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Abstract

Equiangular configurations of lines are geometric objects that were first dis-
covered in Quantum Computer Science in the late 1990’s. Understanding
the construction of these equiangular lines is still an open problem.

The aim of this graduate course is to introduce the mathematical tools
that allow us to better understand this problem and to deal with other similar
problems.

The basic tool is the Fourier transform on finite abelian groups. This
basic tool will be combined with more advanced mathematical tools like
Floer homology, theta functions, elliptic curves, modular forms, ray class
fields...

No need to know these advanced topics to read this course. The point of
view will be to give a comprehensive introduction and to use them as black
boxes. We will understand why these advanced topics are useful for concrete
questions instead of learning them in depth.
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Introduction

The aim of this graduate course is not to present a classical mathematical
theory as the semisimple Lie groups, the algebraic curves, the random walks,
the class field theory or the potential theory.

Instead we will present a few concrete problems whose statement looks
naive but are still partially conjectural. Eventhough these statements are
less accessible than what one could foresee at first glance, they give rise to
nice partial results whose proof will force us to learn useful mathematical
tools.

The aim of this course is to emphasize this lively and experimental aspects
of mathematics, and simultaneously, to emphasize the fact that the classical
mathematical theories happen often to be useful for solving concrete prob-
lems.

The concrete problems discussed in this course are related to the cyclic
group Z/dZ and can easily be checked for small values of the integer d. But
already for values like d = 11 they seem to be accessible only thanks to these
theorical tools.

More precisely we will successively discuss the following three elementary
problems of linear algebra. They take place in the d-dimensional hermitian
vector space C?. It will be convenient to identify this vector space C? with
the space C[Z/dZ] of complex valued functions f on the cyclic group Z/dZ.

Problem 1: Describe the biunimodular functions

These are functions f on Z/dZ with constant modulus equal to 1 and whose
Fourier transform also has constant modulus equal to 1. This can be written
as |f| = |f| = 1. Equivalently f is a function with constant modulus equal
to 1 which is orthogonal to its translates. Up to a scalar, there are only
finitely many biunimodular functions when d is prime. This problem finds
its roots in the theory of signal in the 80’s. It is also known in computer
science under the name “Cyclic d-roots” and in operator algebra under the
name “Circulant complex Hadamard matrix”.

Problem 2: Find critical functions.
These are non zero functions on Z/dZ with d odd whose convolution square
is proportional to their square. More precisely, we want the function f to
satisfy f=f(2¢) = Af?(¢). The proportionality constant X is called a critical
value. There are only finitely many critical values. This problem is related
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to theta functions.

Problem 3: Construct d? equiangular lines in C?.

This number d? is an upper bound of the number of lines in C? for which
the angles between two of them is constant. We will try to construct these
d? lines Cf;y, in C[Z/dZ] indexed by pairs (j, k) € (Z/dZ)* and given by the
formula f;;(¢) = e*™Y4f(¢ + k) where f is a function one needs to find.
Up to a unitary transformation of C¢, there should be only finitely many
such configurations, when d > 4. This problem finds its roots in quantum
computer science in the 90’s where it is known under the acronym “Sicpovm”.
This part of the course will contain very few proved results. We will instead
present what the experts expect. We will call it the equiangular dream.

These three problems are independent of one another but the analogy
between them is striking because they have many common features.
- Complex algebraic geometry plays an important role.
- The Galois group of Q and the p-adic fields too.
- When a function f is solution, the functions f;; are also solutions.
- When a function f is solution, its Fourier tansform ftoo.
- These problems can be numerically tested for d small.
- The complexity grows quickly with d.
- The known answers are only partial and uses unexpected tools.

These three problems have their own specificity and need black boxes.
- The first one needs symplectic geometry.
- The second one needs abelian varieties.
- The last one needs class field theory.



Part 1
Biunimodular functions

The first three lectures will deal with the Fourier transform on
cyclic groups, often focusing on the case where the cyclic group
G = Cy has prime order d = p which is particularly interesting.

In the first lecture we will check an uncertainty principle due
to Cebotarev. The main tool is the estimation of the p-adic val-
uation of certain determinants.

In the second lecture we will introduce a family of functions
on G called biunimodular, that have properties analogous to
the gaussian functions. They have constant modulus and their
Fourier transform too. We will check that the number of such
functions up to scalar is finite, and we will give a precise up-
per bound on this number. The main tools come from complex
algebraic geometry.

In the third lecture we will explain how to construct new bi-
unimodular functions by using intersection properties of Clifford
tori in the complex projective space. These properties rely on
Floer homology.

In this third lecture we will also introduce a family of functions
on G called biunimodular on Cy~{0}. They are functions that
vanishes at 0 and have constant modulus outside 0 and their
Fourier transform too. When d = p is prime, they have properties
analogous to the Dirichlet characters. We will focus particularly
on the case of odd-biunimodular functions.

By the same methods as above, we will check that the num-
ber of such functions up to scalar is finite, and we will give a
precise upper bound on this number. We will also construct new
odd-biunimodular functions. In this case a useful tool is an es-
timation of the p-adic valuation of Jacobi sums due to Kummer
and Stickelberger.



1 Finite Fourier transform

The first lecture deals with the finite Fourier transform.

We first study the quadratic Gauss sums, their relation with the Jacobi
symbols, and with the multiplicity of the eigenvalues of the Fourier transform
on the cyclic group Z/dZ.

Using Dirichlet characters, we then study the properties of the general
Gauss sums together with the Jacobi sums.

We end this lecture by proving the uncertainty principle for the finite
Fourier transform on a cyclic group of prime order.

1.1 Definition and properties

Let G be a finite abelian group of order d. The vector space C[G] of complex
valued functions on G is a hermitian vector space for the hermitian form
| £17% = 2ieq [ £ (7). The Dirac functions (4;)jeq form an orthonormal basis
of C[G]. This identifies the space C[G] with the standard hermitian vector
space C.

An important example is the cyclic group G = Cy = Z/dZ which is also
a ring. When d = p is prime, we will use the notation F, = Z/pZ. This ring
is then a field.
_ We first recall the definition of the finite Fourier transform on G Let
G = Hom(G, Z/dZ) the dual abelian group. For j in G and k in G, it will be
nice to denote by jk the element j(k) € Z/dZ. This notation is convenient
because, when G = Cy, the dual group has a natural identification with Cjy
so that jk is nothing but the product of 5 and % in the ring Cj.

We choose a primitive d"-root of unity (g, for instance ¢y = e%7/4.
Definition 1.1. The Fourier transform f of a function f : G — C is the
function f G—C giwen by, for all x in G

OB WG (1.1)

keG

As we said, the main interesting case in when both j and k& belong to
Z/dZ. The matrix F' of the Fourier transform in the orthonormal basis 1; is
given by

F = (G (12)



The finite Fourier transform on a finite abelian group G has many prop-
erties analog to the Fourier transform on R. They are easier to prove. Hence
we live them as exercises. We will use the following notation.

The convolution f=g of two functions f and g on G is given by

fx9 () = 2 f(G—=k)g(k),

keG

for all 5 in G.

Proposition 1.2. Let f, g be two functions on the finite abelian group G
and j € G.
a) The Fourier transform is unitary:

> () 30) = 3 fk)g(k): (1.3)

je@ keG

b) The inverse Fourier transform is given by

f (k) = f(k),for all k € G.

¢) The Fourier transform exchanges convolution and multiplication:
frg =\pfg and fg =5f+7.

Formula (1.3]) is called Plancherel Formula. Replacing g by g, it can be
written as a formula that does not involve complex conjugation:

3 F)at) = 3 Fk)a(-h). (1.4)

je@ keG

Exercise 1.3. Let G be a finite abelian group and ¢ in G.
a) Compute the Fourier transform of the character wy : k — (.
b) Let f, be the translate of the function f by an element ¢ € G. This function
fe is given by fe)=f(j— E) for all j in G.
Prove that f, = w,f and wyf (j) = f (j +¢) for all j in G.

Ezercise 1.4. Let a € (Z/dZ)* be an invertible element of the ring G = Z/dZ.
Let f be a function on Z/dZ and f, be the function j — f(aj), for all
j € ZJdZ. Prove that f, (j) = f (a™'j).
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1.2 (Gauss sums

We know that the Fourier transform has order 4. We want to compute the
multiplicity of each of the 4 eigenvalues +1 and +i.

We will need the formula found by Gauss in 1801 that computes the
quadratic Gauss sums.

Lemma 1.5. For d > 2, let (g = e*™¢ and gy be the normalized quadratic
Gauss sum gq = \/ig > C(’f. Then one has

1<k<d
1 when d =1 mod 4,
B 1+ )0 when d = 2 mod 4, (1.5)
94 =15 "1 when d = 3 mod 4, '

1+ when d = 0 mod 4,

There are many proof of this formula. The following one is due to Cauchy
in 1840.

Proof. For a real nuber ¢, we denote by {t} := ¢t — [t] € [0,1) its fractional
part. We want to comput gg = G4(0)/v/d, where Gy4(t) is the function on R
given by
. 2
Galt) = 3, e,

0<k<d

This function Gg4(t) is 1-periodic, is continuous and is piecewise C!. Tts
Fourier coefficients a,,, for n € Z are equal to

1 ' d 2 '
a, = J Gd (t)€f227mtdt _ J €2z7r7672mntdt
0

0
) —nd/2+d 2
. T
_ anf 6227Tdd8,

—nd/2

where we used the variable s = t — nd/2.
The factor i~"? is equal to 1 for n even and to i~% for n odd. Therefore by
the inverse theorem for Fourier series, one has

Gq(0) = > a,=(1+ z'd)J 27 ds.

nez —00

Therefore one gets

0

gi = GaO)Nd = (1+i9 J (2 g

—00
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We notice that this semiconvergent integral does not depend on d. We can
evaluate it by specializing this equality for d = 1, and we obtain g4 = 11+_ZZ.
as required. O

It is not so surprising that g4 has this form a + b7 with a and b integers,
because gq4 is the trace of the Fourier transform F' that has order 4. Knowing
precisely g4 is equivalent to knowing the eigenvalues of F'.

Proposition 1.6. Let d > 2. The eigenvalues with multiplicity of the Fourier
transform F on Z/dZ are given by the integer 1 followed by the sequence i~
with 2 < ¢ < d.

This means that the eigenvalues of F' are the first d elements of the list:

1,-1,4,1,—,—1,i,1,—i,—1,3,1,...

Proof. We only need to check that for 0 < ¢ < 3 the trace of the /**-power
of the Fourier transform tr(F*) is equal to the sum of the ¢**:-power of this
sequence.

One checks that tr(F°) = d and tr(F?) = L fordodd =4 e
2 for d even
computes tr(F) = g4 and tr(F®) = g thanks to Lemma [1.5] O

The following lemma is a variation of Lemma [1.5

Lemma 1.7. Ford > 1, let ng = —e"™/%. One has the equality

_jrd=L
Loy g = e (16)

1<k<d

It is not surprising that the left-hand side ¢; has modulus 1 because the
Fourier transform is an isometry and the function g4 : k — 7752 has Fourier
transform gy = ¢4 ga.

Proof. The proof is the same as for Lemma [1.5] with the periodic function
)2 .
Gd(t) _ Z eiﬂwem(k+{t}).
0<k<d

—nd+d/2 2
. . 4 jr S
whose Fourier coefficients are a,, = e~ 4J e ds. O
—nd—d/2
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FEzercise 1.8. (Fourier transform of the Legendre character) Let p be an odd
prime and xo : F, — C be the Legendre character

1 when £ # 0 is a square,
Xo(k) = (ﬁ) = -1 when k is not a square,
0 when £ = 0.

a) Prove that Yo = xo when p =1 mod 4.
b) Prove that Yo = ixo when p = 3 mod 4.
Indication: Use Lemma [L.5l

Ezercise 1.9. (Fourier transform of gaussian functions)

Let G = Z/dZ with d > 2, ¢ = £1 and 7y = —e'™<.

a) Prove that the function g. : k — 1" is well-defined on Z/dZ.

b) Prove that §. = e ="T g__.

Ezercise 1.10. Let G = Z/dZ with d > 2. For u € {+1, +i} a fourth root of
unity, we introduce the eigenspace of the Fourier transform E, = {f € C[G] |
f = uf}. We denote by [x] the integral part of a real number z.

a) Prove that dim F; = [24] and dim E_; = [£2].

b) Prove that dim E; = [#1] and dim E_; = [£].

The following exercise is a variation on the Genocchi-Schaar equality.

Exercise 1.11. Let ¢, d be positive integers, 1, = —e'™¢ and n; = —e'™/?.
Prove the following equality that generalizes both (1.5 and (|1.6)):
1 ck?  _  —im&dol —dj?
—= i = e T n, Y. 1.7
Vi 1<§<d I ve 13@ (L7)

Indication: The proof is the same as for Lemma [1.5] with the periodic func-
tion

C(k+{t)3%c .
Gc,d(t) _ Z elw%ezw(k-‘r{t})c_
0<k<d

1.3 Jacobi symbol

As an application of Gauss formulas, we introduce the Jacobi symbol and
prove its reciprocity law. The Jacobi symbol is a natural extension of the
Legendre symbol to non-prime integers. The Jacobi symbol is simpler to deal
with because when applying the reciprocity law we do not have to factorize
the numerator in prime factors.

14



As before, we set (; = €*™/?. We denote by G the ring G = Z/dZ
and by G* = (Z/dZ)* its group of units. Its order is the Euler totient

o(d) =d[],,(1 —1/p).
We recall that the minimal polynomial of (3 over Q is the cyclotomic
polynomial ®4(z) := ][] (z — ¢j) whose degree is ¢(d). The field extension

ceG*

Q[¢4]/Q is Galois. Its Galois group is isomorphic to G*. For ¢ € G* we
denote by 0. € Gal(Q|[(4]/Q) the corresponding field automorphism defined

by the equality o.((s) = (5.

In this section, we will only deal with (d)dd integer d € Z. We introduce
the square root of the element d* := (—1)%1d which is given by the Gauss
sum (|1.5))

S (@-1)? +4/d ford=1 mod 4
* frm— pr— 1-
d iV { +iv/d for d =3 mod 4 (1.8)

According to Gauss formula (|1.5]), this element belongs to Q[(y]. Therefore,
one has o.(vd*) = £1/d*.

Definition 1.12. For any odd integer d and any integer ¢ prime to d, the
Jacobi symbol (5) € +1 is defined by the equality o.(Vd¥) = (5)\/%

Remark 1.13. This choice of sign for v/d* is not important for the definition
of the Jacobi symbol. It will be useful for the proof of the reciprocity law.

The Jacobi symbols has the following properties.

Proposition 1.14. Let d € Z be an odd integer and c € Z be coprime to d.
a) When d = +1, one has (5 = 1.
b) When d = p is prime, the Jacobi symbol equals the Legendre symbol:

(}—i) =1 if and only if ¢ is a square mod p.

c) When ¢ = cicq, one has

d) When d = dids, one has
@ = @&
e) When c is also odd, one has the reciprocity law:

OO = (-1

15
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f) When ¢ = —1, one has the first complementary law: (=) = (—1)

g) When ¢ = 2, one has the second complementary law: 2) = (=1)"s .

Proof. a) When d = +1, One has (; = 1.

b) By Galois theory, since the subextension Q[+/p*]/Q has degree 2, the
stabilizer H* = {c € G* | o.(y/p*) = +/p*} is a subgroup of G* of index 2.
Hence, since G* is a cyclic group, H* is the group of squares.

¢) This property follows from the equality o. = 0., 0,.

d) The field Q[{y] contains both Q[(s] and Q[(4,], and this property
follows from the equality d* = d d;.

e) We write Gauss formula for the odd integer cd. The sum is over
J € ZJcdZ. Since each integer k € Z/cdZ can be written in a unique way as
k = kid + kyc with ky € Z/cZ and ko € Z/dZ, and since one has the equality
k = kid*+kic* in Z/cdZ, one gets the following relation between three gauss

sums
Z e2imk?fed Z e2imkid/c Z e2imk3c/d

1<k<ecd 1<k <c 1<ko<d

Using Gauss formula ([1.5)), this can be rewritten as
VedF = 0. (Va*) oa(Ve*) = @ ver Var.

Since (cd)* = (—1)(67”4&0%*, this gives the reciprocity law (L.9).

e) The Galois transformation o_; is the complex conjugation. Hence one
has o_, (Vd*) = (—1)%\/5 which is the first complementary law.

g) Since d is odd, Formula can be written as

o = i = i TE = (<)

1<k<d

/2 and hence o9(ng) = (4 and

oo X)) = X =V

1<k<d 1<k<c

Since d is odd, one has 1y = Céd“)

d2—1

Comparing these two formulas gives o3(vd*) = (—1) s +/d*, which is the
second complementary law. O]

We can not avoid to state the quadratic reciprocity in its original form
as conjectured by Euler and Legendre and later proved by Gauss.

16



Corollary 1.15. Let p and q be odd primes.
When one of them is equal to 1 mod 4, one has the equivalence
p is a square mod q if and only if q is a square mod p.
When both of them are equal to 3 mod 4, one has the equivalence
p s a square mod q if and only if q is not a square mod p.

1.4 Gauss sums and Jacobi sums

In this section we compute the Fourier transform of Dirichlet characters.
This will allow us to study Gauss sums and Jacobi sums. As a by product
we will give a proof of the two squares theorem.

Let G = Z/dZ with d > 2. This group G is also a ring and its set of units
G* := {j € G| j is prime to d} is an abelian group for the multiplication.
The order of G* is the Euler totient ¢(d).

Definition 1.16. A Dirichlet character of G is a map x : G — C which 1is
a character on G* and which is zero outside G*.

This means that x is supported by G*, x(1) = 1 and x(jk) = x(j)x (k) for
all j, k£ in G*. We may think of a Dirichlet character as a periodic function
on Z.

Definition 1.17. A Dirichlet character is induced if there exists a Dirichlet
character X' of a proper quotient G' = Z/d'Z of G = Z/dZ such that x(j) =
X'(j) for all j prime to d.

A Dirichlet character is primitive if it is not induced.

For instance, when d = p is prime all the Dirichlet characters on G are
primitive except the trivial character,

For Dirichlet chacters x, x1, X2 , we introduce now the Gauss sum G(y)
and the Jacobi sum J(x1, x2) by

Glx) = VdX(1) = Yyeax(k)Ch,
Jxi,x2) = xi*xe(l) = ZkeGXl(l_k)X2(k)a

The primitive Dirichlet characters are those for which the Fourier trans-
form has a simple formula.

17



Proposition 1.18. Let x, x1, X2 be primitive Dirichlet characters with x1x2
also primitive.

a) The Fourier transform of x is X = Xy

_X.

P

b) The Gauss sum has absolute value |G(x)| = Vd.

¢) The convolution is given by x1 * x2 = J(X1, X2)X1X2-

d) The Jacobi sum is a ratio of Gauss sums J(x1, x2) = %

e) The Jacobi sum also has absolute value |J(x1, x2)| = Vd.

Proof. a) By exercise[L.4] one has Y(az) = X(a)X(x) for all a in G* and z in
G. Hence, since y is primitive, the Fourier transform Y is zero outside G*
and therefore is proportional to . One has ¥ = x(1) .

b) follows from a) and the unitarity of the Fourier transform.

c¢) and d) follow from Fourier applied to the equality 71Xz = % X1X2-
e) follows from b) and d). O

Here is a concrete application of these calculation, which is Fermat’s two
squares theorem.

Corollary 1.19. Let p be a prime p = 1 mod 4. Then there exists integers
a and b such that p = a* + b*.

Proof. Since p is prime, the multiplicative group F} is cyclic of order p — 1.
Let go be a generator of this group. Since 4 divides p — 1, there exists a
unique Dirichlet character y on F, such that x(go) = i = ¢™2. By definition
the Jacobi sum J(x, x?) belongs to Z[i]. One can write J(x,x?) = a + bi
with a and b integers. By Proposition EL since the three characters y, x?
and Y3 are primitive one has a? + b* = p. O

Note that when p = 3 mod 4, one cannot write p as a sum of two squares,
because 3 is not a sum of two squares in Z/4Z.

Exercise 1.20. Let x1, x2, be two Dirichlet characters on [F,,.
Prove that J(x1, x2) = x2(—1)J (X1 X2, X2)-

1.5 An uncertainty principle

The well known Heisenberg uncertainty principle is a physical principle that
says that one cannot know simultaneously with a great precision the position

18



and the speed of a particule. It reflects a classical mathematical inequality:
for a function f in the Schwartz space S(R), one has

1
lefllz2 1£ 12 = 11z

This inequality [which is a consequence of Cauchy-Schwarz inequality to-
gether with an integration by part: §|f|*> = — {2 ff'+ aff ] can be restated
in terms of the Fourier transform f on the abelian group R. It tells us that

A 1
[efle2 2 flez = 51F12

This inequality says that f and J? cannot both be concentrated near 0.

There is also an uncertainty principle for the Fourier transform on the
prime field F,,. For a function f on F,, we denote its support by

supp(f) = {z € F, | f(z) # 0}.

We claim that the support of f and f cannot be simultaneously small.

Proposition 1.21. Let f : F, — C be a non-zero function, then one has

~

#supp(f) + #supp(f) = p+1. (1.10)

This proposition was formulated that way by Biro and Tao in the early
2000’s, but was already known to Cebotarev one hundred years ago. The
formulation of Cebotarev was more algebraic

Lemma 1.22. (Cebotarev, 1925) When p is prime, all the minors of the
Fourier matrix F' are non-zero.

This means that for all subsets A and B of I, with same cardinality, the

square submatrices Fa p = \%(Cﬁk)je Akep are invertible.

Why Lemma implies Proposition [1.2]]
This is a simple remark. We denote by A€ the complementary of a subset A in
F,. If a non zero function f has support in a set B and its Fourier transform

f has its support in a set A¢ with same cardinality #A = #B, then f gives
a non zero element of the kernel of the square submatrix F4 p. O
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First proof of Lemma[1.29 The following tricky and elementary proof is due
to Tao. We denote by j; < --- < j, the elements of A and by k1 < --- < ky
the elements of B. We introduce the polynomial in ¢ variables given by the
determinant

o
A(I‘h...,l’g) = 9 (]‘1]‘>
P g

and we introduce the polynomials in 1 variable
Ao(z) = Aa?, ... 2. (1.12)
First step We will prove that, setting L = (¢ — 1)¢/2, one has
Ao(1+y) = Cy* + O(y*™) where C € Z is coprime to p. (1.13)

Since the polynomial A is zero on the hyperplanes z,, = x,, performing
successive divisions, we can write

Az, ... m) = Flxy,...,xe) ] (0 —xm) (1.14)
1<m<n</
with F(xq,...,x¢) in Z[xq,. .., x¢]. In particular, one has
No(x) = Fo(x) ] (afn —aPm),
1<m<n<{

where Fy(x) := F(x/',...,2%) € Z[x]. This proves (1.13) except for the
congruence condition on the constant C'. It remains to prove that

Fy(1) # 0mod p. (1.15)

For that we plan to give a formula for this quantity Fy(1) = F'(1,...,1). For
that, we introduce the differential operator

D = <I161)0($202)1(x3(33)2 c. (l’g(’)l)gil. (116)

We apply this operator to the determinant A(xy,...,z,), and evaluate the
resulting polynomial at the point (1,...,1).
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On the one hand this operator multiplies each coefficient 2% of the matrix
in (1.11]) by a factor ™. Therefore one has

N
DA(1,...,1) = | : Cl. (1.17)
kf—l kf‘l

One computes easily this Vandermonde determinant

DA(1,...,1) == J] (ky—kn) # 0mod p. (1.18)

1<m<n</

On the other hand, using the equality ((1.14)

DA(1,...,1) == F(1,...,1) [ (n—m). (1.19)

1<m<n<{

This proves that Fy(1) # 0 mod p and finishes the first step.
Second step We want to prove that
Ao(¢,) # 0. (1.20)

Assume by contradiction, that Ag(¢,) = 0 or equivalently that Fy((,) =
0. Since the cyclotomic polynomial ®,(z) = 2P~' + -+ + 1 is the minimal
polynomial of ¢, over Q, it divides Fj, that is

Fw) = @,(2) Gola), (121)
with Go(x) in Z[z]. In particular, one has
Fyo(1) = 0 mod p.

This contradicts ([1.15)). O

Ezercise 1.23. Prove that a strong uncertainty principle as ([1.10]) is not valid
on an abelian group G whose order d is not prime. Indeed choose f to be
the characteristic function f = 1y of a proper subgroup H of G and check

~

that # supp(f) + # supp(f) < d.
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1.6 Using local fields

Tao’s proof is a simplification of Cebotarev’s proof. Cebotarev’s proof of the
first step was based on more explicit calculation. Cebotarev’s proof of the
second step relied on a few useful and classical facts on local fields that we
explain now. By definition a local field is a topological field that is locally
compact.

The field Q, of p-adic numbers We first recall briefly the definition
of the local field Q,. The field QQ, is the completion of QQ for the ultrametric
absolute value |.|, given by |p"¢|, = p™" for all non zero integers a b.

Recall that an absolute value on a field K means a real positive valued
map x — |z| on K such that, |0| =0, [1| =1 and, for all z, y in K

lzy| = |z||y| and |z +y| < [z]+ |yl (1.22)

It is ultrametric if it satisfies the strenghtened condition |z+y| <max(|z|, |y|).
By construction, the non zero elements x of Q, are the formal sum

T = app" + A1 p" T+ Apgop" T
where n € Z, and all a,, are in {0,...,p — 1} with a, # 0. The ultrametric
absolute value |z| = |z|g, of this element x is given by

|zlg, = p™"
This defines an ultrametric distance on Q,, given by d(x,y) = p~* where ¢ is
the first label where the expansions of x and y differ.

The elements of N[z—lj] are exactly those elements of @Q, for which the
formal sum is finite. This subset N[%] is dense in QQ,. The addition and the
multiplication on N [%] extends continuously in a unique way to Q,. This
endows Q, with the structure of a topological ring. One checks then that Q,
is indeed a locally compact field. With this topology, one can reinterpret the
formal sums (|1.6]) as convergent series. The compact subring Z, := {x € Q, |
|z| < 1} is called the ring of p-adic integers. It is a principal ring.

p-adic fields By definition a p-adic field is a finite extension of Q,. We
also need a few well known facts on these fields.

For an extension K /K of fields of finite degree n = [K : K], the field
K is a n-dimensional Ky-vector space. For x in K, the multiplication by x
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is an endomorphism m, of this Ky-vector space. By definition the norm of
x is the determinant of this endomorphism.

Nk, (x) = det(m,)

Fact 1.24. Let K be a finite extension of Q, of degree n.
a) There exists a unique absolute value |.| = |.|x on K satisfying (1.22)) that
extends the absolute value of Q,. It is given by

1/n
2l = [N/, (@)]g)"

b) The topological field K is then a locally compact field.

¢) The set O = {x € K | |z| <1} is a principal ring which is both compact
and open. It is called the ring of integers.

d) The set mg = {x € K | |x| < 1} is a principal ideal of Ok which is both
open and compact.

Fact 1.25. a) When 7 is a uniformizer, i.e. when myg = w0k, one has
\7| = p~ ¢ for an integer e = 1 called the ramification index of K/Q,.

b) Let k be the residual field of K, that is the quotient k := Ok /mg. It is a
finite extension of the residual field ¥, := Z,/pZ, of Q,. The degree f of the
extension k/IF, is called the inertia index.

¢) One has the equality n = ef.

The finite extension [K/Q,] is said to be totally ramified if f = 1 and
totally unramified if e = 1.

The following fact tells us that one can deal with elements of a number
field in a very concrete way, very much like with the p-adic numbers.

Fact 1.26. Let K be a finite extension of Q,, let e be its ramification index,
let ¢ = p/ be the cardinality of its residual field k, let ™ be a uniformizer
of K and let S < Ok be a subset of cardinality q containing 0 such that
Og =85+ 70k.

a) The non zero elements x of K can be written in a unique way as
_ n n+1 n+2
T =S, T ~+ Sp+1T + SpyoT + -

where n € Z, and all s,, are in S with s, # 0.
b) The absolute value |x| = |z|k of this element x is given by

x| = pe
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A ramified cyclotomic extension of (Q, We are now ready to un-
derstand Cebotarev’s proof. It will rely on the following lemma. Instead
of considering the primitive p*-root of unity ¢ as an element of C we now
consider it as an element of the algebraic closure @p of Q,

Lemma 1.27. Let K = Q,[(] be the extension of Q, obtained by adding a
primitive p-root of unity (.

a) Then K is an extension of Q, of degree p — 1.

b) This extension is totally ramified: its residual field is F,,.

c¢) The element w:= (—1 is a uniformizer: one has |r|=p~"/ -1,

Proof of Lemmal[1.27 We will give two proofs of Point a).
a) Let
Pp(z) =aP' 4+ 41

be the cyclotomic polynomial. We want to prove that this polynomial is
irreducible over Q,. The polynomial

Fly) =@y +1) =y + (2 )y 2+ + (% )y +p

is an Eisenstein polynomial. This means that all its coefficients are prime to
p except the last one which is divisible by p but not by p?. By the Eisenstein
criterion, such a polynomial is always irreducible over Q,,.

a), b) and ¢) The element m = (—1is aroot of F. The elements m; = (*—1
are also roots of F', for 0 < ¢ < p. Since the ratios m;/7 and 7/m; are in O,
all the absolute values |m;| are equal. Since the product of these roots is

M = (<1P7p,

one gets || = pp%ll. This proves that the ramification index of K/Q, is p—1,
and that 7 is a uniformizer. This also proves that the degree [K : Q,] is
p—1. O

Cebotarev’s proof of Proposition |1.21)
The first step of the proof is the same. We introduce the polynomial Ag(x)
in one variable given by the determinant

ikt Lo ik

Ag(x) :=

ajjfkl e l‘jékf
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We want to prove that Ag(¢,) # 0. Let L = (¢ — 1)¢/2. We know by the
calculation ((1.13)) in the first step of the proof that

Ao(1+y) = Cy* + O(y*™) where C € Z is coprime to p.

The key idea for the second step in this proof is to reinterpret this equality
in the local field K = Q,[¢] where ( is a primitive p*™ root of unity. According
to Lemma [.27] one has ( = 1 + m where the element 7 is a uniformizer in
K. Hence one has

Ao(¢) € Crt + 7l Ok,

where O is the ring of integers of K. Since the integer C'is prime to p, this
implies that |Ag(¢)| = |7%| = p~/®=V. In particular, one has Ay(¢) # 0. O

Ezercise 1.28. a) Compute the expansion of x = —1 in Q3.

b) Compute the expansion of x = 1/2 and x = —1/2 in Qs.

¢) Compute the expansion of x = 1/3 and z = —1/3 in Qy;.

d) Prove that an element z in Q, has an ultimately periodic expansion if and
only if z is rational.

Ezercise 1.29. Let p be an odd prime.
a) Show that the group of squares (Q
multiplicative group Qj.

b) Prove that Q, has exactly 3 quadratic extensions.
¢) How many are ramified?

*

*)? is a subgroup of index 4 in the

Exercise 1.30. Let K be a p-adic field and O its ring of integers. Prove
that an element x € O is invertible in O if and only if |z| = 1. Such an x
is called a unit. The group of units is denoted Oj.

Ezercise 1.31. Let £ > 2 and K = Q,[y] where y* = p.
a) Show that K is an extension of Q, of degree /.
b) Show that this extension is totally ramified.

Ezercise 1.32. (Hensel lemma) Let K be a p-adic field, O its ring of integers,
and k its residual field. Let F[X] € Og|[X] be a unitary polynomial of degree
d and F(X) € k[X] be its reduction modulo my. Assume that F(X) has d
distinct roots in . Show that, for every root & € k of F, there is a unique
root x of F'in Ok that lifts .

Indication: apply Newton method to obtain better and better approximate
roots of F' starting from any lift of £.
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Ezercise 1.33. (Unramified extensions) Let K be a finite extension of Q,, e
its inertia degree, k its residual field and ¢ = p°.

a) Show that the equation 27 = z has ¢ roots in K.

Indication: use Hensel Lemma.

b) Let Ky = K be the subfield spanned by the (¢ — 1)®-roots of unity. Prove
that Ky is a Galois extension of Q, of degree e.

c¢) Prove that the extension K,/Q, is totally unramified while the extension

K /Ky is totally ramified.
Notes to Chapter [1. [44] and [43].
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2 Biunimodular functions

The aim of this lecture is to introduce a family of functions on Z/dZ called
biunimodular that have properties very similar to the gaussian functions.
They are part of a larger family called H-functions.

We first give equivalent definitions and a few examples.

We then prove that, when d = p is prime, there are only finitely many
‘H-functions. We give a formula for this number of H-functions.

2.1 Definition and properties

Let G be a finite abelian group.

Definition 2.1. A function f : G — C is unimodular if |f(€)| = 1 for all

(e G. The function f is biunimodular if both f and its Fourier transform f
are unimodular.

It is natural to extend Definition 2.1]

Definition 2.2. A function f:G— C is a H-function if there exists g : G —
C such that R
fg=1land fg=1. (2.1)

Here the function g is the function g(k) = g(—k).
When f is unimodular, one has the equivalence

£ 1s biunimodular if and only if f is a H-function.

Indeed when g(k) = f(—k), one has §(k) = f(k).

The biunimodular functions, with G = Cj are interesting in transmission
theory, because of the following property

Lemma 2.3. A unimodular function f : G — C is biunimodular if and only
if one has

S k0 f(k) = 0 forallleG,+0. (2.2)
keG

Geometrically, Condition ([2.2) means that the translates of f form an
orthogonal basis of (?(G).

Lemma is a consequence of the following lemma that gives an equiv-
alent definition for H-functions.
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Lemma 2.4. A function f:G—C* is a ‘H-function if and only if

M fk+0)/f(k) = 0 forallleG,+#0.. (2.3)
keG

Proof of Lemma 2.4 Let f : G — C* be a non-vanishing function on G
and set g := 1/f. Since the function v/d f § is the Fourier transform of the
convolution f = g, Equation (2.1)) is equivalent to

fg=1 and f=qg=ddy.

