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Abstract. These are lecture notes based on a mini-course given in the 2015 summer

school Théorie spectrale géométrique et computationnelle in CRM, Montréal.

1. Introduction

In these notes, we discuss some geometric inverse problems in 2-dimension that have

been studied since the eighties, and we review some results on these questions.

The problem we consider consists in recovering a Riemannian metric on a surface

with boundary from measurements at the boundary: the lengths of geodesics relating

boundary points and their tangent directions at the boundary. This is a non-linear

problem called the lens rigidity problem, which has a gauge invariance (pull-backs by

diffeomorphisms fixing the boundary). The associated linear problem consists in the

analysis of the kernel of the geodesic X-ray transform, a curved version of the Radon

transform.

The tools to study the X-ray transform are of analytic nature, more precisely a

combination of analysis of transport equations with some energy identity. Microlocal

methods have also been very powerful in that study, but we won’t review this aspect

in these notes. The techniques presented in these notes are quite elementary and give

a short introduction to that area of research.

Acknowledgement. We thank the anonymous referee for a careful reading and

useful comments.

2. Geometric background

Let (M, g) be a smooth oriented compact Riemannian surface with boundary ∂M

and let M◦ be its interior. In local coordinates x = (x1, x2) the metric will be written

g =
2∑

i,j=1

gij(x)dxidxj,

where (gij(x))ij are symmetric positive definite matrices smoothly depending on x.

We will write ∇ the Levi-Civita connection of g on M . The tangent bundle of M is
1
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denoted TM and the projection on the base is written

π0 : TM →M.

The second fundamental form II is the symmetric tensor

II : T∂M × T∂M → R, II(u,w) := −g(∇uν, w),

where ν is the interior pointing unit normal vector to ∂M . We say that ∂M is strictly

convex for g if II is positive definite and we will assume along this course that this

property holds.

Exercise: Show that a neighborhood of ∂M in M is isometric to [0, ε]r × ∂M with

metric dr2 + hr where hr is a smooth 1-parameter family of metrics on ∂M . In these

geodesic normal coordinates, we have ν = ∂r|r=0 and II = −1
2
∂rhr|r=0.

2.1. Geodesic flow. A geodesic on M is a C2 curve on M such that ∇ẋẋ = 0 where

ẋ(t) ∈ Tx(t)M is the tangent vector to the curve, i.e ẋ(t) := ∂tx(t). In local coordinates

x = (x1, x2), we can write ∇∂xi
∂xj =

∑2
k=1 Γkij∂xk for some smooth functions Γkij called

Christoffel symbols. The geodesic equation in these coordinates is

ẍj(t) = −
2∑

k,`=1

Γjk`(x(t))ẋk(t)ẋ`(t), j = 1, 2.

By standard arguments of ordinary differential equations – Cauchy-Lipschitz–, this

second order equation has a solution x(t) in some interval t ∈ [0, ε) if we fix an initial

condition (x(0), ẋ(0)) = (x0, v0) ∈ TM◦, and the solution can be extended until x(t)

reaches ∂M .

The geodesics are minimizers of the energy and of the length functionals : if p, q are

two points in M and if γ : [0, 1]→ M is a C2 curve such that γ(0) = p and γ(1) = q,

then the energy Ep,q(γ) and the length Lp,q(γ) are defined by

Ep,q(γ) =

∫ 1

0

|γ̇(t)|2g(γ(t))dt, Lp,q(γ) =

∫ 1

0

|γ̇(t)|g(γ(t))dt.

Then the minimum of Ep,q(γ) and Lp,q(γ) among curves as above are obtained by a

geodesic. In fact, one can show using variational methods and a compactness argument

that in each homotopy class of curves with endpoints p, q, there is a mimimizer for

Ep,q and Lp,q which is a geodesic. The miminizer is in general not unique.

Definition 2.1. The geodesic flow at time t ∈ R is the map ϕt defined by

ϕt : U(t)→ TM, ϕt(x, v) := (x(t), ẋ(t)),

if x(t) is the geodesic with initial condition (x(0), ẋ(0)) = (x, v), where U(t) ⊂ TM is

the set of points (x, v) ∈ TM such that the geodesic x(s) with initial condition (x, v)

exists in M for all s ∈ [0, t].
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The exponential map at a point x ∈M is the map

expx : Ux ⊂ TxM →M, expx(v) = π0(ϕ1(x, v)),

where Ux is the set of vector v ∈ TxM so that ϕt(x, v) ∈M for all t ∈ [0, 1). The map

expx is a local diffeomorphism near v = 0 at each x ∈M◦.

Notice that for x(t) a geodesic on M , ∂t(gx(t)(ẋ(t), ẋ(t))) = 2gx(t)(∇ẋ(t)ẋ(t), ẋ(t)) = 0

and therefore ϕt acts on the unit tangent bundle

SM := {(x, v) ∈ TM ; gx(v, v) = 1}.

The vector field generating the flow ϕt is a smooth vector field on SM defined by

Xf(x, v) = ∂tf(ϕt(x, v))|t=0.

The manifold SM is compact and has boundary ∂SM = π−1
0 (∂M). This boundary

splits into the disjoint parts

∂−SM := {(x, v) ∈ SM ;x ∈ ∂M, gx(v, ν) > 0},
∂+SM := {(x, v) ∈ SM ;x ∈ ∂M, gx(v, ν) < 0},
∂0SM := {(x, v) ∈ SM ;x ∈ ∂M, gx(v, ν) = 0}.

We call ∂−SM the incoming boundary, ∂+SM the outgoing boundary and ∂0SM the

glancing boundary.

2.2. Hamiltonian approach. The cotangent bundle T ∗M is a symplectic manifold,

with symplectic form ω = dα where α ∈ C∞(T ∗M,T ∗(T ∗M)) is the Liouville 1-form

defined by α(x,ξ)(W ) = ξ(dπ0(x, ξ).W ) if π0 : SM → M is the projection on the base.

