . := {positive, y-harmonic and z-invariant functions on G'}.

Therefore the functions hzé, for = 1,...,p, are non-proportional functions
which are extremal in this cone, and the function f := h, + -+ h is
p-harmonic and Z-invariant.

We claim that f is extremal among the p-harmonic functions on G/Z.
Indeed, assume that one can write f = f'+ f” with both [’ and f” positive,
p-harmonic and Z-invariant. We argue as in the proof of Proposition 4.3
with the well-capped and reticulated cone ’H;”Z. Both the function f’ and f
admit a unique desintegration in extremal functions in this cone (see Section
2.1). Hence, since all the functions h, are extremal in this cone, one must
have [’ = Z1gi§p )\ihzé for some constants \; > 0. Since f’ is zp-invariant,
all these constants are equal to some A > 0 and one has f’ = \f. This proves
that f is extremal among the p-harmonic functions on G/Z.
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Since G/Z is abelian, by the Choquet—Deny Theorem, this function f is
a p-harmonic character of G. Therefore, by Lemma 2.1, this function f is
p-extremal and one has p = 1. This means that h is Z-invariant. O

4.3 Z-invariance when Vlf contains a line

In this section, we finish the proof of our main Theorem 1.1
when the cone VI is the plane or a half-plane, see (2.5).

Proposition 4.8. Keep notation (4.1), assume that V" contains a line and
that the p-harmonic function h is not induced. Then h is Z-invariant.

Proof of Proposition 4.8. We can assume that h is p-extremal and apply
Proposition 4.3. Then our claim follows from the following slightly stronger
Proposition 4.9. This stronger version will also be useful in Chapter 5. [

Proposition 4.9. Keep notation (4.1) and assume that the cone V" contains
a line. Assume also that there exists z # 0 in Z and q > 0 such that h, = qh.
Then the function h is Z-invariant.

Proof of Proposition 4.9. According to Lemma 4.7, it is enough to prove that
q = 1. Replacing h by a multiple of a suitable translate, we can assume that
h(0) = 1. Replacing z by its inverse if necessary, we can also assume that
g > 1. Since the cone Vj contains a line, there exists two words wg in S™°

. /! . .
and w( in S™ whose product is in the center:
wowy = 2% for some a in Z.

Since the cone V}f is not a line, there exists also a word w; in S™ such that

1

oty iyt = 2P for some b > 1. (4.2)

Note that one might have to switch wy and wj to ensure that b > 1.
Assume, for a contradiction, that ¢ # 1, so that ¢ > 1. Choose an integer
¢ > 1 such that C' := i, fhasy ¢®t* > 1. Notice the equality, for all k¥ > 1,

kol rk .0 akblk
Wy Wy Wy Wy =2 : (4.3)
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Note that both Equations (4.2) and (4.3) rely on the bilinear formula (2.4)
for the commutators in the Heisenberg group. Now we can compute with
n = kno+0n,+kng,

h(wr’) = Prh(ir’)
> gty i, 1y DG 0 " iy )
> g Ha, Py 4 = gy, CF

Since C' > 1 and since this inequality is valid for all integer k£ > 1 one gets a
contradiction. This proves that ¢ = 1. O]

4.4 Z-invariance when Vlf contains no line

In this section, we finish the proof of our main Theorem 1.1
when the cone VI is properly convex, see (2.5).

Proposition 4.10. Keep notation (4.1), assume that V;“ contains no line
and that the p-harmonic function h is not induced. Then h is Z-invariant.

Beginning of proof of Proposition 4.10. The proof is by induction on the
cardinality of the support S of pu, simultaneously for all the finite index
subgroups G of H3(Z). We will use the induction hypothesis inside the proof
of Lemma 4.12.

First step We begin the proof by a few reduction steps.