Taking into account the Plancherel formula ([1.4)), this last condition is equiv-
alent to Condition (12.3)). O

A H-function is said to be normalized if f(0) = 1. By multiplying a
‘H-function by a scalar one can always normalize it.

Exercise 2.5. A cyclic d-root is a function z : Cy — C such that,

Do zjzipe=0for0<l<dand 2z ---2z4=1.
jeCyq

Check that the formula z; = f(j+1)/f(j) induces a bijection between the
set of H-functions f with f(0) = 1 and the set of cyclic d-roots z.

Finding explicitely all the cyclic d-roots was a challenge test for computer
formal calculation and algorithms around 2000, where the case d = 9 and
d = 10 was found by Faugere in [19)].

2.2 Elementary biunimodular functions

The notion of biunimodular functions was introduced by Per Enflo in the
80’s in relation with the “circulant complex Hadamard matrices”.

Gaussian functions The simplest examples of biunimodular functions
on G = Z/dZ with d > 2 are the gaussian functions as in Exercise [L.9 Let
ng = —e'™?. Those are the functions of the form

Gae t k> TR (2.4)

for some a in (Z/dZ)* and ¢ in Z/dZ.

When d = p is prime there are (p — 1)p gaussian functions.
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Bjorckian functions Per Enflo asked for the existence of other biuni-
modular functions, when d = p > 2 is prime. Bjorck answered in 1989 by
classifying in [16] the biunimodular functions h that are invariant by multi-
plication by squares.

Indeed writing h = do + a 1gx + bxo, with xo the Legendre character. one
l—a+pa

computes h = N do + 1’7; 1gx + bXo Using exercise one compute Xo.

When p = 1 mod 4, one has Xy = X and there are four such biunimodular
functions: the following two functions hy and their complex conjugates.

:

pt

hi:50+fp1]ﬁ‘;"+i 1Tp X0

/P

These functions are even and satisfy f/L; =hg.

When p = 3 mod 4 one has Yo = i)y there are four such biunimodular
functions: the following two even functions h4 and their complex conjugates

hi:(;()-f—;]_]p;fill VP Xo-

1+i\/p 1+iy/p
We introduce the slight variations h ;j of these functions, where j, k € I,
haji i £ ™YP (0 + k). (2.5)

For all prime p > 7, this gives rise to 4p? new biunimodular functions that
we call the Bjorckian functions.

Ezercise 2.6. Let u e C with |u| = 1 and let j = 5"

a) Prove that the function (1,u,—1,u) is biunimodular on Cj.

b) Prove that (1,1, u,J, 5% u, 52, j,u) is biunimodular on C.

c¢) Prove that there exist infinitely many normalized biunimodular functions
on Cy when d = p" is a prime power with r > 2.

d) Extend this assertion to the case where d has a square divisor.

Exercise 2.7. Let f; and fy be two biunimodular functions respectively on
two finite abelian groups G; and 5. Prove that the product function f given
by f(ki, k2) = fi(k1)f2(k2) is a biunimodular function on G x Gs.

2.3 Finiteness of biunimodular functions

The aim of this section is to prove the following theorem due to Haagerup in
2008 .
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Theorem 2.8. When p is prime, the set of normalized H-functions is finite.

From this theorem, one deduce directly the following corollary. Note that
it is not clear how one could prove the corollary without proving first the

whole Theorem 2.8

Corollary 2.9. When p is prime, the set of normalized biunimodular func-
tions is finite.

The proof of Theorem relies on the following proposition.
We introduce the vectorspace £ = C[F,] and its affine subspace

By = {f e C[F,] [ f(0) = 1}.

We also introduce the affine space

Fri={(fo,90) € Ex E| fo(0) =1 and >, fo(z) = > go(2) }.

weFy e,
Note that dim(F}) = 2dim(E;) = 2p — 2.
Proof. The map
o xE — F (2.6)
(f.9) = (f5.59)
is a well-defined proper map. n

This means that the inverse image ®~(K) of a compact set K of E x E
is a compact set. The presence of § in the formula is not important for the
properness of ®. But this is what we need for the proof of Theorem [2.8 The
fact that the image is included in F; will play a crucial role in Theorem [2.17]

Proof of Proposition[2.3 Using the Plancherel formula (|1.4), we first note
that by ®(E; x Ej) is included in F}.
Let f, and g, be sequences in F-; such that

®(fn, gn) is bounded. (2.7)

We want to prove that both f,, and g,, are bounded. Assume by contradiction
that one of them is not bounded. This implies that
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where | f| is any norm on E. We introduce the functions

_ I
|72l

After extraction, one can assume that these sequences of functions converge
to two non zero functions

In

and v, = —.
[gn|

Unp,

Uy = lim u, and vy, = lim v,.
n—ao0 n—ao0

Since the Fourier transform is continuous one gets

Up = lim u, and U, = lim 0,.
n—0o0 n—00

Therefore Equality implies that
Uy Voy = 0 and Uy, 0y = 0.
This implies that both
#supp(ug) + #supp(ve) < p  and

# supp(Ue) + #supp(Ve) < p.

These inequalities contradict the uncertainty principle (1.10]) either for wuy,
or for vy. O

2.4 Using dominant morphisms

To go on our understanding of biunimodular functions, we will need a useful
and classical theorem from complex algebraic geometry.

We recall a few basic definitions. A Zariski closed subset X < C? is the
set of zeros of a family of polynomials on C?. Such a subset is also called
an affine algebraic variety or an algebraic subvariety of C?. One denotes by
C[X] the algebra of algebraic functions on X. Those are the restrictions to
X of polynomial functions on C¢.

A Zariski open set U — C? is the complementary of a Zariski closed set.
This defines a topology on C? called the Zariski topology.

For instance, a non empty Zariski open subset of C has finite complemen-
tary.
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An algebraic morphism ¢ : X — Y between two affine algebraic varieties
is a map whose coordinate maps are given by algebraic functions on X.
Such a morphism induces an algebra morphism ¢* : C[Y] — C[X] given by
©*(F) = Foep.

Definition 2.10. An algebraic morphism ¢ : X — Y between two affine
algebraic varieties is called dominant if its image o(X) is Zariski dense in' Y
or, equivalently, if the map ©* is injective.

The following fact due to Chevalley is the main result of abstract elimi-
nation theory.

Fact 2.11. Let ¢ : X — Y be a dominant morphism between two algebraic
varieties. Then the image o(X) contains a non empty Zariski open subset U
of Y.

More precisely the image ¢(X) is constructible. This means that o(X)
is a finite union of Zariski locally closed sets Z,,. We recall that a Zariski
locally closed set is by definition the intersection of a Zariski closed and a
Zariski open set.

A strong improvement of Fact is to work with projective algebraic
varieties X and Y. The conclusion in this case is that the image is closed.

Remark 2.12. From the point of view of logic, Fact is called the elimi-
nation of quantifier in an algebraically closed field, and in this context it is
due to Tarski.

Remark 2.13. A concrete point of view on elimination theory is given by the
notion of resultant polynomial. Another concete point of view on elimination
theory that gives rise to efficient algorithms, is given by the notion of Grobner
basis.

Sketch of proof of Fact[2.11 One does not think of X as an algebraic sub-
variety of C? but as an algebraic subvariety of Y x C? so that the map ¢ is
nothing but the projection on the first component.

This is very useful because, by an induction argument, one can now reduce
to the case where d = 1. In this case, one can write

X ={(y,) eY xC | Py(y,t) = Pi(y,t) = ... = Po(y,t) = 0}.  (2.9)

where the P; are polynomials.
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We know that two polynomials in ¢ have a common root if and only if
their resultant is non zero. The rough strategy is then to say that, for all 7,
the resultant R;(y) of Py(y,t) and P;(y,t) is zero on a Zariski dense subset of
Y, hence on the whole of Y and hence, for all y, the polynomial FPy(y,t) and
P;(y,t) have a common root t,;, which gives an element (y,t,;) of X above
y. There are two drawbacks in this rough strategy.

(i) The first one is that this root t,; of P, may depend on i.
(77) The second one is that the resultant of two polynomials depends poly-
nomially on their coefficients only among the polynomials of fixed degree.

It is easy to circumvent these two issues.

For (i), we introduce the polynomials P,(y,t):= > «a;Pi(y,t) with a € C’.

1<i<t
For (ii) we write Py = Y, ap(y)tt and P, = Y. bi(a,y)t* where &y is the
0<k<dp 0<k<é
degree in t of Fy and ¢ is the maximum degree in t of the P,. We introduce

the Zariski open set U := {y € Y | as,(y) # 0 and bs(a, y) # 0}, so that, for
all y in U, the Zariski open set V, := {a € C* | a5,(y) # 0 and bs(a, y) # 0}
is non empty. For y in U and « in Vj, the resultant R,(y) of Py(y,t) and
P,(y,t) is a polynomial in both « and y.

By asumption for y in a Zariski dense subset of U, these polynomials
R, (y) are zero. Hence these polynomials are identically 0. Since t — Py(y, t)
have only finitely many roots, this implies that, for all y in U, I can find a
root t, of Py(y,t) which is is also a root of P,(y,t) for a Zariski dense set of
values of . This point (y,t,) is then an element of X above y. O

Corollary 2.14. Let X < C? be an algebraic subvariety. If X is bounded,
then X 1is finite.

Proof of Corollary[2.14. Assume that X is infinite. Then there exists a co-
ordinate map py : X — C with 1 < ¢ < d, whose image p,;(X) is unbounded.
Therefore this map py is dominant. By Fact [2.11], this image contains a
Zariski open subset of C. This means that p,(X) is the complementary of a
finite set. In particular X is not bounded. O

Proof of Theorem[2.8 Let Ey := {f € C[F,] | f(0) = 1}. According to
Proposition [2.3] the algebraic variety

R:={(f.9)e By x By | fj=1and f§ =1} (2.10)

is compact. Therefore by Corollary this variety is finite. Hence the set
of H-functions is also finite. [
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FEzercise 2.15. Let p be prime and /N be a non negative function on F, with
N(0) = 1.
a) Prove that the set €y of complex valued functions f on F, with f(0) =1

~

and |f(z)| = |f(z)| = N(x), for all z in F, is a finite set.
b) Prove that there exists ¢ > 0 such that if N < ¢ on I}, this set &y is
empty.

¢) Prove that e < \/ﬁlﬂ.
1

d) Prove that one can choose € = TN SR

2.5 Using proper morphisms

To go on our understanding of biunimodular functions, we will need another
useful and classical theorem from complex analytic geometry. We recall a
few general definitions and facts that deal with the topological degree of a
proper holomorphic map with finite fibers.

For 2 < C™ an open set, ¥ : 2 — C™ a holomorphic map and z € {2
such that Wg(z) = 0, we recall that the algebraic multiplicity m,(¥g) is the
dimension of the local ring O, /¥§ Oy where O, is the local ring of germs at z of
holomorphic functions and where U§Oy is the ideal spanned by the functions
hoW, where h is a holomorphic function that vanishes at 0. A point z5 € Qis a
critical point for Wy if and only if the tangent map DWq(z) is not invertible,
or equivalently m., (Vo — f(20)) > 1. A critical value for ¥y is the image
Wy (2p) of a critical point zy. A regular value is a value which is not critical.
By Sard theorem, the set of critical values has Lebesgue measure 0. When
the algebraic multiplicity m, (W) is finite it coincides with the geometric
multiplicity. This means that, there exists ¢g > 0 and a neighborhood €2y of
z such that for Lebesgue almost all w € C™ with |w| < &g, the value w is a
regular value of Wo—w and one has m,(¥g) = # (V5! (w) N Qo).

See [1, Ch.1 prop. 2.1] and [45], p.148].

The following fact extends to several variables the famous Rouché theo-
rem.

Fact 2.16. Let Q — C™ be an open set, let B < § be a compact ball and
I < R be an interval. Let (V;)er be a continuous family of holomorphic
map Yy 1 Q — C™ such that for all t in I, the function ¥, does not vanish
on the boundary 0B. Then the number of zeros of Uy in B counted with
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multiplicities : N (U, B) 1= >, m,(V;) does not depend on t.
{2€B|¥(2)=0}

Sketch of proof of Fact[2.16 See [21), Section 5.2] or [I, Thm 2.5].
There are integral formulas for the number N(¥, B):= >,  m,(¥) of
{2€B|¥(2)=0}

zeros counted with multiplicity in the ball B for a holomorphic map VU :
Q) — C? that does not vanish on 0B. These formulas tell us that the integer
N(U,, B) depends continuously on ¢ and hence is constant.

When m = 1 this is the famous “argument principle” due to Cauchy in
1830 which says that

1 U'(2)

NWB) = o ) v

dz.

When m > 1, the Cauchy formula has been extended by Bochner-Martinelli.
The formula expresses this number as the integral of a 2m — 1 differential
form on a (2m—1)-dimensional sphere:
(m—1)! 1 R
N(V,B) = ~o— =105 2 (1 dvdv,

(2i7T)m |‘I”2 8B 1<j<m

where [U|?2 = Y |¥,;]?, where d¥pj :=d¥; - d¥; - d¥, with d¥; omit-
1<j<m

ted and where d¥ := dW, - - - dW,. O

2.6 Counting biunimodular functions

Haagerup proved more than merely the finiteness of biunimodular functions
on F,. He gave a formula for number of H-functions.

Theorem 2.17. (Haagerup) Let p be prime. Then, counted with multi-
plicities, the number of normalized H-functions onIF,, is equal to the binomial

coefficient (25__12) )

Remark 2.18. Tt seems but it is not proved that, in this case, the multiplicities
are equal to 1.

The key point will be a deformation argument using the map ¢ as in
Proposition 2.3} Since this holomorphic map is proper between affine spaces
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of same dimension, the number of points in its fibers, counted with multi-
plicities is constant. This follows from Fact applied to the maps

\Ilt : El X El — FO (211)
(f:g) = q)(f’g) - (60+t111‘7;§750+t1ﬁ'§)

where

Fo:={(fo,90) € Ex E| fo(0) =0 and > fo(x) = X go() }.

€l €l

Hence we can perform the counting for a simpler fiber. In the following
lemma we study in great detail the fiber of ® over the point (dy, dp).

Lemma 2.19. Let ® be the map (12.6)).
a) For every subsets A, B of F,, containing 0 such that

H#A+#B=p+1, (2.12)

there exists a unique function fa p € Ey with support A whose Fourier trans-

form fap € E has support B.
b) We set gap € Ey to be the function gap 1= f_ap where A" and B’ are
defined by AvA' = BuB' =F, and An A" = Bn B" = {0}. Then one has

(D(fA,Ba gA,B) = (607 50)

¢) FEvery point in the fiber (0o, o) is one of these points (fap, gas)-
d) The number of points in this fiber ®=1(d¢, ) is equal to (2;’__12).
e) The map ® is non-degenerate at each of the points (fa g, gap) of the fiber

D15y, &o).

Proof of Lemma[2.19 a) For a subset A of F,, of cardinality n4, we denote
by C[A] the space of functions on A. It has dimension n4.

As a consequence of Inequality , for any subsets Ay and By of IF,
with n4, + np, = p, the map

ClAo] — C[Bg] : f — ﬂBg

is an isomorphism.
Therefore, for any H-invariant subsets A and B of G with na+ng = p+1,
the map

~

ClAl - CIB: f = f

BC
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has a one dimensional kernel. Moreover, a non-zero function f4 p in the
kernel does not vanish on A; one can normalize it so that fa p(0) = 1.
Similarly its Fourier transform J?A, g does not vanish on B.

b) Let f := fap and g := ga . By construction one has fg = dy.

Similarly, one has f g = Ay for some constant A. This constant A is equal
to 1 by the Plancherel formula. R

c¢) Conversely, let (f,g) € ELl x Fy such that fg = dy and fg = 0.

Set A := supp(f), B := supp(f), A" := supp(g) and B’ := supp(g). By
assumption, one has A n A’ = B n B’ = {0}. In particular, one has

na+ny <p-+1 and ng+ng <p-+1.

By inequality ((1.10]), one has
na+ng=p+1 and ngy +ng =p+ 1.

Therefore all these inequalities are equalities and hence, by point a), one has
f=Jfapand g=f 4 p =gap

d) By Point c¢), the fiber ®1(dy, dy) is in bijection with the set of pairs
(AN {0}, B \ {0}) of subsets of I, \ {0} such that na_joy + np_go =p — 1.
Their total number is (25:12) as announced.

e) Fix a point (f,9) = (fas, fa_p) in the fiber ®7'(y,dp). We want
to prove that the differential D®(f, g) is injective. The tangent space of the
source is the space of couples (¢,1) of functions such that ¢(0) = (0) =
0. Assume that (¢,v) is in the kernel of D®(f,g). The formula for the
differential is

DO(f,9)(p, %) = (fU + Go, f + §3) = 0.

Since the functions fzz is supported by A ~\ {0} and the function gy is sup-
ported by A’ ~ {0}, one gets fi) = gp = 0. Since f does not vanish on A
and g does not vanish on —A’, this proves that

supp(p) € A~ {0} and supp(¢) < —A" ~ {0}.
A similar argument proves that ]?12 = gp = 0 and that

A~

supp(¢) = B and supp(y) = B'.
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In particular one gets

b,
p.

#supp(p) + #supp(@
#supp(¢) + #supp(¢)

Therefore, by the uncertainty inequality in Proposition [1.21] one has ¢ =

b= 0.
This proves that the differential D®(f, g) is an isomorhism. O

Proof of Theorem [2.17. Since the family of holomorphic maps V¥, in (2.11))
is proper, by Fact the number of points in ¥, '(w), counted with mul-
tiplicities is constant. We want to prove that, counted with multiplicity, the

number of points in the fiber ®71(1,1) is equal to (2;’:12). It is then equivalent

to prove it for the fiber ®1(dy,dy). This was done in the previous Lemma
2. 19 [l

<
<

Remark 2.20. It would be nice to have a similar counting formula for all
biunimodular functions f on F, with f(0) = 1.

Notes to Chapter [2]
The example in Section is due to Bjorck [16] The finiteness and the
counting results are due to Haagerup in [22] Sec. 4].
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3 Clifford tori

The aim of this lecture is to explain why there exist biunimodular functions
that are neither Gaussian functions nor Bjorckian functions. We will also
explain a similar construction with the odd-biunimodular functions.

What is appealing in these results is that, in spite of the simplicity of
their statement and on the algorithmic complexity of the construction, the
proof mixes arguments from Symplectic geometry (Intersection of Clifford
tori), Number theory (Stickelberger formula for Jacobi sums) and Complex
analysis (Multiplicity of holomorphic maps) that have their origin in very
different problems.

3.1 Using Clifford tori

We first need to explain a fact whose statement looks elementary but whose
proof relies on symplectic geometry.

The complex projective space CP"! is the set of lines of C" that we
denote p = [z1,...,2,]. A Clifford torus is a compact (n—1)-dimensional
torus of the form T" ' := {p = [21,...,2,] € CP" ! | |2 = 1 for all i} in a
unitary basis of C". The unitary group U = U(n) := {u € M(nC) | uv*u = 1}
acts naturally on CP" 1,

Fact 3.1. Let CP" ! be the complex projective space, let T" "t < CP"! be
the Clifford torus, and let w e U be a unitary transformation.

a) The intersection T" 1 A uT"1 is not empty.

b) If this intersection is transverse, it contains at least 2"~ points.

The assumption in b) means that, for all p € T" ! n uT""!, the tangent
spaces at p intersect transversally, that is T,T" ! n T, uT"! = {0}.

This Fact is due to Biran, Entov and Polterovich in [13] and to Cheol-
Hyun Cho in [I7]. Both proofs rely on Floer homology. The key remark
being that CP"~! is a closed symplectic manifold, that T"~! is a closed la-
grangian submanifold and that the unitary transformation u is a hamiltonian
diffeomorphism of CP"~!. These four authors consider a closed Lagrangian
submanifold L in a closed symplectic manifold. Under some extra assump-
tion on L, for instance when L is “monotone”, they prove that L cannot be
displaced from itself by a hamiltonian diffeomorphism. Therefore, the Clif-
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ford torus T ! in the projective space CP"~! cannot be displaced from itself
by a unitary operator u in U(n).

Remark 3.2. When m = 2, Fact is easy because CP! is a round sphere
and Clifford tori are great circles. Hence two of them intersect in two points.
Note that the conclusion would not be true for smaller circles on the sphere.
A simple explanation in this case would be that these great circles separate
the sphere in two pieces of equal area. Hence one such pieces can not be
strictly included into another.

Even when m = 3, Fact does not seem to have a proof that does not
use symplectic geometry.

Idel and Wolf reformulated Fact [3.1}a as a decomposition theorem for the
unitary group U = U(n).

Let po = Cuvy be the point on the Clifford torus T" ! where v is the
vector vy = (1,...,1). Let V be the stabilizer V' := {u € U | u(vg) = vp},
and let 7" < U be the maximal torus subgroup D := {diag(ui,...,u,) € U}.

Corollary 3.3. One has the equality U = DV D.

This means that every unitary matrix u can be decomposed as a product
of three unitary matrices u = djvds with both d; diagonal and with )’ ;i Vij = 1
for all © = 1,...,n. Note that this decomposition is not unique modulo the
center of U. See in [25]and also [2] for some examples.

3.2 Existence of biunimodular functions

Theorem 3.4. Let p > 11 be prime. There exist biunimodular functions on
F, which are proportional neither to gaussian nor to Bjorck functions.

Let V := ¢*(FF,) be the p-dimensional Hilbert space of functions f on F,,.
Let P(V) ~ CPP~! be the projective space of V, let T be the Clifford torus

T :={[fleP(V)| |f(z)| =|f(0)] for all z € F,} ~ T ". (3.1)

and F : f — f be the Fourier transform.

Strategy of proof of Theorem[3.]. We will apply Fact [3.1lb to the unitary
transformation F' and the torus 7. The (p — 1)p gaussian functions g
and the 4p? functions he ;i and E&j’k introduced in Section belong to the
intersection T~ F~'T.
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Assume, by contradiction that the intersection T' n F~'T contains only
gaussian and bjorckian functions. Ome can check that the intersection is
transverse at all these points. Therefore Fact predicts the existence of
at least 2P~! intersection points counted with multiplicity. Since p > 11, one
has 271 > (p — 1)p + 4p?, there must exist another intersection point. This
is the contradiction we are looking for. O

3.3 Transversality of tori at gaussian functions

In order to end the proof of Theorems 3.4 we need to check the transversality
of an intersection T'n F~!T of suitable Clifford tori at various points: at the
gaussian functions, at the bjorckian functions. We will only present the
calculation at one gaussian function. The other calculation are also quite
interesting but I do not have time for them.

Proposition 3.5. Let p > 3 be prime and gy be the gaussian function on IF),
z — go(x) := e¥™°/P Then the intersection T ~ F~'T is transverse at [go).

Proof of Proposition 3.5 when p =1 mod 4. In this case the Fourier trans-
formof gy is given by,

90(27) = go(x) for all z in F,,.

First step We describe the various tangent spaces.
We use the parametrization of a neighborhood of [go] in P(V) by the
vector space V, := {p € C' | ©(0) = 0} given by

o — [g,] where g, = (1Fp+90) Jo -

This gives an identification of V, with the tangent space of P(V') at the point
[go], thanks to the formula

d
Y=V, 1= £[95¢]‘s:0 € T[QO]P<V)

The linear condition defining the tangent space of T" at the point [go] is
Re(p) = 0. (3.2)
If one writes in our coordinate system

Jo = (1, + Ue) 9o,
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the linear condition defining the tangent space of F~'T at the point [go] is
Re(Uyp) is constant on [, (3.3)

and one easily computes this function Uy, for all z in IF,,

Up(—2z) = go7) X e, € ™2™ P (y)
= Der, 90—y o(y) = (g0*p)().

Second step We check the transversality of these tangent spaces.
We want to prove that a function ¢ € V, belonging to both tangent spaces is
zero. By one can write ¢ = 1) with 1 real valued. Equation can
be rewritten as

Bo * 1 is constant on F).

where Sy(z) := sin(2w2?/p), or equivalently,

a o~ .
Botp is zero on Fy.

Since the function By(2z) = —fBo(x) does not vanish on [y, this implies that
gZ is zero on Fy. Therefore, since },, @Z(y) = /p¥(0) = 0, one gets QZJ\ =0
and ¢ = 0, as required. O

Exercise 3.6. Prove Proposition for a prime p = 3 mod 4.

Indication: the proof is similar except that in that case, the Fourier transform
is go(2z) = i go(x) for all z in F,,.

FEzercise 3.7. For d > 3 odd. Prove that there exists a function f on Z/dZ
such that [f(0)] = |f(0)] =1 and |f(¢)| = |f ()| = \/LE’ for all ¢ # 0.
Indication: Choose f even: the set {do, \%((5@ + 0_¢)1<t<d/2} is an orthogonal
basis of the space Vi :={f : Z/dZ — C | f(—£) = f(¢)} of even functions.

3.4 Finiteness of odd-biunimodular functions

In this section we introduce the biunimodular functions. Those are functions
that are analogous to the biunimodular functions except that one requires
that they vanish at 0. The main examples are the Dirichlet characters when
d = pis prime. We will particularly focus on the odd-biunimodular functions.
We will see that they satisfy the same finiteness and counting result as the
biunimodular functions.
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Let d be an odd integer. We recall that a function f on Cy is odd if
f(=k) = —f(k) for all k in C4. Note that, one has f(0) =0

Definition. Let f : Cy — C be a function. We say that
f is unimodular on Cy~{0} if f(0)=0 and |f(¢)|=1 for {+0:
f is biunimodular on Cy~A{0} if both f and f are unimodular on Cq~{0}.

f 1s odd-biunimodular if f is odd and is biunimodular on Cy~{0}.
f is a C-function if f~(0) = {0} and

> f(k+0) f(R)7t = =1 for 0 #0. (3.4)

keCy~{0}
We say that a C-function is normalized if f(1) = 1.

As in Lemma [2.4] one can check that an odd-unimodular function is an
odd-biunimodular function if and only if it is a C-function.

Ezxample 3.8. Let d = p be a prime number. Every non trivial odd Dirichlet
character x on I, is an odd-biunimodular function, and there are exactly ;%1
odd Dirichlet characters. See Section [1.4l

Proposition 3.9. When d = p is prime, the number of normalized C-
functions is finite.

Proof. This fact is due to Biro in 1999 in [I5]. It can be proven in the same
way as in Theorem . Indeed the map @ in (2.6)) is still proper as a map
E-o1 x Ex1 — E x E, where Ex1:={f € E||f]| = 1}. O

For odd functions we can compute this number.

Proposition 3.10. When d = p is prime, the number of normalized odd

C-functions counted with multiplicity is equal to (2:__12) with n = ’%1.

Proof. We use the same argument as in Theorem [2.17, Hence we use an
analogue of the proper map ® in between spaces of the same dimension.
We introduce the vector spaces E* = {f : F, | f(—k) = £ f(k) for all k} and
and the affine spaces E] = {f € E~ | f(1) = 1}. We also introduce the
affine space

B = {(og) e B x 5| PO :zgofo?xf ! ’%0(913@1} }

zeFp zeFy,
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so that dim(F}") = 2dim(E; ) = 2n — 2. The new proper map @ is

O:E7 x By — F{ 5 (f,9)— (f3.f9)

The number of points counted with multiplicity in the fibers of ® is constant.
We do the counting in the fiber ®~(Fy, E1) where E; = §; — §_; instead of
®~!(1ps, 1yz). With this modification the argument is as in Lemma[2.19, [

Remark 3.11. It would be nice to have a counting formula for all C-functions
f on F, with f(1) = 1, similar to the counting of H-functions or to the
counting of odd C-functions. The argument in Proposition does not
apply to this situation because the space of functions on [F, that vanish at 0
is not invariant by Fourier transform.

3.5 Existence of odd-biunimodular functions

The application of Fact 3.1/ to the existence of new biunimodular functions on
F, in Theorem involved quite a few calculations, because one needed to
check the transversality condition. In this section, we explain an application
of Fact [3.1] that involves no calculation.

When d is an odd integer which is not prime, it is not so easy to construct
odd biunimodular functions. The following proposition says that they always
exist.

Proposition 3.12. Let d > 3 be an odd integer. Then there exist odd biuni-
modular functions on the cyclic group Cy.

The first non trivial case is when d = 9. One can prove that there are
exactly 18 odd C-functions on Cy. All of them are Galois conjugate. This
explain why they are not so easy to detect. Among them 12 are biunimodular.

Proof of Proposition[3.13. Let d = 2n + 1 be an odd integer and V_ be the
vector space of odd functions on Cy. By using the basis (E;)1<j<n, of V_ given
by E; := 0; — d_;, one identifies V_ with C". The Fourier transform f — f
is a unitary transformation of V_ that we still denote by F. The elements
of the Clifford torus 7 = T" ! of P(V_) = CP"! are precisely the lines
spanned by odd-unimodular functions on Cy \ {0}. Fact B.1a tells us that
T n F(T_) # . This exactly means that there exists a unimodular odd
C-function. 0
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Exercise 3.13. Invariant odd biunimodular functions Let p be a prime
number with p = 1 mod 3, let d = p* and A = Z/dZ.
a) Prove that the multiplicative group G := (Z/dZ)* has order (p — 1)p.
b) Prove that G is cyclic.
¢) Prove that G contains a unique subgroup H of order 3.
d) Prove that H' := H U —H is a subgroup of G of order 6.
e) Let V' ={f: A— C| fisodd and H-invariant}. Compute dim(V").
) Prove that V' is invariant by the Fourier transform F.
)

g) Prove that there exist H-invariant odd biunimodular functions on A.

3.6 Transversality of tori at Dirichlet characters

When d = p is prime, Proposition is not useful since we already know
that the odd Dirichlet characters are odd-biunimodular. The aim of this
section is to deal with this case and to prove the following theorem which
answers a question raised by Harvey Cohn in 94.

Theorem 3.14. For every prime p = 11, there exist odd-biunimodular func-
tions on IF), that are not proportional to odd Dirichlet characters.

This theorem is analogous to Theorem and its proof also relies on
Fact [3.1] Therefore we need to study the transversality of the intersection
of the Clifford tori T_ n F~'T_ at the odd Dirichlet character. We will only
present the proof when p =1 mod 8 because this case already contains
many interesting ideas of the proof.

This assumption prevents the existence of odd Dirichlet characters of
order 2 or 4. At these characters, the intersection is not transverse and one
needs to deal with the multiplicity of this intersection by using ideas from
Complex Analysis. This special case would take too much time for a graduate
course.

Proposition 3.15. Let x be an odd Dirichlet character of F),.
a) The intersection T_ ~ F~YT_ is transverse at x| if and only if, for all
non trivial even Dirichlet character ¢ of F,,, the following Jacobi sums differ

JOG) # J(X9)- (3.5)

b) This is always the case when p =1 mod 8.
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We recall from Section [[L4] that the Jacobi sum is defined as

JO6v) = 2 x(2) (1 — ).

zeFp

This algebraic number lives in the cyclotomic field K = Q({,—1) spanned by
the (p—1)™-root of unity ¢,_; = er,

Proof of Theorem [3.14) when p=1 mod 8. We will apply Fact [3.1}b to the
unitary transformation F' and the torus 7_. The p%l odd Dirichlet charac-
ters [x] belong to the intersection T n F~'T_ and, according to Proposition
[3.15] the intersection at these points is transverse. These points [x] cannot
be the only points of intersection because the number predicted by Fact [3.1]6

is 255 and, since p > 11, this number is larger than p%l. H

Proof of Proposition[3.15.a. Remember that dimc V_ = (p—1)/2.

First step We first describe the various tangent spaces.
Let x be an odd Dirichlet character on F,,. Let B, = {1} U B, be the set of
even Dirichlet characters of F,, ¢y being the trivial one and B/ the others.
We will use the following complex coordinates system a = (ay)yep, of P(V)
in the neighborhood of [x]. It is given by

a > [fa] where fo= (Yo + Xyep asth) X (3.6)

These coordinates a = (a,) € CP are also a linear coordinate system for the
tangent space of P(V') at the point [x], thanks to the formula

d
— Vg i= —| feallee T P(V.e).
a—v dg[f Jle=o € X1 (Vie)

The linear equations defining the tangent space of T_ at the point [x] are

d .
de (Ifea(@)]* = |fsa(1)|2)‘€:0 =0, forallzinG.
Since ¥(1) = 1 for all ¢ in B,, using (3.6)), this can be rewritten as

Re(ZweBg) ay (¢ — 1)) = 0. (3.7)

Since the set B! is invariant by complex conjugation, Condition (3.7)) can be
rewritten as

Dpeny (@5 +ay) (U —to) = 0.
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By the linear independance of B,, this gives
TrgT- ~ {(ay) e C% |ag = —a, for all v € B,}. (3.8)

Using Proposition [1.18] one also computes in our coordinate system
~ o N\
fa = % <7/)0 + ZweB{, OéwaW) X where

G GW)
Ty M T (3.9)

One deduces from (3.8) the equality

TigF'T- ~ {(ay) e C” |aga; = —ayay forallpe By} (3.10)
Second step We give the transversality criterion for the tangent spaces.
Since v is even, one has

G G
= - (¥) _ GW@) (3.11)

I TV
Comparing (3.8) and (3.10)), and using the values (3.9) and (3.11) for a,, and

a7y, one gets the equivalences:

ToT- Ty F'T- = {0} < ag # ay for all Y € B,
— J(x,¢)#J(X,¢) forall e B
This ends the proof of Proposition [3.15a O

Remark 3.16. Note that when p = 3 mod 4, the Legendre character x = xo is
odd. This character satisfies X, = xo. Therefore the intersection T~ F~1T_
is not transverse at [xo].