In local coordinates x = (x1, x2), ξ = ξ1dx1 + ξ2dx2, we have

α =
2∑
i=1

ξidxi, ω =
2∑
i=1

dξi ∧ dxi.

The function p : T ∗M → R defined by p(x, ξ) = 1
2
g−1
x (ξ, ξ) where g−1 is the metric

induced on T ∗M by g has a Hamiltonian vector field Xp defined by ω(Xp, ·) = dp and

Xp is tangent to S∗M := p−1(1/2).

Exercise: Show that the duality isomorphism SM → S∗M given by the metric g

conjugates ϕt = etX to etXp .

2.3. Geometry of SM . There are particular sets of coordinates x = (x1, x2) near

each points x0 ∈M , called isothermal coordinates, such that in these coordinates, the

metric has the form

g = e2ρ(dx2
1 + dx2

2)

in these coordinates, for some smooth function ρ(x) near x0. The metric is conformal

to the Euclidean metric in these coordinates, which will be a useful fact fow hat follows.
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These coordinates can be obtained by solving an elliptic equation, and more precisely a

Beltrami equation (see [Ta, Chapter 5.10]). These coordinates induce a diffeomorphism

Ω× R/2πZ→ π−1
0 (Ω) ⊂ SM, (x, θ) 7→ (x, v = e−ρ(x)(cos(θ)∂x1 + sin(θ)∂x2)),

where Ω is the neighborhood of x0 where the isothermal coordinates are valid. In these

coordinates, the vector field X becomes

X = e−ρ
(

cos(θ)∂x1 + sin(θ)∂x2 + (− sin(θ)∂x1ρ+ cos(θ)∂x2ρ)∂θ

)
. (2.1)

We start by analyzing the flow of X near the boundary, under the assumption that

∂M is strictly convex.

Lemma 2.2. Geodesics in M◦ intersect ∂M transversally, i.e. a geodesic coming from

M◦ and touching ∂M at a point x can not be tangent to ∂M

Proof. There are isothermal coordinates x = (x1, x2) near each x0 ∈ ∂M such that a

neighborhood of x0 in M correspond to a neighborhood of 0 in the half-plane {x2 ≥ 0}
and the metric is of the form e2ρ(dx2

1 + dx2
2), and we can assume that x0 is mapped

to x = 0 by this chart. One has ∂x2ρ|x2=0 < 0 if ∂M is strictly convex. If x(t) is a

geodesic for t ≤ t0 with x2(t) > 0 for t < t0 and x2(t0) = 0, then if ẋ2(t0) = 0, we get

by (2.1) that θ(t0) = 0 (or π) and θ̇(t0) = e−ρ(0)(cos(θ0)∂x2ρ(0)). Let us consider the

case θ(t0) = 0 (the case θ(t0) = π is similar): then θ̇(t0) < 0 and θ decreases as t→ t0,

and since ẋ2(t) = e−ρ sin θ(t), we get ẍ2(t0) = eρ(0)θ̇(t0) < 0. A Taylor expansion gives

x2(t) = 1
2
(t− t0)2ẍ2(t0) +O((t− t0)3),

which is negative near t0, leading to a contradiction. �

Define Θt the rotation of angle +t in the fibers of SM ; in the coordinates above Θt

is just (x, θ) 7→ (x, θ + t). This smooth 1-parameter family of diffeomorphisms of SM

induces a smooth vector field V defined by

V f(x, v) = ∂tf(Θt(x, v))|t=0, ∀f ∈ C∞(SM).

In the coordinates (x, θ), V = ∂θ. Next we define another vector field

X⊥ := [X, V ],

which in the coordinates (x, θ), is given by

X⊥ = −e−ρ
(
− sin(θ)∂x1 + cos(θ)∂x2 − (cos(θ)∂x1ρ+ sin(θ)∂x2ρ)∂θ

)
.

It it an elementary computation to check that the three vector fields (X,X⊥, V ) form

a global basis of T (SM) (we recover that SM is trivialisable) and satisfy the commu-

tation relations

[X⊥, V ] = −X, [X,X⊥] = −κ(x)V, (2.2)
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where κ(x) is the Gaussian curvature of g at x. In isothermal coordinates, a compu-

tation yields

κ(x) = e−2ρ(x)∆xρ(x)

where ∆x = −(∂2
x1

+ ∂2
x2

).

We define the Sasaki metric of g as the metric G on SM so that (X,X⊥, V ) is an

orthonormal basis, and its volume form dvG is also equal to the Liouville measure dµL
obtained from the symplectic form ω = dα by setting dµL = |α∧ dα| when we use the

identification S∗M → SM . In isothermal coordinates, one has

dµL(x, θ) = e2ρ(x)dxdθ.

If W = aX + bX⊥ + cV , we have

G(W,W ) = a2 + b2 + c2 = g(dπ0(W ), dπ0(W )) + c2.

The Sasaki metric is usually defined using the splitting of the vertical bundle and

horizontal bundle (see [Pa]), but it coincides in our case with the definition above.

Here (X,X⊥) span the horizontal bundle while V span the vertical bundle of the

fibration π0 : SM →M .

Exercise: Check, using Cartan formula, that the following Lie derivatives vanish:

∀Z ∈ {X,X⊥, V }, LZdµL = 0.

As a consequence, we have X∗ = −X, V ∗ = −V and X∗⊥ = −X⊥ on C∞0 (SM) with

respect to the L2(SM, dµL) product, where C∞0 (SM) is the set of smooth functions

on SM vanishing at the boundary ∂(SM) of SM .

On SM ⊂ TM , we can consider functions which are restrictions to SM of homoge-

neous polynomials of order m ∈ N0 in the fibers of TM , i.e. symmetric tensors defined

as sections of ⊗mS T ∗M . There is a natural map for each m ∈ N0

π∗m : C∞(M,⊗mS T ∗M)→ C∞(SM), π∗mf(x, v) := f(x)(⊗mv). (2.3)

2.4. Conjugate points. Geodesic flows can have 1-parameter families of geodesics

with the same endpoints x−, x+: this is related to the existence of conjugate points.

