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Abstract

Equiangular configurations of lines are geometric objects that were first dis-
covered in Quantum Computer Science in the late 1990’s. Understanding
the construction of these equiangular lines is still an open problem.

The aim of this graduate course is to introduce the mathematical tools
that allow us to better understand this problem and to deal with other similar
problems.

The basic tool is the Fourier transform on finite abelian groups. This
basic tool will be combined with more advanced mathematical tools like
Floer homology, theta functions, elliptic curves, modular forms, ray class
fields...

No need to know these advanced topics to read this course. The point of
view will be to give a comprehensive introduction and to use them as black
boxes. We will understand why these advanced topics are useful for concrete
questions instead of learning them in depth.
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Introduction

The aim of this graduate course is not to present a classical mathematical
theory as the semisimple Lie groups, the algebraic curves, the random walks,
the class field theory or the potential theory.

Instead we will present a few concrete problems whose statement looks
naive but are still partially conjectural. Eventhough these statements are
less accessible than what one could foresee at first glance, they give rise to
nice partial results whose proof will force us to learn useful mathematical
tools.

The aim of this course is to emphasize this lively and experimental aspects
of mathematics, and simultaneously, to emphasize the fact that the classical
mathematical theories happen often to be useful for solving concrete prob-
lems.

The concrete problems discussed in this course are related to the cyclic
group Z{dZ and can easily be checked for small values of the integer d. But
already for values like d “ 11 they seem to be accessible only thanks to these
theorical tools.

More precisely we will successively discuss the following three elementary
problems of linear algebra. They take place in the d-dimensional hermitian
vector space Cd. It will be convenient to identify this vector space Cd with
the space CrZ{dZs of complex valued functions f on the cyclic group Z{dZ.

Problem 1: Describe the biunimodular functions
These are functions f on Z{dZ with constant modulus equal to 1 and whose
Fourier transform also has constant modulus equal to 1. This can be written
as |f | “ | pf | “ 1. Equivalently f is a function with constant modulus equal
to 1 which is orthogonal to its translates. Up to a scalar, there are only
finitely many biunimodular functions when d is prime. This problem finds
its roots in the theory of signal in the 80’s. It is also known in computer
science under the name “Cyclic d-roots” and in operator algebra under the
name “Circulant complex Hadamard matrix”.

Problem 2: Find critical functions.
These are non zero functions on Z{dZ with d odd whose convolution square
is proportional to their square. More precisely, we want the function f to
satisfy f ˚fp2ℓq “ λf 2pℓq. The proportionality constant λ is called a critical
value. There are only finitely many critical values. This problem is related
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to theta functions.

Problem 3: Construct d2 equiangular lines in Cd.
This number d2 is an upper bound of the number of lines in Cd for which
the angles between two of them is constant. We will try to construct these
d2 lines Cfj,k in CrZ{dZs indexed by pairs pj, kq P pZ{dZq2 and given by the
formula fj,kpℓq “ e2iπjℓ{dfpℓ ` kq where f is a function one needs to find.
Up to a unitary transformation of Cd, there should be only finitely many
such configurations, when d ě 4. This problem finds its roots in quantum
computer science in the 90’s where it is known under the acronym “Sicpovm”.
This part of the course will contain very few proved results. We will instead
present what the experts expect. We will call it the equiangular dream.

These three problems are independent of one another but the analogy
between them is striking because they have many common features.
- Complex algebraic geometry plays an important role.
- The Galois group of Q and the p-adic fields too.
- When a function f is solution, the functions fj,k are also solutions.

- When a function f is solution, its Fourier tansform pf too.
- These problems can be numerically tested for d small.
- The complexity grows quickly with d.
- The known answers are only partial and uses unexpected tools.

These three problems have their own specificity and need black boxes.
- The first one needs symplectic geometry.
- The second one needs abelian varieties.
- The last one needs class field theory.
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Part I

Biunimodular functions
The first three lectures will deal with the Fourier transform on

cyclic groups, often focusing on the case where the cyclic group
G “ Cd has prime order d “ p which is particularly interesting.

In the first lecture we will check an uncertainty principle due
to Cebotarev. The main tool is the estimation of the p-adic val-
uation of certain determinants.

In the second lecture we will introduce a family of functions
on G called biunimodular, that have properties analogous to
the gaussian functions. They have constant modulus and their
Fourier transform too. We will check that the number of such
functions up to scalar is finite, and we will give a precise up-
per bound on this number. The main tools come from complex
algebraic geometry.

In the third lecture we will explain how to construct new bi-
unimodular functions by using intersection properties of Clifford
tori in the complex projective space. These properties rely on
Floer homology.

In this third lecture we will also introduce a family of functions
on G called biunimodular on Cd∖t0u. They are functions that
vanishes at 0 and have constant modulus outside 0 and their
Fourier transform too. When d “ p is prime, they have properties
analogous to the Dirichlet characters. We will focus particularly
on the case of odd-biunimodular functions.

By the same methods as above, we will check that the num-
ber of such functions up to scalar is finite, and we will give a
precise upper bound on this number. We will also construct new
odd-biunimodular functions. In this case a useful tool is an es-
timation of the p-adic valuation of Jacobi sums due to Kummer
and Stickelberger.
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1 Finite Fourier transform

The first lecture deals with the finite Fourier transform.
We first study the quadratic Gauss sums, their relation with the Jacobi

symbols, and with the multiplicity of the eigenvalues of the Fourier transform
on the cyclic group Z{dZ.

Using Dirichlet characters, we then study the properties of the general
Gauss sums together with the Jacobi sums.

We end this lecture by proving the uncertainty principle for the finite
Fourier transform on a cyclic group of prime order.

1.1 Definition and properties

Let G be a finite abelian group of order d. The vector space CrGs of complex
valued functions on G is a hermitian vector space for the hermitian form
}f}2ℓ2 “

ř

jPG |fpjq|2. The Dirac functions pδjqjPG form an orthonormal basis
of CrGs. This identifies the space CrGs with the standard hermitian vector
space Cd.

An important example is the cyclic group G “ Cd “ Z{dZ which is also
a ring. When d “ p is prime, we will use the notation Fp “ Z{pZ. This ring
is then a field.

We first recall the definition of the finite Fourier transform on G Let
pG “ HompG,Z{dZq the dual abelian group. For j in pG and k in G, it will be
nice to denote by jk the element jpkq P Z{dZ. This notation is convenient
because, when G “ Cd, the dual group has a natural identification with Cd
so that jk is nothing but the product of j and k in the ring Cd.

We choose a primitive dth-root of unity ζd, for instance ζd “ e2iπ{d.

Definition 1.1. The Fourier transform pf of a function f : G Ñ C is the
function pf : pG Ñ C given by, for all x in pG,

pfpjq “ 1?
d

ř

kPG

fpkqζjkd (1.1)

As we said, the main interesting case in when both j and k belong to
Z{dZ. The matrix F of the Fourier transform in the orthonormal basis 1j is
given by

F “ 1
?
p
pζjkd qj,k. (1.2)
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The finite Fourier transform on a finite abelian group G has many prop-
erties analog to the Fourier transform on R. They are easier to prove. Hence
we live them as exercises. We will use the following notation.

The convolution f ˚g of two functions f and g on G is given by

f ˚g pjq “
ř

kPG

fpj´kq gpkq,

for all j in G.

Proposition 1.2. Let f , g be two functions on the finite abelian group G
and j P G.
aq The Fourier transform is unitary:

ř

jP pG

pfpjq pgpjq “
ř

kPG

fpkqgpkq. (1.3)

bq The inverse Fourier transform is given by

p

pf p´kq “ fpkq, for all k P G.

cq The Fourier transform exchanges convolution and multiplication:

zf ˚g “
?
p pf pg and yf g “ 1

?
p

pf ˚ pg .

Formula (1.3) is called Plancherel Formula. Replacing g by g, it can be
written as a formula that does not involve complex conjugation:

ř

jP pG

pfpjq pgpjq “
ř

kPG

fpkqgp´kq. (1.4)

Exercise 1.3. Let G be a finite abelian group and ℓ in pG.
aq Compute the Fourier transform of the character ωℓ : k ÞÑ ζℓkd .
bq Let fℓ be the translate of the function f by an element ℓ P G. This function
fℓ is given by fℓpjq “ fpj ´ ℓq for all j in G.

Prove that pfℓ “ ωℓ pf and zωℓf pjq “ pf pj ` ℓq for all j in G.

Exercise 1.4. Let a P pZ{dZq˚ be an invertible element of the ring G “ Z{dZ.
Let f be a function on Z{dZ and fa be the function j ÞÑ fpajq, for all

j P Z{dZ. Prove that xfa pjq “ pf pa´1jq.
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1.2 Gauss sums

We know that the Fourier transform has order 4. We want to compute the
multiplicity of each of the 4 eigenvalues ˘1 and ˘i.

We will need the formula found by Gauss in 1801 that computes the
quadratic Gauss sums.

Lemma 1.5. For d ě 2, let ζd “ e2iπ{d and gd be the normalized quadratic
Gauss sum gd “ 1?

d

ř

1ďkďd

ζk
2

d . Then one has

gd “
1 ` i´d

1 ´ i
“

$

’

’

&

’

’

%

1 when d ” 1 mod 4,
0 when d ” 2 mod 4,
i when d ” 3 mod 4,
1 ` i when d ” 0 mod 4,

(1.5)

There are many proof of this formula. The following one is due to Cauchy
in 1840.

Proof. For a real nuber t, we denote by ttu :“ t ´ rts P r0, 1q its fractional
part. We want to comput gd “ Gdp0q{

?
d, where Gdptq is the function on R

given by

Gdptq “
ř

0ďkăd

e2iπ
pk`ttuq2

d .

This function Gdptq is 1-periodic, is continuous and is piecewise C1. Its
Fourier coefficients an, for n P Z are equal to

an “

ż 1

0

Gdptqe
´2iπntdt “

ż d

0

e2iπ
t2

d e´2iπntdt

“ i´n
2d

ż ´nd{2`d

´nd{2

e2iπ
s2

d ds,

where we used the variable s “ t ´ nd{2.
The factor i´n

2d is equal to 1 for n even and to i´d for n odd. Therefore by
the inverse theorem for Fourier series, one has

Gdp0q “
ř

nPZ
an “ p1 ` i´dq

ż 8

´8

e2iπ
s2

d ds.

Therefore one gets

gd “ Gdp0q{
?
d “ p1 ` i´dq

ż 8

´8

e2iπs
2

ds.
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We notice that this semiconvergent integral does not depend on d. We can
evaluate it by specializing this equality for d “ 1, and we obtain gd “ 1`i´d

1´i

as required.

It is not so surprising that gd has this form a ` bi with a and b integers,
because gd is the trace of the Fourier transform F that has order 4. Knowing
precisely gd is equivalent to knowing the eigenvalues of F .

Proposition 1.6. Let d ě 2. The eigenvalues with multiplicity of the Fourier
transform F on Z{dZ are given by the integer 1 followed by the sequence i´ℓ

with 2 ď ℓ ď d.

This means that the eigenvalues of F are the first d elements of the list:
1,´1, i, 1,´i,´1, i, 1,´i,´1, i, 1, . . .

Proof. We only need to check that for 0 ď ℓ ď 3 the trace of the ℓth-power
of the Fourier transform trpF ℓq is equal to the sum of the ℓth-power of this
sequence.

One checks that trpF 0q “ d and trpF 2q “

"

1 for d odd
2 for d even

and one

computes trpF q “ gd and trpF
3q “ gd thanks to Lemma 1.5.

The following lemma is a variation of Lemma 1.5

Lemma 1.7. For d ě 1, let ηd “ ´eiπ{d. One has the equality

1?
d

ř

1ďkďd

ηk
2

d “ e´iπ d´1
4 . (1.6)

It is not surprising that the left-hand side cd has modulus 1 because the
Fourier transform is an isometry and the function gd : k ÞÑ ηk

2

d has Fourier
transform pgd “ cd gd.

Proof. The proof is the same as for Lemma 1.5, with the periodic function

Gdptq “
ř

0ďkăd

eiπ
pk`ttuq2

d eiπpk`ttuq.

whose Fourier coefficients are an “ e´iπd{4

ż ´nd`d{2

´nd´d{2

eiπ
s2

d ds.
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Exercise 1.8. (Fourier transform of the Legendre character) Let p be an odd
prime and χ0 : Fp Ñ C be the Legendre character

χ0pkq “ pk
p
q “

$

&

%

1 when k ‰ 0 is a square,
´1 when k is not a square,
0 when k “ 0.

aq Prove that xχ0 “ χ0 when p ” 1 mod 4.
bq Prove that xχ0 “ iχ0 when p ” 3 mod 4.
Indication: Use Lemma 1.5.

Exercise 1.9. (Fourier transform of gaussian functions)
Let G “ Z{dZ with d ě 2, ε “ ˘1 and ηd “ ´eiπ{d.
aq Prove that the function gε : k ÞÑ ηεk

2

d is well-defined on Z{dZ.
bq Prove that pgε “ e´εiπ d´1

4 g´ε.

Exercise 1.10. Let G “ Z{dZ with d ě 2. For u P t˘1,˘iu a fourth root of
unity, we introduce the eigenspace of the Fourier transform Eu “ tf P CrGs |

pf “ ufu. We denote by rxs the integral part of a real number x.
aq Prove that dimE1 “ rd`4

4
s and dimE´1 “ rd`2

4
s.

bq Prove that dimEi “ rd`1
4

s and dimE´i “ rd´1
4

s.

The following exercise is a variation on the Genocchi-Schaar equality.

Exercise 1.11. Let c, d be positive integers, ηc “ ´eiπ{c and ηd “ ´eiπ{d.
Prove the following equality that generalizes both (1.5) and (1.6):

1?
d

ř

1ďkďd

ηck
2

d “ e´iπ cd´1
4

1?
c

ř

1ďjďc

η´dj2

c . (1.7)

Indication: The proof is the same as for Lemma 1.5, with the periodic func-
tion

Gc,dptq “
ř

0ďkăd

eiπ
pk`ttuq2c

d eiπpk`ttuqc.

1.3 Jacobi symbol

As an application of Gauss formulas, we introduce the Jacobi symbol and
prove its reciprocity law. The Jacobi symbol is a natural extension of the
Legendre symbol to non-prime integers. The Jacobi symbol is simpler to deal
with because when applying the reciprocity law we do not have to factorize
the numerator in prime factors.
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As before, we set ζd “ e2iπ{d. We denote by G the ring G “ Z{dZ
and by G˚ “ pZ{dZq˚ its group of units. Its order is the Euler totient
φpdq “ d

ś

p|dp1 ´ 1{pq.
We recall that the minimal polynomial of ζd over Q is the cyclotomic

polynomial Φdpxq :“
ś

cPG˚

px ´ ζcdq whose degree is φpdq. The field extension

Qrζds{Q is Galois. Its Galois group is isomorphic to G˚. For c P G˚ we
denote by σc P GalpQrζds{Qq the corresponding field automorphism defined
by the equality σcpζdq “ ζcd.

In this section, we will only deal with odd integer d P Z. We introduce
the square root of the element d˚ :“ p´1q

d´1
2 d which is given by the Gauss

sum (1.5)

?
d˚ “ i

pd´1q2

4

?
d “

"

`
?
d for d ” 1 mod 4

`i
?
d for d ” 3 mod 4

(1.8)

According to Gauss formula (1.5), this element belongs to Qrζds. Therefore,
one has σcp

?
d˚q “ ˘

?
d˚.

Definition 1.12. For any odd integer d and any integer c prime to d, the
Jacobi symbol pc

d
q P ˘1 is defined by the equality σcp

?
d˚q “ pc

d
q
?
d˚

Remark 1.13. This choice of sign for
?
d˚ is not important for the definition

of the Jacobi symbol. It will be useful for the proof of the reciprocity law.

The Jacobi symbols has the following properties.

Proposition 1.14. Let d P Z be an odd integer and c P Z be coprime to d.
aq When d “ ˘1, one has pc

d
q “ 1.

bq When d “ p is prime, the Jacobi symbol equals the Legendre symbol:

pc
p
q “ 1 if and only if c is a square mod p.

cq When c “ c1c2, one has
pc
d
q “ pc1

d
qpc2
d
q.

dq When d “ d1d2, one has
pc
d
q “ p c

d1
qp c
d2

q.

eq When c is also odd, one has the reciprocity law:

pc
d
qpd
c
q “ p´1q

pc´1qpd´1q

4 . (1.9)
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fq When c “ ´1, one has the first complementary law: p´1
d

q “ p´1q
d´1
2 .

gq When c “ 2, one has the second complementary law: p2
d
q “ p´1q

d2´1
8 .

Proof. aq When d “ ˘1, One has ζd “ 1.
bq By Galois theory, since the subextension Qr

?
p˚s{Q has degree 2, the

stabilizer H˚ “ tc P G˚ | σcp
?
p˚q “

?
p˚u is a subgroup of G˚ of index 2.

Hence, since G˚ is a cyclic group, H˚ is the group of squares.
cq This property follows from the equality σc “ σc1σc2 .
dq The field Qrζds contains both Qrζd1s and Qrζd2s, and this property

follows from the equality d˚ “ d˚
1 d

˚
2 .

eq We write Gauss formula (1.5) for the odd integer cd. The sum is over
j P Z{cdZ. Since each integer k P Z{cdZ can be written in a unique way as
k “ k1d` k2c with k1 P Z{cZ and k2 P Z{dZ, and since one has the equality
k “ k21d

2 `k22c
2 in Z{cdZ, one gets the following relation between three gauss

sums
ř

1ďkďcd

e2iπk
2{cd “

ř

1ďk1ďc

e2iπk
2
1d{c

ř

1ďk2ďd

e2iπk
2
2c{d

Using Gauss formula (1.5), this can be rewritten as

a

pcdq˚ “ σcp
?
d˚qσdp

?
c˚q “ pc

d
qpd
c
q

?
c˚

?
d˚.

Since pcdq˚ “ p´1q
pc´1qpd´1q

4 c˚d˚, this gives the reciprocity law (1.9).
eq The Galois transformation σ´1 is the complex conjugation. Hence one

has σ´1p
?
d˚q “ p´1q

d´1
2

?
d˚ which is the first complementary law.

gq Since d is odd, Formula (1.6) can be written as

ř

1ďkďd

ηk
2

d “ i´
d´1
2

?
d “ i´

d2´1
4

?
d˚ “ p´1q

d2´1
8

?
d˚.

Since d is odd, one has ηd “ ζ
pd`1q{2
d and hence σ2pηdq “ ζd and

σ2p
ř

1ďkďd

ηk
2

d q “
ř

1ďkďc

ζk
2

d “
?
d˚

Comparing these two formulas gives σ2p
?
d˚q “ p´1q

d2´1
8

?
d˚, which is the

second complementary law.

We can not avoid to state the quadratic reciprocity in its original form
as conjectured by Euler and Legendre and later proved by Gauss.
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Corollary 1.15. Let p and q be odd primes.
When one of them is equal to 1 mod 4, one has the equivalence

p is a square mod q if and only if q is a square mod p.
When both of them are equal to 3 mod 4, one has the equivalence

p is a square mod q if and only if q is not a square mod p.

1.4 Gauss sums and Jacobi sums

In this section we compute the Fourier transform of Dirichlet characters.
This will allow us to study Gauss sums and Jacobi sums. As a by product
we will give a proof of the two squares theorem.

Let G “ Z{dZ with d ě 2. This group G is also a ring and its set of units
G˚ :“ tj P G | j is prime to du is an abelian group for the multiplication.
The order of G˚ is the Euler totient φpdq.

Definition 1.16. A Dirichlet character of G is a map χ : G Ñ C which is
a character on G˚ and which is zero outside G˚.

This means that χ is supported by G˚, χp1q “ 1 and χpjkq “ χpjqχpkq for
all j, k in G˚. We may think of a Dirichlet character as a periodic function
on Z.

Definition 1.17. A Dirichlet character is induced if there exists a Dirichlet
character χ1 of a proper quotient G1 “ Z{d1Z of G “ Z{dZ such that χpjq “

χ1pjq for all j prime to d.
A Dirichlet character is primitive if it is not induced.

For instance, when d “ p is prime all the Dirichlet characters on G are
primitive except the trivial character,

For Dirichlet chacters χ, χ1, χ2 , we introduce now the Gauss sum Gpχq

and the Jacobi sum Jpχ1, χ2q by

Gpχq “
?
d pχp1q “

ř

kPG χpkqζkd ,

Jpχ1, χ2q “ χ1 ˚ χ2p1q “
ř

kPG χ1p1 ´ kqχ2pkq,

The primitive Dirichlet characters are those for which the Fourier trans-
form has a simple formula.
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Proposition 1.18. Let χ, χ1, χ2 be primitive Dirichlet characters with χ1χ2

also primitive.
aq The Fourier transform of χ is pχ “

Gpχq
?
p
χ.

bq The Gauss sum has absolute value |Gpχq| “
?
d.

cq The convolution is given by χ1 ˚ χ2 “ Jpχ1, χ2qχ1χ2.

dq The Jacobi sum is a ratio of Gauss sums Jpχ1, χ2q “
Gpχ1qGpχ2q

Gpχ1χ2q
.

eq The Jacobi sum also has absolute value |Jpχ1, χ2q| “
?
d.

Proof. aq By exercise 1.4, one has pχpaxq “ χpaqpχpxq for all a in G˚ and x in
G. Hence, since χ is primitive, the Fourier transform pχ is zero outside G˚

and therefore is proportional to χ. One has pχ “ pχp1qχ.
bq follows from aq and the unitarity of the Fourier transform.

cq and dq follow from Fourier applied to the equality xχ1xχ2 “
Gpχ1qGpχ2q

Gpχ1χ2q
zχ1χ2.

eq follows from bq and dq.

Here is a concrete application of these calculation, which is Fermat’s two
squares theorem.

Corollary 1.19. Let p be a prime p ” 1 mod 4. Then there exists integers
a and b such that p “ a2 ` b2.

Proof. Since p is prime, the multiplicative group F˚
p is cyclic of order p ´ 1.

Let g0 be a generator of this group. Since 4 divides p ´ 1, there exists a
unique Dirichlet character χ on Fp such that χpg0q “ i “ eiπ{2. By definition
the Jacobi sum Jpχ, χ2q belongs to Zris. One can write Jpχ, χ2q “ a ` bi
with a and b integers. By Proposition 1.18, since the three characters χ, χ2

and χ3 are primitive one has a2 ` b2 “ p.

Note that when p ” 3 mod 4, one cannot write p as a sum of two squares,
because 3 is not a sum of two squares in Z{4Z.
Exercise 1.20. Let χ1, χ2, be two Dirichlet characters on Fp.
Prove that Jpχ1, χ2q “ χ2p´1qJpχ1χ2, χ2q.

1.5 An uncertainty principle

The well known Heisenberg uncertainty principle is a physical principle that
says that one cannot know simultaneously with a great precision the position
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and the speed of a particule. It reflects a classical mathematical inequality:
for a function f in the Schwartz space SpRq, one has

}xf}L2 }f 1
}L2 ě

1

2
}f}

2
L2

This inequality [which is a consequence of Cauchy-Schwarz inequality to-

gether with an integration by part:
ş

|f |2 “ ´
ş

xff 1 `xff
1
] can be restated

in terms of the Fourier transform pf on the abelian group R. It tells us that

}xf}L2 }x pf}L2 ě
1

2
}f}

2
L2

This inequality says that f and pf cannot both be concentrated near 0.

There is also an uncertainty principle for the Fourier transform on the
prime field Fp. For a function f on Fp, we denote its support by

supppfq “ tx P Fp | fpxq ‰ 0u.

We claim that the support of f and pf cannot be simultaneously small.

Proposition 1.21. Let f : Fp Ñ C be a non-zero function, then one has

#supppfq ` #suppp pfq ě p`1 . (1.10)

This proposition was formulated that way by Biro and Tao in the early
2000’s, but was already known to Cebotarev one hundred years ago. The
formulation of Cebotarev was more algebraic

Lemma 1.22. (Cebotarev, 1925) When p is prime, all the minors of the
Fourier matrix F are non-zero.

This means that for all subsets A and B of Fp with same cardinality, the
square submatrices FA,B “ 1

?
p
pζjkp qjPA,kPB are invertible.

Why Lemma 1.22 implies Proposition 1.21.
This is a simple remark. We denote by Ac the complementary of a subset A in
Fp. If a non zero function f has support in a set B and its Fourier transform
pf has its support in a set Ac with same cardinality #A “ #B, then f gives
a non zero element of the kernel of the square submatrix FA,B.
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First proof of Lemma 1.22. The following tricky and elementary proof is due
to Tao. We denote by j1 ă ¨ ¨ ¨ ă jℓ the elements of A and by k1 ă ¨ ¨ ¨ ă kℓ
the elements of B. We introduce the polynomial in ℓ variables given by the
determinant

∆px1, . . . , xℓq :“

∣∣∣∣∣∣∣
xk11 ¨ ¨ ¨ xkℓ1
...

...

xk1ℓ ¨ ¨ ¨ xkℓℓ

∣∣∣∣∣∣∣ , (1.11)

and we introduce the polynomials in 1 variable

∆0pxq :“ ∆pxj1 , . . . , xjℓq. (1.12)

First step We will prove that, setting L “ pℓ ´ 1qℓ{2, one has

∆0p1`yq “ CyL ` OpyL`1
q where C P Z is coprime to p. (1.13)

Since the polynomial ∆ is zero on the hyperplanes xm “ xn, performing
successive divisions, we can write

∆px1, . . . , xℓq “ F px1, . . . , xℓq
ś

1ďmănďℓ

pxn ´ xmq (1.14)

with F px1, . . . , xℓq in Zrx1, . . . , xℓs. In particular, one has

∆0pxq “ F0pxq
ź

1ďmănďℓ

pxjn ´ xjmq,

where F0pxq :“ F pxj1 , . . . , xjℓq P Zrxs. This proves (1.13) except for the
congruence condition on the constant C. It remains to prove that

F0p1q ‰ 0 mod p. (1.15)

For that we plan to give a formula for this quantity F0p1q “ F p1, . . . , 1q. For
that, we introduce the differential operator

D “ px1B1q
0
px2B2q

1
px3B3q

2 . . . pxℓBlq
ℓ´1. (1.16)

We apply this operator to the determinant ∆px1, . . . , xℓq, and evaluate the
resulting polynomial at the point p1, . . . , 1q.
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On the one hand this operator multiplies each coefficient xknm of the matrix
in (1.11) by a factor km´1

n . Therefore one has

D∆p1, . . . , 1q :“

∣∣∣∣∣∣∣
k01 ¨ ¨ ¨ k0ℓ
...

...
kℓ´1
1 ¨ ¨ ¨ kℓ´1

ℓ

∣∣∣∣∣∣∣ . (1.17)

One computes easily this Vandermonde determinant

D∆p1, . . . , 1q :“
ś

1ďmănďℓ

pkn ´ kmq ‰ 0 mod p. (1.18)

On the other hand, using the equality (1.14)

D∆p1, . . . , 1q :“ F p1, . . . , 1q
ś

1ďmănďℓ

pn ´ mq. (1.19)

This proves that F0p1q ‰ 0 mod p and finishes the first step.

Second step We want to prove that

∆0pζpq ‰ 0. (1.20)

Assume by contradiction, that ∆0pζpq “ 0 or equivalently that F0pζpq “

0. Since the cyclotomic polynomial Φppxq “ xp´1 ` ¨ ¨ ¨ ` 1 is the minimal
polynomial of ζp over Q, it divides F0, that is

F0pxq “ Φppxq G0pxq, (1.21)

with G0pxq in Zrxs. In particular, one has

F0p1q “ 0 mod p.

This contradicts (1.15).

Exercise 1.23. Prove that a strong uncertainty principle as (1.10) is not valid
on an abelian group G whose order d is not prime. Indeed choose f to be
the characteristic function f “ 1H of a proper subgroup H of G and check
that # supppfq ` #suppp pfq ď d.
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1.6 Using local fields

Tao’s proof is a simplification of Cebotarev’s proof. Cebotarev’s proof of the
first step was based on more explicit calculation. Cebotarev’s proof of the
second step relied on a few useful and classical facts on local fields that we
explain now. By definition a local field is a topological field that is locally
compact.

The field Qp of p-adic numbers We first recall briefly the definition
of the local field Qp. The field Qp is the completion of Q for the ultrametric
absolute value |.|p given by |pn a

b
|p “ p´n for all non zero integers a b.

Recall that an absolute value on a field K means a real positive valued
map x ÞÑ |x| on K such that, |0| “ 0, |1| “ 1 and, for all x, y in K

|xy| “ |x| |y| and |x ` y| ď |x| ` |y|. (1.22)

It is ultrametric if it satisfies the strenghtened condition |x ỳ|ďmaxp|x|, |y|q.
By construction, the non zero elements x of Qp are the formal sum

x “ anp
n

` an`1p
n`1

` an`2p
n`2

` ¨ ¨ ¨

where n P Z, and all am are in t0, . . . , p ´ 1u with an ‰ 0. The ultrametric
absolute value |x| “ |x|Qp of this element x is given by

|x|Qp “ p´n.

This defines an ultrametric distance on Qp given by dpx, yq “ p´ℓ where ℓ is
the first label where the expansions of x and y differ.

The elements of Nr1
p
s are exactly those elements of Qp for which the

formal sum is finite. This subset Nr1
p
s is dense in Qp. The addition and the

multiplication on Nr1
p
s extends continuously in a unique way to Qp. This

endows Qp with the structure of a topological ring. One checks then that Qp

is indeed a locally compact field. With this topology, one can reinterpret the
formal sums (1.6) as convergent series. The compact subring Zp :“ tx P Qp |

|x| ď 1u is called the ring of p-adic integers. It is a principal ring.

p-adic fields By definition a p-adic field is a finite extension of Qp. We
also need a few well known facts on these fields.

For an extension K{K0 of fields of finite degree n “ rK : K0s, the field
K is a n-dimensional K0-vector space. For x in K, the multiplication by x
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is an endomorphism mx of this K0-vector space. By definition the norm of
x is the determinant of this endomorphism.

NK{K0pxq “ detpmxq

Fact 1.24. Let K be a finite extension of Qp of degree n.
aq There exists a unique absolute value |.| “ |.|K on K satisfying (1.22) that
extends the absolute value of Qp. It is given by

|x|K “ |NK{Qppxq|
1{n
Qp
.

bq The topological field K is then a locally compact field.
cq The set OK “ tx P K | |x| ď 1u is a principal ring which is both compact
and open. It is called the ring of integers.
dq The set mK “ tx P K | |x| ă 1u is a principal ideal of OK which is both
open and compact.

Fact 1.25. aq When π is a uniformizer, i.e. when mK “ πOK, one has
|π| “ p´1{e for an integer e ě 1 called the ramification index of K{Qp.
bq Let κ be the residual field of K, that is the quotient κ :“ OK{mK. It is a
finite extension of the residual field Fp :“ Zp{pZp of Qp. The degree f of the
extension κ{Fp is called the inertia index.
cq One has the equality n “ ef .

The finite extension rK{Qps is said to be totally ramified if f “ 1 and
totally unramified if e “ 1.

The following fact tells us that one can deal with elements of a number
field in a very concrete way, very much like with the p-adic numbers.

Fact 1.26. Let K be a finite extension of Qp, let e be its ramification index,
let q “ pf be the cardinality of its residual field κ, let π be a uniformizer
of K and let S Ă OK be a subset of cardinality q containing 0 such that
OK “ S ` πOK.
aq The non zero elements x of K can be written in a unique way as

x “ snπ
n

` sn`1π
n`1

` sn`2π
n`2

` ¨ ¨ ¨

where n P Z, and all sm are in S with sn ‰ 0.
bq The absolute value |x| “ |x|K of this element x is given by

|x|K “ p´n{e.
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A ramified cyclotomic extension of Qp We are now ready to un-
derstand Cebotarev’s proof. It will rely on the following lemma. Instead
of considering the primitive pth-root of unity ζ as an element of C we now
consider it as an element of the algebraic closure Qp of Qp

Lemma 1.27. Let K “ Qprζs be the extension of Qp obtained by adding a
primitive pth-root of unity ζ.
aq Then K is an extension of Qp of degree p ´ 1.
bq This extension is totally ramified: its residual field is Fp.
cq The element π :“ ζ´1 is a uniformizer: one has |π|“p´1{pp´1q.

Proof of Lemma 1.27. We will give two proofs of Point aq.
aq Let

Φppxq “ xp´1
` ¨ ¨ ¨ ` x ` 1

be the cyclotomic polynomial. We want to prove that this polynomial is
irreducible over Qp. The polynomial

F pyq “ Φppy ` 1q “ yp´1 `
`

p
p´1

˘

yp´2 ` ¨ ¨ ¨ `
`

p´1
2

˘

y ` p

is an Eisenstein polynomial. This means that all its coefficients are prime to
p except the last one which is divisible by p but not by p2. By the Eisenstein
criterion, such a polynomial is always irreducible over Qp.

aq, bq and cq The element π “ ζ´1 is a root of F . The elements πi “ ζ i´1
are also roots of F , for 0 ă i ă p. Since the ratios πi{π and π{πi are in OK ,
all the absolute values |πi| are equal. Since the product of these roots is

π1 ¨ ¨ ¨ πp´1 “ p´1q
p´1p,

one gets |π| “ p
´1
p´1 . This proves that the ramification index of K{Qp is p´1,

and that π is a uniformizer. This also proves that the degree rK : Qps is
p´1.

Cebotarev’s proof of Proposition 1.21.
The first step of the proof is the same. We introduce the polynomial ∆0pxq

in one variable given by the determinant

∆0pxq :“

∣∣∣∣∣∣∣
xj1k1 ¨ ¨ ¨ xj1kℓ
...

...
xjℓk1 ¨ ¨ ¨ xjℓkℓ

∣∣∣∣∣∣∣
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We want to prove that ∆0pζpq ‰ 0. Let L “ pℓ ´ 1qℓ{2. We know by the
calculation (1.13) in the first step of the proof that

∆0p1 ` yq “ CyL ` OpyL`1
q where C P Z is coprime to p.

The key idea for the second step in this proof is to reinterpret this equality
in the local fieldK “ Qprζs where ζ is a primitive pth root of unity. According
to Lemma 1.27, one has ζ “ 1 ` π where the element π is a uniformizer in
K. Hence one has

∆0pζq P CπL ` πL`1OK ,

where OK is the ring of integers of K. Since the integer C is prime to p, this
implies that |∆0pζq| “ |πL| “ p´L{pp´1q. In particular, one has ∆0pζq ‰ 0.

Exercise 1.28. aq Compute the expansion of x “ ´1 in Q3.
bq Compute the expansion of x “ 1{2 and x “ ´1{2 in Q7.
cq Compute the expansion of x “ 1{3 and x “ ´1{3 in Q11.
dq Prove that an element x in Qp has an ultimately periodic expansion if and
only if x is rational.

Exercise 1.29. Let p be an odd prime.
aq Show that the group of squares pQ˚

pq2 is a subgroup of index 4 in the
multiplicative group Q˚

p .
bq Prove that Qp has exactly 3 quadratic extensions.
cq How many are ramified?

Exercise 1.30. Let K be a p-adic field and OK its ring of integers. Prove
that an element x P OK is invertible in OK if and only if |x| “ 1. Such an x
is called a unit. The group of units is denoted O˚

K .

Exercise 1.31. Let ℓ ě 2 and K “ Qprys where yℓ “ p.
aq Show that K is an extension of Qp of degree ℓ.
bq Show that this extension is totally ramified.

Exercise 1.32. (Hensel lemma) LetK be a p-adic field, OK its ring of integers,
and κ its residual field. Let F rXs P OKrXs be a unitary polynomial of degree
d and F pXq P κrXs be its reduction modulo mK . Assume that F pXq has d
distinct roots in κ. Show that, for every root ξ P κ of F , there is a unique
root x of F in OK that lifts ξ.
Indication: apply Newton method to obtain better and better approximate
roots of F starting from any lift of ξ.
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Exercise 1.33. (Unramified extensions) Let K be a finite extension of Qp, e
its inertia degree, κ its residual field and q “ pe.
aq Show that the equation xq “ x has q roots in K.
Indication: use Hensel Lemma.
bq Let K0 Ă K be the subfield spanned by the pq´ 1qth-roots of unity. Prove
that K0 is a Galois extension of Qp of degree e.
cq Prove that the extension K0{Qp is totally unramified while the extension
K{K0 is totally ramified.

Notes to Chapter 1. [44] and [43].
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2 Biunimodular functions

The aim of this lecture is to introduce a family of functions on Z{dZ called
biunimodular that have properties very similar to the gaussian functions.
They are part of a larger family called H-functions.

We first give equivalent definitions and a few examples.
We then prove that, when d “ p is prime, there are only finitely many

H-functions. We give a formula for this number of H-functions.

2.1 Definition and properties

Let G be a finite abelian group.

Definition 2.1. A function f : G Ñ C is unimodular if |fpℓq| “ 1 for all

ℓ P G. The function f is biunimodular if both f and its Fourier transform pf
are unimodular.

It is natural to extend Definition 2.1

Definition 2.2. A function f :GÑC is a H-function if there exists g : G Ñ

C such that
f qg “ 1 and pf pg “ 1. (2.1)

Here the function qg is the function qgpkq “ gp´kq.
When f is unimodular, one has the equivalence

f is biunimodular if and only if f is a H-function.

Indeed when gpkq “ fp´kq, one has pgpkq “ pfpkq.

The biunimodular functions, with G “ Cd are interesting in transmission
theory, because of the following property

Lemma 2.3. A unimodular function f : G Ñ C is biunimodular if and only
if one has

ř

kPG

fpk`ℓq fpkq “ 0 for all ℓ P G, ℓ ‰ 0. (2.2)

Geometrically, Condition (2.2) means that the translates of f form an
orthogonal basis of ℓ2pGq.

Lemma 2.3 is a consequence of the following lemma that gives an equiv-
alent definition for H-functions.

27



Lemma 2.4. A function f :GÑC˚ is a H-function if and only if

ř

kPG

fpk`ℓq{fpkq “ 0 for all ℓ P G, ℓ ‰ 0.. (2.3)

Proof of Lemma 2.4. Let f : G Ñ C˚ be a non-vanishing function on G
and set g :“ 1{ qf . Since the function

?
d pf pg is the Fourier transform of the

convolution f ˚ g, Equation (2.1) is equivalent to

f qg “ 1 and f ˚ g “ d δ0.

Taking into account the Plancherel formula (1.4), this last condition is equiv-
alent to Condition (2.3).

A H-function is said to be normalized if fp0q “ 1. By multiplying a
H-function by a scalar one can always normalize it.

