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Abstract

We prove that a harmonic quasi-isometric map between pinched
Hadamard surfaces is a quasi-conformal diffeomorphism.

1 Introduction

1.1 Main result

The main result of this paper is the following.

Theorem 1.1 Let h : S1 → S2 be a harmonic quasi-isometric map between
pinched Hadamard surfaces. Then, h is a quasi-conformal diffeomorphism.

A pinched Hadamard manifold is a complete simply-connected Rieman-
nian manifold whose curvature satisfies −b2 ≤ K ≤ −a2 for some positive
constants 0 < a ≤ b. For instance, the hyperbolic disk D is a pinched
Hadamard surface with constant curvature −1.

A map f : M1 → M2 between two metric spaces is quasi-isometric if
there exists a constant c ≥ 1 such that, for every x, x′ ∈M1,

c−1 d(x, x′)− c ≤ d(f(x), f(x′)) ≤ c d(x, x′) + c. (1.1)

A smooth map h : M1 →M2 between Riemannian manifolds is harmonic
if it is a critical point for the Dirichlet energy integral E(h) =

∫
|Dh|2dvM1

with respect to variations with compact support.

A diffeomorphism h : M1 → M2 between n-dimensional Riemannian
manifolds is quasi-conformal, if there exists a constant C > 0 such that
‖Dh‖n ≤ C |Jac(h)| where Jac(h) := det(Dh) is the Jacobian of h.
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1.2 A few comments

The special case of Theorem 1.1 where both S1 and S2 are the hyperbolic
disk D, is due to Li-Tam [19] and Markovic [20].

The main issue in Theorem 1.1 is the injectivity of h. The quasi-confor-
mality of h is but our way to prove injectivity.

In Theorem 1.1 we only deal with surfaces. Indeed the analog in higher
dimension is not true. A counterexample due to Farrell, Ontaneda and
Raghunathan is given in [9].

Given two pinched Hadamard surfaces S1 and S2, there exist many har-
monic quasi-isometric maps from S1 to S2 (see [4] or Theorem 2.2 below).
Theorem 1.1 asserts that all these maps are injective.

Theorem 1.1 extends the Schoen-Yau injectivity theorem in [22] which
says that a harmonic map between two compact Riemannian surfaces with
negative curvature, when homotopic to a diffeomorphism, is also a diffeo-
morphism. This injectivity theorem is used in the parametrization due to
J. Sampson and M. Wolf of the Teichmuller space by the Hopf quadratic
differentials, see [24] and [15].

From a historical point of view, the first injectivity theorem for harmonic
maps is due to Rado-Kneser-Choquet, almost 100 years ago. It states that,
in the Euclidean plane, the harmonic extension of an homeomorphism of the
unit circle is a diffeomorphism of the unit disk, see [14, Lemma 5.1.10]. The
analog statement in dimension d ≥ 3 is not true. A counterexample is given
by R. Laugesen in [17]. Later on, injective harmonic maps between surfaces
were studied by H. Lewy in [18] who proved that their Jacobian does not
vanish, by R. Heinz in [12] and by J. Jost and H. Karcher in [16, Chapter
7] who found a lower bound for their Jacobian. There is also an extension
of the Schoen-Yau injectivity theorem by J. Jost and R. Schoen that allows
some positive curvature in [16, Chapter 11].

1.3 Structure of the paper

In Chapter 2, we recall classical facts concerning Hadamard surfaces,
quasi-isometric maps and harmonic maps between surfaces. We will see
that we can assume that the source S1 is the hyperbolic disk D. Recall that
the special case of Theorem 1.1 where the target S2 is the hyperbolic disk
D is due to Li–Tam and Markovic.

In Chapter 3 we give an overview of the proof of Theorem 1.1. This proof
uses a deformation (gt) of the metric on S2, starting with the hyperbolic
metric, and a deformation (ht) of the harmonic map h. The key point will
be to obtain a uniform upper bound for the norm of the differential of ht
and a uniform lower bound for the Jacobian of ht.
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In Chapter 4, we gather compactness results for Hadamard surfaces and
harmonic maps.

In Chapter 5, we obtain a uniform lower bound for the Jacobian of
harmonic quasi-conformal diffeomorphisms.

In Chapter 6, we prove that the family (ht) varies continuously with t
and we complete the proof of Theorem 1.1.

In Chapter 7, we include a short new proof of the special case of Theorem
1.1 where S1 = S2 = D.

This paper is as self-contained as possible, the main tools being the
Bland-Kalka uniformization theorem in [5], the Bochner equations for har-
monic maps between surfaces in [15], the existence and uniqueness of quasi-
isometric harmonic maps in [4], and the PDE elliptic regularity in [11].

2 Background

We recall well-known properties of pinched Hadamard surfaces,
quasi-isometric maps and harmonic maps between surfaces.

2.1 Pinched Hadamard surfaces

The first example of a pinched Hadamard surface is the hyperbolic disk
D = (D, ghyp), where D = {|z| < 1} ⊂ C is the unit disk equipped with the
hyperbolic metric ghyp = ρ2(z)|dz|2 with conformal factor ρ2 = 4(1−|z|2)−2.
It is a Hadamard manifold with constant curvature −1.

Any pinched Hadamard surface is conformal to the disk, namely reads as
(D,σ2(z)|dz|2). Moreover the conformal factors ρ2 and σ2 are in a bounded
ratio : if the curvature K of this surface satisfies −b2 ≤ K ≤ −a2 < 0, then
a2σ2 ≤ ρ2 ≤ b2σ2. See Proposition 3.1.

Also observe that, for maps defined on a Riemannian surface S1, the
Dirichlet energy functional is invariant under a conformal change of metric
on S1. Hence, the harmonicity of such a map depends only on the conformal
class of the source surface.

We infer from this discussion that, to prove Theorem 1.1, we can assume
that S1 is the hyperbolic disk D.

2.2 Quasi-isometric maps

Let S = (D,σ2(z)|dz|2) be a pinched Hadamard surface. It is a proper
Gromov hyperbolic space (a general reference for Gromov hyperbolic spaces
is [10]). The boundary at infinity ∂∞S of S is defined as the set of equivalence
classes of geodesic rays, where two geodesic rays are identified whenever they
remain within bounded distance from each other. The union S = S ∪ ∂∞S
provides a compactification of S (see [1]).
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The boundary at infinity ∂∞D naturally identifies with the boundary
S1 = {z ∈ C , |z| = 1} of D. Since the identity map Id : D → D is a quasi-
isometry between the hyperbolic disk D = (D, ρ2(z)|dz|2) and the surface
S = (D,σ2(z)|dz|2), the boundary at infinity ∂∞S also identifies canonically
with ∂∞D = S1.