We say that x± ∈ M are conjugate points if there exist v± ∈ Sx±M and t0 so that

ϕt0(x−, v−) = (x+, v+), and if

dϕt0(x−, v−).V ∈ RV

where V is the vertical vector field. Equivalently, we say that x± are conjugate if there

is an orthogonal Jacobi field J = J(t) along the geodesic (x(t))t∈[0,t0] vanishing at x−
and x+. Recall that an orthogonal Jacobi field is a vector field along x(t), orthogonal

to ẋ(t) = v(t). If we write v⊥(t) = Rπ/2(v(t)) the unit orthogonal vector obtained by
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a rotation of angle π/2 of v(t), such a field would be of the form J(t) = a(t)v⊥(t), and

for it to be a Jacobi field the function a(t) has to satisfy:

a(0) = a(t0) = 0, ä(t) + κ(x(t))a(t) = 0.

Exercise: Show that when the Gauss curvature κ is non-positive, there are no

conjugate points.

By Gauss-Bonnet theorem, for a geodesic triangle with interior angles α1, α2, α3, one

has ∫
M

κ dvolg + π =
3∑
i=1

αi.

If two geodesics have the same endpoints x−, x+, we obtain a triangle with angles

π, α2, α3, and this forces by Gauss-Bonnet to have some positive curvature somewhere.

In fact, it can be proved that absence of conjugate points implies that between two

points x−, x+, there is a unique geodesic – this is done using the index form, see [Mi,

Sections 14 & 15].

3. Scattering map, length function and X-ray transform

3.1. Lens rigidity problem. We start by making the non-trapping assumption on

the geodesic flow. That is, for each (x, v) ∈ SM◦ there is a unique `+(x, v) ≥ 0 and

`−(x, v) ≤ 0 so that ϕ`±(x,v)(x, v) ∈ ∂SM , which means that each geodesic of SM has

finite length.

Exercise: Prove, using the strict convexity of ∂M and the implicit function theorem,

that `± are smooth in SM◦ and that they extend smoothly to SM \ ∂0SM . Show also

that `± extend continuously to SM in a way that `±|∂±SM∪∂0SM = 0. We will still call

`± these continous extensions.

Definition 3.1. The function `+ is called the length function and `g := `+|∂SM is

called the boundary length function. The map

Sg : ∂−SM → ∂+SM, Sg(x, v) = ϕ`+(x,v)(x, v)

is called the scattering map of g.

We introduced these objects to formulate some questions in the realm of inverse

problems. They are quantities that can be measured from the boundary. The boundary

length function contains the set of Riemannian distances between boundary points, but

it does contain a priori more information in the case where there are several geodesics

between boundary points. The scattering map tells where geodesics leave SM .
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Definition 3.2. The X-ray transform on functions on SM is defined as the operator

I : C∞(SM)→ C∞(∂−SM), If(x, v) =

∫ `+(x,v)

0

f(ϕt(x, v))dt.

The X-ray on symmetric tensors of order m is the operator

Im := Iπ∗m : C∞(M,⊗mS T ∗M)→ C∞(∂−SM).

The two main inverse problems related to these objects are:

Problem 1: Determine the kernel of Im and invert Im on Ran(Im|(ker Im)⊥).

Problem 2: Do (Sg, `g) determine the metric g up to Gauge invariance ?

The natural Gauge invariance in Problem 2 is the diffeomorphism action: let Diff∂M(M)

be the group of diffeomorphism of M which are equal to the identity on ∂M , then one

has for each ψ ∈ Diff(M)

Sψ∗g = Sg, `ψ∗g = `g.

Problem 2 is called the lens rigidity problem and (Sg, `g) is the lens data.

There is a link between these inverse problems. Indeed, one has

Lemma 3.3. Let gs = e2ρsg0 be some smooth 1-parameter family of non-trapping

metrics with strictly convex boundary and no conjugate points, where ρs is a smooth

family of smooth functions on M such that ρ0 = 0. If (`gs , Sgs) = (`g0 , Sg0) for each

s ∈ (−ε, ε), then I0(ρ′0) = 0 if I0 is the X-ray transform on functions for g0 and

ρ′0 := ∂sρs|s=0.

Proof. Fix (x, v) ∈ ∂−SM and (x′, v′) = Sg0(x, v) = Sgs(x, v). We differentiate

`gs(x, v) =

∫ `g0 (x,v)

0

eρs(γs(t,x,v))|γ̇s(t, x, v)|g0(γs(t,x,v))dt

with respect to s, where γs(t, x, v) is the unique geodesic for gs relating x and x′. Using

the fact that γ0(t, x, v) is the unique geodesic for g0 relating x and x′, it minimizes the

length functional among curves with endpoints x, x′ and thus it is direct to see that

0 =

∫ `g0 (x,v)

0

ρ′0(γ0(t, x, v))dt+ ∂s(L
g0
x−,x+(γs))|s=0 = I0(ρ′0)(x, v)

where Lg0p,q(γ) denotes the length of a curve γ joining p, q for the metric g0. �

This corresponds to analyzing deformation lens rigidity within a conformal class.

More generally we have (with essentially the same proof):

Lemma 3.4. Let gs be some smooth 1-parameter family of non-trapping metrics with

strictly convex boundary and no conjugate points. If (`gs , Sgs) = (`g0 , Sg0) for each

s ∈ (−ε, ε), then I2(g′0) = 0 if I2 is the X-ray transform on symmetric 2-tensors for g0

and g′0 := ∂sgs|s=0 ∈ C∞(M ;⊗2
ST
∗M).
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These two lemmas are folklore and the ideas appear already in Guillemin-Kazhdan

[GuKa] and the Siberian school (Mukhometov, Anikonov, Sharafutdinov, etc).

