Exponential mixing of geodesic flows for geometrically finite manifolds with cusps

Jialun LI

University of Zurich

Joint with Wenyu Pan (University of Chicago)

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Setting and some basics

- \mathbb{H}^n hyperbolic *n*-space
- Γ < Isom₊(ℍⁿ) torsion-free discrete subgroup
- $\Lambda(\Gamma)$ limit set of Γ
 - the set of accumulation points of $\Gamma \cdot o \ (o \in \mathbb{H}^n)$
 - $\triangleright \subset \partial \mathbb{H}^n$
- Hull(Γ) smallest convex subset in Hⁿ which contains all the geodesics connecting any two points in Λ(Γ)
- convex core C_{Γ} of $\Gamma = \Gamma \setminus \operatorname{Hull}(\Gamma) \subset \Gamma \setminus \mathbb{H}^n$

 Γ is called geometrically finite if ${\rm Vol}(1{\text -}{\rm nbhd} \text{ of } C_{\Gamma}) < \infty$

Example

 $|H^2$, $I_{50m+}(|H^2) = PSL_2(|R)$

Assume Γ geometrically finite

Patterson-Sullivan measures (PS measures) {μ_x}_{x∈ℍⁿ} a family of finite measures on Λ(Γ)

 Bowen-Margulis-Sullivan measure on T¹(Γ\ℍⁿ) (Hopf parametrization)

$$(\partial \mathbb{H}^{n} \times \partial \mathbb{H}^{n} \setminus \Delta) \times \mathbb{R} \to T^{1}(\mathbb{H}^{n})$$
$$T'(\mathbb{H}^{n}) : d_{m}^{m} \mathbb{B}^{MS} = \frac{d\mu_{x}(v^{*}) d\mu_{x}(v^{*}) dt}{D(v^{*}, v^{*})^{\delta_{n}}}$$
$$\mu_{x} \text{ is } T^{1} - quasi \cdot inv$$
$$\delta_{T}: \text{ critical exponent}$$
$$e^{\int_{T} T^{1}} T'(n \setminus \mathbb{H}^{n}): d_{m} \mathbb{B}^{MS} D(v^{*}, v^{*}): visual distance$$
$$\frac{Thm(Sullivan, Otal-Peigné) m^{BMS} \text{ is the unique measure}$$
supported on the nonwandering set for the geodesic flow which has the maximal entropy.

Main result

 $\blacktriangleright \mathbb{H}^n$

- Γ < Isom₊(ℍⁿ) geometrically finite with parabolic elements
- $\mathrm{T}^1(\Gamma \setminus \mathbb{H}^n) \circlearrowleft$ geodesic flow \mathcal{G}_t , m^{BMS}

<u>Thm</u> (L-Pan) There exists $\eta > 0$ such that for any $u, v \in C^1(T^1(\Gamma \setminus \mathbb{H}^n))$, we have

$$\int_{\mathrm{T}^{1}(\Gamma \setminus \mathbb{H}^{n})} u(\mathcal{G}_{t}x)v(x)dm^{\mathrm{BMS}}(x)$$
$$= \int_{\mathrm{T}^{1}(\Gamma \setminus \mathbb{H}^{n})} udm^{\mathrm{BMS}}(x) \int_{\mathrm{T}^{1}(\Gamma \setminus \mathbb{H}^{n})} vdm^{\mathrm{BMS}} + O(\|u\|_{C^{1}}\|v\|_{C^{1}}e^{-\eta t}).$$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Some history

- Rudolph proved the geodesic flow is mixing
- Γ convex cocompact: Naud, Stoyanov, Sarkar-Winter; built on Dolgopyat's framework

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

► Γ geometrically finite and δ_Γ > ⁿ⁻¹/₂: Mohammadi-Oh (frame flow), Edwards-Oh

Application: resonance free region

Lax-Phillips: Δ negative of the Laplace operator on $\Gamma \backslash \mathbb{H}^n$

► $\delta_{\Gamma} > \frac{n-1}{2}$: there are finitely many eigenvalues of Δ on $L^2(\Gamma \setminus \mathbb{H}^n)$ in the interval $[\delta_{\Gamma}(n-1-\delta_{\Gamma}), (n-1)^2/4) \rightarrow$ representation theory

(日) (日) (日) (日) (日) (日) (日)

▶
$$\delta_{\Gamma} \leq \frac{n-1}{2}$$
: L²-spectrum of Δ is purely continuous

$$\delta_{\Gamma} \leq \frac{n-1}{2}$$
: Resolvent \mathcal{R}_s of Δ
 $\mathcal{R}_s = (\Delta - s(n-1-s))^{-1},$ for $s \in \mathbb{C}$ with $\Re s > \frac{n-1}{2}$

R_s has a meromorphic continuation to C: convex-compact (Mazzeo-Melrose), geometrically finite (Guillarmou-Mazzeo)

Patterson) Γ(s − n−1/2 + 1)R_s has a simple pole at δ_Γ and no further poles on Re s = δ_Γ

Using exponential mixing of the geodesic flow, *R_s* has no poles in the strip δ_Γ − ε < Re s < δ_Γ