3.7 Using the Stickelberger’s formula

We will need the following elementary formula that was already known to
Kummer. This formula is the first non trivial case of the Stickelberger’s
formula that can be found in [32, Chap.1] or in [26, Chap.14].
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Lemma 3.17. Let F), be a prime field, let j,k be integers 0 < j,k < p—1.
Let us define the Jacobi sum mod p by J;j:= >, 79 (1 —z)*eTF,.
z#0,1
a) One has the equality J; ), = —(]+k) in F.
b) In particular, one has the equivalence JJ,k #0<=j+k<p.

Here the sum is over all z in F, with = # 0, x # 1 and the right-hand

j+k) _ (j+k)!
= iR

side is the binomial coefficient (

Proof of Lemma |3.17. This is a classical and elementary calculation

Jig = Sad(l—zp k= 30 F(—1) (p_i_k) goxz—j

z#0
=~ = =,
which is valid since the base field is [F). OJ

We can now give the proof of Proposition [3.15/b

Notation We want to prove that

JO0) # J(X¢) (3.12)

by reducing it modulo a suitable prime ideal p of the ring Z[(,—1]. Since the
multiplicative group F} is a cyclic group of order ¢ := p—1, we can introduce
the smallest positive integer go whose image modulo p is a generator of ;). We
denote by w the Teichmiiller character of F} which is defined by the equality
w(go) = Cp—1. This character is a generator of the group of characters of
[F7. In particular, since x and ¢ are not trivial, there exist positive integers
7,k < p—1 such that

X = w Y = wF , and hence Y = W (P1-9),
Note that j is odd while k is even.

Proof of Proposition[3.15.b. The action of an element of the Galois group
of K/Q commutes with the complex conjugation and hence preserves the
assertion (3.12)). This action is given by an element a € (Z/(p—1)Z)* and sends
the characters w™ and w™ respectively to the characters w™% and w™?.
Therefore, without loss of generality by using the combinatorial Lemma |3.18]
we can assume that

j<kand j+k<p—1.
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The Jacobi sum J(x, 1) lives in the ring of integers Ok := Z[(,-1]. Since
the polynomial X7~ — 1 has p — 1 distinct roots in F,, the cyclotomic poly-
nomial ®,_;(X) is also split in F,, and has ¢(p—1) roots in F, where ¢ is the
Euler totient. These roots are the generators of the group Fy;. We denote
by p := (p, go—(p—1) the prime ideal of Ok over p containing go—(,—1. We
denote by

mp 1 Ok — Ok/p ~F,

the natural morphism given by the reduction modulo p so that one has
mp(w(x)) = z for all z in F,. Using the notation and the result of Lemma
[3.17, one has the equalities

mp(J(x¥)) = mp(J(w ™, w ™) = = (11F) # 0
since j+k < p—1. Similarly, one has the equalities
mp(J(X ) = mp(J (@D W) = Sy = (1) =0
since j < k. This proves our assertion [

In the proof of Proposition [3.15]b, we used the following combinatorial
lemma with ¢ = p—1.

Lemma 3.18. Let ¢ be a positive integer with ¢ = 0 mod 8, let 7 be an
odd integer and k < ¢ be an even positive integer. Then there exist positive
integers a, j', k' < ¢ such that a is coprime to ¢ and

j =+ajmodec, kK =akmode, j <k <c—7. (3.13)
Proof of Lemma[3.18. First step Preliminary reductions

(i) We can assume that ¢ = jr with r integer r > 8. Indeed there exists an
integer x coprime to ¢ such that 7 = j mod ¢ and j’ is a positive divisor of
¢ so that ¢ = j'r. Since j is odd, one has r = 0 mod 8.

(71) We can assume that j is coprime to k. Indeed if this is not the case we
argue by induction. We introduce the integer m := ged(j, k) and set

Jo :=7j/m, ko := k/m and ¢y := ¢/m.
We find a pair (jg, k) satisfying (3.13) with jo, ko, ¢o. Then the pair
(4" k') := (mjg, mky)
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satisfies (3.13) with j, k, c.

(7i1) We can assume that k£ < j. Indeed if £ > ¢ — j, we replace the pair
(4, k) by

(7, k") :== (j,c — k) = (—aj,ak) mod ¢ witha = —1.

Second step Finding a, j' and k’'.
We choose a prime divisor p > 3 of j and we write ¢ = pq.

(1v) We will choose a among the integers a, := 1+ £q with 0 < ¢ < p. Indeed
all of them except at most one are coprime to c.

(v) We will choose j' = j because for all £ one has j = a,j mod c.
(vi) We will choose k' in the set S of integers of the form
S:={k'=k+mq|0<m<p}.

Since p = 3 and j < r/8, the interval [j, c— j] contains at least two integers of
S. By (i7), the integer k is coprime to p, therefore the integers ask = k + lkq
are distinct mod c. Therefore S is also the set of integers kj, = k + m,q with
0 < my < p, such that kj, = ayk mod c. Hence by (iv), one can find a, prime
to ¢ such that j <k, <c—j. H

Notes to Chapter [3| The finiteness and the existence result of this
chapter is in [I1]. It relies on the Floer homology results in [13], [I7]. See
also [25].
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Part II
Convolution and square

In the next four lectures, we will deal with another family of functions f on
Z,)dZ called A-critical that have properties analogous both to the gaussian
functions.

Their rescaled convolution square is proportional to their square. More
precisely they satisfy f = f(2x) = Af?(x). For the gaussian functions the
critical value X is equal to ++v/d when d = 1 mod 4 and is equal to +iv/d
when d = 3 mod 4. Here d will be an odd integer, not necessarily prime.

The Dirichlet characters with primitive square also satisfy this equation,
the corresponding critical value is given by Jacobi sums.

The main question is then what are the possible critical values A and how
can one construct the corresponding A-critical function f.

In Lecture 4, we will introduce the Jacobi theta functions. These func-
tions are interesting in their own and we will recall their main properties: the
addition formula, the isogeny formula and the transformation formula. They
are very useful since they give the embeddings of elliptic curves in projective
spaces. They also give embeddings of the modular curves, i.e. the mod-
uli space of elliptic curves They also have astonishing arithmetic properties
that are part of the so-called Kronecker youth dream and that are nowadays
encoded in the Shimura reciprocity.

In Lecture |5 we explain how these Jacobi theta functions restricted to
a cyclic group of torsion points on the corresponding elliptic curve gives
rise to A-critical functions with A = \g := y/a + iv/b, where a and b are
positive integers with @ + b = d. The proof uses the three formulas for
theta functions that we proved in the Lecture. The elliptic curve has to
be chosen with care. In particular, it has complex multiplication by iv/ab.
The integers a and b have to satisfy congruence conditions modulo 4 that
can entirely be explained by the transformation formula. Moreover the sign
in the transformation formula explains that A is always critical but —\, is
sometimes not critical.

In the next two lectures, we extend the results of the previous two lectures
to higher dimension.
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In Lecture[6l we introduce the abelian varieties that will replace the elliptic
curves. An important point of the discussion is that very few higher dimen-
sional complex tori are abelian varieties. The abelian varieties are those that
admit an integral Kahler structure. They are parametrized by the Riemann
matrices 7. These matrices live in the Siegel upper half-space H, that will
replace Poincaré upper half-plane. The symplectic group Sp(g, R) which is
the group of isometries of H, will replace the group SL(2,R). The abelian
varieties that will give rise to critical values are those that admit non-trivial
unitary Q-endomorphisms.

In Lecture [7] we introduce the Riemann theta functions: they general-
ize the Jacobi theta functions and still satisfy the addition formula, the
isogeny formula and the transformation formula. We give the interpreta-
tion as section of line bundle on the abelian variety and on the moduli space
A, of polarized abelian variety. We explain how one can choose these Rie-
mann theta functions such that their restriction to a suitable cyclic group
of torsion points on the corresponding abelian variety give rise to A-critical
functions for values \ like A = 1 4+ 4/5 + i2/9 — 24/5 when d = 15 or like
A =1+2v2+2i4/3 —+/2 when d = 21.
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4 Jacobi theta functions

The aim of this lecture is to introduce the Jacobi theta functions 0(z, 7) and
to explain why they are useful.

As a function of z, we interpret them as section of a line bundle on an
elliptic curve E, and we prove the addition formula together with the isogeny
formula.

As a function of 7 we prove the modularity properties of the function 6
with a cautious care in the sign that occurs in the transformation formula.

We also explain the Riemann theta relations that allow to embed both
the elliptic curves £, and the modular curves X (m) in projective spaces. We
just give one example for each of these embeddings.

4.1 Line bundles on elliptic curve

Theta functions will occur naturally as sections of line bundles over an elliptic
curve. As a complex analytic curve, an elliptic curve is a quotient £ = C/A
of the complex plane C by a lattice A. One will write this lattice under the
form A = A, := Z7 ® Z where the parameter 7 belongs to the upper half
plane H = {7 € C | Im(7) > 0}. This is not restrictive since for every oo € C*
the lattice A and A gives rise to the same curve. We write E, := E/A,.
For d € Z we consider the space of quasiperiodic holomorphic functions

Va(r) = {f e HOl(C) | f(z +1) = f(2) and f(z+7) = ™™ f(2)}

In this definition the factor e~ is not so important. It is useful, because for
d > 1 this space contains the d"-power 0(z,7)? of the Jacobi theta function
that we define now.

As a function of z, the Jacobi theta function is roughly defined as a
“Fourier series whose Fourier coefficients are gaussian”. More precisely,

0.(2) = 0(z,7) := 3 ™2™z for e C and 7 € H. (4.1)

meZ

Note that the condition 7 € H is the one needed for the convergence of this
series. This function belongs to V;(7) since one has

0,(z+1)=0.(2) and 0.(2 +7) = e e 20, (2). (4.2)
And, for d > 1, its power 602 belong to Vy(7).

It is important to know exactly where the zeros of the functions 6, are.

53



Lemma 4.1. a) The function 0, is even: one has 0.(—z) = 0,(2).
b) One has 6,(=) = 0.
c¢) Conversely, if 0,(z) = 0, then one has z =

TH—l—mT—l—n with m, n in Z.

Proof. a) This follows from Formula ([@.1).

b) One computes using (4.2)) and a), 0.(7+1—z) = e ™ e*™ §_(2), one
evaluates this equality at z = T;rl, and one gets 0, (75F) = —0.(ZF).

¢) One checks that the parallelogram P with vertices 0, 1, 7+1, 7 contains
only one zero of the functlon 0. by computing the number N of zeros as
an integral N = - S&P = The quasiperiodicity of 6, in (4.2)), allows
simplification in the 1ntegrat10n on the opposite sides of the parallelogram

0P and one gets N = So (2im)dz = 1. O

2171'

Lemma 4.2. a) For d > 1, the dimension of the space Vg is d.
b) For d < —1, one has V; = {0}.

Remark 4.3. When d = 0 a function in V(1) is a bounded holomorphic
function, hence it is constant.

Proof. Let f € V(7). We write z = = + iy, with = and y real. Since f is
periodic it has a Fourier expansion that we choose to write as

f(Z) _ Z a, eiﬂnQT/d e2imnz (43)

nez

A priori the Fourier coefficient a,, = a,,(y) might depend on y. But, since f is
holomorphic, one has 0.a, = 0, and it does not. We have chosen to express
f that way so that the quasiperiodicity condition on f can be expressed in
a very simple way: a,.q = a, for all n € Z. The sequence a,, has period |d|.
Since the series converges, and since I'm(7) > 0, one must have d > 1.
Conversely, when d > 1 these series converges and f is known as soon as
one knows the coefficients ay, . .., a4_1. This proves that the space V(1) has
dimension d. O

4.2 Theta functions with characteristic

There are different notations and more precisely different normalizations for
the theta functions, depending on the applications one has in mind. The
following one is the most usual.
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The classical theta functions with characteristic a, b in C, are defined by,
for z € C and 7 € H,

9[0} (z,T) = Z eiﬂ(m+a)2762i7r(m+a)(z+b).
’ MeZ

=  gima?T2ima(z+h) 0(z+ar +0b,71).

Forgetting the exponential factors, one may think of the parameter a as
a translation in the direction of the period 1 and of the parameter b as
a translation in the direction of the quasiperiod 7. This is geometrically
correct at least when a and b are real.

One has to be careful that these functions do not belong to Vi (7) except
when a and b are integers, indeed, one has

0{‘;](2—#1,7) = 62”“0[2](2,7') and

«9[2}(z+7,7) = e_“”e_%”(”b)H[ﬂ(z,T).

Note that these functions depend only on b+ z, hence it is not restrictive
to study them when b = 0 and to define

QT[Z] = e[g](z,f) — e[g](o,r) (4.4)

Note that these functions satisfy the following periodicity when translat-
ing the characteristic by elements m, n in Z,

9[a+m](z, 7) = e¥man 9[;;](z, 7). (4.5)

b+n
It follows from the proof of Lemma |4.2
Lemma 4.4. The functions z — Q[kéd](dz, dr), with k =0,...,d—1 form a
basis of the vector space Vy(T).

We will mainly use the following theta functions with characteristics. For
£ e 79/279, seen as a subset of Z9, we define

9[0](47):9[3}(22,27) = 3 gimmiT/2g2immz (4.6)
Oy (2, 7) 28[162](22,27') = ziidei”m%/zez”mz. (4.7)

Note that one has the equalities:
O0)(2,7) = 0(22,27) and Oz, 7) + Opy(2,7) = 0(2,7/2).  (4.8)
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4.3 The addition and the isogeny formula

We want to explain two classical formulas for the theta functions, the “ad-
dition formula” and the “isogeny formula”. We will only need special cases
of these formulas that we state below.

The first formula that we need will be a corollary of the following addition
formula.

Lemma 4.5. Addition formula For all a,b,z,w in C, 7 € H, one has

O 2 i0]0220] = O[] Oar ] + o[ sR] O[PS (49)

z+w zZ—w

Proof. Just write the left-hand side as a double sum over m, n in Z and write
m=(p+e)+(qg+¢e)and n= (p+¢e)— (¢ +¢) where p and ¢ are in Z and
where € = 0 or % according to the parity of m—mn. This gives

LHS = Z 6i7r(m-+—a-i—b)27'622‘7r(m-&-a-i-b)(z-&-w)ei7r(n-i—a—b)21'621’7r(n-i—a—b)(z—w) 7

_ Z €2i7r(p+a+€)2764i7r(p+a+s)z 2i7r(q+b+€)27—€4z'7r(q+b+€)w

€
&,p,q

= Z 927’[@22&] ‘927[172-;)8]7
where the sum has two terms € = 0 or 1/2. O
When a = b = 0, one gets the following corollary.

Corollary 4.6. For all z,w in C, 7 € H, one has
0(z+w,7)0(z—w,7) = O (w, )00y (2, 7) + Opy(w, 7)0py(2, 7). (4.10)

Note that this formula is not surprising because one can check easily that,
as a function of z, the left-hand side belongs to the space 2-dimensional space
V(7). Hence it is a linear combination of the two functions jg; and 0f;7 that
form a basis of V(7).

Here is the second formula which is simple but useful.
Lemma 4.7. Isogeny formula For 7 € H, d positive integer, one has

ST 0(¢/d, ) = d6(0, d>r).
(e7,)dZ.
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Proof. Just write the left-hand sides as a double sum

Z 9(€/d,7‘) _ ZemeT Z e2immt/d dzeiﬂ"rLQdQT _ d@((),d27‘)
(e7,)dZ. m (e7,/d7. n

where we used the fact that >} €7 is equal to d when d divides m and
(eZ/dZ.

is equal to 0 otherwise. O

We will need the following variation of the isogeny formula for which we
need d to be odd. The proof is the same.

Corollary 4.8. For 7 € H, d odd positive integer, one has

> O(l/d, ) = dOg(0,d*r) and > Opy(¢/d,T) = dby(0,d°T).
¢e7)dZ. ¢eZ)dZ.

4.4 The transformation formula

We now explain the modularity properties of the theta functions. These
properties come from a basis change in the lattice A that define the elliptic
curve FE.

These formulas deal with an element o = <f: ?) e SL(2,Z). For a

positive integer m we will denote by I'(m) the subgrooup
I'(m) :={o € SL(2,Z) | o = £1 mod m}, (4.11)

Lemma 4.9. Transformation formula a) If 0 € T'(2), and v > 0, then
there ezists a eighth root of unity k(o) such that

0(0,07) = r(o) (v + )2 6(0,7). (4.12)
b) The constant k(o) is given by the formula
k(o) = i'7 () (4.13)

The transformation formula with the precise determination of the con-
stant k(o) is due to Hecke.

Let us explain the notation in this formula.

- The SL(2,7Z) action on H is the standard action o7 = j:if
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- For a complex number z with Re(z) = 0 or Im(z) = 0, the number w = 22
is the unique square root with Re(w) + Im(w) = 0.

- The symbol (}) = +1 is the Jacobi symbol introduced in Section and
defined for two relatively prime integers v and § with ¢ odd.

The key ingredient is the Poisson summation formula. We recall that
the Schwartz space S(R) is the space of C* functions h on R all of whose
derivatives decay faster than the inverse of any positive polynomial. The
Fourier transform of such a function h is defined by

h(z) := §p h(y)e? ™™ dy .
This function % also belongs to S (R).

Fact 4.10. (Poisson summation formula) For all h € S(R), one has

S h(n) = 3 h(n). (4.14)

nez nez

We will also need the following elementary lemma

Lemma 4.11. The group I'(2) is generated by u® := ( 2 ) ,v? = ( - )
and +1.

Note that the analogous statement for I'(m), m > 3 is not true.

*
obtained as a product of these three matrices and their inverses. We argue

by induction on the odd integer |a| + |3].

If |o] + |B] = 1, one has o = +v*" for some n € Z.

If o] + |B] > 1 and |a| < |B], for a suitable choice of sign, one has
out? = <a f:) with ' =  + 2« satisfying || < |5].

*

Proof of Lemma[{.11. We want to prove that any o = <‘;‘ B) e I'(2) is

If |of +18] > 1 and |a] > |B]|, for a suitable choice of sign, one has
ovt? = (‘1/ f) with o/ = a + 24 satisfying |o/| < |al. O

Proof of Lemmal[{.9.a. It is enough to prove that
0(0,07)® = (y7+8)*0(0,7)% (4.15)

This will prove (4.12)) up to a eigth root of unity x(o, 7). This root will not
depend on 7 by a continuity argument.
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We first notice that the map (o,7) — c(o,7) := y7 + § is a cocycle on
SL(2,Z) x H. This means that c¢(o109,7) = ¢(01,097) ¢(09, 7). Therefore it
is enough to check (4.15)) on generators of the group I'(2).

0

Let wg := ( (1] 1) and u = ( (1) } ) Since the group I'(2) is generated

by u? and v2wouwy ', it is enough to check (4.12), for o = u? and for o = wy.
The case o = u? follows from the equality

00, 7+2) = 6(0,7),
The case 0 = wy follows from the equality
0(0,~1/7) = (7/i)2 6(0,7). (4.16)

which is nothing but the Poisson summation formula applied to the function
ALl . .7 ;
h(z) = (7/i)2 ™7 whose Fourier transform is h(z) = e~ "™"/7. O

4.5 The sign in the transformation formula

We now compute the eighth root of unity (o).

Before starting the calculation I want to make two comments that follow
from a cautious examination of the previous proof.

First of all one has r(c)* = 1 because an element of I'(2) expressed as a
word in u? and wy involves an even number of wy.

Second, since (o, 7) — y7 + ¢ is a cocycle, the map I' —» {+1};0 — k(o
6—1

2

is a group morphism. Hence it is not difficult to check that x(c)? = (—1) 2
by checking it on the two generators u? and wou?wy ' of T'(2).

Therefore if one is only interested in the value of k(o) up to a sign, one
does not need to read the calculation below. What makes this calculation
delicate is that it involves square roots of complex numbers and one has to be
very precise on the choice of these square roots at each step of the calculation.

Proof of Lemmal[{.9b. The strategy is clear. The idea is to compare the
asymptotic of both sides of Formula (4.12)) when 7 goes to 0. More precisely,
we will compute the limit when 7 goes to 0 of both sides of the equality

(T/i)%Q(0,0'T) = k(o) (7 + 5)% (T/i)%Q(O,T). (4.17)
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Because of the Poisson formula (4.16)), the limit of the right-hand side

RHS of [@.17) is

lim RHS = k(o) 62 lim 6(0, ~1/7) = #(0) o2 . (4.18)

T7—0

In order to compute the limit of the left-hand side LH S of (4.17]) we write
oT = % + p, where p := % is an element of H that also goes to 0. Taking

into account that § is an even integer, one computes

00.5+p) = % Ze@'ﬂm“”“?*m

1<r<|é| mez

_ Z Z 6171’ m5+r

1<r<|6| mEeZ

We apply Poisson Formula ([4.14) to the function h(z) = §(p/i)z ez tr)®p
whose Fourier transform is h( ) = e im0 “@*/pe=2m5  Therefore we get

(p/Z)% ( 5 + p) = Z eiﬂ'§r2 Z 6—7:7T5_2m2/p672i7r%m .

1<r<|d| meZ

Therefore one has the equality

im LHS = 3 €73, (4.19)

70 1<r<|d|

Remembering that both § and v are even integers, that § is an odd integer
coprime to both of them and that Sy = —1 mod ¢, and comparing (|4.18])

and (4.19), one gets

k(o) = 1/62 > e 5" (4.20)

1<r<é]

This Gauss sum can be calculated using Lemma and Proposition [1.14]
When 6 > 0, one gets

(5—1)2 (5-1)? 1) 1—62 5—1

k(o) ziT(_T%) =1 01 @ =iz 3.
When 6 < 0, one gets

w(o) = it & = r%LT)Qi#@ )
This ends the calculation of k(o). O
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There also exists a transformation formula valid for all z. We first express
it in a naive way where an exponential factor is involved.

Corollary 4.12. If 0 € '(2), and v > 0, then, for all z in C and T in H,

O(—25.0m) = i'T (@) (y7+8)% €™ O(z, 7). (4.21)

We now express it in a simpler form by using the theta functions with
characteristics. This formula is particularly simple when it is expressed with
the modified theta function

HT[Z] = e imab GT[Z]. (4.22)

Note that there is no modification when b = 0.

Corollary 4.13. Let 7 € H and o € I'(2). Then, for a, b in C, one has

> [ Sa— 51 1>,
bor| o] = 1T @ (7 +0)2 G5, (4.23)
Proof. The proof of both corollaries is the same as for Lemma We check
the formula up to a eighth root of unity by checking it on the two generators
of T'(2). The determination of this root of unity follows from a continuity
argument and the case where a = b = 0 done in Lemma O

We introduce now the four Jacobi theta-functions 6,; with a, b equal to
0 or 1, given by

() = Ounl(2,7) = O3] (. 7) = X ermrlmsdFeimtme et (4.24)
me

Exercise 4.14. Prove the following equalities where 7 is implicit.
CL) 900(—Z> = 900(2), 901(—2) = 901(2), 910(—2) = 910(2), 911(—2) = —911(2>-
b) Prove that 800(2 + 1) = 800(2), 801(2 + 1) = 801(2),
910(2 + ].) = —‘910(2)', QH(Z + 1) = —011(2). ' '
¢) Prove that 0o (z+7) = "™ e 20y (2), Op1(2+T) = —e e 270y, (2),
910(2 + 7') = e_iWT€_2i7r2910(Z), 911(2’ + T) = —€_i7TT€_2i7rZ011(Z).

Erercise 4.15. Prove the following equalities where a. , = (7/i)2¢i™/7,
a) Ooo(z, 7+ 1) = bo1(2,7), On(z,7+1) = Oz, 7),

O10(z, 7 + 1) = e™4019(2,7), O11(2, 7+ 1) = ™01, (2, 7),
b) Qoo(f, _—1) = Q7 ‘900(277'), 001(5 _—1) = Q7 910(277),

T T T
Oro(2,2) = a.- 001(2,7), O11(2,2) = =i, 011 (2, 7).
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4.6 Riemann theta relations

The addition formula relates 6 functions with parameter 7 with theta
functions with parameter 27. There is another relation due to Riemann
that gives a lot of quartic relations between theta functions with the same
parameter 7. We begin by the general and easy to remember formulation in
terms of theta function with characteristic.

Proposition 4.16. Fora,b,c,d,u,v,w,x inC, 7 € H, one has LHS = RHS
where

a+btc+d at+b—c—d a—b+c—d a—b—c+d
LHS = 2 07’ [ u+1z-|2—w+m ] 9’7’ { u+v2w—x } 97’ [ u—v-IQ—w—m ] 0’7’ { u—vzuf+ac }
2 2 2 2

RHS = Z e~ 2im(atbtctd)n QT[aH} QT[b-i-S} HT[c+a] GT[d—&-a}

u+mn v+ w+n T +n
eneL/Z
Proof of Proposition[f.16. The left-hand side is a sum over the lattice Z* in
11 1 1
R*. The idea is that the matrix T := % } _11 ’11 j is an orthogonal
1 -1 -1 1
matrix that sends the lattice Z* to the lattice L := T(Z*) which is almost
Z*. More precisely the intersection Ly := L n Z* has index 2 in both L and
Z*. Note also that 72 = 1. We denote by A and U the column vectors
A :="a,b,c,d) and U :="(u,v,w,x). We will also need the column vector
E:=1%1,1,1,1) so that

Lo={MeZ"|'"EMe2Z} and L =Lyu (3E + Ly).

One computes,
LHS = 2 Z eiﬂt(MJrTA)(MJrTA)TeQiﬂ’t(M+TA)TU‘
MezZA
Writing M = T(N + ¢E) with ¢ € {0,1}, N € Z* satisfying "EN € 2Z, one
gets using the fact that 7" is orthogonal
LHS = Z efinntAE Z eiﬂ't(N+A+€E)(N+A+EE)T62i7Tt(N+A+€E)(U+77E)
ene{0,2} Nez4

which is exactly RHS. In this computation, we used the fact that en! EFE is
an integer. We also used the fact that
S e2mNE — 2 if tEN = 0 mod 2 and = 0 otherwise. O
ne{0,5}
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These Riemann 6 relations are most often applied with a, b, c,d € %Z with
a+b+c+d € Z so that the exponential in the RHS is a sign +1 and with
some specialization on the variables u, v, w, z, imposing some of them to be
0 or to be equal. When a+0b+c+d € 27 the sign is always +1. For instance,
one gets the following relations between the four Jacobi theta functions 6,
in . In the following formulas, the variable 7 is implicit.

Corollary 4.17. a) Fory,z in C, 7 € H, one has

000(0)? Ooo(y+2) boo(y—2) = Ooo(y)? Boo(2)? + O11(y)* O11(2)°
= 010(y)* 0h0(2)? + 001 (y)* Oo1 (2)°.

b) Similarly, for y,z in C, 7 € H, one has
900(0)2 On(y+z)0u(y—=z) = 911(?/)2 900(2’)2 - 900(9)2 911(2)2

c¢) In particular, one has

900(0)2900(2)2 = 910(0)2910(2)2+901(0)2901(2’)2
000(0)2811<Z>2 = 010(0)28

d) In particular, one has 0y(0)* = 0p1(0)* + 010(0)%.

Proof. a) We combine two Riemann 6 relations, the first one with a = b =
c=d=0andu=v=y, w=1z=2zIs

2900(0)2 900(y+z) eoo(y—Z) =
Oo0(y)? Ooo(2)? + 011(y)* 011(2)* + O10(y)? 010(2)* + Oo1(y)? 001 (2)?,

the second one witha=1,b=c=d=0andu=y+1,v =y, w =2 =z is

2011(0)* 011 (y+2) O (y—2) =
Oo0(y)? Ooo(2)? + 011(y)* 011(2)* — O10(y)? 010(2)* — Oo1(y)? B0 (2)*.

We conclude by noticing that 61,(0) = 0.

b) The proof is the same. For the first Riemann theta relation one chooses
a=b=1/2,c=d=0,u=v=y+1/2, w=1o==z.
For the second Riemann theta relation one chooses:
a=1/2,b=—-1/2,c=d=0,u=y+ 12, v=y—1/2, w =12 = 2.

¢) Set y = 0 in the previous formulas.

d) Set z = 0 in the previous formulas. [
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Exercise 4.18. Using the addition formula, prove that the theta-constants
0., are related to the theta-constants fjg; and 6p;; by the formulas

980(0, T) = 9[20] (0,7) [1] (0,7),
9(2)1 (07 T) = 9[20] (07 T) - 6%1] (07 7-)7
9%0(07 T) = 2 0[0] (07 T) 0[1] (07 7-)‘

, T

Ezercise 4.19. Prove that for z in C, 7 € H, one has

000(0)2 001(2’)2 = 010(0)2 011(2’)2 + 901(0)2 000(2)2
B0(0)2010(2)% = 010(0)2 0o0(2)% — 001 (0)% 011 ()2

Indication: replace z by z + 1/2.

4.7 Projective embeddings

The theta functions are useful to construct projective embeddings both of
the elliptic curves but also of the modular curves We just give two examples
below.

Projective embedding of elliptic curves The theta functions give an
embedding of the elliptic curve E, := C/(Z7 @ Z) inside P?(C) whose image
is a cubic curve.

Proposition 4.20. The holomorphic map 1) : C — P*(C) given by
2= [011(2)800(2)%, 000 (2)001 (2)010(2), 011 (2)°]
induces an isomorphism ¥ from E. to the smooth cubic C' with equation
Y?Z = X(aX — bZ)(bX + aZ)

910(0)2 901(0)2
and b= .
000(0)? 000(0)?

Proof. We denote by 1, the three functions above so that ¢ = [11, 19, 3]
These three functions satisfy

wk(z i 1) _ —wk(z) and 'Qbk:(z + 7_) _ —G_SiﬂTe_GiWZ’QZ)k(Z).

where a =
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Moreover, by Lemma they have no joint zeros. Hence they define a
holomorphic map ¥ : E, — P?(C). By Corollary c, the image of ¥
is included in the cubic C'. By Corollary .d, the three roots 0, b/a and
—a/b are distinct. Hence this cubic C' is smooth. Both E and C' are smooth
compact complex curves. One has ¥=1(]0,1,0]) = {0} and near this point
0 € E, the map VU reads as z — [c12 + O(2?%), ca + O(2), c32° + O(z*)] for non
zero constants ¢;. This proves that the map ¥ has degree 1. Therefore this
map ¥ an isomorphism between E, and C. m

Projective embedding of the modular curve X (2)

The theta functions give also embeddings of modular curves. For m > 1,
the modular curve of level m is the quotient X (m) := I'(m)\H. This quotient
X (m) is a Riemann surface with finitely many cusps whose genus can be
calculated thanks to Hurwitz formula.

In the following lemma we will only deal with m = 2. This quotient X (2)
is obtained from the fundamental domain for I'(2) on H

D:={reH]||Re(r) < 1,21 =1 = 1,22+ 1| > 1}

by glueing the two half-lines Re(7) = +1 in ¢D thanks to 7 — 7 + 2, and
the two half-circles |27 £ 1| = 1 thanks to 7 — 5. This shows that
the surface X (2) has genus zero and three cusps, which means that X (2) is
homeomorphic to a 2-sphere minus 3 points. The following lemma gives a

nice interpretation of this fact.

001 (0, T)4

Lemma 4.21. The map ¢ : H — PY(C) given by o(7) := m
0o\Y, T

induces

a biholomorphism
d:X(2) — PC~{0,00,1}.

Sketch of Proof of Lemma[{.21].

First step: We check that, for all ¢ in I'(2) and all 7 in H one has
o(o1) = (7). We only need to check it for the generators o = u? and
o = v? of I'(2). In these cases, the calculation follows from Exercise |4.15]

Second step: We check that, for all 7 in H, one has ¢(7) # 0,00, 1. This
follows from Corollary [4.17.d and the non vanishing of the theta constants
000(0,7), 001(0,7), 010(0, 7) proven in Lemma [4.1]
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Third step: We check that the map ® is proper. Let p, be sequence
in X(2) that goes to one of the three cusps. We want to prove that ®(p,)
converges to either 0, 1, or co. Using the equivariance of ¢ from Exercise [4.23
below, one can assume that p, converges to the cusp co. In that case, our
assertion follows from the equality : %u)n (1) = 1. More precisely, if we

m(7)—00

set ¢ = €™, one has

_ n2 4
p(r) = B2l — 1 - 169 + O(). (4.25)

Fourth step: We check that the map ® is onto. Since the map ® is open
and proper, this follows from Exercise below.

Fifth step: We check that, the map ® is one to one. We know that & is
a ramified cover. We want to prove that the degree d of this cover is 1.
Either one can compute the degree near the cusp o of X(2), i.e. around

q = 0, by using Formula (4.25) and gets d = 1.
Or one can apply Hurwitz formula to the ramified cover ® between two
surfaces both being a three holed sphere and also gets d = 1. O

Exercise 4.22. Prove that a continuous proper open map ® between two
connected locally compact spaces X and Y is onto.

FEzercise 4.23. Prove that the map ¢ is equivariant under SL(2, Z), and more
precisely, that

p(=7) = ¢(1) . ¢(r+1) =1/p(r) and @(~1/7) =1 - (7).

Notes to Chapter [d See [37].
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5 Convolution and square

In this lecture we will deal with a finite abelian group G of odd order d,
which, most of the time, will be the cyclic group G = Z/dZ, and with the
functional equation

f=f2k)=Xf*k) forall kin G, (5.1)

where the unknown is a non-zero function f : G — C and where A € C is a
parameter. This equation expresses a proportionality condition between the
“convolution square” of f and its “multiplication square”.

One of the motivations of Proposition and Theorem below is to
explain some of the intriguing patterns that occur in the lists of possible
values of A obtained by computer experiments.