We can assume that h is p-extremal. Indeed by Definitions 3.3 and 3.4,
almost all the p-extremal p-harmonic positive functions f that occur in the
desintegration h = |, ¢ fda(f) of h are non-induced. In this case, by Proposi-
tion 4.3, there exist z = z§ # 0 in Z and ¢ > 0 such that h, = ¢h. According
to Lemma 4.7, it is enough to prove that ¢ = 1.

a. We can assume z = z3. Because we can replace h by the function
f= qo_lhzo + -+ qo_phzg where ¢o > 0 is chosen so that ¢§ = ¢. This
function f is py-harmonic and Z-semiinvariant. It might not be u-extremal,
but this property will not be used in the argument below.

b. We can assume SN Z = (. Indeed, by a, if juz is the restriction of
p to the center, one has P, h = Ah for a constant 0 < A < 1. But then the
function % is harmonic for the measure (1 — A\)™*(u — pz). It might not be
extremal for this measure, but, as we just said, this is not important.
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c. We can assume h(0) = 1. Because we can replace h by a multiple
of a suitable translate.

d. We can assume ¢ < 1. Because we can replace the generator zy by
its inverse. We are now looking for a contradiction.

Second step We now can enter the key argument of the proof. Since
the cone Vj is properly convex and since SN Z = (), we can find a partition
of the support of p in two non-empty subsets

S=5USY,, (4.4)
such that
Cs; 5, > 1 for all s; in S; and sy in Ss. (4.5)

The partition (4.4) is given by a suitable decomposition V. = V;" UV," of
the properly convex cone V;“ in two cones V;" and V," of disjoint interior so
that the inequalities (4.5) will follow from the bilinear formula (2.4) for the
commutators in the Heisenberg group.

We will use the decomposition p = py + pg where g := 1g p and where
p2 = 1g . The proof again starts with the equality (2.2) which tells us
that, for all n > 1,

1=0(0) = 3 poh(d). (4.6)

weS™

We will cut this sum into pieces parametrized by pairs (wq,wy) € ST X S52,

with ny +ny = n. We define
By, w, = {w € S" containing w; and w, as subwords}
For instance when wy = 11 and wy = 23, one has
By, w, = {1123,1213,1231,2113,2131,2311}.

This allows us to write the above sum (4.6) as

L= X X > jhw). (4.7)

ny+ny=n g €S w, 8,2 WEBwyw,
For every w in By, ., , we write, using iteratively (2.4) and (4.5),

W = Wty 2y for some integer n,, > 1. (4.8)
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Then Equality (4.7) becomes
L= > 2 2 W) (>0 ™). (49)

p— n n
Nty =n 4w eS1 w, €552 wWEBw, wy

To pursue our analysis, we will need the following lemma which bounds this
last sum. Proof to be continued.

Lemma 4.11. For all wy in ST* and ws in S5*, one has

g™ < (gt < oo (4.10)

weBwl,wQ

where n(q) :== [](1 —¢*) > 0.

i>1
Note that this upper bound does not depend on (wy, ws).

Proof of Lemma 4.11. For each word w = s1...5s, in By w,, we set
my = {(1,7) |1 <i<j<n and s; €Sy, s; € Sa}|.
Condition (4.5) implies that
My < n, for all w in By, w,

A word w = s1...58, in By, w, is determined by the increasing sequence
1< <ig<...<ip <n of places ¢ where s; belongs to S, and m,, is
given by

Therefore, for all m > 1, the number
p(ni,na,m) = {w € By, w, | My =m}|

is equal to the number of partitions of m by ns non-increasing integers
ai, ..., ap, bounded by n; :

p(ni,ng,m) ={m >a1 > ... > ap, >0 and m=a; + - +an,}|.
This quantity is bounded by the partition function

pm)=Ha1>...>a,>...>0 and m=a;+---+ax+---}|
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The generating function of the partition function is

Yopm)g™ = JIA+¢+¢+---) = [TA—¢)" = nlg)".

m>0 >0 >0

We now collect the sequence of inequalities we have just proven

> < Y ™= plna,ng,m)g™ < Y p(m)g™ =n(q)!

wEBwrw2 wEBwl,wQ m>0 m>0

and we obtain the bound (4.10) we were looking for. O

End of proof of Proposition 4.10. We plug Inequality (4.10) in Formula (4.9)
and we obtain, for all n > 1

>, PUP20)>n(g) >0. (4.11)
ny+ny,=n ! 2
This contradicts the following Lemma 4.12 ]