Exercise 2.5. A cyclic d-root is a function z : Cd Ñ C such that,

ř

jPCd

zj ¨ ¨ ¨ zj`ℓ “ 0 for 0 ă ℓ ă d and z1 ¨ ¨ ¨ zd “ 1.

Check that the formula zj “ fpj`1q{fpjq induces a bijection between the
set of H-functions f with fp0q “ 1 and the set of cyclic d-roots z.

Finding explicitely all the cyclic d-roots was a challenge test for computer
formal calculation and algorithms around 2000, where the case d “ 9 and
d “ 10 was found by Faugère in [19].

2.2 Elementary biunimodular functions

The notion of biunimodular functions was introduced by Per Enflo in the
80’s in relation with the “circulant complex Hadamard matrices”.

Gaussian functions The simplest examples of biunimodular functions
on G “ Z{dZ with d ě 2 are the gaussian functions as in Exercise 1.9. Let
ηd “ ´eiπ{d. Those are the functions of the form

ga,ℓ : k ÞÑ ηak
2`2ℓk

d (2.4)

for some a in pZ{dZq˚ and ℓ in Z{dZ.
When d “ p is prime there are pp ´ 1qp gaussian functions.
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Björckian functions Per Enflo asked for the existence of other biuni-
modular functions, when d “ p ą 2 is prime. Björck answered in 1989 by
classifying in [16] the biunimodular functions h that are invariant by multi-
plication by squares.

Indeed writing h “ δ0 ` a1F˚
p

` bχ0, with χ0 the Legendre character. one

computes ph “
1´a`pa

?
p
δ0 ` 1´a

?
p
1F˚

p
` bxχ0 Using exercise 1.8, one compute xχ0.

When p ” 1 mod 4, one has xχ0 “ χ0 and there are four such biunimodular
functions: the following two functions h˘ and their complex conjugates.

h˘ “ δ0 ` 1
1˘

?
p
1F˚

p
` i

?
p˘2

?
p

1˘
?
p
χ0,

These functions are even and satisfy xh˘ “ h˘.

When p ” 3 mod 4 one has xχ0 “ iχ0 there are four such biunimodular
functions: the following two even functions h˘ and their complex conjugates

h˘ “ δ0 ` 1
1`i

?
p
1F˚

p
˘ i

?
p

1`i
?
p
χ0.

We introduce the slight variations h˘,j,k of these functions, where j, k P Fp,

h˘,j,k : ℓ ÞÑ e2iπjℓ{p hεpℓ ` kq. (2.5)

For all prime p ě 7, this gives rise to 4p2 new biunimodular functions that
we call the Björckian functions.

Exercise 2.6. Let u P C with |u| “ 1 and let j “ e
2iπ
3 .

aq Prove that the function p1, u,´1, uq is biunimodular on C4.
bq Prove that p1, 1, u, j, j2, u, j2, j, uq is biunimodular on C9.
cq Prove that there exist infinitely many normalized biunimodular functions
on Cd when d “ pr is a prime power with r ě 2.
dq Extend this assertion to the case where d has a square divisor.

Exercise 2.7. Let f1 and f2 be two biunimodular functions respectively on
two finite abelian groups G1 and G2. Prove that the product function f given
by fpk1, k2q “ f1pk1qf2pk2q is a biunimodular function on G1ˆG2.

2.3 Finiteness of biunimodular functions

The aim of this section is to prove the following theorem due to Haagerup in
2008 .
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Theorem 2.8. When p is prime, the set of normalized H-functions is finite.

From this theorem, one deduce directly the following corollary. Note that
it is not clear how one could prove the corollary without proving first the
whole Theorem 2.8.

Corollary 2.9. When p is prime, the set of normalized biunimodular func-
tions is finite.

The proof of Theorem 2.8 relies on the following proposition.
We introduce the vectorspace E “ CrFps and its affine subspace

E1 :“ tf P CrFps | fp0q “ 1u.

We also introduce the affine space

F1 :“ tpf0, g0q P E ˆ E | f0p0q “ 1 and
ř

xPFp

f0pxq “
ř

xPFp

g0pxq u.

Note that dimpF1q “ 2 dimpE1q “ 2p ´ 2.

Proof. The map

Φ : E1 ˆ E1 ÝÑ F1 (2.6)

pf, gq ÞÑ pf qg, pf pgq

is a well-defined proper map.

This means that the inverse image Φ´1pKq of a compact set K of E ˆE
is a compact set. The presence of qg in the formula is not important for the
properness of Φ. But this is what we need for the proof of Theorem 2.8. The
fact that the image is included in F1 will play a crucial role in Theorem 2.17.

Proof of Proposition 2.3. Using the Plancherel formula (1.4), we first note
that by ΦpE1 ˆ E1q is included in F1.

Let fn and gn be sequences in Eě1 such that

Φpfn, gnq is bounded. (2.7)

We want to prove that both fn and gn are bounded. Assume by contradiction
that one of them is not bounded. This implies that

lim
nÑ8

}fn} }gn} “ 8, (2.8)
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where }f} is any norm on E. We introduce the functions

un “
fn

}fn}
and vn “

gn
}gn}

.

After extraction, one can assume that these sequences of functions converge
to two non zero functions

u8 “ lim
nÑ8

un and v8 “ lim
nÑ8

vn.

Since the Fourier transform is continuous one gets

pu8 “ lim
nÑ8

pun and pv8 “ lim
nÑ8

pvn.

Therefore Equality (2.8) implies that

u8 v8 “ 0 and pu8pv8 “ 0.

This implies that both

# supppu8q ` #supppv8q ď p and

# suppppu8q ` #suppppv8q ď p .

These inequalities contradict the uncertainty principle (1.10) either for u8

or for v8.

2.4 Using dominant morphisms

To go on our understanding of biunimodular functions, we will need a useful
and classical theorem from complex algebraic geometry.

We recall a few basic definitions. A Zariski closed subset X Ă Cd is the
set of zeros of a family of polynomials on Cd. Such a subset is also called
an affine algebraic variety or an algebraic subvariety of Cd. One denotes by
CrXs the algebra of algebraic functions on X. Those are the restrictions to
X of polynomial functions on Cd.

A Zariski open set U Ă Cd is the complementary of a Zariski closed set.
This defines a topology on Cd called the Zariski topology.

For instance, a non empty Zariski open subset of C has finite complemen-
tary.
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An algebraic morphism φ : X Ñ Y between two affine algebraic varieties
is a map whose coordinate maps are given by algebraic functions on X.
Such a morphism induces an algebra morphism φ˚ : CrY s Ñ CrXs given by
φ˚pF q “ F ˝ φ.

Definition 2.10. An algebraic morphism φ : X Ñ Y between two affine
algebraic varieties is called dominant if its image φpXq is Zariski dense in Y
or, equivalently, if the map φ˚ is injective.

The following fact due to Chevalley is the main result of abstract elimi-
nation theory.

Fact 2.11. Let φ : X Ñ Y be a dominant morphism between two algebraic
varieties. Then the image φpXq contains a non empty Zariski open subset U
of Y .

More precisely the image φpXq is constructible. This means that φpXq

is a finite union of Zariski locally closed sets Zm. We recall that a Zariski
locally closed set is by definition the intersection of a Zariski closed and a
Zariski open set.

A strong improvement of Fact 2.11 is to work with projective algebraic
varieties X and Y . The conclusion in this case is that the image is closed.

Remark 2.12. From the point of view of logic, Fact 2.11 is called the elimi-
nation of quantifier in an algebraically closed field, and in this context it is
due to Tarski.

Remark 2.13. A concrete point of view on elimination theory is given by the
notion of resultant polynomial. Another concete point of view on elimination
theory that gives rise to efficient algorithms, is given by the notion of Gröbner
basis.

Sketch of proof of Fact 2.11. One does not think of X as an algebraic sub-
variety of Cd but as an algebraic subvariety of Y ˆ Cd so that the map φ is
nothing but the projection on the first component.

This is very useful because, by an induction argument, one can now reduce
to the case where d “ 1. In this case, one can write

X “ tpy, tq P Y ˆ C | P0py, tq “ P1py, tq “ . . . “ Pℓpy, tq “ 0u. (2.9)

where the Pi are polynomials.

32



We know that two polynomials in t have a common root if and only if
their resultant is non zero. The rough strategy is then to say that, for all i,
the resultant Ripyq of P0py, tq and Pipy, tq is zero on a Zariski dense subset of
Y , hence on the whole of Y and hence, for all y, the polynomial P0py, tq and
Pipy, tq have a common root ty,i, which gives an element py, ty,iq of X above
y. There are two drawbacks in this rough strategy.
piq The first one is that this root ty,i of P0 may depend on i.
piiq The second one is that the resultant of two polynomials depends poly-
nomially on their coefficients only among the polynomials of fixed degree.

It is easy to circumvent these two issues.
For piq, we introduce the polynomials Pαpy, tq :“

ř

1ďiďℓ

αiPipy, tq with α P Cℓ.

For piiq we write P0 “
ř

0ďkďδ0

akpyqtk and Pα “
ř

0ďkďδ

bkpα, yqtk where δ0 is the

degree in t of P0 and δ is the maximum degree in t of the Pα. We introduce
the Zariski open set U :“ ty P Y | aδ0pyq ‰ 0 and bδpα, yq ı 0u, so that, for
all y in U , the Zariski open set Vy :“ tα P Cℓ | aδ0pyq ‰ 0 and bδpα, yq ‰ 0u

is non empty. For y in U and α in Vy the resultant Rαpyq of P0py, tq and
Pαpy, tq is a polynomial in both α and y.

By asumption for y in a Zariski dense subset of U , these polynomials
Rαpyq are zero. Hence these polynomials are identically 0. Since t ÞÑ P0py, tq
have only finitely many roots, this implies that, for all y in U , I can find a
root ty of P0py, tq which is is also a root of Pαpy, tq for a Zariski dense set of
values of α. This point py, tyq is then an element of X above y.

Corollary 2.14. Let X Ă Cd be an algebraic subvariety. If X is bounded,
then X is finite.

Proof of Corollary 2.14. Assume that X is infinite. Then there exists a co-
ordinate map pℓ : X Ñ C with 1 ď ℓ ď d, whose image pℓpXq is unbounded.
Therefore this map pℓ is dominant. By Fact 2.11, this image contains a
Zariski open subset of C. This means that pℓpXq is the complementary of a
finite set. In particular X is not bounded.

Proof of Theorem 2.8. Let E1 :“ tf P CrFps | fp0q “ 1u. According to
Proposition 2.3 the algebraic variety

R :“ tpf, gq P E1 ˆ E1 | f qg “ 1 and pfpg “ 1u (2.10)

is compact. Therefore by Corollary 2.14 this variety is finite. Hence the set
of H-functions is also finite.
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Exercise 2.15. Let p be prime and N be a non negative function on Fp with
Np0q “ 1.
aq Prove that the set EN of complex valued functions f on Fp with fp0q “ 1

and |fpxq| “ | pfpxq| “ Npxq, for all x in Fp, is a finite set.
bq Prove that there exists ε ą 0 such that if N ă ε on F˚

p , this set EN is
empty.
cq Prove that ε ď 1

?
p`1

.

dq Prove that one can choose ε “ 1
2p

?
p`1q

.

2.5 Using proper morphisms

To go on our understanding of biunimodular functions, we will need another
useful and classical theorem from complex analytic geometry. We recall a
few general definitions and facts that deal with the topological degree of a
proper holomorphic map with finite fibers.

For Ω Ă Cm an open set, Ψ0 : Ω Ñ Cm a holomorphic map and z P Ω
such that Ψ0pzq “ 0, we recall that the algebraic multiplicity mzpΨ0q is the
dimension of the local ringOz{Ψ

˚
0O0 whereOz is the local ring of germs at z of

holomorphic functions and where Ψ˚
0O0 is the ideal spanned by the functions

h˝Ψ0 where h is a holomorphic function that vanishes at 0. A point z0 P Ω is a
critical point for Ψ0 if and only if the tangent map DΨ0pz0q is not invertible,
or equivalently mz0pΨ0 ´ fpz0qq ą 1. A critical value for Ψ0 is the image
Ψ0pz0q of a critical point z0. A regular value is a value which is not critical.
By Sard theorem, the set of critical values has Lebesgue measure 0. When
the algebraic multiplicity mzpΨ0q is finite it coincides with the geometric
multiplicity. This means that, there exists ε0 ą 0 and a neighborhood Ω0 of
z such that for Lebesgue almost all w P Cm with }w} ă ε0, the value w is a
regular value of Ψ0´w and one has mzpΨ0q “ #pΨ´1

0 pwq X Ω0q.
See [1, Ch.1 prop. 2.1] and [45, p.148].

The following fact extends to several variables the famous Rouché theo-
rem.

Fact 2.16. Let Ω Ă Cm be an open set, let B Ă Ω be a compact ball and
I Ă R be an interval. Let pΨtqtPI be a continuous family of holomorphic
map Ψt : Ω Ñ Cm such that for all t in I, the function Ψt does not vanish
on the boundary BB. Then the number of zeros of Ψt in B counted with
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multiplicities : NpΨt, Bq :“
ř

tzPB|Ψtpzq“0u

mzpΨtq does not depend on t.

Sketch of proof of Fact 2.16. See [21, Section 5.2] or [1, Thm 2.5].
There are integral formulas for the number NpΨ, Bq :“

ř

tzPB|Ψpzq“0u

mzpΨq of

zeros counted with multiplicity in the ball B for a holomorphic map Ψ :
Ω Ñ Cd that does not vanish on BB. These formulas tell us that the integer
NpΨt, Bq depends continuously on t and hence is constant.

When m “ 1 this is the famous “argument principle” due to Cauchy in
1830 which says that

NpΨ, Bq “
1

2iπ

ż

BB

Ψ1pzq

Ψpzq
dz .

When m ě 1, the Cauchy formula has been extended by Bochner-Martinelli.
The formula expresses this number as the integral of a 2m ´ 1 differential
form on a p2m´1q-dimensional sphere:

NpΨ, Bq “
pm ´ 1q!

p2iπqm

1

|Ψ|2

ż

BB

ř

1ďjďm

p´1qj´1ΨjdΨrjsdΨ ,

where |Ψ|2 “
ř

1ďjďm

|Ψj|
2, where dΨrjs :“ dΨ1 ¨ ¨ ¨

ydΨj ¨ ¨ ¨ dΨℓ with dΨj omit-

ted and where dΨ :“ dΨ1 ¨ ¨ ¨ dΨℓ.

2.6 Counting biunimodular functions

Haagerup proved more than merely the finiteness of biunimodular functions
on Fp. He gave a formula for number of H-functions.

Theorem 2.17. (Haagerup) Let p be prime. Then, counted with multi-
plicities, the number of normalized H-functions on Fp, is equal to the binomial
coefficient

`

2p´2
p´1

˘

.

Remark 2.18. It seems but it is not proved that, in this case, the multiplicities
are equal to 1.

The key point will be a deformation argument using the map Φ as in
Proposition 2.3. Since this holomorphic map is proper between affine spaces
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of same dimension, the number of points in its fibers, counted with multi-
plicities is constant. This follows from Fact 2.16 applied to the maps

Ψt : E1 ˆ E1 ÝÑ F0 (2.11)

pf, gq ÞÑ Φpf, gq ´ pδ0`t1F˚
p
, δ0`t1F˚

p
q

where

F0 :“ tpf0, g0q P E ˆ E | f0p0q “ 0 and
ř

xPFp

f0pxq “
ř

xPFp

g0pxq u.

Hence we can perform the counting for a simpler fiber. In the following
lemma we study in great detail the fiber of Φ over the point pδ0, δ0q.

Lemma 2.19. Let Φ be the map (2.6).
aq For every subsets A, B of Fp containing 0 such that

#A ` #B “ p ` 1, (2.12)

there exists a unique function fA,B P E1 with support A whose Fourier trans-

form pfA,B P E has support B.
bq We set gA,B P E1 to be the function gA,B :“ f´A1,B1 where A1 and B1 are
defined by AYA1 “ B YB1 “ Fp and AXA1 “ B XB1 “ t0u. Then one has

ΦpfA,B, gA,Bq “ pδ0, δ0q.

cq Every point in the fiber Φ´1pδ0, δ0q is one of these points pfA,B, gA,Bq.
dq The number of points in this fiber Φ´1pδ0, δ0q is equal to

`

2p´2
p´1

˘

.

eq The map Φ is non-degenerate at each of the points pfA,B, gA,Bq of the fiber
Φ´1pδ0, δ0q.

Proof of Lemma 2.19. aq For a subset A of Fp of cardinality nA, we denote
by CrAs the space of functions on A. It has dimension nA.

As a consequence of Inequality (1.10), for any subsets A0 and B0 of Fp
with nA0 ` nB0 “ p, the map

CrA0s Ñ CrBc
0s : f Ñ pf |Bc

0

is an isomorphism.
Therefore, for anyH-invariant subsets A and B of G with nA`nB “ p`1,

the map
CrAs Ñ CrBc

s : f Ñ pf |Bc
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has a one dimensional kernel. Moreover, a non-zero function fA,B in the
kernel does not vanish on A; one can normalize it so that fA,Bp0q “ 1.

Similarly its Fourier transform pfA,B does not vanish on B.
bq Let f :“ fA,B and g :“ gA,B. By construction one has fqg “ δ0.

Similarly, one has pf pg “ λδ0 for some constant λ. This constant λ is equal
to 1 by the Plancherel formula.

cq Conversely, let pf, gq P E1 ˆ E1 such that fqg “ δ0 and pfpg “ δ0.

Set A :“ supppfq, B :“ suppp pfq, A1 :“ supppqgq and B1 :“ suppppgq. By
assumption, one has A X A1 “ B X B1 “ t0u. In particular, one has

nA ` nA1 ď p ` 1 and nB ` nB1 ď p ` 1.

By inequality (1.10), one has

nA ` nB ě p ` 1 and nA1 ` nB1 ě p ` 1.

Therefore all these inequalities are equalities and hence, by point aq, one has
f “ fA,B and g “ f´A1,B1 “ gA,B.

dq By Point cq, the fiber Φ´1pδ0, δ0q is in bijection with the set of pairs
pA∖ t0u, B ∖ t0uq of subsets of Fp ∖ t0u such that nA∖t0u ` nB∖t0u “ p ´ 1.
Their total number is

`

2p´2
p´1

˘

as announced.

eq Fix a point pf, gq “ pfA,B, fA1,´B1q in the fiber Φ´1pδ0, δ0q. We want
to prove that the differential DΦpf, gq is injective. The tangent space of the
source is the space of couples pφ, ψq of functions such that φp0q “ ψp0q “

0. Assume that pφ, ψq is in the kernel of DΦpf, gq. The formula for the
differential is

DΦpf, gqpφ, ψq “ pf qψ ` qgφ, pf pψ ` pgpφq “ 0.

Since the functions f qψ is supported by A∖ t0u and the function qgφ is sup-
ported by A1 ∖ t0u, one gets fψ “ gφ “ 0. Since f does not vanish on A
and g does not vanish on ´A1, this proves that

supppφq Ă A∖ t0u and supppψq Ă ´A1 ∖ t0u.

A similar argument proves that pf pψ “ pgpφ “ 0 and that

suppppφq Ă B and suppp pψq Ă B1.
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In particular one gets

#supppφq ` #suppppφq ď p,

#supppψq ` #suppp pψq ď p.

Therefore, by the uncertainty inequality in Proposition 1.21, one has φ “

ψ “ 0.
This proves that the differential DΦpf, gq is an isomorhism.

Proof of Theorem 2.17. Since the family of holomorphic maps Ψt in (2.11)
is proper, by Fact 2.16, the number of points in Ψ´1

t pwq, counted with mul-
tiplicities is constant. We want to prove that, counted with multiplicity, the
number of points in the fiber Φ´1p1, 1q is equal to

`

2p´2
p´1

˘

. It is then equivalent

to prove it for the fiber Φ´1pδ0, δ0q. This was done in the previous Lemma
2.19.

Remark 2.20. It would be nice to have a similar counting formula for all
biunimodular functions f on Fp with fp0q “ 1.

Notes to Chapter 2.
The example in Section 2.2 is due to Björck [16] The finiteness and the

counting results are due to Haagerup in [22, Sec. 4].
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3 Clifford tori

The aim of this lecture is to explain why there exist biunimodular functions
that are neither Gaussian functions nor Björckian functions. We will also
explain a similar construction with the odd-biunimodular functions.

What is appealing in these results is that, in spite of the simplicity of
their statement and on the algorithmic complexity of the construction, the
proof mixes arguments from Symplectic geometry (Intersection of Clifford
tori), Number theory (Stickelberger formula for Jacobi sums) and Complex
analysis (Multiplicity of holomorphic maps) that have their origin in very
different problems.

3.1 Using Clifford tori

We first need to explain a fact whose statement looks elementary but whose
proof relies on symplectic geometry.

The complex projective space CPn´1 is the set of lines of Cn that we
denote p “ rz1, . . . , zns. A Clifford torus is a compact pn´1q-dimensional
torus of the form Tn´1 :“ tp “ rz1, . . . , zns P CPn´1 | |zi| “ 1 for all iu in a
unitary basis of Cn. The unitary group U “ Upnq :“ tu P MpnCq | u˚u “ 1u

acts naturally on CPn´1.

Fact 3.1. Let CPn´1 be the complex projective space, let Tn´1 Ă CPn´1 be
the Clifford torus, and let u P U be a unitary transformation.
aq The intersection Tn´1 X uTn´1 is not empty.
bq If this intersection is transverse, it contains at least 2n´1 points.

The assumption in bq means that, for all p P Tn´1 X uTn´1, the tangent
spaces at p intersect transversally, that is TpTn´1 X Tp uTn´1 “ t0u.

This Fact is due to Biran, Entov and Polterovich in [13] and to Cheol-
Hyun Cho in [17]. Both proofs rely on Floer homology. The key remark
being that CPn´1 is a closed symplectic manifold, that Tn´1 is a closed la-
grangian submanifold and that the unitary transformation u is a hamiltonian
diffeomorphism of CPn´1. These four authors consider a closed Lagrangian
submanifold L in a closed symplectic manifold. Under some extra assump-
tion on L, for instance when L is “monotone”, they prove that L cannot be
displaced from itself by a hamiltonian diffeomorphism. Therefore, the Clif-
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ford torus Tn´1 in the projective space CPn´1 cannot be displaced from itself
by a unitary operator u in Upnq.

Remark 3.2. When m “ 2, Fact 3.1 is easy because CP1 is a round sphere
and Clifford tori are great circles. Hence two of them intersect in two points.
Note that the conclusion would not be true for smaller circles on the sphere.
A simple explanation in this case would be that these great circles separate
the sphere in two pieces of equal area. Hence one such pieces can not be
strictly included into another.

Even when m “ 3, Fact 3.1 does not seem to have a proof that does not
use symplectic geometry.

Idel and Wolf reformulated Fact 3.1.a as a decomposition theorem for the
unitary group U “ Upnq.

Let p0 “ Cv0 be the point on the Clifford torus Tn´1 where v0 is the
vector v0 “ p1, . . . , 1q. Let V be the stabilizer V :“ tu P U | upv0q “ v0u,
and let T Ă U be the maximal torus subgroup D :“ tdiagpu1, . . . , unq P Uu.

Corollary 3.3. One has the equality U “ DVD.

This means that every unitary matrix u can be decomposed as a product
of three unitary matrices u “ d1vd2 with both di diagonal and with

ř

j vij “ 1
for all i “ 1, . . . , n. Note that this decomposition is not unique modulo the
center of U . See in [25]and also [2] for some examples.

3.2 Existence of biunimodular functions

Theorem 3.4. Let p ě 11 be prime. There exist biunimodular functions on
Fp which are proportional neither to gaussian nor to Björck functions.

Let V :“ ℓ2pFpq be the p-dimensional Hilbert space of functions f on Fp.
Let PpV q » CPp´1 be the projective space of V , let T be the Clifford torus

T :“ trf s P PpV q | |fpxq| “ |fp0q| for all x P Fpu » Tp´1. (3.1)

and F : f ÞÑ pf be the Fourier transform.

Strategy of proof of Theorem 3.4. We will apply Fact 3.1.b to the unitary
transformation F and the torus T . The pp ´ 1qp gaussian functions ga,ℓ
and the 4p2 functions hε,j,k and hε,j,k introduced in Section 2.2 belong to the
intersection T X F´1T .
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Assume, by contradiction that the intersection T X F´1T contains only
gaussian and björckian functions. One can check that the intersection is
transverse at all these points. Therefore Fact 3.1 predicts the existence of
at least 2p´1 intersection points counted with multiplicity. Since p ě 11, one
has 2p´1 ą pp ´ 1qp ` 4p2, there must exist another intersection point. This
is the contradiction we are looking for.

3.3 Transversality of tori at gaussian functions

In order to end the proof of Theorems 3.4 we need to check the transversality
of an intersection T XF´1T of suitable Clifford tori at various points: at the
gaussian functions, at the björckian functions. We will only present the
calculation at one gaussian function. The other calculation are also quite
interesting but I do not have time for them.

Proposition 3.5. Let p ě 3 be prime and g0 be the gaussian function on Fp,
x ÞÑ g0pxq :“ e2iπx

2{p. Then the intersection T X F´1T is transverse at rg0s.

Proof of Proposition 3.5 when p ” 1 mod 4. In this case the Fourier trans-
formof g0 is given by,

pg0p2xq “ g0pxq for all x in Fp.

First step We describe the various tangent spaces.
We use the parametrization of a neighborhood of rg0s in PpV q by the

vector space Vo :“ tφ P CFp | φp0q “ 0u given by

φ ÞÑ rgφs where gφ “
`

1Fp `φ
˘

g0 .

This gives an identification of Vo with the tangent space of PpV q at the point
rg0s, thanks to the formula

φ ÞÑ vφ :“
d

dε
rgεφs|ε“0 P Trg0sPpV q.

The linear condition defining the tangent space of T at the point rg0s is

Repφq “ 0. (3.2)

If one writes in our coordinate system

pgφ “
`

1Fp ` Uφ
˘

pg0,
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the linear condition defining the tangent space of F´1T at the point rg0s is

RepUφq is constant on Fp, (3.3)

and one easily computes this function Uφ, for all x in Fp,

Uφp´2xq “ g0pxq
ř

yPFp
e´4iπxy{pe2iπy

2{pφpyq

“
ř

yPFp
g0px ´ yqφpyq “ pg0 ˚ φqpxq.

Second step We check the transversality of these tangent spaces.
We want to prove that a function φ P Vo belonging to both tangent spaces is
zero. By (3.2) one can write φ “ iψ with ψ real valued. Equation (3.3) can
be rewritten as

β0 ˚ ψ is constant on Fp.

where β0pxq :“ sinp2πx2{pq, or equivalently,

pβ0 pψ is zero on F˚
p .

Since the function pβ0p2xq “ ´β0pxq does not vanish on F˚
p , this implies that

pψ is zero on F˚
p . Therefore, since

ř

y
pψpyq “

?
pψp0q “ 0, one gets pψ “ 0

and ψ “ 0, as required.

Exercise 3.6. Prove Proposition 3.5 for a prime p ” 3 mod 4.
Indication: the proof is similar except that in that case, the Fourier transform
is pg0p2xq “ i g0pxq for all x in Fp.
Exercise 3.7. For d ě 3 odd. Prove that there exists a function f on Z{dZ
such that |fp0q| “ | pfp0q| “ 1 and |fpℓq| “ | pfpℓq| “ 1?

2
, for all ℓ ‰ 0.

Indication: Choose f even: the set tδ0,
1?
2
pδℓ ` δ´ℓq1ďℓăd{2u is an orthogonal

basis of the space V` :“ tf : Z{dZ Ñ C | fp´ℓq “ fpℓqu of even functions.

3.4 Finiteness of odd-biunimodular functions

In this section we introduce the biunimodular functions. Those are functions
that are analogous to the biunimodular functions except that one requires
that they vanish at 0. The main examples are the Dirichlet characters when
d “ p is prime. We will particularly focus on the odd-biunimodular functions.
We will see that they satisfy the same finiteness and counting result as the
biunimodular functions.
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Let d be an odd integer. We recall that a function f on Cd is odd if
fp´kq “ ´fpkq for all k in Cd. Note that, one has fp0q “ 0

Definition. Let f : Cd Ñ C be a function. We say that
f is unimodular on Cd∖t0u if fp0q“0 and |fpℓq|“1 for ℓ‰0:

f is biunimodular on Cd∖t0u if both f and pf are unimodular on Cd∖t0u.
f is odd-biunimodular if f is odd and is biunimodular on Cd∖t0u.
f is a C-function if f´1p0q “ t0u and

ř

kPCd∖t0u

fpk`ℓq fpkq´1 “ ´1 for ℓ ‰ 0. (3.4)

We say that a C-function is normalized if fp1q “ 1.

As in Lemma 2.4, one can check that an odd-unimodular function is an
odd-biunimodular function if and only if it is a C-function.
Example 3.8. Let d “ p be a prime number. Every non trivial odd Dirichlet
character χ on Fp is an odd-biunimodular function, and there are exactly p´1

2

odd Dirichlet characters. See Section 1.4.

Proposition 3.9. When d “ p is prime, the number of normalized C-
functions is finite.

Proof. This fact is due to Biro in 1999 in [15]. It can be proven in the same
way as in Theorem 2.8. Indeed the map Φ in (2.6) is still proper as a map
Eě1 ˆ Eě1 Ñ E ˆ E, where Eě1 :“ tf P E | }f} ě 1u.

For odd functions we can compute this number.

Proposition 3.10. When d “ p is prime, the number of normalized odd
C-functions counted with multiplicity is equal to

`

2n´2
n´1

˘

with n “
p´1
2
.

Proof. We use the same argument as in Theorem 2.17. Hence we use an
analogue of the proper map Φ in (2.6) between spaces of the same dimension.
We introduce the vector spaces E˘ “ tf : Fp | fp´kq “ ˘fpkq for all ku and
and the affine spaces E´

1 :“ tf P E´ | fp1q “ 1u. We also introduce the
affine space

F`
1 :“ tpf0, g0q P E`

ˆ E`
|
f0p0q “ g0p0q “ 0 , f0p1q “ 1
and

ř

xPFp

f0pxq “
ř

xPFp

g0pxq u

+
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so that dimpF`
1 q “ 2 dimpE´

1 q “ 2n ´ 2. The new proper map Φ is

Φ : E´
1 ˆ E´

1 ÝÑ F`
1 ; pf, gq ÞÑ pf qg, pf pgq.

The number of points counted with multiplicity in the fibers of Φ is constant.
We do the counting in the fiber Φ´1pE1, E1q where E1 “ δ1 ´ δ´1 instead of
Φ´1p1F˚

p
,1F˚

p
q. With this modification the argument is as in Lemma 2.19.

Remark 3.11. It would be nice to have a counting formula for all C-functions
f on Fp with fp1q “ 1, similar to the counting of H-functions or to the
counting of odd C-functions. The argument in Proposition 3.10 does not
apply to this situation because the space of functions on Fp that vanish at 0
is not invariant by Fourier transform.

3.5 Existence of odd-biunimodular functions

The application of Fact 3.1 to the existence of new biunimodular functions on
Fp in Theorem 3.4 involved quite a few calculations, because one needed to
check the transversality condition. In this section, we explain an application
of Fact 3.1 that involves no calculation.

When d is an odd integer which is not prime, it is not so easy to construct
odd biunimodular functions. The following proposition says that they always
exist.

Proposition 3.12. Let d ě 3 be an odd integer. Then there exist odd biuni-
modular functions on the cyclic group Cd.

The first non trivial case is when d “ 9. One can prove that there are
exactly 18 odd C-functions on C9. All of them are Galois conjugate. This
explain why they are not so easy to detect. Among them 12 are biunimodular.

Proof of Proposition 3.12. Let d “ 2n ` 1 be an odd integer and V´ be the
vector space of odd functions on Cd. By using the basis pEjq1ďjďn of V´ given

by Ej :“ δj ´ δ´j, one identifies V´ with Cn. The Fourier transform f ÞÑ pf
is a unitary transformation of V´ that we still denote by F . The elements
of the Clifford torus T´ “ Tn´1 of PpV´q “ CPn´1 are precisely the lines
spanned by odd-unimodular functions on Cd ∖ t0u. Fact 3.1.a tells us that
T´ X F pT´q ‰ H. This exactly means that there exists a unimodular odd
C-function.
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Exercise 3.13. Invariant odd biunimodular functions Let p be a prime
number with p ” 1 mod 3, let d “ p2 and A “ Z{dZ.
aq Prove that the multiplicative group G :“ pZ{dZq˚ has order pp ´ 1qp.
bq Prove that G is cyclic.
cq Prove that G contains a unique subgroup H of order 3.
dq Prove that H 1 :“ H Y ´H is a subgroup of G of order 6.
eq Let V 1 “ tf : A Ñ C | f is odd and H-invariantu. Compute dimpV 1q.
fq Prove that V 1 is invariant by the Fourier transform F .
gq Prove that there exist H-invariant odd biunimodular functions on A.

3.6 Transversality of tori at Dirichlet characters

When d “ p is prime, Proposition 3.12 is not useful since we already know
that the odd Dirichlet characters are odd-biunimodular. The aim of this
section is to deal with this case and to prove the following theorem which
answers a question raised by Harvey Cohn in 94.

Theorem 3.14. For every prime p ě 11, there exist odd-biunimodular func-
tions on Fp that are not proportional to odd Dirichlet characters.

This theorem is analogous to Theorem 3.4 and its proof also relies on
Fact 3.1. Therefore we need to study the transversality of the intersection
of the Clifford tori T´ X F´1T´ at the odd Dirichlet character. We will only
present the proof when p ” 1 mod 8 because this case already contains
many interesting ideas of the proof.

This assumption prevents the existence of odd Dirichlet characters of
order 2 or 4. At these characters, the intersection is not transverse and one
needs to deal with the multiplicity of this intersection by using ideas from
Complex Analysis. This special case would take too much time for a graduate
course.

Proposition 3.15. Let χ be an odd Dirichlet character of Fp.
aq The intersection T´ X F´1T´ is transverse at rχs if and only if, for all
non trivial even Dirichlet character ψ of Fp, the following Jacobi sums differ

Jpχ, ψq ‰ Jpχ, ψq. (3.5)

bq This is always the case when p ” 1 mod 8.
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We recall from Section 1.4 that the Jacobi sum is defined as

Jpχ, ψq “
ř

xPFp

χpxqψp1 ´ xq.

This algebraic number lives in the cyclotomic field K “ Qpζp´1q spanned by

the pp´1qth-root of unity ζp´1 “ e
2iπ
p´1 .

Proof of Theorem 3.14 when p”1 mod 8. We will apply Fact 3.1.b to the
unitary transformation F and the torus T´. The p´1

2
odd Dirichlet charac-

ters rχs belong to the intersection T´ XF´1T´ and, according to Proposition
3.15, the intersection at these points is transverse. These points rχs cannot
be the only points of intersection because the number predicted by Fact 3.1.b
is 2

p´3
2 and, since p ě 11, this number is larger than p´1

2
.

Proof of Proposition 3.15.a. Remember that dimC V´ “ pp´1q{2.

First step We first describe the various tangent spaces.
Let χ be an odd Dirichlet character on Fp. Let Bo “ tψ0u YB1

o be the set of
even Dirichlet characters of Fp, ψ0 being the trivial one and B1

o the others.
We will use the following complex coordinates system a “ paψqψPB1

o
of PpV q

in the neighborhood of rχs. It is given by

a ÞÑ rfas where fa “

´

ψ0 `
ř

ψPB1
o
aψψ

¯

χ . (3.6)

These coordinates a “ paψq P CB1
o are also a linear coordinate system for the

tangent space of PpV q at the point rχs, thanks to the formula

a ÞÑ va :“
d

dε
rfεas|ε“0 P TrχsPpVH,cq.

The linear equations defining the tangent space of T´ at the point rχs are

d

dε

`

|fεapxq|
2

´ |fεap1q|
2
˘
ˇ

ˇ

ε“0
“ 0 , for all x in G.

Since ψp1q “ 1 for all ψ in Bo, using (3.6), this can be rewritten as

Rep
ř

ψPB1
0
aψpψ ´ ψ0qq “ 0. (3.7)

Since the set B1
o is invariant by complex conjugation, Condition (3.7) can be

rewritten as
ř

ψPB1
0
paψ ` aψq pψ ´ ψ0q “ 0.
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By the linear independance of Bo, this gives

TrχsT´ » tpaψq P CB1
o | aψ “ ´aψ for all ψ P B1

ou. (3.8)

Using Proposition 1.18, one also computes in our coordinate system

pfa “
Gpχq
?
p

´

ψ0 `
ř

ψPB1
o
αψaψψ

¯

χ where

αψ :“
Gpχψq

Gpχq
“

Gpψq

Jpχ, ψq
. (3.9)

One deduces from (3.8) the equality

TrχsF
´1T´ » tpaψq P CB1

o | αψ aψ “ ´αψ aψ for all ψ P B1
ou. (3.10)

Second step We give the transversality criterion for the tangent spaces.
Since ψ is even, one has

αψ “
Gpψq

Jpχ, ψq
“

Gpψq

Jpχ, ψq
. (3.11)

Comparing (3.8) and (3.10), and using the values (3.9) and (3.11) for αψ and
αψ, one gets the equivalences:

TrχsT´XTrχsF
´1T´ “ t0u ðñ αψ ‰ αψ for all ψ P B1

o

ðñ Jpχ, ψq‰Jpχ, ψq for all ψ P B1
o.

This ends the proof of Proposition 3.15.a

Remark 3.16. Note that when p ” 3 mod 4, the Legendre character χ “ χ0 is
odd. This character satisfies χ0 “ χ0. Therefore the intersection T´ XF´1T´

is not transverse at rχ0s.

3.7 Using the Stickelberger’s formula

We will need the following elementary formula that was already known to
Kummer. This formula is the first non trivial case of the Stickelberger’s
formula that can be found in [32, Chap.1] or in [26, Chap.14].
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Lemma 3.17. Let Fp be a prime field, let j, k be integers 0 ă j, k ă p´1.
Let us define the Jacobi sum mod p by Jj,k :“

ř

x‰0,1

x´jp1 ´ xq´k P Fp.

aq One has the equality Jj,k “ ´
`

j`k
k

˘

in Fp.
bq In particular, one has the equivalence Jj,k ‰ 0 ðñ j ` k ă p.

Here the sum is over all x in Fp with x ‰ 0, x ‰ 1 and the right-hand

side is the binomial coefficient
`

j`k
k

˘

“
pj`kq!
j! k!

.

