Poincaré series and linking of Legendrian knots Joint work with Nguyen Viet Dang (Université Lyon 1)

Gabriel Rivière

Université de Nantes
November, 12th 2020

Introduction

In all this talk, (X, G) will be a smooth $\left(\mathcal{C}^{\infty}\right)$, compact, connected, oriented and Riemannian surface which has no boundary and which has negative curvature (a priori non constant).

Let c_{1} and c_{2} be two points in X and set ${ }^{1}$

$$
\mathcal{P}_{c_{1}, c_{2}}:=\left\{\gamma: \text { geodesic arcs joining } c_{1} \text { and } c_{2}\right\} .
$$

1. Geodesic arcs are parametrized by arc-length.

Let c_{1} and c_{2} be two points in X and set ${ }^{1}$

$$
\mathcal{P}_{c_{1}, c_{2}}:=\left\{\gamma: \text { geodesic arcs joining } c_{1} \text { and } c_{2}\right\} .
$$

Theorem (Delsarte (1942), Huber (1959), Margulis (1969)) There exists $A_{c_{1}, c_{2}}>0$ such that, as $T \rightarrow+\infty$,

$$
\mathcal{N}_{T}\left(c_{1}, c_{2}\right):=\left|\left\{\gamma \in \mathcal{P}_{c_{1}, c_{2}}: 0<\ell(\gamma) \leq T\right\}\right| \sim A_{c_{1}, c_{2}} e^{T h_{\text {top }}}
$$

Let c_{1} and c_{2} be two points in X and set ${ }^{1}$

$$
\mathcal{P}_{c_{1}, c_{2}}:=\left\{\gamma: \text { geodesic arcs joining } c_{1} \text { and } c_{2}\right\} .
$$

Theorem (Delsarte (1942), Huber (1959), Margulis (1969)) There exists $A_{c_{1}, c_{2}}>0$ such that, as $T \rightarrow+\infty$,

$$
\mathcal{N}_{T}\left(c_{1}, c_{2}\right):=\left|\left\{\gamma \in \mathcal{P}_{c_{1}, c_{2}}: 0<\ell(\gamma) \leq T\right\}\right| \sim A_{c_{1}, c_{2}} e^{T h_{\text {top }}},
$$

where $\ell(\gamma)$ is the length of γ and $h_{\text {top }}>0$ is the topological entropy of the geodesic flow.

Let c_{1} and c_{2} be two points in X and set ${ }^{1}$

$$
\mathcal{P}_{c_{1}, c_{2}}:=\left\{\gamma: \text { geodesic arcs joining } c_{1} \text { and } c_{2}\right\} .
$$

Theorem (Delsarte (1942), Huber (1959), Margulis (1969)) There exists $A_{c_{1}, c_{2}}>0$ such that, as $T \rightarrow+\infty$,

$$
\mathcal{N}_{T}\left(c_{1}, c_{2}\right):=\left|\left\{\gamma \in \mathcal{P}_{c_{1}, c_{2}}: 0<\ell(\gamma) \leq T\right\}\right| \sim A_{c_{1}, c_{2}} e^{T h_{\text {top }}},
$$

where $\ell(\gamma)$ is the length of γ and $h_{\text {top }}>0$ is the topological entropy of the geodesic flow.

In constant curvature $K \equiv-1, h_{\text {top }}=1$. Otherwise take this Theorem as a definition of $h_{\text {top }}$!

- In constant curvature, related to the spectral decomposition of the Laplacian (Delsarte, Huber).
- In constant curvature, related to the spectral decomposition of the Laplacian (Delsarte, Huber).
- In variable curvature, related to the mixing properties of the Bowen-Margulis measure (Margulis).
- In constant curvature, related to the spectral decomposition of the Laplacian (Delsarte, Huber).
- In variable curvature, related to the mixing properties of the Bowen-Margulis measure (Margulis).
- For more informations on the behaviour of $\mathcal{N}_{T}\left(c_{1}, c_{2}\right)$ and its applications, see the survey of Parkkonen and Paulin (LMS Lecture notes 425, 2016).

Poincaré series as zeta renormalization of $\mathcal{N}_{T}\left(c_{1}, c_{2}\right)$

Let $s \in \mathbb{C}$ and set

$$
\mathcal{N}_{T}\left(c_{1}, c_{2}, s\right):=\sum_{\gamma \in \mathcal{P}_{c_{1}, c_{2}}: 0<\ell(\gamma) \leq T} e^{-s \ell(\gamma)} .
$$

Poincaré series as zeta renormalization of $\mathcal{N}_{T}\left(c_{1}, c_{2}\right)$

Let $s \in \mathbb{C}$ and set

$$
\mathcal{N}_{T}\left(c_{1}, c_{2}, s\right):=\sum_{\gamma \in \mathcal{P}_{c_{1}, c_{2}}: 0<\ell(\gamma) \leq T} e^{-s \ell(\gamma)}
$$

Thanks to Margulis Theorem, the Poincaré series

$$
\mathcal{N}_{\infty}\left(c_{1}, c_{2}, s\right):=\lim _{T \rightarrow+\infty} \mathcal{N}_{T}\left(c_{1}, c_{2}, s\right)=\sum_{\gamma \in \mathcal{P}_{c_{1}}, c_{2}: \ell(\gamma)>0} e^{-s \ell(\gamma)}
$$

Poincaré series as zeta renormalization of $\mathcal{N}_{T}\left(c_{1}, c_{2}\right)$

