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Introduction

In all this talk, (X, G) will be a smooth (C°°), compact, connected,
oriented and Riemannian surface which has no boundary and which has
negative curvature (a priori non constant).
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Let ¢; and ¢ be two points in X and set?

P i= {7 : geodesic arcs joining ¢; and ¢} .

Theorem (Delsarte (1942), Huber (1959), Margulis (1969))

There exists A¢, c, > 0 such that, as T — +oo,

Nt(c, @) = {7 €Pae: 0<(y) < T} ~ Aq,CzeTh'oP’

where {(7y) is the length of v and hyop > 0 is the topological entropy of
the geodesic flow.

In constant curvature K = —1, hyop = 1. Otherwise take this Theorem as
a definition of hp !

1. Geodesic arcs are parametrized by arc-length.
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» In variable curvature, related to the mixing properties of the
Bowen-Margulis measure (Margulis).

» For more informations on the behaviour of N7(c1, ¢2) and its
applications, see the survey of Parkkonen and Paulin (LMS Lecture
notes 425, 2016).
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Poincaré series as zeta renormalization of N7(ci, ) ‘

Let s € C and set

Nt(c1,c,8) = Z e ),

YEPey,cn: 0<U(y)ST

Thanks to Margulis Theorem, the Poincaré series

Noo(cr, c2,8) := _lim Ny(c,c,8) = Z o5t

T—+o0
YEPey ez £(7)>0

defines a holomorphic function in the half plane

{w € C:Re(w) > hop} -
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» ifc; = ¢, one has
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Comments and related results

In the case of constant curvature K = —1, it is plausible that the
result can be recovered using the relation with the Laplacian.

In the case of constant curvature K = —1, Paternain proved
(2000) :
. 472 x(X)
| N- dvol dvol = —==_7
Aim - 7(c1, e, 5)dvolg(c1)dvolg(c2) e

Similar results for Ruelle zeta functions which “count periodic
orbits” (Selberg, Smale, Ruelle, Rugh, Fried, Kitaev, Baladi-Tsujii,
Giulietti-Liverani-Pollicott, Dyatlov-Zworski, Faure-Tsujii,
Dyatlov-Guillarmou, Jezequel, etc.)
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Meromorphic continuation of Poincaré series

Denote the geodesic flow by ¢! : $*X — S*X. To a point ¢ € X, we can
associate the following curve :

S:X = {(c,p) € TIX : [Ipl = 1} € S°X.

For v € Pe,,c,, one has

P ON(SEX)NSLX # 0.
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Write, for T > 0,

[T (SX)] = ¢~ T [SEX]

.
(5:X] = [ Lve e [s:X]e
0

.
- [S:X]—/ (diy + v d)p[SX]dt
0



For ¢ € Q1(S5*X), we set

L sexinwe= [ v

Write, for T > 0,

[p"(S:X)] = ¢~ T*[S:X]

;
[SEX] —/ Ly~ [SEX]dt
0

;
[S:X]—/ (dev + wvd)e™[SE X]dt
0

[SeX]—d (/TLvso‘f*[S:X]dt> .



The current .
Ry = —/ Ly [SEX]dt
0

represents the integration on the surface

{of(x) :xeSiXand0<t< T} CS*X.

SiX

Se, X

oT(S: X)



Proposition
Let ¢ and ¢ be two points in X and let T > 0. Then, one has

.
Nt 6,8) = — / [S2X] A / ey [SE X]dt.
S*X 0




Proposition
Let ¢ and ¢ be two points in X and let T > 0. Then, one has

.
Nt 6,8) = — / [S2X] A / ey [SE X]dt.
S*X 0

Formally, we can then let T — +o00 :

—+o0
Nuo(c1,c,8) = —/ [S:ZX]/\/ e Ly Sk X]dt
S*X 0



Proposition
Let ¢ and ¢ be two points in X and let T > 0. Then, one has

.
Nt 6,8) = — / [S2X] A / ey [SE X]dt.
S*X 0

Formally, we can then let T — +o00 :

—+o0
Nuo(c1,c,8) = —/ [S:ZX]/\/ e Ly Sk X]dt
S*X 0

+o0
- / [SEX] Aty ( / eStet‘C"dt) [52X]
S*X 0



Proposition
Let ¢ and ¢ be two points in X and let T > 0. Then, one has

.
Nt 6,8) = — / [S2X] A / ey [SE X]dt.
S*X 0

Formally, we can then let T — +o00 :

—+o0
Nuo(c1,c,8) = —/ [S:ZX]/\/ e Ly Sk X]dt
S*X 0

+o0
- / [SEX] Aty ( / eStet‘C"dt) [52X]
S*X 0

Noo(cr, c0,5) = —/S*X[S;;X]/\Lv(ﬁv+s)‘1[5:1X].
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Hence, formally, we need to understand the meromorphic continuation of
(»Cv + 5)71

when acting on certain singular objects (here [S} X]).

Part 1 of our Theorem follows if we have the meromorphic continuation
of the spectral resolvent

seCw (Ly +s)t

on appropriate Banach spaces of currents.