Lemma 4.12. With the same notation. In particular ;. = py + ps with Sy
and Sy disjoint, and h is a non-induced p-harmonic function on G.
a) One has lim P} h =0 and lim P} h=0.

n—o0 n—oo

b) One also has

lim Y PRPRh=0. (4.12)

n—00 n,+n,=n

Proof of Lemma 4.12. a) Let us prove it for p;.
If Sy is abelian, this follows from the assumption that A is non-induced.
If S} is not abelian, we will use our induction hypothesis. Assume, for a

contradiction, that the p;-harmonic function A’ := lim P[}l h is non-zero. By
n—oo

Lemma 3.2, this function A’ is pi-extremal and satisfies

. nyl

nh_)n;O Pyh = h. (4.13)

By Lemma 3.7, this py-harmonic function A’ is not induced and, since S is

smaller than S, the function A’ is a y;-harmonic character of the group G, .

Since this group G, has finite index in the group G, Lemma 3.8.77 tells us
that the function lim PPA’ is not finite. This contradicts (4.13).

n—oo
b) The argument is the same as for Lemma 3.10, but is simpler. We fix

g in G and ¢y > 0. According to point a), there exists N; > 1 such that
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Pﬁlh(g) < g¢. Let I,, be the left-hand side of (4.12). We decompose I,(g)
as the sum of two terms

I(9) = I(9) + I)(9)

where I’ (g) involves the terms with n; > Ny and I”(g) involves the terms
with n < N
Bounding /. One computes, using the p-harmonicity of h,

L(g) = > PMPiPu2h(g)

’ —n—
n +n,=n—N,

N pn—N _ pN
< PM1 P 'hig) = Pﬂllh(g) < gp.
Bounding I)!. One decomposes I/(g) as a finite sum

Lg)= > X pw P (ing)

ny <]\/'1 w, ESI”

over the finitely many words w; of length ny < Nj. By point a), all terms of
the sum go to 0 so that one has lim I;/(g) = 0.
n—oo

Since €y can be chosen arbitrarily small, one deduces lim I,,(¢) =0. O
n—oo

This ends the proof of Proposition 4.10.
We can now complete the proof of our main theorem 1.1.

Proof of Theorem 1.1. Let h be an extremal positive p-harmonic function on
G. By Propositions 4.8 and 4.10, either h is Z-invariant or A is induced.

Assume first that h is Z-invariant, then h is an extremal positive harmonic
function on the abelian group G/Z and, by Choquet-Deny theorem (see
Section 1.4), h is proportional to a character of G.

Assume now that A is induced. Since h is extremal, as we have seen in
Lemma 3.2 and Definitions 3.3 and 3.4, there exist an infinite index sub-
group Gg of G and an extremal pg-harmonic function on Gy where g is the
restriction of u to Gy, such that the function A is a translate of the function
ha,n, Induced from hg. Since G is the Heisenberg group, this group Gy is
abelian and, by Choquet-Deny theorem, the extremal pg-harmonic function
hg is proportional to a character of Gj. n
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5 Existence of induced harmonic functions

In this chapter, except for Section 5.5, we will keep the following notations :

G = H3(Z) is the Heisenberg group, Z is the center of G,

18 a positive measure with finite support S such that G, = G,
So C S is a mazimal abelian subset, pio := 1 p1, Go := G, ,

Xo S a po-harmonic character of Go and py := p — -

(5.1)

By Theorem 1.1, we know that an extremal positive p-harmonic functions on
G which is not proportional to a character is proportional to a translate of an
induced p-harmonic function of the form hg, .. Note that the maximality
of Sy is guaranteed by Lemma 3.8.7v.

We will give in this chapter a necessary and sufficient condition for the
induced p-harmonic function hg, , to be finite.

In Lemma 3.8.7v, we have already found that the following condition is
necessary : G;l N Za(Go) = 0. Since V), is a line, one can check that this
condition is equivalent to :

$iNZ=0 and V5NV, ={0}. (5.2)

We will assume that it is satisfied.
We distinguish two cases according to the rank of the abelian group Gy.

5.1 Induction of characters when rank Gy =1

In this section we give the necessary and sufficient condition
for the induced function hG07x0 to be finite when rank Gy = 1.