5.1 Definition and Examples

A non-zero solution f of this functional equation will be called a “\-
critical function on G” or, in short, a “A-critical function”, and a value A
for which such a function f exists will be called a “critical value on G”, or a
“d-critical value” when G = Z/dZ. Note that Equation has been chosen
so that it is invariant by translation on the variable k. This equation
can be rewritten as

S F(k+0) f(k—0) = A f(k)? for all k in G. (5.2)

leG

Examples Here is the complete list of d-critical values for d < 11 ob-
tained by solving the algebraic equations thanks to computer program.
Up to sign we will explain in this lecture why all these values are d-critical.
The sign issue is more subtle and will be only partially discussed here.

* When d = 3, the list of critical values is: A = 1, 3, and +i+/3.

* When d = 5, the list of critical values is: A =1, 5, +4/5, and 1 + 2i.

x When d = 7, the list of critical values is: A\ = 1, 7, +i1/7, and +2 + i/3.
* When d = 9, A =1, 9, +iv/3, £3iv/3, 3, +/5 £ 2i, +1 + 2i+/2.

* When d = 11, A = 1, 11, 4 + /5, +iv/11, 2 + /7, +2¢/2 +i4/3,

and A = £(1+ev/5) +iv/5—2ev/5 with ¢ = 1.
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x The values A = 1, resp. A = d are d-critical with f = dg, resp. f = 14.

* The values A = v/d when d = 1mod 4 and )\ = iv/d when d = 3 mod 4 are
d-critical values with critical function f(k) := n%* where 7y := —e/™/4.
Indeed, one has fx f(2k) = 31 pk=0%pk+0® — 57 2026° _ \f([)2,

1<0<d 1<t<d
where we used the value of the Gauss sum in Lemma [L.3]

* The value A = x(4)J(x, x), where x is a Dirichlet character on Z/dZ whose
square x? is primitive, is a d-critical value with A-critical function f = Y.
Indeed, since both y and x? are primitive, using Proposition [1.18|¢, one
computes x*X(2k) = J(x, X)x*(2k) = x(4)J (x, X)x* (k).

For instance, when d = 11, the critical values A = +(14+ev/5)+iy/5—2e1/5
with € = +1, are obtained this way, choosing for x either a character of order
5 or a character of order 10.

* When d' divides d, every d’-critical value is also a d-critical value.

* When d = d'd” with d’ and d” coprime the product A = M'A” of a d’-critical
value and a d”-critical value is a d-critical value. Just because the group
Z,/dZ is isomorphic to the product Z/d'Z x Z/d"Z.

* The values A = 43ty () (49) W are d-critical values. This follows from the
following exercise.

Exercise 5.1. Let G = Z/dZ and f = adp + 1o oy With o # 1.

CL) Prove that 1o oy = 1g oy = (d — 1)(50 + (d — 2)1G\{0}-

b) Prove that f = f = (&® +d — 1) + (2 + d — 2)15 (0

¢) Prove that f2 = a®d + 1go}-

d) Prove that f is A-critical if and only if A = 2a + d — 2 where « is a root
of 202 + (d—1)a+d—1=0.
Exercise 5.2. Jacobi sums Let (5 =€
a) Prove that there exists a Dirichlet character x of Z/7Z such that x(3) = (.
b) Prove that the Jacobi sum J(x, x) is equal to 2 — (2.

¢) Deduce that A = =2 + iv/3 is a T-critical value.

Ezercise 5.3. Critical functions of quadratic residues. Let p > 3 be
prime with p = 3 mod 8. Let g be the Legendre character. Remember that
Xo(—=1) = x0(2) = —1. Let o, 8in C* and f = ady + Lz + BX0-

a) Prove that 1gx = X0 = —Xo-

b) Prove that xo * xo = (1 —p)do + 1gx.

in/3
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¢) Prove that f? = a?dp + (1 + %)1s + 28x0.
d) Prove that f+f = (a®+(p—1)(1—5%))d0+(2a+p—2+5%)1g +2(a—1) 5 x0-
e) Prove that f is A critical if and only if
a=1=X\ A=13={(p-11-7p*)and (A—1)5%=p—3X\
f) Prove that the roots of A* — 4\% + 6A% — 4p\ + p? = 0 are p-critical.
g) Let n = (p — 1)/2. Deduce that 1++/n+iy/n—24/n is a p-critical value.

5.2 Properties of critical values

We first begin by a few properties of the critical values, that are valid on any
finite abelian group.

Proposition 5.4. Let G be a finite abelian group of odd order d, and \ a
critical value on G, then:

a) one has |\| < d with equality if and only if A = d,

b) there exist only finitely many critical values on G,

c) the value A is algebraic and its Galois conjugates are critical values on G,
d) the ratio d/X is a critical value on G,

e) The ratio % 15 an algebraic integer.

Proof of Proposition[5.4. a) This follows from Cauchy-Schwarz inequality.
Indeed, setting

|1 = masx £ (k)| and £ = (£, |f(K)*)2, one has

IMIFIZ = 1 * floo < If13 < Al fI%.

Hence |A| < d. In case we have equality the function f must have constant
modulus, and must satisfy f(k+¢)f(k—¢) = f(k)?, for all k, {. Hence f is
proportional to a character and one has A = d.

b) The set X = {(\, f) e C x C% | f«f(2k) = A\f*(k) and f(0) = 1} is an
algebraic variety and the set C' of critical values on G is the image of X by
the map (A, f) — A

Therefore, by the elimination of quantifiers in an algebraically closed field,
i.e. by Chevalley theorem in Fact the set of critical values for G is either
finite or has finite complement in C. Since, by Point a), this set C'is bounded
it must be finite.

¢) Equations have rational coefficients. Hence the images of \ by
automorphisms of the field C are also critical values. Hence, by Point b), A
has only finitely many Galois conjugates and A is algebraic.
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d) If f is a A-critical function on G, then its Fourier transform f, which
is given by, for every character w : G — C*,

fw) =25 3 flk)w(k),

keG

is a d/A-critical function on the dual group G. Since this dual group G is
isomorphic to G, d/\ is also a critical value on G.
e) Let G be a subset of G of cardinality % such that for each non-zero

¢ € G either £ or —¢ is in G;. The equations (5.2]) can be rewritten as

AL f(k)?? = 3 f(k+0) f(k—¢) forallkin G (5-3)

£€G+

We will now use Fact which says that, to prove that \' := % is an
algebraic integer, it is enough to check that, for all non-archimedean absolute
value |.|, on C, one has [X|, < 1.

We set | fll, := r?eacxlf(ﬁ)|v, we choose k such that |f], = |f(k)|,, and we

compute

VLIS = INFR e = | 3 f(k+0)f(k=0)l,

ZEG+
< max [f(k+ 0L f(k=0 < |f]-

This proves that ||, < 1 as required. O
We have used the following fact:

Fact 5.5. A complex number x € C is an algebraic integer, if and only if,
for all ultrametric absolute value |.|, on C, one has |z|, < 1.

Sketch of proof. We first note that when L/K is a field extension, any abso-
lute value on K can be extended to an absolute value on L, see [33], XII,84].
Hence it is enough to construct the absolute value on the field Q(x).

When zx is transcendental, for all prime p > 2, there is an embedding
i:Q(z) — Q, with |i(z)|, > 1.

When z is algebraic the fractional ideal (x) in K has a decomposition as
a finite product of powers () = [ [ p*?® of prime ideal of the ring of integers
Ok. The element z is not in Ok if and only if one of the valuations vy(x) is
negative. The corresponding absolute value satisfies |z, > 1. O
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5.3 Construction of critical values
From now on, G will be the cyclic group Z/dZ.

Theorem 5.6. Let a,b be positive integers with a+b=d and a= % mod 4.

Then the complex number X := /a +iv/b is a d-critical value.

Remark 5.7. The congruence assumption in Theorem is equivalent to
a—b=1mod4 and ab=0mod 4. (5.4)
A more concrete way to state Theorem [5.6] is:

For d = 1 mod 4, the following values are d-critical:

Vd |, Vd—4+iva | Vd—8+iV8 , Vd—12+i/12 , ...

For d = 3 mod 4, the following values are d-critical:
iVd , Vi+ivd—4, V8+id—8 , V12 +ivd—12 , ...

More precisely, we will see that, surprisingly, for these values A, the set
of A-critical functions f with f(0) = 1 has positive dimension. Indeed, we
will construct a one-parameter family of \-critical functions using a suitable
Jacobi theta function.

We first explain that the congruence condition on the integer a is neces-
sary.

Lemma 5.8. Let a,b be positive integers and let X := /a+iv/b. The number
A1 L ~ - o
25 1s an algebraic integer if and only if a—b—1=ab=0 mod 4.

As seen in ([5.4)), this condition is equivalent to a = @ mod 4 where
d:= a+b.

In particular, by Proposition [5.4] when this condition is not satisfied, the
complex number A = y/a + iv/b can not be a d-critical value.

Ezercise 5.9. For any algebraic number A, one has the equivalence:

-1 - P 2_1 . .
vi= % is an algebraic integer <= 1/:= % is an algebraic integer.

Indic. These two elements v and ¢/ are related by the equation v? + v = v/,

Ezercise 5.10. Let u,v € Q be two rational numbers. Assume that both v
and uv are not squares. Denote by y/u and /v, one of the two square roots
of u and v, respectively. Then, one has the equivalence:
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[:=+/u + 4/v is an algebraic integer <= 4u€Z and v —u € Z.
Indication: Let o be the Galois automorphism of Q[+/u,/v]/Q[+/u] such
that o(4/v) = —4/v. Note that p is an algebraic integer if and only if both
p+o(p) and po(p) are algebraic integers.

Proof of Lemmal[5.8 The number v/ := % is equal to vV = “_Tb_l + z@
It is an algebraic integer if and only if both T" := "“_Tb_l and N := W are
integers. This happens if and only if a—b =1 mod 4 and ab= 0 mod 4. [J

Corollary 5.11. Let p,q be positive integers with p odd and q even and let
d = p? + ¢*. Then the complex number \ := p + iq is a d-critical value.

Proof. Condition ((5.4)) is true: p> —¢*> =1 mod 4 and p?¢> =0 mod 4. [

Remark 5.12. Tt is not known under which condition on these integers p and
q, the opposite value A := —p — iq is also d-critical. Even when g = 0.

5.4 Using theta functions

Theorem is a special case of the following Proposition that gives an ex-
plicit family of A-critical functions thanks to the theta functions (4.1)) that
we studied in the previous lecture.

Proposition 5.13. Let a,b be positive integers with a = % mod 4 and
a+b=d. Set \g := \/a + iVb and
Ty = gpla—b—d®+2iVab). (5.5)

Then for all z in C the function k — 0,,(z + k/d) is Ao-critical on Z/dZ.

This means that, for all z in C,

> 0(z+L0/d, ) 0(z — /d, T9) = NO(z,79)>.

LeZ/dZ

One can check that these values 7y are the simplest one for which Propo-

sition [5.13] holds true.

x For d =5 and \g = 1 + 24, one has 1y = _27;”

* For d = 7 and A\g = 2 +iv/3, one has 1y = —_124;'5“/3-

Without the general formula (5.5)), these values of 7y are not easy to guess.
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5.5 The condition on theta contants

The first step in the proof of Proposition |5.13|is the following criterion on A, 7
which ensures that these functions are A-critical. This criterion is a relation
between “theta constants”, i.e. theta functions evaluated at z = 0.

Lemma 5.14. Let 7 € H and X\ € C. The function k — 0.(z + k/d) is
A-critical on Z/dZ, for all z € C if and only if one has the equalities

01010, 2 011(0, &2
=g l00dT) om0 dT) (5.6)
9[0] (O, T) 9[1] (O, 7')

Proof. For w in C we introduce the function

2z Fy(z) = Fy(z,7) == 0(z + w,7) 0(z —w, 7).

We want to know when the two functions )}, Fyq and Fy = 6% are propor-
tional. The key point of the proof is that all these functions F;, live in the
same two-dimensional vector space and that this vector space has a very
convenient basis: (g}, 0p17) that we introduced in and (£.7). We only
have to express that the coefficients of our two functions in this basis are pro-
portional. These coefficients are given by the following calculation in which
we apply successively the addition formula and the isogeny formula in

Corollary [4.8]
Z Fg/d(Z,T) = Z 9[0](£/d,7') (9[0]<Z,T)+ Z 9[1](€/d,7') 9[1](2,7')

1<i<d 1<i<d 1<i<d

= de[o]((), dQT) 9[0](2’, 7’) + d0[1](0, dzT) «9[1](2, 7’) and

9(2,7‘)2 = 9[0](0,7') (9[0](2,7') + «9[1](0,7') 9[1](2,7').

These two functions are proportional with proportionality factor A if and
only if one has

)\ _ d 0[0] (0, d2T) _ d 9[1] (0, d27')
9[0] (O, 7') 9[1] (O, 7')

This is the criterion ([5.6]). O

The following corollary of Lemma looks now very useful. Note that
this corollary requires o to belong to a smaller congruence subgroup I'(m) as

defined in (4.11)).
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Corollary 5.15. If o= (f; g > e I'(4), v > 0, then, for all T in H, one has

9[0] (070-7—) 0[1] (070-7—) L0-1 9 1
= = 72 (D) (yvr+9)2 . 57
0101 (0, 7) 0111(0,7) ) (v ) (5.7)

Proof. Let
a’z(f‘y’, é) and a”=<$f, /35),
with ' =268, 74 =~v/2 and " = /2, 4" = 2, so that

o'(21) = 207 and o"(7/2) = 307

Since the matrix o is equal to +1 mod 4, the two matrices o’ and ¢” are equal
to 1 mod 2. Therefore we can apply the transformation formula in Lemma
to both pairs (¢’,27) and (¢”,7/2). Using the multiplicativity properties
of the Jacobi symbol, we see that the following two ratios are given by the
same formula

0(0,207)  6(0, 507)

02 0y L @ Orra

N|=

We now conclude thanks to Equalities (4.8]). O

5.6 Elliptic curves with complex multiplication

We can now end the proof of Proposition [5.13, by explaining why the pair
(Ao, 7o) satisfies Condition (5.6)). The key idea is to find

oo € I'(4) such that ogry = d*7p. (5.8)

It is most useful before beginning the calculation to understand geomet-
rically the meaning of this condition ([5.8)).

We introduce the lattice A, = Z7y@®Z1 of C so that the compact quotient
E., := C/A,, is the elliptic curve associated to 7. We will see that the values
of A = )\g and 7 = 7y in Theorem [5.6] have been chosen so that

the elliptic curve E;, has complex multiplication by p := /\_02.
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More precisely, they have been chosen so that poA;, = Ag,. This means
that

1y = o (am + B),
1 = po (yro +6),

5
0o = 1 mod 4 so that we can apply Corollary |5.150 In fact we will see that

it is possible to choose the entries v and ¢ to be equal to v = 4 and § = 1.

for a matrix oy = (f: 57 € SL(2,Z). We will be cautious and choose

Ezercise 5.16. Check that the only 7y € H satisfying ogry = d*7y for some
o9 = (3‘ ?) e I'(4) with v =4 and § = 1, are the one given by (5.5).

We now recall the notation of Proposition Let a, b be positive

integers with a = % mod 4 and a+0b=d. We introduced the parameter
To = % - % e H. We introduce the integer ny := W. In the

next lemma we give the precise formula for the matrix oy

Lemma 5.17. Let oq € I'(4) be the matriz

oy 1= <1+i6n0 47110> —

Then one has oy1y = d*79.

Proof. We first compute pg := - We set

poi=(dn + )7 = —=fom = (Va—ivh)® = X,

Since 41y = j1 1 — 1, we compute
Po = };(1 — Ho)-
Since d = a+b, this equation can be rewritten as
po = 11— (Va— Vb))
= X1 -2a+d+2ivab)
d*ro — 1(da —d® — 2d — 1)

= d*m — 4no.
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This proves that oy = d*7.

We can now end the proof of Proposition [5.13] Applying Lemma
and Corollary [5.15] together with Lemma [5.17, we deduce that, for all z in
C, the functions k — 0.,(z + k/d) are A-critical on Z/dZ with

=

A=di'T &) (v + 6)7, (5.9)

where the square root is the one with positive real part. Since v = 4 and
. 1\ L 1 . .
§ = 1, this gives A\ = (d®ug")2 = fig2 = v/a + iv/b, as required. O

Notes to Chapter [5 We followed [9].
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6 Abelian varieties

All the critical values A we have found in the previous lecture belong to a
cyclotomic field: there exists n > 1 such that X is in Q[e*™/"]. We show in
the next lecture how to construct new critical values that do not belong to
cyclotomic field.

In the previous lecture the proof relied on the restriction of a Jacobi theta
function to a torsion subgroup of an elliptic curve with complex multiplica-
tion.

The new ingredients in this lecture and the next one will be their higher
dimensional analogs: the restriction of a Riemann theta function to a torsion
subgroup of an abelian variety with a non trivial ring of endomorphisms.

For instance with this method one can prove that

A=1++/5+i4/9—24/5 is 15-critical, (6.1)
A =1+2v2+2in/3 — /2 is 21-critical. (6.2)

In this lecture we focus on the various equivalent definitions of abelian
varieties. This topic would deserve a whole book as [14] and the reader
is encouraged to go to this book if he wants to know more on the abelian
varieties and their theta functions. The aim of this lecture is to state with no
proof how unitary Q-endomorphisms of abelian varieties allow us to construct
new critical values. The proof will be given in the next lecture thanks to
the Riemann theta functions and their addition, isogeny and transformation
formulas.

6.1 Kahler bilinear forms and Riemann matrices

We begin this lecture by a few elementary lemmas from linear algebra, that
focus on the imaginary part of a hermitian scalar product seen as a symplectic
bilinear form. The notion of Riemann matrix will show up as an output of
this discussion.

In this lecture dealing with an abelian variety A , we follow the tradition
to denote by ¢ its dimension, keeping in mind the important case where
where A is the Jacobian of a genus g curve.

Let V = CY be a g-dimensional complex vector space and let w be a
real symplectic bilinear form on V. This means that w is antisymmetric and
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non-degenerate. For instance the imaginary part w = Im(H) of a positive
hermitian form H on CY.

By convention our hermitian form will be linear in the first variable and
antilinear in the second variable: H (A\v, pw) = Xt H (v, w), for all A in C and
v, win V, and also H(w,v) = H(v,w).

Definition 6.1. We say that w is Kahler if there exists a positive hermitian
form H on'V such that w = Im(H).

Lemma 6.2. A real symplectic bilinear form w on V' is Kdhler if and only if,
for allvy, vo inV and v # 0, one has w(ivy,ivy) = w(vy,ve) and w(iv,v) > 0.

Proof. One recover the hermitian form thanks to the formula, for vy, v € V:
H(vy,v2) = w(ivy, va) + iw(vy, vg). O

For any symplectic bilinear form w on V' there exists a basis of the real
vector space V' of the form (fi,..., fy, e1,...,e,4) such that

w(ej,ex) = w(fj, fr) =0 and w(fj,ex) =0, forall j, k,
or equivalently, w = > fF A e].
Remark 6.3. If w is Kéhler, the family (eq,...,e,) is a basis of CY.

Proof. Let Vi be the real vector space spanned by ey,...,e,. We want to
prove that Vo niVy = {0}. But when v is in this intersection Vj n V4, one
has H(v,v) = w(iv,v) = 0 and hence v = 0. O

For the same reason (fi,..., f,) is a basis of C¢ and we denote by 7 the
matrix giving the base change. This g x g complex matrix 7 is given by

(fl,-..7fg)2(61,...,69)7.

This means that the entries of the k" column of the matrix 7 are the co-

ordinates of the vector fi in the basis e;, that is fy = >, 7je; for all
1<y<g

k<g.

Definition 6.4. A g x g complex matriz T is called a Riemann matrix if T
18 symmetric and its imaginary part is positive definite.

Lemma 6.5. The real symplectic bilinear form w on V' is Kdahler if and only
if T is a Riemann matriz.
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Proof. We write 7 = R+ 1S where R and S are g x g real matrices. We want
to prove that both R and S are symmetric and that S is positive definite.
We write the base change between the following two real basis of V

. : R 1
(fio-- s fger,. o eq) = (el,...,eg,zel,...,zeg)<S O) (6.3)

Therefore the antisymmetric matrix €2 that expresses w in this second real
basis (eq, ..., e, 0€1,...,1€,) is

0 - (R0 1) (R 1)
- s o -10)\s o0
0 1 0 1)\ /0 S
tst —t51R J\-10) \1 —RS™?

0 -5
tsfl tsfl(tR_R)Sfl .
Therefore, by Lemma [6.2] the symplectic form w is Kéhler if and only if
'R=R,'S =25, and S is positive definite. O

6.2 The Siegel space and the symplectic group

We now introduce the Siegel upper half-space H, that will replace the Poin-
caré upper half-plane. We will also introduce its group of isometries Sp(g, R)
that will replace the group SL(2,R) (see also [18] or [§]).

It will be convenient to use notation that looks as much as possible like
the notation for the case when g = 1. This is why we will still use lower case
greek letters 7, o, (3,... to denote g x g matrices.

For g > 1, let H, be the Siegel upper half-space which is the space of
Riemann matrices of size g,

H, = {Te M(g,C)| 'r =7, Im7 > 0},

where '7 denotes the transpose of the matrix 7. Let J = < _(i 16’ ) and
g9

Sp(g,R) := {0 € GL(2¢,R) | ‘o Jo = J},

be the real symplectic group. This group is the stabilizer of the symplectic
form w(z,y) = 'z Jy on R*, that is,

Sp(g,R) = {0 € GL(2¢,R) | w(oz,0y) = w(z,y) for all z, y in R},
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The group Sp(g,R), seen as a group of 2 by 2 block real matrices of size
g is given by

Sp(g,R) = {o = (: ?) | o7t = ( - B) }, or, equivalently

—tay a

Sp(g,R) = {0 = (2 §) | fay ="ya, '86="68, ‘ad — "5 = 1,}.

o

Lemma 6.6. The group Sp(g,R) acts transitively on the Siegel upper half-
space H, thanks to the formula

ot = (ar + B)(y7 +6)7L. (6.4)

One cannot confuse this notation o7 with the product of matrices since
o has size 2g while 7 has size g.

Note that in this formula the involved matrices have no reasons to com-
mute, hence one has to pay attention to the order in which one computes the
product of these matrices.

Proof. We first want to check that the matrix v7 + 9§ is invertible. For that
one computes using the above relations between the block matrices

Fla+'8)(y7+6) — Ty +1)(ar + B) =7 — 7 = 2i Im(7). (6.5)

Let v € CY be a vector in the kernel of y7+4. By (6.5), one has ‘o(7—7)v = 0.
Since the matrix Im(7) is positive definite, this implies that v = 0. This
proves that y7 + ¢ is invertible, and formula is well defined. We set
=01 = (at + B)(yT + )7 ..

We want now to prove that 7’ is symmetric. For that we compute

(T +50)(7" = 7)(yr +0) = (fa+'B)(v7 +8) — (7 'y + '9) (a7 + ) = 0.

which proves that ‘7' = 7.
We also check that the imaginary part of 7/ is positive definite. This
follows from the following calculation based on ([6.5)),

T+ -7y +0) =T — 7 = 2i Im(7).

Finally we need to check that the action of Sp(g,R) on H,, is transitive.
Formula tells us, that given a symplectic structure on R?9, an element
7 of H, gives a complex structure on R* together with a positive hermi-
tian form H whose imaginary part is w. Since the group GL(2g,R) acts
transitively on the set of complex structure on R?9 together with a positive
hermitian form, the group Sp(g,R) acts transitively on H,. O]
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Ezercise 6.7. Prove that the stabilizer in the group Sp(g,R) of the element
10 = i1, € H, is the unitary group U(g,R), so that H, ~ Sp(g,R)/U(g,R).

Remark 6.8. This means that H, is the Riemannian symmetric space G/K
associated to the semisimple Lie group G = Sp(g,R) and its maximal com-
pact subgroup K = U(g, R). This symmetric space is a hermitian symmetric
space: it admits a G-invariant hermitian structure.

6.3 Integral symplectic bilinear forms

Before introducing abelian varieties, we need to recall the theory of integral
symplectic bilinear forms.

Lemma 6.9. Let A = Z?9 and w be an integral symplectic bilinear form on
A. Then there exists a positive integral diagonal matriz A = diag(dy, ..., d,)

with dyilds|---|d, and a Z-basis (fi,..., fg€1,...,e4) of Z?9 such that the
(N

matriz of w in this basis is <_ A o )

Proof. Let d > 0 be the minimum positive value for w(v,w) with v, w in A.
Choose two vectors f and e in A such that w(f,e) = d. Note that, because
of the Euclid algorithm, one has

w(e,A) =w(f,A) = dZ.

Let A" := {v/ € A | w(f,v') = w(e,v') = 0} be the orthogonal in A of
Z.f @ Ze for w. Since for all v in A the element

Ul =y — w(];,v)e - w(z,e)f
belongs to A’, one has the equality
A= (Zf®Ze)DdN.

We can now conclude by induction. It only remains to check that for all v/,
w’ in A’ the integer w(v',w’) is a multiple of d. We write w(v',w’) = dq +r
with ¢, r integers such that 0 < r < d, and we want to prove that r = 0. We
compute

wv' —qf,w +e) =wl, W) —qd=r.

Hence by minimality of d, one has » = 0 as required. O
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6.4 Polarized abelian varieties

We now introduce the principally polarized abelian varieties that will replace
the elliptic curves. A new phenomenon occurs in dimension g > 2: not all the

complex tori C9/A, admits a holomorphic embedding in a complex projective
space P(CV).

Definition 6.10. A polarized abelian variety (A = V/A,w) is a complex
torus, where V.= C9 and A is a lattice in V', together with a real symplectic
bilinear form w:V xV — R on V satisfying the following two conditions:
(1) the symplectic form w takes integral values on A x A, and

(17) w is the imaginary part Im(H) of a positive hermitian form H on V.

Before going on we need to explain why this definition which involves only
notion from linear algebra is useful. We first recall that a Kéahler manifold is
a complex manifold X endowed with a symplectic differential form w which
is equal to the imaginary part w := ImH of a hermitian structure on X.
This form w is called a Kahler form. Two Kahler structure are said to be
equivalent if the corresponding symplectic forms are cohomologous, i.e. they
have same image [w] in H?(X,R). The most important Kahler structures
are those for which this cohomology class is integral that is [w] € H?*(X,Z).

In case of tori one has the following fact

Fact 6.11. Let V = C9, let A be a lattice in V and let T be the quotient
torus T =V /A. Then one has the equivalences (i) < (i) < (ii1) < (iv).

(i) The torus T admits a holomorphic embedding in a projective space P(CN).
(17) The torus T admits an integral Kdhler symplectic differential form w.
(i1i) There ezists a symplectic bilinear form w on V' such that (T,w) is a
polarized abelian variety.

(iv) There exists a basis e1,...,e, of C¥ and a positive integral diagonal
matriz A = diag(dy, ..., dy) with di|ds|---|d, and a Riemann matriz T € H,
such that A = 7729 ® AZI.

Condition (7) means that T has a structure of projective algebraic variety.

Sketch of proof.

(1) = (i) See [18, VI.6]. The main examples of a Kéhler manifold is
a smooth projective algebraic variety. This is a smooth compact complex
submanifold X of Z := CPV. The Kahler form w on X is obtained as the
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restriction to X of the unique U(N + 1)-invariant normalized Kéahler form
wrg on Z = CPY which is called the Fubini-study form. The Fubini-Study
form is defined by the equality

m™(wrs) = 5-00log|z[? := #Z]:gaz]-aﬁlog(; zez¢) dz;dzy,
Js

where m : CV \ {0} — P(C") is the natural projection. The class [w] €
H?(X,R) of the Kéhler form w is integral, i.e. belongs to H?*(X,Z) because
the class [wrg] of the Fubini-Study Kéhler form wpg is already integral. This
follows from the following calculation.

Let F': C — P(C") be the map given by F(z) = [1, 2,0,0, ...]. This map
generates Hy(X,Z) and one has

So F*(wrs) = 5= §00.0:10g(1 + 2z) dzdz
= S So (1+7?)"2rdrdf = 1.

(17) = (i17) See [18] 111.4]. All the translates t*w of the Kéhler form w
by elements ¢ of the torus T are also integral Kéhler forms and hence their
cohomology class is constant [t*w] = [w]. Their average wo = §, t*wdt is
a T-invariant Kahler form which is also cohomologous to w. Therefore wy
is a T-invariant integral Kahler form on 7. It can be seen as a symplectic
bilinear form on V' which takes integral values on A x A.

(1ii) = (iv) See [18, VI.1]. According to the reduction in Lemma
applied to the non-degenerate integral symplectic bilinear forms w on A x A,
there exists a positive integral matrix A = diag(dy, ..., d,) with d;|da| - - - |d,
a basis of A of the form (f1,..., f;, dies, ..., dye,) such that

w(ej,ex) = w(fj, fr) =0 and w(f;,ex) = 0;r for all j,k.

According to Lemma the family (ej,...,e,) is then a basis of CY. and
the g x g matrix 7 given by (f1..., f;) = (e1,...,e,)7 satisfies the “Riemann
condition”: it is a symmetric complex matrix with positive definite imaginary
part, that is 7 belongs to H,.

(iv) = (i) See [14, §4.5] and [18, VI.3]. We just give a hint. The positivity
of the imaginary part of 7 allows to construct many theta functions on V'
and hence to construct a holomorphic line bundle on 7" with sufficiently many
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sections. We obtain this way a holomorphic embedding in the projectivized
dual of the space of sections of this bundle. n

Remark 6.12. For the proof of (iv) = (i) we can also use the general fact: a
compact Kahler manifold X whose Kéahler form w has an integral cohomology
class is a projective algebraic variety.

6.5 Principally polarized abelian varieties

Definition 6.13. A polarization w on an abelian variety A = V /A is prin-
cipal, if the restriction of w to A x A has determinant 1.

Equivalently this means that the diagonal matrix A is the identity. At
first glance, this assumption looks harmless for us since every polarized
abelian variety is isogenous to a principally polarized abelian variety. The
problem is that changing A by a finite index subgroup might change the finite
abelian group G on which one constructs a critical function. It is indeed a
delicate issue to choose A in such a way that G is cyclic.

Fact 6.14. The map (A,w) — 7 given in Fact|6.11iv induces a bijection

principally polarized
abelian varieties

} s Sp(9.2)\H,. (6.6)

Sketch of proof. For T in Hy, we introduce the lattice
N =727

of C9, the quotient torus A, := CY9/A,, the hermitian form H, on CY whose
matrix is (Im7)~! in the canonical basis (e, ...,e,) and the imaginary part

w, of H.. The pair (A,,w,) is then a principally polarized abelian variety,
and the map 7 — (A;,w,) is the inverse map of (6.6). ]

6.6 Endomorphisms of abelian varieties

Let (A =V /A,w) be a polarized abelian variety.

We denote by End(A) the ring of endomorphisms p : A — A. These are
the holomorphic group morphisms A — A. They are given by a complex
matrix 7, € End(V) that preserve the lattice T),(A) < A. An isogeny of A is
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an endomorphism g of A which is given by an invertible matrix 7},, i.e. an
endomorphism whose kernel K, = A is a finite subgroup.

We denote by Endg(A4) := End(A) ®z Q the Q-algebra of Q-endomor-
phisms v of A. To each Q-endomorphism v € Endg(A) is associated
* a tangent map T, € Endc(V) ~ M(g,C),

* a holonomy map h, € Endg(Ag) ~ M(2g,Q), where Ag := A ®z Q.
The map h,, is the restriction of T, to Ag.

In other words, an endomorphism (resp. Q-endomorphism) v of A is
nothing but a C-endomorphism of V' that preserves A (resp. Ag). This is
why one sometimes writes abusively v instead of T, or h,. But it is useful to
keep the two notations because, in coordinates, T}, is a g X g complex matrix
while h, is a 2¢g x 2¢g rational matrix.

Lemma 6.15. Let (A,w) be a polarized abelian variety and v be a Q-endo-
morphism of A. Then there is a unique Q-ensomorphism v* of A defined by
one of the two equivalent properties:

* T« is the adjoint of T, for the hermitian form H on V.

* hyx s the adjoint of h, for the symplectic form w on Ag.

The map v — v* is an antiinvolution of the Q-algebra Endg(A) called the
Rosati antiinvolution.

Proof. Let T* € Endc(V) be the adjoint of 7, for the hermitian form H and
h* € Endg(Ag) be the ajoint of h, for the symplectic form w. By definition
T* and h* are defined by the equalities

H(T*v,w) = H(v,T,w) for all v, winV,

w(h*v,w) = w(v,hy,w) for all v, w in Ag.

Since w = Im(H) and since h,, is the restriction of 7, to Ag, the map h* is
the restriction of 7" to Ag. This means that there exists a Q-endomorphism
v* of A such that T, = T* and h,+ = h*.

By construction, one has (v115)* = vivf, for all vy, 15 in Endg(A). O

Corollary 6.16. Let (A,w) be a polarized abelian variety and v be a Q-endo-
morphism of A. Then, the tangent map T, is a unitary transformation of the
hermitian space V if and only if the holonomy map h,, belongs to Sp(Ag,w).
One has then vv*=v*v=1, and v is called a unitary Q-endomorphism of A

The Q-algebra R = Endg(A) with this antiinvolution is an important
invariant of the polarized abelian variety A. We just quote the following fact
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which gives strong restrictions on the algebra R. For v in R, the rational
trace of v is defined as the trace of its holonomy 7', (v) := T'r(h,) € Q.

Fact 6.17. The Q-algebra R = Endg(A) is a semi-simple algebra over Q
and the Rosatti antiinvolution is positive.

This means that the hermitian form (u,v) — Tr.(u*r) on R is positive.

The finite dimensional QQ algebras with a positive antiinvolution have been
classified by Albert in the early nineteenth century. The list is very short
(See [14, §5.5]).

6.7 Critical values and abelian varieties

We now introduce the condition that will replace the congruence condition
in in this higher dimensional abelian varieties. It is called the Igusa
condition.