Proof of Lemma 3.17. This is a classical and elementary calculation

Jj,k “
ř

x‰0

x´jp1 ´ xqp´1´k “
řp´1´k
ℓ“0 p´1qℓ

`

p´1´k
ℓ

˘
ř

x‰0

xℓ´j

“ ´p´1qj
`

p´1´k
j

˘

“ ´
`

j`k
k

˘

,

which is valid since the base field is Fp.

We can now give the proof of Proposition 3.15.b

Notation We want to prove that

Jpχ, ψq ‰ Jpχ, ψq (3.12)

by reducing it modulo a suitable prime ideal p of the ring Zrζp´1s. Since the
multiplicative group F˚

p is a cyclic group of order c :“ p´1, we can introduce
the smallest positive integer g0 whose image modulo p is a generator of F˚

p . We
denote by ω the Teichmüller character of F˚

p which is defined by the equality
ωpg0q “ ζp´1. This character is a generator of the group of characters of
F˚
p . In particular, since χ and ψ are not trivial, there exist positive integers
j, k ă p´1 such that

χ “ ω´j , ψ “ ω´k , and hence χ “ ω´pp´1´jq.

Note that j is odd while k is even.

Proof of Proposition 3.15.b. The action of an element of the Galois group
of K{Q commutes with the complex conjugation and hence preserves the
assertion (3.12). This action is given by an element a P pZ{pṕ 1qZq˚ and sends
the characters ω´j and ω´k respectively to the characters ω´aj and ω´ak.
Therefore, without loss of generality by using the combinatorial Lemma 3.18,
we can assume that

j ă k and j ` k ă p´1.
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The Jacobi sum Jpχ, ψq lives in the ring of integers OK :“ Zrζp´1s. Since
the polynomial Xp´1 ´ 1 has p´ 1 distinct roots in Fp, the cyclotomic poly-
nomial Φp´1pXq is also split in Fp and has φpp´1q roots in Fp where φ is the
Euler totient. These roots are the generators of the group F˚

p . We denote
by p :“ pp, g0´ζp´1q the prime ideal of OK over p containing g0´ζp´1. We
denote by

πp : OK Ñ OK{p » Fp
the natural morphism given by the reduction modulo p so that one has
πppωpxqq “ x for all x in Fp. Using the notation and the result of Lemma
3.17, one has the equalities

πppJpχ, ψqq “ πppJpω´j, ω´k
qq “ Jj,k “

`

j`k
k

˘

‰ 0

since j`k ă p´1. Similarly, one has the equalities

πppJpχ, ψqq “ πppJpω´pp´1´jq, ω´k
qq “ Jp´1´j,k “

`

p´1´j`k
k

˘

“ 0

since j ă k. This proves our assertion

In the proof of Proposition 3.15.b, we used the following combinatorial
lemma with c “ p´1.

Lemma 3.18. Let c be a positive integer with c ” 0 mod 8, let j be an
odd integer and k ă c be an even positive integer. Then there exist positive
integers a, j1, k1 ă c such that a is coprime to c and

j1
” ˘aj mod c, k1

” ak mod c, j1
ď k1

ď c ´ j1. (3.13)

Proof of Lemma 3.18. First step Preliminary reductions

piq We can assume that c “ jr with r integer r ě 8. Indeed there exists an
integer x coprime to c such that xj ” j1 mod c and j1 is a positive divisor of
c so that c “ j1r. Since j is odd, one has r ” 0 mod 8.

piiq We can assume that j is coprime to k. Indeed if this is not the case we
argue by induction. We introduce the integer m :“ gcdpj, kq and set

j0 :“ j{m, k0 :“ k{m and c0 :“ c{m.

We find a pair pj1
0, k

1
0q satisfying (3.13) with j0, k0, c0. Then the pair

pj1, k1
q :“ pmj1

0,mk
1
0q
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satisfies (3.13) with j, k, c.

piiiq We can assume that k ă j. Indeed if k ą c ´ j, we replace the pair
pj, kq by

pj1, k1
q :“ pj, c ´ kq ” p´aj, akq mod c witha “ ´1.

Second step Finding a, j1 and k1.
We choose a prime divisor p ě 3 of j and we write c “ pq.

pivq We will choose a among the integers aℓ :“ 1` ℓq with 0 ď ℓ ă p. Indeed
all of them except at most one are coprime to c.

pvq We will choose j1 “ j because for all ℓ one has j ” aℓj mod c.

pviq We will choose k1 in the set S of integers of the form

S :“ tk1
“ k ` mq | 0 ď m ă pu.

Since p ě 3 and j ď r{8, the interval rj, c´js contains at least two integers of
S. By piiq, the integer k is coprime to p, therefore the integers aℓk “ k` ℓkq
are distinct mod c. Therefore S is also the set of integers k1

ℓ “ k `mℓq with
0 ď mℓ ă p, such that k1

ℓ ” aℓk mod c. Hence by pivq, one can find aℓ prime
to c such that j ă k1

ℓ ă c ´ j.

Notes to Chapter 3 The finiteness and the existence result of this
chapter is in [11]. It relies on the Floer homology results in [13], [17]. See
also [25].
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Part II

Convolution and square
In the next four lectures, we will deal with another family of functions f on
Z{dZ called λ-critical that have properties analogous both to the gaussian
functions.

Their rescaled convolution square is proportional to their square. More
precisely they satisfy f ˚ fp2xq “ λf 2pxq. For the gaussian functions the
critical value λ is equal to ˘

?
d when d ” 1 mod 4 and is equal to ˘i

?
d

when d ” 3 mod 4. Here d will be an odd integer, not necessarily prime.
The Dirichlet characters with primitive square also satisfy this equation,

the corresponding critical value is given by Jacobi sums.
The main question is then what are the possible critical values λ and how

can one construct the corresponding λ-critical function f .

In Lecture 4, we will introduce the Jacobi theta functions. These func-
tions are interesting in their own and we will recall their main properties: the
addition formula, the isogeny formula and the transformation formula. They
are very useful since they give the embeddings of elliptic curves in projective
spaces. They also give embeddings of the modular curves, i.e. the mod-
uli space of elliptic curves They also have astonishing arithmetic properties
that are part of the so-called Kronecker youth dream and that are nowadays
encoded in the Shimura reciprocity.

In Lecture 5 we explain how these Jacobi theta functions restricted to
a cyclic group of torsion points on the corresponding elliptic curve gives
rise to λ-critical functions with λ “ λ0 :“

?
a ` i

?
b, where a and b are

positive integers with a ` b “ d. The proof uses the three formulas for
theta functions that we proved in the Lecture. The elliptic curve has to
be chosen with care. In particular, it has complex multiplication by i

?
ab.

The integers a and b have to satisfy congruence conditions modulo 4 that
can entirely be explained by the transformation formula. Moreover the sign
in the transformation formula explains that λ0 is always critical but ´λ0 is
sometimes not critical.

In the next two lectures, we extend the results of the previous two lectures
to higher dimension.
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In Lecture 6 we introduce the abelian varieties that will replace the elliptic
curves. An important point of the discussion is that very few higher dimen-
sional complex tori are abelian varieties. The abelian varieties are those that
admit an integral Kähler structure. They are parametrized by the Riemann
matrices τ . These matrices live in the Siegel upper half-space Hg that will
replace Poincaré upper half-plane. The symplectic group Sppg,Rq which is
the group of isometries of Hg will replace the group SLp2,Rq. The abelian
varieties that will give rise to critical values are those that admit non-trivial
unitary Q-endomorphisms.

In Lecture 7 we introduce the Riemann theta functions: they general-
ize the Jacobi theta functions and still satisfy the addition formula, the
isogeny formula and the transformation formula. We give the interpreta-
tion as section of line bundle on the abelian variety and on the moduli space
Ag of polarized abelian variety. We explain how one can choose these Rie-
mann theta functions such that their restriction to a suitable cyclic group
of torsion points on the corresponding abelian variety give rise to λ-critical

functions for values λ like λ “ 1 `
?
5 ` i

a

9 ´ 2
?
5 when d “ 15 or like

λ “ 1 ` 2
?
2 ` 2i

a

3 ´
?
2 when d “ 21.
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4 Jacobi theta functions

The aim of this lecture is to introduce the Jacobi theta functions θpz, τq and
to explain why they are useful.

As a function of z, we interpret them as section of a line bundle on an
elliptic curve Eτ and we prove the addition formula together with the isogeny
formula.

As a function of τ we prove the modularity properties of the function θ
with a cautious care in the sign that occurs in the transformation formula.

We also explain the Riemann theta relations that allow to embed both
the elliptic curves Eτ and the modular curves Xpmq in projective spaces. We
just give one example for each of these embeddings.

4.1 Line bundles on elliptic curve

Theta functions will occur naturally as sections of line bundles over an elliptic
curve. As a complex analytic curve, an elliptic curve is a quotient E “ C{Λ
of the complex plane C by a lattice Λ. One will write this lattice under the
form Λ “ Λτ :“ Zτ ‘ Z where the parameter τ belongs to the upper half
plane H “ tτ P C | Impτq ą 0u. This is not restrictive since for every α P C˚

the lattice Λ and αΛ gives rise to the same curve. We write Eτ :“ E{Λτ .
For d P Z we consider the space of quasiperiodic holomorphic functions

Vdpτq “ tf P HolpCq | fpz ` 1q “ fpzq and fpz ` τq “ e´iπdτe´2iπdzfpzqu

In this definition the factor e´iπdτ is not so important. It is useful, because for
d ě 1 this space contains the dth-power θpz, τqd of the Jacobi theta function
that we define now.

As a function of z, the Jacobi theta function is roughly defined as a
“Fourier series whose Fourier coefficients are gaussian”. More precisely,

θτ pzq “ θpz, τq :“
ř

mPZ
eiπτm

2
e2iπmz, for z P C and τ P H. (4.1)

Note that the condition τ P H is the one needed for the convergence of this
series. This function belongs to V1pτq since one has

θτ pz ` 1q “ θτ pzq and θτ pz ` τq “ e´iπτe´2iπzθτ pzq . (4.2)

And, for d ě 1, its power θdτ belong to Vdpτq.

It is important to know exactly where the zeros of the functions θτ are.
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Lemma 4.1. aq The function θτ is even: one has θτ p´zq “ θτ pzq.
bq One has θτ p τ`1

2
q “ 0.

cq Conversely, if θτ pzq “ 0, then one has z “ τ`1
2

`mτ ` n with m, n in Z.

Proof. aq This follows from Formula (4.1).
bq One computes using (4.2) and aq, θτ pτ`1´zq “ e´iπτe2iπz θτ pzq, one

evaluates this equality at z “ τ`1
2
, and one gets θτ p τ`1

2
q “ ´θτ p τ`1

2
q.

cq One checks that the parallelogram P with vertices 0, 1, τ 1̀, τ contains
only one zero of the function θτ by computing the number N of zeros as
an integral N “ 1

2iπ

ş

BP
θ1
τ pzq

θτ pzq
dz. The quasiperiodicity of θτ in (4.2), allows

simplification in the integration on the opposite sides of the parallelogram
BP and one gets N “ 1

2iπ

ş1

0
p2iπq dz “ 1.

Lemma 4.2. aq For d ě 1, the dimension of the space Vd is d.
bq For d ď ´1, one has Vd “ t0u.

Remark 4.3. When d “ 0 a function in Vdpτq is a bounded holomorphic
function, hence it is constant.

Proof. Let f P Vdpτq. We write z “ x ` iy, with x and y real. Since f is
periodic it has a Fourier expansion that we choose to write as

fpzq “
ř

nPZ
an e

iπn2τ{d e2iπnz. (4.3)

A priori the Fourier coefficient an “ anpyq might depend on y. But, since f is
holomorphic, one has Bzan “ 0, and it does not. We have chosen to express
f that way so that the quasiperiodicity condition on f can be expressed in
a very simple way: an`d “ an for all n P Z. The sequence an has period |d|.
Since the series (4.3) converges, and since Impτq ą 0, one must have d ě 1.
Conversely, when d ě 1 these series converges and f is known as soon as
one knows the coefficients a0, . . . , ad´1. This proves that the space Vdpτq has
dimension d.

4.2 Theta functions with characteristic

There are different notations and more precisely different normalizations for
the theta functions, depending on the applications one has in mind. The
following one is the most usual.
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The classical theta functions with characteristic a, b in C, are defined by,
for z P C and τ P H,

θ
„

a
b

ȷ

pz, τq :“
ř

mPZ
eiπpm`aq2τe2iπpm`aqpz`bq.

“ eiπa
2τe2iπapz`bq θpz ` aτ ` b, τq.

Forgetting the exponential factors, one may think of the parameter a as
a translation in the direction of the period 1 and of the parameter b as
a translation in the direction of the quasiperiod τ . This is geometrically
correct at least when a and b are real.

One has to be careful that these functions do not belong to V1pτq except
when a and b are integers, indeed, one has

θ
„

a
b

ȷ

pz ` 1, τq “ e2iπa θ
„

a
b

ȷ

pz, τq and

θ
„

a
b

ȷ

pz ` τ, τq “ e´iπτe´2iπpz`bq θ
„

a
b

ȷ

pz, τq.

Note that these functions depend only on b` z, hence it is not restrictive
to study them when b “ 0 and to define

θτ
„

a
z

ȷ

:“ θ
„

a
0

ȷ

pz, τq “ θ
„

a
z

ȷ

p0, τq (4.4)

Note that these functions satisfy the following periodicity when translat-
ing the characteristic by elements m, n in Z,

θ
„

a` m
b ` n

ȷ

pz, τq “ e2iπan θ
„

a
b

ȷ

pz, τq. (4.5)

It follows from the proof of Lemma 4.2

Lemma 4.4. The functions z ÞÑ θ
„

k{d
0

ȷ

pdz, dτq, with k “ 0, . . . , d´1 form a

basis of the vector space Vdpτq.

We will mainly use the following theta functions with characteristics. For
ξ P Zg{2Zg, seen as a subset of Zg, we define

θr0spz, τq “ θ
„

0
0

ȷ

p2z, 2τq :“
ř

m even

eiπm
2τ{2e2iπmz. (4.6)

θr1spz, τq “ θ
„

1{2
0

ȷ

p2z, 2τq :“
ř

m odd

eiπm
2τ{2e2iπmz. (4.7)

Note that one has the equalities:

θr0spz, τq “ θp2z, 2τq and θr0spz, τq ` θr1spz, τq “ θpz, τ{2q. (4.8)
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4.3 The addition and the isogeny formula

We want to explain two classical formulas for the theta functions, the “ad-
dition formula” and the “isogeny formula”. We will only need special cases
of these formulas that we state below.

The first formula that we need will be a corollary of the following addition
formula.

Lemma 4.5. Addition formula For all a, b, z, w in C, τ P H, one has

θτ
„

a ` b
z ` w

ȷ

θτ
„

a ´ b
z ´ w

ȷ

“ θ2τ
„

a
2z

ȷ

θ2τ
„

b
2w

ȷ

` θ2τ
„

a ` 1
2

2z

ȷ

θ2τ
„

b ` 1
2

2w

ȷ

. (4.9)

Proof. Just write the left-hand side as a double sum over m, n in Z and write
m “ pp ` εq ` pq ` εq and n “ pp ` εq ´ pq ` εq where p and q are in Z and
where ε “ 0 or 1

2
according to the parity of m´n. This gives

LHS “
ř

m,n

eiπpm`a`bq2τe2iπpm`a`bqpz`wqeiπpn`a´bq2τe2iπpn`a´bqpz´wq,

“
ř

ε,p,q

e2iπpp`a`εq2τe4iπpp`a`εqze2iπpq`b`εq2τe4iπpq`b`εqw

“
ř

ε

θ2τ
„

a ` ε
2z

ȷ

θ2τ
„

b ` ε
2w

ȷ

,

where the sum has two terms ε “ 0 or 1{2.

When a “ b “ 0, one gets the following corollary.

Corollary 4.6. For all z, w in C, τ P H, one has

θpz`w, τqθpz´w, τq “ θr0spw, τqθr0spz, τq ` θr1spw, τqθr1spz, τq. (4.10)

Note that this formula is not surprising because one can check easily that,
as a function of z, the left-hand side belongs to the space 2-dimensional space
V2pτq. Hence it is a linear combination of the two functions θr0s and θr1s that
form a basis of V2pτq.

Here is the second formula which is simple but useful.

Lemma 4.7. Isogeny formula For τ P H, d positive integer, one has

ř

ℓPZ{dZ
θpℓ{d, τq “ d θp0, d2τq.
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Proof. Just write the left-hand sides as a double sum

ř

ℓPZ{dZ
θpℓ{d, τq “

ř

m

eiπm
2τ

ř

ℓPZ{dZ
e2iπmℓ{d “ d

ř

n

eiπn
2d2τ “ d θp0, d2τq

where we used the fact that
ř

ℓPZ{dZ
e2iπℓm{d is equal to d when d divides m and

is equal to 0 otherwise.

We will need the following variation of the isogeny formula for which we
need d to be odd. The proof is the same.

Corollary 4.8. For τ P H, d odd positive integer, one has

ř

ℓPZ{dZ
θr0spℓ{d, τq “ d θr0sp0, d

2τq and
ř

ℓPZ{dZ
θr1spℓ{d, τq “ d θr1sp0, d

2τq.

4.4 The transformation formula

We now explain the modularity properties of the theta functions. These
properties come from a basis change in the lattice Λ that define the elliptic
curve E.

These formulas deal with an element σ “
ˆ

α β
γ δ

˙

P SLp2,Zq. For a

positive integer m we will denote by Γpmq the subgrooup

Γpmq :“ tσ P SLp2,Zq | σ ” ˘1 mod mu, (4.11)

Lemma 4.9. Transformation formula aq If σ P Γp2q, and γ ą 0, then
there exists a eighth root of unity κpσq such that

θp0, στq “ κpσq pγτ ` δq
1
2 θp0, τq. (4.12)

bq The constant κpσq is given by the formula

κpσq “ i
δ´1
2 p

γ
δ
q. (4.13)

The transformation formula with the precise determination of the con-
stant κpσq is due to Hecke.

Let us explain the notation in this formula.
- The SLp2,Zq action on H is the standard action στ “

ατ`β
γτ`δ

.
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- For a complex number z with Repzq ě 0 or Impzq ě 0, the number w “ z
1
2

is the unique square root with Repwq ` Impwq ě 0.
- The symbol p

γ
δ
q “ ˘1 is the Jacobi symbol introduced in Section 1.3 and

defined for two relatively prime integers γ and δ with δ odd.

The key ingredient is the Poisson summation formula. We recall that
the Schwartz space SpRq is the space of C8 functions h on R all of whose
derivatives decay faster than the inverse of any positive polynomial. The
Fourier transform of such a function h is defined by

phpxq :“
ş

R hpyqe2iπxy dy .

This function ph also belongs to SpRq.

Fact 4.10. (Poisson summation formula) For all h P SpRq, one has

ř

nPZ
hpnq “

ř

nPZ

phpnq . (4.14)

We will also need the following elementary lemma

Lemma 4.11. The group Γp2q is generated by u2 :“
ˆ

1 2
0 1

˙

, v2 :“
ˆ

1 0
2 1

˙

and ˘1.

Note that the analogous statement for Γpmq, m ě 3 is not true.

Proof of Lemma 4.11. We want to prove that any σ “
ˆ

α β
˚ ˚

˙

P Γp2q is

obtained as a product of these three matrices and their inverses. We argue
by induction on the odd integer |α| ` |β|.

If |α| ` |β| “ 1, one has σ “ ˘v2n for some n P Z.
If |α| ` |β| ą 1 and |α| ă |β|, for a suitable choice of sign, one has

σ u˘2 “
ˆ

α β1

˚ ˚

˙

with β1 “ β ˘ 2α satisfying |β1| ă |β|.

If |α| ` |β| ą 1 and |α| ą |β|, for a suitable choice of sign, one has

σ v˘2 “
ˆ

α1 β
˚ ˚

˙

with α1 “ α ˘ 2β satisfying |α1| ă |α|.

Proof of Lemma 4.9.a. It is enough to prove that

θp0, στq
8

“ pγτ ` δq4 θp0, τq
8. (4.15)

This will prove (4.12) up to a eigth root of unity κpσ, τq. This root will not
depend on τ by a continuity argument.
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We first notice that the map pσ, τq ÞÑ cpσ, τq :“ γτ ` δ is a cocycle on
SLp2,Zq ˆ H. This means that cpσ1σ2, τq “ cpσ1, σ2τq cpσ2, τq. Therefore it
is enough to check (4.15) on generators of the group Γp2q.

Let w0 :“
ˆ

0 ´1
1 0

˙

and u :“
ˆ

1 1
0 1

˙

. Since the group Γp2q is generated

by u2 and v2w0u
2w´1

0 , it is enough to check (4.12), for σ “ u2 and for σ “ w0.
The case σ “ u2 follows from the equality

θp0, τ ` 2q “ θp0, τq,

The case σ “ w0 follows from the equality

θp0,´1{τq “ pτ{iq
1
2 θp0, τq. (4.16)

which is nothing but the Poisson summation formula applied to the function
hpxq “ pτ{iq

1
2 eiπx

2τ whose Fourier transform is phpxq “ e´iπx2{τ .

4.5 The sign in the transformation formula

We now compute the eighth root of unity κpσq.

Before starting the calculation I want to make two comments that follow
from a cautious examination of the previous proof.

First of all one has κpσq4 “ 1 because an element of Γp2q expressed as a
word in u2 and w0 involves an even number of w0.

Second, since pσ, τq ÞÑ γτ ` δ is a cocycle, the map Γ Ñ t˘1u;σ ÞÑ κpσq2

is a group morphism. Hence it is not difficult to check that κpσq2 “ p´1q
δ´1
2

by checking it on the two generators u2 and w0u
2w´1

0 of Γp2q.
Therefore if one is only interested in the value of κpσq up to a sign, one

does not need to read the calculation below. What makes this calculation
delicate is that it involves square roots of complex numbers and one has to be
very precise on the choice of these square roots at each step of the calculation.

Proof of Lemma 4.9.b. The strategy is clear. The idea is to compare the
asymptotic of both sides of Formula (4.12) when τ goes to 0. More precisely,
we will compute the limit when τ goes to 0 of both sides of the equality

pτ{iq
1
2 θp0, στq “ κpσq pγτ ` δq

1
2 pτ{iq

1
2 θp0, τq. (4.17)
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Because of the Poisson formula (4.16), the limit of the right-hand side
RHS of (4.17) is

lim
τÑ0

RHS “ κpσq δ
1
2 lim
τÑ0

θp0,´1{τq “ κpσq δ
1
2 . (4.18)

In order to compute the limit of the left-hand side LHS of (4.17) we write

στ “
β
δ

` ρ, where ρ :“ τ{δ
γτ`δ

is an element of H that also goes to 0. Taking
into account that β is an even integer, one computes

θp0, β
δ

` ρq “
ř

1ďrď|δ|

ř

mPZ
eiπpmδ`rq2p

β
δ

`ρq

“
ř

1ďrď|δ|

eiπ
β
δ
r2

ř

mPZ
eiπpmδ`rq2ρ .

We apply Poisson Formula (4.14) to the function hpxq “ δpρ{iq
1
2 eiπpδx`rq2ρ

whose Fourier transform is phpxq “ e´iπδ´2x2{ρe´2iπ r
δ
x. Therefore we get

δpρ{iq
1
2 θp0, β

δ
` ρq “

ř

1ďrď|δ|

eiπ
β
δ
r2

ř

mPZ
e´iπδ´2m2{ρe´2iπ r

δ
m .

Therefore one has the equality

lim
τÑ0

LHS “
ř

1ďrď|δ|

eiπ
β
δ
r2 . (4.19)

Remembering that both β and γ are even integers, that δ is an odd integer
coprime to both of them and that βγ ” ´1 mod δ, and comparing (4.18)
and (4.19), one gets

κpσq “ 1{δ
1
2

ř

1ďrď|δ|

e´iπ γ
δ
r2 (4.20)

This Gauss sum can be calculated using Lemma 1.5 and Proposition 1.14.
When δ ą 0, one gets

κpσq “ i
pδ´1q2

4 p
´2γ
δ

q “ i
pδ´1q2

4 iδ´1i
1´δ2

4 p
γ
δ
q “ i

δ´1
2 p

γ
δ
q.

When δ ă 0, one gets

κpσq “ i´1i
p|δ|´1q2

4 p
2γ
|δ|

q “ i´1i
pδ`1q2

4 i
1´δ2

4 p
γ
δ
q “ i

δ´1
2 p

γ
δ
q.

This ends the calculation of κpσq.
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There also exists a transformation formula valid for all z. We first express
it in a naive way where an exponential factor is involved.

Corollary 4.12. If σ P Γp2q, and γ ą 0, then, for all z in C and τ in H,

θp z
γτ`δ

, στq “ i
δ´1
2 p

γ
δ
q pγτ`δq

1
2 eiπ

γz2

γτ`δ θpz, τq. (4.21)

We now express it in a simpler form by using the theta functions with
characteristics. This formula is particularly simple when it is expressed with
the modified theta function

rθτ
„

a
b

ȷ

“ e´iπab θτ
„

a
b

ȷ

. (4.22)

Note that there is no modification when b “ 0.

Corollary 4.13. Let τ P H and σ P Γp2q. Then, for a, b in C, one has

rθστ
„

δa´γb
´βa`αb

ȷ

“ i
δ´1
2 p

γ
δ
q pγτ ` δq

1
2 rθτ

„

a
b

ȷ

. (4.23)

Proof. The proof of both corollaries is the same as for Lemma 4.9. We check
the formula up to a eighth root of unity by checking it on the two generators
of Γp2q. The determination of this root of unity follows from a continuity
argument and the case where a “ b “ 0 done in Lemma 4.9

We introduce now the four Jacobi theta-functions θa,b with a, b equal to
0 or 1, given by

θabpzq “ θabpz, τq :“ θ
„

a{2
b{2

ȷ

pz, τq “
ř

mPZ
eiπτpm`a

2
q2e2iπpm`a

2
qpz` b

2
q (4.24)

Exercise 4.14. Prove the following equalities where τ is implicit.
aq θ00p´zq“θ00pzq, θ01p´zq“θ01pzq, θ10p´zq“θ10pzq, θ11p´zq“´θ11pzq.
bq Prove that θ00pz ` 1q “ θ00pzq, θ01pz ` 1q “ θ01pzq,

θ10pz ` 1q “ ´θ10pzq, θ11pz ` 1q “ ´θ11pzq.
cq Prove that θ00pz`τq “ e´iπτe´2iπzθ00pzq, θ01pz`τq “ ´e´iπτe´2iπzθ01pzq,

θ10pz ` τq “ e´iπτe´2iπzθ10pzq, θ11pz ` τq “ ´e´iπτe´2iπzθ11pzq.

Exercise 4.15. Prove the following equalities where αz,τ “ pτ{iq
1
2 eiπz

2{τ ,
aq θ00pz, τ ` 1q “ θ01pz, τq, θ01pz, τ ` 1q “ θ00pz, τq,
θ10pz, τ ` 1q “ eiπ{4θ10pz, τq, θ11pz, τ ` 1q “ eiπ{4θ11pz, τq,

bq θ00p
z
τ
, ´1
τ

q “ αz,τ θ00pz, τq, θ01p z
τ
, ´1
τ

q “ αz,τ θ10pz, τq,
θ10p z

τ
, ´1
τ

q “ αz,τ θ01pz, τq, θ11p
z
τ
, ´1
τ

q “ ´iαz,τ θ11pz, τq.
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4.6 Riemann theta relations

The addition formula (4.9) relates θ functions with parameter τ with theta
functions with parameter 2τ . There is another relation due to Riemann
that gives a lot of quartic relations between theta functions with the same
parameter τ . We begin by the general and easy to remember formulation in
terms of theta function with characteristic.

Proposition 4.16. For a, b, c, d, u, v, w, x in C, τ P H, one has LHS “ RHS
where

LHS “ 2 θτ
„

a`b`c`d
2

u`v`w`x
2

ȷ

θτ
„

a`b´c´d
2

u`v´w´x
2

ȷ

θτ
„

a´b`c´d
2

u´v`w´x
2

ȷ

θτ
„

a´b´c`d
2

u´v´w`x
2

ȷ

RHS “
ÿ

ε,ηP 1
2
Z{Z

e´2iπpa`b`c`dqη θτ
„

a ` ε
u ` η

ȷ

θτ
„

b ` ε
v ` η

ȷ

θτ
„

c ` ε
w ` η

ȷ

θτ
„

d ` ε
x ` η

ȷ

.

Proof of Proposition 4.16. The left-hand side is a sum over the lattice Z4 in

R4. The idea is that the matrix T :“ 1
2

¨

˚

˚

˝

1 1 1 1
1 1 ´1 ´1
1 ´1 1 ´1
1 ´1 ´1 1

˛

‹

‹

‚

is an orthogonal

matrix that sends the lattice Z4 to the lattice L :“ T pZ4q which is almost
Z4. More precisely the intersection L0 :“ L X Z4 has index 2 in both L and
Z4. Note also that T 2 “ 1. We denote by A and U the column vectors
A :“ tpa, b, c, dq and U :“ tpu, v, w, xq. We will also need the column vector
E :“ tp1, 1, 1, 1q so that

L0 “ tM P Z4
|
tEM P 2Zu and L “ L0 Y p1

2
E ` L0q.

One computes,

LHS “ 2
ř

MPZ4

eiπ
tpM`TAqpM`TAqτe2iπ

tpM`TAqTU .

Writing M “ T pN ` εEq with ε P t0, 1
2
u, N P Z4 satisfying tEN P 2Z, one

gets using the fact that T is orthogonal

LHS “
ř

ε,ηPt0, 1
2

u

e´2iπ ηtAE
ř

NPZ4

eiπ
tpN`A`εEqpN`A`εEqτe2iπ

tpN`A`εEqpU`ηEq.

which is exactly RHS. In this computation, we used the fact that εηtEE is
an integer. We also used the fact that

ř

ηPt0, 1
2

u

e2iπη
tNE “ 2 if tEN ” 0 mod 2 and “ 0 otherwise.
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These Riemann θ relations are most often applied with a, b, c, d P 1
2
Z with

a`b`c`d P Z so that the exponential in the RHS is a sign ˘1 and with
some specialization on the variables u, v, w, x, imposing some of them to be
0 or to be equal. When a`b`c`d P 2Z the sign is always `1. For instance,
one gets the following relations between the four Jacobi theta functions θab
in (4.24). In the following formulas, the variable τ is implicit.

Corollary 4.17. aq For y, z in C, τ P H, one has

θ00p0q
2 θ00py`zq θ00py´zq “ θ00pyq

2 θ00pzq
2

` θ11pyq
2 θ11pzq

2

“ θ10pyq
2 θ10pzq

2
` θ01pyq

2 θ01pzq
2.

bq Similarly, for y, z in C, τ P H, one has

θ00p0q
2 θ11py`zq θ11py´zq “ θ11pyq

2 θ00pzq
2

´ θ00pyq
2 θ11pzq

2

“ θ01pyq
2 θ10pzq

2
´ θ10pyq

2 θ01pzq
2.

cq In particular, one has

θ00p0q
2 θ00pzq

2
“ θ10p0q

2 θ10pzq
2

` θ01p0q
2 θ01pzq

2

θ00p0q
2 θ11pzq

2
“ θ10p0q

2 θ01pzq
2

´ θ01p0q
2 θ10pzq

2.

dq In particular, one has θ00p0q4 “ θ01p0q4 ` θ10p0q4.

Proof. aq We combine two Riemann θ relations, the first one with a “ b “

c “ d “ 0 and u “ v “ y, w “ x “ z is

2θ00p0q
2 θ00py`zq θ00py´zq “

θ00pyq
2 θ00pzq

2
` θ11pyq

2 θ11pzq
2

` θ10pyq
2 θ10pzq

2
` θ01pyq

2 θ01pzq
2,

the second one with a “ 1, b “ c “ d “ 0 and u “ y`1, v “ y, w “ x “ z is

2θ11p0q
2 θ11py`zq θ11py´zq “

θ00pyq
2 θ00pzq

2
` θ11pyq

2 θ11pzq
2

´ θ10pyq
2 θ10pzq

2
´ θ01pyq

2 θ01pzq
2.

We conclude by noticing that θ11p0q “ 0.
bq The proof is the same. For the first Riemann theta relation one chooses

a “ b “ 1{2, c “ d “ 0, u “ v “ y ` 1{2, w “ x “ z.
For the second Riemann theta relation one chooses:
a “ 1{2, b “ ´1{2, c “ d “ 0, u “ y ` 1{2, v “ y ´ 1{2, w “ x “ z.

cq Set y “ 0 in the previous formulas.
dq Set z “ 0 in the previous formulas.
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Exercise 4.18. Using the addition formula, prove that the theta-constants
θa,b are related to the theta-constants θr0s and θr1s by the formulas

θ200p0, τq “ θ2r0sp0, τq ` θ2r1sp0, τq,

θ201p0, τq “ θ2r0sp0, τq ´ θ2r1sp0, τq,

θ210p0, τq “ 2 θr0sp0, τq θr1sp0, τq.

Exercise 4.19. Prove that for z in C, τ P H, one has

θ00p0q
2 θ01pzq

2
“ θ10p0q

2 θ11pzq
2

` θ01p0q
2 θ00pzq

2

θ00p0q
2 θ10pzq

2
“ θ10p0q

2 θ00pzq
2

´ θ01p0q
2 θ11pzq

2.

Indication: replace z by z ` 1{2.

4.7 Projective embeddings

The theta functions are useful to construct projective embeddings both of
the elliptic curves but also of the modular curves We just give two examples
below.

Projective embedding of elliptic curves The theta functions give an
embedding of the elliptic curve Eτ :“ C{pZτ ‘ Zq inside P2pCq whose image
is a cubic curve.

Proposition 4.20. The holomorphic map ψ : C Ñ P2pCq given by

z ÞÑ rθ11pzqθ00pzq
2, θ00pzqθ01pzqθ10pzq, θ11pzq

3
s

induces an isomorphism Ψ from Eτ to the smooth cubic C with equation

Y 2Z “ XpaX ´ bZqpbX ` aZq

where a “
θ10p0q2

θ00p0q2
and b “

θ01p0q2

θ00p0q2
.

Proof. We denote by ψk, the three functions above so that ψ “ rψ1, ψ2, ψ3s.
These three functions satisfy

ψkpz ` 1q “ ´ψkpzq and ψkpz ` τq “ ´e´3iπτe´6iπzψkpzq.
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Moreover, by Lemma 4.1 they have no joint zeros. Hence they define a
holomorphic map Ψ : Eτ Ñ P2pCq. By Corollary 4.17.c, the image of Ψ
is included in the cubic C. By Corollary 4.17.d, the three roots 0, b{a and
´a{b are distinct. Hence this cubic C is smooth. Both E and C are smooth
compact complex curves. One has Ψ´1pr0, 1, 0sq “ t0u and near this point
0 P E, the map Ψ reads as z ÞÑ rc1z`Opz2q, c2 `Opzq, c3z

3 `Opz4qs for non
zero constants ci. This proves that the map Ψ has degree 1. Therefore this
map Ψ an isomorphism between Eτ and C.

Projective embedding of the modular curve Xp2q

The theta functions give also embeddings of modular curves. For m ě 1,
the modular curve of levelm is the quotient Xpmq :“ ΓpmqzH. This quotient
Xpmq is a Riemann surface with finitely many cusps whose genus can be
calculated thanks to Hurwitz formula.

In the following lemma we will only deal with m “ 2. This quotient Xp2q

is obtained from the fundamental domain for Γp2q on H

D :“ tτ P H | |Repτq| ď 1, |2τ ´ 1| ě 1, |2z ` 1| ě 1u

by glueing the two half-lines Repτq “ ˘1 in BD thanks to τ Ñ τ ` 2, and
the two half-circles |2τ ˘ 1| “ 1 thanks to τ Ñ τ

2τ`1
. This shows that

the surface Xp2q has genus zero and three cusps, which means that Xp2q is
homeomorphic to a 2-sphere minus 3 points. The following lemma gives a
nice interpretation of this fact.

Lemma 4.21. The map φ : H Ñ P1pCq given by φpτq :“
θ01p0, τq4

θ00p0, τq4
induces

a biholomorphism

Φ : Xp2q ÝÑ P1C∖ t0,8, 1u.

Sketch of Proof of Lemma 4.21.
First step: We check that, for all σ in Γp2q and all τ in H one has

φpστq “ φpτq. We only need to check it for the generators σ “ u2 and
σ “ v2 of Γp2q. In these cases, the calculation follows from Exercise 4.15.

Second step: We check that, for all τ in H, one has φpτq ‰ 0,8, 1. This
follows from Corollary 4.17.d and the non vanishing of the theta constants
θ00p0, τq, θ01p0, τq, θ10p0, τq proven in Lemma 4.1.
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Third step: We check that the map Φ is proper. Let pn be sequence
in Xp2q that goes to one of the three cusps. We want to prove that Φppnq

converges to either 0, 1, or 8. Using the equivariance of φ from Exercise 4.23
below, one can assume that pn converges to the cusp 8. In that case, our
assertion follows from the equality lim

ImpτqÑ8
φpτq “ 1. More precisely, if we

set q “ eiπτ , one has

φpτq “
p
ř

np´qqn
2

q4

p
ř

n q
n2

q4
“ 1 ´ 16q ` Opq2q. (4.25)

Fourth step: We check that the map Φ is onto. Since the map Φ is open
and proper, this follows from Exercise 4.22 below.

Fifth step: We check that, the map Φ is one to one. We know that Φ is
a ramified cover. We want to prove that the degree d of this cover is 1.

Either one can compute the degree near the cusp 8 of Xp2q, i.e. around
q “ 0, by using Formula (4.25) and gets d “ 1.

Or one can apply Hurwitz formula to the ramified cover Φ between two
surfaces both being a three holed sphere and also gets d “ 1.

Exercise 4.22. Prove that a continuous proper open map Φ between two
connected locally compact spaces X and Y is onto.

Exercise 4.23. Prove that the map φ is equivariant under SLp2,Zq, and more
precisely, that

φp´τq “ φpτq , φpτ ` 1q “ 1{φpτq and φp´1{τq “ 1 ´ φpτq .

Notes to Chapter 4. See [35].
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5 Convolution and square

In this lecture we will deal with a finite abelian group G of odd order d,
which, most of the time, will be the cyclic group G “ Z{dZ, and with the
functional equation

f ˚ f p2kq “ λ f 2
pkq for all k in G, (5.1)

where the unknown is a non-zero function f : G Ñ C and where λ P C is a
parameter. This equation expresses a proportionality condition between the
“convolution square” of f and its “multiplication square”.