Note that, since Sy is maximal abelian in S, one has the equivalence :
rank Go = 1 <= GoNZ = {0}.

Proposition 5.1. Keep notation (5.1). Assume (5.2) and rank Gy = 1.
Then the induced harmonic function h := hg . i finite if and only if the
probability measure pi := xopo on Go is not centered.

Remark 5.2. - The measure fig = Xopo is a probability measure because xg
is a po-harmonic character.

- The condition fig centered means, as usual, that ZSESO fioss = 0in V,
where 5 is the image of s in V.

- This condition jig non-centered is always satisfied when VJ contains no line.

28



Proof of Proposition 5.1. Using (5.2) and rank Gy = 1, we can assume that
So C {(x,0,0) | x € Z} and S C {(z,y,2) € G|y > 1}.
Let 7 : Go — Z be the morphism given by 7(go) = = for gy = (z,0,0).

First case When ji is centered.
We fix s; in S; and we compute, as in Lemma 3.8, for n > 1,

h(si') > Pl ™xo(sy) (5.3)
> s, k; Py Py P xo(si)

0
= Hs, k; P;70P81X0(31_1)

= s, D, D Lo.w Xo(s1tsy ")

k<n wES(’)C

The words w that contribute to this sum are those for which slwsflw_l € Gy,
i.e. w =0 or, equivalently, 7(w) = 0. Hence letting n go to oo, one gets

h(Sfl) > s, > 2 ﬁo,wl{f(w):o}-

k>0 wesg

If we write w = s7...s, and x; := 7(s;), and if we think of these letters s;
as independent random variables with same law jig, this inequality can be
rewritten as

h(si') = s, Yo P(ar+ -+ = 0).

k>0

But since the random variables z; € Z are centered, the expected number of
passage at 0 of the walk x; + - -+ 4 x; is infinite, and the function A is not
finite.

Second case When fig is not centered.
The computation is similar but more involved since we want to prove finite-
ness of h(g) at every point ¢ in G.

We want a uniform upper bound for

Pixolg) = 22 pwxo(wg).

weSn™
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The only words w that contribute to this sum are those for which wg is in Gy.
By assumption (5.2), if we extract from w the maximal subword o = s ... s
whose letters are in 57, the length ¢ of o is uniformly bounded by an integer
ly. Therefore we can split the above sum into a finite sum

PﬁXo(Q) = > 2 to Qon—rX0(9),

<ty aESf
where
Qonxol) = 3 PuePs, -+ Pyt Py P Xo(9) (5.4)
ot tke=n
_ k k
B k1+-~z+:ke<n PugPay = By s, Xo(9)
We want to bound the limit
Qoo(g) = nh_{l;lo Qa,n XO(g> (55>
pr— Z o« e e Z E o« e . Z ,uwl”'uwZX0<81w1”'85w€g)~
kl 20 ke 20 w, ES§1 weesgl

For i </, let 0; :=s1---s; € G and b; > 1 be the integer given by
Jigoai_lgo_l = 2, 0790) for all go in Gy,
so that one has
S1ly -+ Sglp g = Wy -y oy gz TN () (5.6)

Writing o, g = go 2§ with go in Gy and ¢ in Z one gets

Qoo(9)=xX0(g0) D22 D2 - D0 How,  How, Libyr(in )+ tber(ibg)=c}-

k20 k,20 w, €S§1 weesé“f

If we think of all the letters occuring in one of the words wq, ..., w, as inde-
pendent random variables with same law jig, this equality can be written as

Qx(9) = Xxolg0) 2= -~ >0 P(b1Sik, + -+ + beSew, = )

k>0 k,>0

where S;j = 7(w;). Then the finiteness of Q) (g) follows from the following
Lemma 5.3. O
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Lemma 5.3. Let (X x)i<s.k>1, be independent real variables with same law.
Assume this law has finite support and is not centered. Let (b;);<¢ be positive
numbers and ¢ be a real number. Set S;y = X;1 + -+ X; . Then one has

Z s Z P(blstl + -+ nggvk(e = C) < 0. (57)

k>0 k,>0

Proof of Lemma 5.3. We adapt the classical proof of the large deviation in-
equality. We set X = X; ;. Assume for instance that E(X) > 0. One can
choose € > 0 so that all the expectations

o = E(e ")
are smaller than 1. Then one computes

P(biSip, -+ beSep, =€) < E(STNRm T

— ¢ E(e—ale)kl . E<e—sng>k:g

_ EC k‘l k‘g
= e al ."af

and therefore, summing all these inequalities, we find the following upper
bound for the left-hand side L of (5.7)

L < “(1-a)t - (1—a) ' <oo.