A quasi-isometric map f : D → S admits a boundary value at infinity
∂∞f : ∂∞D → ∂∞S, that we read as ∂∞f : S1 → S1 through the above
identifications. Two quasi-isometric maps share the same boundary value
at infinity if and only if they remain within bounded distance from each
other. By the Ahlfors-Beurling theorem, the maps ϕ : S1 → S1 that appear
as boundary values at infinity of quasi-isometric maps f : D→ S are exactly
the quasi-symmetric homeomorphisms. See [3, Fact 1.4] for a short historical
account of these facts. We will often identify S1 with R/2πZ.

Definition 2.1 Let k ≥ 1. A homeomorphism ϕ : S1 → S1 is a k-quasi-
symmetric map if

1

k
≤ ϕ(θ + α)− ϕ(θ)

ϕ(θ)− ϕ(θ − α)
≤ k (2.1)

holds for every θ, α with 0 < α ≤ π.

Note that any quasi-isometric map f : D → S is actually a quasi-
isometry. Namely, one has supy∈S d(y, f(D)) < ∞. Here is a first short
proof: the inverse ϕ−1 of its boundary map is also a quasi-symmetric home-
omorphism, hence ϕ−1 is the boundary map of a quasi-isometric map f ′ :
S → D, and the map f ◦ f ′ : S → S is within bounded distance from the
identity map. Here is another sketch of proof: the hyperbolic disc D is not
quasiisometric to one of its proper convex subsets because the boundary S1

of the disc is not homeomorphic to one of its proper subsets.
In a previous paper, we studied harmonic quasi-isometric maps between

pinched Hadamard manifolds. Our result, when specialized to surfaces,
asserts that any quasi-isometric map f : D → S has the same boundary
value at infinity as a unique harmonic quasi-isometric map. In other words,
the following holds.

Theorem 2.2 [4] Let S = (D,σ2(z)|dz|2) be a pinched Hadamard surface
and ϕ : S1 → S1 be a quasi-symmetric map. Then, there exists a unique
harmonic quasi-isometric map h : D→ S such that ∂∞h = ϕ.

2.3 Harmonic maps between surfaces

We introduce some notation that will be used throughout the pa-
per, and recall some classical results concerning harmonic maps
between surfaces. A general reference for this section is Jost [15].
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Let h : D→ S be a smooth map from the hyperbolic disk D = (D, ρ2(z)|dz|2)
to a pinched Hadamard surface S = (D,σ2(z)|dz|2) with pinching condition
−b2 ≤ K ≤ −a2 < 0. Recall that the curvature K of S is given by

K = −σ−2 ∆e log σ

where ∆e = 4∂z∂z is the Euclidean Laplacian. For such a map h, we intro-
duce as usual the functions hz, hz̄ : D→ C defined by

hz =
1

2
(hx − ihy), hz̄ =

1

2
(hx + ihy)

where the conformal parameter reads as z = x + iy, and the subscript x
or y indicates a directional derivative. The map h is holomorphic (or anti-
holomorphic) if hz̄ = 0 (or hz = 0). It is worth noting that hz̄ = h̄z.

Proposition 2.3 [15, Section 3.6] The map h : D → S is harmonic if and
only if it satisfies

hzz̄ + 2 (
σz
σ
◦ h)hzhz̄ = 0 .

If the map h is either holomorphic, or anti-holomorphic, then it is harmonic.
Introduce the square norms of the complex derivatives of h :

H = ‖∂h‖2 :=
σ2 ◦ h
ρ2

|hz|2 and L = ‖∂̄h‖2 :=
σ2 ◦ h
ρ2

|hz̄|2 ,

so that one has ‖Dh‖2 = H + L. Observe that h is a local diffeomorphism
if the Jacobian J = H − L does not vanish, and is moreover orientation
preserving if J > 0.

Lemma 2.4 [15, Section 3.10] Let h : D → S be a harmonic map. On the
open subsets where they are non zero, the functions H and L satisfy the
Bochner equations

(1/2) ∆ logH = (−K ◦ h) J − 1 , (2.2)

(1/2) ∆ logL = (K ◦ h) J − 1 . (2.3)

Here ∆ = 4 ρ−2∂z∂z̄ is the Laplace operator relative to the hyperbolic metric.
On the open set Ω := {hz 6= 0}, we introduce the conformal distortion

µ : Ω→ C by letting hz̄ = µhz, so that one has the useful equalities

|µ|2 = L/H , 1− |µ|2 = J/H and
1− |µ|2

1 + |µ|2
=

J

‖Dh‖2
. (2.4)
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3 A family of metrics and harmonic maps

In this section we explain the continuity method that will be
used to prove Theorem 1.1.

Let S = (D,σ2(z)|dz|2) be a pinched Hadamard surface, with curva-
ture bounds −b2 ≤ K ≤ −a2 < 0. Choose an increasing quasi-symmetric
homeomorphism ϕ : S1 → S1, and let h : D → S be the unique harmonic
quasi-isometric map with boundary value at infinity ∂∞h = ϕ. We want to
prove that h is a quasi-conformal diffeomorphism.

In case the surface S is the hyperbolic disk, that is for a harmonic quasi-
isometric map h : D → D, the result is due to Li-Tam and Markovic (see
Chapter 7 for a proof). To prove it for a harmonic map h : D→ S with values
in a general pinched Hadamard surface S, we use the method of continuity,
involving a family of pinched Hadamard surfaces St = (D, e2utghyp), for
0 ≤ t ≤ 1, starting with S0 = D and such that S1 = S.

3.1 Construction of the metrics gt

We construct the metric gt by prescribing its curvature.

More specifically, we introduce for 0 ≤ t ≤ 1 the unique complete confor-
mal metric gt = e2utghyp on the unit disk D with curvature Kt :=−(1−t)+tK.
Each function Kt being pinched between two negative constants, the exis-
tence and uniqueness of such a metric is granted by the following.

Proposition 3.1 [5] Let S0 = (D, g0) be a pinched Hadamard surface with
curvature −b20 ≤ k0 ≤ −a2

0 < 0. Let k be a smooth function on S0 such that
−β2 ≤ k ≤ −α2 for some constants 0 < α ≤ β. Then, there exists a unique
complete conformal metric g = e2ug0 on D with curvature k. Moreover, the
conformal factor e2u is controlled, with

a2
0/β

2 ≤ e2u ≤ b20/α2. (3.1)

Sketch of proof The sub-supersolution method for the curvature equation

∆0u = −k e2u + k0 , (3.2)

where ∆0 is the Laplace operator for g0, proves existence and uniqueness.
The upper bound in (3.1) relies on the generalized maximum principle

of Yau applied to the bounded function v := 1/(1 + e−u), see [25] or Lemma
3.2 below. For the lower bound, exchange the roles of g and g0. We only
need a light form of this maximum principle that reads as follows. �
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Lemma 3.2 Let v : S → R be a smooth function defined on a pinched
Hadamard surface S. Assume that v is bounded above.