Remark that if ψs : M →M is a smooth family of diffeomorphisms which are equal

to Id on ∂M , we have an associated vector field Z(x) = ∂sψs(x)|s=0 with Z|∂M = 0

and, according to Lemma 3.4, LZg0 = ∂s(ψ
∗
sg0)|s=0 satisfies I2(LZg0) = 0 if I2 is the

X-ray transform for g0 on symmetric 2-tensors. The natural question about the kernel

of X-ray transform is then: under which conditions on g0 do we have

ker I0 = 0 ? and ker I2 = {LZg0;Z ∈ C∞(M,TM), Z|∂M = 0} ?

3.2. Boundary rigidity problem. When the metric g has strictly convex boundary,

is non-trapping and satisfies that between each pair of points x, x′ ∈M there is a unique

geodesic, we say that g is simple. In this case, knowing the lens data is equivalent to

knowing the restriction dg|∂M×∂M of the Riemannian distance dg : M ×M → R+. The

lens rigidity problem is called boundary rigidity problem in that setting.

4. Resolvents and boundary value problems for transport equations

For a general metric g on SM with strictly convex boundary, we define the incoming

tail Γ− and outgoing tails as the sets

Γ− := {(x, v) ∈ SM ; `+(x, v) = +∞}, Γ+ := {(x, v) ∈ SM ; `−(x, v) = −∞}.

These sets correspond to the set of points which are on geodesics that are trapped

inside SM◦ in forward (for Γ−) and backward (for Γ+) time. They are closed sets in

SM◦. The trapped set is defined by

K := Γ+ ∩ Γ−,

it corresponds to trajectories contained entirely in the interior SM◦. It is a closed set

in SM , invariant by the geodesic flow, and by the strict convexity of the boundary

∂M , we actually have K ⊂ SM◦, since each point (x, v) ∈ ∂∓SM is not in Γ± and

each point (x, v) ∈ ∂0SM has `+(x, v) = `−(x, v) = 0.

4.1. Resolvents in physical half-planes. Assume that Γ± = ∅, i.e the metric is non-

trapping. There are two natural boundary value problems for the transport equations

associated to X. For f ∈ C∞(SM), find u± in some fixed functional space solving (in

the distribution sense) {
−Xu± = f

u±|∂±SM = 0
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One is an incoming Dirichlet type boundary condition and the other one is an ougoing

Dirichlet type boundary condition. Moreover, it is easy to check that

u+(x, v) =

∫ `+(x,v)

0

f(ϕt(x, v))dt, u−(x, v) = −
∫ 0

`−(x,v)

f(ϕt(x, v))dt

are solutions, and in fact they are the only continuous solutions: indeed the difference of

two solutions would be constant along flow lines and, under the non-trapping condition

each point in SM is on a flow line with two endpoints in ∂+SM and ∂−SM . We see

in particular that

f ∈ C∞(SM) =⇒ u± ∈ C∞(SM \ ∂0SM).

Without assuming the non-trapping condition, we can proceed using the resolvent

of X.

Lemma 4.1. For Re(λ) > 0, there exist two operators R±(λ) : C∞(SM)→ C0(SM)

satisfying for all f ∈ C∞(SM) (in the distribution sense){
(−X ± λ)R±(λ)f = f,

R±(λ)f |∂±SM = 0.

They are given by the expressions

R+(λ)f(x, v) =

∫ `+(x,v)

0

e−λtf(ϕt(x, v))dt,

R−(λ)f(x, v) = −
∫ 0

`−(x,v)

eλtf(ϕt(x, v))dt.

(4.1)

Proof. Lebesgue theorem shows directly that R±(λ)f are continuous if f is continuous.

The fact that they solve the desired boundary value problem for Re(λ) large enough

follows from the fact that X(f(ϕt(x, v))) = ∂t(f(ϕt(x, v)) and the estimate

|d(f ◦ ϕt)|G ≤ |df |G|dϕt|G, |dϕt|G ≤ CeCt

for some C > 0 depending on X. Then, we get that for each f ′ ∈ C∞c (SM◦) and

Re(λ) > 0

〈(−X ± λ)R±(λ)f, f ′〉 = 〈R±(λ)f, (X ± λ)f ′〉

where the pairing uses the measure µL, and the left hand side is equal to 〈f, f ′〉 for

Re(λ) > C, thus by using that the right hand side is analytic in Re(λ) > 0, the right

hand side is equal to 〈f, f ′〉 in that half-plane. �

Exercise: Show that the operators R±(λ) extend analytically in λ ∈ C as operators

R±(λ) : C∞c (SM◦ \ Γ±)→ C∞(SM).
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If we assume that µL(Γ±) = 0, we can then expect to extend R±(0) to some Lp

space by some density argument. In fact, observe that

|R+(0)f(x, v)| ≤ ||f ||L∞`+(x, v),

thus `+ ∈ Lp(SM) implies that R+(0) : C0(SM)→ Lp(SM) is bounded.

4.2. Santalo formula. The Santalo formula describes the desintegration of the mea-

sure µL along flow lines.

Lemma 4.2. Assume that µL(Γ±) = 0 and let f ∈ L1(SM), then the following formula

holds ∫
SM

fdµL =

∫
∂−SM

∫ `+(x,v)

0

f(ϕt(x, v))dt dµν(x, v),

where dµν(x, v) = 〈v, ν〉gι∗∂SMdvG is a measure on ∂SM , dvG being the Riemannian

measure of the Sasaki metric viewed as a 3-form.

Proof. We first take f ∈ C∞c (SM◦ \ Γ+) and write f = −XR+(0)f with R+(0)f = 0

on ∂+SM . Thus using Green’s formula∫
SM

fdµL = −
∫
SM

X(R+(0)f)dµL =

∫
∂SM

(R+(0)f)|∂SM〈X,N〉G ι∗∂SMdvG

if N is the unit inward pointing normal to ∂SM for G. The unit normal N satisfies

dπ0(N) = ν and G(N, V ) = 0 if ν is the exterior pointing unit normal to ∂M for g, since

the vertical bundle RV = ker dπ0 is tangent to ∂SM . Then we get 〈N,X〉G = 〈ν, v〉g
and we use a density argument for the general case to end the proof. Note that an

alternative definition of dµν is dµν = ι∗∂SM iXdµL. �

4.3. Boundedness in (weighted) L2 spaces and limiting absorbtion principle.

The operators R±(λ) are also bounded on L2(SM) for Re(λ) > 0. Indeed, using the

Santalo formula and defining f(ϕt(x, v)) := 0 when t ≥ `+(x, v), we have∫
SM

|f(ϕt(x, v))|2dµL(x, v) =

∫
∂−SM

∫ `+(x,v)

0

|f(ϕt+s(x, v))|2ds dµν(x, v)

=

∫
∂−SM

∫ `+(x,v)

t

|f(ϕu(x, v))|2du dµν(x, v)

≤||f ||L2(SM).