This ends the proof of the lemma and of Proposition 5.1. O]

5.2 Induction of characters when rank Gy = 2

In this section we give the necessary and sufficient condition
for the induced function hG07X0 to be finite when rank Go = 2 or
equivalently when Gy N Z # {0}.

We split the statement into two cases depending on the shape of the
convex cone V.

Proposition 5.4. Keep notation (5.1). Assume (5.2) and rank Gy = 2. As-
sume moreover that the cone VJL contains a line. Then the induced harmonic
function h .= hg_ , s not finite.
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Proof of Proposition 5.4. This follows from Proposition 4.9. Indeed, let z be
a non-zero element of Gop N Z and ¢ := xo(z). Assume, for a contradiction,
that the function A is finite. By Lemmas 2.1 and 3.1, this function h is p-
extremal. By construction this function A is semiinvariant : one has h, = ¢h.
Hence by Proposition 4.9, one has ¢ = 1 and by Lemma 4.7 the gy-harmonic
function h is Z-invariant. Therefore, by the Choquet-Deny Theorem, this
function h is a y-harmonic character of G. But by Corollary 3.6, a p-harmonic
character is never induced. Contradiction. O

Proposition 5.5. Keep notation (5.1). Assume (5.2) and rank Gy = 2.
Assume moreover that the cone Vlf contains no line. Then the induced har-
monic function h:= hg_ is finite if and only if

there exist so in Sy and s1 in Sy such that xo(sosisy'sy') >1. (5.8)

Remark 5.6. Eventhough we will not use this remark, it is interesting to
notice that, since Assumption (5.2) is satisfied and since the cone VI is
properly convex, this condition (5.8) is equivalent to

for all sy in Sy~ Z and s1 in Sy one has xo(s0s155 " s7') > 1.  (5.9)

Proof of Proposition 5.5. The calculation is the same as for Proposition 5.1,
but the interpretation is different. Using (5.2) and the proper convexity of
the cone V7, we can assume that

So C{(x,0,2) e G| x>0} and Sy C {(z,y,2) e G|y >1}. (5.10)
Let 7 : Go — Z be the morphism given by 7(go) = = for gy = (2,0, 2).
Proof of = By (5.10), we know that the half-line Vl;; is extremal in

the properly convex cone V/f. Assume by contraposition, that for all sy in
Sp and s; in Sy one has X0(808186181_1) < 1. In particular, one has

Yo(s1wsy') > xo(w) forall sy € S and w € SE. (5.11)

We fix s; in Sy and, using (5.11), we compute, for n > 1, as in (5.3),

h(si') > ps, 2o D How Xo(s1tbsy )

k<n wESg

> s, Do 2. How Xo(W)

k<n weS(’;

> s, 25 X0(0) = npg

k<n
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Letting n go to oo, one gets h(s;') = oc.

Proof of <= As for Proposition 5.1, one can find an integer ¢, and one
can split PﬁXo(g) as a sum parametrized by words o = s;...s, with letters
in S; and £ < /4, :

Pixolg) = > 2 HoQon—rXxo(g), Where, asin (5.4),

€<l oe St

QU,nXO(g) = Z P,féPseP/lj;Psl XO(g)
b1+t hy<n

As in (5.5) , we want to bound the limit
Qoo(g) = nhargo Qa,n XO(g) .

