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Introduction

Eigenfunctions in negative curvature

Let (X , g) be a smooth connected compact d-dimensional
Riemannian manifold.

Theorem
There exists a sequence 0 = λ0 < λ1 ≤ λ2 ≤ ... ≤ λn −→∞
and an orthonormal basis (ϕn)n∈N of L2(X , g), such that

−∆gϕn = λnϕn.

The behaviour of λn and ϕn as n −→∞ depends heavily on the
geodesic flow Φt acting on the unitary cotangent bundle S∗X .
Quantum chaos studies the properties of ϕn as n→ +∞ when
the geodesic flow is chaotic. For instance, this is the case when
(X , g) has negative sectional curvature.
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Quantum ergodicity

Theorem (Schnirelman ’74, Zelditch ’87, Colin de Verdière ’85 )
Let (X , g) be a compact manifold with negative sectional curva-
ture. Then there exists a subsequence nk of density one such that
for all a ∈ C (X ), we have∫

X

a(x)|ϕnk |2(x)dx −→ 1

Vol(X)

∫
X

a(x)dx .

The Quantum Unique Ergodicity Conjecture
We don’t have to extract a sub-sequence in the previous state-
ment.
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Eigenfunctions in negative curvature

Berry’s conjecture

We suppose here that the ϕn are real-valued.

Berry’s conjecture, Version 1: We denote by Xn the ran-
dom variable given by ϕn(x0), where x0 is a point chosen
uniformly at random in X . Then Xn converges in distribution

to N
(

0, 1√
Vol(X )

)
.

This would imply the Quantum Unique Ergodicity conjecture.
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Towards a stronger version of Berry’s conjecture

Picture taken from E. Bogomolny, C. Schmit, Random wave
functions and percolation, 2007.
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Random fields

A bit of probabilistic vocabulary

A random field is a probability measure on the set of (smooth)
functions on Rd .

In other words, a random field is a way of picking a smooth
function at random.

Let (Ψn), Ψ be random fields. We say that Ψn converges

in distribution to Ψ, written Ψn
d−→ Ψ, if, for any bounded

continuous functional F : C∞(Rd) −→ R, we have

EΨn [F ] −→ EΨ[F ].

Here, C∞(Rd) is equipped with the topology of convergence of all
derivatives over all compact sets.
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Random fields

Gaussian random fields
Let µ be a measure on (0,+∞).
For each k ∈ N, we give ourselves independent random variables

ϕk uniform on [0, 2π]

ξk uniform on Sd−1

λk following the law µ.

fn(x) :=
µ(0,+∞)√

n

n∑
k=1

e iλkξk ·x+ϕk

induces a random field on Rd . It converges in distribution to
a random field, written ΨBerry ,µ, called a isotropic, station-
ary, Gaussian random field. It is monochromatic if µ is a
multiple of a Dirac mass.
We write ΨBerry := ΨBerry ,δ{1} .
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Random fields

Gaussian random fields (2)

In dimension 2, < [ΨBerry ] can alternatively be defined, in polar
coordinates, as

< [ΨBerry (r , θ)] = X0J0(r)+
√

2
∑
n≥1

Jn(r) [Xn cos(nθ) + Yn sin(nθ)] ,

where Jn is the n-th Bessel function, and where the
(Xn)n≥0, (Yn)n≥1 are independent families of standard Gaussian
variables.
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1

The right picture corresponds to a realization of < [ΨBerry ]. Due to
the ergodicity of translations for the measure ΨBerry , all
realizations look the same.

1Picture taken from E. Bogomolny, C. Schmit, Random wave functions and
percolation, 2007.
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From deterministic functions to random fields

Let U ⊂ X be an open set, and let (V1, ...,Vd) : U −→ (TX )d be
an orthonormal frame.
If (ψh) is a sequence of functions depending on a parameter h > 0,
we define, for each x ∈ U , a function ψh,x on Rd by

ψh,x(y) = ψh [expx(h(y1V1(x) + · · ·+ ydVd(x)))] .