Then, there exists a sequence (xn) in S such that

v(xn)→ supS v, |∇v|(xn)→ 0 and lim sup ∆v(xn) ≤ 0. (3.3)

Proof We can assume that supS v = 1. We fix a point x0 ∈ S where this
supremum is not achieved and we introduce the function vn on S given by
vn(x) = v(x) e−d(x,x0)/n. This function is smooth, except maybe at x0, and
it achieves its supremum at a point xn 6= x0 for n large. This sequence (xn)
satisfies (3.3) since vn(xn)→ 1, ∇vn(xn) = 0 and ∆vn(xn) ≤ 0. �

3.2 Construction of the harmonic maps ht

We construct the harmonic map ht by prescribing its boundary map.

By construction, one has D = (D, g0) and S = (D, g1). For 0 ≤ t ≤ 1, we
let ht : D→ St be the unique harmonic quasi-isometric map whose boundary
value at infinity is ϕ : S1 → S1. Recall that the existence and uniqueness of
those ht are granted by Theorem 2.2.

Here are some basic information concerning these harmonic maps ht. For
0 ≤ s, t ≤ 1, let d(hs, ht) := sup

z∈D
d(hs(z), ht(z)) denote the uniform distance

between these two maps, where the distance is taken with respect to the
hyperbolic metric ghyp on the target.

Lemma 3.3 There exists c∗ > 0 such that, for all t ∈ [0, 1], the map ht is
c∗-quasi-isometric, one has d(ht, h0) ≤ c∗, and the map ht is c∗-Lipschitz.

Remark that, since the functions ut are uniformly bounded (Proposition
3.1), it was not really necessary to specify with respect to which one of the
metrics gt the above distances were being estimated.

Proof As explained in Section 2.2, there exists a c-quasi-isometric map
f : D → D whose boundary value at infinity is our quasi-symmetric map
∂∞f = ϕ. By taking a larger constant c, we may assume that each map
f : D → St (that is, the same map f now seen with values in one of the
Riemannian surfaces St, with t ∈ [0, 1]) is c-quasi-isometric.

Thus the main result of [4] asserts that there exists a constant C > 0
such that d(f, ht) ≤ C. This constant C depends only on c and on the
pinching constants a and b, hence it does not depend on t ∈ [0, 1]. Thus the
first two claims hold if c∗ ≥ 2c+ 2C.

The map f being c-quasi-isometric, each harmonic map ht : D → St
sends any ball B(z, 1) ⊂ D with radius 1 inside the ball B(ht(z), R) ⊂ St
with radius R = 2c+2C. Now the uniform Lipschitz continuity of the maps
ht follows from the Cheng lemma, that we recall below. �
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Lemma 3.4 [8] Let S be a Hadamard surface with −b2 ≤ K ≤ 0. There
exists a constant κ, that depends only on b, such that if a harmonic map
h : D→ S satisfies h(B(z, 1)) ⊂ B(h(z), R) for some radius R, then

‖Dh(z)‖ ≤ κR .

3.3 An injectivity criterion

The following lemma tells us that a uniform lower bound for the Jacobian
Jt = Jac(ht) is enough to ensure that ht is a quasi-conformal diffeomorphism.

Lemma 3.5 If inf
z∈D

Jt(z) > 0 then ht is a quasi-conformal diffeomorphism.

Proof By assumption the Jacobian Jt does not vanish, hence the map
ht : D→ St is a local diffeomorphism. By construction, the map ht is quasi-
isometric, hence it is a proper map. It thus follows that ht is a covering
map. Hence, since S is simply connected, the map ht is a diffeomorphism.
Since, by Lemma 3.4, ht is Lipschitz, the lower bound for its Jacobian Jt
ensures that ht is quasi-conformal. �

3.4 Strategy of proof of Theorem 1.1

We will need the following two propositions.

Proposition 3.6 There exists j∗ > 0 such that, for all t ∈ [0, 1] for which
ht is a quasi-conformal diffeomorphism, one has Jt ≥ j∗.

Proposition 3.6 is a straightforward consequence of Proposition 5.2 that
will be proven in Chapter 5. Indeed Lemma 3.3 ensures that the maps ht
are c∗-Lipschitz.

Let Cb(D,R) be the space of bounded continuous functions ψ endowed
with the sup norm : ‖ψ‖∞ = sup

z∈D
|ψ(z)|.

Proposition 3.7 The map t ∈ [0, 1]→ Jt ∈ Cb(D,R) is continuous.

Proposition 3.7 will be proven in Chapter 6 as part of Proposition 6.2 .

Proof of Theorem 1.1 using Propositions 3.6 and 3.7 Let A be the
set of parameters t ∈ [0, 1] such that the harmonic map ht : D → St is a
quasi-conformal diffeomorphism. We want to prove that 1 ∈ A. We already
know that 0 ∈ A (this is Theorem 7.1 due to Li-Tam and Markovic). It is
enough to check that A is open and closed. Let j be the function on [0, 1]
given by

j(t) := inf
z∈D

Jt(z) ∈ R.

By Proposition 3.7 the function j is continuous. By Lemma 3.5 and Propo-
sition 3.6, one has both A = j−1(]0,∞[) and A = j−1([j∗,∞[). Hence A is
both open and closed. �
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4 Sequences of metrics and harmonic maps

In order to obtain the uniform lower bounds in Chapter 5, or
the continuity properties in Chapter 6, we will have to consider
sequences of conformal metrics on the unit disk D, and sequences
of harmonic maps. In this chapter, we state compactness results
for such sequences.

These compactness results also hold in higher dimension (see [21], or [4]).
Since we will only deal here with conformal metrics on the disk D, the
complex parameter z ∈ D naturally provides a global harmonic chart for
these metrics so that the statements and the proofs are more elementary.

4.1 Sequence of Hadamard surfaces

Let us begin with sequences of conformal Riemannian structures
on the unit disk D.

The convergence in the following lemma is nothing but a special case of
the Gromov-Hausdorff convergence for isometry classes of pointed proper
metric spaces using the base point 0 ∈ D. See [4, §5.3] or [7] for a short
introduction to this notion.

Lemma 4.1 Let gn = e2unghyp be a sequence of complete conformal metrics
on the unit disk D with curvature −b2 ≤ Kn ≤ −a2 < 0. Then there is a
subsequence of (un) that converges to a C1 function u∞ in the C1

loc topology.
The limit metric g∞ = e2u∞ghyp is a C1 complete conformal metric on

D, and S∞ := (D, g∞) is a CAT-space with curvature between −b2 and −a2.