We can write using Minkowski inequality

||R+(λ)f ||L2(SM) ≤
(∫

SM

(∫ +∞

0

e−Re(λ)t|f(ϕt(x, v))|dt
)2

dµL(x, v)
)1

2

≤
∫ +∞

0

e−Re(λ)t||f ◦ ϕt||L2(SM)dt ≤
||f ||L2(SM)

Re(λ)
.
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The question of the extension of R±(λ) up to the imaginary line in a certain functional

space is very similar to the so-called limiting absorbtion principle in quantum scattering

theory. To make the parallel, recall that the Laplacian on L2(R3) is self-adjoint as an

unbounded operator, its spectrum is [0,∞) and its resolvent is the operator defined

for Im(λ) > 0 by

R∆(λ) = (∆− λ2)−1 : L2(R3)→ L2(R3)

and there is an explicit formula for its integral kernel

R∆(λ;x, x′) = C
eiλ|x−x

′|

|x− x′|

for some explicit constant C ∈ R. Now when λ ∈ R, this is not anymore a bounded

operator on L2 but it makes sense as an operator

R∆(λ) : 〈x〉−1/2−εL2(R3)→ 〈x〉1/2+εL2(R3) (4.2)

and both R∆(λ) and R∆(−λ) are inverses for (∆− λ2) (here 〈x〉 := (1 + x2)1/2). They

are called the incoming and outgoing resolvents on the spectrum, and they need to be

applied on functions which have some decay near infinity. Such property also holds in

higher dimension. A result of Kenig-Ruiz-Sogge [KRS] shows that for λ ∈ R∗

R∆(λ) : Lp(Rn)→ Lq(Rn), p =
2n

n+ 2
,

1

p
+

1

q
= 1.

We will discuss similar properties for the resolvent of the flow vector field −X. The

first boundedness property we describe is comparable to (4.2).

Lemma 4.3. For each λ ∈ iR and ε > 0, the resolvent R±(λ) is bounded as a map

R±(λ) : 〈`+〉−1/2−εL2(SM)→ 〈`+〉1/2+εL2(SM).
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Proof. We do the case R+(0), the other frequencies λ are similar. First we notice that

`+(ϕs(y)) = `+(y)− s. Then for f ∈ C∞(SM) and f̃ := 〈`+〉−1/2−εf we have∫
SM

|R+(0)f̃(y)|2〈`+(y)〉−1−2εdµL(y)

≤
∫
∂−SM

∫ `+(y)

0

〈`+(y)− s〉−1−2ε
(∫ `+(y)−s

0

f̃(ϕt+s(y))dt
)2

dsdµν(y)

≤
∫
∂−SM

∫ `+(y)

0

〈`+(y)− s〉−1−2ε

∫ `+(y)−s

0

〈`+(y)− s− t〉−1−2εdt

∫ `+(y)−s

0

|f(ϕt+s(y))|2dtdµν(y)ds

≤ C

∫
∂−SM

∫ `+(y)

0

〈`+(y)− s〉−1−2ε

∫ `+(y)−s

0

|f(ϕt+s(y))|2dtdµν(y)ds

≤ C

∫
∂−SM

∫ `+(y)

0

〈`+(y)− s〉−1−2ε

∫ `+(y)

0

|f(ϕu(y))|2dudµν(y)ds

≤ C2

∫
∂−SM

∫ `+(y)

0

|f(ϕu(y))|2dudµν(y) ≤ C2||f ||2L2(SM)

where we have used that there is C > 0 depending only on ε so that∫ a−s

0

〈a− s− t〉−1−2εdt ≤ C.

To complete the proof, we use the density of smooth functions in L2. �

A priori, it is not clear that the space 〈`+〉1/2+εL2(SM) can be embedded into the

space of distributions on SM , since the function `+ could explode quite drastically at

Γ−. To quantify this, we define the non-escaping mass function:

V (T ) := VolµL({y ∈ SM◦;ϕt(y) ∈ SM◦,∀t ∈ [0, T ]}) = VolµL(`−1
+ ([T,+∞]))

which is like the repartition function of `+. The Cavalieri principle gives

||`+||pLp ≤ C
(

1 +

∫ ∞
1

tp−1V (t)dt
)
.

Recall that `+(x,−v) = −`−(x, v) thus the Lp norms of `+ and `− are the same since

the involution (x, v)→ (x,−v) preserves µL.

Lemma 4.4. For p ∈ [1,∞) we have the boundedness properties

R±(0) : C0(SM)→ Lp(SM) if

∫ ∞
1

V (t)tp−1dt <∞,

and for p > 1

R±(0) : Lp(SM)→ L1(SM) if

∫ ∞
1

V (t)t1/(p−1)dt <∞.

Proof. Left as an exercise. Use Hölder and Santalo formula. �
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4.4. Return on X-ray transform. First we remark that the X-ray transform can

be defined also in the trapping case as a map

I : C∞c (SM \ Γ+)→ C∞(∂−SM);

and for a function f ∈ C∞c (SM \ Γ+) this can be written as

If(x, v) = (R+(0)f)(x, v) (x, v) ∈ ∂−SM.