For £ > 2 even, let Z) be the ring of rational numbers with denominator
prime to ¢. We introduce the rational congruence symplectic group of level £

Sphg = {h € Sp(g. Z)) | o = 1y mod ¢}, (6.7)
and the rational symplectic theta group of level ¢
Spyg = {h=(2 ) eSplly| (an)o=(B0)g=0mod 26},  (6.8)

where for a g x g symmetric matrix S, the notation Sy means the diagonal

of S.

We will mainly be interested with the value ¢ = 2. We say that h €
Sp(g, Q) preserves a theta structure of level 2 if it belongs to Spf]f@. The
group SpgfQ is a normal subgroup of the group Sp(g,Z)), and one has the
inclusions

0,2
SPy0 €SPy € SPho < Sp(9, Z2)-
Indeed the reduction modulo 4 of the group SpZ’fQ is the group é\f)(g,]F 2)
which is a normal subgroup of the group Sp(g,Z/47Z) ~ Sp(g, Z(g))/Sp‘;Q.

Definition 6.18. We say that the unitary Q-endomorphism v of A preserves
a theta structure of level 2 if the holonomy h, belongs to the rational sym-
plectic theta subgroup SpiQ of level 2 in a symplectic basis of (A,w). This
condition does not depend on the choice of the symplectic basis of A.
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The following theorem is the higher dimensional analog of Theorem

Theorem 6.19. Let (A = CI/A,w) be a principally polarized abelian variety,
v be a unitary Q-endomorphism of A preserving a theta structure of level 2,
T, its tangent map, G, = v 'A/(A nv™'A) and d, := |G,|. Then there
exists a critical value

Ay = Ky, dY? dete(T,) Y2 (6.9)

on the group G, with k5 = 1.

Remark 6.20. Note that the critical value has absolute value |A,| = di/”.

The square k2 can be easily calculated since one knows from Proposition
that 1(\, — 1) is an algebraic integer.

The abelian group G, depends not only on the tangent map 7, € M(g,C)
but also on the lattice A. It might be cyclic even when g > 1.

Theorem [6.19| will be proven in the next Lecture by using the restriction
of a suitable Riemann theta function to the torsion group G,.

Notes to Chapter [6l The main results of this chapter are in [10]. We
also used [18] and [14]
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7 Riemann Theta functions

In this lecture we give the proof of Theorem [6.19] that tells us how to con-
struct critical values A on a finite abelian group G starting from an abelian
variety A endowed with a unitary Q-endomorphism v.

The key idea is to think of G as a finite subgroup of A and to find the
A-critical function among the Riemann theta functions. This is why most
of this lecture deals with the construction of theta functions and their first
properties.

We will end this lecture by explaining how this construction give rise to
explicit new critical values when one uses abelian varieties associated to C M
Number fields.

This lecture and the previous one should be seen as a quick introductory
course to the abelian varieties, their Q-endomorphisms, their theta functions
and their links with CM number fields.

7.1 Theta functions

We now introduce the Riemann theta functions that will replace the Jacobi
theta functions:

0.(2) =0(z,7) := Zg eimtmmme2in'mz - for 2 e C9 and T € H,.
meZ

This function is a holomorphic function of z which is Z9-periodic. One has
0.(z 4+ q) = 0.(2) for all ¢ in Z9.

We will also need to introduce the Riemann theta functions with charac-
teristic (see [14]). We will also need three classical formulas satisfied by these
functions, the “addition formula”, the “isogeny formula”, and the “transfor-
mation formula”. We will only need special cases of these formulas that we
state below.

The theta functions with characteristic a, b in C9, are defined by, for
zeCY and 7 € H,,

9[2] (Z, 7') = 2 e”t (m+a)7(m+a)62i7rt (m+a)(z+b)
meZ?

—  imaraginta(z+b) O(z+ Ta+b,71).
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Again these functions depend only on b + z, hence it is not restrictive to
study them when z = 0 and to define

03] = o[g|(e.m) = 6]3](0.7)

These functions also satisfy the following periodicity when translating the
characteristic by elements m, n in Z9,

0[“*’"](2,7’) — gZintan 9[‘;](2,7).

b+n
The following special cases of theta functions with characteristics will be very
useful. For & € Z9/279, seen as a subset of Z9, we define
Ol (=) = 6| |(22,27) = %W%W&M% (7.1)
me
Note that one has the equalities:
o) (2, 7) = 0(22,27) and > bz, 7m) =0(2,7/2).

ee79/27°

7.2 Addition and isogeny formulas

We now state the formulas that extend the addition, the isogeny formulas in

Section [4.3]

Addition formula. We begin by the extension of the addition formula.

Lemma 7.1. For all a,b,z,w in C9, 7 € Hy, one has

QT{aer} Qr{aib} _ Z 927_[614;5/2] 927[b+£/2]- (72>

zZ4+w Z—w 2w
¢ez? /277

Proof. Just write the left-hand side as a double sum over m, n in Z9 and
write m = (p+&/2) + (¢ +&/2) and n = (p+ &/2) — (¢ + £/2) where p and ¢
are in Z9 and where the k" coordinates of ¢ is 0 or 1 according to the parity
of my—ny. This gives

LHS = Z 62‘7r(m+aer)27—622'7r(m+a+b)(z+w)eiw(nJrafb)27621'7r(n+a7b)(zfu))7
_ Z e2i7r(p+a+§/2)27e4i7r(p+a+§/2)z€2i7r(q+b+§/2)2764i7r(q+b+§/2)w

£:p,q

— até/2 b+&/2
- %927[ -gz/ ]627[ J’Q_w/ }7
where the sum is over £ in Z9/277 and hence has 29 terms. ]
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When a = b = 0, one gets the following corollary.

Corollary 7.2. For all z,w in CI, T € H,4, one has

0z +w,7)0(z —w,7) = > bg(w, )b (2, 7). (7.3)

¢ez? /228
Isogeny formula. We now explain the extension of the isogeny formula.

Lemma 7.3. Let 7 € H, and d € M(g,Z) with non zero determinant.
Set Gq :=td~1Z9/7Z9. Then, one has

o, r) = |Gq|0(0,'drd).
leGq

Proof. Just write the left-hand side LH S as a double sum over m in Z¢ and
¢ in G4 and notice that X, ™Ml s equal to the order |Gq| of the group
Gq when m belongs to d Z9 and is equal to 0 otherwise. Hence

LHS = |Gq] > ™™™ — |Gq| 6(0,'drd).

medZ?

This proves our claim. O]

Corollary 7.4. Let T € H, and d € M(g,Z) with d = 1 mod 2.
Set Gq :='d71Z9/79. Then for all £ € 79/279, one has

> O (6,7) = |Gal 0¢(0,'drd).
EEGd

The proof is very similar. The assumption d = 1 mod 2 is useful to keep
track of the cosets & by writing dZ? n £ = d(Z9 n €).

7.3 The transformation formula

We now explain the extension of the transformation formula in Section [4.4]
We state it up to sign for the theta functions with characteristic. It deals
with an element o = < f: ? > € Sp(g, Z). This formula is particularly simple

when o belongs to the theta group and when it is expressed with the modified
theta function

@[;‘j] — imab GT[‘;]. (7.4)
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Note that there is no modification when b = 0.
The following subgroups of the integral symplectic group Sp(g,Z) :=

GL(29,Z) n Sp(g,R), analogs of (6.7) and (6.8]), will play an important role
in the transformation formula of the theta functions. The first one is the

integral congruence symplectic group SpZ’Z of level 2.
Sp. 7 := Sp(g, Z) N Sp; -
The second one is the integral symplectic theta group Spgé of level 2.

Spy7, = Sp(g, Z) N Spyg.

This group is sometimes called the Igusa group of level 2. We also define the
integral symplectic theta subgroup of level 1

szvz = {h= <: f) € Spyz | (‘ay)o = (*8)o = 0 mod 2},

Lemma 7.5. Let 1€ H, and o € szZ' Then, for a, b in C9, one has

5%[765(1—3&)] = j(o,7) @[Z], where (7.5)
jlo,7) = k(o) det(c(’)/T-i-(S)% (7.6)

This formula is easily remembered if one notices that
da—~vb | _t_—1la
[—Ba+ab] =0 M

In this formula, j(o,7) is a cocycle on Sp27Z x H, called the theta cocycle
which is analytic in 7: one has

j(UlUQ,T) = j(UlyUzT)j(Uz,T)-

The constant k(o) is a eighth root of unity, x(c)® = 1, that depends only on
. The square root detc(y7 + 6)2 of the complex number detc(y7 + ). To
avoid heavy notations we will not explain here the sign issue.

Proof. See [14], Section 8.6 p.231]. One proves a more involved transformation
formula for Qm[ﬂ valid for all ¢ in Sp(g,Z), by checking it on generators

of Sp(g,Z). The first generators are translations by an integral symmetric
matrix [,

9”5[*5%;%0/2] = efmnnh) HT[Z]’ (7.7)
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where [y is the diagonal of § seen as an element of Z9.
The formula for the second generator is the Poisson formula,

0_ [—;] = detg(—iT)z ¢ 2 97[;;], (7.8)

where the square root is defined by holomorphic continuation in 7 with the
constraint that when 7 = i1 it is equal to 1. One uses then the fact that the
map (o, 7) — detc(o7T 4 0) is a cocycle on Sp(g,Z) x H,. O

The following corollary of Lemma [7.5]is due to Igusa.

0,2 . 01 (0,07
Corollary 7.6. When o € Sp,7 and 7 € Hgy, the ratios e, (0.7)

depend on & € 7.9 /279 .

) do not

One can prove that both vectors (6(0, 7)¢ezs 2z and (01 (0, 07T )¢ezs 229

are non zero. Hence they both define a point in the projective space IP’(CQg)
and Corollary expresses the equality between these two points.

/2 6
Since the matrix o is in szé, the matrix o’ is in szz. We claim that,
for all € € 79/277,

Proof of Corollary|[7.6. Introduce o' := < « 25) so that o'(27) = 20T

0ie1(0,07) = j(0',27) O (0, 7). (7.9)

Indeed, we compute remembering that, by assumption, the matrices (6—1)/2,
(/2, the vector £ and the scalar *'§3£/4 are all integral,

~

5 5
9[5] (07 UT) = 90’(27) [6(/)2} = 80”(27‘) [,%2] = 90’(27’) [fég]
We now apply the transformation formula in Lemma to the pair (o', 27),
b (0,07) = j(o,2r) o[V = (0", 27) 6oc || = (0, 27) Bl (0,7).

9[5](0, 0'7')

—————= does not depend on ¢ as required. [
0 (0, 7)

This proves that the ratio
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7.4 Construction of critical values

We can now explain the construction of critical functions. The construction
involves a matrix d with integer coefficients and det(d) # 0, and its associate
group Gq := 'd~1Z9/79 whose order |Gq| is equal to |det(d)|. In this lecture,
we will choose d = diag(dy,...,d;) where each coefficient is positive and
divides the next one: di|ds|---|d,. Note that any finite abelian group is
isomorphic to a unique group G4 with such a diagonal matrix d. This group
Ggq is cyclic of order d if and only if 1 =dy = --- =d,_1 < d4 = d.

Theorem 7.7. Let 7 € H, and d € M(g,Z) with d =1 mod 2.
Assume that there exists o = < : ,g’ > € sz’é such that o = 'drd.

a) There exists A € C such that, for all z in C9, the function
for i £ 0.(2+0) is A-critical on the group Gq = 'd~'729/79.
b) One has A = kdete(y7 + 6)V2|Gql, where k3 = 1.

One can determine the 8" root of unity  up to sign by using Proposition
m which says that % is an algebraic integer. Indeed, the only 8" roots of
unity x with %1 algebraic integer are k = +1.

Proof of Theorem[7.7]. The strategy is exactly the same as in dimension g =
1. We want to check that, for all z in C9,

Oz +0,1)0(z—0,1) = NO(z,7)2
ZGGd

For w in C9 we introduce the function on C?
2 Fu(2) = F(z,7) =0z + w,7)0(z —w, 7).

We want to know when the two functions Z[eGd F, and F, = 0? are pro-
portional. The key point in the proof is that all these functions F, live in
a finite dimensional vector space with a convenient basis: (0[¢))¢e z9/0z9- We
only have to express that the coefficients of our two functions in this basis
are proportional. These coefficients are given by the following calculation in
which we apply successively the addition formula and the isogeny formula,

Z F@(zaT) = Z Z 9[5](6’7-) 9[5](2’7—)

leGyq leGa ¢ez?/277

= ‘Gd| Z (9[5] (O, thd) (9[5] (Z, T) and
€ez?/27°
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0(z,7) = > 0g(0,7) Oq(z, 7).

¢e7?/27°

These two functions are proportional with proportionality factor A if and
only if one has,
Or¢1(0,'d7d
A\ = ’ Gd‘ [E]( )7
011 (0, 7)

By assumption one has ‘drd = o7 with o € szé, therefore, by Corollary
, these ratios do not depend on £ € Z9/279 and are equal to

for all & in Z9/279. (7.10)

A = j(0,21)|Ga] = k(0" dete(yr +0)Y?|Gql | (7.11)
where the matrix ¢’ := (W‘;? 25) belongs to sz,Z and k(0’)® = 1. O

7.5 The symplectic adapted basis

In this section we discuss the structure of the rational symplectic group
Sp(g,Q) := GL(29,Q) n Sp(g,R), and its relation with the integral sym-
plectic group Sp(g,Z).

Proposition 7.8. Let h € Sp(g,Q). Then there exists o1 and oy in Sp(g, Z)
and a diagonal matriz d = diag(ds, ..., d,) with di|ds| ... |d, integral and

ta=t o
h = 0'1( 0 d)O’Q.

Proposition follows from the following proposition. This proposition
is a variation of the “adapted basis theorem” which takes into account the
existence of a symplectic form. We introduce the set Mp(n,Z) of nonzero
integral matrices which are proportional to elements of Sp(n,R),

Mp(n,Z) := {ge M(2n,7Z) | 'gJg = A\*J for some X in R*}.

Proposition 7.9. Let g € Mp(n,Z). Then there ezist two matrices o and

o' in Sp(n,Z) and a positive integral diagonal matriz a = diag(ay, ..., as,)
with aq|as| ... |a,, with a,|as, and such that
g = ocado.
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Note that the matrix a is also in Mp(n, Z) and hence the products a;a,
do not depend on the positive integer j < n. Indeed it is equal to A\2. In
particular, one has as,|ag,_1] ... |ans1-

We first recall the well-known undergraduate “adapted basis theorem” for
Z-modules or, equivalently, the “Smith normal form” for integral matrices.

Proposition 7.10. (Smith) Let g € M(n,Z). Then there exist o and
o' in SL(n,Z) and an integral diagonal matriz a = diag(aq,...,a,) with
ailas| ... lan, and such that

g=ocac. (7.12)

For the proof of Proposition [7.9] we need the following lemma. We recall
that a nonzero vector v of Z* is primitive if it spans the Z-module Rv n Z*.

Lemma 7.11. The group Sp(n,Z) acts transitively on the set of primitive
vectors in Z*".

Denote by fi,..., fn,€1,...,e, the canonical basis of Z?" so that our
symplectic form is w = fj Aef + -+ fF Aek.

Proof of Lemma[7.11. Let v = (x1,..,%9,) be a primitive vector in Z*". We
want to find o € Sp(n, Z) such that ov = e;.

This is true for n = 1. Using the subgroups Sp(1,Z) for the planes
Ze; @ ZLfj, with j = 1,...,n, we can assume that

xTL-‘rl:.":xQ'I’L:O'

In this case the vector (x1,...,x,) is primitive in Z".

Since SL(n,Z) acts transitively on the set of primitive vectors in Z", we
can find a block diagonal matrix o = diag(oy, ‘o '), with o € SL(n, Z) such
that ov = e;. This matrix ¢ belongs to Sp(n,Z). O

Proof of Proposition[7.9. Set T' := Sp(n,Z). The proof is by induction on n.
It relies on a succession of steps, in the spirit of the Smith normal form, in
which one multiplies on the right or on the left the matrix g by an “elemen-
tary” matrix to obtain a simpler matrix ¢’ € ['gI". We have to pay attention
that at each step the elementary matrix is symplectic.

We can assume that the ged of the coefficients of g is equal to 1. We
denote by A the positive real factor such that g/A belongs to Sp(n,R). Note
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that A2 is a positive integer. At the end of the proof we will see that a; = 1
and a, 1 = A2

15t step: We find g’ € gl such that g'e; = e;.

Since the coefficients of the integral matrix ¢ are relatively prime, by
Proposition , there exists a primitive vector v in Z" such that gv is also
primitive. Indeed, by Proposition , one can write g = o,a,0, with o,
and o/ in SL(n,Z) and a, = diag(ao 1, - - -, Go2n) With 1 = ay1|acs] . .. |as2n.
One can then choose v = ag_lel so that gv = g,e;.

Then, according to lemma[7.11} there exists o, o’ in I" such that ogv = €
and o’e; = v. Then the matrix ¢’ := ogo’ satisfies ¢g'e; = e;.

27 step: We find g'eTgl with g'e; = e, and w(fy,g'e;) =0 for j>1.
By the first step, we can assume that
g = <: ?) with ae; = e; and ye; =0

In particular the first column of the integral matrix « is (1,0,...,0). We
would like the first row of a to be also of the form (1,0,...,0). For that we
choose ¢’ = go’ where ¢’ is the symplectic transformation

o' =1, + 21<]<n a1 (fi® fif —e ®e;‘) € Sp(n,Z),

in which the integers o ; are the coefficients of the first row of the matrix a.
34 step: We find ¢’ € T'gl’ such that g'e; = e1 and g’ f1 = N2 fi.

By the second step, we can assume, writing g = <f‘/ §> that both the

first row and first column of « are (1,0,...,0), and the first column of ~ is
(0,...,0). We would also like the first row of 3 to be (0,...,0). For that we
choose ¢’ = go’ where ¢’ is the symplectic transformation

o = 1n — 61’161 () fl* — Zl<j<n ﬁu(ej X fl* +e1 X fj*) S Sp(n, Z)
Now by construction one has

w(fi,g'ej) = 0 for 1 <j<n,
w(fi,ge1) = 1 and
w(fi,df;) = 0 for j<n.
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Since ¢’/ is symplectic, this implies that ¢’ ' f; = A72f, or equivalently,
g fi = \? f; as required.

4*h step: Conclusion.

By the third step, we can assume that ge; = e; and gf; = A2 f;. Therefore
g preserves the symplectic Z-submodule of Z*" orthogonal of Zf, @ Ze,,
which admits fs,..., fu,€2,..., e, as Z-basis. We conclude by applying the
induction hypothesis to the restriction ¢ € Mp(n—1,Z) of g to this Z-
module. O

Recall the rational congruence symplectic group Spg@ of level ¢ and the
rational symplectic theta group szfé of level ¢ introduced in (|6.7) and .

Lemma 7.12. Leth e szfQ and write h = 01<td0_1 ] >02 with d in M(g,Z)
2

and both o1, oy in Sp(g,7Z). Then det(d) is odd and o907 is in Spﬁ:z.
02 .
Proof of Lemma[7.12. The group Sp,g, is a normal subgroup of Sp(g, Z)).

Since the element h belongs to sz:é, the conjugate

/. -1 td=t o
h = o] hoy =( 0 d>0'201

also belongs to SpZ’fQ. Therefore the determinant det(d) is odd and the

product o907 is in SpiQ. n

7.6 Unitary endomorphism of abelian varieties

Proof of Theorem[6.19. The key point is the interrelation between the tan-
gent map 7T, and the holonomy h,,, together with the use of Proposition [7.8|
We fix a symplectic Z-basis (f1,. .., fg, €1, .., ¢e4) of Asothat w =3} fF nel.

Let o0, = (:Z §Z> € szfQ such that ‘o, is the matrix

of h, in the symplectic basis (f1,..., fg,€1,...,€4).
This means that one has the equality in V29

(T frs - Tofgs Toer, .. Toeg) = (fiyeoy far €1y vnr€9) 0 (7.13)
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We introduce the Riemann matrix 7, € H, such that

(fi,-..,fy) = (e1,...,ey)7, and hence (7.14)
(Tyf17"'7TVfg) = (TV617"'7TI/69)TV7

one has
ouT, = Ty (7.15)

By the adapted symplectic basis in Proposition [7.8 there exist o, o9 in
Sp(g,Z) and an integral matrix d with det(d) # 0 such that

0, =01 Doy with D := (tdo_l g). (7.16)
The matrix d can be chosen to be a diagonal matrix diag(dy,...,d,) with

positive integer coefficients dy|ds| . . . |d,.
Let 7 := 0, '7, and 0 = 020, so that Equation (7.15)) can be re written

tdrd = D7 'o; ', = 090, 1, = 097, = OT. (7.17)

Since o, preserves a theta structure of level 2, by Lemma [7.12] the sym-
plectic matrix o = ( 3 g ) belongs to szé. Therefore by Theorem , the

value

A, = rdete(y7 + 6)Y2|det(d)] (7.18)

is critical on the group G4 ~ G, where & is a 8 root of unity.
It only remains to check that this value ([7.18)) is equal to . Using
(7.13) and (|7.14)), we compute

(Toer,....Tyey) = (e1,...,¢eq) (T, by, +15,) and

detc(T,) = dete(r,'y, +9,) = dete(y,7 +6,).
We go on using the cocycle ¢(o, 7) = detc(y7 + §) on Sp(g,R) x H,,

dete(T,) = c(o,,7,) =c(Do, 1) = dete(dyr + dJ)
= det(d) detc(yr +9).

Plugging this into (7.18)), we obtain the equality A, = &' dy/* dete(T,)Y2. O
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7.7 One example using CM number fields

I would like to end this lecture by explaining on one example a method for
constructing a principally polarized abelian variety together with a unitary
Q-endomorphism v that give rise to a new critical value. The idea is to
specialize our general construction by using a CM number field. This is a
totally complex number field K that is a quadratic extensions of a totally
real number field K.

The method is general but explaining it on one example is more enlighting.

Lemma 7.13. The value A = 1+4+/2+2i/6 — 24/2 is up to sign 57-critical.
Proof of Lemma[7.13. One key point is the factorization

A= (1+2iv/3+ 7)1 —2iv/3 = /7). (7.19)

*» The number field. We start with the CM number field K = Q[«] with
a = in/3 + +/7. This field K is a quadratic extension of the real quadratic
field Ky := Q[6] where § := +/7. Its ring of integers is Ox = Z[a]. We denote
by x — I the non-trivial field embeddings K — C for which & = —iv/3 — V7
and hence 6 = —9.

*» The complex torus. We denote by ® : K — V = C? the algebra
morphism given by ®(z) = (z,Z). The image A := ®(Ok) < K is a lattice
in C? and the complex torus will be the quotient A = C?/A.

*» The principal polarization. The symplectic form on A is given by a
nonzero imaginary element ¢, of K thanks to the simple formula

w(z,2") = Trg gz’ /to).

A key point is to choose ty so that this symplectic form is integral with
determinant 1 on A and such that both the imaginary part of ¢, and ¢, are
positive. A good choice is ¢y = 4ad. One has w = f{* A e] + f5 A e} in the
basis B = (f1, f2,€1,€2) of O ~ A given by

fleéé, f2:a7 61:17 62:5-

We notice that w is the restriction to Vg = ®(K) of the imaginary part of
the positive hermitian form H on C? given by

H(z,2') = 2iz 2] Jtg + 2iz025 /T,
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Then we have checked that the torus A = C2/A is a principally polarized
abelian variety.

* The unitary Q-endomorphism of A. The unitary Q-endomorphisms v
are nothing but elements v € K of absolute value 1. One chooses v of the
form v = % in such a way that u € 1 + 20k. We will choose 1 = 1 + 2a.
The matrix m,, of multiplication by g in the basis B belongs to M(4,7Z), is
equal to 1 mod 2 and has determinant det(m,) = Ngg(p) = 57.

Therefore the matrix m, belongs to Sp;@ and v preserves a theta structure
of level 2.

*» The finite abelian group. Since the elements ;1 and i are coprime, one
has Ok N 1Ok = 1Ok, and the group G, = v 'Ok /(v 'Ok N Ok) is
isomorphic to O /uOf which has order d, = Ng/g(p) = 57 and hence is
isomorphic to Z/57Z.

* The critical value. According to Theorem[6.19] the corresponding critical
value A = )\, is given by \2 = k2d,vU = k?u*i> where k% = 1. Therefore one
has A\, = kufi. We conclude thanks to the factorization ([7.19)) that A, = KA.

* The 8" root of unity. As we explained just after Theorem [6.19| one can

determine the 8" root of unity x up to sign by using Proposition which

says that % is an algebraic integer. Indeed, the only 8" roots of unity &
A1

with “T_l algebraic integer are x = £1. Therefore, since =5= is an algebraic

integer, one has A\, = t\. O

Remark 7.14. One can prove that A\, = A with a plus sign. But this require
extra technical works that can be found in [10]

We get more examples by choosing other C'M number fields and other
elements v = % of K with u € 1+20k. For instance, one can also obtain this
way the values (6.1)) and (6.2). One can also prove the following proposition.

Proposition 7.15. Let K := Q[e*™/"] and p = 1 + s — 5 where s € Ok
with Nk g(p) odd. Then for all CM types ® of K, the reflex norm up to sign
A = £Ng(p) is a critical value on the finite abelian group G = Ok /uQOk.

By definition a CM-type ® of K is a choice of one embedding p for each
pair of conjugate embeddings of K in C and the reflex norm Ng(u) is the
product of these images p(1).
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Notes to Chapter (7. We followed [10] but used also [18], [14], [35], [12].

The first reference to Proposition that I know is Shimura’s paper
[40, Prop. 1.6]. Moreover in [41], Shimura points out the relevance of this
theorem to understand the modular forms on Siegel upper halfspace.
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Part III
Equiangular lines

In the last part of this course, we focus on the main topic: The Equiangular
Lines. This topic looks very naive at first glance.

The aim of this part is to explain why one expects that the maximal
number of equiangular lines in C? is d? and that such a configuration of
equiangular lines called a SIC, is organized in a so nice way that one may
call it an equiangular dream.

At first glance this question does not seem to be related to group theory.
The main surprise is that many finite groups are crucial in this subject:
* the Heisenberg group Hy over Z/dZ,
* the projective metaplectic group P M, which is isomorphic to SL(2,Z/dZ),
* the multiplicative group of (Z/dZ)[w] where w? + w + 1 = 0,
* the Galois group of abelian extensions of a real quadratic field K,
* the ideal ray class groups of orders O’ < Ok in this field K.

The relationship with the previous lectures is that we are looking at this
vector space as the space of functions on a finite abelian group G, in most
of the case we will choose G' = Z/dZ. The generators of these d? lines will
be the images F*EJv, of a well chosen function vy on Z/dZ where E is the
translation operator and F' is the operator of multiplication by an additive
character of Z/dZ. Such a vector vy will be called a fiducial vector and the
corresponding SIC a Heisenberg SIC or HSIC. For d = 2 and d = 3 it is very
easy to describe fiducial vectors. The first non trivial examples are due to
Zauner.

There will be no theorem in this Part III. Only conjectures. This makes
the last part of this graduate course kind of very special. Indeed, it maybe
the case that it will be very quickly obsolete because a few of these conjec-
tures might be quickly solved. In the presentation of these conjectures we
will follow almost a chronological order. We will begin by the elementary
conjectures due to Zauner that can be understood at an undergraduate level.
The conjectures became more and more precise when computer experiments
due to Grassl and Scott gave more and more precise insight in the structure
of the HSICs from the algebraic number point of view. A first series of con-
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jectures due to Appleby, Flammia, McConnell, Yard can be understood at a
graduate level using only Galois theory. The most recent of these conjectures
due to Appleby, Flammia, Kopp, Lagarias, can only be understood within
class field theory and relates this problem with the longstanding conjecture
of Stark dealing with units in abelian extension of real quadratic fields.

The most advanced and recent of these conjectures, sometimes called
“Facts in every known cases” in the litterature, eventhough they are very
precise, may not yet be stable. They might need slight modifications. What
makes them very valuable is the intrinsic beauty and harmony of the con-
jectures, and that these conjectures might be solved by one of the readers of
this course.

In Lecture |8, we begin by surveying the analog problem of equiangular
lines over the reals which is also still open but does not have yet any reason-
able conjectural answer. We will then focus up to the end on the complex
equiangular lines. We prove the d? upper bound for the number of equian-
gular lines. The examples in dimension 2 and 3 are very easy. We will
now assume d > 4. We give then explicit examples of HSIC that occur in
dimensions 4, 7, 8 and 19.

In Lecture 9, we explain how the first non-trivial HSICs were found, why
it is natural to introduce the metaplectic representation to understand them.
We will also study the Zauner matrix Z which happens to be very useful in
the construction of HSICs and which is most of the time reponsible of the
mysterious symmetry of order 3 satisfied by all known SICs.

In Lecture we state the first series of conjectures on the arithmetic
of HSICs. We explain that, conjecturally, there exists a real quadratic field
K = Q[v/Ay] with Ay = (d+1)(d—3) such that the entries of the orthogonal
projector on a fiducial vector belong to an abelian extension of K.

In Lecture we describe in detail the “unique” 5-dimension HSIC and
we check the conjectures in this case. This can be seen as a nice exercise in
Galois theory.

In Lectures [12], we recall the main results of class field theory, which
parametrizes the abelian extension of K, we introduce the ray class fields for
orders O of K and identifies their Galois group with a ray class group of O.
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We also explain the conjecture that describes as a ray class field, the field
generated by all the entries of all the projectors on the lines of a given HSIC.

In Lecture [13], we explain more Class Field Theory by introducing the
Artin map which is an explicit isomorphism between the ideal ray class group
and the Galois group. When the vector v is chosen to be Zauner invariant,
we also explain that the ray class group should act on the correlations of the
corresponding HSIC through the Artin map.
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8 Equiangular lines

This lecture deals with the elementary aspects of equiangular lines. We
define the SIC, we explain why the expected values for the number of lines
in a SIC is n = d2. We also introduce the fiducial lines whose orbit under the
Heisenberg group is a SIC. And we present the simplest SIC in dimension
d =3, 4, 7 and the Hoggar SIC in dimension 8

We will then state the first naive conjectures with respect to existence
and finiteness of SICs.

8.1 Real equiangular lines

We begin by the analogous problem in a real vector space.

Introduction
Let R? be the d-dimensional euclidean space. What is the maximum number
n of lines Dy,..., D, in R? for which the angles # between two of them is
constant? Is this configuration of lines unique modulo isometries? What is
the value of this angle 67

For d =2, one has n = 3 and cosf = 1/2.
Indeed, starting with a regular hexagon in the plane, the three lines are the
lines that join the middle of the opposite sides.

For d = 3, one has n = 6 and cosf = 1/1/5.
Indeed, starting with a regular dodecahedron in the space, the six lines are
the lines that join the center of the opposite faces.

There is no definitive answer to these questions, but there is a nice partial
result due to Gerzon in 1970 that we present now.

Theorem 8.1. (a) One has n < d(d+1)/2.
(b) If n=d(d+1)/2, then one has cos0=1/\/d+2 and hence tan @ =+/d+1.
(¢) If n =d(d+1)/2 and d > 3, then d is odd and d + 2 is a square.

The value n = d(d + 1)/2 and the value of the angle € is nice, but unfor-
tunately it is not known if this phenomenon does occur for infinitely many
dimensions d > 2.
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For d = 7, one has n = 28 and cosf = 1/3,
Indeed, the 28 lines are spanned by the vector (—3,—3,1,1,1,1,1,1) and its

images by permutation of coordinates; they stand in the hyperplane »} xy = 0
in R®.

For d = 23, one has n = 276 and cosf = 1/5,
Indeed, the 276 lines form an orbit of the simple Conway sporadic group Cog
in an hyperplane of the Leech lattice A in R?*. We will not need this example
in the sequel, hence we do not give more details.

One can check in all these four examples with d = 2, 3, 7 and 23 that the
group of isometries of the equiangular configuration acts transitively on the
pair of distinct lines of the configuration.

For d = 47, it is unknown if n = d(d + 1)/2.
More precisely it is not known if there exists any other real equiangular
configurations of lines with n = d(d + 1) /2.

Proof of Theorem[8.1l For j =1,...,n, we choose a vector v; of norm 1 on
the line D;, so that, for j # k, one has (v;|vy) = ta where o := cosf. We
also introduce the orthogonal projectors P; on the lines D;. These P; live in
the d (d+1)/2-dimensional vector space S?R?¢ of symmetric matrices.

(a) The Gram matrix of this family P; is the n x n matrix

1 a?

G = (tr(P;P)) = = (1—-a?)I, +a*J,
a? 1

where J, is the rank one n x n matrix all of whose entries are equal to 1.
The eigenvalues of G are 1—a? and 1—a?+na?. Since these eigenvalues are
non zero, the matrix G is invertible and hence the symmetric matrices P; are
linearly independent and one has n < d(d + 1)/2.

(b) When n = d(d + 1)/2, the n matrices P} := dP; — I, have zero traces
and hence they live in a (n—1)-dimensional vector space and are linearly
dependent and their Gram matrix

G' = (tr((dP; — 15)(dPy — I2))) =
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is not invertible. Since the eigenvalues of J, are 0 and n, one deduces that
d*(1 — a?) + n(d*a* — d) = 0. After simplification, one gets a?(d + 2) = 1.
(c) If n = d(d +1)/2, the Gram matrix of the vectors v; has the form

1 +a

9 = ((vjlve)) =
+a 1

Its kernel has dimension m > n — d > 1. Hence the matrix

1 0 +1
a=—,—g) = .
a | +1 0
admits 1/« as an eigenvalue with multiplicity m > n/2 since d > 4. Since
the matrix a has integral entries, the eigenvalue 1/« is an algebraic number
with no other Galois conjugate, hence the number 1/« is a rational number.
Since the square of this rational number 1/« is the integer d + 2, it has to be
an integer and d + 2 is a square.