One of the motivations of Proposition 5.4 and Theorem 5.6 below is to
explain some of the intriguing patterns that occur in the lists of possible
values of λ obtained by computer experiments.

5.1 Definition and Examples

A non-zero solution f of this functional equation (5.1) will be called a “λ-
critical function on G” or, in short, a “λ-critical function”, and a value λ
for which such a function f exists will be called a “critical value on G”, or a
“d-critical value” when G “ Z{dZ. Note that Equation (5.1) has been chosen
so that it is invariant by translation on the variable k. This equation (5.1)
can be rewritten as

ř

ℓPG

fpk`ℓq fpk´ℓq “ λ fpkq2 for all k in G. (5.2)

Examples Here is the complete list of d-critical values for d ď 11 ob-
tained by solving the algebraic equations (5.2) thanks to computer program.
Up to sign we will explain in this lecture why all these values are d-critical.
The sign issue is more subtle and will be only partially discussed here.

‹ When d “ 3, the list of critical values is: λ “ 1, 3, and ˘i
?
3.

‹ When d “ 5, the list of critical values is: λ “ 1, 5, ˘
?
5, and 1 ˘ 2i.

‹ When d “ 7, the list of critical values is: λ “ 1, 7, ˘i
?
7, and ˘2 ˘ i

?
3.

‹ When d “ 9, λ “ 1, 9, ˘i
?
3, ˘3i

?
3, 3, ˘

?
5 ˘ 2i, ˘1 ˘ 2i

?
2.

‹ When d “ 11, λ “ 1 , 11, 4 ˘
?
5, ˘i

?
11, 2 ˘ i

?
7, ˘2

?
2 ˘ i

?
3,

and λ “ ˘p1`ε
?
5q ˘ i

a

5´2ε
?
5 with ε “ ˘1.
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‹ The values λ “ 1, resp. λ “ d are d-critical with f “ δ0, resp. f “ 1G.

‹ The values λ “
?
d when d ” 1mod 4 and λ “ i

?
d when d ” 3 mod 4 are

d-critical values with critical function fpkq :“ ηk
2

d where ηd :“ ´eiπ{d.
Indeed, one has f ˚fp2kq “

ř

1ďℓďd

ηpk´ℓq2ηpk`ℓq2 “
ř

1ďℓďd

η2ℓ
2
η2k

2
“ λfpkq2,

where we used the value of the Gauss sum in Lemma 1.5.

‹ The value λ “ χp4qJpχ, χq, where χ is a Dirichlet character on Z{dZ whose
square χ2 is primitive, is a d-critical value with λ-critical function f “ χ.
Indeed, since both χ and χ2 are primitive, using Proposition 1.18.c, one
computes χ˚χp2kq “ Jpχ, χqχ2p2kq “ χp4qJpχ, χqχ2pkq.

For instance, when d “ 11, the critical values λ “ ˘p1̀ ε
?
5q˘i

a

5´2ε
?
5

with ε “ ˘1, are obtained this way, choosing for χ either a character of order
5 or a character of order 10.

‹ When d1 divides d, every d1-critical value is also a d-critical value.

‹ When d “ d1d2 with d1 and d2 coprime the product λ “ λ1λ2 of a d1-critical
value and a d2-critical value is a d-critical value. Just because the group
Z{dZ is isomorphic to the product Z{d1Z ˆ Z{d2Z.
‹ The values λ “

d´3˘
?

pd́ 1qpd́ 9q

2
are d-critical values. This follows from the

following exercise.

Exercise 5.1. Let G “ Z{dZ and f “ αδ0 ` 1G∖t0u with α ‰ 1.
aq Prove that 1G∖t0u ˚ 1G∖t0u “ pd ´ 1qδ0 ` pd ´ 2q1G∖t0u.
bq Prove that f ˚ f “ pα2 ` d ´ 1qδ0 ` p2α ` d ´ 2q1G∖t0u.
cq Prove that f 2 “ α2δ0 ` 1G∖t0u.
dq Prove that f is λ-critical if and only if λ “ 2α ` d ´ 2 where α is a root
of 2α2 ` pd ´ 1qα ` d ´ 1 “ 0.

Exercise 5.2. Jacobi sums Let ζ6 “ eiπ{3.
aq Prove that there exists a Dirichlet character χ of Z{7Z such that χp3q “ ζ6.
bq Prove that the Jacobi sum Jpχ, χq is equal to 2 ´ ζ26 .
cq Deduce that λ “ ´2 ` i

?
3 is a 7-critical value.

Exercise 5.3. Critical functions of quadratic residues. Let p ě 3 be
prime with p ” 3 mod 8. Let χ0 be the Legendre character. Remember that
χ0p´1q “ χ0p2q “ ´1. Let α, β in C˚ and f “ αδ0 ` 1F˚

p
` βχ0.

aq Prove that 1F˚
p

˚ χ0 “ ´χ0.
bq Prove that χ0 ˚ χ0 “ p1 ´ pqδ0 ` 1F˚

p
.
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cq Prove that f 2 “ α2δ0 ` p1 ` β2q1F˚
p

` 2βχ0.
dq Prove that f ˚f “ pα2`pp´1qp1´β2qqδ0`p2α`p´2`β2q1F˚

p
`2pα´1qβ χ0.

eq Prove that f is λ critical if and only if
α “ 1 ´ λ, pλ ´ 1q3 “ pp ´ 1qp1 ´ β2q and pλ ´ 1qβ2 “ p ´ 3λ.

fq Prove that the roots of λ4 ´ 4λ3 ` 6λ2 ´ 4pλ ` p2 “ 0 are p-critical.
gq Let n “ pp ´ 1q{2. Deduce that 1`

?
n`i

a

n´2
?
n is a p-critical value.

5.2 Properties of critical values

We first begin by a few properties of the critical values, that are valid on any
finite abelian group.

Proposition 5.4. Let G be a finite abelian group of odd order d, and λ a
critical value on G, then:
aq one has |λ| ď d with equality if and only if λ “ d,
bq there exist only finitely many critical values on G,
cq the value λ is algebraic and its Galois conjugates are critical values on G,
dq the ratio d{λ is a critical value on G,
eq The ratio λ´1

2
is an algebraic integer.

Proof of Proposition 5.4. aq This follows from Cauchy-Schwarz inequality.
Indeed, setting
}f}8 “ max

kPG
|fpkq| and }f}2 “ p

ř

k |fpkq|2q
1
2 , one has

|λ|}f}
2
8 “ }f ‹ f}8 ď }f}

2
2 ď d }f}

2
8.

Hence |λ| ď d. In case we have equality the function f must have constant
modulus, and must satisfy fpk`ℓqfpk´ℓq “ fpkq2, for all k, ℓ. Hence f is
proportional to a character and one has λ “ d.

bq The set X “ tpλ, fq P C ˆ CG | f ˚fp2kq “ λf 2pkq and fp0q “ 1u is an
algebraic variety and the set C of critical values on G is the image of X by
the map pλ, fq ÞÑ λ.

Therefore, by the elimination of quantifiers in an algebraically closed field,
i.e. by Chevalley theorem in Fact 2.11, the set of critical values for G is either
finite or has finite complement in C. Since, by Point aq, this set C is bounded
it must be finite.

cq Equations (5.2) have rational coefficients. Hence the images of λ by
automorphisms of the field C are also critical values. Hence, by Point bq, λ
has only finitely many Galois conjugates and λ is algebraic.
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dq If f is a λ-critical function on G, then its Fourier transform pf , which
is given by, for every character ω : G Ñ C˚,

pfpωq “ 1?
d

ř

kPG

fpkqωpkq,

is a d{λ-critical function on the dual group pG. Since this dual group pG is
isomorphic to G, d{λ is also a critical value on G.

eq Let G` be a subset of G of cardinality d´1
2

such that for each non-zero
ℓ P G either ℓ or ´ℓ is in G`. The equations (5.2) can be rewritten as

λ´1
2
fpkq

2
“

ř

ℓPG`

fpk`ℓq fpk´ℓq for all k in G (5.3)

We will now use Fact 5.5, which says that, to prove that λ1 :“ λ´1
2

is an
algebraic integer, it is enough to check that, for all non-archimedean absolute
value |.|v on C, one has |λ1|v ď 1.
We set }f}v :“ max

ℓPG
|fpℓq|v, we choose k such that }f}v “ |fpkq|v, and we

compute

|λ1
|v}f}

2
v “ |λ1fpkq

2
|v “ |

ř

ℓPG`

fpk`ℓqfpk´ℓq|v

ď max
ℓPG

|fpk`ℓq|v|fpk´ℓq|v ď }f}
2
v.

This proves that |λ1|v ď 1 as required.

We have used the following fact:

Fact 5.5. A complex number x P C is an algebraic integer, if and only if,
for all ultrametric absolute value |.|v on C, one has |x|v ď 1.

Sketch of proof. We first note that when L{K is a field extension, any abso-
lute value on K can be extended to an absolute value on L, see [33, XII,§4].
Hence it is enough to construct the absolute value on the field Qpxq.

When x is transcendental, for all prime p ě 2, there is an embedding
i : Qpxq ãÑ Qp with |ipxq|p ą 1.

When x is algebraic the fractional ideal pxq in K has a decomposition as
a finite product of powers pxq “

ś

pvppxq of prime ideal of the ring of integers
OK . The element x is not in OK if and only if one of the valuations vppxq is
negative. The corresponding absolute value satisfies |x|p ą 1.
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5.3 Construction of critical values

From now on, G will be the cyclic group Z{dZ.

Theorem 5.6. Let a,b be positive integers with a b̀“d and a”
pd`1q2

4
mod 4.

Then the complex number λ :“
?
a ` i

?
b is a d-critical value.

Remark 5.7. The congruence assumption in Theorem 5.6 is equivalent to

a ´ b ” 1 mod 4 and ab ” 0 mod 4. (5.4)

A more concrete way to state Theorem 5.6 is:

For d ” 1 mod 4, the following values are d-critical:?
d ,

?
d´4`i

?
4 ,

?
d´8`i

?
8 ,

?
d´12`i

?
12 , ...

For d ” 3 mod 4, the following values are d-critical:
i
?
d ,

?
4`i

?
d´4 ,

?
8`i

?
d´8 ,

?
12 ` i

?
d´12 , ...

More precisely, we will see that, surprisingly, for these values λ, the set
of λ-critical functions f with fp0q “ 1 has positive dimension. Indeed, we
will construct a one-parameter family of λ-critical functions using a suitable
Jacobi theta function.

We first explain that the congruence condition on the integer a is neces-
sary.

Lemma 5.8. Let a,b be positive integers and let λ :“
?
a` i

?
b. The number

λ´1
2

is an algebraic integer if and only if a´b´1”ab”0 mod 4.

As seen in (5.4), this condition is equivalent to a”
pd`1q2

4
mod 4 where

d :“ a`b.
In particular, by Proposition 5.4, when this condition is not satisfied, the

complex number λ “
?
a ` i

?
b can not be a d-critical value.

Exercise 5.9. For any algebraic number λ, one has the equivalence:
ν :“ λ´1

2
is an algebraic integer ðñ ν 1 :“ λ2´1

4
is an algebraic integer.

Indic. These two elements ν and ν 1 are related by the equation ν2 ` ν “ ν 1.

Exercise 5.10. Let u, v P Q be two rational numbers. Assume that both v
and uv are not squares. Denote by

?
u and

?
v, one of the two square roots

of u and v, respectively. Then, one has the equivalence:
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µ :“
?
u `

?
v is an algebraic integer ðñ 4u P Z and v ´ u P Z.

Indication: Let σ be the Galois automorphism of Qr
?
u,

?
vs{Qr

?
us such

that σp
?
vq “ ´

?
v. Note that µ is an algebraic integer if and only if both

µ`σpµq and µσpµq are algebraic integers.

Proof of Lemma 5.8. The number ν 1 :“ λ2´1
4

is equal to ν 1 “ a´b´1
4

` i
?
ab
2
.

It is an algebraic integer if and only if both T :“ a´b´1
2

and N :“ T 2`ab
4

are
integers. This happens if and only if a´b ” 1 mod 4 and ab ” 0 mod 4.

Corollary 5.11. Let p,q be positive integers with p odd and q even and let
d :“ p2 ` q2. Then the complex number λ :“ p ` iq is a d-critical value.

Proof. Condition (5.4) is true: p2 ´ q2 ” 1 mod 4 and p2q2 ” 0 mod 4.

Remark 5.12. It is not known under which condition on these integers p and
q, the opposite value λ :“ ´p ´ iq is also d-critical. Even when q “ 0.

5.4 Using theta functions

Theorem 5.6 is a special case of the following Proposition that gives an ex-
plicit family of λ-critical functions thanks to the theta functions (4.1) that
we studied in the previous lecture.

Proposition 5.13. Let a,b be positive integers with a ”
pd`1q2

4
mod 4 and

a`b“d. Set λ0 :“
?
a ` i

?
b and

τ0 :“ 1
4d2

pa ´ b ´ d2 ` 2i
?
abq. (5.5)

Then for all z in C the function k ÞÑ θτ0pz ` k{dq is λ0-critical on Z{dZ.

This means that, for all z in C,
ř

ℓPZ{dZ
θpz ` ℓ{d, τ0q θpz ´ ℓ{d, τ0q “ λ θpz, τ0q2.

One can check that these values τ0 are the simplest one for which Propo-
sition 5.13 holds true.
‹ For d “ 5 and λ0 “ 1 ` 2i, one has τ0 “ ´7`i

25
.

‹ For d “ 7 and λ0 “ 2 ` i
?
3, one has τ0 “ ´12`i

?
3

49
.

Without the general formula (5.5), these values of τ0 are not easy to guess.
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5.5 The condition on theta contants

The first step in the proof of Proposition 5.13 is the following criterion on λ, τ
which ensures that these functions are λ-critical. This criterion is a relation
between “theta constants”, i.e. theta functions evaluated at z “ 0.

Lemma 5.14. Let τ P H and λ P C. The function k ÞÑ θτ pz ` k{dq is
λ-critical on Z{dZ, for all z P C if and only if one has the equalities

λ “ d
θr0sp0, d

2τq

θr0sp0, τq
“ d

θr1sp0, d
2τq

θr1sp0, τq
. (5.6)

Proof. For w in C we introduce the function

z ÞÑ Fwpzq “ Fwpz, τq :“ θpz ` w, τq θpz ´ w, τq.

We want to know when the two functions
ř

ℓ Fℓ{d and F0 “ θ2 are propor-
tional. The key point of the proof is that all these functions Fw live in the
same two-dimensional vector space and that this vector space has a very
convenient basis: pθr0s, θr1sq that we introduced in (4.6) and (4.7). We only
have to express that the coefficients of our two functions in this basis are pro-
portional. These coefficients are given by the following calculation in which
we apply successively the addition formula (4.10) and the isogeny formula in
Corollary 4.8,

ř

1ďℓďd

Fℓ{dpz, τq “
ř

1ďℓďd

θr0spℓ{d, τq θr0spz, τq `
ř

1ďℓďd

θr1spℓ{d, τq θr1spz, τq

“ d θr0sp0, d
2τq θr0spz, τq ` d θr1sp0, d

2τq θr1spz, τq and

θpz, τq
2

“ θr0sp0, τq θr0spz, τq ` θr1sp0, τq θr1spz, τq.

These two functions are proportional with proportionality factor λ if and
only if one has

λ “ d
θr0sp0, d

2τq

θr0sp0, τq
“ d

θr1sp0, d
2τq

θr1sp0, τq
.

This is the criterion (5.6).

The following corollary of Lemma 4.9 looks now very useful. Note that
this corollary requires σ to belong to a smaller congruence subgroup Γpmq as
defined in (4.11).
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Corollary 5.15. If σ“
ˆ

α β
γ δ

˙

P Γp4q, γ ą 0, then, for all τ in H, one has

θr0sp0, στq

θr0sp0, τq
“

θr1sp0, στq

θr1sp0, τq
“ i

δ´1
2 p

2γ
δ
q pγτ ` δq

1
2 . (5.7)

Proof. Let
σ1

“
ˆ

α β1

γ1 δ

˙

and σ2
“

ˆ

α β2

γ2 δ

˙

,

with β1 “ 2β, γ1 “ γ{2 and β2 “ β{2, γ2 “ 2γ, so that

σ1
p2τq “ 2στ and σ2

pτ{2q “ 1
2
στ .

Since the matrix σ is equal to ˘1 mod 4, the two matrices σ1 and σ2 are equal
to 1 mod 2. Therefore we can apply the transformation formula in Lemma
4.9 to both pairs pσ1, 2τq and pσ2, τ{2q. Using the multiplicativity properties
of the Jacobi symbol, we see that the following two ratios are given by the
same formula

θp0, 2στq

θp0, 2τq
“
θp0, 1

2
στq

θp0, 1
2
τq

“ i
δ´1
2 p

2γ
δ
q pγτ ` δq

1
2 .

We now conclude thanks to Equalities (4.8).

5.6 Elliptic curves with complex multiplication

We can now end the proof of Proposition 5.13, by explaining why the pair
pλ0, τ0q satisfies Condition (5.6). The key idea is to find

σ0 P Γp4q such that σ0τ0 “ d2τ0. (5.8)

It is most useful before beginning the calculation to understand geomet-
rically the meaning of this condition (5.8).

We introduce the lattice Λτ0 “ Zτ0‘Z1 of C so that the compact quotient
Eτ0 :“ C{Λτ0 is the elliptic curve associated to τ0. We will see that the values
of λ “ λ0 and τ “ τ0 in Theorem 5.6 have been chosen so that

the elliptic curve Eτ0 has complex multiplication by µ0 :“ λ0
2
.
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More precisely, they have been chosen so that µ0Λτ0 “ Λd2τ0 . This means
that

d2τ0 “ µ0 pατ0 ` βq,

1 “ µ0 pγτ0 ` δq,

for a matrix σ0 “
ˆ

α β
γ δ

˙

P SLp2,Zq. We will be cautious and choose

σ0 “ 1 mod 4 so that we can apply Corollary 5.15. In fact we will see that
it is possible to choose the entries γ and δ to be equal to γ “ 4 and δ “ 1.

Exercise 5.16. Check that the only τ0 P H satisfying σ0τ0 “ d2τ0 for some
σ0 “

ˆ

α β
γ δ

˙

P Γp4q with γ “ 4 and δ “ 1, are the one given by (5.5).

We now recall the notation of Proposition 5.13. Let a, b be positive

integers with a”
pd`1q2

4
mod 4 and a`b“ d. We introduced the parameter

τ0 :“ p
?
a`i

?
bq2

4d2
´ 1

4
P H. We introduce the integer n0 :“ 4a´pd`1q2

16
. In the

next lemma we give the precise formula for the matrix σ0

Lemma 5.17. Let σ0 P Γp4q be the matrix

σ0 :“
ˆ

1`16n0 4n0

4 1

˙

“
ˆ

1 4n0

0 1

˙ ˆ

1 0
4 1

˙

Then one has σ0τ0 “ d2τ0.

Proof. We first compute ρ0 :“
τ0

4τ0`1
. We set

µ0 :“ p4τ0 ` 1q
´1

“ d2

p
?
a`i

?
bq2

“ p
?
a ´ i

?
bq2 “ λ

2

0.

Since 4τ0 “ µ´1
0 ´ 1, we compute

ρ0 “ 1
4
p1 ´ µ0q.

Since d “ a`b, this equation can be rewritten as

ρ0 “ 1
4
p1 ´ p

?
a ´ i

?
bq2q

“ 1
4
p1 ´ 2a ` d ` 2i

?
abq

“ d2τ0 ´ 1
4
p4a ´ d2 ´ 2d ´ 1q

“ d2τ0 ´ 4n0.
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This proves that σ0τ0 “ d2τ0.

We can now end the proof of Proposition 5.13. Applying Lemma 5.14
and Corollary 5.15, together with Lemma 5.17, we deduce that, for all z in
C, the functions k ÞÑ θτ0pz ` k{dq are λ-critical on Z{dZ with

λ “ di
δ´1
2 p

2γ
δ
q pγτ0 ` δq

1
2 , (5.9)

where the square root is the one with positive real part. Since γ “ 4 and
δ “ 1, this gives λ “ pd2µ´1

0 q
1
2 “ µ0

1
2 “

?
a ` i

?
b, as required.

Notes to Chapter 5. We followed [9].
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6 Abelian varieties

All the critical values λ we have found in the previous lecture belong to a
cyclotomic field: there exists n ě 1 such that λ is in Qre2iπ{ns. We show in
the next lecture how to construct new critical values that do not belong to
cyclotomic field.

In the previous lecture the proof relied on the restriction of a Jacobi theta
function to a torsion subgroup of an elliptic curve with complex multiplica-
tion.

The new ingredients in this lecture and the next one will be their higher
dimensional analogs: the restriction of a Riemann theta function to a torsion
subgroup of an abelian variety with a non trivial ring of endomorphisms.

For instance with this method one can prove that

λ “ 1 `
?
5 ` i

a

9 ´ 2
?
5 is 15-critical, (6.1)

λ “ 1 ` 2
?
2 ` 2i

a

3 ´
?
2 is 21-critical. (6.2)

In this lecture we focus on the various equivalent definitions of abelian
varieties. This topic would deserve a whole book as [14] and the reader
is encouraged to go to this book if he wants to know more on the abelian
varieties and their theta functions. The aim of this lecture is to state with no
proof how unitaryQ-endomorphisms of abelian varieties allow us to construct
new critical values. The proof will be given in the next lecture thanks to
the Riemann theta functions and their addition, isogeny and transformation
formulas.

6.1 Kähler bilinear forms and Riemann matrices

We begin this lecture by a few elementary lemmas from linear algebra, that
focus on the imaginary part of a hermitian scalar product seen as a symplectic
bilinear form. The notion of Riemann matrix will show up as an output of
this discussion.

In this lecture dealing with an abelian variety A , we follow the tradition
to denote by g its dimension, keeping in mind the important case where
where A is the Jacobian of a genus g curve.

Let V “ Cg be a g-dimensional complex vector space and let ω be a
real symplectic bilinear form on V . This means that ω is antisymmetric and
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non-degenerate. For instance the imaginary part ω “ ImpHq of a positive
hermitian form H on Cg.

By convention our hermitian form will be linear in the first variable and
antilinear in the second variable: Hpλv, µwq “ λµHpv, wq, for all λ in C and
v, w in V , and also Hpw, vq “ Hpv, wq.

Definition 6.1. We say that ω is Kähler if there exists a positive hermitian
form H on V such that ω “ ImpHq.

Lemma 6.2. A real symplectic bilinear form ω on V is Kähler if and only if,
for all v1, v2 in V and v ‰ 0, one has ωpiv1, iv2q “ ωpv1, v2q and ωpiv, vq ą 0.

Proof. One recover the hermitian form thanks to the formula, for v1, v2 P V :
Hpv1, v2q “ ωpiv1, v2q ` iωpv1, v2q.

For any symplectic bilinear form ω on V there exists a basis of the real
vector space V of the form pf1, . . . , fg, e1, . . . , egq such that

ωpej, ekq “ ωpfj, fkq “ 0 and ωpfj, ekq “ δj,k for all j, k,

or equivalently, ω “
ř

j f
˚
j ^ e˚

j .

Remark 6.3. If ω is Kähler, the family pe1, . . . , egq is a basis of Cg.

Proof. Let V0 be the real vector space spanned by e1, . . . , eg. We want to
prove that V0 X iV0 “ t0u. But when v is in this intersection V0 X iV0, one
has Hpv, vq “ ωpiv, vq “ 0 and hence v “ 0.

For the same reason pf1, . . . , fgq is a basis of Cg and we denote by τ the
matrix giving the base change. This g ˆ g complex matrix τ is given by

pf1, . . . , fgq “ pe1, . . . , egq τ.

This means that the entries of the kth column of the matrix τ are the co-
ordinates of the vector fk in the basis ej, that is fk “

ř

1ďjďg

τjkej for all

k ď g.

Definition 6.4. A g ˆ g complex matrix τ is called a Riemann matrix if τ
is symmetric and its imaginary part is positive definite.

Lemma 6.5. The real symplectic bilinear form ω on V is Kähler if and only
if τ is a Riemann matrix.
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Proof. We write τ “ R` iS where R and S are gˆg real matrices. We want
to prove that both R and S are symmetric and that S is positive definite.

We write the base change between the following two real basis of V

pf1, . . . , fg, e1, . . . , egq “ pe1, . . . , eg, ie1, . . . , iegq

ˆ

R 1
S 0

˙

(6.3)

Therefore the antisymmetric matrix Ω that expresses ω in this second real
basis pe1, . . . , eg, ie1, . . . , iegq is

Ω “
tˆ

R 1
S 0

˙´1 ˆ

0 1
´1 0

˙ ˆ

R 1
S 0

˙´1

“

ˆ

0 1
tS´1 ´tS´1tR

˙ ˆ

0 1
´1 0

˙ ˆ

0 S´1

1 ´RS´1

˙

“

ˆ

0 ´S´1

tS´1 tS´1ptR ´ RqS´1

˙

.

Therefore, by Lemma 6.2, the symplectic form ω is Kähler if and only if
tR “ R, tS “ S, and S is positive definite.

6.2 The Siegel space and the symplectic group

We now introduce the Siegel upper half-space Hg that will replace the Poin-
caré upper half-plane. We will also introduce its group of isometries Sppg,Rq

that will replace the group SLp2,Rq (see also [18] or [8]).
It will be convenient to use notation that looks as much as possible like

the notation for the case when g “ 1. This is why we will still use lower case
greek letters τ , α, β, . . . to denote g ˆ g matrices.

For g ě 1, let Hg be the Siegel upper half-space which is the space of
Riemann matrices of size g,

Hg “ tτ P Mpg,Cq |
tτ “ τ, Im τ ą 0u,

where tτ denotes the transpose of the matrix τ . Let J “
ˆ

0 1g

´1g 0

˙

and

Sppg,Rq :“ tσ P GLp2g,Rq |
tσJσ “ Ju,

be the real symplectic group. This group is the stabilizer of the symplectic
form ωpx, yq “ tx J y on R2g, that is,

Sppg,Rq “ tσ P GLp2g,Rq | ωpσx, σyq “ ωpx, yq for all x, y in R2gu,

79



The group Sppg,Rq, seen as a group of 2 by 2 block real matrices of size
g is given by

Sppg,Rq “ tσ “
ˆ

α β
γ δ

˙

| σ´1
“

ˆ

tδ ´tβ
´tγ tα

˙

u, or, equivalently

Sppg,Rq “ tσ “
ˆ

α β
γ δ

˙

|
tαγ “

tγα, tβδ “
tδβ, tαδ ´

tγβ “ 1gu.

Lemma 6.6. The group Sppg,Rq acts transitively on the Siegel upper half-
space Hg thanks to the formula

στ :“ pατ ` βqpγτ ` δq´1. (6.4)

One cannot confuse this notation στ with the product of matrices since
σ has size 2g while τ has size g.

Note that in this formula the involved matrices have no reasons to com-
mute, hence one has to pay attention to the order in which one computes the
product of these matrices.

Proof. We first want to check that the matrix γτ ` δ is invertible. For that
one computes using the above relations between the block matrices

pτ tα `
tβqpγτ ` δq ´ pτ tγ `

tδqpατ ` βq “ τ ´ τ “ 2i Impτq. (6.5)

Let v P Cg be a vector in the kernel of γτ`δ. By (6.5), one has tvpτ´τqv “ 0.
Since the matrix Impτq is positive definite, this implies that v “ 0. This
proves that γτ ` δ is invertible, and formula (6.4) is well defined. We set
τ 1 :“ στ “ pατ ` βqpγτ ` δq´1..

We want now to prove that τ 1 is symmetric. For that we compute

pτ tγ `
tδqp

tτ 1
´ τ 1

qpγτ ` δq “ pτ tα`
tβqpγτ ` δq ´ pτ tγ `

tδqpατ ` βq “ 0.

which proves that tτ 1 “ τ 1.
We also check that the imaginary part of τ 1 is positive definite. This

follows from the following calculation based on (6.5),

pτ tγ `
tδqp

tτ 1 ´ τ 1
qpγτ ` δq “ τ ´ τ “ 2i Impτq.

Finally we need to check that the action of Sppg,Rq on Hg is transitive.
Formula (6.3) tells us, that given a symplectic structure on R2g, an element
τ of Hg gives a complex structure on R2g together with a positive hermi-
tian form H whose imaginary part is ω. Since the group GLp2g,Rq acts
transitively on the set of complex structure on R2g together with a positive
hermitian form, the group Sppg,Rq acts transitively on Hg.
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Exercise 6.7. Prove that the stabilizer in the group Sppg,Rq of the element
τ0 “ i1g P Hg is the unitary group Upg,Rq, so that Hg » Sppg,Rq{Upg,Rq.

Remark 6.8. This means that Hg is the Riemannian symmetric space G{K
associated to the semisimple Lie group G “ Sppg,Rq and its maximal com-
pact subgroup K “ Upg,Rq. This symmetric space is a hermitian symmetric
space: it admits a G-invariant hermitian structure.

6.3 Integral symplectic bilinear forms

Before introducing abelian varieties, we need to recall the theory of integral
symplectic bilinear forms.

Lemma 6.9. Let Λ “ Z2g and ω be an integral symplectic bilinear form on
Λ. Then there exists a positive integral diagonal matrix ∆ “ diagpd1, . . . , dgq
with d1|d2| ¨ ¨ ¨ |dg and a Z-basis pf1, . . . , fg, e1, . . . , egq of Z2g such that the

matrix of ω in this basis is
ˆ

0 ∆
´∆ 0

˙

.

Proof. Let d ą 0 be the minimum positive value for ωpv, wq with v, w in Λ.
Choose two vectors f and e in Λ such that ωpf, eq “ d. Note that, because
of the Euclid algorithm, one has

ωpe,Λq “ ωpf,Λq “ dZ.

Let Λ1 :“ tv1 P Λ | ωpf, v1q “ ωpe, v1q “ 0u be the orthogonal in Λ of
Zf ‘ Ze for ω. Since for all v in Λ the element

v1 :“ v ´
ωpf,vq

d
e ´

ωpv,eq

d
f

belongs to Λ1, one has the equality

Λ “ pZf ‘ Zeq ‘ Λ1.

We can now conclude by induction. It only remains to check that for all v1,
w1 in Λ1 the integer ωpv1, w1q is a multiple of d. We write ωpv1, w1q “ dq ` r
with q, r integers such that 0 ď r ă d, and we want to prove that r “ 0. We
compute

ωpv1
´ qf, w1

` eq “ ωpv1, w1
q ´ qd “ r.

Hence by minimality of d, one has r “ 0 as required.

81



6.4 Polarized abelian varieties

We now introduce the principally polarized abelian varieties that will replace
the elliptic curves. A new phenomenon occurs in dimension g ě 2: not all the
complex tori Cg{Λ, admits a holomorphic embedding in a complex projective
space PpCNq.

Definition 6.10. A polarized abelian variety pA “ V {Λ, ωq is a complex
torus, where V “ Cg and Λ is a lattice in V , together with a real symplectic
bilinear form ω : V ˆ V Ñ R on V satisfying the following two conditions:
piq the symplectic form ω takes integral values on Λ ˆ Λ, and
piiq ω is the imaginary part ImpHq of a positive hermitian form H on V .

Before going on we need to explain why this definition which involves only
notion from linear algebra is useful. We first recall that a Kähler manifold is
a complex manifold X endowed with a symplectic differential form ω which
is equal to the imaginary part ω :“ ImH of a hermitian structure on X.
This form ω is called a Kähler form. Two Kähler structure are said to be
equivalent if the corresponding symplectic forms are cohomologous, i.e. they
have same image rωs in H2pX,Rq. The most important Kähler structures
are those for which this cohomology class is integral that is rωs P H2pX,Zq.

In case of tori one has the following fact

Fact 6.11. Let V “ Cg, let Λ be a lattice in V and let T be the quotient
torus T “ V {Λ. Then one has the equivalences piq ô piiq ô piiiq ô pivq.
piq The torus T admits a holomorphic embedding in a projective space PpCNq.
piiq The torus T admits an integral Kähler symplectic differential form ω.
piiiq There exists a symplectic bilinear form ω on V such that pT, ωq is a
polarized abelian variety.
pivq There exists a basis e1, . . . , eg of Cg and a positive integral diagonal
matrix ∆ “ diagpd1, . . . , dgq with d1|d2| ¨ ¨ ¨ |dg and a Riemann matrix τ P Hg

such that Λ “ τZg ‘ ∆Zg.

Condition piq means that T has a structure of projective algebraic variety.

Sketch of proof.
piq ñ piiq See [18, VI.6]. The main examples of a Kähler manifold is

a smooth projective algebraic variety. This is a smooth compact complex
submanifold X of Z :“ CPN . The Kähler form ω on X is obtained as the
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restriction to X of the unique UpN ` 1q-invariant normalized Kähler form
ωFS on Z “ CPN which is called the Fubini-study form. The Fubini-Study
form is defined by the equality

π˚pωFSq “ i
2π

BB log}z}2 :“ i
2π

ř

j,k

BzjBzk logp
ř

ℓ

zℓzℓq dzjdzk,

where π : CN ∖ t0u Ñ PpCNq is the natural projection. The class rωs P

H2pX,Rq of the Kähler form ω is integral, i.e. belongs to H2pX,Zq because
the class rωFSs of the Fubini-Study Kähler form ωFS is already integral. This
follows from the following calculation.

Let F : C Ñ PpCNq be the map given by F pzq “ r1, z, 0, 0, . . .s. This map
generates H2pX,Zq and one has

ş

C F
˚pωFSq “ i

2π

ş

C BzBz logp1 ` zzq dzdz

“ 1
π

ş2π

0

ş8

0
p1 ` r2q´2rdrdθ “ 1.

piiq ñ piiiq See [18, III.4]. All the translates t˚ω of the Kähler form ω
by elements t of the torus T are also integral Kähler forms and hence their
cohomology class is constant rt˚ωs “ rωs. Their average ω0 “

ş

T
t˚ω dt is

a T -invariant Kähler form which is also cohomologous to ω. Therefore ω0

is a T -invariant integral Kähler form on T . It can be seen as a symplectic
bilinear form on V which takes integral values on Λ ˆ Λ.

piiiq ñ pivq See [18, VI.1]. According to the reduction in Lemma 6.9
applied to the non-degenerate integral symplectic bilinear forms ω on ΛˆΛ,
there exists a positive integral matrix ∆ “ diagpd1, . . . , dgq with d1|d2| ¨ ¨ ¨ |dg
a basis of Λ of the form pf1, . . . , fg, d1e1, . . . , dgegq such that

ωpej, ekq “ ωpfj, fkq “ 0 and ωpfj, ekq “ δj,k for all j, k.

According to Lemma 6.5 the family pe1, . . . , egq is then a basis of Cg. and
the gˆg matrix τ given by pf1 . . . , fgq “ pe1, . . . , egqτ satisfies the “Riemann
condition”: it is a symmetric complex matrix with positive definite imaginary
part, that is τ belongs to Hg.

pivq ñ piq See [14, §4.5] and [18, VI.3]. We just give a hint. The positivity
of the imaginary part of τ allows to construct many theta functions on V
and hence to construct a holomorphic line bundle on T with sufficiently many
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sections. We obtain this way a holomorphic embedding in the projectivized
dual of the space of sections of this bundle.

Remark 6.12. For the proof of pivq ñ piq we can also use the general fact: a
compact Kähler manifoldX whose Kähler form ω has an integral cohomology
class is a projective algebraic variety.

6.5 Principally polarized abelian varieties

Definition 6.13. A polarization ω on an abelian variety A “ V {Λ is prin-
cipal, if the restriction of ω to Λ ˆ Λ has determinant 1.

Equivalently this means that the diagonal matrix ∆ is the identity. At
first glance, this assumption looks harmless for us since every polarized
abelian variety is isogenous to a principally polarized abelian variety. The
problem is that changing Λ by a finite index subgroup might change the finite
abelian group G on which one constructs a critical function. It is indeed a
delicate issue to choose Λ in such a way that G is cyclic.

Fact 6.14. The map pA, ωq ÝÑ τ given in Fact 6.11.iv induces a bijection

"

principally polarized
abelian varieties

*

ÐÑ Sppg,ZqzHg. (6.6)

Sketch of proof. For τ in Hg, we introduce the lattice

Λτ :“ τZg ‘ Zg

of Cg, the quotient torus Aτ :“ Cg{Λτ , the hermitian form Hτ on Cg whose
matrix is pImτq´1 in the canonical basis pe1, . . . , egq and the imaginary part
ωτ of Hτ . The pair pAτ , ωτ q is then a principally polarized abelian variety,
and the map τ ÞÑ pAτ , ωτ q is the inverse map of (6.6).

6.6 Endomorphisms of abelian varieties

Let pA “ V {Λ, ωq be a polarized abelian variety.
We denote by EndpAq the ring of endomorphisms µ : A Ñ A. These are

the holomorphic group morphisms A Ñ A. They are given by a complex
matrix Tµ P EndpV q that preserve the lattice TµpΛq Ă Λ. An isogeny of A is
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an endomorphism µ of A which is given by an invertible matrix Tµ, i.e. an
endomorphism whose kernel Kµ Ă A is a finite subgroup.

We denote by EndQpAq :“ EndpAq bZ Q the Q-algebra of Q-endomor-
phisms ν of A. To each Q-endomorphism ν P EndQpAq is associated
‹ a tangent map Tν P EndCpV q » Mpg,Cq,
‹ a holonomy map hν P EndQpΛQq » Mp2g,Qq, where ΛQ :“ Λ bZ Q.
The map hν is the restriction of Tν to ΛQ.

In other words, an endomorphism (resp. Q-endomorphism) ν of A is
nothing but a C-endomorphism of V that preserves Λ (resp. ΛQ). This is
why one sometimes writes abusively ν instead of Tν or hν . But it is useful to
keep the two notations because, in coordinates, Tν is a gˆ g complex matrix
while hν is a 2gˆ2g rational matrix.

Lemma 6.15. Let pA, ωq be a polarized abelian variety and ν be a Q-endo-
morphism of A. Then there is a unique Q-ensomorphism ν˚ of A defined by
one of the two equivalent properties:
‹ Tν˚ is the adjoint of Tν for the hermitian form H on V .
‹ hν˚ is the adjoint of hν for the symplectic form ω on ΛQ.
The map ν ÞÑ ν˚ is an antiinvolution of the Q-algebra EndQpAq called the
Rosati antiinvolution.

Proof. Let T ˚ P EndCpV q be the adjoint of Tν for the hermitian form H and
h˚ P EndQpΛQq be the ajoint of hν for the symplectic form ω. By definition
T ˚ and h˚ are defined by the equalities

HpT ˚v, wq “ Hpv, Tνwq for all v, w in V ,

ωph˚v, wq “ ωpv, hνwq for all v, w in ΛQ.

