How Lagrangian states evolve into random waves

M. Ingremeau (Laboratoire J.A. Dieudonné) joint work with Alejandro Rivera Let (X, g) be a smooth connected compact *d*-dimensional Riemannian manifold.

Theorem

There exists a sequence $0 = \lambda_0 < \lambda_1 \le \lambda_2 \le ... \le \lambda_n \longrightarrow \infty$ and an orthonormal basis $(\varphi_n)_{n \in \mathbb{N}}$ of $L^2(X, g)$, such that

$$-\Delta_{g}\varphi_{n}=\lambda_{n}\varphi_{n}.$$

Let (X, g) be a smooth connected compact *d*-dimensional Riemannian manifold.

Theorem

There exists a sequence $0 = \lambda_0 < \lambda_1 \le \lambda_2 \le ... \le \lambda_n \longrightarrow \infty$ and an orthonormal basis $(\varphi_n)_{n \in \mathbb{N}}$ of $L^2(X, g)$, such that

$$-\Delta_{g}\varphi_{n}=\lambda_{n}\varphi_{n}.$$

The behaviour of λ_n and φ_n as $n \longrightarrow \infty$ depends heavily on the geodesic flow Φ^t acting on the unitary cotangent bundle S^*X .

Let (X, g) be a smooth connected compact *d*-dimensional Riemannian manifold.

Theorem

There exists a sequence $0 = \lambda_0 < \lambda_1 \le \lambda_2 \le ... \le \lambda_n \longrightarrow \infty$ and an orthonormal basis $(\varphi_n)_{n \in \mathbb{N}}$ of $L^2(X, g)$, such that

$$-\Delta_{g}\varphi_{n}=\lambda_{n}\varphi_{n}.$$

The behaviour of λ_n and φ_n as $n \longrightarrow \infty$ depends heavily on the geodesic flow Φ^t acting on the unitary cotangent bundle S^*X . **Quantum chaos** studies the properties of φ_n as $n \to +\infty$ when the geodesic flow is *chaotic*. For instance, this is the case when (X, g) has negative sectional curvature.

- Introduction
 - Eigenfunctions in negative curvature

Quantum ergodicity

Theorem (Schnirelman '74, Zelditch '87, Colin de Verdière '85) Let (X,g) be a compact manifold with negative sectional curvature. Then there exists a subsequence n_k of density one such that for all $a \in C(X)$, we have

$$\int_X a(x) |\varphi_{n_k}|^2(x) \mathrm{d} x \longrightarrow \frac{1}{\mathrm{Vol}(\mathrm{X})} \int_X a(x) \mathrm{d} x.$$

- Introduction
 - Eigenfunctions in negative curvature

Quantum ergodicity

Theorem (Schnirelman '74, Zelditch '87, Colin de Verdière '85) Let (X,g) be a compact manifold with negative sectional curvature. Then there exists a subsequence n_k of density one such that for all $a \in C(X)$, we have

$$\int_X a(x) |\varphi_{n_k}|^2(x) \mathrm{d} x \longrightarrow \frac{1}{\mathrm{Vol}(\mathrm{X})} \int_X a(x) \mathrm{d} x.$$

The Quantum Unique Ergodicity Conjecture We don't have to extract a sub-sequence in the previous statement.

How Lagrangian states evolve into random waves

Introduction

Berry's conjecture

We suppose here that the φ_n are real-valued.

Berry's conjecture, Version 1: We denote by X_n the random variable given by $\varphi_n(\mathbf{x}_0)$, where \mathbf{x}_0 is a point chosen uniformly at random in X. Then X_n converges in distribution to $\mathcal{N}\left(0, \frac{1}{\sqrt{\operatorname{Vol}(X)}}\right)$.

This would imply the Quantum Unique Ergodicity conjecture.

Eigenfunctions in negative curvature

Towards a stronger version of Berry's conjecture

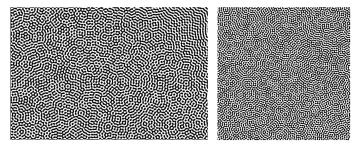


Figure 1. Left: Nodal domains of the eigenfunction of a quarter of the stadium with energy E = 10092.029. Right: Nodal domains of a random wave function (3) with k = 100.

Picture taken from E. Bogomolny, C. Schmit, *Random wave functions and percolation*, 2007.

Random fields

A bit of probabilistic vocabulary

A random field is a probability measure on the set of (smooth) functions on \mathbb{R}^d .

In other words, a random field is a way of picking a smooth function at random.