The matrix (I, + a + J,)/2 also has integral entries. Since m > 2, it
admits (1 + 1/«)/2 as an eigenvalue. This eigenvalue is an algebraic integer,
hence the integer 1/« is an odd integer. O]

8.2 Complex equiangular lines

We now introduce the complex equiangular lines.

Introduction Eventhough the answer over the real numbers was not
clean, it is very natural to ask for the analogous question over the complex
numbers and to ask for the maximum number n of lines Dy,..., D, in the
d-dimensional hermitian space C% whose pairwise angles # are all the same.
And to ask for the value of this angle 67

As in the real case, for j = 1,...,n, we denote by v; a vector of norm 1
on Dj, so that, for j # k, one has

[(vjlupy|? = B where 3 := cos® 6.

We also introduce the hermitian projectors P; on the lines D;. Hermitian
means that

Pr =P

i ; for all 7.
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They live in the d? dimensional real vector space of d x d complex hermitian
matrices.
The condition expressing these are rank one projectors is

P? = P;, tr(P;) =1 forall j <n. (8.1)
The condition expressing the equiangular condition is
tr(P;Py) = B for all j # k. (8.2)

More generally one can look at families (P;);<, of rank one projectors
(8.1)) in End(C?) satisfying the equiangular condition (8.2]) without requesting
that they are hermitian. For such a family one has an analog of Theorem

8.1
Theorem 8.2. (Delsarte-Goethals-Seidel, 1975) Let (P});<n be a family of

complex rank-one projectors satisfying the equiangular condition (8.2) with
BeC, p+#1.

(a) Then, one has n < d>.

(b) In case n = d?, one has B =1/(d + 1).

Equivalently, for P; hermitian, one has cos¢ = ﬁ or tanf = \/d.

Proof. The proof is the same as for Theorem [8.1] replacing the real vector
space of real symmetric matrices by the complex vector space End(C?) of all
complex matrices endowed with the non degenerate bilinar form (A, B) —
tr(AB). We shorten the proof by proving simultaneously (a) and (b).

The matrices PJ’ := dP; — I, have zero traces, hence they live in a vector
space of dimension d? — 1. Their Gram matrix G’ is given by

2 —d 28— d
G' = (tr((dP; — 14)(dPy — 14))) =
d?p —d d?—d

= B = B, + (26 — d)J,.

The eigenvalues of G’ are d?(1—/) and A\ = d*(1 — ) + dn(d*B — d). The
first eigenvalue d?(1— ) which has multiplicity n—1 is non zero. Therefore
the rank of the family (P});<, is at least n—1. This proves the inequality
n < d°.

Moreover, in case of equality n = d?, the family (Pj)j<n has rank equal
to n—1 and the last eigenvalue A = d*(1 — ) + d*(d*8 — d) must be equal to
0. After simplification, one gets (d + 1)5 = 1. O
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Remark 8.3. The main difference between the maximal configuration of equi-
angular lines over the real numbers and over the complex numbers is that
when one knows the absolute value |(v;|v)|, one knows the scalar product
(vj|vk) up to sign in the real case, but in the complex case, one only knows
it up to a complex number of modulus one. There is much more flexibility.

Definition 8.4. A SIC or a SICPOVM is a family of d* hermitian projectors
(Py,...Pg) of rank 1 of C* such that, for all j # k, tr(P;Py) = 1/(d + 1).

The projectors P; will always be implicitely assumed to be hermitian
Le. satisfying P = Pj, except if we explicitely relax this assumption. We
will then say “a non-necessarily hermitian SIC” The interest in considering
the non-hermitian projectors comes from the fact that the absolute Galois
group Gal(Q/Q) which acts on the set of SICs does not always preserve the
condition hermitian. We will say more about this later.

Remark 8.5. The term SICPOVM is an acronym for “Symmetric, Informa-
tionally Complete, Positive Operator-Valued Measurements”. This name
reflects the fact that these configurations were found and first studied in
depth by the community of Quantum Computer Scientists.

Zauner in his PhD thesis in 1999, relying on exact computer calculations
for d < 6, was the first to guess the existence of (hermitian) SICs in all
dimensions.

Conjecture 8.6. (Zauner) For all integers d = 2 there exists an equiangular
configuration with d? lines in C<.

This conjecture is known only for finitely many dimensions d, among
them all the dimensions d < 180. We expect to present at least one explicit
SIC for each d < 8.

8.3 First examples of SICs

SIC in dimension 2
They are very easy to describe.

We can do it in a geometric way: one has to find 4 lines in C?, that is
4 points in CP! whose pairwise distance is constant. Since CP! is a round
2-sphere, these 4 points are the vertices of a regular tetrahedron.
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We can do it in an algebraic way: we choose the 4 lines to be generated
by the vectors

Voo = (a’ab)7 V10 = (b7 CL), Vo1 = (CL, _b>7 V11 = <_bv CL),

where @ = 144, b = 14++/3. This is a SIC because one can compute the
absolute values of the hermitian products

2/Re(ab)| = 2Im(ad)| = [b]* — |a|* = (|a]* + [b*)//3 = 2 + 2V/3.
This configuration is unique. This SIC is defined over the field Q[i,+/3].

Using another unitary basis of C* we can also write

Voo = (\/57 0), V10 = (1,\/5), Vo1 = (1,UJ\/§), V11 = (1,w2\/§),

where w := ¢%7/3,

In this case the angle 6 is given by cosf = 1/4/3.

Remark 8.7. The angle ¢ between the four vertices of a regular tetrahedron
(1,1,1), (1,-1,-1), (=1,1,—1), (—=1,—1,1) in R3 is given by cosp = —1/3.
It may seem surprising that, since cos¢ = 2cos?f — 1, the angle ¢ is the
double of the angle 6. This can be explained by the fact that SU(2) is a double
cover of SO(3) and the sphere CP! a double cover of the real projective plane
RIP2.

SIC in dimension 3
Those SIC are called Hesse SIC. This is the only dimension for which there
is a one parameter family of SICs which are not unitarily equivalent.

Here is the construction which depend on a parameter u which is a com-
plex number of modulus |u| = 1. The example with u = 1. Denote by
w = 2iT/3
The nine lines generated by the vectors

Voo = (1,%,0)7 V10 = (071,’&), Voo = (u7071)7
vor = (L,uw,0), w13 = (0,1, uw), w9 = (uw,0,1),
voe = (1, uw?,0), wvip = (0,1, uw?), voe = (uw?,0,1).
These nine lines form a SIC since, for ij # 00, one has
lvoo|? = 2[(vgo|vijy| = 2. One can show that those are the only possible SIC

in dimension 3.
The Hesse SIC with u = 1 is rather simple since it is defined over Q[w]
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Conjecture 8.8. For d>4 there exist only finitely many SIC up to a unitary
transformation.

It has been proven by Hughston and Salamon in [24], using ideas from
symplectic geometry, that the Hesse SICs are the only hermitian SICs in
dimension 3.

SIC in dimension 8

The following SIC in dimension 8 has been found by Hoggar in [23]. He is
particularly striking due to the fact that it is the only known SIC which is
defined over the field Q[i]. Here is the construction of the Hoggar SIC for
d = 8. Tt is defined on the space C® = C[(Z/2Z)?].

We identify (Z/2Z)® with the vertices of the cube and the space C® with
the space of functions on the vertices of this cube. The 64 lines that form
the SIC are those generated by the 64 functions drawn here where the the
parameters e; are chosen to be ¢; = +1 with e1e9e384 = 1. There are 8
choices of signs ¢; and 8 choices for the leading vertex i.e. the vertex where
1414 occurs. One can check that this configuration is a SIC by computing all
the hermitian products. One has only to perform 4 calculations depending
on the distance between the corresponding leading vertices.

8.4 The Heisenberg group

Except for the Hoggar SIC all the known SIC are related to a finite Heisenberg
group.

Heisenberg SIC The projective unitary group PU(d) which is the quo-
tient of the unitary group U(d) by its center S! acts on the set P(C?) of lines
of C?. All the known SICs are orbits of a finite abelian group A of order
d? of the projective unitary group PU(d). In all known cases, except in the
case of the Hoggar SIC for which A = (Z/27Z)* x (Z/27)3, the group is a
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product A = (Z/dZ) x (Z/dZ). In all these cases the group A is a quotient
of a subgroup H, of U(d) called a Heisenberg or Heisenberg group.

Definition 8.9. The Heisenberg group Hy is the subgroup of U(d) generated
by the matrices

0 0 1 1 0 0 0
1 0 - 0 0 Ca 0 )
E = and F = where ¢y = ¥/,
0 . .0 00 . 0
00 1 0 00 o ¢t

The projective Heisenberg group PHy is the image of the Heisenberg group
in the projective unitary group PU(d)

Lemma 8.10. The center Zy of Hy is a cyclic group of order d generated
by Calg, the group PHy is isomorphic to Z/dZ x Z/dZ, and there is an exact
sequence

1—>/Z;,— H;— PH; — 1.

Proof. This follows from the equality FE = (4EF which says that the two
matrices F, F' commute modulo the center. O

We note that the group PH, acts in the projective space P(C?). It also
acts by conjugation on the set of rank one projectors of C¢.

Definition 8.11. A HSIC is a SIC which is an orbit under the Heisenberg
group Hy. A line Cvg or a projector Py in such an orbit is called a fiducial
line or a fiducial projector, and the vector vy is called a fiducial vector.

Conjecture 8.12. For all d > 2, there exists a HSIC in C?.

This conjecture has been checked up to d = 180.

Remark 8.13. The Hoggar SIC we have seen in section is very much
like a Heisenberg SIC in dimension 8, except that the cyclic group Z/87Z
has been replaced by another abelian group (Z/2Z)* of order 8. It is not
known whether other finite abelian groups can give rise to SICs by a similar
construction.

Conjecture 8.14. For all d > 2, all the SICs of C¢ are orbits of an abelian
subgroup of PU(d) of order d?.

It is possible that all SICs are HSIC, except for the Hoggar SIC, even-
though this might look too optimistic.
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8.5 Equations defining the fiducial projectors

We describe now the explicit equations that define a fiducial projector.
We think of a projector Py in C¢ as a line [vg] = [20,...,24_1] € P(C?)
and an hyperplane [fo] = [wo, ..., wq_1] € P(CT) with fo(ve) # O that is

> zrwg # 0. The projector is given by FPy(v) = ;;0&)) vg. We think of the
k

indices as elements of Z/dZ.

Proposition 8.15. a) The projector Py is hermitian if and only if [ fo] = [vo]-
b) The projector Py is fiducial if and only if for all £ # 0, m # 0 one has

D %k Wt Wit Zhtem = 0 (Epm) and (8.3)
%

Dz Wi Weip 2k+¢  does not depend on £ # 0. (8.4)
k

Proof. The projector Fy is fiducial if and only if the function
(m,n) — Tr(PyP,,,) is constant outside 0,
where P,,,, := EMF"PyF~"E~™. We compute, with ¢ = h — k,
Tr(PoPmn) = fo(E™F ) fo(F"E ™)
= (X 2wkemG®) (; whZhimCy ™)

= % fm@)g_én

where f,(€) = 3] 2k Whit Weim Zkrtm-

When m # Okthe Fourier transform of the function f,, is constant, there-
fore the function f,, is zero outside 0. This gives .

When m = 0 the Fourier transform of the function fj is constant outside
0, therefore the function fy is also constant outside 0. This gives (8.4). [

Remark 8.16. The system of equations (8.3)) and (8.4]) is overdetermined:
there are d? — d — 1 equations, it is surprising that it always admits solutions
in P(C?) x P(C?).
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8.6 Other examples of SIC

SIC in dimension 4

The first non trivial HSICs were discovered in dimension 4, 5 and 6 by Zauner
in 1999 in his PhD thesis which appeared in [47]. Here is his 4 dimensional
example.

Lemma 8.17. For d = 4, a fiducial vector for a HSIC is given by
voo = (T+u, u—i,r—u, u+1)
where u = (1 +14)/v/2 = &™* and z := /\/5 + 2.
In the basis f1, f2, f3, f4, where
f1=(1,0,1,0), fo=(u,0,—u,0), f3=(0,u,0,u), f1=(0,—13,0,1)

the vector vgg becomes vy, = (z,1,1,1) and the matrices E and F read as

0 01 0 01 0 0

;o o001 ;-0 0o o
E=ul g g o|ad F=ulg o o
0 i 0 0 0 0 -1 0

One notice that E'* = diag(1,—1,1,—1) and F’*> = diag(1,1,—1,—1) and
that one can forget the scalar factor u to describe the SIC. In this basis, the
SIC is formed by the 16 lines generated by the following 16 column vectors
r r T ¢t —t % —t 1 —t 1 —i 1 —i 1 —i
Il -1-12 2z z  — ¢ ¢ — 1 1 —1-1

-11 -11 1 -1-12 2  x —1 1 © —1
1-1-11 -2 ¢+ — 1 1 -1-12 2 = =x

Indeed, one can check that

[vhol* = V5 [Cvho, vip)l,

x
1
1

because 22+3 = v/5(22—1) = V/54/2(22+1).

SIC in dimension 7 and 19
Appleby discovered that in dimension 7, and also in dimension 19, there exist
nice fiducial vectors vy whose coordinates z;, depend only on the quadratic
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residue class of £ mod d. This phenomenon does not seem to exist beyond
these two dimensions d = 7 and 19. What is special in these two dimensions
that gives rise to rather simple HSIC. This will be explained by the general
conjectures that we will state in the following lectures.

Lemma 8.18. For d = 7, there exists a HSIC in C" ~ C[F;| with fiducial
vector vg = g + alps + ibxo where xo denotes the Legendre character, and

V4v2—5

where a and b are real numbers: a = —= and b = VIR

-1

24/2
Proof. We have vy = (1,2, z,w, z,w,w) with z =a +ib, w=a—ib=Z.
Using indices in Z/7Z, we introduce the vector ¢ = (w, z, 22, zw, zw, 2w, w?)
with coordinates ¢, := 2, Zm—1 and Cy = Y ¢nCrym, and one writes

(Bvo|FFvg) = Y en(h™ and [(Bug| FFug)|* = Y Cyt* for all k. (8.5)
m Y4

The equations that express that the vectors E7F¥y, form a HSIC can be
reduced to Cy, = 0 for all 1 < ¢ < 6. This gives rise to only two equations
where s = z + w and p = 2w,

C2203=C4=C5 = 83—<p+28—82)p=0,
Ci=Cs = s*—(3s>—s—1)p=0.

Solving these equations give s = :/—% and p = @

We conclude by applying Proposition|8.15/and by checking that the vector
vy we have just found satisfies Equations and .

We have chosen v, so that the Equations E,, of for £ = 1 and for
m in % are satisfied. But the group F% acting on the indices is a group of
symmetries for these equations. Therefore, seen as equalities in the variables
z and w = Z, Equation E ,, is the same as Equation Ey g, for all £ # 0. This
proves that Equations are satisfied. For the same reason, Equations
(8.4]) are satisfied for all z. O

The following lemma tells us that a similar calculation works with d = 19.

Lemma 8.19. For d = 19, there exists a HSIC in C' ~ C[Fyo] with fiducial
vector vy = 0 + alps + 1bxo where xo denotes the Legendre character, and

V5 /5v5-17

. a1 _
where a and b are real numbers: a = Ve and b = ™G
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Proof. The proof is similar but involves more calculations, we have
vo = (L, z,w,w, 2,2, 2, 2, W, 2,W, 2, W, W, W, W, Z, Z, W)

with z = a 4+ ib and w = a — ib = Z. Using indices in Z/19Z, the vector ¢
with coordinates ¢,, := 2mZm_1 1S

c= (z,z,wg, 2w, 2%, 2w, 2w, 2w, w2, 22, w?, 22w, 2w, 2w, 2w, 22,zw,w2).

Let Cp = .., ¢mCerm- The equations (8.5)) can be reduced to Cy, = 0 for all
1 < ¢ < 18. Note that C;, = C19_p This gives rise to only three equations
where s = z + w and p = zw,

02207208209 = 3p2—(8+2)8p+(8+1)83=0,
03204205206 = —5p2+(8+2)5p+8420,
C, = (25+1)s*—(4s* +35s—1)p=0.
Adding the first two equations, one gets
2 = (2s + 1)53 = (452 +3s —1)p.

Plugging this value 2p = 4s* + 3s — 1 in these equations gives

B . 451 _ /51
4s% +2s —1 = 0. This gives s = T and p = Y.

We conclude as for d = 7 that vy is indeed fiducial. O

In the following exercise, we construct a simular fiducial vector in dimen-
sion 7. The difference with Lemma [8.18] is that the new fiducial vector has
real coordinates.

Ezercise 8.20. We want to prove that, for d = 7, there also exists a HSIC
in C" ~ C[F;] with fiducial vector vy = &y + alpr + bxo where xo denotes

the Legendre character, and where a and b are real numbers: a = #5 and

b — A/2v/2-1

5—. In other words vy = (1,2, 7,y,2,y,y) with z =a+b, y =
a — b real numbers. Using indices in Z/7Z, the vector ¢ with coordinates
Cm 1= ZmZm_1 is ¢ = (y, x, 2% 2y, vy, 2Y, 1?).
(a) Let Cy = 3}, ¢mCerm. Check that the equations van be reduced to
Cy=0foralll <?<6.
(b) Check that these equations are, with s = z + y and p = xy,

Co=C3=Cy=C5 = (s+2s—p)p=0,
Ci=C = s+ (s*=3s+1)p=0.
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(¢) Solve these equations and get s = —1 —+/2 and p = 1.
(d) Check as for d = 7 that this vector vy is fiducial.

Notes to Chapter [8]

Theorem [8.1]is due to Gerzon in 1970 and is quoted in [34, Thm 3.5]
Theorem is due to Delsarte, Goethals and Seidel.

The starting point of this chapter is Zauner’s PhD thesis [47].

The SIC in dimension 7 and 19 are due to Appleby in [3]
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9 The metaplectic representation

In this lecture we first explain how the first non-trivial HSICs were found.
We then explain the role of the metaplectic group and the importance of the
Zauner matrix Z in the construction of HSICs.

Recall Recall that a SIC is a family of n = d? complex lines Dy, ..., D,
in C? whose pairwise angles 6 are the same. This angle is given by cosf =
1/vd+ 1.

Recall that the Heisenberg group Hy is the subgroup of order d® of the
unitary group U, generated by the matrices

0 0 0 1 1 0 0 0
1 0 - 0 0 G 0 O

E = ‘ and F = (9.1)
0o 0 0 0
0 0 1 0 00 0 ¢!

where (; = e?7/?,

These two matrices commute modulo the center since F'FEE = (4EF. The
matrix F acts by translation on C[Z/dZ], while the matrix F' acts by multi-
plication by a character of order d.

For all d > 4, one wants to find a fiducial vector vy of C?, that is a vector
such that the lines generated by the images E7 F*¥y, form a SIC. Such a SIC

is called a HSIC.

9.1 The gradient flow

Proposition 9.1. Let v be a unitary vector in C2.
(a) One has the equality Y, o0 [V BV FFo)|* = d—1.

A d—1
(b) One also has the inequality E(v) := 3 o0 [{0| B/ FF)|t = ——.

d+1
(¢) This inequality is an equality if and only if v is fiducial.

Ezercise 9.2. (Schur lemma) Let p : G — GL(d,C) be an irreducible finite
dimensional representation of a group G. Let A € M(d, C) be a matrix that
commutes with G, i.e. such that p(g)A = Ap(g) for all g € G. Prove that A
is a scalar matrix.

Indication: Note that the eigenspaces of A are G-invariant.

118



Proof of Proposition[9.1 (a) The operator
Ay = ZheHd |hv><hv| € M<d> (C)

commutes with H;. Hence, by Schur lemma, one has A, = A1 for some scalar
A. Comparing the traces, one gets A = |Hy|/d = d*. Therefore, one has

Do [OIE PR 02 = 5 wlAyw)y =1 = d— 1.
(b) By Cauchy Schwartz inequality, one has
. ' e i
Skson (OB PR > Z 30 BT FR0)2 = (G = 4

(¢) In case of equality all the |(v|E7 F*v)| are equal and v is fiducial. [

9.2 Experimental datas

The first non trivial HSICs were found thanks to a computer program who
was looking for a minimum of this quantity £(v) called the energy, by follow-
ing the gradient flow. The main difficulty when the dimension d increases is
that this energy has a lot of minimas. As soon as one is near a minimum of
the energy, the speed of convergence is very fast, and one can easily obtain
the fiducial vector with a precision of a few hundred digits. Unfortunately
there are also a lot of critical values slowing down the speed of convergence of
the algorithm. Worse there are also many local minima that are not fiducial
vectors and that trap the gradient flow. Their number also increases quickly
with the dimension.

Another more efficient algorithm to find HSICs relies on solving the
overdetermined polynomial system (8.318.4) by the Newton method. This
gives a list of fiducial vectors. The following experimental output seems to
indicate that this question is out of reach by an elementary approach.

For d = 4, there are 256 fiducial vectors that correspond to 16 SICs.
For d = 5, there are 2000 fiducial vectors that correspond to 80 SICs.
For d=11, there are 319440 fiducial vectors that correspond to 2640 SICs.

As we can see, the number of HSIC grows quickly with d. This is mainly
due to the presence of a large normalizer PNy of the projective Heisenberg
group PHy; = (Z/dZ)?* in the projective unitary group PU;. In dimension
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4, 5, 6 all the HSIC seem to be unitarily conjugate by an element of the
projective normalizer. This seems to be the case for only finitely many values
of d.

9.3 The normalizer of the Heisenberg group

We describe now the normalizer of H, in U(d) which acts on the HSICs.

Let N be the normalizer of the Heisenberg group Hy in U(d). Let PHy
be the image of Hy in PU(d), and let PN, be the image of Ny in PU(d).

Proposition 9.3. The action by conjugation of PNy on PHy ~ (Z/dZ)?
gives an exact sequence
1 — (Z/dZ)?> —> PNy =% SL(2,Z/dZ) —> 1. (9.2)

10
11

©o(X) of the diagonal matrix of multiplication by the Gaussian function

Example 1 Let z := ( ) € SL(2,Z). The element x mod d is the image

X = (7722@-,;6), where 74 := —e™%. Indeed, one computes
XEX ' =nEF and XFX '=F. (9.3)

0
1

©o(S) of the matrix of the Fourier transform S := \/ia((jk). Indeed, one
computes

Example 2 Let s := < _01> € SL(2,Z). The element s mod d is the image

SES™ ' =F and SFS™'=FE"". (9.4)
Ezercise 9.4. Prove that the elements z and s generate the group SL(2,7Z).

Exercise 9.5. Prove that the elements x mod d and s mod d generate the
group SL(2,Z/dZ).

FEzxercise 9.6. Prove that the representation of Hy in C? given by the matrices
E and F is irreducible.

Proof of Proposition[9.5 We first need to explain why the adjoint action
©wo(U) of an element U € Ny belongs to SL(2,Z/dZ).

On the one hand, the matrices F, F' satisfy the relation FFE = (4EF.
Hence their images £ := UEU ! and F' = UFU™! also satisfy the equality
F'E' = (F'F.
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On the other hand, since ¢y (U) is an automorphism of the group (Z/dZ)?,

it is given by the action of an integral matrix (’O; ? . But the two matrices

E' = E°FY and F' = E°F? satisfy the equality F'E’ = C?B_ME’F’. This
proves that ad — fy = 1 and the matrix ¢o(U) has determinant 1 in Z/dZ.

We now prove the surjectivity of the map ¢g. This follows from the two
examples because SL(2,7Z/dZ) is generated by x mod d and s mod d.

We finally describe the kernel of ¢g. Let U be an element of U(d) that
commute with £ and F' modulo scalars. One has

UEBU' = \E and UFU ' = uF,

where A and p belong to C*. In particular the eigenvalues of F' and AF
are the same. Hence there exists an integer j such that A = (7. Since
E'FE~7 = (77F, after replacing U by UE’, we can assume that U commutes
with F'. Similarly, after replacing U by UF* for a suitable integer k, we can
also assume that U commutes with £. Then, by Schur lemma, U is a scalar
matrix. This proves that the kernel of ¢ is the group PHy. O]

Exercise 9.7. Prove that there exists only one irreducible unitary represen-
tation p of the Heisenberg group H, for which the center acts by the faithful
character: p(¢1) = (1.

Indication: Study the action of p(E) on the eigenspaces of p(F).

Remark 9.8. Here is another point of view on Propositions [9.3] The group
H,; has one and only one irreducible d-dimensional representation p, for each
faithful character of the center of H,;. Hence, for all g in the group Autg(H,)
of automorphisms of H, acting trivially on the center of Hy, the representa-
tions p and pog are equivalent and there exists a unitary matrix u, such that
pog = ugp(g)u, ", for all g in Hy. This projective representation of Auto(Hy)
is called the metaplectic representation or, sometimes also, the “symplectic
spinor” representation.

9.4 Displacement operators

We want to lift the elements of PH, as elements of U(d). We can not require
that these lifts commute, but we will choose these lifts in a very precise way
which is invariant by conjugacy by elements of PN;. When d is odd, we will
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be able to do it in a one-to-one way and to parametrize the lifts with the
plane (Z/dZ)?. When d is even, the lifts will not be one-to-one and will be
parametrized by (Z/2dZ)*.

Definition 9.9. We set d' = d for d odd, and d' = 2d for d even.
For p = (j,k) in the “plane” (Z/d'Z)?, we set

Dy = IR = g FYE where g =~ 95)

Remember that 12 = ¢; and that n¢ = (—1)?"!. The operators D, are
called displacement operators. They are well defined because, for p € Z2,

{Dp+dq = D, when d is odd, (9.6)

Dyi2qq = D, when d is even.

Note that these operators D, live in the group H} := H; v ngHy which is
equal to Hy; when d is odd.

Remark 9.10. The choice of normalization might look strange at first glance.
For the reader familiar with Lie groups, a way to “undertand” this formula,
is to think of it as an analog of the exponential map. Indeed, in the real
Heisenberg group

0k ¢ 1 k ¢+3F
Hgr ={mjro:=exp|0 0 j|=10 1 4 || k¥ eR}
0 0 O 0 0 1
the analog of ((9.5) is the equality
Myjk,0 = M ik 10,50 0,0k = Mg g =gk 0,0,k 1720,5,0-

Remark 9.11. The choice of this normalization for the displacement operator
will be crucial when we will study the Galois group action on the phases
(vo|Dpvg) of a HSIC associated to a fiducial vector vy of norm 1.

This notation is convenient as one can see in the following two lemmas.

Lemma 9.12. One has the equalities, for all p, q in (Z/d'Z)*

Dy = Dp_1 = D_,,

Dqu — 77152(]1 —P1q2 Dp+q7 (9 7)
Dyiag = (—1)P2aPeD, for d even '
Datap = Dy
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Remark 9.13. In particular, the last equation says that, when d is even, given
p in (Z/2d7Z)?, the four displacement operator D, 4, are equal up to sign.

Proof of Lemma[9.13. One computes
D; — Dp—l — 77;1?11?2 P2 P — nglsz—m FP2 — D_p.
Similarly, one computes,

_ P1q1+p2g2+2p2q1 1p1 a1 1 g2 pP241—pP1gG2
D,D, = 1! EPEUFUF® — gf D

ptq-

The last equations follow since D4, = 1 for all q. O]

9.5 The projective metaplectic group

We would like to find a section for the projection ¢y in (9.2). We will see
that this is the case when d is odd. We will also see that for d even this is
not the case, and that we have to introduce the group SL(2,Z/2dZ)

Remark 9.14. The reader should first focus on the easier case where d is even,
in order to avoid the subtleties and technicalities needed for the case where
d is odd. We will see in the next lectures that these subtleties will have a
strong influence on the field of definitions of HSIC. One crucial difference
between the case d even and d odd is that the matrix X in satisfies

X% = 1 when d is odd

= ((=1)76;4) when d is even

We first define the projective metaplectic group by using the displacement
operator D, defined in ({9.5).

Definition 9.15. Let d = 2. Set d' = d for d odd and d' = 2d for d even.
The projective metaplectic group is the group
PM,; = {Ue€ PNy| there exists g = p(U) € SL(2,Z/d'Z)
such that UD,U™"' = D,, for all p e (Z/d'Z)*} (9.8)
Note that the element UD,U " is well defined as an element of U(d), and

that we require Equality to hold in U(d).
We have to introduce the matrix

1= (1365 13d> e SL(2,Z/d'Z),
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because, by Lemma [9.12] one has
Dy, = D, for all p € (Z/d'Z)?
This matrix 1" is the identity when d is odd and has order 2 when d is even.
We denote by SL(2,Z/d'Z)/1" the quotient of the group SL(2,Z/d'Z) by
the subgroup generated by 1’.

Remark 9.16. Note that when d is even one has an exact sequence
1 — K4y — SL(2,Z/2dZ) > SL(2,Z/dZ) — 1 (9.9)
where
Ki=tg= ("1 120,) | (s e @22
is a group isomorphic to (Z/27)3.

Proposition 9.17. (a) The map ¢ : PMy — SL(2,Z/d'Z)/1" is uniquely
defined and is a group morphism.

(b) The group PMy is the subgroup of PN, generated by X and S.

(¢) The morphism ¢ : PMy — SL(2,Z/d'Z)/1" is an isomorphism.

(d1) Assume d is odd. Then one has PMy n PHy = {1} and the morphism
o : PMy — SL(2,Z/dZ) is an isomorphism. In particular the group PNy is
a semidirect product

PN, = PMy x PHy ~ SL(2,7/dZ) x (Z/dZ)*.

(d2) Assume d is even. Then the intersection PMy n PHy is the group
K} := {Dyap2 | q € (Z)2Z)*} which is isomorphic to (Z/2Z)*. In particular,
one has an exact sequence

1 —> (Z/2Z)? — PMy % SL(2,7,/dZ) — 1

Proof. (a) When d is odd, the map p — D, is injective hence ¢ is unique
and ¢ is well defined. When d is even, for all p, p’ in (Z/2dZ)?, the equality
D,, = D,y implies that p’ = p mod d and, writing p’ = p+dq with q € (Z/2Z)?,
that one has pigs = paq; mod 2. This proves that ¢ is unique modulo the
subgroup {1,1'} and ¢ is well defined.

(b) and (c¢) We first check that X and S belong to PMy;. We compute in
U(d), for p = (p1,p2) € (Z/d'Z)?, using (9.3) and (9.4),
XD, X' = ppPXEPERXY = gy (BF)P P
_ nglpznstm Fpritpe2 — D

Tps
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SD,S™" = nfPrSEPFRST = g prpe
n;mmE—szm — -Dsp-

This proves :

We now prove the injectivity of . If an element U € PN, is in the
kernel of ¢, it commutes with all the matrices D,. Hence it comutes with
the Heisenberg group, and by Schur lemma it is trivial in PU(d).

Finally the surjectivity of ¢ and the fact that X and S generate PM,
follow from the fact that  mod d’ and s mod d’ generate SL(2,Z/d'Z) and
from the injectivity of .

(d) We note that one has the equalities in U(d), for p € (Z/d'Z)?
D,D,D; = (P D,. (9.10)

(d1) When d is odd Equation tells us that PMy; n PHy; = {1}.
Therefore the map ¢ is nothing but the map ¢y in Proposition [9.3|

(d2) When d is even Equation tells us that PM,; n PHy = K.
Therefore, the kernel of ¢ is the group K.

Note that one has the equality ¢y = 7o ¢ on PM,. [

Assume d is odd, we have defined the projective metaplectic group PMy ~
SL(2,Z/dZ) as a subgroup of PU(d). The following corollary tells us that
this group lifts as a subgroup M, of U(d). This is the metaplectic group
introduced by Weil. In this case the metaplectic group M, is isomorphic to
SL(2,7Z/dZ). This is the content of the following corollary.

Corollary 9.18. Assume d is odd.
(a) Then there exists a morphism

Y : SL(2,Z/dZ) — U(d) such that (9.11)

V(9) Dy (g9)~" = Dy, for all pe (Z/dZ)?. (9.12)
The group My := (SL(2,7Z/dZ)) is called the metaplectic group.
(b) The group My is generated by X and i'~9/23.

Proof. The main remark is that the projective metaplectic representation of
the group PMy ~ SL(2,7Z/dZ) in the vector space V = C? is not irreducible,
but decomposes as a sum V = VT @ V™ of invariant subspaces, where V'
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and V'~ are respectively the subspaces of even and odd functions on Z/dZ,
and that

dim V' —dimV~ = 1. (9.13)

(a) For every g in SL(2,Z/dZ) we choose an element ¢(g) € U(d) such
that

eo(¥(g)) = g and dety+(¥(g)) = dety-((g))-

By (9.13)), this element (g) exists and is unique. Therefore, for all g, ¢’ in
SL(2,Z/dZ) we must have 1 (gg") = ¥(g9)¥(¢'). And ¢ is a group morphism.

(b) The matrix X, which is the multiplication by a gaussian function,
belongs to M, because

dety+(X) = dety-(X).

The matrix S of the Fourier transform satisfies S = 1 on V*. Hence its
multiple AS that belongs to M, can be determined by the formula

A = dety—(S)/dety+(S) = dety () = i1=972,

The last equality computing the determinant of the Fourier transform follows
from the list of eigenvalues of S given in Proposition [1.6 O]

Remark 9.19. When d is prime to 3 the morphism 1 is unique and the
metaplectic group is uniquely defined. This follows from the fact that when
d is prime to 6, the group SL(2,Z/dZ) is perfect.

Remark 9.20. The name Clifford group is often used in the SIC-POVM lit-
terature, as in [28], for the normalizer PNy of PHy in U(d). In group theory
one uses the name metaplectic group for the cover of the symplectic group
that normalizes the Heisenberg group H in the unitary group U(H) of the
Stone-von Neumann irreducible unitary representation H of H. The corre-
sponding projective unitary representation of the symplectic group in H is
called the Weil representation or the metaplectic representation.