The only words w that contribute to this sum are those for which wg is in
Gyp. For ¢ </, let g; ;== s1---s; € G and b; > 1 be the integer given by

0igo0; gyt = zo_bﬂ(go) for all g in Gy,
so that one has
S1y - St g = ooy agu')ga[l 00 g. (5.12)
Hence, one gets

Qx(9) = toxoloeg) Fi - Fy

where, for all 1 </,

Fi = 3 3 powxoloiwo; ).

k>0 wGS(’)C

We want to prove that the sums F; are finite. We will denote by ¢y > 0 the
real number such that for all ¢ in Z such that z{ is in Gg, one has xo(z{) = ¢} -
By assumption, one has gy > 1. One computes then

~ —b;7(w
F= 3 fowg™™™,

k=0 wesk
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where, as before, i is the probability measure yopuo. Let p, be the number
of letters of w that belong to Sy~ Z and « := [ig(So ~ Z) < 1. One goes on :

Fi S Z Z ﬁO,wqapw

k>0 wesk
= X X (el —a) g’
k>0 j<k
= Y(l-a+tag) = a'(1-—¢")! < 0.
k>0
This proves the finiteness of F}, of Qo (g) and of the function he, x, - O

5.3 Existence of harmonic characters

We explain in this section when pp-harmonic characters on
abelian groups do exist.

Let Gy = Z% and 9 be a positive measure with finite support Sy gener-
ating G as a group. For a character yo of Gy we set

E(Xo) = Z ,Uo,sXO(S)-

s€S,

The map xo — E(xo) is the Laplace transform of p9. We denote by
Apto) == i)?fE(Xo) (5.13)
0

the minimum of this Laplace transform. Here is an example where it is easy
to compute A(f)-

Remark 5.7. If Sy is included in a properly convex cone of RY, one has
A(to) = 110(0).

More generally, if Sy is included in a half-space bounded by a hyperplane Hy,
one has A(uo) = Aol m, )-

Lemma 5.8. There exists a pg-harmonic character if and only if A(uo) < 1.
We can choose it so that Jig := Xofo s not centered if and only if A(po) < 1.

Proof. Lemma 5.8 follows from the following three remarks:

- A character xq is p-harmonic if and only if E(y,) = 1.

- The group of characters is isomorphic to R?, hence it is connected.

- Since Sy contains non-zero elements one has sup, . E(xo) = 0. [
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Corollary 5.9. a) If uo(So) < 1, po-harmonic characters ezist.
b) If 1o(So) < 1, we can choose it so that iy := Xopo is not centered.
¢) If po(So) > 1 and g is centered, po-harmonic characters do not exist.

Proof. This follows from Lemma 5.8 and the inequality A(puo) < po(Sp). O

5.4 Conclusion

We sum up in the following theorem the main results we have
obtained in this paper.

Let G = H3(Z) be the Heisenberg group, Z be the center of G, u be a
positive measure on G with finite support S such that G, = G. We use the
notation of Section 2.3.

Theorem 5.10. The extremal positive p-harmonic functions on G are pro-
portional either to a character of G or to a translate of a function h induced
from a character on an abelian subgroup. Here is the list when u(G)=1.
1) When V' is the plane. There is no induced ji-harmonic function.
2) When VI is a half-plane. Let V; be the boundary line of V. and Go C G
be the subgroup generated by the elements of S above Vi and pg := ,u|GO. Then
h is equal to a function hg, ., induced from a po-harmonic character xo of
Go.

a) If GoN Z = {0} there are exactly two such hg, y, -

b) If GoN Z # {0} there is no such hg, y, -
3) When Vlj is properly convex. Let V", i =0, 1, be the two extremal
rays of V;“, let G; C G, be the two subgroups generated by the elements of S
above V¥ and p; = /L|Gi. Then h is equal to a function hg, . induced from
a pi-harmonic character x; of G;, i =0 or 1.

a) If G;N Z = {0} there is exactly one such hg, . -

b) If Gin Z # {0} there are uncountably many such hg_ . .

Remark 5.11. Theorem 5.10 is illustrated in the schematic Figures 1, 2 and
3 of the introduction. We have drawn a rough approximation of the shape
of the semigroup G C G and its subsemigroups G:O and G:l, in order to
illustrate the different cases that occur in Theorem 5.10. In these pictures

the center Z is the vertical axis.

Proof of Theorem 5.10. The first claim follows from Proposition 4.8 and Pro-
position 4.10. Moreover, Case 1) and the first claims of Cases 2) and 3) follow
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from Lemma 3.8.iv.