Since ω “ ImpHq and since hν is the restriction of Tν to ΛQ, the map h˚ is
the restriction of T ˚ to ΛQ. This means that there exists a Q-endomorphism
ν˚ of A such that Tν˚ “ T ˚ and hν˚ “ h˚.

By construction, one has pν1ν2q
˚ “ ν˚

2 ν
˚
1 , for all ν1, ν2 in EndQpAq.

Corollary 6.16. Let pA, ωq be a polarized abelian variety and ν be a Q-endo-
morphism of A. Then, the tangent map Tν is a unitary transformation of the
hermitian space V if and only if the holonomy map hν belongs to SppΛQ, ωq.
One has then νν˚ “ν˚ν“1, and ν is called a unitary Q-endomorphism of A

The Q-algebra R “ EndQpAq with this antiinvolution is an important
invariant of the polarized abelian variety A. We just quote the following fact
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which gives strong restrictions on the algebra R. For ν in R, the rational
trace of ν is defined as the trace of its holonomy Trrpνq :“ Trphνq P Q.

Fact 6.17. The Q-algebra R “ EndQpAq is a semi-simple algebra over Q
and the Rosatti antiinvolution is positive.

This means that the hermitian form pµ, νq ÞÑ Trrpµ
˚νq on R is positive.

The finite dimensionalQ algebras with a positive antiinvolution have been
classified by Albert in the early nineteenth century. The list is very short
(See [14, §5.5]).

6.7 Critical values and abelian varieties

We now introduce the condition that will replace the congruence condition
in (5.8) in this higher dimensional abelian varieties. It is called the Igusa
condition.

For ℓ ě 2 even, let Zpℓq be the ring of rational numbers with denominator
prime to ℓ. We introduce the rational congruence symplectic group of level ℓ

Spℓg,Q :“ th P Sppg,Zpℓqq | σ ” 12g mod ℓu, (6.7)

and the rational symplectic theta group of level ℓ

Spθ,ℓg,Q :“ th“
ˆ

α β
γ δ

˙

P Sp2ℓ
g,Q | p

tαγq0 ” p
tβδq0 ” 0 mod 2ℓu, (6.8)

where for a g ˆ g symmetric matrix S, the notation S0 means the diagonal
of S.

We will mainly be interested with the value ℓ “ 2. We say that h P

Sppg,Qq preserves a theta structure of level 2 if it belongs to Spθ,2g,Q. The

group Spθ,2g,Q is a normal subgroup of the group Sppg,Zp2qq, and one has the
inclusions

Sp4
g,Q Ă Spθ,2g,Q Ă Sp2

g,Q Ă Sppg,Zp2qq.

Indeed the reduction modulo 4 of the group Spθ,2g,Q is the group ĂSppg,F2q

which is a normal subgroup of the group Sppg,Z{4Zq » Sppg,Zp2qq{Sp4
g,Q.

Definition 6.18. We say that the unitary Q-endomorphism ν of A preserves
a theta structure of level 2 if the holonomy hν belongs to the rational sym-
plectic theta subgroup Spθ,2g,Q of level 2 in a symplectic basis of pΛ, ωq. This
condition does not depend on the choice of the symplectic basis of Λ.
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The following theorem is the higher dimensional analog of Theorem 5.6

Theorem 6.19. Let pA “ Cg{Λ, ωq be a principally polarized abelian variety,
ν be a unitary Q-endomorphism of A preserving a theta structure of level 2,
Tν its tangent map, Gν :“ ν´1Λ{pΛ X ν´1Λq and dν :“ |Gν |. Then there
exists a critical value

λν “ κν d
1{2
ν detCpTνq

1{2 (6.9)

on the group Gν with κ8ν “ 1.

Remark 6.20. Note that the critical value has absolute value |λν | “ d
1{2
ν .

The square κ2ν can be easily calculated since one knows from Proposition 5.4
that 1

2
pλν ´ 1q is an algebraic integer.

The abelian group Gν depends not only on the tangent map Tν P Mpg,Cq

but also on the lattice Λ. It might be cyclic even when g ą 1.

Theorem 6.19 will be proven in the next Lecture by using the restriction
of a suitable Riemann theta function to the torsion group Gν .

Notes to Chapter 6. The main results of this chapter are in [10]. We
also used [18] and [14]
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7 Riemann Theta functions

In this lecture we give the proof of Theorem 6.19, that tells us how to con-
struct critical values λ on a finite abelian group G starting from an abelian
variety A endowed with a unitary Q-endomorphism ν.

The key idea is to think of G as a finite subgroup of A and to find the
λ-critical function among the Riemann theta functions. This is why most
of this lecture deals with the construction of theta functions and their first
properties.

We will end this lecture by explaining how this construction give rise to
explicit new critical values when one uses abelian varieties associated to CM
Number fields.

This lecture and the previous one should be seen as a quick introductory
course to the abelian varieties, their Q-endomorphisms, their theta functions
and their links with CM number fields.

7.1 Theta functions

We now introduce the Riemann theta functions that will replace the Jacobi
theta functions:

θτ pzq “ θpz, τq :“
ř

mPZg

eiπ
tmτme2iπ

tmz, for z P Cg and τ P Hg.

This function is a holomorphic function of z which is Zg-periodic. One has
θτ pz ` qq “ θτ pzq for all q in Zg.

We will also need to introduce the Riemann theta functions with charac-
teristic (see [14]). We will also need three classical formulas satisfied by these
functions, the “addition formula”, the “isogeny formula”, and the “transfor-
mation formula”. We will only need special cases of these formulas that we
state below.

The theta functions with characteristic a, b in Cg, are defined by, for
z P Cg and τ P Hg,

θ
„

a
b

ȷ

pz, τq :“
ř

mPZg

eiπ
tpm`aqτpm`aqe2iπ

tpm`aqpz`bq

“ eiπ
taτae2iπ

tapz`bq θpz ` τa ` b, τq.
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Again these functions depend only on b` z, hence it is not restrictive to
study them when z “ 0 and to define

θτ
„

a
b

ȷ

:“ θ
„

a
0

ȷ

pb, τq “ θ
„

a
b

ȷ

p0, τq

These functions also satisfy the following periodicity when translating the
characteristic by elements m, n in Zg,

θ
„

a ` m
b ` n

ȷ

pz, τq “ e2iπ
tan θ

„

a
b

ȷ

pz, τq.

The following special cases of theta functions with characteristics will be very
useful. For ξ P Zg{2Zg, seen as a subset of Zg, we define

θrξspz, τq “ θ
„

ξ{2
0

ȷ

p2z, 2τq :“
ř

mPξ

eiπ
tm τ

2
me2iπ

tmz. (7.1)

Note that one has the equalities:

θr0spz, τq “ θp2z, 2τq and
ř

ξPZg
{2Zg

θrξspz, τq “ θpz, τ{2q.

7.2 Addition and isogeny formulas

We now state the formulas that extend the addition, the isogeny formulas in
Section 4.3.

Addition formula. We begin by the extension of the addition formula.

Lemma 7.1. For all a, b, z, w in Cg, τ P Hg, one has

θτ
„

a ` b
z ` w

ȷ

θτ
„

a´ b
z ´ w

ȷ

“
ř

ξPZg
{2Zg

θ2τ
„

a`ξ{2
2z

ȷ

θ2τ
„

b`ξ{2
2w

ȷ

. (7.2)

Proof. Just write the left-hand side as a double sum over m, n in Zg and
write m “ pp` ξ{2q ` pq ` ξ{2q and n “ pp` ξ{2q ´ pq ` ξ{2q where p and q
are in Zg and where the kth coordinates of ξ is 0 or 1 according to the parity
of mk´nk. This gives

LHS “
ř

m,n

eiπpm`a`bq2τe2iπpm`a`bqpz`wqeiπpn`a´bq2τe2iπpn`a´bqpz´wq,

“
ř

ξ,p,q

e2iπpp`a`ξ{2q2τe4iπpp`a`ξ{2qze2iπpq`b`ξ{2q2τe4iπpq`b`ξ{2qw

“
ř

ξ

θ2τ
„

a`ξ{2
2z

ȷ

θ2τ
„

b`ξ{2
2w

ȷ

,

where the sum is over ξ in Zg{2Zg and hence has 2g terms.
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When a “ b “ 0, one gets the following corollary.

Corollary 7.2. For all z, w in Cg, τ P Hg, one has

θpz ` w, τq θpz ´ w, τq “
ř

ξPZg
{2Zg

θrξspw, τq θrξspz, τq. (7.3)

Isogeny formula. We now explain the extension of the isogeny formula.

Lemma 7.3. Let τ P Hg and d P Mpg,Zq with non zero determinant.
Set Gd :“ td´1Zg{Zg. Then, one has

ř

ℓPGd

θpℓ, τq “ |Gd| θp0, tdτdq.

Proof. Just write the left-hand side LHS as a double sum over m in Zg and
ℓ in Gd and notice that

ř

ℓPGd
e2iπ

tmℓ is equal to the order |Gd| of the group
Gd when m belongs to dZg and is equal to 0 otherwise. Hence

LHS “ |Gd|
ř

mPdZg

eiπ
tmτm “ |Gd| θp0, tdτdq.

This proves our claim.

Corollary 7.4. Let τ P Hg and d P Mpg,Zq with d ” 1 mod 2.
Set Gd :“ td´1Zg{Zg. Then for all ξ P Zg{2Zg, one has

ř

ℓPGd

θrξspℓ, τq “ |Gd| θrξsp0,
tdτdq.

The proof is very similar. The assumption d ” 1 mod 2 is useful to keep
track of the cosets ξ by writing dZg X ξ “ dpZg X ξq.

7.3 The transformation formula

We now explain the extension of the transformation formula in Section 4.4.
We state it up to sign for the theta functions with characteristic. It deals
with an element σ “

ˆ

α β
γ δ

˙

P Sppg,Zq. This formula is particularly simple

when σ belongs to the theta group and when it is expressed with the modified
theta function

rθτ
„

a
b

ȷ

“ e´iπtab θτ
„

a
b

ȷ

. (7.4)
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Note that there is no modification when b “ 0.
The following subgroups of the integral symplectic group Sppg,Zq :“

GLp2g,Zq X Sppg,Rq, analogs of (6.7) and (6.8), will play an important role
in the transformation formula of the theta functions. The first one is the
integral congruence symplectic group Sp2

g,Z of level 2.

Sp2
g,Z :“ Sppg,Zq X Sp2

g,Q.

The second one is the integral symplectic theta group Spθ,2g,Z of level 2.

Spθ,2g,Z :“ Sppg,Zq X Spθ,2g,Q.

This group is sometimes called the Igusa group of level 2. We also define the
integral symplectic theta subgroup of level 1

Spθg,Z :“ th“
ˆ

α β
γ δ

˙

P Spg,Z | p
tαγq0 ” p

tβδq0 ” 0 mod 2u,

Lemma 7.5. Let τ P Hg and σ P Spθg,Z. Then, for a, b in Cg, one has

rθστ
„

δa´γb
´βa`αb

ȷ

“ jpσ, τq rθτ
„

a
b

ȷ

, where (7.5)

jpσ, τq “ κpσq detCpγτ ` δq
1
2 (7.6)

This formula is easily remembered if one notices that
„

δa´γb
´βa`αb

ȷ

“
tσ´1

„

a
b

ȷ

.

In this formula, jpσ, τq is a cocycle on Spθg,Z ˆ Hg called the theta cocycle
which is analytic in τ : one has

jpσ1σ2, τq “ jpσ1, σ2τq jpσ2, τq.

The constant κpσq is a eighth root of unity, κpσq8 “ 1, that depends only on

σ. The square root detCpγτ ` δq
1
2 of the complex number detCpγτ ` δq. To

avoid heavy notations we will not explain here the sign issue.

Proof. See [14, Section 8.6 p.231]. One proves a more involved transformation

formula for θστ
„

a
b

ȷ

valid for all σ in Sppg,Zq, by checking it on generators

of Sppg,Zq. The first generators are translations by an integral symmetric
matrix β,

θτ`β

„

a
´βa`b`β0{2

ȷ

“ eiπ
tap´βa`β0q θτ

„

a
b

ȷ

, (7.7)
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where β0 is the diagonal of β seen as an element of Zg.
The formula for the second generator is the Poisson formula,

θ´τ´1

„

´b
a

ȷ

“ detCp´iτq
1
2 e´2iπtab θτ

„

a
b

ȷ

, (7.8)

where the square root is defined by holomorphic continuation in τ with the
constraint that when τ “ i1 it is equal to 1. One uses then the fact that the
map pσ, τq ÞÑ detCpστ ` δq is a cocycle on Sppg,Zq ˆ Hg.

The following corollary of Lemma 7.5 is due to Igusa.

Corollary 7.6. When σ P Spθ,2g,Z and τ P Hg, the ratios
θrξsp0,στq

θrξsp0,τq
do not

depend on ξ P Zg{2Zg.

One can prove that both vectors pθrξsp0, τqξPZg{2Zg and pθrξsp0, στqξPZg{2Zg

are non zero. Hence they both define a point in the projective space PpC2
g

q

and Corollary 7.6 expresses the equality between these two points.

Proof of Corollary 7.6. Introduce σ1 :“
ˆ

α 2β
γ{2 δ

˙

so that σ1p2τq “ 2στ.

Since the matrix σ is in Spθ,2g,Z, the matrix σ1 is in Spθg,Z. We claim that,
for all ξ P Zg{2Zg,

θrξsp0, στq “ jpσ1, 2τq θrξsp0, τq. (7.9)

Indeed, we compute remembering that, by assumption, the matrices pδ´1q{2,
β{2, the vector ξ and the scalar tξtδβξ{4 are all integral,

θrξsp0, στq “ θσ1p2τq

„

ξ{2
0

ȷ

“ θσ1p2τq

„

δξ{2
´βξ

ȷ

“ rθσ1p2τq

„

δξ{2
´βξ

ȷ

We now apply the transformation formula in Lemma 7.5 to the pair pσ1, 2τq,

θrξsp0, στq “ jpσ1, 2τq rθ2τ
„

ξ{2
0

ȷ

“ jpσ1, 2τq θ2τ
„

ξ{2
0

ȷ

“ jpσ1, 2τq θrξsp0, τq.

This proves that the ratio
θrξsp0, στq

θrξsp0, τq
does not depend on ξ as required.
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7.4 Construction of critical values

We can now explain the construction of critical functions. The construction
involves a matrix d with integer coefficients and detpdq ‰ 0, and its associate
group Gd :“ td´1Zg{Zg whose order |Gd| is equal to |detpdq|. In this lecture,
we will choose d “ diagpd1, ..., dgq where each coefficient is positive and
divides the next one: d1|d2| ¨ ¨ ¨ |dg. Note that any finite abelian group is
isomorphic to a unique group Gd with such a diagonal matrix d. This group
Gd is cyclic of order d if and only if 1 “ d1 “ ¨ ¨ ¨ “ dg´1 ď dg “ d.

Theorem 7.7. Let τ P Hg and d P Mpg,Zq with d ” 1 mod 2.

Assume that there exists σ“
ˆ

α β
γ δ

˙

P Spθ,2g,Z such that στ “ tdτd.

aq There exists λ P C such that, for all z in Cg, the function
fz,τ : ℓ ÞÑ θτ pz`ℓq is λ-critical on the group Gd :“ td´1Zg{Zg.
bq One has λ “ κ detCpγτ ` δq1{2|Gd|, where κ8 “ 1.

One can determine the 8th root of unity κ up to sign by using Proposition
5.4 which says that λ´1

2
is an algebraic integer. Indeed, the only 8th roots of

unity κ with κ´1
2

algebraic integer are κ “ ˘1.

Proof of Theorem 7.7. The strategy is exactly the same as in dimension g “

1. We want to check that, for all z in Cg,

ř

ℓ PGd

θpz ` ℓ, τq θpz ´ ℓ, τq “ λ θpz, τq2.

For w in Cg we introduce the function on Cg

z ÞÑ Fwpzq “ Fwpz, τq :“ θpz ` w, τq θpz ´ w, τq.

We want to know when the two functions
ř

ℓPGd
Fℓ and F0 “ θ2 are pro-

portional. The key point in the proof is that all these functions Fw live in
a finite dimensional vector space with a convenient basis: pθrξsqξPZg

{2Zg . We
only have to express that the coefficients of our two functions in this basis
are proportional. These coefficients are given by the following calculation in
which we apply successively the addition formula and the isogeny formula,

ř

ℓPGd

Fℓpz, τq “
ř

ℓPGd

ř

ξPZg
{2Zg

θrξspℓ, τq θrξspz, τq

“ |Gd|
ř

ξPZg
{2Zg

θrξsp0,
tdτdq θrξspz, τq and
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θpz, τq
2

“
ř

ξPZg
{2Zg

θrξsp0, τq θrξspz, τq.

These two functions are proportional with proportionality factor λ if and
only if one has,

λ “ |Gd|
θrξsp0,

tdτdq

θrξsp0, τq
, for all ξ in Zg{2Zg. (7.10)

By assumption one has tdτd “ στ with σ P Spθ,2g,Z, therefore, by Corollary
7.6, these ratios do not depend on ξ P Zg{2Zg and are equal to

λ “ jpσ1, 2τq |Gd| “ κpσ1
q detCpγτ ` δq1{2

|Gd| , (7.11)

where the matrix σ1 :“
ˆ

α 2β
γ{2 δ

˙

belongs to Spθg,Z and κpσ1q8 “ 1.

7.5 The symplectic adapted basis

In this section we discuss the structure of the rational symplectic group
Sppg,Qq :“ GLp2g,Qq X Sppg,Rq, and its relation with the integral sym-
plectic group Sppg,Zq.

Proposition 7.8. Let h P Sppg,Qq. Then there exists σ1 and σ2 in Sppg,Zq

and a diagonal matrix d “ diagpd1, . . . , dgq with d1|d2| . . . |dg integral and

h “ σ1

ˆ

td´1 0
0 d

˙

σ2.

Proposition 7.8 follows from the following proposition. This proposition
is a variation of the “adapted basis theorem” which takes into account the
existence of a symplectic form. We introduce the set Mppn,Zq of nonzero
integral matrices which are proportional to elements of Sppn,Rq,

Mppn,Zq :“ tg P Mp2n,Zq |
tgJg “ λ2J for some λ in R˚u.

Proposition 7.9. Let g P Mppn,Zq. Then there exist two matrices σ and
σ1 in Sppn,Zq and a positive integral diagonal matrix a “ diagpa1, . . . , a2nq

with a1|a2| . . . |an, with an|a2n and such that

g “ σ a σ1.
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Note that the matrix a is also in Mppn,Zq and hence the products ajan`j

do not depend on the positive integer j ď n. Indeed it is equal to λ2. In
particular, one has a2n|a2n´1| . . . |an`1.

We first recall the well-known undergraduate “adapted basis theorem” for
Z-modules or, equivalently, the “Smith normal form” for integral matrices.

Proposition 7.10. (Smith) Let g P Mpn,Zq. Then there exist σ and
σ1 in SLpn,Zq and an integral diagonal matrix a “ diagpa1, . . . , anq with
a1|a2| . . . |an, and such that

g “ σ a σ1. (7.12)

For the proof of Proposition 7.9, we need the following lemma. We recall
that a nonzero vector v of Zk is primitive if it spans the Z-module Rv X Zk.

Lemma 7.11. The group Sppn,Zq acts transitively on the set of primitive
vectors in Z2n.

Denote by f1, . . . , fn, e1, . . . , en the canonical basis of Z2n so that our
symplectic form is ω “ f˚

1 ^ e˚
1 ` ¨ ¨ ¨ ` f˚

n ^ e˚
n.

Proof of Lemma 7.11. Let v “ px1, .., x2nq be a primitive vector in Z2n. We
want to find σ P Sppn,Zq such that σv “ e1.

This is true for n “ 1. Using the subgroups Spp1,Zq for the planes
Zej ‘ Zfj, with j “ 1, . . . , n, we can assume that

xn`1 “ ¨ ¨ ¨ “ x2n “ 0.

In this case the vector px1, . . . , xnq is primitive in Zn.
Since SLpn,Zq acts transitively on the set of primitive vectors in Zn, we

can find a block diagonal matrix σ “ diagpσ0,
tσ´1

0 q, with σ0 P SLpn,Zq such
that σv “ e1. This matrix σ belongs to Sppn,Zq.

Proof of Proposition 7.9. Set Γ :“ Sppn,Zq. The proof is by induction on n.
It relies on a succession of steps, in the spirit of the Smith normal form, in
which one multiplies on the right or on the left the matrix g by an “elemen-
tary” matrix to obtain a simpler matrix g1 P ΓgΓ. We have to pay attention
that at each step the elementary matrix is symplectic.

We can assume that the gcd of the coefficients of g is equal to 1. We
denote by λ the positive real factor such that g{λ belongs to Sppn,Rq. Note
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that λ2 is a positive integer. At the end of the proof we will see that a1 “ 1
and an`1 “ λ2.

1st step: We find g1 P ΓgΓ such that g1e1 “ e1.

Since the coefficients of the integral matrix g are relatively prime, by
Proposition 7.10, there exists a primitive vector v in Z2n such that gv is also
primitive. Indeed, by Proposition 7.10, one can write g “ σoaoσ

1
o with σo

and σ1
o in SLpn,Zq and ao “ diagpao,1, . . . , ao,2nq with 1 “ ao,1|ao,2| . . . |ao,2n.

One can then choose v “ σ1
o

´1e1 so that gv “ σoe1.
Then, according to lemma 7.11, there exists σ, σ1 in Γ such that σgv “ e1

and σ1e1 “ v. Then the matrix g1 :“ σgσ1 satisfies g1e1 “ e1.

2nd step: We find g1 PΓgΓ with g1e1 “ e1 and ωpf1, g
1ejq “ 0 for ją1.

By the first step, we can assume that

g “
ˆ

α β
γ δ

˙

with αe1 “ e1 and γe1 “ 0

In particular the first column of the integral matrix α is p1, 0, . . . , 0q. We
would like the first row of α to be also of the form p1, 0, . . . , 0q. For that we
choose g1 “ gσ1 where σ1 is the symplectic transformation

σ1 “ 1n `
ř

1ăjďn α1,jpfj b f˚
1 ´ e1 b e˚

j q P Sppn,Zq,

in which the integers α1,j are the coefficients of the first row of the matrix α.

3rd step: We find g1 P ΓgΓ such that g1e1 “ e1 and g1f1 “ λ2f1.

By the second step, we can assume, writing g “
ˆ

α β
γ δ

˙

that both the

first row and first column of α are p1, 0, . . . , 0q, and the first column of γ is
p0, . . . , 0q. We would also like the first row of β to be p0, . . . , 0q. For that we
choose g1 “ gσ1 where σ1 is the symplectic transformation

σ1 “ 1n ´ β1,1e1 b f˚
1 ´

ř

1ăjďn β1,jpej b f˚
1 ` e1 b f˚

j q P Sppn,Zq.

Now by construction one has

ωpf1, g
1ejq “ 0 for 1 ă j ď n,

ωpf1, g
1e1q “ 1 and

ωpf1, g
1fjq “ 0 for j ď n.

96



Since g1{λ is symplectic, this implies that g1´1f1 “ λ´2f1, or equivalently,
g1f1 “ λ2 f1 as required.

4th step: Conclusion.

By the third step, we can assume that ge1 “ e1 and gf1 “ λ2f1. Therefore
g preserves the symplectic Z-submodule of Z2n orthogonal of Zf1 ‘ Ze1,
which admits f2, . . . , fn, e2, . . . , en as Z-basis. We conclude by applying the
induction hypothesis to the restriction g1 P Mppn´ 1,Zq of g to this Z-
module.

Recall the rational congruence symplectic group Spℓg,Q of level ℓ and the

rational symplectic theta group Spθ,ℓg,Q of level ℓ introduced in (6.7) and (6.8).

Lemma 7.12. Let h P Spθ,2g,Q and write h “ σ1
ˆ

td´1 0
0 d

˙

σ2 with d in Mpg,Zq

and both σ1, σ2 in Sppg,Zq. Then detpdq is odd and σ2σ1 is in Spθ,2g,Z.

Proof of Lemma 7.12. The group Spθ,2g,Q is a normal subgroup of Sppg,Zp2qq.

Since the element h belongs to Spθ,2g,Q, the conjugate

h1 :“ σ´1
1 hσ1 “

ˆ

td´1 0
0 d

˙

σ2σ1

also belongs to Spθ,2g,Q. Therefore the determinant detpdq is odd and the

product σ2σ1 is in Spθ,2g,Q.

7.6 Unitary endomorphism of abelian varieties

Proof of Theorem 6.19. The key point is the interrelation between the tan-
gent map Tν and the holonomy hν , together with the use of Proposition 7.8.
We fix a symplectic Z-basis pf1, . . . , fg, e1, . . . , egq of Λ so that ω “

ř

f˚
j ^e˚

j .

Let σν “
ˆ

αν βν
γν δν

˙

P Spθ,2g,Q such that tσν is the matrix

of hν in the symplectic basis pf1, . . . , fg, e1, . . . , egq.

This means that one has the equality in V 2g

pTνf1, . . . , Tνfg, Tνe1, . . . , Tνegq “ pf1, . . . , fg, e1, . . . , egq
tσν . (7.13)
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We introduce the Riemann matrix τν P Hg such that

pf1, . . . , fgq “ pe1, . . . , egqτν and hence (7.14)

pTνf1, . . . , Tνfgq “ pTνe1, . . . , Tνegqτν ,

one has

σντν “ τν . (7.15)

By the adapted symplectic basis in Proposition 7.8, there exist σ1, σ2 in
Sppg,Zq and an integral matrix d with detpdq ‰ 0 such that

σν “ σ1 Dσ2 with D :“
ˆ

td´1 0
0 d

˙

. (7.16)

The matrix d can be chosen to be a diagonal matrix diagpd1, . . . , dgq with
positive integer coefficients d1|d2| . . . |dg.

Let τ :“ σ´1
1 τν and σ “ σ2σ1 so that Equation (7.15) can be re written

tdτd “ D´1σ´1
1 τν “ σ2σ

´1
ν τν “ σ2τν “ στ. (7.17)

Since σν preserves a theta structure of level 2, by Lemma 7.12, the sym-
plectic matrix σ “

ˆ

α β
γ δ

˙

belongs to Spθ,2g,Z. Therefore by Theorem 7.7, the

value
λν “ κ detCpγτ ` δq1{2

|detpdq| (7.18)

is critical on the group Gd » Gν , where κ is a 8th root of unity.
It only remains to check that this value (7.18) is equal to (6.9). Using

(7.13) and (7.14), we compute

pTνe1, . . . , Tνegq “ pe1, . . . , egq pτν
tγν `

tδνq and

detCpTνq “ detCpτν
tγν `

tδνq “ detCpγντν ` δνq.

We go on using the cocycle cpσ, τq “ detCpγτ ` δq on Sppg,Rq ˆ Hg,

detCpTνq “ cpσν , τνq “ cpDσ, τq “ detCpdγτ ` dδq

“ detpdq detCpγτ ` δq .

Plugging this into (7.18), we obtain the equality λν “ κ1 d
1{2
ν detCpTνq1{2.
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7.7 One example using CM number fields

I would like to end this lecture by explaining on one example a method for
constructing a principally polarized abelian variety together with a unitary
Q-endomorphism ν that give rise to a new critical value. The idea is to
specialize our general construction by using a CM number field. This is a
totally complex number field K that is a quadratic extensions of a totally
real number field K0.
The method is general but explaining it on one example is more enlighting.

Lemma 7.13. The value λ “ 1`4
?
2`2i

a

6 ´ 2
?
2 is up to sign 57-critical.

Proof of Lemma 7.13. One key point is the factorization

λ “ p1 ` 2i
a

3 `
?
7qp1 ´ 2i

a

3 ´
?
7q. (7.19)

‹ The number field. We start with the CM number field K “ Qrαs with

α “ i
a

3 `
?
7. This field K is a quadratic extension of the real quadratic

fieldK0 :“ Qrδs where δ :“
?
7. Its ring of integers is OK “ Zrαs. We denote

by x ÞÑ qx the non-trivial field embeddings K Ñ C for which qα “ ´i
a

3 ´
?
7

and hence qδ “ ´δ.

‹ The complex torus. We denote by Φ : K Ñ V “ C2 the algebra
morphism given by Φpxq “ px, qxq. The image Λ :“ ΦpOKq Ă K is a lattice
in C2 and the complex torus will be the quotient A “ C2{Λ.

‹ The principal polarization. The symplectic form on Λ is given by a
nonzero imaginary element t0 of K thanks to the simple formula

ωpx, x1
q “ TrK{Qpxx1{t0q.

A key point is to choose t0 so that this symplectic form is integral with
determinant 1 on Λ and such that both the imaginary part of t0 and qt0 are
positive. A good choice is t0 “ 4αδ. One has ω “ f˚

1 ^ e˚
1 ` f˚

2 ^ e˚
2 in the

basis B “ pf1, f2, e1, e2q of OK » Λ given by

f1 “ αδ , f2 “ α , e1 “ 1 , e2 “ δ .

We notice that ω is the restriction to VQ “ ΦpKq of the imaginary part of
the positive hermitian form H on C2 given by

Hpz, z1
q “ 2iz1z1

1{t0 ` 2iz2z1
2{

qt0.
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Then we have checked that the torus A “ C2{Λ is a principally polarized
abelian variety.

‹ The unitary Q-endomorphism of A. The unitary Q-endomorphisms ν
are nothing but elements ν P K of absolute value 1. One chooses ν of the
form ν “

µ
µ
in such a way that µ P 1 ` 2OK . We will choose µ “ 1 ` 2α.

The matrix mµ of multiplication by µ in the basis B belongs to Mp4,Zq, is
equal to 1 mod 2 and has determinant detpmµq “ NK{Qpµq “ 57.
Therefore the matrix mν belongs to Sp4

2,Q and ν preserves a theta structure
of level 2.

‹ The finite abelian group. Since the elements µ and µ are coprime, one
has µOK X µOK “ µµOK , and the group Gν “ ν´1OK{pν´1OK X OKq is
isomorphic to OK{µOK which has order dν “ NK{Qpµq “ 57 and hence is
isomorphic to Z{57Z.

‹ The critical value. According to Theorem 6.19, the corresponding critical
value λ “ λν is given by λ2ν “ κ2dννqν “ κ2µ2

qµ2 where κ8 “ 1. Therefore one
has λν “ κµqµ. We conclude thanks to the factorization (7.19) that λν “ κλ.

‹ The 8th root of unity. As we explained just after Theorem 6.19, one can
determine the 8th root of unity κ up to sign by using Proposition 5.4 which
says that λν´1

2
is an algebraic integer. Indeed, the only 8th roots of unity κ

with κ´1
2

algebraic integer are κ “ ˘1. Therefore, since λ´1
2

is an algebraic
integer, one has λν “ ˘λ.

Remark 7.14. One can prove that λν “ λ with a plus sign. But this require
extra technical works that can be found in [10]

We get more examples by choosing other CM number fields and other
elements ν “

µ
µ
of K with µ P 1`2OK . For instance, one can also obtain this

way the values (6.1) and (6.2). One can also prove the following proposition.

Proposition 7.15. Let K :“ Qre2iπ{ns and µ “ 1 ` s ´ s where s P OK

with NK{Qpµq odd. Then for all CM types Φ of K, the reflex norm up to sign
λ “ ˘NΦpµq is a critical value on the finite abelian group G “ OK{µOK .

By definition a CM-type Φ of K is a choice of one embedding ρ for each
pair of conjugate embeddings of K in C and the reflex norm NΦpµq is the
product of these images ρpµq.
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Notes to Chapter 7. We followed [10] but used also [18], [14], [35], [12].
The first reference to Proposition 7.8 that I know is Shimura’s paper

[40, Prop. 1.6]. Moreover in [41], Shimura points out the relevance of this
theorem to understand the modular forms on Siegel upper halfspace.
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Part III

Equiangular lines
In the last part of this course, we focus on the main topic: The Equiangular
Lines. This topic looks very naive at first glance.

The aim of this part is to explain why one expects that the maximal
number of equiangular lines in Cd is d2 and that such a configuration of
equiangular lines called a SIC, is organized in a so nice way that one may
call it an equiangular dream.

At first glance this question does not seem to be related to group theory.
The main surprise is that many finite groups are crucial in this subject:
‹ the Heisenberg group Hd over Z{dZ,
‹ the projective metaplectic group PMd which is isomorphic to SLp2,Z{dZq,
‹ the multiplicative group of pZ{dZqrωs where ω2 ` ω ` 1 “ 0,
‹ the Galois group of abelian extensions of a real quadratic field K,
‹ the ideal ray class groups of orders O1 Ă OK in this field K.

The relationship with the previous lectures is that we are looking at this
vector space as the space of functions on a finite abelian group G, in most
of the case we will choose G “ Z{dZ. The generators of these d2 lines will
be the images F kEjv0 of a well chosen function v0 on Z{dZ where E is the
translation operator and F is the operator of multiplication by an additive
character of Z{dZ. Such a vector v0 will be called a fiducial vector and the
corresponding SIC a Heisenberg SIC or HSIC. For d “ 2 and d “ 3 it is very
easy to describe fiducial vectors. The first non trivial examples are due to
Zauner.

There will be no theorem in this Part III. Only conjectures. This makes
the last part of this graduate course kind of very special. Indeed, it maybe
the case that it will be very quickly obsolete because a few of these conjec-
tures might be quickly solved. In the presentation of these conjectures we
will follow almost a chronological order. We will begin by the elementary
conjectures due to Zauner that can be understood at an undergraduate level.
The conjectures became more and more precise when computer experiments
due to Grassl and Scott gave more and more precise insight in the structure
of the HSICs from the algebraic number point of view. A first series of con-
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jectures due to Appleby, Flammia, McConnell, Yard can be understood at a
graduate level using only Galois theory. The most recent of these conjectures
due to Appleby, Flammia, Kopp, Lagarias, can only be understood within
class field theory and relates this problem with the longstanding conjecture
of Stark dealing with units in abelian extension of real quadratic fields.

The most advanced and recent of these conjectures, sometimes called
“Facts in every known cases” in the litterature, eventhough they are very
precise, may not yet be stable. They might need slight modifications. What
makes them very valuable is the intrinsic beauty and harmony of the con-
jectures, and that these conjectures might be solved by one of the readers of
this course.

In Lecture 8, we begin by surveying the analog problem of equiangular
lines over the reals which is also still open but does not have yet any reason-
able conjectural answer. We will then focus up to the end on the complex
equiangular lines. We prove the d2 upper bound for the number of equian-
gular lines. The examples in dimension 2 and 3 are very easy. We will
now assume d ě 4. We give then explicit examples of HSIC that occur in
dimensions 4, 7, 8 and 19.

In Lecture 9, we explain how the first non-trivial HSICs were found, why
it is natural to introduce the metaplectic representation to understand them.
We will also study the Zauner matrix Z which happens to be very useful in
the construction of HSICs and which is most of the time reponsible of the
mysterious symmetry of order 3 satisfied by all known SICs.

In Lecture 10 we state the first series of conjectures on the arithmetic
of HSICs. We explain that, conjecturally, there exists a real quadratic field
K “ Qr

?
∆ds with ∆d “ pd`1qpd´3q such that the entries of the orthogonal

projector on a fiducial vector belong to an abelian extension of K.

In Lecture 11, we describe in detail the “unique” 5-dimension HSIC and
we check the conjectures in this case. This can be seen as a nice exercise in
Galois theory.

In Lectures 12, we recall the main results of class field theory, which
parametrizes the abelian extension of K, we introduce the ray class fields for
orders O of K and identifies their Galois group with a ray class group of O.
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We also explain the conjecture that describes as a ray class field, the field
generated by all the entries of all the projectors on the lines of a given HSIC.

In Lecture 13, we explain more Class Field Theory by introducing the
Artin map which is an explicit isomorphism between the ideal ray class group
and the Galois group. When the vector v0 is chosen to be Zauner invariant,
we also explain that the ray class group should act on the correlations of the
corresponding HSIC through the Artin map.
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8 Equiangular lines

This lecture deals with the elementary aspects of equiangular lines. We
define the SIC, we explain why the expected values for the number of lines
in a SIC is n “ d2. We also introduce the fiducial lines whose orbit under the
Heisenberg group is a SIC. And we present the simplest SIC in dimension
d “ 3, 4, 7 and the Hoggar SIC in dimension 8

We will then state the first näıve conjectures with respect to existence
and finiteness of SICs.

8.1 Real equiangular lines

We begin by the analogous problem in a real vector space.

Introduction
Let Rd be the d-dimensional euclidean space. What is the maximum number
n of lines D1, . . . , Dn in Rd for which the angles θ between two of them is
constant? Is this configuration of lines unique modulo isometries? What is
the value of this angle θ?

For d “ 2, one has n “ 3 and cos θ “ 1{2 .
Indeed, starting with a regular hexagon in the plane, the three lines are the
lines that join the middle of the opposite sides.

For d “ 3, one has n “ 6 and cos θ “ 1{
?
5 .

Indeed, starting with a regular dodecahedron in the space, the six lines are
the lines that join the center of the opposite faces.

There is no definitive answer to these questions, but there is a nice partial
result due to Gerzon in 1970 that we present now.

Theorem 8.1. paq One has n ď dpd ` 1q{2.
pbq If n“dpd`1q{2, then one has cos θ“1{

?
d`2 and hence tan θ“

?
d`1.

pcq If n “ dpd ` 1q{2 and d ą 3, then d is odd and d ` 2 is a square.

The value n “ dpd` 1q{2 and the value of the angle θ is nice, but unfor-
tunately it is not known if this phenomenon does occur for infinitely many
dimensions d ě 2.
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For d “ 7, one has n “ 28 and cos θ “ 1{3 ,
Indeed, the 28 lines are spanned by the vector p´3,´3, 1, 1, 1, 1, 1, 1q and its
images by permutation of coordinates; they stand in the hyperplane

ř

xk “ 0
in R8.

For d “ 23, one has n “ 276 and cos θ “ 1{5 ,
Indeed, the 276 lines form an orbit of the simple Conway sporadic group Co3
in an hyperplane of the Leech lattice Λ in R24. We will not need this example
in the sequel, hence we do not give more details.

One can check in all these four examples with d “ 2, 3, 7 and 23 that the
group of isometries of the equiangular configuration acts transitively on the
pair of distinct lines of the configuration.

For d “ 47, it is unknown if n “ dpd ` 1q{2.
More precisely it is not known if there exists any other real equiangular
configurations of lines with n “ dpd ` 1q{2.