9.6 The Zauner matrix

We now come back to HSICs. In the conjectural description of the HSICs
there is an important symmetry of order 3 discovered by Zauner, that lives
in the metaplectic group.
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0 -1
D) I

correspond to the matrix X.S. The Zauner matrix Z is a suitable normaliza-
tion of XS thanks to a 24" root of unity (os = €™/'2. This normalisation of
Z will be useful in Conjecture [9.23] and in the following lemma.

We denote by z € SL(2,7Z) the element of order 3 z := zs =

d—1 0
Lemma 9.21. The Zauner matriz Z := %(nzl(ﬁ%)) has order 3.

Up to scalar, the Zauner matrix Z is the unique unitary transformation
Z € Uy such that

ZEZ'=F et ZFZ ' =7E'FL.
Proof of Lemma |9.21. We recall Gauss formula given in Lemma [1.7]

D |
1<k<d

<k<

One computes using Gauss formula an entry of the square matrix,

(202 2 9 12
(Z%)je = == X myng g ng”
1<k<d
2d—2 .
= —CQZ 77;(277;2%! ) 77312 where m = j+k+/,

1<m<d
Gt —e(e+2j -
ngnd e - Zij-
This proves that Z? = Z* and, since Z is unitary, that Z3 = ZZ* =1. O

One can deduce the list of eigenvalues of Z counted with multiplicity, as
in Proposition [I.6] for the Fourier transform.

Proposition 9.22. Let d > 2. The eigenvalues of the Zauner matriz Z on
Z/dZ are given by the first d elements of the list: 1,(3,1,(3,(3,1,(3,(3,1 ...

Proof. We only need to check that for 0 < ¢ < 2 the trace of the /**~power
of the Zauner matrix tr(Z%) is equal to the sum of the ¢*!:-power of this

sequence.
Since tr(Z°) = d and tr(Z?) = tr(Z), this means that one has to check

1 for d =1 mod 3,
tr(Z) = (¢ for d =2 mod 3, (9.14)
\/3(12 for d = 0 mod 3.
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We use Formula (1.7 with ¢ = 3, This gives

d—1 2 d—1 »1-3d 14+2¢§
tr(Z) = (u \/%%773’“ = G Gs SVl

—ad 1+2¢¢
tr(Z) = %2 1 +T3CS
Distinguishing the three values for d mod 3, one gets ((9.14]). O

The choice of normalization for the Zauner matrix is useful to point out
a suitable eigenspace of Z in which we will look for a fiducial vector. Based
on his experimental datas, Zauner conjectured:

Conjecture 9.23. For all d > 2, there exists a Z-invariant fiducial vector,
i.e. a fiducial vector vy such that Zvy = vy.

The algorithm that looks for a fiducial line that is Z-invariant is much
faster because we are looking for a solution in a projective subspace of di-
d

mension [g]. For instance, for d = 4 or 5 we are looking for solutions of

polynomial equations in 1 variable.

Appleby has noticed, that sometimes there are also fiducial vectors in
other eigenspaces of the Zauner matrix.

Conjecture 9.24.
When d = 1 mod 3, there exists a fiducial vector vy such that Zvy = (3vy.
When d =1 mod 9, there exists a fiducial vector vy such that Zvy = (3vq.

9.7 Elements of order 3
Appleby has also conjectured a converse.

Conjecture 9.25. The stabilizer of a HSIC in PNy/PHy always contain an
element A of order 3.

In most of the cases, but not always, this stabilizer is generated by this
element of order 3, and A is conjugate in PNy to the Zauner matrix Z.
When d # 0 mod 3, this element A always fixes a fiducial line.

1 -1
the group SL(2,Z/d'Z). The following lemma tells us more on these elements
of order 3.

The Zauner matrix Z comes from the element z = <0 _1) of order 3 of
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Lemma 9.26. Let g € SL(2,7Z/dZ) with d coprime to 3. Then one has the
equivalence

(a) g is conjugate to z < tr(g) = —1.

(b) If d is prime, all element g of order 3 is conjugate to z. Its centralizer
of order d — 1 if d =1 mod 3,

Cy is a cyclic group {of order d + 1 if d = 2 mod 3.

Ezercise 9.27. Let Q(x,y) = ax?+bxy + cy? be a quadratic form on (Z/dZ)?.
Assume that the discriminant A := b* —4ac is invertible in Z/dZ. Prove that
there exists (z,y) € (Z/dZ)? such that Q(z,y) = 1.

Indication: Deal successively with the following cases: First: d odd prime
and use a basis where () is diagonal. Second: d = p™ odd prime power and
lift a solution mod p™~! to a solution mod p”. Third: d power of 2 and deal
first with d = 2, 4, 8 and lift again. Fourth: apply the chinese remainder
theorem.

Proof of Lemma[9.20. (a) The implication = is clear. We prove <. The

inverse of the matrix g = <: ?) is the matrix ¢! = (67 ;ﬂ ) Therefore
one has g7' + g = t1 where t = « + § is the trace. Since t = —1, one

has g> + g + 1 = 0. Choosing a basis of the form v, gv, one can see that g
is conjugate to z in the group GL(2,7Z/dZ). We want more: we want this
conjugacy to be in SL(2,Z/dZ). We need to find a vector v € (Z/dZ)? such
that Q(v) := det(v,gv) = 1. The discriminant of this quadratic form @ is
equal to A = (§ — a)? + 48y = —3. Therefore it is invertible. Hence there
exists v such that Q(v) = 1.

(b) Since d = p # 3 is prime, the ring Z/dZ is the prime field F, and ¢
has two distinct eigenvalues w*! in the field F,2, which are primitive cube
roots of unity and hence tr(g) = —1. Therefore, by Point (a), ¢ is conjugate
to z.

Finally, we recall that the multiplicative groups I and F, are cyclic.

When p = 1 mod 3, the eigenvalue w belongs to I, g is diagonalizable
on [, and the centralizer Cy ~ [} is a cyclic group of order p — 1.

When p = 2 mod 3, the ring F,[g] is isomorphic to the field F,2 and the
centralizer Cy, ~ {\ € F | AP*1 =1} is a cyclic group of order p + 1. O

The following exercise tells us that Lemma [9.26b is still valid for d a

prime power, but not when d has two distinct prime divisors.
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Ezxercise 9.28. Assume that d = p" is a prime power with p # 3.
(a) Prove that one has an exact sequence

1 —> K —> SL(2,7/dZ) —> SL(2,Z/pZ) — 1,

where K is a normal p-subgroup.
(b) Prove that all element g of order 3 in SL(2,7Z/dZ) is conjugate to z.

Ezercise 9.29. Assume d = pq is the product of two primes not equal to 3.
(a) Prove that SL(2,Z/dZ) ~ SL(2,Z/pZ) x SL(2,Z/qZ.).

(b) Prove that there are 3 conjugacy classes of elements of order 3 in the
group SL(2,Z/dZ).

Notes to Chapter [9 Section
The description of the group of automorphisms of the Heisenberg group

H, is due to Appleby in [3].

The conjectures in this chapter and the previous one are an output of the
works of Zauner in [47], Reves, Blume-Kohout, Scott and Caves in [37] and
Appleby in [3].

In section [9.5] Proposition is [3, Thm 1].

The explicit construction of the metaplectic representation over a finite

field in Corollary is due to Neuhauser in [36, Thm 4.3].
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10 Fields of definition

In this lecture we state the first series of conjectures on the arithmetic of
HSICs. To each fiducial projector P, we will associate a few number fields

QcKcEycE, cE. (10.1)

We will describe conjecturally striking properties of these number fields and
of their Galois group. The constructions and Conjectures in this lecture are
mainly due to Appleby, Yadsan-Appleby, Zauner in [4, Sec.7], to Appleby,
Flammia, McConnel, Yard in [7] and to Kopp, Lagarias in [28] relying on
numerical experiments due to Scott and Grassl in [39] and [3§].

In the next lecture, we will describe explicitly the “unique” 5-dimensional
HSIC. In this case we will see that

K =Fo = Q[v3], Ei = Klig] and E = E4[i],

where yo = (I_C;f%s, with ¢ = cos(27/5) and s = sin(27/5). We will check
directly that the extension E/K is Galois with abelian Galois group. This is
the first non trivial example that motivates the list of conjectures stated in
this lecture.

A better conjectural description of these fields and their Galois action

using the language of class field theory will be given in the following lectures.

10.1 Fiducial projectors

We first recall notation from previous lectures and add a few more. We
assume d > 4. The projective Heisenberg group P H, is the abelian subgroup
of the projective unitary group PU(d) of C? which is generated by the two
matrices E = (§;441) and F = (¢}0;1), where (4 = e2™/4. Let g = —e'™/?
We set d = d when d is odd and d' = 2d when d is even, so that for
p = (p1,p2) in (Z/d'Z)?, the displacement operator D, = n'"> EP1 P2 € U(d)

is well defined and satisfies and (9.7)).

The complex conjugation o, € Gal(C/R) can be seen as an antiunitary
involution of C? or of P(C?). It sends HSIC to HSIC. We define the extended
unitary group

EU(d) = U(d) v U(d)o. ~ (Z/2Z) x U(d),
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and the projective extended unitary group PEU(d) = PU(d) u PU(d)o.. We
recall that Ny is the normalizer of H, in U(d), and PNy is its normalizer
in PU(d). Similarly we introduce the extended normalizer EN, as the nor-
malizer of H, in EU(d) and the projective extended normalizer PEN, as the
normalizer of H; in PEU(d). Both contain the complex conjugation o..

Definition 10.1. The field of definition of a subset S of M(d,C) or of
PM(d,C), is the smallest subfield K < C such that S is invariant by the
group Gal(C/K).

When S is an algebraic subvariety, this means that S can be defined as
the set of zeros of a family of polynomials with coefficients in K.

Lemma 10.2. (a) The Heisenberg group Hg is defined over Q.
(b) The normalizer PNy is also defined over Q.

Proof. We check that these sets are invariant by the elements o of the Galois
group Gal(C/Q). One has o(H,;) = Hy. Indeed, there exists ¢ with { Ad = 1
such that o(¢s) = 4. Hence one has o(E) = E and o(F) = F*. O

We want to understand the set F;j of hermitian fiducial projectors.

Fain = {PoeFy| Py = Fy} where
Fi = {PheM(d,C)| P =P, tr(P) =1 and
tr(PoDyPyD_)) L for all p in (Z/dZ)?}.

= d+1

The set F; of (non-necessarily hermitian) fiducial projectors is an alge-
braic subvariety of M(d, C).

The conjectures of the previous lectures can been extended to F,;. Indeed,
for d = 4, the set F, is also conjectured by Waldron in [46, 14.27] to be a
finite set. Its elements are then algebraic.

The defining equations of F; seem at first glance to involve d'" roots of
unity. A more careful look shows that one can get rid of these roots.

Lemma 10.3. The set F; is defined over Q.

Proof. This follows from the fact that Hy is defined over Q. One can also
apply Proposition [8.15] O

When Py € Fyy, and p € (Z/dZ)? the projector P, := D,PyD,-1 is well de-
fined, i.e. one has P,.4, = P,. The projectors P, are also fiducial projectors.
And the image of Py is a line in C? whose Hy-orbit is a HSIC.
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10.2 The real quadratic field of a HSIC

One of the first issue when one deals with the set F; is that it is not defined
over Q because, for o € Gal(C/Q), the image o(F) of a (hermitian) fiducial
projector Fy is a fiducial projector that is not necessarily hermitian. Let

Ag:i=(d+1)(d-3)=(d—1)?2—4 and K:=Q[/A4]
The following conjecture predicts when this image is indeed hermitian.

Conjecture 10.4. Let 0 € Gal(C/Q) and Py € Fyp. Then, one has the

equivalence:
O'(Po) S fd,h — O'(\/ Ad) = 14/ Ad (102)

Note that this condition does not depend on F,. In particular, the field
of definition of Fg, is the field K := Q[v/A4].

Definition 10.5. A geometric class is an orbit of PENy on Fyp,.
We denote by [Py] the geometric class of Fy.

Two fiducial projectors, or two fiducial lines or two HSICs, are said to be
geometrically equivalent if they are in the same geometric class. Note that
two fiducial lines in the same HSIC are always geometrically equivalent.

According to Conjecture the group Gal(C/K) x PN, acts on Fyp.
This group is the abstract semidirect product using the natural action of the
group Gal(C/K) by automorphisms on the group PN, which is defined over
Q by Lemma [I0.2] This group contains PEN,

Definition 10.6. A multiplet is an orbit of Gal(C/K) x PNy on Fyp.
We denote by [[Po]] the multiplet containing Fy.
The size of a multiplet is the number of geometric classes in it.

Note that A, is the determinant of the quadratic equation
XP—(d-1)X+1 =0, (10.3)
For d > 4, the positive real root of this polynomial
R (10.4)

Eq =

is called the Zauner unit. It is a unit in the ring Z[e,4]. This ring is a subring
of the ring of integers Ok of the real quadratic number field K = Q[e,].
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Definition 10.7. We denote by Dy the fundamental discriminant of K. This
means that Ny = 2Dy with f integer, Dy # 1 and

(1) either Dy =1 mod 4 and Dy square free,

(i) or Dy = 4m?* with m =2 or 3 mod 4 and m square free.

The positive fundamental discriminants are Dy = 5,8,12,13,17,21,24, . ..

Ezercise 10.8. Write Ay = f2Dy with Dy the fundamental discriminant of
K. Let oy := %ﬁo, so that Og = Z[ayp].
(a) Prove that the ring O := Z[e,] is equal to Z[ fayg].
(b1) Find the list of integers d = 4,8,19,48,124, ... for which Dy = 5.
(b2) Find the list of integers d = 7, 35,199, ... for which Dy = 8.
(b3) Find the list of integers d = 5,15,53,195,. .. for which Dy = 12.
This partially “explains” why it is easier to find HSICs in dimensions
d=4,57,8,19.

The integer f is called the conductor of the ring O = Z[ fap].

Conjecture 10.9. There is a natural bijection
{multiplets in Fy,} <— {divisors f’ of f}

Remark 10.10. We will understand better Conjecture [10.9, in the light of
stronger conjectures that will follow. The divisor f’ is the conductor of a
unique intermediate ring Oy < Op < Ok. This ring Op will be related by
class field theory to abelian extensions of K, the ones that we introduce in
the next section.

10.3 Fields of definition

We now introduce two fields Eq and E associated with a geometric class [F]
of a fiducial projector F,.

* The field Ey is the field of definition of the geometric class [FP].

* The field E is E := L[n,] where L is the field of definition of F.

Lemma 10.11. We assume Conjecture [10.4)

(a) The fields L and E are invariant by complex conjugation o., and one has
the inclusion Ey < R.

(b) The fields Bq and B depend only on the geometric class [P)].

(¢) One has K c Eq c E.
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Proof. (a) Since the projector Py is hermitian, the field L generated by the
entries of P, is invariant by o.. Finally, since a PEN -orbit is always invariant
by o, it is defined over R and one has E; < R.

(b1) The field Eq depends only on [Fy] by definition.

(b2) Since all the elements U of the normalizer PN, are defined over
Q[n4] < E, and since P, is defined over E, all the elements UPyU ! of [P]
are also defined over E. Hence the field E depends only on [F%].

(c1) Since all the projectors in [Fy] are defined over E, one has Eq < E.

(¢2) We will only use Conjecture to prove the last inclusion K < Eo,
if 0 € Gal(C/Ey) one has o(Py) € [Fy], hence one has o(v/Ay) = v/Aq and
o € Gal(C/K). This proves that K c E,. O

Conjecture 10.12. (a) The field E is a Galois extension of Q.
(b) The field E is an abelian extension of K.

The group Gal(E/K) is a normal subgroup of index 2 in the Galois group
Gal(E/Q). It contains the complex conjugation o.. Conjecture [10.12|b tells
us that this subgroup is abelian.

Lemma 10.13. We assume Conjectures|10.4) and|10.12.
Then the subgroup Gal(E/K) is the centralizer C(o.) of 0. in Gal(E/Q)

Proof. By Conjecture [10.12] the subgroup Gal(E/K) is abelian and hence is
included in the centralizer C(o.).

Conversely, if an element o € Gal(E/Q) commutes with o., the projector
o(Fp) is also hermitian and hence belong to ;. Hence, by Conjecture ,
one has o € Gal(E/K). O

Remark 10.14. It may look at first glance surprising to have so many fields
automorphisms ¢ that commute with o., because the only non-trivial auto-
morphism of C that commutes with o, is o.. The point is that the commu-
tation of ¢ and o, is only required in the field E.

Remark 10.15. According to Conjecture [10.12] the fields Ey and E depend
only on the multiplet [[Py]].

Lemma 10.16. We assume Conjectures|10.4) and|10.12.
Then the degree [Eq : K] is equal to the size of the multiplet [[ Py]].

Proof. The abelian group Gal(E/K) sends geometric classes to geometric
classes, and acts transitively on the set of geometric classes in [[Fy]]. By def-
inition, the stabilizer of the geometric class [F] is the subgroup Gal(E/K).
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Therefore the number of geometric classes in [[ Py]] is the order of the quotient
group Gal(E/Eq) which is equal to [Eq : K]. O

In the sequel of this lecture, we will state slightly more precise conjectures
from the arithmetic point of view, and one will describe conjecturally the two
Galois groups Gal(E/Ey) and Gal(Eq/K). A much more precise conjectural
description of the fields £y and E and of their Galois groups in terms of the
ideles class group Ck will be given in the next lectures.

We recall that the ideal class group CI(O) of a finite index subring O < Ok
is the group of invertible ideals modulo the principal ideals. When O = Ok
all the ideals are invertible. In general the invertible ideals are those coprime
to the conductor f.

Conjecture 10.17. Let Py € Fyy, and [’ be the divisor of f associated to
[[Fo]]. Then there is a group isomorphism Gal(Eq/K) ~ Cl(Oy)

We will see in a latter lecture that, in order to compute the ideal class
group Cl(Oy), one can use the exact sequence

(Ok/f'Ok)*
(z/f'zZ)*
This exact sequence tells us that the ideal class group CI(Oy) is an extension
of the classical ideal class group CI(Ox) by an easily computable subgroup,

the image of . The quotient CI(Ox) which is less easi to compute is often
rather small.

Remark 10.18. Note that, conjecture [10.17] is uniform in d > 4, while the
properties of the ring Oy = Z[e,4] and its class group heavily depend on d.

1— Og/0} — 5 Cl(Op) — Cl(Og) — 1 (10.5)

10.4 Galois action on correlations

We now introduce the field E;. We first define the subfield E; := EnR. Let
0o € Gal(E/Q) such that og(+v/Ag) = —v/Ag. We define E; := g¢(E,).
Since, by Conjecture [10.12] all the elements of Gal(E/K) commute with

the complex conjugation o., the field E; does not depend on the choice of
0. Moreover, this field E; depends only on the multiplet [[Fp]].

Lemma 10.19. One has the inclusion K[cos(2m/d")] < E;.
Proof. Indeed, the field K[cos(27/d)] = K[ng] n R is a subfield of Ey which

is Galois over Q, hence it is invariant by og and it is included in E;. O
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Let Py be a fiducial projector. It can be written as Py = fo ® vy with
fo(’Ug) =1 or PO = ‘1}0><”Uo|.

Definition 10.20. The correlations are the quantities
uy = fo(Dyvo) = {vo|Dpvoy = tr(PyD,), for pin (Z/d'Z)>.
By and (9.7)), they satisfy, for p, ¢ in (Z/d'Z)?, u_, =,
Uptdqg = U, When d is odd, (10.6)

Upydg = ()PP, wupi0q, = Utqyp = Up When d is even.  (10.7)

The assumption that Py is fiducial can be written as

lu,| = \/d;ﬁ for all p # 0 mod d. (10.8)

Lemma 10.21. We assume Conjectures|10.4) and|10.12,
Let Py = |vo){vo| be a fiducial vector and p € (Z/d'Z)?, p # 0 mod d. Then
for all o0 € Gal(C/K) one also has

lo(up)| = \/d;-Tl for all p # 0 mod d. (10.9)

Proof. Since the extension E/K is abelian, this element o commutes with o,
and the projector P} := o(Fp) is still hermitian, and is a fiducial projector.
The images u;, := o(u,) are correlations for I and hence satisfy (10.8). O

The following condition requires that all the other Galois conjugates o (u,)
of u, are real.

Definition 10.22. A fiducial projector Py is called strong if, for all p in
(Z/d'Z)?, the correlation u, belongs to Eq

Remark 10.23. This condition heavily depends on the choice of the fiducial
projector Iy in a given HSIC. Indeed replacing Py by Fy := DyPyD; ! with
2¢q # 0 mod d, replaces the correlations w, by the correlations

w, = to(PD,) = te(RD; ' DyDy) = o7,

P291—P1q2

But, for suitable p, the factor ¢
real Galois conjugate.

does not belong to [E; since it has no
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Definition 10.24. A fiducial projector Py = |vg){vo| is centred if Zvy = vy
where Z is the Zauner matriz. It is strongly centred if moreover it is strong.

The following conjecture is a technical but useful improvement of Con-
jectures and on the symmetry of order 3 in HSICs.

Conjecture 10.25. (a) The set Fyy, is not empty and every PENg-orbit in
Fan contains a strongly centred fiducial projector.
(b) When d is coprime to 3, every centred fiducial projector is strongly centred.

Let z = ((1) :1) € GL(2,Z/d'Z). We denote by Ay the abelian subring,

Ad/ = (Z/d/Z)[Z] c M(Q,Z/d,Z)

and by A}, the group of units, or invertible elements in the ring Ay .
Ezercise 10.26. Prove that Ay is the centralizer of z in M(2,Z/d'Z).

We introduce the subgroup S := {a € A% | u,, = u, for all p e (Z/d'Z)?}.
When d is odd, the subgroup S contains the group of order 3 generated by z.
When d is even, the subgroup S contains the group of order 6 generated by
z and 1 +d In most cases, the subgroup S is not larger.

In the following Conjecture |10.27] the precise choice of the factor n}'** in
the definition of the displacement operators D, is crucial.

Conjecture 10.27. Assume the fiducial projector Py to be strongly centred.
Assume also that f' = f.

(a) One has Ey c Eq, and for all o € Gal(E,/Ey), there exists a, € A% such
that, for allp e (Z/d'Z)?, o(up) = uq, ()

(b) The map o — a, induces an isomorphism Gal(E;/Ey) — A% /S.

Remark 10.28. One can probably weaken the assumption f’ = f. This
assumption fits with the interpretation of these conjectures in terms of Class
Field theory. Recall that the multiplet [[F}]] is associated to a ring Oy of
conductor f’. We will see that the group involved in Class Field Theory is
the multiplicative group of the ring O /d'Op But since Of = Z[eq] = Oy,
one has an isomorphism of rings Ay = O;/d'Of = O /d'Oy..

Fzample 10.29. When d is prime, d = 2 mod 3, all the u,, p # 0, are Galois
conjugate over [E.
Indeed in this case, the ring A, is the field Fy with d? elements.
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Ezample 10.30. When d is prime, d = 1 mod 3, The group Gal(E;/E;) has
exactly three orbits among the u,, p # 0, one for each of the two z-invariant
lines in (Z/dZ)?, and one for the complementary of these two lines.

Indeed in this case, the ring Ay is the product Fy; x F; of two copies of

the field Fy = Z/dZ.

Lemma 10.31. We assume Conjecture [10.27. Let Py be a strongly centered
fiducial projector. Then the field &, is generated over Eq by the correlations
u, with p in (Z/d'Z)*.

Proof. The injectivity of the map o — a, in Conjecture [10.27]b, tells us that
every element o in Gal(E;/Eq) that preserves the correlations u, is trivial.
By Galois theory, the field E; is the smallest extension of Eq that contains
all the correlations wu,,. 0

10.5 The phases as units

We recall that an algebraic unit is an algebraic integer whose inverse is also
an algebraic integer.
We write u, = €% /y/p + 1. The square of the phases

Uy :=e* = (d + 1)u’

depend only on p in (Z/dZ)*. Since P, is hermitian, the complex numbers
U, have absolute value 1.

Conjecture 10.32. Let Py be a strongly centred fiducial projector.
Then the complex numbers U, are algebraic units.

Remark 10.33. Recall that all the Galois conjugates of U, over K have mod-
ulus 1, and that, since P, is strongly centred, all the other Galois conjugates
of U, over QQ are real and positive.

In this lecture we have stated striking arithmetic conjectures on HSICS
using only Galois theory. We will need to use Class Field Theory to improve
these conjectures. Indeed, given a number field K and an abelian extension
E/K, knowing the Galois group Gal(E/K) is a very weak information on this
extension. For instance, all the quadratic extensions of K have the same
Galois group Z/27. Class field theory gives a nice parametrization of the
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abelian extension of K. Hence it will allow to predict exactly the fields Eg,
E; and E associated to a multiplet [[Fy]] of fiducial projectors.

Notes to Chapter (10|

The fields where introduced by Appleby, Flammia, McConnel and
Yard in [7, Sec. 4].

See also [46], Sec. 14] or [20] for two surveys on SICs.
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11 Zauner example

In this lecture, we explicitely describe the 5-dimensional Heisenberg SICs.
We will omit the computational proof. But we will check on this example
the conjectures of the previous lecture.

11.1 The 5-dimensional HSIC

Let d = d' = 5. We denote by E and F the two d x d unitary matrices given
by E = (6;441) and F = ((78;), where ¢ = (4 = €*™4. For p = (py,ps) in
(Z/d'Z)?, we set D, = ni*"? EP1FP2 € U(5). Recall the notation ny = —e™/<.
Here, ng = (72

We are looking for a fiducial vector vy, that is for a vector whose correla-
tions w, := % satisfy |u,| = ﬁ, for p # 0. Moreover we require that
this fiducial vector vy = (2o, 21, 22, 23, 24) is invariant by the Zauner matrix.
We normalize it by zy = 1. All the calculation can be done explicitely by
hand because the eigenvalue 1 for the Zauner matrix has multiplicity 2. An
explicit formula for vy can already be found in Zauner PhD thesis. We write

C=e¥ =c+is, (' =e¥/5 = +is, withe, s, ¢, s real.

Lemma 11.1. (Formulas for the Z-invariant fiducial vectors) The four vec-
tors vg := (20, 21, 22, 23, 24) given by zo = 1,

21+ 24 = C_l ((1 - S,) + C/\/§>

Ly = —2dE2) V3 —
(21 —24)° = 7 (2 +/3) <(1 V3 s)
¢ ((1 +5') + c’\/g)

1+22
(20— 23)* = C2( = Z)(Q +/3) ((1 —c)\/g—i-s) ,

NG

with the sign compatibility given by % 2 =1+ c+ sv3, are Z-invariant
fiducial vector in C°. The square of the norm of these vectors vy is given by

N = (volvoy = (3 - \/g)(5 - \/5)/2

These are exactly all the Z-invariant fiducial vectors.

2o + 23

We can then compute the correlations
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Lemma 11.2. (Formula for the correlations) The correlation

. F 1 k 2
wi= G - ¥ 2 ¢l
0<k<4

of this fiducial vector is given by ug = o + iy = €% /\/6 where
T 1= \/ig cos(fp) is equal to zg = 1 ((s’ + )53+ 5 — c’)
1

yo == &sin(fp)® is equal to 5 = 5 <(1 — V3 + S> :
The lengthy proof of Lemmas and are omitted.
_ (volEvg)

Remark 11.3. Since vy is Z-invariant, the correlation wug is also ug = Zooloos

11.2 The fields of the 5-dimensional HSIC

We can now compute the fields that are associated with this fiducial projector
Py = |vg){vo| and check the various conjectures of this lecture.

* One has K = Q[v/3]. Indeed, the Zauner unit is ¢, = 2 + +/3 and the
discriminant is Ay = 12.

* The fundamental discriminant is Dy = 12 and the conductor is f = 1.

* This agrees with the fact that there is only one multiplet [[Py]].

* One has Eq := Q[/3].

» This agrees with the fact that Ox = Z[+/3] is a principal ideal ring or
equivalently the class number h(Ox) = 1. This fact follows from Minkowski’s
bound for the class number applied to K : h(Ok) < +/Dy/2.

» This also agrees with the fact that there is only one geometric class [Fp].

* One has E := Q|yo, 7]

* One has E; := Q[ug] = Q[iyo] which is a quadratic extension of Q[v/3, s].
» We will check in Lemma that the extension E,/E, is Galois with cyclic
Galois group Gal(E,/Eq) ~ Z/8Z.

» This agrees with the fact that the ring Ay = Fs5[z] is the field Fo5, hence
has a cyclic multiplicative group with quotient group Fj;/(z) ~ Z/8Z.

* There are 2000 = 80 x 25 fiducial projectors and 80 HSICs.

* This agrees with the fact that, the group PENy ~ SL*(2,F5) x 2 has order
240 x 25, it acts transitively on [P,], and the stabilizer of P, is the group of
order 3 generated by the Zauner matrix.
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11.3 (Galois action on correlations

In this section, we will explain graphically the action of the Galois group
Z/8Z on the correlations u,. We will use a nice and fun graphic presentation
of the field Fo5.

We choose now a generator o of Gal(E;/Eg) so that o(¢) = ¢* For
(€ 7./247., we set uy := o*(up), and one write uy = 2, + iy,. One has

Upr4 = Uy and hence uypy g = uy.

As above we identify the plane (Z/5Z)? with the finite field Fo5 thanks
to the bijection (pi,p2) <— p1 + pow where w? = —w — 1. We introduce
the generator go := 2 — 2w of the multiplicative group F3;. We set u,, 1= uy
where p, is the point corresponding to g§.

Figure 1: The field Fo5 seen as a labelled double star of David

In Figure |1, we have identified Fos = Fs[w]/(w? +w + 1) with the quotient
R/5R where R is the ring R = Z[e*™/3] = C. For each of the 25 elements of
Fos5, we have chosen a lift in R.

Since the multiplicative group 5. is cyclic of order 24 with generator
go 1= 2—2w, we can label the element gt with the integer k € Z/24Z. For
instance, go s labelled by 1, w s labelled by 8, —1 s labelled by 12, 1 is
labelled by 0, and ... 0 is labelled by a blue square o.

By construction the multiplication in this graphic is nothing but the mul-
tiplication in C followed by a reduction modulo 5.
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For instance, the multiplication by —w? in Fa5 is adding 4 on the labels
which is turning by w/3 in the complex plane. The multiplication by 2 in Fas
is adding 6 on the labels and is a homothety of ratio 2 on the small star and
—1/2 on the large star. The action of the Frobenius in Fa5 is multiplying the
labels by 5 which is the complex conjugation in the complex plane.

In this graphic the non-squares of Fo5 are the extremities of the branches
of the stars and the squares are the multiples of the cubic roots of unity. We
have also drawn the twelve affine lines over Fy that are parallel to one of the
cubic roots of unity and do not contain 0.

The siz F5 vector lines of Fos are the traces of six real lines containing 0
in the complex plane. We have not drawn them.

Figure 2: The correlations of the 5-dimensional SIC

In Figure@ we show the correlations u, = % of the 5-dimensional
HSIC for a centred fiducial projector Py, where the plane (Z/5Z)* of param-
eters p is identified with Fo5. We have writen u, as a shortcut for Ugt - The
partial Fourier transform on the twelve affine lines is used to reconstruct the

fiducial vector in Formulas (11.3]).
Remark 11.4. The orthogonal projector on vy is given by the matrix
Py = (pjx) = wz(2%k)

where N = |vp|. The correlations u, are given by the formula u, = tr(FD,),
that is

Ujirw = 20 CFE2Dpy g (11.1)

144



Conversely, inverting this linear system, give the equalities

Pk = %Ze <2(j+k)éuk—j+éw' (11.2)

In particular, if one normalizes vy by the condition zy = 1, one can recover
the fiducial vector from the correlations: for 1 < j < 4, one has

Zj = %Zé Czﬂu_ﬁgw. (113)

11.4 Finding the fiducial from an approximation

There is another approach that can be used to get algebraic formulas for
the fiducial vectors for d small that works beyond d = 5 relying both on the
conjectural predictions of this lecture and on a computer algebra system as
Sagemath, Maple or Mathematica.

One first gets a 100 or 200-digits approximate values for a Z-invariant
fiducial vector vy thanks to the gradient flow or to the Newton method as
in Section 0.2 One then deduce approximate values for all the correlations
Up = Tp + 1Yp.

Using again computer algebra, one wants to find the minimal polynomial
of a correlation u, over Q and to factorize it over the field K[n,]. This
polynomial is quite huge and has large degree (degree 16 for d = 5). One
may simplify a little bit the calculation, by first looking at the minimal
polynomial over Q of yzo, which has smaller degree. One can also simplify
the calculation since we can guess the list of all the Galois conjugate of
over K among the u,, and since we have good numerical approximation for
these w,,.

Once we have an algebraic formula for the correlations u,, we obtain an
algebraic formula for the fiducial vector vy thanks to a Formula as (11.3).

We finally can check rigorously using once more computer algebra that
Vg 18 indeed a fiducial vector.

11.5 A few cyclic extensions

In this section, we explain how to check directly that the extension E;/K for
the 5-dimensional HSIC that we described in the previous section is indeed
Galois with cyclic Galois group isomorphic to Z/8Z.

We first begin by a lemma which is a general but standard exercise in
Galois theory.
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Lemma 11.5. Let ky be a field of characteristic # 2, k an abelian extension
of ko with a cyclic Galois group G, and o a generator of Go. LetY € k
which is not a square in k, y = VY and K = k[y].

(a) K is a Galois extension of ko if and only if the ratio o(Y)/Y is a square
n k.

(b) In this case the Galois group G := Gal(K /ko) is abelian.

(c) In this case G is cyclic if and only if the norm Ny, (Y') is not a square
mn ko.

Here is a very concrete application to quadratic and biquadratic exten-
sions.

Corollary 11.6. Let kg be a field of characteristic # 2, d € kg non square

and k = k[vVd]. LetY = a+b/d ek andy = VY, N := da®> — d?,

K = koly], L the Galois closure of K over ko and G := Gal(L/ky).