If f̃ = 〈`+〉−1/2−ε/2f , we have∫
∂−SM

|If̃(y)|2dµν(y) =

∫
∂−SM

∣∣∣ ∫ `+(y)

0

〈`+(y)− t〉−1/2−ε/2f(ϕt(y))dt
∣∣∣2dµν(y)

≤C
∫
∂−SM

∫ `+(y)

0

|f(ϕt(y))|2dtdµν(y) = C||f ||2L2(SM)

and therefore

I : 〈`+〉−1/2−εL2(SM)→ L2(∂−SM, dµν)

is bounded for each ε > 0. It is a straightforward consequence of Santalo formula that

I : L1(SM)→ L1(∂−SM, dµν)

is bounded. We get, just as for R±(0), the following boundedness property

Lemma 4.5. When p > 2, the X-ray transform is bounded as a map Lp(SM) →
L2(∂−SM, dµν) if

∫∞
1
tp/(p−2)V (t)dt <∞

Proof. Use the Hölder and Santalo formulas. �

As a consequence, taking the adjoint, we obtain the boundedness

I∗ : L2(∂−SM, dµν)→ Lp
′
(SM)

under the assumption
∫∞

1
tp/(p−2)V (t)dt <∞ and in general the boundedness of

I∗ : L2(∂−SM, dµν)→ 〈`+〉1/2+εL2(SM)

holds for all ε > 0. We would like to characterize what operator is I∗. For f, f ′ smooth

supported oustide Γ− ∪ Γ+, we have∫
∂−SM

If.f ′dµν =

∫
∂−SM

R+(0)f.f ′dµν =

∫
SM

−X(R+(0)f).E−(f ′)dµL = 〈f, E−(f ′)〉

where E−(f ′) solves {
XE−(f ′) = 0,

E−(f ′)|∂−SM = f ′

We thus get I∗ = E−. Notice that E−(f ′)(y) = f ′(ϕ`−(y)(y)) is constant on flow lines.
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4.5. The normal operator. Assume that µL(Γ− ∪ Γ+) = 0. We define the normal

operator on SM as the operator given by the expression

Π : 〈`+〉−1/2−εL2(SM)→ 〈`+〉1/2+εL2(SM), Π := I∗I.

By Lemma 4.5, we see that if
∫∞

1
V (t)tp/(p−2)dt < ∞ for some p > 2, then Π extends

as a bounded operator

Π : Lp(SM)→ Lp
′
(SM).

We can relate Π to the operators R±(0).

Lemma 4.6. The following identity holds true if µL(Γ− ∪ Γ+) = 0

Π = R+(0)−R−(0).

Proof. Note that as operators acting on C∞c (SM◦), we have R+(0)∗ = −R−(0) thus

we need to prove

〈I∗If, f〉 = 2〈R+(0)f, f〉.
But we have for each f ∈ C∞c (SM \ Γ+)∫

SM

R+(0)f.fdµL =−
∫
SM

X(R+(0)f).R+(0)fdµL = −1

2

∫
SM

X((R+(0)f)2)dµL

=
1

2

∫
∂SM

|R+(0)f |2dµν =
1

2

∫
∂−SM

|If |2dµν .

and we complete the proof using a density argument. �

Using this, let us characterize the kernel of I:

Lemma 4.7. Assume
∫∞

1
V (t)tp/(p−2)dt <∞ for some p > 2, then f ∈ ker I∩C0(SM)

if and only there exists a unique u ∈ Lp(SM) ∩ C0(SM \K) such that

Xu = f, u|∂SM = 0,

K being the trapped set. If K = ∅ and if f ∈ C∞(SM) vanishes to infinite order at

∂SM , then u ∈ C∞(SM) and u vanishes to infinite order at ∂SM .

Proof. Assume that If = 0. Set u = −R+(0)f , then Xu = f , u ∈ C0(SM \ Γ−) and

satisfies u|∂+SM = 0. We have Πf = 0, thus by Lemma 4.6, u = −R+(0)f = −R−(0)f .

Thus u is actually in C0(SM \ Γ−) and vanishes on ∂−SM . Since there is no solution

of Xu = 0 with u|∂SM = 0 and u ∈ L1(SM) ∩ C0(SM \ K), we have proved one

direction. Conversely, if u ∈ L1(SM)∩C0(SM \K) satisfies Xu = f in the distribution

sense, then u = −R+(0)f by uniqueness of solutions with u|∂+SM = 0, and similarly

u = −R−(0)f . Thus I∗If = Πf = 0 and therefore If = 0 since 〈Πf, f〉 = |If |2L2 . The

fact that u is smooth when g has no trapped set and f ∈ C∞(SM) vanishes to infinite

order at ∂SM is direct from the expression (4.1). Notice that if f is smooth but does

not vanish to infinite order at ∂SM , then it is not clear that u is smooth at ∂0SM . �
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We have just seen that f being in ker I can be interpreted in terms of properties of

solutions of the transport equation Xu = f . In fact, the regularity of the solutions

u to Xu = f will be very important for what follows, and this leads us to define the

following

Definition 4.8. We shall say that a metric g with strictly convex boundary has the

smooth Livsic property if for each f ∈ C∞(SM) satisfying If = 0, there exists a

unique u ∈ C∞(SM) such that Xu = f and u|∂SM = 0.

Pestov-Uhlmann [PeUh] show the following result

Theorem 1. If g is a non-trapping metric on a surface M with and strictly convex

boundary, then it satisfies the smooth Livsic property.

The main difficulty is the regularity at the glancing region ∂0SM , which is studied in

the work of Pestov-Uhlmann using fold theory - we refer to [PeUh] for the interested

reader (where fold theory is recalled). We notice that the presence or absence of

conjugate points is not relevant here, since this result is really a property on the flow

on SM and has not much to do with the fact that we are working with a geodesic flow.

In the recent work [Gu], we show the following result by using techniques of microlo-

cal analysis and anisotropic Sobolev spaces:

Theorem 2. If the curvature of g near the trapped set K is negative (or more generally

if K is a hyperbolic set for the geodesic flow of g), then g has the smooth Livsic property.