Let (Ψ_n) , Ψ be random fields. We say that Ψ_n converges in distribution to Ψ , written $\Psi_n \xrightarrow{d} \Psi$, if, for any bounded continuous functional $F : C^{\infty}(\mathbb{R}^d) \longrightarrow \mathbb{R}$, we have

$$\mathbb{E}_{\Psi_n}[F] \longrightarrow \mathbb{E}_{\Psi}[F].$$

Here, $C^{\infty}(\mathbb{R}^d)$ is equipped with the topology of convergence of all derivatives over all compact sets.

-Random fields

Gaussian random fields

Let μ be a measure on $(0, +\infty)$.

For each $k \in \mathbb{N}$, we give ourselves independent random variables

- φ_k uniform on $[0, 2\pi]$
- ξ_k uniform on \mathbb{S}^{d-1}
- λ_k following the law μ .

$$f_n(x) := rac{\mu(0,+\infty)}{\sqrt{n}} \sum_{k=1}^n e^{i\lambda_k \xi_k \cdot x + \varphi_k}$$

induces a random field on \mathbb{R}^d . It converges in distribution to a random field, written $\Psi_{Berry,\mu}$, called a **isotropic**, **stationary**, **Gaussian** random field. It is **monochromatic** if μ is a multiple of a Dirac mass. We write $\Psi_{Berry} := \Psi_{Berry,\delta_{(1)}}$.

-Random fields

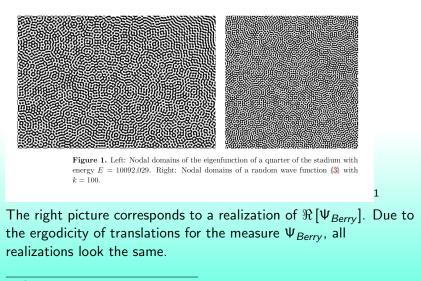
Gaussian random fields (2)

In dimension 2, $\Re\left[\Psi_{\textit{Berry}}\right]$ can alternatively be defined, in polar coordinates, as

$$\Re \left[\Psi_{Berry}(r,\theta) \right] = X_0 J_0(r) + \sqrt{2} \sum_{n \ge 1} J_n(r) \left[X_n \cos(n\theta) + Y_n \sin(n\theta) \right],$$

where J_n is the *n*-th Bessel function, and where the $(X_n)_{n\geq 0}, (Y_n)_{n\geq 1}$ are independent families of standard Gaussian variables.

- Introduction
 - Random fields



¹Picture taken from E. Bogomolny, C. Schmit, *Random wave functions and percolation*, 2007.

-Random fields

From deterministic functions to random fields

Let $\mathcal{U} \subset X$ be an open set, and let $(V_1, ..., V_d) : \mathcal{U} \longrightarrow (TX)^d$ be an orthonormal frame.

If (ψ_h) is a sequence of functions depending on a parameter h > 0, we define, for each $x \in \mathcal{U}$, a function $\psi_{h,x}$ on \mathbb{R}^d by

$$\psi_{h,x}(y) = \psi_h \left[\exp_x (h(y_1 V_1(x) + \cdots + y_d V_d(x))) \right].$$

The function $\psi_{h,x}$, with x taken uniformly at random in \mathcal{U} induces a random field $\Psi_h^{\mathcal{U}}$ on \mathbb{R}^d .

-Random fields

A refined version of Berry's conjecture

Let X be a manifold of negative curvature. We fix an orthonormal frame defined on some open subset of X. Let us denote by (ψ_{h_n}) an orthonormal basis of $L^2(X)$ such that $-h^2\Delta\psi_{h_n}=\psi_{h_n}$.

Berry's conjecture, Version 2 For any open set \mathcal{U} , we have

$$\Psi_{h_n}^{\mathcal{U}} \xrightarrow{d} \frac{1}{\sqrt{\operatorname{Vol}(X)}} \Psi_{Berry}.$$

Related works

In the 80's and 90's, several interpretations of Berry's conjecture by Sarnak, Zelditch, Hejhal-Rackner, with numerical simulations.

-Random fields

Related works

- In the 80's and 90's, several interpretations of Berry's conjecture by Sarnak, Zelditch, Hejhal-Rackner, with numerical simulations.
- 2007 : Bogomolny-Schmit, Nazarov-Sodin, Gayet-Welschinger were able to estimate the number of nodal domains of the Berry random field.