Proof of Theorem 8.1. For j “ 1, . . . , n, we choose a vector vj of norm 1 on
the line Dj, so that, for j ‰ k, one has pvj|vkq “ ˘α where α :“ cos θ. We
also introduce the orthogonal projectors Pj on the lines Dj. These Pj live in
the d pd`1q{2-dimensional vector space S2Rd of symmetric matrices.

paq The Gram matrix of this family Pj is the n ˆ n matrix

G “ ptrpPjPkqq “

¨

˚

˝

1 α2

. . .

α2 1

˛

‹

‚

“ p1 ´ α2
qIn ` α2Jn

where Jn is the rank one n ˆ n matrix all of whose entries are equal to 1.
The eigenvalues of G are 1´α2 and 1´α2`nα2. Since these eigenvalues are
non zero, the matrix G is invertible and hence the symmetric matrices Pj are
linearly independent and one has n ď dpd ` 1q{2.

pbq When n “ dpd` 1q{2, the n matrices P 1
j :“ dPj ´ Id have zero traces

and hence they live in a pn´1q-dimensional vector space and are linearly
dependent and their Gram matrix

G1
“ ptrppdPj ´ IdqpdPk ´ Idqqq “

¨

˚

˝

d2 ´ d d2α2 ´ d
. . .

d2α2 ´ d d2 ´ d

˛

‹

‚

“ d2p1 ´ α2
qIn ` pd2α2

´ dqJn
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is not invertible. Since the eigenvalues of Jn are 0 and n, one deduces that
d2p1 ´ α2q ` npd2α2 ´ dq “ 0. After simplification, one gets α2pd ` 2q “ 1.

pcq If n “ dpd ` 1q{2, the Gram matrix of the vectors vj has the form

g “ ppvj|vkqq “

¨

˚

˝

1 ˘α
. . .

˘α 1

˛

‹

‚

.

Its kernel has dimension m ě n ´ d ě 1. Hence the matrix

a “
1

α
pIn ´ gq “

¨

˚

˝

0 ˘1
. . .

˘1 0

˛

‹

‚

admits 1{α as an eigenvalue with multiplicity m ą n{2 since d ě 4. Since
the matrix a has integral entries, the eigenvalue 1{α is an algebraic number
with no other Galois conjugate, hence the number 1{α is a rational number.
Since the square of this rational number 1{α is the integer d` 2, it has to be
an integer and d ` 2 is a square.

The matrix pIn ` a ` Jnq{2 also has integral entries. Since m ě 2, it
admits p1 ` 1{αq{2 as an eigenvalue. This eigenvalue is an algebraic integer,
hence the integer 1{α is an odd integer.

8.2 Complex equiangular lines

We now introduce the complex equiangular lines.

Introduction Eventhough the answer over the real numbers was not
clean, it is very natural to ask for the analogous question over the complex
numbers and to ask for the maximum number n of lines D1, . . . , Dn in the
d-dimensional hermitian space Cd whose pairwise angles θ are all the same.
And to ask for the value of this angle θ?

As in the real case, for j “ 1, . . . , n, we denote by vj a vector of norm 1
on Dj, so that, for j ‰ k, one has

|xvj|vky|
2

“ β where β :“ cos2 θ.

We also introduce the hermitian projectors Pj on the lines Dj. Hermitian
means that

P ˚
j “ Pj for all j.
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They live in the d2 dimensional real vector space of dˆ d complex hermitian
matrices.

The condition expressing these are rank one projectors is

P 2
j “ Pj , trpPjq “ 1 for all j ď n. (8.1)

The condition expressing the equiangular condition is

trpPjPkq “ β for all j ‰ k. (8.2)

More generally one can look at families pPjqjďn of rank one projectors
(8.1) in EndpCdq satisfying the equiangular condition (8.2) without requesting
that they are hermitian. For such a family one has an analog of Theorem
8.1.

Theorem 8.2. (Delsarte–Goethals–Seidel, 1975) Let pPjqjďn be a family of
complex rank-one projectors satisfying the equiangular condition (8.2) with
β P C, β ‰ 1.
paq Then, one has n ď d2.
pbq In case n “ d2, one has β “ 1{pd ` 1q.

Equivalently, for Pj hermitian, one has cos θ “ 1?
d`1

or tan θ “
?
d.

Proof. The proof is the same as for Theorem 8.1, replacing the real vector
space of real symmetric matrices by the complex vector space EndpCdq of all
complex matrices endowed with the non degenerate bilinar form pA,Bq ÞÑ

trpABq. We shorten the proof by proving simultaneously paq and pbq.
The matrices P 1

j :“ dPj ´ Id have zero traces, hence they live in a vector
space of dimension d2 ´ 1. Their Gram matrix G1 is given by

G1
“ ptrppdPj ´ IdqpdPk ´ Idqqq “

¨

˚

˝

d2 ´ d d2β ´ d
. . .

d2β ´ d d2 ´ d

˛

‹

‚

“ d2p1 ´ βqIn ` pd2β ´ dqJn.

The eigenvalues of G1 are d2p1´βq and λ “ d2p1 ´ βq ` dnpd2β ´ dq. The
first eigenvalue d2p1´βq which has multiplicity n´1 is non zero. Therefore
the rank of the family pP 1

jqjďn is at least n´1. This proves the inequality
n ď d2.

Moreover, in case of equality n “ d2, the family pP 1
jqjďn has rank equal

to n´1 and the last eigenvalue λ “ d2p1´ βq ` d2pd2β ´ dq must be equal to
0. After simplification, one gets pd ` 1qβ “ 1.
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Remark 8.3. The main difference between the maximal configuration of equi-
angular lines over the real numbers and over the complex numbers is that
when one knows the absolute value |xvj|vky|, one knows the scalar product
xvj|vky up to sign in the real case, but in the complex case, one only knows
it up to a complex number of modulus one. There is much more flexibility.

Definition 8.4. A SIC or a SICPOVM is a family of d2 hermitian projectors
pP1, . . . Pd2q of rank 1 of Cd such that, for all j ‰ k, trpPjPkq “ 1{pd ` 1q.

The projectors Pj will always be implicitely assumed to be hermitian
i.e. satisfying P ˚

j “ Pj, except if we explicitely relax this assumption. We
will then say “a non-necessarily hermitian SIC” The interest in considering
the non-hermitian projectors comes from the fact that the absolute Galois
group GalpQ{Qq which acts on the set of SICs does not always preserve the
condition hermitian. We will say more about this later.

Remark 8.5. The term SICPOVM is an acronym for “Symmetric, Informa-
tionally Complete, Positive Operator-Valued Measurements”. This name
reflects the fact that these configurations were found and first studied in
depth by the community of Quantum Computer Scientists.

Zauner in his PhD thesis in 1999, relying on exact computer calculations
for d ď 6, was the first to guess the existence of (hermitian) SICs in all
dimensions.

Conjecture 8.6. (Zauner) For all integers d ě 2 there exists an equiangular
configuration with d2 lines in Cd.

This conjecture is known only for finitely many dimensions d, among
them all the dimensions d ď 180. We expect to present at least one explicit
SIC for each d ď 8.

8.3 First examples of SICs

SIC in dimension 2
They are very easy to describe.

We can do it in a geometric way: one has to find 4 lines in C2, that is
4 points in CP1 whose pairwise distance is constant. Since CP1 is a round
2-sphere, these 4 points are the vertices of a regular tetrahedron.
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We can do it in an algebraic way: we choose the 4 lines to be generated
by the vectors

v00 “pa, bq, v10 “ pb, aq, v01 “ pa,´bq, v11 “ p´b, aq,

where a “ 1` i, b “ 1`
?
3. This is a SIC because one can compute the

absolute values of the hermitian products

2|Repabq| “ 2|Impabq| “ |b|2 ´ |a|
2

“ p|a|
2

` |b|2q{
?
3 “ 2 ` 2

?
3.

This configuration is unique. This SIC is defined over the field Qri,
?
3s.

Using another unitary basis of C2 we can also write

v00 “ p
?
3, 0q, v10 “ p1,

?
2q, v01 “ p1, ω

?
2q, v11 “ p1, ω2

?
2q,

where ω :“ e2iπ{3.
In this case the angle θ is given by cos θ “ 1{

?
3.

Remark 8.7. The angle φ between the four vertices of a regular tetrahedron
p1, 1, 1q, p1,´1,´1q, p´1, 1,´1q, p´1,´1, 1q in R3 is given by cosφ “ ´1{3.
It may seem surprising that, since cosφ “ 2 cos2 θ ´ 1, the angle φ is the
double of the angle θ. This can be explained by the fact that SUp2q is a double
cover of SOp3q and the sphere CP1 a double cover of the real projective plane
RP2.

SIC in dimension 3
Those SIC are called Hesse SIC. This is the only dimension for which there
is a one parameter family of SICs which are not unitarily equivalent.

Here is the construction which depend on a parameter u which is a com-
plex number of modulus |u| “ 1. The example with u “ 1. Denote by
ω :“ e2iπ{3.

The nine lines generated by the vectors

v00 “ p1, u, 0q, v10 “ p0, 1, uq, v20 “ pu, 0, 1q,

v01 “ p1, uω, 0q, v11 “ p0, 1, uωq, v21 “ puω, 0, 1q,

v02 “ p1, uω2, 0q, v12 “ p0, 1, uω2q, v22 “ puω2, 0, 1q.

These nine lines form a SIC since, for ij ‰ 00, one has
}v00}2 “ 2|xv00|vijy| “ 2. One can show that those are the only possible SIC
in dimension 3.

The Hesse SIC with u “ 1 is rather simple since it is defined over Qrωs

110



Conjecture 8.8. For dě4 there exist only finitely many SIC up to a unitary
transformation.

It has been proven by Hughston and Salamon in [24], using ideas from
symplectic geometry, that the Hesse SICs are the only hermitian SICs in
dimension 3.

SIC in dimension 8
The following SIC in dimension 8 has been found by Hoggar in [23]. He is
particularly striking due to the fact that it is the only known SIC which is
defined over the field Qris. Here is the construction of the Hoggar SIC for
d “ 8. It is defined on the space C8 “ CrpZ{2Zq3s.

We identify pZ{2Zq3 with the vertices of the cube and the space C8 with
the space of functions on the vertices of this cube. The 64 lines that form
the SIC are those generated by the 64 functions drawn here where the the
parameters εi are chosen to be εi “ ˘1 with ε1ε2ε3ε4 “ 1. There are 8
choices of signs εi and 8 choices for the leading vertex i.e. the vertex where
1` i occurs. One can check that this configuration is a SIC by computing all
the hermitian products. One has only to perform 4 calculations depending
on the distance between the corresponding leading vertices.

1+i

1e

0

0

02e

3e
4ei

8.4 The Heisenberg group

Except for the Hoggar SIC all the known SIC are related to a finite Heisenberg
group.

Heisenberg SIC The projective unitary group PU(d) which is the quo-
tient of the unitary group U(d) by its center S1 acts on the set PpCdq of lines
of Cd. All the known SICs are orbits of a finite abelian group A of order
d2 of the projective unitary group PU(d). In all known cases, except in the
case of the Hoggar SIC for which A “ pZ{2Zq3 ˆ pZ{2Zq3, the group is a
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product A “ pZ{dZq ˆ pZ{dZq. In all these cases the group A is a quotient
of a subgroup Hd of U(d) called a Heisenberg or Heisenberg group.

Definition 8.9. The Heisenberg group Hd is the subgroup of Updq generated
by the matrices

E “

¨

˚

˚

˚

˝

0 0 0 1
1 0 ¨ ¨ ¨ 0

0
. . .

. . . 0
0 0 1 0

˛

‹

‹

‹

‚

and F “

¨

˚

˚

˚

˝

1 0 0 0
0 ζd 0 0

0 0
. . . 0

0 0 0 ζd´1
d

˛

‹

‹

‹

‚

where ζd “ e2iπ{d.

The projective Heisenberg group PHd is the image of the Heisenberg group
in the projective unitary group PUpdq

Lemma 8.10. The center Zd of Hd is a cyclic group of order d generated
by ζd1d, the group PHd is isomorphic to Z{dZˆZ{dZ, and there is an exact
sequence

1 ÝÑ Zd ÝÑ Hd ÝÑ PHd ÝÑ 1.

Proof. This follows from the equality FE “ ζdEF which says that the two
matrices E, F commute modulo the center.

We note that the group PHd acts in the projective space PpCdq. It also
acts by conjugation on the set of rank one projectors of Cd.

Definition 8.11. A HSIC is a SIC which is an orbit under the Heisenberg
group Hd. A line Cv0 or a projector P0 in such an orbit is called a fiducial
line or a fiducial projector, and the vector v0 is called a fiducial vector.

Conjecture 8.12. For all d ě 2, there exists a HSIC in Cd.

This conjecture has been checked up to d “ 180.

Remark 8.13. The Hoggar SIC we have seen in section 8.3 is very much
like a Heisenberg SIC in dimension 8, except that the cyclic group Z{8Z
has been replaced by another abelian group pZ{2Zq3 of order 8. It is not
known whether other finite abelian groups can give rise to SICs by a similar
construction.

Conjecture 8.14. For all d ě 2, all the SICs of Cd are orbits of an abelian
subgroup of PUpdq of order d2.

It is possible that all SICs are HSIC, except for the Hoggar SIC, even-
though this might look too optimistic.
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8.5 Equations defining the fiducial projectors

We describe now the explicit equations that define a fiducial projector.
We think of a projector P0 in Cd as a line rv0s “ rz0, . . . , zd´1s P PpCdq

and an hyperplane rf0s “ rw0, . . . , wd´1s P PpCd˚
q with f0pv0q ‰ 0 that is

ř

k

zk wk ‰ 0 . The projector is given by P0pvq “
f0pvq

f0pv0q
v0. We think of the

indices as elements of Z{dZ.

Proposition 8.15. aq The projector P0 is hermitian if and only if rf0s “ rv0s.
bq The projector P0 is fiducial if and only if for all ℓ ‰ 0, m ‰ 0 one has

ř

k

zk wk`ℓwk`m zk`ℓ`m “ 0 pEℓ,mq and (8.3)

ř

k

zk wk wk`ℓ zk`ℓ does not depend on ℓ ‰ 0. (8.4)

Proof. The projector P0 is fiducial if and only if the function

pm,nq ÞÑ TrpP0Pm,nq is constant outside 0,

where Pm,n :“ EmF nP0F
´nE´m. We compute, with ℓ “ h ´ k,

TrpP0Pm,nq “ f0pEmF nv0qf0pF
´nE´mv0q

“ p
ř

k

zkwk`mζ
nk
d qp

ř

h

whzh`mζ
´nh
d q

“
ř

ℓ

fmpℓqζ´ℓn

where fmpℓq :“
ř

k

zk wk`ℓwk`m zk`ℓ`m.

When m ‰ 0 the Fourier transform of the function fm is constant, there-
fore the function fm is zero outside 0. This gives (8.3).

When m “ 0 the Fourier transform of the function f0 is constant outside
0, therefore the function f0 is also constant outside 0. This gives (8.4).

Remark 8.16. The system of equations (8.3) and (8.4) is overdetermined:
there are d2 ´ d´ 1 equations, it is surprising that it always admits solutions
in PpCdq ˆ PpCdq.
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8.6 Other examples of SIC

SIC in dimension 4
The first non trivial HSICs were discovered in dimension 4, 5 and 6 by Zauner
in 1999 in his PhD thesis which appeared in [47]. Here is his 4 dimensional
example.

Lemma 8.17. For d “ 4, a fiducial vector for a HSIC is given by

v00 “ px`u, u´i, x´u, u`iq

where u :“ p1 ` iq{
?
2 “ eiπ{4 and x :“

a?
5 ` 2.

In the basis f1, f2, f3, f4, where

f1 “p1, 0, 1, 0q, f2 “pu, 0,´u, 0q, f3 “p0, u, 0, uq, f4 “p0,´i, 0, iq

the vector v00 becomes v1
00 “ px, 1, 1, 1q and the matrices E and F read as

E 1
“ u

¨

˚

˚

˝

0 0 1 0
0 0 0 1

´i 0 0 0
0 i 0 0

˛

‹

‹

‚

and F 1
“ u

¨

˚

˚

˝

0 1 0 0
´i 0 0 0
0 0 0 ´i
0 0 ´1 0

˛

‹

‹

‚

.

One notice that E 12 “ diagp1,´1, 1,´1q and F 12 “ diagp1, 1,´1,´1q and

that one can forget the scalar factor u to describe the SIC. In this basis, the

SIC is formed by the 16 lines generated by the following 16 column vectors

:
x x x x i ´i i ´i i ´i i ´i i ´i i ´i
1 1 ´1 ´1 x x x x ´i i i ´i 1 1 ´1 ´1
1 ´1 1 ´1 1 1 ´1 ´1 x x x x ´i i i ´i
1 ´1 ´1 1 ´i i i ´i 1 1 ´1 ´1 x x x x

Indeed, one can check that

}v1
00}

2
“

?
5 |xv1

00, v
1
ijy|,

because x2`3 “
?
5px2´1q “

?
5
a

2px2`1q .

SIC in dimension 7 and 19
Appleby discovered that in dimension 7, and also in dimension 19, there exist
nice fiducial vectors v0 whose coordinates zk depend only on the quadratic
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residue class of k mod d. This phenomenon does not seem to exist beyond
these two dimensions d “ 7 and 19. What is special in these two dimensions
that gives rise to rather simple HSIC. This will be explained by the general
conjectures that we will state in the following lectures.

Lemma 8.18. For d “ 7, there exists a HSIC in C7 » CrF7s with fiducial
vector v0 “ δ0 ` a1F˚

7
` ibχ0 where χ0 denotes the Legendre character, and

where a and b are real numbers: a “ ´1
2

?
2
and b “

?
4

?
2´5

2
?
2

.

Proof. We have v0 “ p1, z, z, w, z, w, wq with z “ a ` ib, w “ a ´ ib “ z.
Using indices in Z{7Z, we introduce the vector c “ pw, z, z2, zw, zw, zw,w2q

with coordinates cm :“ zmzm´1 and Cℓ “
ř

m cmcℓ`m, and one writes

xEv0|F kv0y “
ÿ

m

cmζ
km
7 and |xEv0|F

kv0y|
2

“
ÿ

ℓ

Cℓζ
kℓ
7 for all k. (8.5)

The equations that express that the vectors EjF kv0 form a HSIC can be
reduced to Cℓ “ 0 for all 1 ď ℓ ď 6. This gives rise to only two equations
where s “ z ` w and p “ zw,

C2 “ C3 “ C4 “ C5 “ s3 ´ pp ` 2s ´ s2qp “ 0,

C1 “ C6 “ s4 ´ p3s2 ´ s ´ 1qp “ 0.

Solving these equations give s “ ´1?
2
and p “

?
2´1
2

.
We conclude by applying Proposition 8.15 and by checking that the vector

v0 we have just found satisfies Equations (8.3) and (8.4).
We have chosen v0 so that the Equations Eℓ,m of (8.3) for ℓ “ 1 and for

m in F˚
7 are satisfied. But the group F˚

7 acting on the indices is a group of
symmetries for these equations. Therefore, seen as equalities in the variables
z and w “ z, Equation E1,m is the same as Equation Eℓ,ℓm for all ℓ ‰ 0. This
proves that Equations (8.3) are satisfied. For the same reason, Equations
(8.4) are satisfied for all z.

The following lemma tells us that a similar calculation works with d “ 19.

Lemma 8.19. For d “ 19, there exists a HSIC in C19 » CrF19s with fiducial
vector v0 “ δ0 ` a1F˚

19
` ibχ0 where χ0 denotes the Legendre character, and

where a and b are real numbers: a “
?
5´1
2

?
2

and b “

?
5

?
5´7

4
?
2

.
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Proof. The proof is similar but involves more calculations, we have

v0 “ p1, z, w, w, z, z, z, z, w, z, w, z, w, w,w,w, z, z, wq

with z “ a ` ib and w “ a ´ ib “ z. Using indices in Z{19Z, the vector c
with coordinates cm :“ zmzm´1 is

c “ pz, z, w2, zw, z2, zw, zw, zw,w2, z2, w2, z2, w2, zw, zw, zw, z2, zw, w2
q.

Let Cℓ “
ř

m cmcℓ`m. The equations (8.5) can be reduced to Cℓ “ 0 for all
1 ď ℓ ď 18. Note that Cℓ “ C19´ℓ This gives rise to only three equations
where s “ z ` w and p “ zw,

C2 “ C7 “ C8 “ C9 “ 3p2 ´ ps ` 2qsp ` ps ` 1qs3 “ 0,

C3 “ C4 “ C5 “ C6 “ ´5p2 ` ps ` 2qsp ` s4 “ 0,

C1 “ p2s ` 1qs3 ´ p4s2 ` 3s ´ 1qp “ 0.

Adding the first two equations, one gets

2p2 “ p2s ` 1qs3 “ p4s2 ` 3s ´ 1qp.

Plugging this value 2p “ 4s2 ` 3s ´ 1 in these equations gives
4s2 ` 2s ´ 1 “ 0. This gives s “

?
5´1
4

and p “
?
5´1
8

.
We conclude as for d “ 7 that v0 is indeed fiducial.

In the following exercise, we construct a simular fiducial vector in dimen-
sion 7. The difference with Lemma 8.18, is that the new fiducial vector has
real coordinates.

Exercise 8.20. We want to prove that, for d “ 7, there also exists a HSIC
in C7 » CrF7s with fiducial vector v0 “ δ0 ` a1F˚

7
` bχ0 where χ0 denotes

the Legendre character, and where a and b are real numbers: a “ ´1´
?
2

2
and

b “

?
2

?
2´1

2
. In other words v0 “ p1, x, x, y, x, y, yq with x “ a ` b, y “

a ´ b real numbers. Using indices in Z{7Z, the vector c with coordinates
cm :“ zmzm´1 is c “ py, x, x2, xy, xy, xy, y2q.
paq Let Cℓ “

ř

m cmcℓ`m. Check that the equations (8.5) van be reduced to
Cℓ “ 0 for all 1 ď ℓ ď 6.
pbq Check that these equations are, with s “ x ` y and p “ xy,

C2 “ C3 “ C4 “ C5 “ ps2 ` 2s ´ pqp “ 0,

C1 “ C6 “ s3 ` ps2 ´ 3s ` 1qp “ 0.
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pcq Solve these equations and get s “ ´1 ´
?
2 and p “ 1.

pdq Check as for d “ 7 that this vector v0 is fiducial.

Notes to Chapter 8.
Theorem 8.1 is due to Gerzon in 1970 and is quoted in [34, Thm 3.5]
Theorem 8.2 is due to Delsarte, Goethals and Seidel.
The starting point of this chapter is Zauner’s PhD thesis [47].
The SIC in dimension 7 and 19 are due to Appleby in [3]
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9 The metaplectic representation

In this lecture we first explain how the first non-trivial HSICs were found.
We then explain the role of the metaplectic group and the importance of the
Zauner matrix Z in the construction of HSICs.

Recall Recall that a SIC is a family of n “ d2 complex lines D1, . . . , Dn

in Cd whose pairwise angles θ are the same. This angle is given by cos θ “

1{
?
d ` 1.
Recall that the Heisenberg group Hd is the subgroup of order d3 of the

unitary group Ud generated by the matrices

E “

¨

˚

˚

˚

˝

0 0 0 1
1 0 ¨ ¨ ¨ 0

0
. . .

. . . 0
0 0 1 0

˛

‹

‹

‹

‚

and F “

¨

˚

˚

˚

˝

1 0 0 0
0 ζd 0 0

0 0
. . . 0

0 0 0 ζd´1
d

˛

‹

‹

‹

‚

. (9.1)

where ζd “ e2iπ{d.
These two matrices commute modulo the center since FE “ ζdEF . The

matrix E acts by translation on CrZ{dZs, while the matrix F acts by multi-
plication by a character of order d.

For all d ě 4, one wants to find a fiducial vector v0 of Cd, that is a vector
such that the lines generated by the images EjF kv0 form a SIC. Such a SIC
is called a HSIC.

9.1 The gradient flow

Proposition 9.1. Let v be a unitary vector in Cd.
paq One has the equality

ř

jk‰00 |xv|EjF kvy|2 “ d´1.

pbq One also has the inequality Epvq :“
ř

jk‰00 |xv|EjF kvy|4 ě
d ´ 1

d ` 1
.

pcq This inequality is an equality if and only if v is fiducial.

Exercise 9.2. (Schur lemma) Let ρ : G Ñ GLpd,Cq be an irreducible finite
dimensional representation of a group G. Let A P Mpd,Cq be a matrix that
commutes with G, i.e. such that ρpgqA “ Aρpgq for all g P G. Prove that A
is a scalar matrix.
Indication: Note that the eigenspaces of A are G-invariant.
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Proof of Proposition 9.1. paq The operator

Av :“
ř

hPHd
|hvyxhv| P Mpd,Cq

commutes with Hd. Hence, by Schur lemma, one has Av “ λ1 for some scalar
λ. Comparing the traces, one gets λ “ |Hd|{d “ d2. Therefore, one has

ř

jk‰00 |xv|EjF kvy|2 “ 1
d

xv|Avvy ´ 1 “ d ´ 1.

pbq By Cauchy Schwartz inequality, one has

ř

jk‰00 |xv|EjF kvy|4 ě 1
d2´1

ř

jk‰00 |xv|EjF kvy|2 “
pd´1q2

d2´1
“ d´1

d`1
.

pcq In case of equality all the |xv|EjF kvy| are equal and v is fiducial.

9.2 Experimental datas

The first non trivial HSICs were found thanks to a computer program who
was looking for a minimum of this quantity Epvq called the energy, by follow-
ing the gradient flow. The main difficulty when the dimension d increases is
that this energy has a lot of minimas. As soon as one is near a minimum of
the energy, the speed of convergence is very fast, and one can easily obtain
the fiducial vector with a precision of a few hundred digits. Unfortunately
there are also a lot of critical values slowing down the speed of convergence of
the algorithm. Worse there are also many local minima that are not fiducial
vectors and that trap the gradient flow. Their number also increases quickly
with the dimension.

Another more efficient algorithm to find HSICs relies on solving the
overdetermined polynomial system (8.3-8.4) by the Newton method. This
gives a list of fiducial vectors. The following experimental output seems to
indicate that this question is out of reach by an elementary approach.

For d “ 4, there are 256 fiducial vectors that correspond to 16 SICs.
For d “ 5, there are 2000 fiducial vectors that correspond to 80 SICs.
For d“11, there are 319440 fiducial vectors that correspond to 2640 SICs.

As we can see, the number of HSIC grows quickly with d. This is mainly
due to the presence of a large normalizer PNd of the projective Heisenberg
group PHd “ pZ{dZq2 in the projective unitary group PUd. In dimension
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4, 5, 6 all the HSIC seem to be unitarily conjugate by an element of the
projective normalizer. This seems to be the case for only finitely many values
of d.

9.3 The normalizer of the Heisenberg group

We describe now the normalizer of Hd in Updq which acts on the HSICs.

Let Nd be the normalizer of the Heisenberg group Hd in Updq. Let PHd

be the image of Hd in PUpdq, and let PNd be the image of Nd in PUpdq.

Proposition 9.3. The action by conjugation of PNd on PHd » pZ{dZq2

gives an exact sequence

1 ÝÑ pZ{dZq
2

ÝÑ PNd

φ0
ÝÑ SLp2,Z{dZq ÝÑ 1. (9.2)

Example 1 Let x :“
ˆ

1 0
1 1

˙

P SLp2,Zq. The element x mod d is the image

φ0pXq of the diagonal matrix of multiplication by the Gaussian function

X :“ pηj
2

d δj,kq, where ηd :“ ´eiπ{d. Indeed, one computes

XEX´1
“ ηdEF and XFX´1

“ F . (9.3)

Example 2 Let s :“
ˆ

0 ´1
1 0

˙

P SLp2,Zq. The element s mod d is the image

φ0pSq of the matrix of the Fourier transform S :“ 1?
d
pζjkq. Indeed, one

computes
SES´1

“ F and SFS´1
“ E´1 . (9.4)

Exercise 9.4. Prove that the elements x and s generate the group SLp2,Zq.

Exercise 9.5. Prove that the elements x mod d and s mod d generate the
group SLp2,Z{dZq.

Exercise 9.6. Prove that the representation of Hd in Cd given by the matrices
E and F is irreducible.

Proof of Proposition 9.3. We first need to explain why the adjoint action
φ0pUq of an element U P Nd belongs to SLp2,Z{dZq.

On the one hand, the matrices E, F satisfy the relation FE “ ζdEF .
Hence their images E 1 :“ UEU´1 and F 1 “ UFU´1 also satisfy the equality
F 1E 1 “ ζdE

1F 1.
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On the other hand, since φ0pUq is an automorphism of the group pZ{dZq2,

it is given by the action of an integral matrix
ˆ

α β
γ δ

˙

. But the two matrices

E 1 “ EαF γ and F 1 “ EβF δ satisfy the equality F 1E 1 “ ζαβ´βγ
d E 1F 1. This

proves that αδ ´ βγ “ 1 and the matrix φ0pUq has determinant 1 in Z{dZ.

We now prove the surjectivity of the map φ0. This follows from the two
examples because SLp2,Z{dZq is generated by x mod d and s mod d.

We finally describe the kernel of φ0. Let U be an element of Updq that
commute with E and F modulo scalars. One has

UEU´1
“ λE and UFU´1

“ µF,

where λ and µ belong to C˚. In particular the eigenvalues of F and λF
are the same. Hence there exists an integer j such that λ “ ζj. Since
EjFE´j “ ζ´jF , after replacing U by UEj, we can assume that U commutes
with F . Similarly, after replacing U by UF k for a suitable integer k, we can
also assume that U commutes with E. Then, by Schur lemma, U is a scalar
matrix. This proves that the kernel of φ0 is the group PHd.

Exercise 9.7. Prove that there exists only one irreducible unitary represen-
tation ρ of the Heisenberg group Hd for which the center acts by the faithful
character: ρpζ1q “ ζ1.
Indication: Study the action of ρpEq on the eigenspaces of ρpF q.

Remark 9.8. Here is another point of view on Propositions 9.3. The group
Hd has one and only one irreducible d-dimensional representation ρ, for each
faithful character of the center of Hd. Hence, for all g in the group Aut0pHdq

of automorphisms of Hd acting trivially on the center of Hd, the representa-
tions ρ and ρ˝g are equivalent and there exists a unitary matrix ug such that
ρ˝g “ ugρpgqu´1

g , for all g in Hd. This projective representation of Aut0pHdq

is called the metaplectic representation or, sometimes also, the “symplectic
spinor” representation.

9.4 Displacement operators

We want to lift the elements of PHd as elements of Updq. We can not require
that these lifts commute, but we will choose these lifts in a very precise way
which is invariant by conjugacy by elements of PNd. When d is odd, we will
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be able to do it in a one-to-one way and to parametrize the lifts with the
plane pZ{dZq2. When d is even, the lifts will not be one-to-one and will be
parametrized by pZ{2dZq2.

Definition 9.9. We set d1 “ d for d odd, and d1 “ 2d for d even.
For p “ pj, kq in the “plane” pZ{d1Zq2, we set

Dp “ ηjkd E
jF k

“ η´jk
d F kEj where ηd “ ´eiπ{d. (9.5)

Remember that η2d “ ζd and that ηdd “ p´1qd´1. The operators Dp are
called displacement operators. They are well defined because, for p P Z2,

#

Dp`dq “ Dp when d is odd,

Dp`2dq “ Dp when d is even.
(9.6)

Note that these operators Dp live in the group H 1
d :“ Hd Y ηdHd which is

equal to Hd when d is odd.

Remark 9.10. The choice of normalization might look strange at first glance.
For the reader familiar with Lie groups, a way to “undertand” this formula,
is to think of it as an analog of the exponential map. Indeed, in the real
Heisenberg group

HR “ tmj,k,ℓ :“ exp

¨

˝

0 k ℓ
0 0 j
0 0 0

˛

‚“

¨

˝

1 k ℓ`
jk
2

0 1 j
0 0 1

˛

‚ | pj, k, ℓq P Ru

the analog of (9.5) is the equality

mj,k,0 “ m0,0, jk
2
m0,j,0m0,0,k “ m0,0,´jk

2
m0,0,km0,j,0.

Remark 9.11. The choice of this normalization for the displacement operator
will be crucial when we will study the Galois group action on the phases
xv0|Dpv0y of a HSIC associated to a fiducial vector v0 of norm 1.

This notation is convenient as one can see in the following two lemmas.

Lemma 9.12. One has the equalities, for all p, q in pZ{d1Zq2

$

’

’

’

&

’

’

’

%

D˚
p “ D´1

p “ D´p,

DpDq “ ηp2q1´p1q2
d Dp`q,

Dp`dq “ p´1qp2q1´p1q2Dp for d even

Dp1`dqp “ Dp.

(9.7)
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Remark 9.13. In particular, the last equation says that, when d is even, given
p in pZ{2dZq2, the four displacement operator Dp`dq are equal up to sign.

Proof of Lemma 9.12. One computes

D˚
p “ D´1

p “ η´p1p2
d F´p2E´p1 “ ηp1p2d E´p1F´p2 “ D´p.

Similarly, one computes,

DpDq “ ηp1q1`p2q2`2p2q1
d Ep1Eq1F q1F q2 “ ηp2q1´p1q2

d Dp`q.

The last equations follow since Ddq “ 1 for all q.

9.5 The projective metaplectic group

We would like to find a section for the projection φ0 in (9.2). We will see
that this is the case when d is odd. We will also see that for d even this is
not the case, and that we have to introduce the group SLp2,Z{2dZq

Remark 9.14. The reader should first focus on the easier case where d is even,
in order to avoid the subtleties and technicalities needed for the case where
d is odd. We will see in the next lectures that these subtleties will have a
strong influence on the field of definitions of HSIC. One crucial difference
between the case d even and d odd is that the matrix X in (9.3) satisfies

Xd
“ 1 when d is odd

“ pp´1q
jδj,kq when d is even

We first define the projective metaplectic group by using the displacement
operator Dp defined in (9.5).

Definition 9.15. Let d ě 2. Set d1 “ d for d odd and d1 “ 2d for d even.
The projective metaplectic group is the group

PMd “ tU P PNd | there exists g “ φpUq P SLp2,Z{d1Zq

such that UDpU
´1

“ Dgp for all p P pZ{d1Zq2u (9.8)

Note that the element UDpU
´1 is well defined as an element of Updq, and

that we require Equality (9.8) to hold in Updq.
We have to introduce the matrix

11
“

ˆ

1`d 0
0 1`d

˙

P SLp2,Z{d1Zq,
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because, by Lemma 9.12, one has

D11p “ Dp for all p P pZ{d1Zq2

This matrix 11 is the identity when d is odd and has order 2 when d is even.
We denote by SLp2,Z{d1Zq{11 the quotient of the group SLp2,Z{d1Zq by

the subgroup generated by 11.

Remark 9.16. Note that when d is even one has an exact sequence

1 ÝÑ Kd ÝÑ SLp2,Z{2dZq
π

ÝÑ SLp2,Z{dZq ÝÑ 1 (9.9)

where

Kd “ tg “

ˆ

1`rd sd
td 1`rd

˙

| pr, s, tq P pZ{2Zq
3
u

is a group isomorphic to pZ{2Zq3.

Proposition 9.17. paq The map φ : PMd Ñ SLp2,Z{d1Zq{11 is uniquely
defined and is a group morphism.
pbq The group PMd is the subgroup of PNd generated by X and S.
pcq The morphism φ : PMd Ñ SLp2,Z{d1Zq{11 is an isomorphism.
pd1q Assume d is odd. Then one has PMd X PHd “ t1u and the morphism
φ0 : PMd Ñ SLp2,Z{dZq is an isomorphism. In particular the group PNd is
a semidirect product

PNd “ PMd ˙ PHd » SLp2,Z{dZq ˙ pZ{dZq
2.

pd2q Assume d is even. Then the intersection PMd X PHd is the group
K 1
d :“ tDqd{2 | q P pZ{2Zq2u which is isomorphic to pZ{2Zq2. In particular,

one has an exact sequence

1 ÝÑ pZ{2Zq
2

ÝÑ PMd

φ0
ÝÑ SLp2,Z{dZq ÝÑ 1

Proof. paq When d is odd, the map p ÞÑ Dp is injective hence g is unique
and φ is well defined. When d is even, for all p, p1 in pZ{2dZq2, the equality
Dp “ Dp1 implies that p1 ” pmod d and, writing p1 “ p`dq with q P pZ{2Zq2,
that one has p1q2 ” p2q1 mod 2. This proves that g is unique modulo the
subgroup t1,11u and φ is well defined.

pbq and pcq We first check that X and S belong to PMd. We compute in
Updq, for p “ pp1, p2q P pZ{d1Zq2, using (9.3) and (9.4),

XDpX
´1

“ ηp1p2d XEp1F p2X´1
“ ηp1p2d ηp1d pEF q

p1F p2

“ ηp1p2d η
p21
d E

p1F p1`p2 “ Dxp,
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SDpS
´1

“ ηp1p2d SEp1F p2S´1
“ ηp1p2d F p1E´p2

“ η´p1p2
d E´p2F p1 “ Dsp.

This proves (9.8).
We now prove the injectivity of φ. If an element U P PNd is in the

kernel of φ, it commutes with all the matrices Dp. Hence it comutes with
the Heisenberg group, and by Schur lemma it is trivial in PUpdq.

Finally the surjectivity of φ and the fact that X and S generate PMd

follow from the fact that x mod d1 and s mod d1 generate SLp2,Z{d1Zq and
from the injectivity of φ.

pdq We note that one has the equalities in Updq, for p P pZ{d1Zq2

DpDqD
´1
p “ ζp2q1´p1q2

d Dq. (9.10)

pd1q When d is odd Equation (9.10) tells us that PMd X PHd “ t1u.
Therefore the map φ is nothing but the map φ0 in Proposition 9.3.

pd2q When d is even Equation (9.10) tells us that PMd X PHd “ K 1
d.

Therefore, the kernel of φ0 is the group K 1
d.

Note that one has the equality φ0 “ π ˝ φ on PMd.

Assume d is odd, we have defined the projective metaplectic group PMd »

SLp2,Z{dZq as a subgroup of PUpdq. The following corollary tells us that
this group lifts as a subgroup Md of Updq. This is the metaplectic group
introduced by Weil. In this case the metaplectic group Md is isomorphic to
SLp2,Z{dZq. This is the content of the following corollary.