Proof Proposition 3.1 ensures that the logarithms un : D → R of the
conformal factors are uniformly bounded. The curvature equation

∆un = (−Kn) e2un − 1 (3.2n)

for gn ensures that the Laplacians ∆un are also uniformly bounded.
Pick 0 ≤ α < 1. We may now apply to the sequence (un) the following

first Schauder estimates (see [11, Theorem 3.9] or [21, Theorem 70]). These
estimates state that there exists a constant c such that, for any smooth
function v : D→ R on the hyperbolic disk, the inequality

‖v‖C1,α(B1) ≤ cα(‖∆v‖C0(B2) + ‖v‖C0(B2)) (4.1)

holds for any pair of concentric hyperbolic balls B1 ⊂ B2 ⊂ D with respective
radii 1 and 2. This provides a uniform local bound for the norms ‖un‖C1,α .
Going if necessary to a subsequence, we may thus assume that the sequence
(un) converges in the C1

loc topology. Let u∞ = limun and g∞ = e2u∞ghyp
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and introduce S∞ = (D, g∞). As a limit of such, the length space S∞ is a
CAT-space with curvature between −b2 and −a2 (see [6, Corollary II.3.10]
and [7, Theorem 10.7.1]). �

Remark Under the hypothesis of Lemma 4.1, after extraction, the sequence
of bounded functions Kn : D → R converges weakly to a bounded measur-
able function K∞ : D → R with −b2 ≤ K∞ ≤ −a2, and the C1 function u∞
is a weak solution of

∆u∞ = (−K∞) e2u∞ − 1 . (3.2∞)

4.2 Sequence of harmonic maps

Now turn to sequences of maps between such Riemannian surfaces.

Lemma 4.2 Let Sn = (D, gn) be a sequence converging to S∞ = (D, g∞) as
in Lemma 4.1. Let c > 0, and let hn : D→ Sn be c-Lipschitz maps satisfying
dn(hn(0), 0) ≤ c. Then there is a subsequence of (hn) that converges locally
uniformly to a c-Lipschitz map h∞ : D→ S∞ .
a) If all the maps hn are C-quasi-isometric, then h∞ is C-quasi-isometric.
b) If all the maps hn are harmonic, then h∞ is C2 and is harmonic too.

Proof Observe that, on any fixed compact set, the maps hn : D → S∞
are cn-Lipschitz for some constants cn converging to c. Indeed these are
the initial maps hn, albeit with the limit metric on the target. Since we
assumed that dn(hn(0), 0) ≤ c, these maps hn are locally uniformly bounded
(this means locally in z and uniformly in n). It thus follows from the Ascoli
lemma that we may assume the sequence (hn) to converge uniformly on
compact sets to a c-Lipschitz map h∞ : D→ S∞.

a) If all hn : D→ Sn are C-quasi-isometric, then, on any fixed compact
set, the maps hn : D → S∞ are Cn-quasi-isometric for some constant Cn
converging to C, and so h∞ is C-quasi-isometric.

b) Now assume that each map hn : D → Sn is harmonic, namely that
each function hn : D→ D ⊂ C satisfies the equation

(hn)zz̄ + 2 ((un)z ◦ hn) (hn)z(hn)z̄ = 0 . (4.2)

We want to prove that h∞ is harmonic, namely that it is C2 and satisfies

(h∞)zz̄ + 2 ((u∞)z ◦ h∞) (h∞)z(h∞)z̄ = 0 . (4.3)

The maps hn : D→ Sn are c-Lipschitz, so that all the derivatives (hn)z and
(hn)z̄ are locally uniformly bounded. We have seen in the proof of Lemma
4.1 that the gradients ∇un are locally uniformly bounded, hence (un)z ◦ hn
are locally uniformly bounded. Then (4.2) ensures that the functions ∆hn
are also locally uniformly bounded. We apply the first Schauder estimates
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(4.1) to the functions v = hn. This implies that, for 0 < α < 1, the functions
hn are uniformly bounded in the C1,α

loc topology.
Plugging this information in (4.2), and remembering from the proof of

Lemma 4.1 that the gradients ∇un are also uniformly bounded in the Cαloc

topology, we see that the functions ∆hn are uniformly bounded in the Cαloc

topology. We will now apply the second Schauder estimates to the functions
v = hn (see [21, Theorem 70]). With the same notation as (4.1), these
estimates state

‖v‖C2,α(B1) ≤ cα
(
‖∆v‖Cα(B2) + ‖v‖C0(B2)

)
. (4.4)

Hence the functions hn are uniformly bounded in the C2,α
loc topology.

Therefore (hn) admits a subsequence which converges in the C2
loc topo-

logy. This proves that h∞ is C2 and going to the limit in (4.2) ensures that
the limit map h∞ is harmonic, as claimed. �

5 A lower bound for the Jacobian

In this section we provide a lower bound for the Jacobian Jt of ht
when ht is a quasi-conformal diffeomorphism (Proposition 3.6).

The notation are those of Section 2.3 : S is a pinched Hadamard surface and
h : D→ S is an harmonic map. We assume moreover that h is an orientation
preserving diffeomorphism. The Jacobian of h, which is J = H − L with
H := ‖∂h‖2 and L := ‖∂h‖2, is positive. The function w := 1

2 logH satisfies
Equation (2.2), that we may also write as

∆w = (−K ◦ h) (1− |µ|2) e2w − 1 , (5.1)

where µ := hz̄/hz is the conformal distortion. By (2.4) the diffeomorphism
h is quasi-conformal if and only if there exists a δ < 1 such that |µ| ≤ δ.

5.1 Controlling the norm of the differential

The next lemma tells us that the norm of the differential ‖Dh‖ of a harmonic
quasi-conformal diffeomorphism is uniformly bounded below (see also [23]).

Lemma 5.1 Let h : D→ S be a quasi-conformal harmonic diffeomorphism,
where S is a pinched Hadamard surface with curvature −b2 ≤ K ≤ −a2 < 0.
Then one has e2w ≥ b−2 .

Proof Introduce the conformal metric g̃ = e2wghyp on D. We first prove
that g̃ is complete with pinched negative curvature. Proposition 3.1 will
then provide the lower bound on w.
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Let S = (D,σ2(z)|dz|2). The map h : D → S being a diffeomorphism
and S being complete, the pull back metric G = h∗(σ2(z)|dz|2) is complete.
This pull-back metric reads as G = (σ2 ◦ h)|hz|2|dz+µdz̄|2. Since one has
g̃ = (σ2 ◦ h)|hz|2|dz|2 and |µ| ≤ 1, one easily checks that G ≤ 4g̃. This
ensures that the metric g̃ is complete.

Comparison of Equation (5.1) satisfied by w and the curvature equation
(3.2) yields that the metric g̃ has curvature K̃ = (K ◦h)(1−|µ|2). It follows
that −b2 ≤ K̃ ≤ −a2(1 − δ2) < 0, where δ := ‖µ‖∞ < 1. Proposition 3.1
thus ensures that w satisfies b−2 ≤ e2w ≤ a−2(1− δ2)−1 . �

5.2 Controlling the Jacobian

The following proposition tells us that the Jacobian of a harmonic quasi-
conformal diffeomorphism is controlled by its Lipschitz constant.