(a) One has the equivalences: |K : ko] =4 <Y is not a square in k <
if N = ¢ with c € ko then (a%c)/2 are not squares in k.

(b) Three cases are then possible:

(i) G = (Z)27)? <= N s a square in k.

(11) G = ZJAZ <= Nd is a square in ky.

(1ii) G = Dy <= neither N nor Nd are squares in ky <= L # K.

Here D, is the dihedral group with 8 elements Dy = (Z/2Z) x (Z/AZ).

Ezercise 11.7. Determine the Galois group Gy = Gal(Ly/Q) where Ly is the
Galois closure of the field Kj = Q[yx] for the following six values of y.

y1 =V4++/15, yo =+/1+iV15,
Ys =V2—=+v2, ys=+>5+5,
Ys =V 1+ V15, yg = /1 + 4iv/3.
Indication: Gy ~ Gy ~ (Z/27)?,
G32G4ZZ/4Z,

G5 =~ D4, GG s Z/QZ

11.6 The correlation field for d=5

For d = 5, we have seen that there is essentially only one Z-invariant fiducial
projector Fy. We have computed Ay = (d+1)(d—3) = 12, and we have seen
that Eg = K = Q[v/3]. We also have computed explicitely the correlations
up 1= 1y + iy, = €%/ v/6 corresponding to a point g5. Those are the 8 Galois

146



conjugates over K of an explicit element ug = x¢+iyo with zg and Yy := 2432
in K[s] where s := sin(27/5). The minimal polynomial over K of this element
Y, is

Y- 5V3Y? +25Y2 +15V3Y +5=0.

We have checked that E; = Q[ug] = Q[iyo]. In the following lemma we
explicitely check the general Conjecture describing the Galois group
Gal(E;/K). on this example with d = 5. We denote by Yy, Y7, Ys, Y3 the
Galois conjugates of Yj over E,.

Lemma 11.8. (a) The field Ly := Eq[s] is an abelian extension of degree 8
of Q. One has Gal(L,/Q) ~ Zy x Zy and Gal(LL1/Eq) ~ Zj.

(b) The elements Yy, Y1, Yo and Y3 are positive and —Yy, —Y;, =Y, et —Y;3
are the other Galois conjugate of Yy over Q.

(¢) The field By = Quo] is a quadratic extension of Ly equal to Ly [iyoe]|. This
field 1 is an extension of Q of degree 16 which is not Galois.

(e) The field Ey is an abelian extension of K, and one has Gal(E;/K) ~ Zs.

Sketch of proof. (a) The field L; is cyclotomic.

(b) This follows from the explicit formula for Y; given in Lemma [I1.2]

(¢) The first sentence follows from the explicit formula for uy also given
in Lemma [T1.21

The field E; is not Galois over @Q because the image Ey = 0¢(E;) of
E; by an element oy € Gal(C/Q) such that o¢(v/3) = —+/3 is the field
Es = Q[yo] = R, while the field E; is not a subfield of R.

(d) The key point is to notice the two equalities

YYo= 2V3+Y)? and YV YaYs =5
and to apply Lemma [11.5] O

Ezercise 11.9. On the field of definition of the 6-dimensional HSIC.
Let w = 23 K = Q[v/21] and F = K[z] where = € C satisfies 23 = 1+i+/7.
A) a) Compute zT and prove that x is an algebraic integer.
b) Prove that = does not belong to Q[i+/7].

c¢) Prove that Q[z] is an extension of degree 6 of Q.

d) Prove that F is an extension of degree 12 of Q.

e) Prove that IF is a Galois extension of Q.

B) a) Prove that there exists p € Gal(IF/K) such that p(z) = wZ.
b) Prove that p(w) = w?, that p?(z) = wx and that p*(z) = 7.
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c¢) Prove that F is a cyclic extension of K of degree 6.

d) Prove that the group Gal(F/Q) is a dihedral group of order 12.

e) Since this field F is included in the field E of definition of the unique 6-
dimensional HSIC, how does this exercise fit with the conjectures on HSICs?

In section [11.1| The existence of the 5 dimensional HSIC with explicit
formulas is due to Zauner in his PhD thesis [47]. See also the more recent
paper by Appleby and Bengsston [5] which gives more details on the fields
involved. In section [I1.5]
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12 Class field theory

Most of this lecture, is a survey with no proof of Class Field Theory. This
theory classifies abelian extensions of global or local fields. It began in the
middle of the 19" century by the characterization, due to Kronecker and
Weber, of the cyclomotomic fields as the abelian extensions of Q. One of the
main original motivation of Class Field Theory is the extension of this theo-
rem over more general number fields K than the rationals, as in “Kronecker
youth dream” where K is an imaginary quadratic field. A first achievement in
the early 20'" century is the construction of the maximal unramified abelian
extension called the Hilbert class field.

The abelian extensions that occur in SICs are ramified. Fortunately, a
second achievement of Class Field Theory due to Takagi allows to deal with
abelian extensions that are ramified. A third achievement is a class field
theory over local fields. This allows to deduce Global Class Field Theory by
gathering together the Local Class Field Theories for all the completions of
K thanks to the language of adeles and ideles.

12.1 Unramified class field theory

We begin by the case of the maximal unramified abelian extension which is
called the Hilbert class field. This case is already very useful.

Let K be a global field. In characteristic zero, this means a number field.
In characteristic p, this means a finite extension of the field F,(¢) of rational
functions. Let Ok be the ring of integers of K, which is the integral closure
in K of either Z or F,[¢t].

Ideal class group One recall that the class group CI(Ok) = Pic(Ok) of
a number field K is the group of class of ideals in the ring of integers Ok
modulo the principal ideals. The class number h(Ok) of K is the cardinality
of this group.

A conjecture of Cohen and Lenstra states that about 75% of the real
quadratic fields Q[,/p] with p prime have a trivial class group. One does not
know neither if the set of such primes p is finite, nor if its complementary is
finite.

When d is square free and composite, then Q[\/a] often has a non-trivial
class group. This is the case for Q[+/10] or Q[+/15] and more generally when
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d has a prime factor p = 1 mod 4.

Ramification One recall that an extension L of K is unramified if
- it is unramified at finite places, that is, for every prime ideal p of Ok, the
ring Or/pOy, does not have zero divisors,
- it is unramified at infinite places, that is, each time a completion K, is
equal to R the completions L, extending it are also equal to R.

In the case where K = Q, L = Q[«] and the ring of integer is monogenous
O = Z|«], the extension L/Q is ramified at a prime p if and only if p divides
the discriminant of the minimal polynomial of o on Z. In particular every
extension of QQ is ramified.

Example For d square free, Q[v/d] is ramified exactly:
(1) at the prime divisors p of d,
(17) at p = 2 when d # 1 mod 4, and
(7i) at p = oo when d < 0.

Hilbert class fields There exists a unique maximal unramified abelian
extension IL of K. According to class field theory this is a finite extension of
K and one can describe its Galois group in the following way:

For every prime ideal p of O, the quotient Ok/p is a finite field F,. Since
the extension IL/K is unramified, the finite ring Op/pOy is a product of finite
fields Op /P, where the B, are, by definition, the prime ideals of O, that
divide p. These prime ideals are exchanged under the action of the Galois
group Gal(L/K).

There exists an element op € Gal(IL/K) that preserves such a prime %,
and acts on the finite quotient field O /B; as the Frobenius x — 9. Since all
these primes B, are Galois conjugate and since the extension IL/K is abelian
this element op is unique and is called the Frobenius at p.

The map p +— op induces an isomorphism, denoted Art, of abelian groups

Art : Cl(Ok) ~ Gal(L/K).

This extension L is called the Hilbert class field of K.
In particular, when Ok is principal, every abelian extension of K is ram-
ified.

Erercise 12.1. a) Check that the ring of integers Z[+/15] is not principal.
a) Check that the abelian extension Q[v/3,/5]/Q[+/15] is unramified.
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12.2 Local class field

Let K be a local field. In characteristic zero, this means a finite extension
of a p-adic field Q,. In characteristic p, this means a finite extension of the
field IF,((t)) of Laurent series.

The Local Class Field theory describe the maximal abelian extension
K% of K and its Galois group. For every finite abelian extension L of K one
introduce the norm map Ny x which is the multiplicative groups morphism

NL/KZL* —_—> K*
r = NL/K(:U) = detL(mi) = H O'(:B),

o

where m, € Endg (L) is the multiplication by x, and where the product is
over all o € Gal(L/K). We denote by N}, := Ny (L*) the image in K* of

the norm map.

Theorem 12.2. a) The map L — N7, is a bijection between

finite abelian N finite index open (12.1)
extensions L of K subgroups N of K* |~ '

b) For Ly and Ly extension of K, one has the equivalence
Ly c Ly <= N, o Ny,
and the equalities

NLlﬁLQ = NLlNL27
NL1L2 = NLlﬁNLQ.

c¢) There exists a canonical isomorphism
Art = Artg : K*/N, ~ Gal(L/K) (12.2)
called the Artin symbol.

Here are a few facts, remarks or exercises that help to understand how to
deal with this group K*/Np.

1. For K = R or C, one sets O}, := K*. The trivial extension K /K is called
unramified and it corresponds to the full subgroup Nx = K*. For K = R,
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the extension C/R is called ramified and it corresponds to the subgroup
Ne = R*.

2. For K non archimedian, one denote by Og its ring of integers, 7 a
uniformizer, k = O /TOx = F, the residual field where ¢ = p* = |x|.
One has then

K* = 1% x O = 7 x (Z/(q - DZ) x (1 + 0x).

The group (1 + 7Ok) has no torsion when K = Q, with p odd.

FEzercise 12.3. Let K be a local field of characteristic zero and L/K be an
extension of degree n.

a) Prove that the group N} contains the subgroup K*".

b) Prove that the subgroup K*" is an open finite index subgroup of K*

3. When K is non archimedean, an abelian extension L/K is called unram-
ified if 7 is also an uniformizer for L. When K is archimedean, an abelian
extension L/K is called unramified if L = K.

An abelian extension L/K is unramified if and only if N}, contains O}

4. When K is non archimedean, one denotes by K, the unique unramified
extension of degree n of K. Its residual field x, is the unique extension of
degree n of the finite field . The field K, is generated by the (¢"—1)" roots
of unity. Hence it is an abelian extension of K. The union K™ of these
extensions is the maximal unramified abelian extension of K. One has

Nk

n

= 71"% x 0% and K*/Ng, = 7/nZ.

5. When K = Q,, one denotes by L, = Q,[(y] the field generated by
the p™ roots of unity. It is a totally ramified abelian extension of degree
p"1(p—1) of Q,. One has

Ni, =% x (1+9'Z,) and K*/Ni, = (Z/p"Z)"

Ezercise 12.4. Prove using (12.1]) that the extension @gb is generated by all
the m™ roots of unity where m > 1.
Indication: Every finite index subgroup of Q7 contains a group of the form

p"L x (14 p"Zy).
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Ezercise 12.5. Let K = Qs[v/3] = Qs[w] with w? + w +1=0and L = K[y]
with

y® —5vV3y° + 25y + 1534 +5=0. (12.3)

a) Check, using Eisenstein criterion, that L is an extension of degree 8 of K.
b) Check, using Lemma , that L is an abelian extension of K.

c¢) Check that Ny has index 8 in K*.

d) Check that Ny k(y) = 5 and that (O%)® = (w,1 + 50k).

e) Check that N, = (5,w, 1 + 50 ).

12.3 Adeles

The link between local class field and global class field is the language of
adeles and ideles due to Chevalley.

Let K be a number field, extension of degree n of Q, and let Ok be its
ring of integers. We denote by v a place of K and K, the corresponding
completion of K. The finite places are those corresponding to prime ideals
of Ok. The infinite places are either real or complex. Let Yk, be the set of
real places of K. We write n = r1 4+ 2ry where r = |3k ,|.

Let @( = lim Oxk/dOk be the ring profinite limit of Ok. The ring of
doo
finite adele is the ring

Ag g = Ox ®7,Q = T K,

v finite

which is also equal to the restricted product of the completions K, restricted
with respect to the integers Ok,. The ring of adeles is the product

Ag = Ag s X Ax o = [T K, where

AK,OO = 1_[ KU =R" x C,

v infinite

The field K embeds diagonally in the ring of adeles. We quote with no proof
the following

Proposition 12.6. The additive group K is a discrete subgroup of the locally
compact group Ax and the quotient Ak /K is compact and connected.

153



12.4 1Idéles

The group of ideles Ik is the multiplicative group of Agx. It is a locally
compact when seen as the closed subset

Ix = GL(1, Ag) = {(z,y) € A% | vy = 1} < AZ.
The group of ideles is also the restricted product of the multiplicative groups

IK = H/ K: = IKJ X IK,OO

of all the completions K, of K, product restricted to the groups of units Of
of K*. This means that an idele z = (z,) has almost all its components x,
in O .

The absolute value |z| of an ideéle x = (z,) is the product of the absolute
values |z| := [, |zo]s. We set

Iy = {relx||x| =1}

The multiplicative group K* is a subgroup of Ik via the diagonal embedding.
The product formula tells us that K* is included in I};.

Proposition 12.7. The multiplicative group K* is a cocompact discrete sub-
group of the locally compact abelian group If.

Remark 12.8. This proposition encapsulates both the finiteness of the class
group Cl(Ox) and the Dirichlet units theorem.

Definition 12.9. The idéles class group is the quotient Cx := Ix/K*.

Note that one has an exact sequence
1—Cg — Cx — R — 1
where the group CL := I /K* is compact.

In class field theory one is dealing with finite index open subgroups of I
that contains K*. Those subgroups always contain the connected component
Iz = Iy, ~ R} x C™. This is why the following exact sequence will be
useful.
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We introduce the ‘unramified finite index open subgroup” of Ix to be the

group
Uk =11, Ok, = Ok x {£1}5er x ]H%’OO (12.4)

(we recall that, when K, = R or C, by convention, one sets O = K3). One
has

K* A UK = OE& and Cl(OK) = IK/(K*UK)

Hence one has the following exact sequence that allows us to better under-
stand the ideles class group.

Lemma 12.10. One has an exact sequence

1 — Of — Ux —> Cyx —> Cl(Ox) —> 1 (12.5)

12.5 Global class field

Global Class Field theory describes the maximal abelian extensions K of a
global field K and its Galois group Gal(K*/K).

For all finite extension L of K one introduces the norm map which is the
group morphism given by

N]L/K I — Ik
r=(xy,) — y=(y,) wherey, = Hw‘v N, e, () -

It extends the classical norm map Ny : L* — K*, and hence it induces

a group morphism still called the norm map and denoted the same way
Ny : C — Ck. We denote by

NL = NL/K(O]L) C CK
the image of this last norm map.

Theorem 12.11. a) The map . — N, is a bijection between

finite abelian N finite index open (12.6)
extensions I of K subgroups N of Cx | ’

b) For 1Ly and Ly extension of K, one has the equivalence

Ll (@ ]LQ <:>NL1 DNL27
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and the equalities

Nﬂ..lm]Lg = NLlNM’
N]Ll]Lg = NLlﬂNLQ.

c¢) The local Artin symbols Artg, : K — Gal(L,,/K,) induce an isomorphism

Artg : Cx /N, — Gal(L/K)
xmod N, —  Artg(x) ;=[] Artg, (z,), (12.7)

where x € Cx 1is written as v = (z,) mod K*.

Here are a few facts, remarks or exercises that help to understand how to
deal with this group Cg/NL.

1. Since the extension L/K is abelian each group Gal(L,,/K,) is canonically
isomorphic to a subgroup of Gal(L/K): the decomposition subgroup for w|v

D, = {0 € Gal(L/K) | o(w) = w} ~ Gal(L,,/K,)
which does not depend on the valuation w of LL over v.

2. The product ((12.7) is finite since, for almost all v, the element z, is a unit
of K, and the extension L,,/K, is unramified and hence Artg, (z,) = 1. The
order in the product does not mind since Gal(IL/K) is abelian.

3. The fact that the Artin map is trivial on K* is a subtle point that we
will be able to discuss only in Section [13.2f when we will have given a precise
definition of the Artin symbols Artg, .

4. The subgroup N (Ok) := K*Ux/K* < Ck corresponds via ((12.6) to the
maximal unramified abelian extension of K: this is the Hilbert class field of
K that we discussed in Section [12.1]

5. All the open subgroups of Ck contain the connected component CZ. This
tells us that, in dealing with open subgroups N of Ck, we only have to deal
with the finite places and to keep track of signs at the real places. This
motivates the definition in the next section of the Ray class fields whose
union will be K.
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6. Roughly, Theorem [12.11la tells us that to define an abelian extension
L of a global field K, you just need to choose the places where you allow
ramification and to prescribe the level of ramification.

12.6 Ray class field of extended ideals

In this section, we define ray class fields associated to an extended invertible
ideal (m,X) of an order O of a number field K. We will see in the next
lecture that these ray class fields with K = Q[+/A4] are precisely the fields
that occurs with d-dimensional HSICS.

A remarquable family of open subgroups of finite index of Ix are the
principal subgroups Um x(O) < Uk defined as follows, see [42] or [27]. We
fix an order O < Ok, an ideal m of Ok and a subset ¥ < Yk, of real places
K. Such a pair (m,X) is called an extended ideal or a modulus.

To avoid a few technicalities, we will assume that the ideal m is invertible.
This means that there exists an ideal m’ of O such that the product ideal
m’'m is a principal ideal of @. This condition is automatic when O = Ok.
It is also satisfied for the ideals of the form m = dO for some integer d > 1
that occur when studying HSICs.

One has an embbeding of the profinite completions

ficOc O,
and the profinite completion m is an ideal of O which is a subring of (7)%.
One defines the open subgroup Um »(O) of the group Ux < Ik introduced
in (|12.4))
Ums(0) = Of % {£1}7er> > x ]11%700

where R R
Of = {r € O* | x =1 mod m}

Definition 12.12. We denote by Hm x(O) the finite abelian extension of K
associated by (12.6) to the open finite index subgroup

Nmz(0) := K*Un x(0)/K* < Ck.

This field Hm x(O) is called the Ray class field of the extended ideal (m,X)
of O. The quotient group

Clmg(@) = CK/N‘('II,E(O)
is called the Ray class group of the extended ideal (m, ) of O.
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We still denote by Art all the isomorphisms given by the Artin map
Art : Clmx(0) — Gal(Hmx(0)/K). (12.8)

Remark 12.13. In these notations, we may omit the ideal m when m = O,
we may omit the subset > when ¥ = ¢J, we may replace > by a + when X
is the full set ¥ = Yk,

First example: the Hilbert class field

When O = m = Ok and ¥ = ¢, the group Cl(Ok) = Clo, (Ok) is the class
group of Ok and the corresponding field H(Ok) = Hoy, z(Ok) is the Hilbert
class field of K. It is the maximal unramified abelian extension of K.

Second example: the narrow Hilbert class field

When O = m = Ok and ¥ = Y, the group Cl, (Ok) = Clyx, , (Ok) is called
the narrow class group of O and the field H, (Ox) = Hy,  (Ok) is called
the narrow Hilbert class field of K. It is the maximal abelian extension of K
which is unramified at all the finite places. The narrow class group can be
computed with the exact sequence

1 - OF/OF . — {£1}7% — Cl(Og) — Cl(Ok) — 1 (12.9)
where O . :={r € Og | z, > 0 for all real place v of K}.
Third example: the Hilbert class field of an order
When O = m and ¥ = ¢, the group Cl(O) = Clp »(O) is the group of
classes of invertible ideals of @ modulo the principal ideals, and the field

H(O) = Hp (0) is the Hilbert class field of the order O. The class group
of O can be computed with the exact sequence

1 — 0L/0* — Og JO* — Cl(O) — Cl(Ok) — 1. (12.10)

Fourth example: any ray class field of an order

When O < Ok is an order, m an invertible ideal of O and ¥ a subset of real
places of K. The ray class group Clm »(O) can be computed thanks to the
following exact sequences

1 — O*/Of — (O/m)*x{£1}* - Clm x(0) — CI(O) — 1 (12.11)

where Of = {r € O* | z = 1 mod m}.
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The exactness of ((12.11)) follows from (12.4}), (12.5)) and ((12.10)).
When the sign map O* — {+1}* is onto, the exact sequence (12.11))
simplifies as

1 — O0"/Ops — (O/m)* = Clm(0) — CI(O) — 1 (12.12)
where Ohs i={re O} |z, >0, for all vin X}

Note that different extended ideals m may give rise to the same subgroup
Nm and hence to the same extension Ky

Ezercise 12.14. Assume that K = Q, O = Og = Z and m = dZ with d > 2.
a) Check that the quotient Cx/CZ is isomorphic to the mutiplicative group
Z* of the ring Z = lim Z/dZ.

b) Check that the extended ideal (dZ,{o0}) corresponds to the cyclotomic
field Hyz o (Z) = Q[e*™/4].

¢) Check that the extended ideal (dZ, &) corresponds to the cyclotomic field
Hyz(Z) = Q|cos(2m/d)].

Ezercise 12.15. a) Check that Q = Hy (Z) = Hay +(Z) # Hyz (7).

b) Check that Q = Hz(Z) = ng(Z) = H4z(Z) #* ng(Z)

¢) How do Points a) and b) fit with (12.6))?

d) Prove using that every finite abelian extension of Q is included in
a cyclotomic field Q[(4] (Kronecker-Weber theorem).

Ezercise 12.16. a) Let K = Q[v/2]. Prove that the narrow Hilbert class field
of Kis H, (Ok) = K.

. b) Let K = Q[v3]. Prove that the narrow Hilbert class field of K is
H,(Ok) = Ql3, \/g]

Ezercise 12.17. Assume that O = Ok. Let m be an ideal of Og and X be a
set of real places of K. Check that Um »(Ok) = [ [, U, where

R% if v is archimedean v € ¥,
K if v is archimedean v ¢ 3,
14+m, if v is non-archimedean, m, # Ok,

Ok,  if v is non-archimedean, m, = Ok,,

and where m, is the completion of m in the ring Ok, .
Indication: Note that, for almost all non-archimedean v one has m, = Ok,
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and that by the chinese remainder theorem, one has a canonical isomorphism
of rings
(’)K/m o~ HOKO/mv (1213)

where the product is over all the finite places of K.

Exercise 12.18. Let K be a real quadratic field.
a) Prove that the degree [H,(Ok) : H(Ok)] is equal to 1 or 2.
b) Prove that it is 1 iff there exists x € Of such that Ngg(x) = —1.
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13 The Artin map

In this lecture we give the precise definition of the Artin isomorphism which
parametrizes the Galois group of the abelian extensions of number fields.
This definition relies on the Artin reciprocity law which extends the Gauss
quadratic reciprocity law.

We will then explain how Class Field Theory should describe the abelian
extensions associated to HSIC, and how this Artin isomorphism should de-
scribe the Galois action on the correlations of a HSIC, according to [6] and
[28].

13.1 Local Artin isomorphism

We come back to the notation of Section 2.2l Let K be a local field and
L/K a finite abelian extension. We want to define precisely the Artin symbol

ArtK = Al"tL/K : K*/NL*’GE%I(L/K)

We recall that N, := Ny (L*) is the image in K* of the norm map.

We first assume K archimedean. This case is easy since we have no choice.

When K = R and L. = C, there is a unique way to identify two groups
with 2 elements. For a € R*, the image of a by the Artin map is given by
the sign of a: one has Artg(a) € Gal(C/R) and

Artg(a) =1 < a> 0.

When K =L = R or when K = . = C there is nothing to define.

Assume now that K is non-archimedean. We recall that O denotes its
ring of integer, m a uniformizer, k = Ok /mTOk the residual field and ¢ = k.
One has then K* ~ 7% x O%.

We also recall that the Frobenius F' € Gal(L/K) of an unramified exten-
sion L/K is the automorphism such that, for all z in Op, one has F(z) =
29 mod 7Oy,.

Theorem 13.1. There are isomorphisms Artyx : K*/Np— Gal(L/K) that
are uniquely defined by the following three properties
i) When L/K is unramified,

Artp/g(m) is the Frobenius of L/K.
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i1) When L' o L o K and a € K*, one has
Artr /i (a) = Artpk(a)lr.

iti) When L > K > K' and a € K* then, setting ' = Nk k:(a), one has
Artp i (a) = Artp g ().

Condition (ii) tells us that the maps Arty x do not depend on L. This is
why we denote it by Artg. This unique isomorphism Artg = Arty i is called
the Artin symbol. It identifies the profinite completion of the topological
group K* with Gal(K®/K).

1. When the extension L/K is unramified and a € O}, then Artg(a)|, = 1.
Indeed a belongs to Ny. This explains why Condition i) does not depend on
the choice of the uniformizer .
3. For a, b in K*, one defines the quadratic Hilbert symbol
1 if 22 — ay?® — bz? = 0 has a non-zero solution in K
((l, b)K = .
—1 otherwise

Hence one has

_ Artg(a)(vb) _ Artg(b)(Va)
(a,b)5c = MmO _ Arc)(ve)

and this Hilbert symbol is a non-degenerate bilinear duality on K*/K*?.

Ezercise 13.2. a) Compute K*/K** for K = Q, for p odd prime.

b) Compute the Hilbert symbol (a,b)x for K = Q, with p odd prime.
¢) Compute K*/K*? for K = Q,.

d) Compute the Hilbert symbol (a,b)x for K = Q.

4. When K = Q,, one has Gal(Q?/Q,) ~ Z x Z.

In case m A p =1 and a € Z; one has

Artg, (p)Cm = ¢b, and Artg, (a)Cm = Gn.

In case m = p, one has
Artg,(p)(, = ¢, and, for p odd, Artg,(a)(, = Cgil.
Ezercise 13.3. Let K = Q,[v/5] and L= K[vVK*].
a) Check that K*/K*? = (—1,2,1++/5,2++/5) ~ [F3.
b) Check that N, = K*? = (2,1 + 80k, 3+/5).
c¢) Compute the Hilbert symbol on K*/K*?.
d) Compute the Artin isomorphism Arty k.
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13.2 Global Artin isomorphism

We come back to the notation of Section [12.5] Let K be a global field and
L a finite abelian extension of K. We can now give the precise definition of
the Artin map. We recall that Ck := Ix/K* denotes the ideles class group,
and that Vi, := Np/k(CL) is the image in Ck of the norm map.

We just repeat the definition given in Theorem [12.11}¢ with the precise
definition of the local Artin symbols in Section [13.1]

Theorem 13.4. The local Artin symbols
Artg, : KY — Gal(L,/K,) — Gal(L/K)
induce an isomorphism

Artg : Cx /N —  Gal(L/K)
rmod N, — Artg(z) =[], Artk, (z,),

where x € Cx is written as v = (x,) mod K*.

The fact, which is implicit in this theorem, that one has the product
formula
[1,Artg, (z,) = 1, forall z in K*. (13.1)

is called the Artin reciprocity law. It is a far reaching extension of the
quadratic reciprocity.

13.3 Quadratic and cubic reciprocity laws

For instance let us explain why Equality ((13.1]) implies the quadratic and the
cubic reciprocity.

Application to the quadratic reciprocity
Let K = Q. For p, ¢ in N distinct odd primes one recall the Legendre
quadratic residue symbol

(B) e {+1} given by <§> = qul mod p.
q

One has then the quadratic reciprocity:
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Corollary 13.5. <]—?> (Q) = (_1)(10*1)(6171)/4
q p

Proof using (13.1)). The quadratic Hilbert symbol, for a place ¢ of Q, is
(P Q)a, = Art, (p)(Va)/va € {+1}

The Artin reciprocity tells us that these Hilbert symbols satisfy

(P, De, (9,9, (P90, (P Do, = 1.
But one can compute directly each one of these symbols.

(p—1)(g—1)

e~ (L) G, (). o= (1" (e, =1

This proves the quadratic duality. O

Application to the cubic reciprocity
Let K = Q[w] with w? + w + 1 = 0. Recall that its ring of integers Z[w] is
principal and that its group of units Z[w]* has order 6. Therefore every ideal
coprime to 3 has a unique generator which is equal to 1 mod 3.
For 7, 0 in Z[w] distinct irreducible elements that do not divide 3 and
such that 7 = 6 = 1 mod 3, one defines the cubic residue symbol
T N(9)—1

(—) e {1,w,w?} given by (z) =7 3 mod#,
3 0/3

0
where N (0)=#(Z|w]/0Z|w]). Then, one has the cubic reciprocity law:

Corollary 13.6. (g) = <Q>
3 ),

In particular, 7 is a cube modulo @ if and only if # is a cube modulo 7.

Proof using (13.1)). We use the cubic Hilbert symbol for a place n of K.

(m,0)k, = Arty, (7)(V0)/V0 € {1,w,w%}

The Artin reciprocity tells us that these Hilbert symbols satisfy
(71—7 Q)Kw (7T7 Q)Ke (ﬂ-’ 9>Kw71 (7T7 H)Koo =1

But one can compute directly each one of these symbols.

0 7
(7, 0)k, = (;)3, (7,0)x, = (5>3, (7,0, , =1, (m,0)k, = 1.
This proves the cubic duality. ]
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13.4 HSIC and class field theory

In this section we explain, following [6] and [28], how class field theory for
the real quadratic field K = Q[v/A,] with Ay = (d+1)(d—3) can be used
to describe, conjecturally, the various fields of definition associated to the
HSIC.

We come back to the notation of Lecture [10l Let d > 4. We set d' = d
when d is odd and d’ = 2d when d is even. Let (; = e*™% and 1y = —e™/<.
Recall that the projective Heisenberg group PH, is the subgroup of the
projective unitary group PU(d) isomorphic to (Z/dZ)?* generated by the two
matrices B = (8;541) and F = (¢}0;1). Recall that the group PEN, is
the normalizer of PH, in the projective extended unitary group PEU(d),
and that the quotient group PEN,/PH, is isomorphic to SL* (2, Z/dZ). For
p = (p1,p2) in (Z/d'Z)?, the displacement matrix D, = n'"? EP*FP2 € U(d)
is well defined.

Let Py = |vg){vp| be a fiducial projector, this is a rank one projector such
that the correlations wu, := tr(PyD,) satisfy |u,|* = -5 for all in (Z/d'Z)?
with p % 0 mod d.

We have defined the extensions

QcKcEycE; cE.

of the field K = Q[+/A4]. The extension E is generated by 7y and the
entries of Fy. The extension E; is E; = 0¢(E n R) for some oy € Gal(C/K)
with 09(v/Ag) = —v/A4. The extension Eq is the field of definition of the
geometric class [Fy] which is the PENg-orbit of Py. Conjecturally, the field
E is a Galois extension of Q, and the group Gal(E/K) is abelian, and its
action preserves the set of (hermitian) fiducial projectors F, . Conjecturally
this set is finite.

Write A; = f2Dy with D, fundamental discriminant so that f is the
conductor of the ring Z[ey4]. Let f’ be the divisor of f associated to the
multiplet [[Fy]] in Conjecture [10.9]

Conjecture 13.7. a) The field Ey is the Hilbert class field of the ring Oy
b) The field E, is the ray class field of the extended ideal (d'Oyr,001) of Op.
c) The field E is the ray class field of its extended ideal (d' Oy, 001, 009).

When f” =1, Point a) means that E; is the maximal unramified abelian
extension of K.
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When [’ = 1, Point b) means that the finite index subgroup Ng, < Ck
of the ideles class group associated to [E; by is the image in Ck of the
subgroup of Ix generated by 1+ d'Ok, at finite places v of K dividing d’, by
Ok, at all the other finite places, by R* at the infinite place o0, and by R*
at the other infinite place. And similarly for Point ¢).

One can check this conjecture for d = 5. Indeed in this case, one has
f=f =1 K = Q[v3] and E;, = Q[y] where the minimal polynomial
of y over Q is the polynomial . We have seen that [E; is an abelian
extension of K with Galois group Z/8Z. The discriminant of this polynomial
is equal to 2857, hence the field E; = Q[y] is ramified over K only
at the archimedean place v = o0; and at the finite place v = 5. And we
have already computed in Exercise the image of the norm map for the
completions at the place v = 5.

Corollary 13.8. Assume Conjecture [13.7

a) The Galois group Gal(Eo/K) is isomorphic to the class group Cl(Oy).

b) The Galois group Gal(E,/Ey) is isomorphic to the quotient of the multi-
plicative group (O /d'Op)* by the subgroup image of OF,.

13.5 HSIC and Artin isomorphism

In this section we explain how the Artin isomorphism for the abelian ex-
tension of the real quadratic field K = Q[v/Ag4] can be used to describe,
conjecturally, the action of the absolute Galois group of K on the phases of
a HSIC.

We come back to the notation of Section And we assume Conjecture
13.7] In particular, we have two finite index subgroups corresponding to Eq
and E; in the ideles class group Ck, the groups

No 1= N(Op) and Ny := Nyo,,0,(Oy),
so that the Artin map induces an isomorphism
Art : No/N1 — Gal(E, /Ey). (13.2)
Note that there is a natural isomorphisms

(Op/d'Op)* ~ No/Ni.
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Let = = (* ‘D e GL(2,Z/d'Z). This matrix satisfies 2> + z + 1 = 0.

Let Ay := (Z/d'Z)[z] =« M(2,Z/d'Z) be the Zauner ring and let A}, be the
group of units, or invertible elements in the ring Ay .

As in Conjecture[10.27, we assume f’ = f. This assumption can probably
be weakened. It insures the equalities O; = Z[e4] = Op and hence rings
isomorphisms

Ad/ = Of/d/Of =~ Of//d/Of/,
Therefore this gives an isomorphism
@D . A*/ = (Of//d/Of/)* =~ M/Nl (133)

We make the extra assumption [10.24] that Py = |vg >< vg| is strongly
centred.

Conjecture 13.9. For ac A%, pe(Z/d'Z)?*, one has ua, = Art(v(a))(u,).

IN CONCLUSION THE ACTION OF
THE (GALOIS GROUP ON THE PHASES uy
SHOULD BE GIVEN BY THE ARTIN ISOMORPHISM.
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