The function ψh,x, with x taken uniformly at random in U
induces a random field ΨUh on Rd .
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Random fields

A refined version of Berry’s conjecture

Let X be a manifold of negative curvature. We fix an orthonormal
frame defined on some open subset of X .
Let us denote by (ψhn) an orthonormal basis of L2(X ) such that
−h2∆ψhn = ψhn .

Berry’s conjecture, Version 2
For any open set U , we have

ΨUhn
d−→ 1√

Vol(X )
ΨBerry .
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Random fields

Related works

In the 80’s and 90’s, several interpretations of Berry’s
conjecture by Sarnak, Zelditch, Hejhal-Rackner, with
numerical simulations.

2007 : Bogomolny-Schmit, Nazarov-Sodin, Gayet-Welschinger
were able to estimate the number of nodal domains of the
Berry random field.

2017-2018 : Abert-Bergeron-Le Masson and I. for the previous
interpretation of Berry’s conjecture.

Bourgain (2014), Buckley-Wigman (2016), I. (2017),
Wigman-Yesha (2018), Sartori (2020) : Proof of Berry’s
conjecture on T2 for some generic families of eigenfunctions.
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Extension to the Schrödinger propagator ?

Vague unformulated conjecture: Let (X , g) be a mani-
fold/domain with chaotic classical dynamics.
Let fh ∈ C∞(X ) be “generic” (and satisfy −h2∆fh ≈ fh).
Then, for th large enough, e ithh∆fh should satisfy the conclu-
sions of Berry’s conjecture as h→ 0.

Application: Chaotic electromagnetic reverberation chambers
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Chaotic propagation of Lagrangian states

Lagrangian states

A Lagrangian state or Lagrangian distribution is a family of
functions fh of the form

fh(x) = b(x)e
i
h
ϕ(x),

where b ∈ C∞(X ), ϕ ∈ C∞(support(b)). We say it is
monochromatic if |∇ϕ| = 1 for all x ∈ X . If this is the case, we
have

(−h2∆− 1)fh = O(h).

If ϕ ∈ C∞(Ω;R), we define the Lagrangian manifold

Λϕ := {(x , ∂ϕ(x)); x ∈ Ω} ⊂ T ∗X .



How Lagrangian states evolve into random waves

Chaotic propagation of Lagrangian states

Let us write, if 0 < λ1 < λ2,

Z
(λ1,λ2)
Ω := {ϕ ∈ C∞(Ω;R);λ1 < |∇ϕ(x)| < λ2 ∀x ∈ Ω},

which is a nice metric space,

and

Z
(λ1,λ1)
Ω := {ϕ ∈ C∞(Ω;R); |∇ϕ(x)| = λ1 ∀x ∈ Ω}.
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Chaotic propagation of Lagrangian states

Transversality to the stable directions

For each x ∈ X , ξ ∈ T ∗x X\{0}, let us denote by
E−(x ,ξ) ⊂ T(x ,ξ)T

∗X the stable direction at (x , ξ).

If ϕ ∈ Z
(λ1,λ2)
Ω , we say that it is transverse to the stable

directions (TSD) if

∀x ∈ Ω,T(x ,∂ϕ(x))Λϕ ∩ E−(x ,∂ϕ(x)) = {0}

Let us write, if 0 < λ1 ≤ λ2,

Z
(λ1,λ2)
Ω,TSD := {ϕ ∈ Z

(λ1,λ2)
Ω , ϕ is TSD}.
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Chaotic propagation of Lagrangian states

Quantum unique ergodicity for propagated Lagrangian
states

Theorem (Schubert, 2005)

Let (X , g) be a compact manifold of negative curvature and
let Ω ⊂ X be an open set. There exists γX > 0 such that for

all ϕ ∈ Z
(λ1,λ2)
Ω,TSD , the following holds.

