Exponential mixing of geodesic flows for geometrically finite manifolds with cusps

Jialun LI

University of Zurich
Joint with Wenyu Pan (University of Chicago)

Setting and some basics

- \mathbb{H}^{n} hyperbolic n-space
- $\Gamma<$ Isom $_{+}\left(\mathbb{H}^{n}\right)$ torsion-free discrete subgroup
- $\Lambda(\Gamma)$ limit set of Γ
- the set of accumulation points of $\Gamma \cdot o\left(o \in \mathbb{H}^{n}\right)$
- $\subset \partial \mathbb{H}^{n}$
- $\operatorname{Hull}(\Gamma)$ smallest convex subset in \mathbb{H}^{n} which contains all the geodesics connecting any two points in $\Lambda(\Gamma)$
- convex core C_{Γ} of $\Gamma=\Gamma \backslash \operatorname{Hull}(\Gamma) \subset \Gamma \backslash \mathbb{H}^{n}$

Γ is called geometrically finite if $\operatorname{Vol}\left(1-\mathrm{nbh}\right.$ of $\left.C_{\Gamma}\right)<\infty$

Example
$\mathbb{H}^{2}, \quad I_{\text {som }}^{+}\left(H^{2}\right)=$ PSt $_{2}(\mathbb{R})$

Assume Γ geometrically finite

- Patterson-Sullivan measures (PS measures) $\left\{\mu_{x}\right\}_{x \in \mathbb{H}^{n}}$ a family of finite measures on $\Lambda(\Gamma)$

- Bowen-Margulis-Sullivan measure on $\mathrm{T}^{1}\left(\Gamma \backslash \mathbb{H}^{n}\right)$ (Hopf parametrization)

$v=\left(v^{+}, v^{-}, t\right)$

$$
\begin{aligned}
& \left(\partial \mathbb{H}^{n} \times \partial \mathbb{H}^{n} \backslash \Delta\right) \times \mathbb{R} \rightarrow \mathrm{T}^{1}\left(\mathbb{H}^{n}\right) \\
& T^{\prime}\left(H^{n}\right): d_{m}^{m u s}=\frac{d u_{x}\left(v^{+}\right) d u_{x}\left(v^{-}\right) d t}{D\left(v^{+}, v^{-}\right)^{\delta_{T}}} \\
& \mu_{x} \text { is } \Gamma \text {-quadsi } \text { inv } \\
& \delta_{p} \text { : critical exponent } \\
& T^{\prime}\left(T \mid H^{n}\right): d m^{B M S}
\end{aligned}
$$

Thm(Sullivan, Otal-Peigné) m^{BMS} is the unique measure supported on the nonwandering set for the geodesic flow which has the maximal entropy.

Main result

- \mathbb{H}^{n}
- $\Gamma<\operatorname{Isom}_{+}\left(\mathbb{H}^{n}\right)$ geometrically finite with parabolic elements
- $\mathrm{T}^{1}\left(\Gamma \backslash \mathbb{H}^{n}\right) \circlearrowleft$ geodesic flow $\mathcal{G}_{t}, m^{\text {BMS }}$

Thm (L-Pan) There exists $\eta>0$ such that for any $u, v \in C^{1}\left(\mathrm{~T}^{1}\left(\Gamma \backslash \mathbb{H}^{n}\right)\right)$, we have

$$
\begin{aligned}
& \int_{\mathrm{T}^{1}\left(\Gamma \backslash \mathbb{H}^{n}\right)} u\left(\mathcal{G}_{t} x\right) v(x) d m^{\mathrm{BMS}}(x) \\
= & \int_{\mathrm{T}^{1}\left(\Gamma \backslash \mathbb{H}^{n}\right)} u d m^{\mathrm{BMS}}(x) \int_{\mathrm{T}^{1}\left(\Gamma \backslash \mathbb{H}^{n}\right)} v d m^{\mathrm{BMS}}+O\left(\|u\|_{C^{1}}\|v\|_{C^{1}} e^{-\eta t}\right) .
\end{aligned}
$$