Proposition 5.2 Let 0 < a ≤ b. Then, for every c > 0, there exists
j∗ = j∗(a, b, c) > 0 such that, if S is a pinched Hadamard surface with cur-
vature −b2 ≤ K ≤ −a2, the Jacobian J of any c-Lipschitz quasi-conformal
harmonic diffeomorphism h : D→ S satisfies J ≥ j∗.

Proof Assume by contradiction that there exist a sequence of pinched
Hadamard surfaces Sn = (D, e2unghyp) with curvatures −b2 ≤ Kn ≤ −a2,
a sequence hn : D→ Sn of c-Lipschitz harmonic quasi-conformal diffeomor-
phisms and a sequence (xn) of points of D such that the Jacobian Jn of hn
satisfy Jn(xn)→ 0.

Choosing sequences (γn) and (γ′n) of isometries of the hyperbolic disk
such that γn(xn) = 0 and γ′n(hn(xn)) = 0, and replacing un by un ◦ γ′n

−1

and hn by γ′nhnγ
−1
n , we can assume that xn = 0 and hn(xn) = 0.

By Lemmas 4.1 and 4.2, going to a subsequence, one may assume that :
– the sequence (un) converges to a C1 function u∞ in the C1

loc topology.
– the sequence (hn) converges to a C2 map h∞ in the C2

loc topology.
Recall from (2.4) that Jn = (1 − |µn|2)e2wn where µn = (hn)z̄/(hn)z is

the conformal distorsion and where e2wn = ‖∂hn‖2. Lemma 5.1 ensures that

e2w∞ = lim
n→∞

e2wn ≥ b−2 . (5.2)

Thus (h∞)z does not vanish. Hence the functions µn also converge to a C1

functions µ∞ in the C1
loc topology, and one has ‖µ∞‖∞ = 1 and |µ∞(0)| = 1.

First step We claim that |µ∞| ≡ 1.
Indeed, we introduce the non negative C1 functions `n := − log |µn|2 defined
on Ωn := {µn 6= 0} and their limit `∞ := − log |µ∞|2, which is defined
on Ω∞ := {µ∞ 6= 0}. By assumption, the function `∞ is a non-negative
function that achieves its minimum `∞(0) = 0 at the origin. We will prove
that the set {`∞ = 0} is open in Ω∞, so that `∞ ≡ 0 as claimed.
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The function `n satisfies the equation on Ωn, difference of (2.2) and (2.3):

∆`n = 4 (−Kn ◦ hn) (1− e−`n) e2wn . (5.3)

Since |Kn| ≤ b2, 1−e−`n ≤ `n and e2wn ≤ c2, we infer that

∆`n ≤ 4b2c2 `n .

Hence `∞ is a C1 function on Ω∞ that satisfies in the weak sense

∆`∞ ≤ 4b2c2 `∞ .

In particular, one has bounds ∆e`∞ ≤ CK`∞ on compact sets K of Ω∞ and,
by Lemma 5.3 below, the set {`∞ = 0} is open. This proves |µ∞| ≡ 1.

Second step We reach a contradiction.
We recall that the functions wn satisfy (5.1), namely

∆wn = (−Kn ◦ hn) (1− |µn|2) e2wn − 1 .

Since the functions (−Kn ◦ hn) and e2wn are uniformly bounded and since
limn→∞ |µn| = 1, the limit function w∞ = limwn satisfies ∆w∞ = −1 in
the weak sense. In particular w∞ is smooth. Note also that (5.2) yields the
lower bound 2w∞ ≥ log b−2.

In conclusion, w∞ is a smooth function on D which is bounded below
and satisfies ∆w∞ = −1. By the generalized maximum principle of Lemma
3.2, such a function w∞ does not exist. Contradiction. �

In the previous proof we have used the following lemma as in [12].

Lemma 5.3 Let C > 0 and ` be a non-negative continuous function on an
open set U ⊂ R2 such that ∆e` ≤ C` weakly. Then the set {` = 0} is open.

Proof We can assume that `(0) = 0. By a standard convolution argument,
in a small ball B(0, R) ⊂ Ω, we can write ` as a uniform limit of non-negative
C2-functions `n that also satisfy

∆e`n ≤ C`n . (5.4)

We introduce the mean values of `n and ` on circles of radius r ≤ R,

Mn(r) := 1
2π

∫ 2π
0 `n(r eiθ) dθ and M(r) := 1

2π

∫ 2π
0 `(r eiθ) dθ.

The Green representation formula (see Hörmander [13, p.119]) gives

`n(0) = Mn(r)− 1

2π

∫
B(0,r)

∆e`n(y) log
r

|y|
dy .
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Since `n converges uniformly to ` and `(0) = 0 we infer, using (5.4), that

M(r) ≤ C

2π

∫
B(0,r)

`(y) log
r

|y|
dy ,

so that, for every r ≤ R,

M(r) ≤ C R2

4
sup
[0,R]

M(t) .

Choosing R2 < 4/C, we obtain that ` ≡ 0 on the ball B(0, R). �

6 Continuity of the Jacobian

In this section we prove that the metrics gt, the harmonic maps
ht and their Jacobians Jt depend continuously on t, thus proving
Proposition 3.7.

6.1 A continuous family of metric

In Chapter 3, we introduced pinched Hadamard surfaces St = (D, e2utghyp)
with curvature Kt = (t − 1) + tK, where −b2 ≤ K ≤ −a2 < 0 (t ∈ [0, 1]).
In particular, S0 = D. We have seen that all the metrics gt are uniformly
bi-Lipschitz to each other. This means that the functions ut : D → R are
uniformly bounded.

Lemma 6.1 tells us that they are uniformly bounded in norm C1 and
that the map t ∈ [0, 1] → ut ∈ C1 is continuous. Here the gradients ∇, as
well as their norms, are taken with respect to the hyperbolic metric ghyp.

Lemma 6.1 There exists a constant c such that, for every 0 ≤ t ≤ 1

‖ut‖∞ + ‖∇ut‖∞ ≤ c (6.1)

‖ut − us‖∞ + ‖∇(ut − us)‖∞ ≤ c |t− s| . (6.2)

Proof We argue as in the proof of Lemma 4.1. Let us first prove (6.1).
Each conformal factor e2ut is solution of the curvature equation (3.2), here

∆ut = (−Kt) e
2ut − 1 . (6.3)

Since the metrics gt are complete, and the Kt satisfy a uniform pinching
condition −B2 ≤ Kt ≤ −A2 < 0 for all 0 ≤ t ≤ 1, Proposition 3.1 ensures
that the functions ut are uniformly bounded. Plugging into (6.3), we infer
that the Laplacians ∆ut are also uniformly bounded. Hence the Schauder
estimates (4.1) with α = 0 and v = ut yield the uniform bound (6.1).