~+ Related to the sudy of transfer operators in dynamical systems.
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~s Non exhaustive list...
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’ Behaviour at s =0 ‘

Noo(c1, c2,8) = —/ [S:ZX]/\LV(EV—%S)*:[[S;X]‘
S5 X

A key ingredient is the precise description of the spectral projector 7
on the eigenvalue 0 made by Dyatlov-Zworski (2017) :

(Ly +s) = ? + holomorphic remainder as s — 0.

Moreover, they describe Ran(mg) in terms of generators of the De Rham
cohomology.
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Using this result and the fact that [S?X] is exact 2, one finds
mo([SEX]) = 0.

Thus, one has

Noo(et,62,0) = — / [S5X] A s LM [SEX]
S*X

Write now

[S:X] = (dey + evd) Ly [SEX] = d (v Ly, [SEX]) = dR.

In summary, the value at 0 is given by :

Noo(e1,6,0) = —/ [SLX]A R, = —L(c1, c2).
S*X

2. To be explained in a couple of slides.
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’The value at 0 as the linking of two knots‘

One has
[SiX]=dR. and aA[S:X]=0,

where « is the contact 1-form on S*X.

We say that S7X is a Legendrian knot in S*X.
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L(C1,C2) = /S*X[S:ZX] ARe = —m.

is the linking number of SZ X and S X.
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’ How to compute L(cy, c2) ?‘

Suppose that ¢; # ¢;. Let f be a smooth Morse function all of whose
critical points are distinct from ¢;.

s={ (o yigfy) o e} e 5°x

By Stokes formula,

dis|=— > (~1)"C[s;X].

aeCrit(f)

Set

Implicitely, this shows that [S;X] is exact.
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One can write

1= [ Islnlsix

/ [S] A dRs
S*X

/ d[S] A R,
S*X
_ __1)\ind(a) *
> )™ [ [six1AR,

a€Crit(f)

= = Y (-1)™OL(q,a)

aeCrit(f)
= —X(X)L(Cl, C2).



|A more general picture|

Let ¢; and c; in 71 (X). If ¢; is nontrivial, one can find an unique
geodesic ¢; in the conjugacy class of ¢; € m1(X). We say that it is a
geodesic representative of c;.
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Let ¢; and c; be two elements in 71(X) and let ¢; and ¢, be two of their
geodesic representatives in X. Set

Pe.co := {geodesic arcs joining ¢; and ¢, and directly L to ¢; and 2} .
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Theorem (Dang-Riviére, 2020)

Let ¢; and c; be two elements in w1(X) and let ¢; and ¢, be two of their
geodesic representatives in X. Then,

» the map

s = Noo(car, 62, 8) = Z e stM)

YEPey cpt £(7)>0

has a meromorphic continuation to C;

» ifcy and ¢y are trivial in Hy(X,Z), then

‘x(X)Noo(cl, ©,0) € Z, ‘

> in that case, No(c1, 2, 0) is the linking number of the unit
(direct) conormal bundles of c¢; and c;.
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Comments.

» When ¢; and ¢, are both nontrivial in 71 (X), the linking number we
obtain is also the linking number of the closed orbits lifting ¢;
and ¢ in $*X.

~~ Related results on the modular surface (Ghys,
Duke-Immamoglu-Toth) and for suspension of toral automorphisms
(Bergeron-Charollois-Garcia-Venkatesh).

» There is an explicit expression for the linking number of ¢; and ¢,
in terms of Euler characteristics :

FNoo(c1,€2,0) = X(X(C})();?()X(%))

—X(X(e)X (@) 3x(ane)



Conclusion

» Poincaré series can be meromorphically continued in any dimensions.



Conclusion

» Poincaré series can be meromorphically continued in any dimensions.

» In dimension 2, their value at 0 can be interpreted as a certain
linking number.



Conclusion

» Poincaré series can be meromorphically continued in any dimensions.

» In dimension 2, their value at 0 can be interpreted as a certain
linking number.

> In the arithmetic framework, similar phenomena occur for Dirichlet
series (Duke et al. 2017) and L-functions (Bergeron et al. 2018).
Relation with these results?



Conclusion

Poincaré series can be meromorphically continued in any dimensions.

In dimension 2, their value at 0 can be interpreted as a certain
linking number.

In the arithmetic framework, similar phenomena occur for Dirichlet
series (Duke et al. 2017) and L-functions (Bergeron et al. 2018).
Relation with these results?

What about higher dimensions ? Probably a pole when the
dimension is odd.



Conclusion

Poincaré series can be meromorphically continued in any dimensions.

In dimension 2, their value at 0 can be interpreted as a certain
linking number.

In the arithmetic framework, similar phenomena occur for Dirichlet
series (Duke et al. 2017) and L-functions (Bergeron et al. 2018).
Relation with these results?

What about higher dimensions ? Probably a pole when the
dimension is odd.

What can be extracted using the spectral decomposition of the
Laplacian?



Thank you for your attention.