- Case 2.a) Since rank Gy = 1, by Proposition 5.1, xo must be a po-harmo-
nic character of Gy with youo non centered. Since po(Gy) < 1 and since g
is not supported by a half-line, there are exactly two such yj.

- Case 2.b) Since rank Gy = 2, this follows from Proposition 5.4.

- Case 3.a) Since rank G; = 1, by Proposition 5.1, x; must be a g;-harmonic
character of G; with y;u; non centered. Since u;(G;) < 1 and since p; is
supported by a half-line, there is exactly one such ;.

- Case 3.b) Since rank G; = 2, by Proposition 5.5, x; must be a p;-harmonic
character of G; satisfying (5.8). Since p(G;) < 1, and since p; is supported
by a half-space delimited by Z, there are uncountably many such y;. O]

Remark 5.12. - When p is not assumed to be a probability measure, the
formulation of Theorem 5.10 has to be modified. Indeed, if p({0}) > 1,
positive u-harmonic functions cannot exist. More precisely, each of the three
cases 2.a), 3.a) and 3.b) has to be split into two subcases :

2.d") If GoN Z = {0} and A(po) < 1, there are exactly two such hq, ., -
2.a") If GoN Z = {0} and A(po) > 1, there are no such hg, y, -

3.a') If GinZ = {0} and p({0}) < 1 there is exactly one such hg, . -

3.a") If GiN Z = {0} and pu({0}) > 1 there are no such hg_,. .

3V) If GiNZ # {0} and A1, ); <1, there are uncountably many such hg._ .
3V') If GinZ # {0} and A(p,); > 1, there are no such hg_ . .

- Here is the definition, motivated by Condition (5.8), of the constants A(u,,);.
For instance, for ¢ = 0, we choose s; € supp(y;) \ Z, j =0 or 1, and set
Mity)o = {3 X, (5) | X, character of Z, X, (sos155s7) > 1}

- Note that Cases 2.a”), 3.a”) and 3.0”) do not occur when p is a probability
measure.

We now can deduce from Theorem 5.10 the corollaries in the introduction :

Proof of Corollary 1.5. The support of hg, , is the semigroup generated by
Go and S~!. In the cases where a p-harmonic function ha, x, induced from
a character is finite, by Lemma 3.8.iv, one has V;; NV, = {0}, and this
semigroup is never equal to G. O

Proof of Corollary 1.4. Both conditions (i), (ii) are true in Cases 1) and 2.b).
Both conditions are not true in Cases 2.b), 3.a) and 3.b). O

One also has the following variation of Corollary 1.4.
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Corollary 5.13. Same notation and u(G) = 1. The following are equivalent:
(1) Extremal positive p-harmonic functions are ZP-semiinvariant for a p > 1.

(i4) GFnZ ¢ {0}.

Condition (i) means that there exist ¢ > 0 and a non-zero element z in
Z such that h, = qh.

Proof of Corollary 5.13. Both conditions (i), (i7) are true in Cases 1), 2.b)
and 3.b). Both conditions are not true in Cases 2.a) and 3.a). O

5.5 A nilpotent group of rank 4

In this section, we explain why Theorem 1.1 can not be ex-
tended to all nilpotent groups.

In this section G = N4(Z) will be the nilpotent group equal to the set Z*

1t 32 =2
of quadruples seen as matrices (¢, z,y, z) := 8 (1) ; Y |. The product is
00 0 1
(t,,y,2) (U2 y, ) = (t+ o+ 2’y +y + 1), 2+ 2 + by + 3t22).

The center Z of G is generated by zg := (0,0,0,1). Let p be the measure
1
po= 5(6(1 + ) where a :=(1,0,0,0) and b = (0,1,0,0).
A p-harmonic function h on G is a function that satisfies, for all g in G,
2h(g) = h(ag) + h(bg) or, equivalently,
2h(t,z,y,2z) = h(t+1, 2,y + x, z2+y+z/2) + h(t,z+1,y, 2).