14



We now prove (6.2). Using the curvature equations (6.3) satisfied by us
and ut (0 ≤ s < t ≤ 1), we obtain

∆(ut − us) = (Ks −Kt)e
2ut +Ks(e

2us − e2ut)

that we rewrite as :

∆(ut − us) = −(t− s)(1 +K)e2ut + (−Ks) (e2ut − e2us) . (6.4)

Since the functions ut are uniformly bounded, there exists a constantm0 > 0,
such that one has |ut − us| ≤ m0 |e2ut − e2us | for all s, t in [0, 1].

The generalized maximum principle of of Lemma 3.2 applied to the func-
tion v := |ut − us| ensures the existence of a sequence (xn) in D such that
v(xn)→ supS v, and lim sup ∆v(xn) ≤ 0. Using (6.4), one computes

∆v(xn) ≥ −(t− s) |1+K| e2ut(xn) + (−Ks) |e2ut(xn) − e2us(xn)| (6.5)

≥ −(t− s)(1+b2) e2‖u‖∞ + a2m0 |ut(xn)−us(xn)| . (6.6)

Therefore, letting n go to∞, one finds a constant c := m−1
0 a−2(1+b2)e2‖u‖∞

such that

‖ut − us‖∞ ≤ c |t− s| (6.7)

for every s, t in [0, 1].
Plugging (6.7) into (6.4) yields a similar bound for ∆(ut−us), and (6.2)

follows from the Schauder estimates (4.1) with v = ut − us. �

Remark Since the curvature function K is smooth, one could improve
Lemma 6.1 and prove that all ut are smooth and that, for all p ≥ 2 the
maps t ∈ [0, 1] → ut ∈ Cploc(D) is continuous. But the pth derivatives of ut
might not be bounded on D.

6.2 A continuous family of harmonic maps

Recall that we have natural identifications ∂∞St ' S1. We fix an increasing
quasi-symmetric homeomorphism ϕ : S1 → S1. In Chapter 3, we introduced
the unique harmonic quasi-isometric map ht : D→ St with boundary value
at infinity ∂∞ht = ϕ.

Here are the continuity properties of this family of maps ht that we used
in the proof of Theorem 1.1.

Proposition 6.2 (a) The map t ∈ [0, 1]→ ht ∈ C(D,D) is continuous.
(b) The map t ∈ [0, 1]→ Jt ∈ Cb(D,R) is continuous.

This means that lim
s→t

d(hs, ht) = 0 and lim
s→t
‖Js−Jt‖∞ = 0, for all t ∈ [0, 1].
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Proof Assume this is not the case. Then there exist a sequence (tn) in
[0, 1] and a sequence (xn) of points in D such that

lim
n→∞

d(htn(xn), ht(xn)) > 0 or lim
n→∞

|Jtn(xn)− Jt(xn)| > 0 . (6.8)

We want to get a contradiction by applying Lemmas 4.1 and 4.2 to re-
centered surfaces and recentered harmonic maps. We thus choose sequences
(γn) and (γ′n) of isometries of the hyperbolic disk D such that γn(xn) = 0
and γ′n(ht(xn)) = 0. Let Sn = (D, gn) and S′n = (D, g′n) be the conformal
surfaces where gn = e2unghyp and g′n = e2u′nghyp with

un := ut ◦ γ′n
−1

and u′n := utn ◦ γ′n
−1
.

By Lemma 4.1 we may assume, after extraction, that the sequence (un)
converges to a C1 function u∞ in the C1

loc topology, and that the limit
C1 metric space S∞ := (D, e2u∞) is a CAT space with pinched curvature
−b2 ≤ K∞ ≤ −a2 < 0.

By Lemma 6.1, one has

lim
n→∞

‖u′n − un‖∞ + ‖∇u′n −∇un‖∞ = 0 .

Hence the sequence (u′n) also converges in the C1
loc topology to the function

u∞. We now introduce the sequence of maps

hn := γ′n ◦ ht ◦ γ−1
n : D→ Sn , (6.9)

h′n := γ′n ◦ htn ◦ γ−1
n : D→ S′n . (6.10)

These maps hn and h′n are harmonic and (6.8) can be rewritten as

lim
n→∞

d(hn(0), h′n(0)) > 0 or lim
n→∞

|Jn(0)− J ′n(0)| > 0 , (6.11)

where Jn is the Jacobian of hn and J ′n the Jacobian of h′n. By Lemma
3.3, all these maps hn and h′n are uniformly Lipschitz and uniformly quasi-
isometric. Hence Lemma 4.2 ensures that, after extraction, the sequences
(hn) and (h′n) converge respectively, in the C2

loc topology, to harmonic quasi-
isometric maps h∞, h

′
∞ : D→ S∞.

Since Lemma 3.3 also asserts that d(hn, h
′
n) ≤ 2 c∗ for all n, the limit

harmonic quasi-isometric maps h∞, h
′
∞ : D → S∞ are within bounded dis-

tance from each other. Then the uniqueness theorem for quasi-isometric
harmonic maps in [4, §5] ensures that h∞ = h′∞. This contradicts (6.11). �

This also ends the proof of both Proposition 3.7 and Theorem 1.1.

7 The injectivity theorem in constant curvature

This chapter is an appendix in which we prove the injectivity
theorem 7.1 that we used as a starting point in the proof of our
main theorem 1.1.
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7.1 The Li-Tam-Markovic injectivity theorem

Theorem 7.1 Let D be the hyperbolic disk. Any harmonic quasi-isometric
map h : D→ D is a quasi-conformal harmonic diffeomorphism.

This theorem is an output of Markovic solution of the Schoen conjecture
in [20]. It relies on a previous injectivity result of Li-Tam in [19] when the
boundary map of h is smooth, which is Proposition 7.4 below. The proof of
Li-Tam itself relies on the Schoen-Yau injectivity theorem in [22].

We would like to give in this appendix a short new proof of Theorem
7.1 that does not rely on this Schoen-Yau theorem and that uses instead a
continuity method combined with a simple topological fact (Lemma 7.8).

Proof The proof will last till the end of this appendix. We know (see
Section 2.2) that the boundary value ϕ = ∂∞h : S1 → S1 is a k-quasi-
symmetric homeomorphism of S1 = ∂∞D, where k depends only on the
constant c of quasi-isometry of h. For k ≥ 1, we introduce the set

Mk = { k-quasi-symmetric homeomorphism ϕ : S1 → S1}

equipped with the uniform distance d(ϕ1, ϕ2) = sup
ξ∈S1
|ϕ1(ξ)− ϕ2(ξ)|.