We notice that V (t) = O(e−Qt) for some Q > 0 if K is a hyperbolic set by [BoRu]

(see [Gu, Proposition 2.4]), and this implies that `± ∈ Lp for all p <∞.

5. Injectivity of X-ray transform for tensors

In this section, we use the Pestov identity (that we will explain below) as in [PSU1]

and the results of previous section to prove the injectivity of X-ray transform on

functions and divergence-free 1-forms when the metric has no conjugate points. For 2-

tensors, we use the method of [GuKa] to determine the kernel of I2 when the curvature

κ is non-positive.

First, we denote by D the symmetrized covariant derivative mapping 1-forms to

symmetric 2-tensors by

Dw(Y1, Y2) := 1
2
((∇Y1w)(Y2) + (∇Y2w)(Y1)). (5.1)

Its L2-adjoint is denoted D∗ and is called the divergence operator on symmetric 2-

tensors. We notice that if w] is the vector field dual to w, then Dw can be written in

terms of Lie derivative of the metric

Dw = 1
2
Lw]g. (5.2)
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It will be convenient to use the Fourier decomposition in the circle fibers of SM .

Using the vertical vector field, we can decompose each function u ∈ C∞(SM) uniquely

as a converging sum (in any Ck norms)

u =
∑
k∈Z

uk, with V uk = ikuk

where uk ∈ C∞(SM). This gives an orthogonal (with respect to L2) decomposition

C∞(SM) =
⊕
k∈Z

Ωk

where Ωk = ker(V − ik). In isothermal coordinates x = (x1, x2) near a point x0,

one has associated coordinates (x, θ) on SM near Sx0M with θ ∈ R/2πZ, see Section

2.3. Then the functions uk can be written locally as uk(x, θ) = ũk(x)eikθ for some

ũk smooth on M . In fact, when k ≥ 0, Ωk can be identified to the space of smooth

sections of the k-th tensor power of the complex line bundle K := (T ∗M)1,0 ⊂ CT ∗M
in the sense that uk = π∗ksk for some section sk ∈ C∞(M ;⊗kSK) where π∗k is the map

(2.3). Similalry when k < 0, Ωk can be identitifed as the space of smooth sections of

the k-th tensor power of the bundle K := (T ∗M)0,1.

There are two natural operators on C∞(SM) called raising and lowering operators,

introduced by [GuKa], and defined by

η+ := 1
2
(X + iX⊥), η− := 1

2
(X − iX⊥).

They satisfy η± : Ωk → Ωk±1, X = η+ + η− and η∗+ = −η− when acting on smooth

functions vanishing at ∂SM .

Theorem 3. Assume that (M, g) has strictly convex boundary and that g has the

smooth Livsic property and no conjugate points. Then we have:

1) I0 is injective on C∞(M).

2) If a ∈ C∞(M ;T ∗M)) ∩ ker I1, then there exists f ∈ C∞(M) such that a = df and

f |∂M = 0.

3) Assume that κ ≤ 0. If h ∈ C∞(M ;⊗2
ST
∗M) ∩ ker I2, then there exists a 1-form

w ∈ C∞(M ;T ∗M) such that h = Dw and w|∂M = 0, where D is the symmetrized

covariant derivative.

Proof. If f ∈ ker I0, by Theorem 2 there is u ∈ C∞(SM) such that u|∂SM = 0 and

Xu = π∗0f . Thus V Xu = 0 since dπ0(V ) = 0. We have (V X)∗ = XV on smooth

functions vanishing at ∂SM by using that V,X preserve µL and that V is tangent to

∂SM . Then we get

||V Xu||2L2 = ||XV u||2L2 + 〈[XV, V X]u, u〉
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and

[XV, V X] =XV 2X − V X2V = V XV X +X⊥V X − V XV X − V XX⊥
=V [X⊥, X]−X2 = −X2 + V κV.

This implies the Pestov identity for each u ∈ C∞(SM) vanishing at ∂SM

||XV u||2L2 − 〈κV u, V u〉+ ||Xu||2L2 − ||V Xu||2L2 = 0. (5.3)

We conclude that since V Xu = 0, κ ≤ 0 implies Xu = π∗0f = 0. In fact, if there are

no conjugate points, we claim that for each smooth function h on SM vanishing on

∂SM

||Xh||2L2 − 〈κh, h〉 ≥ 0

and this is equal to 0 only if h = 0. This is proved by using Santalo formula to de-

compose the integral along geodesics with initial points on ∂−SM \ Γ− and then by

using that the index form is non-negative for each of these geodesics, when there is no

conjugate points along these geodesics (see for example [PSU2, Lemma 11.2]). This

completes the proof of the injectivity of I0 by taking h = V u.

Now if I1a = 0, we have u ∈ C∞(SM) such that Xu = π∗1a and u|∂SM = 0. We

apply the Pestov identity (5.3): since a is a 1-form and V acts as the Hodge operator

on pull-backs of 1-forms, we have ||V π∗1a||2L2(SM) = ||π∗1a||2L2(SM) and (5.3) becomes

||XV u||2L2(SM) − 〈κV u, V u〉 = 0.

This implies that V u = 0 and thus u = π∗0f for some f ∈ C∞(M) vanishing on ∂M .

Then Xu = π∗1df and this completes the proof since this is equal to π∗1a.

Let h ∈ C∞(M ;⊗2
ST
∗M), then π∗2h = h0 + h2 + h−2 with hk ∈ Ωk. If I2h =

0, there is u ∈ C∞(SM) such that Xu = π∗2h and, after possibly replacing u by
1
2
(u(x, v)−u(x,−v)), we can always assume that u is odd with respect to the involution

A : (x, v) 7→ (x,−v). Indeed, X maps even functions with respect to A to odd

functions, and conversely. We will write u =
∑

k uk with uk ∈ Ωk and u2k = 0 for all

k ∈ Z. Since X = η+ +η−, we have η+uk−1 +η−uk+1 = 0 if k /∈ {−2, 0, 2}. Next, using

the commutation relation

η−η+ = η+η− − 1
2
κiV

which follows from (2.2), the fact that uk|∂SM = 0 for all k and η∗+ = −η−, we obtain

||η+uk+1||2L2 = −〈η−η+uk+1, uk+1〉 = −〈η+η−uk+1, uk+1〉 − 1
2
(k + 1)〈κuk+1, uk+1〉

≥ ||η−uk+1||2

for k + 1 ≥ 0, since κ ≤ 0. For k ≥ 3, this implies that ||η+uk+1||L2 ≥ ||η+uk−1||L2

and therefore ck := ||η+uk||L2 is a non-decreasing series which converges to 0, that is

ck = 0 for all k ≥ 2. A similar argument shows that η−uk = 0 for all k ≤ −2. This
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shows that u = u1 + u−1 and u = π∗1w for some smooth 1-form w vanishing at ∂M .