Corollary 9.18. Assume d is odd.
paq Then there exists a morphism

ψ : SLp2,Z{dZq Ñ Updq such that (9.11)

ψpgqDpψpgq
´1

“ Dgp, for all p P pZ{dZq2. (9.12)

The group Md :“ ψpSLp2,Z{dZqq is called the metaplectic group.
pbq The group Md is generated by X and ip1´dq{2S.

Proof. The main remark is that the projective metaplectic representation of
the group PMd » SLp2,Z{dZq in the vector space V “ Cd is not irreducible,
but decomposes as a sum V “ V ` ‘ V ´ of invariant subspaces, where V `
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and V ´ are respectively the subspaces of even and odd functions on Z{dZ,
and that

dimV `
´ dimV ´

“ 1. (9.13)

paq For every g in SLp2,Z{dZq we choose an element ψpgq P Updq such
that

φ0pψpgqq “ g and detV `pψpgqq “ detV ´pψpgqq.

By (9.13), this element ψpgq exists and is unique. Therefore, for all g, g1 in
SLp2,Z{dZq we must have ψpgg1q “ ψpgqψpg1q. And ψ is a group morphism.

pbq The matrix X, which is the multiplication by a gaussian function,
belongs to Md because

detV `pXq “ detV ´pXq.

The matrix S of the Fourier transform satisfies S2 “ 1 on V `. Hence its
multiple λS that belongs to Md can be determined by the formula

λ “ detV ´pSq{ detV `pSq “ detV pSq “ ip1´dq{2.

The last equality computing the determinant of the Fourier transform follows
from the list of eigenvalues of S given in Proposition 1.6.

Remark 9.19. When d is prime to 3 the morphism ψ is unique and the
metaplectic group is uniquely defined. This follows from the fact that when
d is prime to 6, the group SLp2,Z{dZq is perfect.

Remark 9.20. The name Clifford group is often used in the SIC-POVM lit-
terature, as in [28], for the normalizer PNd of PHd in Updq. In group theory
one uses the name metaplectic group for the cover of the symplectic group
that normalizes the Heisenberg group H in the unitary group UpHq of the
Stone-von Neumann irreducible unitary representation H of H. The corre-
sponding projective unitary representation of the symplectic group in H is
called the Weil representation or the metaplectic representation.

9.6 The Zauner matrix

We now come back to HSICs. In the conjectural description of the HSICs
there is an important symmetry of order 3 discovered by Zauner, that lives
in the metaplectic group.
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We denote by z P SLp2,Zq the element of order 3 z :“ xs “

ˆ

0 ´1
1 ´1

˙

. It

correspond to the matrix XS. The Zauner matrix Z is a suitable normaliza-
tion of XS thanks to a 24th root of unity ζ24 “ eiπ{12. This normalisation of
Z will be useful in Conjecture 9.23 and in the following lemma.

Lemma 9.21. The Zauner matrix Z :“
ζd´1
24?
d

pη
jpj`2kq

d q has order 3.

Up to scalar, the Zauner matrix Z is the unique unitary transformation
Z P Ud such that

ZEZ´1
“ F et ZFZ´1

“ τE´1F´1.

Proof of Lemma 9.21. We recall Gauss formula given in Lemma 1.7,

1?
d

ř

1ďkďd

ηk
2

d “ ζ1´d
8 where ζ8 “ eiπ{4 “ ζ324.

One computes using Gauss formula an entry of the square matrix,

pZ2
qjℓ “

ζ2d´2
24

d

ř

1ďkďd

ηj
2

d η
2jk
d ηk

2

d η
2kℓ
d

“
ζ2d´2
24

d
η´ℓ2

d η´2jℓ
d

ř

1ďmďd

ηm
2

d where m “ j`k`ℓ,

“
ζ1´d
24?
d
η

´ℓpℓ`2jq

d “ Zℓj.

This proves that Z2 “ Z˚ and, since Z is unitary, that Z3 “ ZZ˚ “ 1.

One can deduce the list of eigenvalues of Z counted with multiplicity, as
in Proposition 1.6 for the Fourier transform.

Proposition 9.22. Let d ě 2. The eigenvalues of the Zauner matrix Z on
Z{dZ are given by the first d elements of the list: 1, ζ3, 1, ζ

2
3 , ζ3, 1, ζ

2
3 , ζ3, 1 . . .

Proof. We only need to check that for 0 ď ℓ ď 2 the trace of the ℓth-power
of the Zauner matrix trpZℓq is equal to the sum of the ℓth-power of this
sequence.

Since trpZ0q “ d and trpZ2q “ trpZq, this means that one has to check

trpZq “

$

&

%

1 for d ” 1 mod 3,
ζ6 for d ” 2 mod 3,

?
3 ζ12 for d ” 0 mod 3.

(9.14)
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We use Formula (1.7) with c “ 3, This gives

trpZq “ ζd´1
24

1?
d

ř

k

η3k
2

d “ ζd´1
24 ζ1´3d

8
1`2ζd3?

3

trpZq “ ζ1´4d
12

1`2ζd3?
3
.

Distinguishing the three values for d mod 3, one gets (9.14).

The choice of normalization for the Zauner matrix is useful to point out
a suitable eigenspace of Z in which we will look for a fiducial vector. Based
on his experimental datas, Zauner conjectured:

Conjecture 9.23. For all d ě 2, there exists a Z-invariant fiducial vector,
i.e. a fiducial vector v0 such that Zv0 “ v0.

The algorithm that looks for a fiducial line that is Z-invariant is much
faster because we are looking for a solution in a projective subspace of di-
mension rd

3
s. For instance, for d “ 4 or 5 we are looking for solutions of

polynomial equations in 1 variable.

Appleby has noticed, that sometimes there are also fiducial vectors in
other eigenspaces of the Zauner matrix.

Conjecture 9.24.
When d ” 1 mod 3, there exists a fiducial vector v0 such that Zv0 “ ζ23v0.
When d ” 1 mod 9, there exists a fiducial vector v0 such that Zv0 “ ζ3v0.

9.7 Elements of order 3

Appleby has also conjectured a converse.

Conjecture 9.25. The stabilizer of a HSIC in PNd{PHd always contain an
element A of order 3.

In most of the cases, but not always, this stabilizer is generated by this
element of order 3, and A is conjugate in PNd to the Zauner matrix Z.

When d ı 0 mod 3, this element A always fixes a fiducial line.

The Zauner matrix Z comes from the element z “

ˆ

0 ´1
1 ´1

˙

of order 3 of

the group SLp2,Z{d1Zq. The following lemma tells us more on these elements
of order 3.
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Lemma 9.26. Let g P SLp2,Z{dZq with d coprime to 3. Then one has the
equivalence
paq g is conjugate to z ðñ trpgq “ ´1.
pbq If d is prime, all element g of order 3 is conjugate to z. Its centralizer

Cg is a cyclic group

"

of order d ´ 1 if d ” 1 mod 3,
of order d ` 1 if d ” 2 mod 3.

Exercise 9.27. Let Qpx, yq “ ax2 `bxy`cy2 be a quadratic form on pZ{dZq2.
Assume that the discriminant ∆ :“ b2 ´4ac is invertible in Z{dZ. Prove that
there exists px, yq P pZ{dZq2 such that Qpx, yq “ 1.
Indication: Deal successively with the following cases: First: d odd prime
and use a basis where Q is diagonal. Second: d “ pn odd prime power and
lift a solution mod pn´1 to a solution mod pn. Third: d power of 2 and deal
first with d “ 2, 4, 8 and lift again. Fourth: apply the chinese remainder
theorem.

Proof of Lemma 9.26. paq The implication ùñ is clear. We prove ðù. The

inverse of the matrix g “

ˆ

α β
γ δ

˙

is the matrix g´1 “

ˆ

δ ´β
´γ α

˙

. Therefore

one has g´1 ` g “ t1 where t “ α ` δ is the trace. Since t “ ´1, one
has g2 ` g ` 1 “ 0. Choosing a basis of the form v, gv, one can see that g
is conjugate to z in the group GLp2,Z{dZq. We want more: we want this
conjugacy to be in SLp2,Z{dZq. We need to find a vector v P pZ{dZq2 such
that Qpvq :“ detpv, gvq “ 1. The discriminant of this quadratic form Q is
equal to ∆ “ pδ ´ αq2 ` 4βγ “ ´3. Therefore it is invertible. Hence there
exists v such that Qpvq “ 1.

pbq Since d “ p ‰ 3 is prime, the ring Z{dZ is the prime field Fp and g
has two distinct eigenvalues ω˘1 in the field Fp2 , which are primitive cube
roots of unity and hence trpgq “ ´1. Therefore, by Point paq, g is conjugate
to z.

Finally, we recall that the multiplicative groups F˚
p and F˚

p2 are cyclic.
When p ” 1 mod 3, the eigenvalue ω belongs to F˚

p , g is diagonalizable
on Fp and the centralizer Cg » F˚

p is a cyclic group of order p ´ 1.
When p ” 2 mod 3, the ring Fprgs is isomorphic to the field Fp2 and the

centralizer Cg » tλ P F˚
p2 | λp`1 “ 1u is a cyclic group of order p ` 1.

The following exercise tells us that Lemma 9.26.b is still valid for d a
prime power, but not when d has two distinct prime divisors.
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Exercise 9.28. Assume that d “ pr is a prime power with p ‰ 3.
paq Prove that one has an exact sequence

1 ÝÑ K ÝÑ SLp2,Z{dZq ÝÑ SLp2,Z{pZq ÝÑ 1 ,

where K is a normal p-subgroup.
pbq Prove that all element g of order 3 in SLp2,Z{dZq is conjugate to z.

Exercise 9.29. Assume d “ pq is the product of two primes not equal to 3.
paq Prove that SLp2,Z{dZq » SLp2,Z{pZq ˆ SLp2,Z{qZq.
pbq Prove that there are 3 conjugacy classes of elements of order 3 in the
group SLp2,Z{dZq.

Notes to Chapter 9. Section 9.1 9.2 9.3 9.4
The description of the group of automorphisms of the Heisenberg group

Hd is due to Appleby in [3].
The conjectures in this chapter and the previous one are an output of the

works of Zauner in [47], Reves, Blume-Kohout, Scott and Caves in [37] and
Appleby in [3].

In section 9.5 Proposition 9.17 is [3, Thm 1].
The explicit construction of the metaplectic representation over a finite

field in Corollary 9.18 is due to Neuhauser in [36, Thm 4.3].
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10 Fields of definition

In this lecture we state the first series of conjectures on the arithmetic of
HSICs. To each fiducial projector P0, we will associate a few number fields

Q Ă K Ă E0 Ă E1 Ă E. (10.1)

We will describe conjecturally striking properties of these number fields and
of their Galois group. The constructions and Conjectures in this lecture are
mainly due to Appleby, Yadsan-Appleby, Zauner in [4, Sec.7], to Appleby,
Flammia, McConnel, Yard in [7] and to Kopp, Lagarias in [28] relying on
numerical experiments due to Scott and Grassl in [39] and [38].

In the next lecture, we will describe explicitly the “unique” 5-dimensional
HSIC. In this case we will see that

K “ E0 “ Qr
?
3s , E1 “ Kriy0s and E “ E1ris,

where y0 “

b

p1́ cq
?
3̀ s

24
, with c “ cosp2π{5q and s “ sinp2π{5q. We will check

directly that the extension E{K is Galois with abelian Galois group. This is
the first non trivial example that motivates the list of conjectures stated in
this lecture.

A better conjectural description of these fields and their Galois action
using the language of class field theory will be given in the following lectures.

10.1 Fiducial projectors

We first recall notation from previous lectures and add a few more. We
assume d ě 4. The projective Heisenberg group PHd is the abelian subgroup
of the projective unitary group PUpdq of Cd which is generated by the two
matrices E “ pδj,k`1q and F “ pζjdδj,kq, where ζd “ e2iπ{d. Let ηd “ ´eiπ{d.

We set d1 “ d when d is odd and d1 “ 2d when d is even, so that for
p “ pp1, p2q in pZ{d1Zq2, the displacement operator Dp “ ηp1p2d Ep1F p2 P Updq

is well defined and satisfies (9.6) and (9.7).
The complex conjugation σc P GalpC{Rq can be seen as an antiunitary

involution of Cd or of PpCdq. It sends HSIC to HSIC. We define the extended
unitary group

EUpdq “ Updq Y Updqσc » pZ{2Zq ˙ Updq,
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and the projective extended unitary group PEUpdq “ PUpdq YPUpdqσc. We
recall that Nd is the normalizer of Hd in Updq, and PNd is its normalizer
in PUpdq. Similarly we introduce the extended normalizer ENd as the nor-
malizer of Hd in EUpdq and the projective extended normalizer PENd as the
normalizer of Hd in PEUpdq. Both contain the complex conjugation σc.

Definition 10.1. The field of definition of a subset S of Mpd,Cq or of
PMpd,Cq, is the smallest subfield K Ă C such that S is invariant by the
group GalpC{Kq.

When S is an algebraic subvariety, this means that S can be defined as
the set of zeros of a family of polynomials with coefficients in K.

Lemma 10.2. paq The Heisenberg group Hd is defined over Q.
pbq The normalizer PNd is also defined over Q.

Proof. We check that these sets are invariant by the elements σ of the Galois
group GalpC{Qq. One has σpHdq “ Hd. Indeed, there exists ℓ with ℓ^ d “ 1
such that σpζdq “ ζℓd. Hence one has σpEq “ E and σpF q “ F ℓ.

We want to understand the set Fd,h of hermitian fiducial projectors.

Fd,h “ tP0 P Fd | P ˚
0 “ P0u where

Fd “ tP0 P Mpd,Cq | P 2
0 “ P0, trpP0q “ 1 and

trpP0DpP0D´pq “ 1
d`1

for all p in pZ{dZq2u.

The set Fd of (non-necessarily hermitian) fiducial projectors is an alge-
braic subvariety of Mpd,Cq.

The conjectures of the previous lectures can been extended to Fd. Indeed,
for d ě 4, the set Fd is also conjectured by Waldron in [46, 14.27] to be a
finite set. Its elements are then algebraic.

The defining equations of Fd seem at first glance to involve dth roots of
unity. A more careful look shows that one can get rid of these roots.

Lemma 10.3. The set Fd is defined over Q.

Proof. This follows from the fact that Hd is defined over Q. One can also
apply Proposition 8.15.

When P0 P Fd,h and p P pZ{dZq2 the projector Pp :“ DpP0Dp´1 is well de-
fined, i.e. one has Pp`dq “ Pp. The projectors Pp are also fiducial projectors.
And the image of P0 is a line in Cd whose Hd-orbit is a HSIC.
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10.2 The real quadratic field of a HSIC

One of the first issue when one deals with the set Fd,h is that it is not defined
over Q because, for σ P GalpC{Qq, the image σpP0q of a (hermitian) fiducial
projector P0 is a fiducial projector that is not necessarily hermitian. Let

∆d :“ pd ` 1qpd ´ 3q “ pd ´ 1q
2

´ 4 and K :“ Qr
a

∆ds.

The following conjecture predicts when this image is indeed hermitian.

Conjecture 10.4. Let σ P GalpC{Qq and P0 P Fd,h. Then, one has the
equivalence:

σpP0q P Fd,h ðñ σp
a

∆dq “
a

∆d (10.2)

Note that this condition does not depend on P0. In particular, the field
of definition of Fd,h is the field K :“ Qr

?
∆ds.

Definition 10.5. A geometric class is an orbit of PENd on Fd,h.
We denote by rP0s the geometric class of P0.

Two fiducial projectors, or two fiducial lines or two HSICs, are said to be
geometrically equivalent if they are in the same geometric class. Note that
two fiducial lines in the same HSIC are always geometrically equivalent.

According to Conjecture 10.4 the group GalpC{Kq ˙ PNd acts on Fd,h.
This group is the abstract semidirect product using the natural action of the
group GalpC{Kq by automorphisms on the group PNd which is defined over
Q by Lemma 10.2. This group contains PENd

Definition 10.6. A multiplet is an orbit of GalpC{Kq ˙ PNd on Fd,h.
We denote by rrP0ss the multiplet containing P0.
The size of a multiplet is the number of geometric classes in it.

Note that ∆d is the determinant of the quadratic equation

X2
´ pd ´ 1qX ` 1 “ 0. (10.3)

For d ě 4, the positive real root of this polynomial

εd :“
d´1`

?
∆d

2
(10.4)

is called the Zauner unit. It is a unit in the ring Zrεds. This ring is a subring
of the ring of integers OK of the real quadratic number field K “ Qrεds.
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Definition 10.7. We denote by D0 the fundamental discriminant of K. This
means that ∆d “ f 2D0 with f integer, D0 ‰ 1 and
piq either D0 ” 1 mod 4 and D0 square free,
piiq or D0 “ 4m2 with m ” 2 or 3 mod 4 and m square free.

The positive fundamental discriminants areD0 “ 5, 8, 12, 13, 17, 21, 24, . . .

Exercise 10.8. Write ∆d “ f 2D0 with D0 the fundamental discriminant of
K. Let α0 :“

D0`
?
D0

2
, so that OK “ Zrα0s.

paq Prove that the ring O :“ Zrεds is equal to Zrfα0s.
pb1q Find the list of integers d “ 4, 8, 19, 48, 124, . . . for which D0 “ 5.
pb2q Find the list of integers d “ 7, 35, 199, . . . for which D0 “ 8.
pb3q Find the list of integers d “ 5, 15, 53, 195, . . . for which D0 “ 12.

This partially “explains” why it is easier to find HSICs in dimensions
d “ 4, 5, 7, 8, 19.

The integer f is called the conductor of the ring O “ Zrfα0s.

Conjecture 10.9. There is a natural bijection

tmultiplets in Fd,hu ÐÑ tdivisors f 1 of fu

Remark 10.10. We will understand better Conjecture 10.9, in the light of
stronger conjectures that will follow. The divisor f 1 is the conductor of a
unique intermediate ring Of Ă Of 1 Ă OK. This ring Of 1 will be related by
class field theory to abelian extensions of K, the ones that we introduce in
the next section.

10.3 Fields of definition

We now introduce two fields E0 and E associated with a geometric class rP0s

of a fiducial projector P0.
‹ The field E0 is the field of definition of the geometric class rP0s.
‹ The field E is E :“ Lrηds where L is the field of definition of P0.

Lemma 10.11. We assume Conjecture 10.4.
paq The fields L and E are invariant by complex conjugation σc, and one has
the inclusion E0 Ă R.
pbq The fields E0 and E depend only on the geometric class rP0s.
pcq One has K Ă E0 Ă E.
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Proof. paq Since the projector P0 is hermitian, the field L generated by the
entries of P0 is invariant by σc. Finally, since a PENd-orbit is always invariant
by σc it is defined over R and one has E0 Ă R.

pb1q The field E0 depends only on rP0s by definition.
pb2q Since all the elements U of the normalizer PNd are defined over

Qrηds Ă E, and since P0 is defined over E, all the elements UP0U
´1 of rP0s

are also defined over E. Hence the field E depends only on rP0s.
pc1q Since all the projectors in rP0s are defined over E, one has E0 Ă E.
pc2q We will only use Conjecture 10.4 to prove the last inclusion K Ă E0,

if σ P GalpC{E0q one has σpP0q P rP0s, hence one has σp
?
∆dq “

?
∆d and

σ P GalpC{Kq. This proves that K Ă E0.

Conjecture 10.12. paq The field E is a Galois extension of Q.
pbq The field E is an abelian extension of K.

The group GalpE{Kq is a normal subgroup of index 2 in the Galois group
GalpE{Qq. It contains the complex conjugation σc. Conjecture 10.12.b tells
us that this subgroup is abelian.

Lemma 10.13. We assume Conjectures 10.4 and 10.12.
Then the subgroup GalpE{Kq is the centralizer Cpσcq of σc in GalpE{Qq

Proof. By Conjecture 10.12, the subgroup GalpE{Kq is abelian and hence is
included in the centralizer Cpσcq.

Conversely, if an element σ P GalpE{Qq commutes with σc, the projector
σpP0q is also hermitian and hence belong to Fd,h. Hence, by Conjecture 10.4,
one has σ P GalpE{Kq.

Remark 10.14. It may look at first glance surprising to have so many fields
automorphisms σ that commute with σc, because the only non-trivial auto-
morphism of C that commutes with σc is σc. The point is that the commu-
tation of σ and σc is only required in the field E.
Remark 10.15. According to Conjecture 10.12, the fields E0 and E depend
only on the multiplet rrP0ss.

Lemma 10.16. We assume Conjectures 10.4 and 10.12.
Then the degree rE0 : Ks is equal to the size of the multiplet rrP0ss.

Proof. The abelian group GalpE{Kq sends geometric classes to geometric
classes, and acts transitively on the set of geometric classes in rrP0ss. By def-
inition, the stabilizer of the geometric class rP0s is the subgroup GalpE0{Kq.
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Therefore the number of geometric classes in rrP0ss is the order of the quotient
group GalpE{E0q which is equal to rE0 : Ks.

In the sequel of this lecture, we will state slightly more precise conjectures
from the arithmetic point of view, and one will describe conjecturally the two
Galois groups GalpE{E0q and GalpE0{Kq. A much more precise conjectural
description of the fields E0 and E and of their Galois groups in terms of the
idèles class group CK will be given in the next lectures.

We recall that the ideal class group ClpOq of a finite index subringO Ă OK
is the group of invertible ideals modulo the principal ideals. When O “ OK
all the ideals are invertible. In general the invertible ideals are those coprime
to the conductor f .

Conjecture 10.17. Let P0 P Fd,h and f 1 be the divisor of f associated to
rrP0ss. Then there is a group isomorphism GalpE0{Kq » ClpOf 1q

We will see in a latter lecture that, in order to compute the ideal class
group ClpOf 1q, one can use the exact sequence

1 ÝÑ O˚
K{O˚

f 1 ÝÑ
pOK{f 1OKq˚

pZ{f 1Zq˚

π
ÝÑ ClpOf 1q ÝÑ ClpOKq ÝÑ 1 (10.5)

This exact sequence tells us that the ideal class group ClpOf q is an extension
of the classical ideal class group ClpOKq by an easily computable subgroup,
the image of π. The quotient ClpOKq which is less easi to compute is often
rather small.

Remark 10.18. Note that, conjecture 10.17 is uniform in d ě 4, while the
properties of the ring Of “ Zrεds and its class group heavily depend on d.

10.4 Galois action on correlations

We now introduce the field E1. We first define the subfield E2 :“ EXR. Let
σ0 P GalpE{Qq such that σ0p

?
∆dq “ ´

?
∆d. We define E1 :“ σ0pE2q.

Since, by Conjecture 10.12, all the elements of GalpE{Kq commute with
the complex conjugation σc, the field E1 does not depend on the choice of
σ0. Moreover, this field E1 depends only on the multiplet rrP0ss.

Lemma 10.19. One has the inclusion Krcosp2π{d1qs Ă E1.

Proof. Indeed, the field Krcosp2π{d1qs “ Krηds X R is a subfield of E2 which
is Galois over Q, hence it is invariant by σ0 and it is included in E1.
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Let P0 be a fiducial projector. It can be written as P0 “ f0 b v0 with
f0pv0q “ 1 or P0 “ |v0yxv0|.

Definition 10.20. The correlations are the quantities

up :“ f0pDpv0q “ xv0|Dpv0y “ trpP0Dpq , for p in pZ{d1Zq2.

By (9.6) and (9.7), they satisfy, for p, q in pZ{d1Zq2, u´p “ up,

up`dq “ up when d is odd, (10.6)

up`dq “ p´1q
p1q2´p2q1up , up`2dq “ up1`dqp “ up when d is even. (10.7)

The assumption that P0 is fiducial can be written as

|up| “ 1?
d`1

for all p ı 0 mod d. (10.8)

Lemma 10.21. We assume Conjectures 10.4 and 10.12.
Let P0 “ |v0yxv0| be a fiducial vector and p P pZ{d1Zq2, p ı 0 mod d. Then
for all σ P GalpC{Kq one also has

|σpupq| “ 1?
d`1

for all p ı 0 mod d. (10.9)

Proof. Since the extension E{K is abelian, this element σ commutes with σc,
and the projector P 1

0 :“ σpP0q is still hermitian, and is a fiducial projector.
The images u1

p :“ σpupq are correlations for P 1
0 and hence satisfy (10.8).

The following condition requires that all the other Galois conjugates σpupq
of up are real.

Definition 10.22. A fiducial projector P0 is called strong if, for all p in
pZ{d1Zq2, the correlation up belongs to E1

Remark 10.23. This condition heavily depends on the choice of the fiducial
projector P0 in a given HSIC. Indeed replacing P0 by P 1

0 :“ DqP0D
´1
q with

2q ı 0 mod d, replaces the correlations up by the correlations

u1
p “ trpP 1

0Dpq “ trpP0D
´1
q DpDqq “ ζp2q1´p1q2

d up.

But, for suitable p, the factor ζp2q1´p1q2
d does not belong to E1 since it has no

real Galois conjugate.
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Definition 10.24. A fiducial projector P0 “ |v0yxv0| is centred if Zv0 “ v0
where Z is the Zauner matrix. It is strongly centred if moreover it is strong.

The following conjecture is a technical but useful improvement of Con-
jectures 9.23 and 9.25 on the symmetry of order 3 in HSICs.

Conjecture 10.25. paq The set Fd,h is not empty and every PENd-orbit in
Fd,h contains a strongly centred fiducial projector.
pbq When d is coprime to 3, every centred fiducial projector is strongly centred.

Let z “

ˆ

0 ´1
1 ´1

˙

P GLp2,Z{d1Zq. We denote by Ad1 the abelian subring,

Ad1 “ pZ{d1Zqrzs Ă Mp2,Z{d1Zq

and by A˚
d1 the group of units, or invertible elements in the ring Ad1 .

Exercise 10.26. Prove that Ad1 is the centralizer of z in Mp2,Z{d1Zq.

We introduce the subgroup S :“ ta P A˚
d1 | uap “ up for all p P pZ{d1Zq2u.

When d is odd, the subgroup S contains the group of order 3 generated by z.
When d is even, the subgroup S contains the group of order 6 generated by
z and 1 `d. In most cases, the subgroup S is not larger.

In the following Conjecture 10.27, the precise choice of the factor ηp1p2d in
the definition of the displacement operators Dp is crucial.

Conjecture 10.27. Assume the fiducial projector P0 to be strongly centred.
Assume also that f 1 “ f .
paq One has E0 Ă E1, and for all σ P GalpE1{E0q, there exists aσ P A˚

d1 such
that, for all p P pZ{d1Zq2, σpupq “ uaσ ppq.

pbq The map σ ÞÑ aσ induces an isomorphism GalpE1{E0q
»

ÝÑ A˚
d1{S.

Remark 10.28. One can probably weaken the assumption f 1 “ f . This
assumption fits with the interpretation of these conjectures in terms of Class
Field theory. Recall that the multiplet rrP0ss is associated to a ring Of 1 of
conductor f 1. We will see that the group involved in Class Field Theory is
the multiplicative group of the ring Of 1{d1Of 1 But since Of “ Zrεds “ Of 1 ,
one has an isomorphism of rings Ad1 “ Of{d1Of “ Of 1{d1Of 1 .

Example 10.29. When d is prime, d ” 2 mod 3, all the up, p ‰ 0, are Galois
conjugate over E0.

Indeed in this case, the ring Ad is the field Fd2 with d2 elements.
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Example 10.30. When d is prime, d ” 1 mod 3, The group GalpE1{E0q has
exactly three orbits among the up, p ‰ 0, one for each of the two z-invariant
lines in pZ{dZq2, and one for the complementary of these two lines.

Indeed in this case, the ring Ad is the product Fd ˆ Fd of two copies of
the field Fd “ Z{dZ.

Lemma 10.31. We assume Conjecture 10.27. Let P0 be a strongly centered
fiducial projector. Then the field E1 is generated over E0 by the correlations
up with p in pZ{d1Zq2.

Proof. The injectivity of the map σ ÞÑ aσ in Conjecture 10.27.b, tells us that
every element σ in GalpE1{E0q that preserves the correlations up is trivial.
By Galois theory, the field E1 is the smallest extension of E0 that contains
all the correlations up.

10.5 The phases as units

We recall that an algebraic unit is an algebraic integer whose inverse is also
an algebraic integer.

We write up “ eiθp{
?
p ` 1. The square of the phases

Up :“ e2iθp “ pd ` 1qu2p

depend only on p in pZ{dZq2. Since P0 is hermitian, the complex numbers
Up have absolute value 1.

Conjecture 10.32. Let P0 be a strongly centred fiducial projector.
Then the complex numbers Up are algebraic units.

Remark 10.33. Recall that all the Galois conjugates of Up over K have mod-
ulus 1, and that, since P0 is strongly centred, all the other Galois conjugates
of Up over Q are real and positive.

In this lecture we have stated striking arithmetic conjectures on HSICS
using only Galois theory. We will need to use Class Field Theory to improve
these conjectures. Indeed, given a number field K and an abelian extension
E{K, knowing the Galois group GalpE{Kq is a very weak information on this
extension. For instance, all the quadratic extensions of K have the same
Galois group Z{2Z. Class field theory gives a nice parametrization of the
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abelian extension of K. Hence it will allow to predict exactly the fields E0,
E1 and E associated to a multiplet rrP0ss of fiducial projectors.

Notes to Chapter 10.
The fields (10.1) where introduced by Appleby, Flammia, McConnel and

Yard in [7, Sec. 4].
See also [46, Sec. 14] or [20] for two surveys on SICs.
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11 Zauner example

In this lecture, we explicitely describe the 5-dimensional Heisenberg SICs.
We will omit the computational proof. But we will check on this example
the conjectures of the previous lecture.

11.1 The 5-dimensional HSIC

Let d “ d1 “ 5. We denote by E and F the two dˆ d unitary matrices given
by E “ pδj,k`1q and F “ pζjδj,kq, where ζ “ ζd “ e2iπ{d. For p “ pp1, p2q in
pZ{d1Zq2, we set Dp “ ηp1p2d Ep1F p2 P Up5q. Recall the notation ηd “ ´eiπ{d.
Here, ηd “ ζ´2.

We are looking for a fiducial vector v0, that is for a vector whose correla-
tions up :“

xv0|Dpv0y

xv0|v0y
satisfy |up| “ 1?

d`1
, for p ‰ 0. Moreover we require that

this fiducial vector v0 “ pz0, z1, z2, z3, z4q is invariant by the Zauner matrix.
We normalize it by z0 “ 1. All the calculation can be done explicitely by
hand because the eigenvalue 1 for the Zauner matrix has multiplicity 2. An
explicit formula for v0 can already be found in Zauner PhD thesis. We write
ζ “ e2iπ{5 “ c ` is , ζ 1 “ e4iπ{5 “ c1 ` is1 , with c, s, c1, s1 real.

Lemma 11.1. (Formulas for the Z-invariant fiducial vectors) The four vec-
tors v0 :“ pz0, z1, z2, z3, z4q given by z0 “ 1,

z1 ` z4 “ ζ´1
´

p1 ´ s1
q ` c1

?
3
¯

pz1 ´ z4q
2

“ ζ´2 p1 ˘ 2iq
?
5

p2 `
?
3q

´

p1 ´ cq
?
3 ´ s

¯

z2 ` z3 “ ζ
´

p1 ` s1
q ` c1

?
3
¯

pz2 ´ z3q
2

“ ζ2
p1 ˘ 2iq

?
5

p2 `
?
3q

´

p1 ´ cq
?
3 ` s

¯

,

with the sign compatibility given by z1´z4
z3´z2

ζ2 “ 1 ` c ` s
?
3 , are Z-invariant

fiducial vector in C5. The square of the norm of these vectors v0 is given by
N “ xv0|v0y “ p3 ´

?
3qp5 ´

?
5q{2.

These are exactly all the Z-invariant fiducial vectors.

We can then compute the correlations
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Lemma 11.2. (Formula for the correlations) The correlation

u0 :“
xv0|Fv0y

xv0|v0y
“ 1

N

ř

0ďkď4

ζk|zk|2

of this fiducial vector is given by u0 “ x0 ` iy0 “ eiθ0{
?
6 where

x0 :“
1?
6
cospθ0q is equal to x0 “ 1

4

´

ps1
` c1

q
a

5{3 ` s1
´ c1

¯

y20 :“ 1
6
sinpθ0q

2 is equal to y20 “ 1
24

´

p1 ´ cq
?
3 ` s

¯

.

The lengthy proof of Lemmas 11.1 and 11.2 are omitted.

Remark 11.3. Since v0 is Z-invariant, the correlation u0 is also u0 “
xv0|Ev0y

xv0|v0y
.

11.2 The fields of the 5-dimensional HSIC

We can now compute the fields that are associated with this fiducial projector
P0 “ |v0yxv0| and check the various conjectures of this lecture.

‹ One has K “ Qr
?
3s. Indeed, the Zauner unit is εd “ 2 `

?
3 and the

discriminant is ∆d “ 12.
‹ The fundamental discriminant is D0 “ 12 and the conductor is f “ 1.
‹ This agrees with the fact that there is only one multiplet rrP0ss.

‹ One has E0 :“ Qr
?
3s.

‹ This agrees with the fact that OK “ Zr
?
3s is a principal ideal ring or

equivalently the class number hpOKq “ 1. This fact follows from Minkowski’s
bound for the class number applied to K : hpOKq ď

?
D0{2.

‹ This also agrees with the fact that there is only one geometric class rP0s.

‹ One has E :“ Qry0, is.
‹ One has E1 :“ Qru0s “ Qriy0s which is a quadratic extension of Qr

?
3, ss.

‹ We will check in Lemma 11.8 that the extension E1{E0 is Galois with cyclic
Galois group GalpE1{E0q » Z{8Z.
‹ This agrees with the fact that the ring Ad1 “ F5rzs is the field F25, hence
has a cyclic multiplicative group with quotient group F˚

25{xzy » Z{8Z.

‹ There are 2000 “ 80 ˆ 25 fiducial projectors and 80 HSICs.
‹ This agrees with the fact that, the group PENd » SL˘

p2,F5q˙F2
5 has order

240 ˆ 25, it acts transitively on rP0s, and the stabilizer of P0 is the group of
order 3 generated by the Zauner matrix.
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11.3 Galois action on correlations

In this section, we will explain graphically the action of the Galois group
Z{8Z on the correlations up. We will use a nice and fun graphic presentation
of the field F25.

We choose now a generator σ of GalpE1{E0q so that σpζq “ ζ2. For
ℓ P Z{24Z, we set uℓ :“ σℓpu0q, and one write uℓ “ xℓ ` iyℓ. One has

uℓ`4 “ uℓ and hence uℓ`8 “ uℓ.

As above we identify the plane pZ{5Zq2 with the finite field F25 thanks
to the bijection pp1, p2q ÐÑ p1 ` p2ω where ω2 “ ´ω ´ 1. We introduce
the generator g0 :“ 2 ´ 2ω of the multiplicative group F˚

25. We set up
ℓ
:“ uℓ

where pℓ is the point corresponding to gℓ0.
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Figure 1: The field F25 seen as a labelled double star of David

In Figure 1, we have identified F25 “ F5rωs{pω2 `ω`1q with the quotient
R{5R where R is the ring R “ Zre2iπ{3s Ă C. For each of the 25 elements of
F25, we have chosen a lift in R.

Since the multiplicative group F˚
25 is cyclic of order 24 with generator

g0 :“ 2´2ω, we can label the element gk0 with the integer k P Z{24Z. For
instance, g0 is labelled by 1, ω is labelled by 8, ´1 is labelled by 12, 1 is
labelled by 0, and . . . 0 is labelled by a blue square ˝.

By construction the multiplication in this graphic is nothing but the mul-
tiplication in C followed by a reduction modulo 5.
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For instance, the multiplication by ´ω2 in F25 is adding 4 on the labels
which is turning by π{3 in the complex plane. The multiplication by 2 in F25

is adding 6 on the labels and is a homothety of ratio 2 on the small star and
´1{2 on the large star. The action of the Frobenius in F25 is multiplying the
labels by 5 which is the complex conjugation in the complex plane.

In this graphic the non-squares of F25 are the extremities of the branches
of the stars and the squares are the multiples of the cubic roots of unity. We
have also drawn the twelve affine lines over F5 that are parallel to one of the
cubic roots of unity and do not contain 0.

The six F5 vector lines of F25 are the traces of six real lines containing 0
in the complex plane. We have not drawn them.
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Figure 2: The correlations of the 5-dimensional SIC

In Figure 2, we show the correlations up “
xv0|Dpv0y

xv0|v0y
of the 5-dimensional

HSIC for a centred fiducial projector P0, where the plane pZ{5Zq2 of param-
eters p is identified with F25. We have writen uℓ as a shortcut for ugℓ

0
. The

partial Fourier transform on the twelve affine lines is used to reconstruct the
fiducial vector in Formulas (11.3).

Remark 11.4. The orthogonal projector on v0 is given by the matrix

P0 “ ppj,kq “ 1
N2 pzjzkq

where N “ }v0}. The correlations up are given by the formula up “ trpP0Dpq,
that is

uj`kω “
ř

ℓ ζ
kpℓ´2jqpℓ,j`ℓ. (11.1)
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Conversely, inverting this linear system, give the equalities

pj,k “ 1
5

ř

ℓ ζ
2pj`kqℓuk´j`ℓω. (11.2)

In particular, if one normalizes v0 by the condition z0 “ 1, one can recover
the fiducial vector from the correlations: for 1 ď j ď 4, one has

zj “ N
5

ř

ℓ ζ
2jℓu´j`ℓω. (11.3)

11.4 Finding the fiducial from an approximation

There is another approach that can be used to get algebraic formulas for
the fiducial vectors for d small that works beyond d “ 5 relying both on the
conjectural predictions of this lecture and on a computer algebra system as
Sagemath, Maple or Mathematica.

One first gets a 100 or 200-digits approximate values for a Z-invariant
fiducial vector v0 thanks to the gradient flow or to the Newton method as
in Section 9.2. One then deduce approximate values for all the correlations
up “ xp ` iyp.

Using again computer algebra, one wants to find the minimal polynomial
of a correlation up0 over Q and to factorize it over the field Krηds. This
polynomial is quite huge and has large degree (degree 16 for d “ 5). One
may simplify a little bit the calculation, by first looking at the minimal
polynomial over Q of y2p0 , which has smaller degree. One can also simplify
the calculation since we can guess the list of all the Galois conjugate of up0
over K among the up, and since we have good numerical approximation for
these up.

Once we have an algebraic formula for the correlations up, we obtain an
algebraic formula for the fiducial vector v0 thanks to a Formula as (11.3).

We finally can check rigorously using once more computer algebra that
v0 is indeed a fiducial vector.

11.5 A few cyclic extensions

In this section, we explain how to check directly that the extension E1{K for
the 5-dimensional HSIC that we described in the previous section is indeed
Galois with cyclic Galois group isomorphic to Z{8Z.