Some history

- Rudolph proved the geodesic flow is mixing
- Γ convex cocompact: Naud, Stoyanov, Sarkar-Winter; built on Dolgopyat's framework
- Γ geometrically finite and $\delta_{\Gamma}>\frac{n-1}{2}$: Mohammadi-Oh (frame flow), Edwards-Oh

Application: resonance free region

Lax-Phillips: Δ negative of the Laplace operator on $\Gamma \backslash \mathbb{H}^{n}$

- $\delta_{\Gamma}>\frac{n-1}{2}$: there are finitely many eigenvalues of Δ on $L^{2}\left(\Gamma \backslash \mathbb{H}^{n}\right)$ in the interval $\left[\delta_{\Gamma}\left(n-1-\delta_{\Gamma}\right),(n-1)^{2} / 4\right) \rightarrow$ representation theory
- $\delta_{\Gamma} \leq \frac{n-1}{2}: \mathrm{L}^{2}$-spectrum of Δ is purely continuous
$\delta_{\Gamma} \leq \frac{n-1}{2}$: Resolvent \mathcal{R}_{s} of Δ

$$
\mathcal{R}_{s}=(\Delta-s(n-1-s))^{-1}
$$

for $s \in \mathbb{C}$ with $\Re s>\frac{n-1}{2}$

- \mathcal{R}_{s} has a meromorphic continuation to \mathbb{C} : convex-compact (Mazzeo-Melrose), geometrically finite (Guillarmou-Mazzeo)
- (Patterson) $\Gamma\left(s-\frac{n-1}{2}+1\right) \mathcal{R}_{s}$ has a simple pole at δ_{Γ} and no further poles on $\operatorname{Re} s=\delta_{\Gamma}$

- Using exponential mixing of the geodesic flow, \mathcal{R}_{s} has no poles in the strip $\delta_{\Gamma}-\epsilon<\operatorname{Re} s<\delta_{\Gamma}$
- Effective orbit counting $\#\{\gamma \in \Gamma: d(x, \gamma y)<T\}$ (mixing \rightarrow orbit counting: Margulis; Roblin (geo. fin.), Oh-Winter+Mohammadi-Oh)
- Meromorphic extension of the Poincaré series

$$
P(s, x, y)=\sum_{\gamma} e^{-s d(x, \gamma y)}
$$

- (Guillarmou-Mazzeo) relate $P(s, x, y)$ with \mathcal{R}_{s}

Ideas of the proof

- Code the geodesic flow
- Prove a Dolgopyat-like spectral estimate for the corresponding transfer operator: Dolgopyat, Baladi-Vallée, Avila-Gouëzel-Yoccoz, Araújo-Melbourne, Naud, Stoyanov (non-wandering set of the geodesic flow is a fractal set: non-integrability condition; how to get the contraction of transfer operator)

Coding
Γ geometrically finite
$\Lambda(\Gamma)=\Lambda_{r} \sqcup \Lambda_{b p}$

- A parabolic fixed point $\xi \in \Lambda(\Gamma)$ is said to be bounded if

$$
\operatorname{Stab}_{\Gamma}(\xi) \backslash \Lambda(\Gamma)-\{\xi\}
$$

is compact.
\mathbb{H}^{3}, ∞ bounded parabolic fixed pt, $T_{\infty}=S+a b_{\Gamma}(\infty)$
(i) rank 2, $\Gamma_{\infty} \cong \mathbb{Z}^{2}$ up to a fruit
(ii) rank 1, $T_{\infty} \cong \mathbb{Z}$ index subsp

Coding

- \mathbb{H}^{3}
- $\Gamma \backslash \mathbb{H}^{3}$ has one full rank cusp
- ∞ : a representative
- Intuitive idea: Poincaré section Λ for the geodesic flow