-Random fields

Related works

- In the 80's and 90's, several interpretations of Berry's conjecture by Sarnak, Zelditch, Hejhal-Rackner, with numerical simulations.
- 2007 : Bogomolny-Schmit, Nazarov-Sodin, Gayet-Welschinger were able to estimate the number of nodal domains of the Berry random field.
- 2017-2018 : Abert-Bergeron-Le Masson and I. for the previous interpretation of Berry's conjecture.

-Random fields

Related works

- In the 80's and 90's, several interpretations of Berry's conjecture by Sarnak, Zelditch, Hejhal-Rackner, with numerical simulations.
- 2007 : Bogomolny-Schmit, Nazarov-Sodin, Gayet-Welschinger were able to estimate the number of nodal domains of the Berry random field.
- 2017-2018 : Abert-Bergeron-Le Masson and I. for the previous interpretation of Berry's conjecture.
- Bourgain (2014), Buckley-Wigman (2016), I. (2017),
 Wigman-Yesha (2018), Sartori (2020) : Proof of Berry's conjecture on T² for some generic families of eigenfunctions.

Random fields

Extension to the Schrödinger propagator ?

Vague unformulated conjecture: Let (X,g) be a manifold/domain with chaotic classical dynamics. Let $f_h \in C^{\infty}(X)$ be "generic" (and satisfy $-h^2\Delta f_h \approx f_h$). Then, for t_h large enough, $e^{it_hh\Delta}f_h$ should satisfy the conclusions of Berry's conjecture as $h \to 0$.

Random fields

Extension to the Schrödinger propagator ?

Vague unformulated conjecture: Let (X, g) be a manifold/domain with chaotic classical dynamics. Let $f_h \in C^{\infty}(X)$ be "generic" (and satisfy $-h^2\Delta f_h \approx f_h$). Then, for t_h large enough, $e^{it_hh\Delta}f_h$ should satisfy the conclusions of Berry's conjecture as $h \to 0$.

Application: Chaotic electromagnetic reverberation chambers

Lagrangian states

A Lagrangian state or Lagrangian distribution is a family of functions f_h of the form

$$f_h(x) = b(x)e^{\frac{i}{h}\varphi(x)},$$

where $b \in C^{\infty}(X), \varphi \in C^{\infty}(support(b))$. We say it is *monochromatic* if $|\nabla \varphi| = 1$ for all $x \in X$. If this is the case, we have

$$(-h^2\Delta-1)f_h=O(h).$$

If $\varphi \in \mathcal{C}^\infty(\Omega;\mathbb{R})$, we define the Lagrangian manifold

$$\Lambda_{arphi} := \{(x, \partial arphi(x)); x \in \Omega\} \subset T^*X.$$

Let us write, if $0 < \lambda_1 < \lambda_2$,

$$Z^{(\lambda_1,\lambda_2)}_\Omega:=\{arphi\in \mathcal{C}^\infty(\Omega;\mathbb{R});\lambda_1<|
ablaarphi(x)|<\lambda_2\,\,orall x\in\Omega\},$$

which is a nice metric space,

Let us write, if $0 < \lambda_1 < \lambda_2$,

$$Z^{(\lambda_1,\lambda_2)}_\Omega:=\{arphi\in \mathcal{C}^\infty(\Omega;\mathbb{R});\lambda_1<|
ablaarphi(x)|<\lambda_2\,\,orall x\in\Omega\},$$

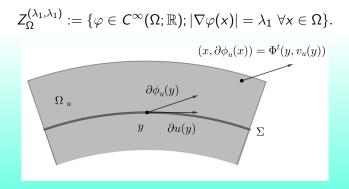
which is a nice metric space, and

$$Z_{\Omega}^{(\lambda_1,\lambda_1)} := \{ \varphi \in \mathcal{C}^{\infty}(\Omega;\mathbb{R}); |\nabla \varphi(x)| = \lambda_1 \,\, \forall x \in \Omega \}.$$

Let us write, if 0 $< \lambda_1 < \lambda_2$,

$$Z^{(\lambda_1,\lambda_2)}_\Omega:=\{arphi\in \mathcal{C}^\infty(\Omega;\mathbb{R});\lambda_1<|
ablaarphi(x)|<\lambda_2\,\,orall x\in\Omega\},$$

which is a nice metric space, and



Transversality to the stable directions

For each $x \in X$, $\xi \in T_x^*X \setminus \{0\}$, let us denote by $E_{(x,\xi)}^- \subset T_{(x,\xi)}T^*X$ the stable direction at (x,ξ) .