We now construct extremal positive p-harmonic functions on G.
Fix a sequence o of rapidly increasing integers 1 < g < 01 < 09 < - -+
We introduce the left-infinite word w, in a and b of the form

wy = - a"phalr=Dp . . a7 pg70)

where the notation a™ means that the letter a is repeated m-times. For
each k > 0 we denote by w, , the suffix of length k of w,, i.e. the word given
by the k last letters of w,. We introduce the functions on G

Yy = Z 2]"’1%’,6 and h, :=sup Pgwg.

k>0 nz1

As before, the dot means that we replace the word by its image in G.
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Lemma 5.14. Let G = Ny(Z) and p and o be as above. Assume that
oxs1 > 203 forall A > 0. (5.14)

a) The function v, is subharmonic and the sequence P, is increasing.
b) The limit hy, = lim Py, is finite.
n—oo
c) The function h, is an extremal positive p-harmonic function on G.
d) The function h, is not Z-invariant.
e) The function h, is not induced.

Note that Condition (5.14) is not optimized.

Proof. a) One has 9, < P,t), and therefore P, < P,

b) This is the key point. Fix g = (¢,z,y,2) € G. Fix also two words u
and v in @ and b such that g = wo~!. Such words always exist. By definition
of h,, one has

he(g) = 2" lim (number of words w such that Wi = 1y, ©), (5.15)
A—00 A

where w,,, is the suffix of w, of length ny := A+ 37, 0i, i.e.

W, = a@ba@ Db . ba@pa(*0). (5.16)

A

We also write
w = aFpgke-1p . . paF)pg ko) (5.17)

with all k; > 0. We denote by ¢(w) the length of a word w.

We want to prove, using Condition (5.14), that the quantity (5.15) is
finite. We will see that there exists \y = A\g(g) such that the number of
words w such that

Wi = g, 0 (5.18)

does not depend on A for A > A\g(g). More precisely, we will see below that,
for A > A\o(g), Equality (5.18) implies that k;, = oy, so that we could remove
the prefix a(”»)b in both words and replace A by A—1.

Equality (5.18) gives four equations. We could write them down but we
will not need to. The first two equations tell us that the same number of a’s
and the same number of b’s occur in the words wu and w,,, v. In particular,
those words have same length. The third equation tells us that the sum
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of the positions of the b’s in these words are the same. Once these three
equations are satisfied, one can write wu = wmA@zéVw with N, € Z. The
fourth equation tells us that this integer N,, is zero.

We claim that, for A > A\g(g), if ks # oy then N, # 0. The reason is that
we can go from the word wu to the word Wo,n, U by a (minimal) succession
of “moves” that changes only the central component. These “moves” are

wiabwybaws +—  wibawsabws.

The images in G are modified by a factor zé“(wQ)H, where £, (ws) is the number
of a’s occuring in the word ws:

) . . . . . la(wa)+1
wibawyabls = wlabwgbawgzoa(m) .

Therefore, by (5.14), the largest contributions to N, come from the
“moves” that involve the first b on the left of the word Won, - Hence, when
ky # o) one has

[Nu| = onr = () + 30 03)?

1<A—2

which is non zero for A large enough by Condition (5.14).

¢) By construction h, is p-harmonic. We want to prove that h, is ex-
tremal. Assume that h, = ' + h” with A’ and h” positive p-harmonic. It
follows also from the previous computations that

27 h, (tep) =1 for all k > 0.
Introduce the two limits

o = lim 27%0 (tyy) and o = lim 27%R" (i, 4).
k—o0 k—o0

These limits exist since by harmonicity of A" and h” these sequences are
non-increasing. Moreover, one has o/ + o” =1 and

N >, and B > o1),.
Using again the harmonicity of A’ and A", one deduces

h >a'h, and B" > a"h,.
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Since o + o” = 1, these inequalities must be equalities. This proves that h
is extremal.

d) The above computation also tells us that supp(h,) N Z = {0}. This
prevents h, to be Z-invariant.

e) If the function h, were induced, it would be the translate by an element
g € G of a function induced from a character of the cyclic group G, generated
by a or of the cyclic group G} generated by b. Since h, (wy) # 0, for all &k > 1,
all the sets G:wk would meet G, ! or Gyg~ ", which is impossible since both

lim /y(wy) = +o0 and lim £, (wy) = +o0. O
k—oo k—oo
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