If b ∈ C∞c (Ω), write fh = be
i
h
ϕ. For any th ≤ (γX −ε)| log h|

such that th −→
h→0

+∞ and for any a ∈ C (X ), we have

∫
X
|e ihth∆fh|2(x)a(x)dx −→

h→0
‖b‖L2

∫
X
a(x)dx .
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Chaotic propagation of Lagrangian states

Berry’s conjecture for propagated Lagrangian states

Theorem (I.-Rivera, 2020)
Let (X , g) be a compact manifold of negative curvature, let Ω ⊂ X
be an open set, and let 0 < λ1 ≤ λ2. There exists a Gδ-dense set

Z̃
(λ1,λ2)
Ω,TSD ⊂ Z

(λ1,λ2)
Ω,TSD such that, for all ϕ ∈ Z̃

(λ1,λ2)
Ω,TSD , the following

holds.
If b ∈ C∞(Ω), write fh = be

i
hϕ, and fh(t) := e ith∆fh.

Let U ⊂ X be an open set equipped with an orthonormal frame.
fh(t) induces a random field FU

h (t). Then we have

For all t large enough, there exists a random field FU (t)

such that FU
h (t)

d−→ FU (t).

FU (t)
d−→ ΨBerry ,λ. Here, λ is the push-forward of the

measure |b(x)|2dx on X by the map x 7→ |∂ϕ(x)| ∈ (0,∞).
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Chaotic propagation of Lagrangian states

Ideas of the proof (1): the WKB method

If (X̃ , g̃) is a simply connected manifold of negative curvature, and

if f̃h = b̃e
i
h
ϕ̃ is a Lagrangian state with ϕ̃ TSD, then for any t

large enough,

Φt({x , ∂ϕ̃(x)}) = {x , ∂ϕ̃t(x)} ⊂ T ∗X ,

and
f̃h(t) = b̃te

i
h
ϕ̃t + O(h).

On X , we have

fh(t) =

N(t)∑
j=1

bj ,te
i
h
ϕj,t + O(h).
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Chaotic propagation of Lagrangian states

Ideas of the proof (2): Genericity implies irrationality

From now on, we work in a local chart around a point x1, and
pretend we are in Rd . Let us write, for x1 ∈ X , ξx1

j ,t := ∂ϕj ,t(x1).

Lemma
There exists a Gδ-dense set Z̃

(λ1,λ2)
Ω,TSD ⊂ Z

(λ1,λ2)
Ω,TSD such that, for

all ϕ ∈ Z̃
(λ1,λ2)
Ω,TSD , the following holds. For all t ∈ R and for

almost every x1 ∈ X , the vectors (ξx1
j ,t)j=1,...,N(t) are rationally

independent.

Proof: Thom’s transversality lemma and a bit of work...
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Chaotic propagation of Lagrangian states

Ideas of the proof (3): Working locally
Let α < 1

2 . We will study the distribution of fh(x0) with x0 chosen
at random in B(x1,Rh

α).

fh(x1 + hαx ; t) =

N(t)∑
j=1

bj ,t(x1 + hαx)e
i
h
ϕj,t(x1+hαx) + O(h)

=

N(t)∑
j=1

bj ,t(x1)e
i
h
ϕj,t(x1)+ihα−1x ·ξx1

j,t + o(1).

Here, hα−1x is chosen at random in the big ball B(0, hα−1R). By
ergodicity, this will converge weakly, as h→ 0 to

N(t)∑
j=1

|bj ,t(x1)|e iθj ,

where the θj are independent, uniform in [0, 2π).
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End of the proof

∑N(t)
j=1 |bj ,t(x0)|e iθj behaves asymptotically as the Gaussian of

variance
∑N(t)

j=1 |bj ,t(x0)|2.

Using ergodicity of the geodesic flow, one can show that∑N(t)
j=1 |bj ,t(x0)|2 goes to ‖b‖L2 .
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Thank you for your attention!
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