If $\varphi \in Z_{\Omega}^{(\lambda_1,\lambda_2)}$, we say that it is *transverse to the stable directions* (TSD) if

$$\forall x \in \Omega, T_{(x,\partial\varphi(x))} \Lambda_{\varphi} \cap E^{-}_{(x,\partial\varphi(x))} = \{0\}$$

Let us write, if 0 $< \lambda_1 \leq \lambda_2$,

$$Z^{(\lambda_1,\lambda_2)}_{\Omega,\mathit{TSD}} := \{ arphi \in Z^{(\lambda_1,\lambda_2)}_{\Omega}, \; arphi \; ext{is TSD} \}.$$

Quantum unique ergodicity for propagated Lagrangian states

Theorem (Schubert, 2005) Let (X, g) be a compact manifold of negative curvature and let $\Omega \subset X$ be an open set. There exists $\gamma_X > 0$ such that for all $\varphi \in Z_{\Omega,TSD}^{(\lambda_1,\lambda_2)}$, the following holds. If $b \in C_c^{\infty}(\Omega)$, write $f_h = be^{\frac{i}{h}\varphi}$. For any $t_h \leq (\gamma_X - \varepsilon) |\log h|$ such that $t_h \xrightarrow{\to} +\infty$ and for any $a \in C(X)$, we have $\int_X |e^{iht_h\Delta} f_h|^2(x)a(x)dx \xrightarrow{\to} ||b||_{L^2} \int_X a(x)dx.$

Berry's conjecture for propagated Lagrangian states

Theorem (I.-Rivera, 2020) Let (X, g) be a compact manifold of negative curvature, let $\Omega \subset X$ be an open set, and let $0 < \lambda_1 \leq \lambda_2$. There exists a G_{δ} -dense set $\widetilde{Z}_{\Omega,TSD}^{(\lambda_1,\lambda_2)} \subset Z_{\Omega,TSD}^{(\lambda_1,\lambda_2)}$ such that, for all $\varphi \in \widetilde{Z}_{\Omega,TSD}^{(\lambda_1,\lambda_2)}$, the following holds. If $b \in C^{\infty}(\Omega)$, write $f_h = be^{\frac{i}{h}\varphi}$, and $f_h(t) := e^{ith\Delta}f_h$. Let $\mathcal{U} \subset X$ be an open set equipped with an orthonormal frame. $f_h(t)$ induces a random field $F_h^{\mathcal{U}}(t)$. Then we have

For all t large enough, there exists a random field $F^{\mathcal{U}}(t)$ such that $F_h^{\mathcal{U}}(t) \xrightarrow{d} F^{\mathcal{U}}(t)$.

■ $F^{\mathcal{U}}(t) \xrightarrow{d} \Psi_{Berry,\lambda}$. Here, λ is the push-forward of the measure $|b(x)|^2 dx$ on X by the map $x \mapsto |\partial \varphi(x)| \in (0,\infty)$.

Ideas of the proof (1): the WKB method

If (\tilde{X}, \tilde{g}) is a simply connected manifold of negative curvature, and if $\tilde{f}_h = \tilde{b}e^{\frac{i}{h}\tilde{\varphi}}$ is a Lagrangian state with $\tilde{\varphi}$ TSD, then for any tlarge enough,

$$\Phi^t(\{x,\partial\tilde{\varphi}(x)\})=\{x,\partial\tilde{\varphi}_t(x)\}\subset T^*X,$$

and

$$\widetilde{f}_h(t) = \widetilde{b}_t e^{\frac{i}{h}\widetilde{\varphi}_t} + O(h).$$

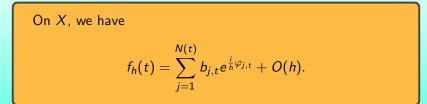
Ideas of the proof (1): the WKB method

If (\tilde{X}, \tilde{g}) is a simply connected manifold of negative curvature, and if $\tilde{f}_h = \tilde{b}e^{\frac{i}{h}\tilde{\varphi}}$ is a Lagrangian state with $\tilde{\varphi}$ TSD, then for any tlarge enough,

$$\Phi^t({x,\partial \tilde{\varphi}(x)}) = {x,\partial \tilde{\varphi}_t(x)} \subset T^*X,$$

and

$$\widetilde{f}_h(t) = \widetilde{b}_t e^{\frac{i}{h}\widetilde{\varphi}_t} + O(h).$$



Ideas of the proof (2): Genericity implies irrationality

From now on, we work in a local chart around a point x_1 , and pretend we are in \mathbb{R}^d . Let us write, for $x_1 \in X$, $\xi_{i,t}^{x_1} := \partial \varphi_{j,t}(x_1)$.