We also know that, for all ϕ in Mk, there exists a unique harmonic
quasi-isometric map hϕ : D → D whose boundary map is ϕ. We want to
prove that all these maps hϕ are quasiconformal diffeomorphisms. This will
follow from the next Lemma 7.2, Proposition 7.3 and Proposition 7.4. �

Lemma 7.2 The k-quasi-symmetric C1 diffeomorphisms are dense in Mk.

Proof Choose a smooth approximation of unity (αn) on S1. For ϕ inMk,
each function αn ∗ ϕ is a k-quasi-symmetric C1 diffeomorphism while the
sequence (αn ∗ ϕ) converges uniformly to ϕ. �

Proposition 7.3 Let Fk be the set of those ϕ ∈ Mk such that hϕ is a
quasi-conformal diffeomorphism. Then Fk is a closed subset of Mk.

The proof of Proposition 7.3 will be given in Section 7.3. It relies on
continuity properties of the boundary map h 7→ ∂∞h proven in Section 7.2.

Proposition 7.4 When ϕ is a C1 diffeomorphism of S1, its quasi-isometric
harmonic extension hϕ : D→ D is a quasi-conformal diffeomorphism.

The proof of Proposition 7.4 will be given in Section 7.5. It uses a
deformation ϕt of ϕ starting with the identity. Let G be the group of
isometries of D acting on S1. The proof relies on the fact that the only
homeomorphisms which are limits of elements of GϕtG belong to G. This
is Lemma 7.8 which will be proven in Section 7.4.
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7.2 Continuity of the boundary map

Let c > 1. Endow the space Qc of c-quasi-isometric maps f : D → D with
the topology of uniform convergence on compact sets, and the space C of
continuous maps ϕ : S1 → S1 with the topology of uniform convergence.

Lemma 7.5 The map f ∈ Qc → ∂∞f ∈ C is continuous.

Proof We fix a point 0 in D. Recall that the Gromov product of two points
x, y in D seen from 0 is

(x, y)0 = 1
2(d(0, x)− d(x, y) + d(y, 0)) .

We will use the quasi-invariance of the Gromov product under quasi-isome-
tric maps as in [10, Prop. 5.15]. For n ∈ N ∪ {∞}, let fn ∈ Qc be c-quasi-
isometric maps, with boundary values at infinity ϕn . Assume that the
sequence (fn) converges uniformly to f∞ on compact sets. In particular, the
quantity R := supn d(fn(0), 0) is finite. We want to prove that the sequence
(ϕn) converges uniformly to the boundary map ϕ∞ of f∞.

For ξ ∈ S1, denote by t ∈ [0,∞[ → xtξ ∈ D the geodesic ray with origin
0 and endpoint ξ. By [10, Prop. 5.15], there exists a constant λ > 1 such
that the following lower bound for the Gromov product seen from 0

(fn(xtξ), fn(xsξ))0 ≥ (xtξ, x
s
ξ)0/λ− λ = t/λ− λ

holds when s ≥ t > 0 and n ∈ N ∪ {∞}. Letting s→∞, we obtain

(fn(xtξ), ϕn(ξ))0 ≥ t/λ− λ

for n ∈ N∪{∞}. Since D is δ-hyperbolic for a constant δ > 0, each Gromov
product (ϕn(ξ), ϕ∞(ξ))0 is bounded below by

min[ (ϕn(ξ), fn(xtξ))0 , (fn(xtξ), f∞(xtξ))0 , (f∞(xtξ), ϕ∞(ξ))0 ]− 2δ (7.1)

for every ξ ∈ S1 and n ∈ N (see [10, Chap. 2]). The sequence (fn) converging
uniformly to f∞ on compact sets, there exists, for all t > 0, an integer nt ≥ 1
such that one has, for n ≥ nt and ξ ∈ S1,

d(fn(xtξ), f∞(xtξ)) ≤ 1 , hence

(fn(xtξ), f∞(xtξ))0 ≥ t/c− c−R− 1/2 ,

and therefore, using (7.1),

(ϕn(ξ), ϕ∞(ξ))0 ≥ min[t/λ− λ ; t/c− c−R− 1/2]− 2δ .

This proves the convergence lim
n→∞

min
ξ∈S

(ϕn(ξ), ϕ∞(ξ))0 = ∞. As explained

in [10, Sec. 7.2], this means that the sequence (ϕn) converges uniformly to
ϕ∞. �
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7.3 A continuous inverse to the boundary map

The following lemma is a variation of Lemma 3.3. Fix k ≥ 1.

Lemma 7.6 There exist a compact subset Lk ⊂ D and a constant ck such
that the harmonic quasi-isometric extension hϕ of any ϕ ∈Mk is ck-quasi-
isometric, the point hϕ(0) is in Lk, and the map hϕ is ck-Lipschitz.

Proof We introduce the Douady-Earle extension fϕ : D → D of ϕ and
we recall some of their properties that can be found in J. Hubbard’s book
[14, §5.1]. By definition, the image fϕ(z) of z ∈ D is the barycenter of the
measure ϕ∗(mz) where mz is the visual measure on S1 seen from z. This map
fϕ is smooth, and is Ck-quasi-isometric for some constant that depends only
on k (it is even δk-quasi-conformal for some constant that depends only on
k). The map ϕ→ fϕ is continuous hence, since Mk is compact, the points
fϕ(0) belong to a fixed compact set of D.

By the main result of [20] or [3], the distance d(hϕ, fϕ) is bounded by
a constant Mk that depends only on Ck. The first two claims follow. The
Lipschitz continuity of hϕ then follows from the Cheng lemma 3.4. �

Corollary 7.7 The map ϕ ∈ Mk → hϕ ∈ C2(D,D) is continuous in the
C2

loc topology.

Proof Let (ϕn) be a sequence in Mk converging to ϕ. By Lemma 7.6,
the harmonic maps hn := hϕn are uniformly locally bounded and uniformly
Lipschitz. By Lemma 4.2, after extraction, the sequence (hn) converges in
the C2

loc topology to a harmonic quasi-isometric map h∞ : D→ D. To reach
the conclusion, we need to prove that such a limit h∞ is always equal to hϕ.
Since the maps hn are uniformly quasi-isometric, the continuity lemma 7.5
yields that the limit ϕ of the boundary maps ϕn of hn must be the boundary
map of h∞. This proves that h∞ = hϕ. �

Proof of Proposition 7.3 Let (ϕn) be a sequence in Mk converging to ϕ
such that all the harmonic quasi-isometric extensions hϕn are quasiconformal
diffeomorphisms. We want to prove that the harmonic map hϕ is also a
quasiconformal diffeomorphism.