Now it is easy to check that Xu = π∗2(Dw). �

Remark that the proof given in 3) actually works as well for ker Im with m ≥ 3, and

we obtain that h ∈ ker Im if and only if h = Dw for some w ∈ C∞(M,⊗m−1
S T ∗M) and

D is the symmetrized covariant derivative, defined similarly to (5.1). Acting by X on

a pull-back (by π∗m) of an m-symmetric tensor w is equivalent to pull-back Dw on SM

by π∗m+1. A proof of the injectivity of Im on divergence-free tensors for simple metrics

was provided recently in [PSU1], without assuming κ ≤ 0.

Combining Theorem 3 with Theorem 2 and Lemma 3.4, we deduce the

Corollary 5.1. Let gs be a smooth family of metrics on a surface M with strictly

convex boundary, non-positive curvature and with either no trapped set or hyperbolic

set. If the lens data (`gs , Sgs) is constant in s, then one has gs = φ∗sg0 where φs is a

smooth family of diffeomorphism equal to Identity on ∂M .

Proof. Let qs := ∂sgs. By Lemma 3.4, Theorem 3 and Theorem 2, we know that there

is ws so that qs = Lw]
s
gs (with w]s the dual vector field to ws though gs). We claim

that ws = (∆Ds)
−1D∗sqs if Ds is the operator D on 1-forms for gs, D

∗
s its adjoint with

respect to the L2-product of gs and ∆Ds := D∗sDs with Dirichlet condition. Indeed

∆Dsws = D∗sqs = ∆Ds(∆Ds)
−1D∗sqs and the Laplacian ∆Ds with Dirichlet condition has

no kernel since 〈∆Dsu, u〉 = ||Dsu||2L2 if u|∂M = 0, and Dsu = 0 with u|∂M = 0 implies

u = 0 (check this as an exercise). Then, since gs is smooth in s, it can be shown

by elliptic theory that the inverse ∆−1
Ds

maps smooth functions of (s, x) to smooth

functions of (s, x), if x is the variable on M . This implies that ws is a smooth family

in s of smooth 1-forms on M . Integrating the dual vector field w]s, we can construct a

smooth family of diffeomorphism which are the Identity on ∂M by ∂sφs(x) = w]s(φs(x))

and φ0(x) = x. Then φs satisfies gs = φ∗sg0. �

6. Some references

We haved worked in dimension 2 for simplicity but many results described here are

also valid in higher dimension.

We provide a few references on the subject, this is not a comprehensive list.

We first recommend the lecture notes of Merry-Paternain [Pa] and the lecture notes

of Sharafutdinov [Sh], which contain a lot of material on the subject. The survey of

Croke [Cr3] also contains a nice overview of the subject (up to 2004).

The following articles deal with the boundary rigidity problem or the analysis of

X-ray transform.
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• For simple metrics in a fixed conformal class, Mukhometov [Mu2] proved that

the boundary distance function determines the metric, with a stability estimate

(see also the previous works [Mu1, MuRo]). This result was proved later with a

simpler method by Croke [Cr2]. These works show the injectivity of the X-ray

transform on functions for simple metrics (any dimension).

• The paper of Michel [Mi] established that simple metrics with constant curva-

ture are boundary rigid in dimension 2. Gromov [Gr] proved the same result

in higher dimension for flat metrics.

• Croke [Cr1] and Otal [Ot] proved boundary rididity for simple negatively curved

surfaces (dimension 2).

• Pestov-Uhlmann [PeUh] proved boundary rigidity for all simple surfaces. More

particularly, they proved that the scattering data determines the conformal

class of the surface by relating the scattering map of the geodesic flow to the

Dirichlet-to-Neumann map for the Laplacian. Using Mukhometov result, this

shows the full boundary rigidity.

• Burago-Ivanov [BuIv] proved that metrics close to flat ones are boundary rigid

(any dimension).

• Anikonov-Romanov [AnRo] proved injectivity of the X-ray transform on the

space of divergence-free 1-forms for simple metrics (any dimension).

• Pestov-Sharafutdinov [PeSh] proved the injectivity of the X-ray transform on

the space of divergence-free symmetric tensors for simple non-positively curved

metrics (any dimension). This uses the so-called Pestov identity.

• Stefanov-Uhlmann [StUh] proved injectivity of the X-ray transform on tensors

for analytic simple metrics and deduce a local boundary rigidity result for

generic metrics.

• Paternain-Salo-Uhlmann [PSU1] proved injectivity of the X-ray transform on

all divergence-free symmetric tensors for simple surfaces (dimension 2).

• Guillarmou [Gu] proved injectivity of the X-ray transform on functions and on

the space of divergence-free 1-forms for metrics with strictly convex boundary,

hyperbolic trapped set and no conjugate points; this setting contains all nega-

tively curved metrics with strictly convex boundary. When the curvature is in

addition non-positive, the injectivity on tensors is also proved (any dimension).

The same result as Pestov-Uhlmann is shown also in that class of metrics.

• Uhlmann-Vasy [UhVa] proved injectivity of the X-ray transform on functions for

manifolds admitting a foliation by convex hypersurfaces (any dimension ≥ 3),

and injectivity for the local X-ray transform (i.e. integrals along geodesics

almost tangent to boundary)
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