Ideas of the proof (2): Genericity implies irrationality

From now on, we work in a local chart around a point x_1 , and pretend we are in \mathbb{R}^d . Let us write, for $x_1 \in X$, $\xi_{i,t}^{x_1} := \partial \varphi_{j,t}(x_1)$.

Lemma

There exists a G_{δ} -dense set $\widetilde{Z}_{\Omega,TSD}^{(\lambda_1,\lambda_2)} \subset Z_{\Omega,TSD}^{(\lambda_1,\lambda_2)}$ such that, for all $\varphi \in \widetilde{Z}_{\Omega,TSD}^{(\lambda_1,\lambda_2)}$, the following holds. For all $t \in \mathbb{R}$ and for almost every $x_1 \in X$, the vectors $(\xi_{j,t}^{x_1})_{j=1,\ldots,N(t)}$ are rationally independent.

Proof: Thom's transversality lemma

Ideas of the proof (2): Genericity implies irrationality

From now on, we work in a local chart around a point x_1 , and pretend we are in \mathbb{R}^d . Let us write, for $x_1 \in X$, $\xi_{i,t}^{x_1} := \partial \varphi_{j,t}(x_1)$.

Lemma

There exists a G_{δ} -dense set $\widetilde{Z}_{\Omega,TSD}^{(\lambda_1,\lambda_2)} \subset Z_{\Omega,TSD}^{(\lambda_1,\lambda_2)}$ such that, for all $\varphi \in \widetilde{Z}_{\Omega,TSD}^{(\lambda_1,\lambda_2)}$, the following holds. For all $t \in \mathbb{R}$ and for almost every $x_1 \in X$, the vectors $(\xi_{j,t}^{x_1})_{j=1,\ldots,N(t)}$ are rationally independent.

Proof: Thom's transversality lemma and a bit of work...

Ideas of the proof (3): Working locally

Let $\alpha < \frac{1}{2}$. We will study the distribution of $f_h(x_0)$ with x_0 chosen at random in $B(x_1, Rh^{\alpha})$.

$$egin{aligned} f_h(x_1+h^lpha x;t) &= \sum_{j=1}^{N(t)} b_{j,t}(x_1+h^lpha x) e^{rac{i}{h} arphi_{j,t}(x_1+h^lpha x)} + O(h) \ &= \sum_{j=1}^{N(t)} b_{j,t}(x_1) e^{rac{i}{h} arphi_{j,t}(x_1)+ih^{lpha-1} x \cdot \xi_{j,t}^{ ext{x1}}} + o(1). \end{aligned}$$

Ideas of the proof (3): Working locally

Let $\alpha < \frac{1}{2}$. We will study the distribution of $f_h(x_0)$ with x_0 chosen at random in $B(x_1, Rh^{\alpha})$.

$$egin{aligned} f_h(x_1+h^lpha x;t) &= \sum_{j=1}^{N(t)} b_{j,t}(x_1+h^lpha x) e^{rac{i}{\hbar} arphi_{j,t}(x_1+h^lpha x)} + O(h) \ &= \sum_{j=1}^{N(t)} b_{j,t}(x_1) e^{rac{i}{\hbar} arphi_{j,t}(x_1) + ih^{lpha - 1} x \cdot \xi_{j,t}^{x_1}} + o(1). \end{aligned}$$

Here, $h^{\alpha-1}x$ is chosen at random in the big ball $B(0, h^{\alpha-1}R)$. By ergodicity, this will converge weakly, as $h \to 0$ to

$$\sum_{j=1}^{N(t)} |b_{j,t}(x_1)| e^{i\theta_j},$$

where the θ_j are independent, uniform in $[0, 2\pi)$.

End of the proof

•
$$\sum_{j=1}^{N(t)} |b_{j,t}(x_0)| e^{i\theta_j}$$
 behaves asymptotically as the Gaussian of variance $\sum_{j=1}^{N(t)} |b_{j,t}(x_0)|^2$.

End of the proof

- $\sum_{j=1}^{N(t)} |b_{j,t}(x_0)| e^{i\theta_j}$ behaves asymptotically as the Gaussian of variance $\sum_{j=1}^{N(t)} |b_{j,t}(x_0)|^2$.
- Using ergodicity of the geodesic flow, one can show that $\sum_{j=1}^{N(t)} |b_{j,t}(x_0)|^2$ goes to $||b||_{L^2}$.

How Lagrangian states evolve into random waves

Chaotic propagation of Lagrangian states

Thank you for your attention!