Corollary 7.7 ensures that the sequence (hϕn) converges to hϕ in the C2
loc

topology. Lemma 7.6 ensures that these maps hϕn are uniformly Lipschitz.
Hence, by Proposition 5.2, there exists a uniform lower bound j∗ > 0 for
the Jacobians of all these harmonic quasi-isometric diffeomorphisms hϕn .
Therefore hϕ is also a Lipschitz harmonic map whose Jacobian is bounded
below by j∗. Hence, by the injectivity criterion in Lemma 3.5, the harmonic
map hϕ is also a quasiconformal diffeomorphism. �
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7.4 Orbit closure in the group of homeomorphisms of S1

Recall that D is the hyperbolic disk and S1 is its boundary at infinity. Let G
be the group of isometries of D acting on S1. It is isomorphic to PGL(2,R).

In order to prove Proposition 7.4 in the next section we will need the
following lemma.

Lemma 7.8 Let ϕn be a sequence of C1 diffeomorphisms of S1 converging
in the C1 topology to a C1 diffeomorphism ϕ∞ of S1. Let γn and γ′n be two
unbounded sequences in G such that the sequence ψn := γ′n ◦ ϕn ◦ γ−1

n con-
verges to an homeomorphism ψ∞ of S1. Then this limit ψ∞ belongs to G.

Proof We recall the Cartan decomposition G = KA+K of G where K
is the group PO(2,R) and A+ = {diag(s, s−1) with s ≥ 1}. Since K is
compact, we can assume that both γn and γ′n are in A+. We write

γn = diag(s1/2
n , s−1/2

n ) and γ′n = diag(s′n
1/2
, s′n
−1/2

)

with both sn and s′n converging to ∞. Here it will be convenient to use the
identification S1 ' R ∪ {∞} given by the upper half-plane model of D, so
that, for x in R, one has γn(x) = snx and γ′n(x) = s′nx.

We notice that ϕ∞(0) = 0. Indeed if this were not the case, we would
have ψ∞(x) =∞ for all x ∈ R, contradicting the injectivity of ψ∞.

Similarly we have ψ∞(∞) = ∞. Indeed if this were not the case, we
would have ϕ∞(x) = 0 for all x ∈ R, contradicting the injectivity of ϕ∞.

Since the sequence ϕn converges in the C1 topology to ϕ∞, we can write
for all n ≥ 1 and all x ∈ R with |x| ≤ 1

ϕn(x) = αn + (βn + rn(x))x with lim
x→0

sup
n∈N
|rn(x)| = 0 . (7.2)

Since ϕ∞(0) = 0 and β∞ := ϕ′∞(0) is non zero, one has

lim
n→∞

αn = 0 and lim
n→∞

βn = β∞ > 0 . (7.3)

Therefore we can write for all n ≥ 1 and all x ∈ R with |x| ≤ sn

ψn(x) = s′nαn + (βn + rn( xsn )) s
′
n
sn
x with lim

n→∞
|rn( xsn )| = 0 . (7.4)

Since the sequences ψn(0) and ψn(1) converge, the following limits exist

α′∞ := lim
n→∞

s′nαn ∈ R and β′∞ := lim
n→∞

βn
s′n
sn
> 0 , (7.5)

Hence one has ψ∞(x) = α′∞ + β′∞x for all x ∈ R, and ψ∞ belongs to G. �

Remark - As can be seen in the proof, the assumption on ψn can be weak-
ened: it is sufficient to assume that there are three points ξ0, ξ1, ξ∞ in S1
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whose images ψn(ξ0), ψn(ξ1), ψn(ξ∞) converge to three distinct points. This
ensures that the sequence ψn converges uniformly to an element ψ∞ of G.
- However, it is important to assume that the limit ϕ∞ is of class C1 and
that the convergence ϕn → ϕ∞ is in the C1 topology.

Here is a direct corollary of Lemma 7.8 in the spirit of [2].

Corollary 7.9 For all C1 diffeomorphism ϕ of S1, one has the equality
GϕG ∩ Homeo(S1) = GϕG ∪ G.

7.5 When the boundary map is a C1 diffeomorphism

We now conclude the proof of Theorem 7.1 by giving the last argument:

Proof of Proposition 7.4 Let ϕ be a C1 diffeomorphism of S1. We
want to prove that the harmonic quasi-isometric extension hϕ of ϕ is a
quasi-conformal diffeomorphism. For convenience we identify here S1 with
R/2πZ. For t ∈ [0, 1], we introduce the C1 diffeomorphism ϕt given by

ϕt(ξ) = ξ + (ϕ(ξ)− ξ) t for all ξ in S1.

This is well defined since the map ξ → ϕ(ξ)− ξ lifts as a map from S1 to R.
We argue as in Section 3.4. For t ∈ [0, 1] we introduce the harmonic

quasi-isometric extension ht = hϕt : D → D of ϕt. Let A be the set of
parameters t ∈ [0, 1] for which ht is a quasi-conformal diffeomorphism. By
the injectivity criterion of Lemma 3.5, one has

A = {t ∈ [0, 1] | inf
z∈D

Jt(z) > 0}

where Jt is the Jacobian of ht. We want to prove that 1 ∈ A. We already
know that 0 ∈ A because h0 is the identity. Since the maps ϕt are uniformly
quasi-symmetric, Proposition 7.3 tells us that A is closed. Therefore it is
enough to check that A is open.

Assume by contradiction that there exists a sequence tn 6∈ A converging
to t∞ ∈ A. By assumption there exists a sequence (zn) in D such that
lim inf
n→∞

Jtn(zn) ≤ 0. After extraction we are in one of the two cases:

First case The sequence (zn) converges to a point z∞ ∈ D.
Since the maps ϕt are uniformly quasi-symmetric, Corollary 7.7 ensures
that the map t ∈ [0, 1] → ht ∈ C2(D,D) is continuous in the C2

loc topol-
ogy. Therefore, one has Jt∞(z∞) = lim

n→∞
Jtn(zn) ≤ 0, and t∞ is not in A.

Contradiction.

Second case The sequence (zn) goes to infinity.
To simplify we set ϕn = ϕtn and hn = htn for all n ∈ N ∪ {∞}. By Lemma
7.6, the sequence hn(zn) goes to infinity. We choose sequences (γn) and (γ′n)
in G with γn(zn) = 0 and γ′n(hn(zn)) = 0. We introduce the harmonic maps

h′n := γ′n ◦ hn ◦ γ−1
n : D→ D
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and their boundary values ψn := γ′n ◦ ϕn ◦ γ−1
n . By construction, one has

h′n(0) = 0 and lim inf
n→∞

J ′n(0) ≤ 0 , (7.6)

where J ′n is the Jacobian of h′n. Moreover by Lemma 7.6, these maps h′n
are uniformly Lipschitz. Therefore, after extraction, they converge in the
C2

loc topology to a harmonic quasi-isometric map h′∞. By the continuity
lemma 7.5, the sequence of boundary maps ψn converge to the boundary
map ψ∞ of h′∞. Now, by Lemma 7.8, this limit ψ∞ belongs to G. Therefore
the harmonic map h′∞ is an isometry and its Jacobian is J ′∞ ≡ 1. This
contradicts (7.6). �
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