87-E1 Sp

- ► Effective orbit counting $\#\{\gamma \in \Gamma : d(x, \gamma y) < T\}$ (mixing \rightarrow orbit counting: Margulis; Roblin (geo. fin.), Oh-Winter+Mohammadi-Oh)
- Meromorphic extension of the Poincaré series $P(s, x, y) = \sum_{\gamma} e^{-sd(x, \gamma y)}$
- (Guillarmou-Mazzeo) relate P(s, x, y) with \mathcal{R}_s

Ideas of the proof

- Code the geodesic flow
- Prove a Dolgopyat-like spectral estimate for the corresponding transfer operator: Dolgopyat, Baladi-Vallée, Avila-Gouëzel-Yoccoz, Araújo-Melbourne, Naud, Stoyanov (non-wandering set of the geodesic flow is a fractal set: non-integrability condition; how to get the contraction of transfer operator)

Coding

- Γ geometrically finite
 - $\blacktriangleright \Lambda(\Gamma) = \Lambda_r \sqcup \Lambda_{bp}$
 - A parabolic fixed point $\xi \in \Lambda(\Gamma)$ is said to be bounded if

$$\operatorname{Stab}_{\Gamma}(\xi) \setminus \Lambda(\Gamma) - \{\xi\}$$

```
is compact.

IH<sup>3</sup>, \infty bounded parabolic fixed pt, T_{\infty} = \operatorname{Stab}_{P}(\infty)

(i) rank 2, T_{\infty} \cong \mathbb{Z}^{2} up to a finite (ii) rank 1, T_{\infty} \cong \mathbb{Z}

index subgp
```


◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Coding

- \blacktriangleright \mathbb{H}^3
- $\blacktriangleright \ \Gamma \backslash \mathbb{H}^3$ has one full rank cusp
- \blacktriangleright ∞ : a representative
- \blacktriangleright Intuitive idea: Poincaré section Λ for the geodesic flow

suspension
$$\Lambda \times \mathbb{R}/\langle r \rangle \to T^1(\Gamma \setminus \mathbb{H}^3)$$
 9 geodesic flow:
space

Poincaré section Λ : thickening of Z^u in the stable direction

Reduction:

$$(Z^{u} \times \mathbb{R}/\langle R \rangle, \text{suspension flow}, \nu^{R})$$
Avila-Gouèzel-Yoccoz,
Aralijo-Mel bourne

$$(\Lambda \times \mathbb{R}/\langle R \rangle, \text{ suspension flow}, \hat{\nu}^{R})$$
factor
$$\underline{q}: \underline{q}, \hat{\nu}^{R} = m^{BMS}, \underline{q} \circ \text{ suspension}$$

$$(T^{1}(\Gamma \setminus \mathbb{H}^{3}), \mathcal{G}_{t}, m^{BMS}) = \underline{q}_{t} \circ \underline{q}$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ●

Proposition There are constants C > 0, $\lambda \in (0, 1)$, a countable collection of disjoint, open subsets $\Delta_j \subset \Delta_0$ and an expanding map T defined on the union $\sqcup_j \Delta_j$ such that:

1.
$$\sum_{j} \mu(\Delta_j) = \mu(\Delta_0).$$

- 2. For each *j*, there exists $\gamma_j \in \Gamma$ such that $\Delta_j = \gamma_j \Delta_0$ and $T|_{\Delta_j} = \gamma_j^{-1}$.
- 3. For each γ_j , it is a uniform contraction: $|\gamma'_j(x)| \le \lambda$ for all $x \in \Delta_0$.
- 4. For each γ_j , $|(\log |\gamma'_j|)'(x)|_{\infty} < C$ for all $x \in \Delta_0$.
- 5. (Exponential tail) Let *R* be the roof function given by $R(x) = \log |T'(x)|$ for $x \in \Delta_0$. There exists $\epsilon_0 > 0$ such that

$$\int_{\mathbf{\Delta}_{\mathbf{0}}} e^{\epsilon_0 R} d\mu < \infty.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Issue about the boundary

Not be too greedy, need to wait for the right time to eat the "flower"

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Refined Version

$$\begin{array}{l} \blacktriangleright \ \Omega_0 = Z^u, \ \Omega_n \\ \blacktriangleright \ \Omega_{n+1} = \ \Omega_n - \bigcup_{\textbf{P} \in \textbf{P}_{n+1}} & \\ \blacktriangleright \ P_{n+1} = \{p \text{ parabolic fixed pts in } \Delta_0 : \ \eta h_p \in \\ (h_{n+1}, h_n], \ B(p, \eta h_p) \subset \Omega_n, \ d(p, \partial \Omega_n) > h_n/4\eta \} \end{array}$$

Separation between parabolic fixed points

<u>Lemma</u> For any two different parabolic fixed points p, p', we have

$$d(p,p') > \sqrt{h_p h_p^{\sharp}}$$

Recurrence of the geodesic flow

For a point x in $\Lambda_{\Gamma} \cap \Delta_0$, you can always find a flower containing it, even after zooming in.

There are three main ingredients in the construction of the coding:

- recurrence of the geodesic flow
- separation between parabolic fixed points
- doubling and friendliness of Patterson-Sullivan measure

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Thank you!

▲□▶▲□▶▲□▶▲□▶ □ のQ@