- unstable horosphere based a ∞

$$
\text { - } \Gamma_{\infty}=S_{\text {tab }}(\infty)
$$

- Poincare section Λ : thickening of Z^{u} in the stable direction
- Reduction:

$$
\begin{aligned}
& \qquad\left(Z^{u} \times \mathbb{R} /\langle R\rangle \text {, suspension flow, } \nu^{R}\right) \\
& \text { Avila-Gouizel-Yoccoz, } \uparrow \\
& \text { Araíjo-Mel bourne } \\
& \left(\Lambda \times \mathbb{R} /\langle R\rangle, \text { suspension flow, } \hat{\nu}^{R}\right) \\
& \text { factor } \downarrow \Phi: \Phi_{*} \hat{v}^{R}=m^{B M S}, \Phi_{\text {。 Suspension }}, g_{t} \circ \text { flow }^{\left(T^{1}\left(\Gamma \backslash \mathbb{H}^{3}\right), \mathcal{G}_{t}, m^{\text {EMS }}\right)}
\end{aligned}
$$

Proposition There are constants $C>0, \lambda \in(0,1)$, a countable collection of disjoint, open subsets $\Delta_{j} \subset \Delta_{0}$ and an expanding map T defined on the union $\sqcup_{j} \Delta_{j}$ such that:

1. $\sum_{j} \mu\left(\Delta_{j}\right)=\mu\left(\Delta_{0}\right)$.
2. For each j, there exists $\gamma_{j} \in \Gamma$ such that $\Delta_{j}=\gamma_{j} \Delta_{0}$ and $\left.T\right|_{\Delta_{j}}=\gamma_{j}^{-1}$.
3. For each γ_{j}, it is a uniform contraction: $\left|\gamma_{j}^{\prime}(x)\right| \leq \lambda$ for all $x \in \Delta_{0}$.
4. For each $\gamma_{j},\left|\left(\log \left|\gamma_{\mathbf{j}}^{\prime}\right|\right)^{\prime}(x)\right|_{\infty}<C$ for all $x \in \Delta_{0}$.
5. (Exponential tail) Let R be the roof function given by
 $R(x)=\log \left|T^{\prime}(x)\right|$ for $x \in \Delta_{0}$. There exists $\epsilon_{0}>0$ such that

$$
\int_{\boldsymbol{\Delta}_{\boldsymbol{\circ}}} e^{\epsilon_{0} R} d \mu<\infty
$$

horosphere
T-orbict
Δ 。

"nice" partition to Z^{u} (Lai-Sang Young, Burns-Masur-Matheus-Wilkinson)

$$
\Delta_{j}=\gamma \gamma, \Delta_{0}
$$

partition to nbhd of P
 $2 \mathrm{HH}^{3}$

Issue about the boundary

Not be too greedy, need to wait for the right time to eat the "flower"

Refined Version

- $\Omega_{0}=Z^{u}, \Omega_{n}$
- $\Omega_{n+1}=\Omega_{n}-\bigcup_{p \in P_{n+1}}$ \&
- $P_{n+1}=\left\{p\right.$ parabolic fixed pts in $\Delta_{0}: \eta h_{p} \in$ $\left.\left(h_{n+1}, h_{n}\right], B\left(p, \eta h_{p}\right) \subset \Omega_{n}, d\left(p, \partial \Omega_{n}\right)>h_{n} / 4 \eta\right\}$

Separation between parabolic fixed points

Lemma For any two different parabolic fixed points p, p^{\prime}, we have

$$
d\left(p, p^{\prime}\right)>\sqrt{h_{p} h_{p^{\prime}}^{t}}
$$

$$
\begin{aligned}
& \quad h_{p} \approx h_{p^{\prime}} \\
& \geqslant \sqrt{h_{p} h_{p^{\prime}}}-\eta h_{p}-\eta h_{p^{\prime}} \\
& \approx h_{p}-2 \eta h_{p}
\end{aligned}
$$

Recurrence of the geodesic flow

For a point x in $\Lambda_{\Gamma} \cap \Delta_{0}$, you can always find a flower containing it, even after zooming in.

There are three main ingredients in the construction of the coding:

- recurrence of the geodesic flow
- separation between parabolic fixed points
- doubling and friendliness of Patterson-Sullivan measure

Thank you!