We first begin by a lemma which is a general but standard exercise in
Galois theory.
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Lemma 11.5. Let k0 be a field of characteristic ‰ 2, k an abelian extension
of k0 with a cyclic Galois group G0, and σ a generator of G0. Let Y P k
which is not a square in k, y “

?
Y and K :“ krys.

paq K is a Galois extension of k0 if and only if the ratio σpY q{Y is a square
in k.
pbq In this case the Galois group G :“ GalpK{k0q is abelian.
pcq In this case G is cyclic if and only if the norm Nk{k0pY q is not a square
in k0.

Here is a very concrete application to quadratic and biquadratic exten-
sions.

Corollary 11.6. Let k0 be a field of characteristic ‰ 2, d P k0 non square
and k “ k0r

?
ds. Let Y “ a ` b

?
d P k and y “

?
Y , N :“ a2 ´ db2,

K :“ k0rys, L the Galois closure of K over k0 and G :“ GalpL{k0q.
paq One has the equivalences: rK : k0s “ 4 ðñ Y is not a square in k ðñ

if N “ c2 with c P k0 then pa˘cq{2 are not squares in k0.
pbq Three cases are then possible:
piq G “ pZ{2Zq2 ðñ N is a square in k0.
piiq G “ Z{4Z ðñ Nd is a square in k0.
piiiq G “ D4 ðñ neither N nor Nd are squares in k0 ðñ L ‰ K.

Here D4 is the dihedral group with 8 elements D4 “ pZ{2Zq ˙ pZ{4Zq.

Exercise 11.7. Determine the Galois group Gk “ GalpLk{Qq where Lk is the
Galois closure of the field Kk “ Qryks for the following six values of yk.

y1 “
a

4 `
?
15, y2 “

a

1 ` i
?
15,

y3 “
a

2 ´
?
2 , y4 “

a

5 `
?
5,

y5 “
a

1 `
?
15, y6 “

a

1 ` 4i
?
3.

Indication: G1 » G2 » pZ{2Zq2,
G3 » G4 » Z{4Z,
G5 » D4, G6 » Z{2Z.

11.6 The correlation field for d=5

For d “ 5, we have seen that there is essentially only one Z-invariant fiducial
projector P0. We have computed ∆d “ pd`1qpd´3q “ 12, and we have seen
that E0 “ K “ Qr

?
3s. We also have computed explicitely the correlations

uℓ :“ xℓ ` iyℓ “ eiθℓ{
?
6 corresponding to a point gℓ0. Those are the 8 Galois
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conjugates over K of an explicit element u0 “ x0` iy0 with x0 and Y0 :“ 24y20
in Krss where s :“ sinp2π{5q. The minimal polynomial over K of this element
Y0 is

Y 4
´ 5

?
3Y 3

` 25Y 2
` 15

?
3Y ` 5 “ 0 .

We have checked that E1 “ Qru0s “ Qriy0s. In the following lemma we
explicitely check the general Conjecture 10.27 describing the Galois group
GalpE1{Kq. on this example with d “ 5. We denote by Y0, Y1, Y2, Y3 the
Galois conjugates of Y0 over E0.

Lemma 11.8. paq The field L1 :“ E0rss is an abelian extension of degree 8
of Q. One has GalpL1{Qq » Z4 ˆ Z2 and GalpL1{E0q » Z4.
pbq The elements Y0, Y1, Y2 and Y3 are positive and ´Y0, ´Y1, ´Y2 et ´Y3
are the other Galois conjugate of Y0 over Q.
pcq The field E1 “ Qru0s is a quadratic extension of L1 equal to L1riy0s. This
field E1 is an extension of Q of degree 16 which is not Galois.
peq The field E1 is an abelian extension of K, and one has GalpE1{Kq » Z8.

Sketch of proof. paq The field L1 is cyclotomic.
pbq This follows from the explicit formula for Y0 given in Lemma 11.2.
pcq The first sentence follows from the explicit formula for u0 also given

in Lemma 11.2.
The field E1 is not Galois over Q because the image E2 “ σ0pE1q of

E1 by an element σ0 P GalpC{Qq such that σ0p
?
3 q “ ´

?
3 is the field

E2 “ Qry0s Ă R, while the field E1 is not a subfield of R.
pdq The key point is to notice the two equalities

Y1{Y0 “ p2
?
3 ` Y0q

2 and Y0Y1Y2Y3 “ 5

and to apply Lemma 11.5.

Exercise 11.9. On the field of definition of the 6-dimensional HSIC.
Let ω “ e2iπ{3, K “ Qr

?
21s and F “ Krxs where x P C satisfies x3 “ 1`i

?
7.

Aq aq Compute xx and prove that x is an algebraic integer.
bq Prove that x does not belong to Qri

?
7s.

cq Prove that Qrxs is an extension of degree 6 of Q.
dq Prove that F is an extension of degree 12 of Q.
eq Prove that F is a Galois extension of Q.
Bq aq Prove that there exists ρ P GalpF{Kq such that ρpxq “ ωx.
bq Prove that ρpωq “ ω2, that ρ2pxq “ ωx and that ρ3pxq “ x.
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cq Prove that F is a cyclic extension of K of degree 6.
dq Prove that the group GalpF{Qq is a dihedral group of order 12.
eq Since this field F is included in the field E of definition of the unique 6-
dimensional HSIC, how does this exercise fit with the conjectures on HSICs?

In section 11.1 The existence of the 5 dimensional HSIC with explicit
formulas is due to Zauner in his PhD thesis [47]. See also the more recent
paper by Appleby and Bengsston [5] which gives more details on the fields
involved. In section 11.5
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12 Class field theory

Most of this lecture, is a survey with no proof of Class Field Theory. This
theory classifies abelian extensions of global or local fields. It began in the
middle of the 19th century by the characterization, due to Kronecker and
Weber, of the cyclomotomic fields as the abelian extensions of Q. One of the
main original motivation of Class Field Theory is the extension of this theo-
rem over more general number fields K than the rationals, as in “Kronecker
youth dream” where K is an imaginary quadratic field. A first achievement in
the early 20th century is the construction of the maximal unramified abelian
extension called the Hilbert class field.

The abelian extensions that occur in SICs are ramified. Fortunately, a
second achievement of Class Field Theory due to Takagi allows to deal with
abelian extensions that are ramified. A third achievement is a class field
theory over local fields. This allows to deduce Global Class Field Theory by
gathering together the Local Class Field Theories for all the completions of
K thanks to the language of adèles and idèles.

12.1 Unramified class field theory

We begin by the case of the maximal unramified abelian extension which is
called the Hilbert class field. This case is already very useful.

Let K be a global field. In characteristic zero, this means a number field.
In characteristic p, this means a finite extension of the field Fpptq of rational
functions. Let OK be the ring of integers of K, which is the integral closure
in K of either Z or Fprts.

Ideal class group One recall that the class group ClpOKq “ PicpOKq of
a number field K is the group of class of ideals in the ring of integers OK
modulo the principal ideals. The class number hpOKq of K is the cardinality
of this group.

A conjecture of Cohen and Lenstra states that about 75% of the real
quadratic fields Qr

?
ps with p prime have a trivial class group. One does not

know neither if the set of such primes p is finite, nor if its complementary is
finite.

When d is square free and composite, then Qr
?
ds often has a non-trivial

class group. This is the case for Qr
?
10s or Qr

?
15s and more generally when
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d has a prime factor p ” 1 mod 4.

Ramification One recall that an extension L of K is unramified if
- it is unramified at finite places, that is, for every prime ideal p of OK, the
ring OL{pOL does not have zero divisors,
- it is unramified at infinite places, that is, each time a completion Kv is
equal to R the completions Lw extending it are also equal to R.

In the case where K “ Q, L “ Qrαs and the ring of integer is monogenous
OL “ Zrαs, the extension L{Q is ramified at a prime p if and only if p divides
the discriminant of the minimal polynomial of α on Z. In particular every
extension of Q is ramified.

Example For d square free, Qr
?
ds is ramified exactly:

piq at the prime divisors p of d,
piiq at p “ 2 when d ı 1 mod 4, and
piiiq at p “ 8 when d ă 0.

Hilbert class fields There exists a unique maximal unramified abelian
extension L of K. According to class field theory this is a finite extension of
K and one can describe its Galois group in the following way:

For every prime ideal p of OK, the quotient OK{p is a finite field Fq. Since
the extension L{K is unramified, the finite ring OL{pOL is a product of finite
fields OL{Pi where the Pi are, by definition, the prime ideals of OL that
divide p. These prime ideals are exchanged under the action of the Galois
group GalpL{Kq.

There exists an element σp P GalpL{Kq that preserves such a prime Pi

and acts on the finite quotient field OL{Pi as the Frobenius x ÞÑ xq. Since all
these primes Pi are Galois conjugate and since the extension L{K is abelian
this element σp is unique and is called the Frobenius at p.

The map p ÞÑ σp induces an isomorphism, denoted Art, of abelian groups

Art : ClpOKq » GalpL{Kq.

This extension L is called the Hilbert class field of K.
In particular, when OK is principal, every abelian extension of K is ram-

ified.

Exercise 12.1. aq Check that the ring of integers Zr
?
15s is not principal.

aq Check that the abelian extension Qr
?
3,

?
5s{Qr

?
15s is unramified.
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12.2 Local class field

Let K be a local field. In characteristic zero, this means a finite extension
of a p-adic field Qp. In characteristic p, this means a finite extension of the
field Fppptqq of Laurent series.

The Local Class Field theory describe the maximal abelian extension
Kab of K and its Galois group. For every finite abelian extension L of K one
introduce the norm map NL{K which is the multiplicative groups morphism

NL{K : L˚
ÝÑ K˚

x ÞÑ NL{Kpxq “ det
L

pmxq “
ś

σ

σpxq,

where mx P EndKpLq is the multiplication by x, and where the product is
over all σ P GalpL{Kq. We denote by NL :“ NL{KpL˚q the image in K˚ of
the norm map.

Theorem 12.2. aq The map L Ñ NL is a bijection between
"

finite abelian
extensions L of K

*

ÐÑ

"

finite index open
subgroups N of K˚

*

. (12.1)

bq For L1 and L2 extension of K, one has the equivalence

L1 Ă L2 ðñ NL1 Ą NL2 ,

and the equalities

NL1XL2 “ NL1NL2 ,

NL1L2 “ NL1 X NL2 .

cq There exists a canonical isomorphism

Art “ ArtK : K˚
{NL » GalpL{Kq (12.2)

called the Artin symbol.

Here are a few facts, remarks or exercises that help to understand how to
deal with this group K˚{NL.

1. For K “ R or C, one sets O˚
K :“ K˚. The trivial extension K{K is called

unramified and it corresponds to the full subgroup NK “ K˚. For K “ R,
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the extension C{R is called ramified and it corresponds to the subgroup
NC “ R˚

`.

2. For K non archimedian, one denote by OK its ring of integers, π a
uniformizer, κ “ OK{πOK “ Fq the residual field where q “ pℓ “ |κ|.
One has then

K˚
“ πZ

ˆ O˚
K “ πZ

ˆ pZ{pq ´ 1qZq ˆ p1 ` πOKq.

The group p1 ` πOKq has no torsion when K “ Qp with p odd.

Exercise 12.3. Let K be a local field of characteristic zero and L{K be an
extension of degree n.
aq Prove that the group NL contains the subgroup K˚n.
bq Prove that the subgroup K˚n is an open finite index subgroup of K˚

3. When K is non archimedean, an abelian extension L{K is called unram-
ified if π is also an uniformizer for L. When K is archimedean, an abelian
extension L{K is called unramified if L “ K.

An abelian extension L{K is unramified if and only if NL contains O˚
K

4. When K is non archimedean, one denotes by Kn the unique unramified
extension of degree n of K. Its residual field κn is the unique extension of
degree n of the finite field κ. The field Kn is generated by the pqn´1qth roots
of unity. Hence it is an abelian extension of K. The union Knr of these
extensions is the maximal unramified abelian extension of K. One has

NKn “ πnZ ˆ O˚
K and K˚

{NKn “ Z{nZ.

5. When K “ Qp, one denotes by Ln “ Qprζpns the field generated by
the pnth roots of unity. It is a totally ramified abelian extension of degree
pn´1pp ´ 1q of Qp. One has

NLn “ πZ
ˆ p1 ` pnZpq and K˚

{NLn “ pZ{pnZq
˚.

Exercise 12.4. Prove using (12.1) that the extension Qab
p is generated by all

the mth roots of unity where m ě 1.
Indication: Every finite index subgroup of Q˚

p contains a group of the form

pnZ ˆ p1 ` pnZpq.

152



Exercise 12.5. Let K “ Q5r
?
3s “ Q5rωs with ω2 ` ω ` 1 “ 0 and L “ Krys

with

y8 ´ 5
?
3y6 ` 25 y4 ` 15

?
3 y2 ` 5 “ 0 . (12.3)

aq Check, using Eisenstein criterion, that L is an extension of degree 8 of K.
bq Check, using Lemma 11.8, that L is an abelian extension of K.
cq Check that NL has index 8 in K˚.
dq Check that NL{Kpyq “ 5 and that pO˚

Kq8 “ xω, 1 ` 5OKy.
eq Check that NL “ x5, ω, 1 ` 5OKy.

12.3 Adèles

The link between local class field and global class field is the language of
adèles and idèles due to Chevalley.

Let K be a number field, extension of degree n of Q, and let OK be its
ring of integers. We denote by v a place of K and Kv the corresponding
completion of K. The finite places are those corresponding to prime ideals
of OK. The infinite places are either real or complex. Let ΣK,r be the set of
real places of K. We write n “ r1 ` 2r2 where r1 “ |ΣK,r|.

Let xOK :“ lim
ÐÝ

d8

OK{dOK be the ring profinite limit of OK . The ring of

finite adèle is the ring

AK,f :“ xOK bZ Q “
ś

v finite

1 Kv

which is also equal to the restricted product of the completions Kv, restricted
with respect to the integers OKv . The ring of adèles is the product

AK :“ AK,f ˆ AK,8 “
ś

v

1 Kv where

AK,8 :“
ś

v infinite

Kv “ Rr1 ˆ Cr2 .

The field K embeds diagonally in the ring of adèles. We quote with no proof
the following

Proposition 12.6. The additive group K is a discrete subgroup of the locally
compact group AK and the quotient AK{K is compact and connected.
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12.4 Idèles

The group of idèles IK is the multiplicative group of AK. It is a locally
compact when seen as the closed subset

IK “ GLp1, AKq “ tpx, yq P A2
K | xy “ 1u Ă A2

K.

The group of idèles is also the restricted product of the multiplicative groups

IK “
ś

v

1 K˚
v “ IK,f ˆ IK,8

of all the completions Kv of K, product restricted to the groups of units O˚
Kv

of K˚
v . This means that an idèle x “ pxvq has almost all its components xv

in O˚
Kv
.

The absolute value |x| of an idèle x “ pxvq is the product of the absolute
values |x| :“

ś

v |xv|v. We set

I1K “ tx P IK | |x| “ 1u.

The multiplicative group K˚ is a subgroup of IK via the diagonal embedding.
The product formula tells us that K˚ is included in I1K.

Proposition 12.7. The multiplicative group K˚ is a cocompact discrete sub-
group of the locally compact abelian group I1K.

Remark 12.8. This proposition encapsulates both the finiteness of the class
group ClpOKq and the Dirichlet units theorem.

Definition 12.9. The idèles class group is the quotient CK :“ IK{K˚.

Note that one has an exact sequence

1 ÝÑ C1
K ÝÑ CK ÝÑ R˚

` ÝÑ 1

where the group C1
K :“ I1K{K˚ is compact.

In class field theory one is dealing with finite index open subgroups of IK
that contains K˚. Those subgroups always contain the connected component
I0K “ I0K,8 » Rr1

` ˆ Cr2 . This is why the following exact sequence will be
useful.
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We introduce the ‘unramified finite index open subgroup” of IK to be the
group

UK “
ś

vO˚
Kv

“ xOK
˚

ˆ t˘1uΣK,r ˆ I0K,8 (12.4)

(we recall that, when Kv “ R or C, by convention, one sets O˚
Kv

“ K˚
v). One

has
K˚

X UK “ O˚
K and ClpOKq “ IK{pK˚UKq.

Hence one has the following exact sequence that allows us to better under-
stand the idèles class group.

Lemma 12.10. One has an exact sequence

1 ÝÑ O˚
K ÝÑ UK ÝÑ CK ÝÑ ClpOKq ÝÑ 1 (12.5)

12.5 Global class field

Global Class Field theory describes the maximal abelian extensions Kab of a
global field K and its Galois group GalpKab{Kq.

For all finite extension L of K one introduces the norm map which is the
group morphism given by

NL{K : IL ÝÑ IK

x “ pxwq ÞÑ y “ pyvq where yv :“
ś

w|vNLw{Kv
pxwq .

It extends the classical norm map NL{K : L˚ ÝÑ K˚, and hence it induces
a group morphism still called the norm map and denoted the same way
NL{K : CL ÝÑ CK. We denote by

NL :“ NL{KpCLq Ă CK

the image of this last norm map.

Theorem 12.11. aq The map L Ñ NL is a bijection between

"

finite abelian
extensions L of K

*

ÐÑ

"

finite index open
subgroups N of CK

*

. (12.6)

bq For L1 and L2 extension of K, one has the equivalence

L1 Ă L2 ðñ NL1 Ą NL2 ,
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and the equalities

NL1XL2 “ NL1NL2 ,

NL1L2 “ NL1 X NL2 .

cq The local Artin symbols ArtKv : K˚
v Ñ GalpLw{Kvq induce an isomorphism

ArtK : CK{NL
»

ÝÑ GalpL{Kq

x mod NL ÞÑ ArtKpxq :“
ś

v

ArtKvpxvq, (12.7)

where x P CK is written as x “ pxvq mod K˚.

Here are a few facts, remarks or exercises that help to understand how to
deal with this group C˚

K{NL.

1. Since the extension L{K is abelian each group GalpLw{Kvq is canonically
isomorphic to a subgroup of GalpL{Kq: the decomposition subgroup for w|v

Dw :“ tσ P GalpL{Kq | σpwq “ wu » GalpLw{Kvq

which does not depend on the valuation w of L over v.

2. The product (12.7) is finite since, for almost all v, the element xv is a unit
of Kv and the extension Lw{Kv is unramified and hence ArtKvpxvq “ 1. The
order in the product does not mind since GalpL{Kq is abelian.

3. The fact that the Artin map is trivial on K˚ is a subtle point that we
will be able to discuss only in Section 13.2 when we will have given a precise
definition of the Artin symbols ArtKv .

4. The subgroup N pOKq :“ K˚UK{K˚ Ă CK corresponds via (12.6) to the
maximal unramified abelian extension of K: this is the Hilbert class field of
K that we discussed in Section 12.1

5. All the open subgroups of CK contain the connected component C0
K. This

tells us that, in dealing with open subgroups N of CK, we only have to deal
with the finite places and to keep track of signs at the real places. This
motivates the definition in the next section of the Ray class fields whose
union will be Kab.
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6. Roughly, Theorem 12.11.a tells us that to define an abelian extension
L of a global field K, you just need to choose the places where you allow
ramification and to prescribe the level of ramification.

12.6 Ray class field of extended ideals

In this section, we define ray class fields associated to an extended invertible
ideal pm,Σq of an order O of a number field K. We will see in the next
lecture that these ray class fields with K “ Qr

?
∆ds are precisely the fields

that occurs with d-dimensional HSICS.

A remarquable family of open subgroups of finite index of IK are the
principal subgroups Um,ΣpOq Ă UK defined as follows, see [42] or [27]. We
fix an order O Ă OK, an ideal m of OK and a subset Σ Ă ΣK,r of real places
K. Such a pair (m,Σq is called an extended ideal or a modulus.

To avoid a few technicalities, we will assume that the ideal m is invertible.
This means that there exists an ideal m1 of O such that the product ideal
m1m is a principal ideal of O. This condition is automatic when O “ OK.
It is also satisfied for the ideals of the form m “ dO for some integer d ě 1
that occur when studying HSICs.

One has an embbeding of the profinite completions

pm Ă pO Ă xOK,

and the profinite completion pm is an ideal of pO which is a subring of xOK.
One defines the open subgroup Um,ΣpOq of the group UK Ă IK introduced

in (12.4)

Um,ΣpOq “ pO˚
m ˆ t˘1u

ΣK,r∖Σ
ˆ I0K,8

where
pO˚
m “ tx P pO˚

| x ” 1 mod pmu

Definition 12.12. We denote by Hm,ΣpOq the finite abelian extension of K
associated by (12.6) to the open finite index subgroup

Nm,ΣpOq :“ K˚Um,ΣpOq{K˚
Ă CK.

This field Hm,ΣpOq is called the Ray class field of the extended ideal pm,Σq

of O. The quotient group

Clm,ΣpOq :“ CK{Nm,ΣpOq

is called the Ray class group of the extended ideal pm,Σq of O.
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We still denote by Art all the isomorphisms given by the Artin map

Art : Clm,ΣpOq
„

ÝÑ GalpHm,ΣpOq{Kq. (12.8)

Remark 12.13. In these notations, we may omit the ideal m when m “ O,
we may omit the subset Σ when Σ “ H, we may replace Σ by a ` when Σ
is the full set Σ “ ΣK,r.

First example: the Hilbert class field
When O “ m “ OK and Σ “ H, the group ClpOKq “ ClOK,HpOKq is the class
group of OK and the corresponding field HpOKq “ HOK,HpOKq is the Hilbert
class field of K. It is the maximal unramified abelian extension of K.

Second example: the narrow Hilbert class field
When O “ m “ OK and Σ “ ΣK,r, the group Cl`pOKq “ ClΣK,r

pOKq is called
the narrow class group of OK and the field H`pOKq “ HΣK,r

pOKq is called
the narrow Hilbert class field of K. It is the maximal abelian extension of K
which is unramified at all the finite places. The narrow class group can be
computed with the exact sequence

1 Ñ O˚
K{O˚

K,` Ñ t˘1u
ΣK,r Ñ Cl`pOKq Ñ ClpOKq Ñ 1 (12.9)

where O˚
K,` :“ tx P O˚

K | xv ą 0 for all real place v of Ku.

Third example: the Hilbert class field of an order
When O “ m and Σ “ H, the group ClpOq “ ClO,HpOq is the group of
classes of invertible ideals of O modulo the principal ideals, and the field
HpOq “ HO,HpOq is the Hilbert class field of the order O. The class group
of O can be computed with the exact sequence

1 Ñ O˚
K{O˚

Ñ xOK
˚

{ pO˚
Ñ ClpOq Ñ ClpOKq Ñ 1. (12.10)

Fourth example: any ray class field of an order
When O Ă OK is an order, m an invertible ideal of O and Σ a subset of real
places of K. The ray class group Clm,ΣpOq can be computed thanks to the
following exact sequences

1 Ñ O˚
{O˚

m Ñ pO{mq
˚

t̂˘1u
Σ

Ñ Clm,ΣpOq Ñ ClpOq Ñ 1 (12.11)

where O˚
m :“ tx P O˚ | x ” 1 mod mu.
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The exactness of (12.11) follows from (12.4), (12.5) and (12.10).
When the sign map O˚ Ñ t˘1uΣ is onto, the exact sequence (12.11)

simplifies as

1 Ñ O˚
{O˚

m,Σ Ñ pO{mq
˚

Ñ Clm,ΣpOq Ñ ClpOq Ñ 1 (12.12)

where O˚
m,Σ :“ tx P O˚

m | xv ą 0, for all v in Σu.

Note that different extended ideals m may give rise to the same subgroup
Nm and hence to the same extension Km

Exercise 12.14. Assume that K “ Q, O “ OK “ Z and m “ dZ with d ě 2.
aq Check that the quotient CK{C0

K is isomorphic to the mutiplicative group
pZ˚ of the ring pZ “ lim

Ð
Z{dZ.

bq Check that the extended ideal pdZ, t8uq corresponds to the cyclotomic
field HdZ,`pZq “ Qre2iπ{ds.
cq Check that the extended ideal pdZ,Hq corresponds to the cyclotomic field
HdZpZq “ Qrcosp2π{dqs.

Exercise 12.15. aq Check that Q “ HZ,`pZq “ H2Z,`pZq ‰ H4Z,`pZq.
bq Check that Q “ HZpZq “ H2ZpZq “ H4ZpZq ‰ H8ZpZq.
cq How do Points aq and bq fit with (12.6)?
dq Prove using (12.6) that every finite abelian extension of Q is included in
a cyclotomic field Qrζds (Kronecker-Weber theorem).

Exercise 12.16. aq Let K “ Qr
?
2s. Prove that the narrow Hilbert class field

of K is H`pOKq “ K.
. bq Let K “ Qr

?
3s. Prove that the narrow Hilbert class field of K is

H`pOKq “ Qri,
?
3s.

Exercise 12.17. Assume that O “ OK. Let m be an ideal of OK and Σ be a
set of real places of K. Check that Um,ΣpOKq “

ś

v Uv where

Uv “

$

’

’

’

&

’

’

’

%

R˚
` if v is archimedean v P Σ,

K˚
v if v is archimedean v R Σ,

1`mv if v is non-archimedean, mv ‰ OKv ,

O˚
Kv

if v is non-archimedean, mv “ OKv ,

and where mv is the completion of m in the ring OKv .
Indication: Note that, for almost all non-archimedean v one has mv “ OKv
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and that by the chinese remainder theorem, one has a canonical isomorphism
of rings

OK{m »
ś

v

OKv{mv (12.13)

where the product is over all the finite places of K.

Exercise 12.18. Let K be a real quadratic field.
aq Prove that the degree rH`pOKq : HpOKqs is equal to 1 or 2.
bq Prove that it is 1 iff there exists x P O˚

K such that NK{Qpxq “ ´1.
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13 The Artin map

In this lecture we give the precise definition of the Artin isomorphism which
parametrizes the Galois group of the abelian extensions of number fields.
This definition relies on the Artin reciprocity law which extends the Gauss
quadratic reciprocity law.

We will then explain how Class Field Theory should describe the abelian
extensions associated to HSIC, and how this Artin isomorphism should de-
scribe the Galois action on the correlations of a HSIC, according to [6] and
[28].

13.1 Local Artin isomorphism

We come back to the notation of Section 12.2. Let K be a local field and
L{K a finite abelian extension. We want to define precisely the Artin symbol

ArtK “ ArtL{K : K˚
{NLÑGalpL{Kq.

We recall that NL :“ NL{KpL˚q is the image in K˚ of the norm map.

We first assumeK archimedean. This case is easy since we have no choice.
When K “ R and L “ C, there is a unique way to identify two groups

with 2 elements. For a P R˚, the image of a by the Artin map is given by
the sign of a: one has ArtRpaq P GalpC{Rq and

ArtRpaq “ 1 ô a ą 0.

When K “ L “ R or when K “ L “ C there is nothing to define.

Assume now that K is non-archimedean. We recall that OK denotes its
ring of integer, π a uniformizer, κ “ OK{πOK the residual field and q “ |κ|.
One has then K˚ » πZ ˆ O˚

K .
We also recall that the Frobenius F P GalpL{Kq of an unramified exten-

sion L{K is the automorphism such that, for all x in OL, one has F pxq “

xq mod πOL.

Theorem 13.1. There are isomorphisms ArtL{K : K˚{NLÑGalpL{Kq that
are uniquely defined by the following three properties
iq When L{K is unramified,

ArtL{Kpπq is the Frobenius of L{K.
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iiq When L1 Ą L Ą K and a P K˚, one has

ArtL{Kpaq “ ArtL1{Kpaq|L.

iiiq When L Ą K Ą K 1 and a P K˚ then, setting a1 “ NK{K1paq, one has

ArtL{Kpaq “ ArtL{K1pa1
q.

Condition piiq tells us that the maps ArtL{K do not depend on L. This is
why we denote it by ArtK . This unique isomorphism ArtK “ ArtL{K is called
the Artin symbol. It identifies the profinite completion of the topological
group K˚ with GalpKab{Kq.

1. When the extension L{K is unramified and a P O˚
K , then ArtKpaq|L “ 1.

Indeed a belongs to NL. This explains why Condition iq does not depend on
the choice of the uniformizer π.

3. For a, b in K˚, one defines the quadratic Hilbert symbol

pa, bqK “

#

1 if x2 ´ ay2 ´ bz2 “ 0 has a non-zero solution in K

´1 otherwise

Hence one has
pa, bqK “

ArtKpaqp
?
bq

?
b

“
ArtKpbqp

?
aq

?
a

,

and this Hilbert symbol is a non-degenerate bilinear duality on K˚{K˚2.

Exercise 13.2. aq Compute K˚{K˚2 for K “ Qp for p odd prime.
bq Compute the Hilbert symbol pa, bqK for K “ Qp with p odd prime.
cq Compute K˚{K˚2 for K “ Q2.
dq Compute the Hilbert symbol pa, bqK for K “ Q2.

4. When K “ Qp, one has GalpQab
p {Qpq » pZ ˆ Z˚

p .
In case m ^ p “ 1 and a P Z˚

p one has

ArtQpppqζm “ ζpm and ArtQppaqζm “ ζm.

In case m “ p, one has

ArtQpppqζp “ ζp and, for p odd, ArtQppaqζp “ ζa
´1

p .

Exercise 13.3. Let K “ Q2r
?
5s and L“Kr

?
K˚s.

aq Check that K˚{K˚2 “ x´1, 2, 1`
?
5 , 2`

?
5y » F4

2.
bq Check that NL “ K˚2 “ x2, 1 ` 8OK , 3`

?
5y.

cq Compute the Hilbert symbol on K˚{K˚2.
dq Compute the Artin isomorphism ArtL{K .

162



13.2 Global Artin isomorphism

We come back to the notation of Section 12.5. Let K be a global field and
L a finite abelian extension of K. We can now give the precise definition of
the Artin map. We recall that CK :“ IK{K˚ denotes the idèles class group,
and that NL :“ NL{KpCLq is the image in CK of the norm map.

We just repeat the definition given in Theorem 12.11.c with the precise
definition of the local Artin symbols in Section 13.1.

Theorem 13.4. The local Artin symbols

ArtKv : K˚
v Ñ GalpLw{Kvq ãÑ GalpL{Kq

induce an isomorphism

ArtK : CK{NL Ñ GalpL{Kq

x mod NL ÞÑ ArtKpxq :“
ś

v ArtKvpxvq,

where x P CK is written as x “ pxvq mod K˚.

The fact, which is implicit in this theorem, that one has the product
formula

ś

v ArtKvpxvq “ 1 , for all x in K˚. (13.1)

is called the Artin reciprocity law. It is a far reaching extension of the
quadratic reciprocity.

13.3 Quadratic and cubic reciprocity laws

For instance let us explain why Equality (13.1) implies the quadratic and the
cubic reciprocity.

Application to the quadratic reciprocity
Let K “ Q. For p, q in N distinct odd primes one recall the Legendre
quadratic residue symbol

ˆ

p

q

˙

P t˘1u given by

ˆ

p

q

˙

” p
q´1
2 mod p.

One has then the quadratic reciprocity:
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Corollary 13.5.

ˆ

p

q

˙ ˆ

q

p

˙

“ p´1q
pp´1qpq´1q{4

Proof using (13.1). The quadratic Hilbert symbol, for a place ℓ of Q, is

pp, qqQℓ
“ ArtQℓ

ppqp
?
qq{

?
q P t˘1u

The Artin reciprocity tells us that these Hilbert symbols satisfy

pp, qqQp pp, qqQq pp, qqQ2 pp, qqQ8
“ 1.

But one can compute directly each one of these symbols.

pp, qqQp “

ˆ

q

p

˙

, pp, qqQq “

ˆ

p

q

˙

, pp, qqQ2 “p´1q
pp´1qpq´1q

4 , pp, qqQ8
“1.

This proves the quadratic duality.

Application to the cubic reciprocity
Let K “ Qrωs with ω2 ` ω ` 1 “ 0. Recall that its ring of integers Zrωs is
principal and that its group of units Zrωs˚ has order 6. Therefore every ideal
coprime to 3 has a unique generator which is equal to 1 mod 3.

For π, θ in Zrωs distinct irreducible elements that do not divide 3 and
such that π ” θ ” 1 mod 3, one defines the cubic residue symbol

´π

θ

¯

3
P t1, ω, ω2

u given by
´π

θ

¯

3
“ π

Npθq´1
3 mod θ,

where Npθq“#pZrωs{θZrωsq. Then, one has the cubic reciprocity law:

Corollary 13.6.
´π

θ

¯

3
“

ˆ

θ

π

˙

3

In particular, π is a cube modulo θ if and only if θ is a cube modulo π.

Proof using (13.1). We use the cubic Hilbert symbol for a place η of K.

pπ, θqKη :“ ArtKηpπqp
3

?
θq{

3
?
θ P t1, ω, ω2

u

The Artin reciprocity tells us that these Hilbert symbols satisfy

pπ, θqKπ pπ, θqKθ
pπ, θqKω´1 pπ, θqK8

“ 1.

But one can compute directly each one of these symbols.

pπ, θqKπ “

ˆ

θ

π

˙

3

, pπ, θqKθ
“

´π

θ

¯

3
, pπ, θqKω´1 “1, pπ, θqK8

“1.

This proves the cubic duality.
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13.4 HSIC and class field theory

In this section we explain, following [6] and [28], how class field theory for
the real quadratic field K “ Qr

?
∆ds with ∆d “ pd`1qpd´3q can be used

to describe, conjecturally, the various fields of definition associated to the
HSIC.

We come back to the notation of Lecture 10. Let d ě 4. We set d1 “ d
when d is odd and d1 “ 2d when d is even. Let ζd “ e2iπ{d and ηd “ ´eiπ{d.
Recall that the projective Heisenberg group PHd is the subgroup of the
projective unitary group PUpdq isomorphic to pZ{dZq2 generated by the two
matrices E “ pδj,k`1q and F “ pζjdδj,kq. Recall that the group PENd is
the normalizer of PHd in the projective extended unitary group PEUpdq,
and that the quotient group PENd{PHd is isomorphic to SL˘

p2,Z{dZq. For
p “ pp1, p2q in pZ{d1Zq2, the displacement matrix Dp “ ηp1p2d Ep1F p2 P Updq

is well defined.
Let P0 “ |v0yxv0| be a fiducial projector, this is a rank one projector such

that the correlations up :“ trpP0Dpq satisfy |up|
2 “ 1

d`1
for all in pZ{d1Zq2

with p ı 0 mod d.
We have defined the extensions

Q Ă K Ă E0 Ă E1 Ă E.

of the field K “ Qr
?
∆ds. The extension E is generated by ηd and the

entries of P0. The extension E1 is E1 “ σ0pE X Rq for some σ0 P GalpC{Kq

with σ0p
?
∆dq “ ´

?
∆d. The extension E0 is the field of definition of the

geometric class rP0s which is the PENd-orbit of P0. Conjecturally, the field
E is a Galois extension of Q, and the group GalpE{Kq is abelian, and its
action preserves the set of (hermitian) fiducial projectors Fd,h. Conjecturally
this set is finite.

Write ∆d “ f 2D0 with D0 fundamental discriminant so that f is the
conductor of the ring Zrεds. Let f 1 be the divisor of f associated to the
multiplet rrP0ss in Conjecture 10.9.

Conjecture 13.7. aq The field E0 is the Hilbert class field of the ring Of 1.
bq The field E1 is the ray class field of the extended ideal pd1Of 1 ,81q of Of 1.
cq The field E is the ray class field of its extended ideal pd1Of 1 ,81,82q.

When f 1 “ 1, Point aq means that E0 is the maximal unramified abelian
extension of K.
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When f 1 “ 1, Point bq means that the finite index subgroup NE1 Ă CK
of the idèles class group associated to E1 by (12.6) is the image in CK of the
subgroup of IK generated by 1 ` d1OKv at finite places v of K dividing d1, by
O˚

Kv
at all the other finite places, by R˚

` at the infinite place 81, and by R˚

at the other infinite place. And similarly for Point cq.

One can check this conjecture for d “ 5. Indeed in this case, one has
f “ f 1 “ 1, K “ Qr

?
3s and E1 “ Qrys where the minimal polynomial

of y over Q is the polynomial (12.3). We have seen that E1 is an abelian
extension of K with Galois group Z{8Z. The discriminant of this polynomial
(12.3) is equal to 2857, hence the field E1 “ Qrys is ramified over K only
at the archimedean place v “ 81 and at the finite place v “ 5. And we
have already computed in Exercise 12.5 the image of the norm map for the
completions at the place v “ 5.

Corollary 13.8. Assume Conjecture 13.7.
aq The Galois group GalpE0{Kq is isomorphic to the class group ClpOf 1q.
bq The Galois group GalpE1{E0q is isomorphic to the quotient of the multi-
plicative group pOf 1{d1Of 1q˚ by the subgroup image of O˚

f 1.

13.5 HSIC and Artin isomorphism

In this section we explain how the Artin isomorphism for the abelian ex-
tension of the real quadratic field K “ Qr

?
∆ds can be used to describe,

conjecturally, the action of the absolute Galois group of K on the phases of
a HSIC.

We come back to the notation of Section 13.4. And we assume Conjecture
13.7. In particular, we have two finite index subgroups corresponding to E0

and E1 in the idèles class group CK, the groups

N0 :“ N pOf 1q and N1 :“ Nd1Of 1 ,81pOf 1q,

so that the Artin map induces an isomorphism

Art : N0{N1
„

ÝÑ GalpE1{E0q. (13.2)

Note that there is a natural isomorphisms

pOf 1{d1Of 1q
˚

» N0{N1.
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Let z “

ˆ

0 ´1
1 ´1

˙

P GLp2,Z{d1Zq. This matrix satisfies z2 ` z ` 1 “ 0.

Let Ad1 :“ pZ{d1Zqrzs Ă Mp2,Z{d1Zq be the Zauner ring and let A˚
d1 be the

group of units, or invertible elements in the ring Ad1 .
As in Conjecture 10.27, we assume f 1 “ f . This assumption can probably

be weakened. It insures the equalities Of “ Zrεds “ Of 1 and hence rings
isomorphisms

Ad1 “ Of{d1Of » Of 1{d1Of 1 ,

Therefore this gives an isomorphism

ψ : A˚
d1 » pOf 1{d1Of 1q

˚
» N0{N1. (13.3)

We make the extra assumption 10.24 that P0 “ |v0 ąă v0| is strongly
centred.

Conjecture 13.9. For aPA˚
d1, pPpZ{d1Zq2, one has uap “ Artpψpaqqpupq.

In conclusion the action of
the Galois group on the phases ub

should be given by the Artin isomorphism.
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