Let $s \in \mathbb{C}$ and set

$$
\mathcal{N}_{T}\left(c_{1}, c_{2}, s\right):=\sum_{\gamma \in \mathcal{P}_{c_{1}, c_{2}}: 0<\ell(\gamma) \leq T} e^{-s \ell(\gamma)}
$$

Thanks to Margulis Theorem, the Poincaré series

$$
\mathcal{N}_{\infty}\left(c_{1}, c_{2}, s\right):=\lim _{T \rightarrow+\infty} \mathcal{N}_{T}\left(c_{1}, c_{2}, s\right)=\sum_{\gamma \in \mathcal{P}_{c_{1}, c_{2}}: \ell(\gamma)>0} e^{-s \ell(\gamma)}
$$

defines a holomorphic function in the half plane

$$
\left\{w \in \mathbb{C}: \operatorname{Re}(w)>h_{\text {top }}\right\}
$$

Theorem (Dang-Rivière, 2020)
Let c_{1} and c_{2} be two points in X. Denote by $\chi(X)=2-2 g(X)$ the Euler characteristic of X. Then,

Theorem (Dang-Rivière, 2020)

Let c_{1} and c_{2} be two points in X. Denote by $\chi(X)=2-2 g(X)$ the Euler characteristic of X. Then,

- the map

$$
s \mapsto \mathcal{N}_{\infty}\left(c_{1}, c_{2}, s\right)
$$

has a meromorphic continuation to \mathbb{C};

Theorem (Dang-Rivière, 2020)

Let c_{1} and c_{2} be two points in X. Denote by $\chi(X)=2-2 g(X)$ the Euler characteristic of X. Then,

- the map

$$
s \mapsto \mathcal{N}_{\infty}\left(c_{1}, c_{2}, s\right)
$$

has a meromorphic continuation to \mathbb{C};

- if $c_{1} \neq c_{2}$, one has

$$
\mathcal{N}_{\infty}\left(c_{1}, c_{2}, 0\right)=\frac{1}{\chi(X)}
$$

Theorem (Dang-Rivière, 2020)

Let c_{1} and c_{2} be two points in X. Denote by $\chi(X)=2-2 g(X)$ the Euler characteristic of X. Then,

- the map

$$
s \mapsto \mathcal{N}_{\infty}\left(c_{1}, c_{2}, s\right)
$$

has a meromorphic continuation to \mathbb{C};

- if $c_{1} \neq c_{2}$, one has

$$
\mathcal{N}_{\infty}\left(c_{1}, c_{2}, 0\right)=\frac{1}{\chi(X)}
$$

- if $c_{1}=c_{2}$, one has

$$
\mathcal{N}_{\infty}\left(c_{1}, c_{2}, 0\right)=\frac{1}{\chi(X)}-1
$$

Comments and related results

- In the case of constant curvature $K \equiv-1$, it is plausible that the result can be recovered using the relation with the Laplacian.

Comments and related results

- In the case of constant curvature $K \equiv-1$, it is plausible that the result can be recovered using the relation with the Laplacian.
- In the case of constant curvature $K \equiv-1$, Paternain proved (2000) :

$$
\lim _{T \rightarrow+\infty} \int_{X \times X} \mathcal{N}_{T}\left(c_{1}, c_{2}, s\right) d \operatorname{vol}_{G}\left(c_{1}\right) d \operatorname{vol}_{G}\left(c_{2}\right)=\frac{4 \pi^{2} \chi(X)}{1-s^{2}}
$$

Comments and related results

- In the case of constant curvature $K \equiv-1$, it is plausible that the result can be recovered using the relation with the Laplacian.
- In the case of constant curvature $K \equiv-1$, Paternain proved (2000) :

$$
\lim _{T \rightarrow+\infty} \int_{X \times X} \mathcal{N}_{T}\left(c_{1}, c_{2}, s\right) d \operatorname{vol}_{G}\left(c_{1}\right) d \operatorname{vol}_{G}\left(c_{2}\right)=\frac{4 \pi^{2} \chi(X)}{1-s^{2}}
$$

- Similar results for Ruelle zeta functions which "count periodic orbits" (Selberg, Smale, Ruelle, Rugh, Fried, Kitaev, Baladi-Tsujii, Giulietti-Liverani-Pollicott, Dyatlov-Zworski, Faure-Tsujii, Dyatlov-Guillarmou, Jezequel, etc.)

Meromorphic continuation of Poincaré series

Denote the geodesic flow by $\varphi^{t}: S^{*} X \rightarrow S^{*} X$.

Meromorphic continuation of Poincaré series

Denote the geodesic flow by $\varphi^{t}: S^{*} X \rightarrow S^{*} X$. To a point $c \in X$, we can associate the following curve :

$$
S_{c}^{*} X:=\left\{(c, p) \in T_{c}^{*} X:\|p\|=1\right\} \subset S^{*} X
$$

Meromorphic continuation of Poincaré series

Denote the geodesic flow by $\varphi^{t}: S^{*} X \rightarrow S^{*} X$. To a point $c \in X$, we can associate the following curve :

$$
S_{c}^{*} X:=\left\{(c, p) \in T_{c}^{*} X:\|p\|=1\right\} \subset S^{*} X
$$

For $\gamma \in \mathcal{P}_{c_{1}, c_{2}}$, one has

$$
\varphi^{\ell(\gamma)}\left(S_{c_{1}}^{*} X\right) \cap S_{c_{2}}^{*} X \neq \emptyset
$$

For $\psi \in \Omega^{1}\left(S^{*} X\right)$, we set

$$
\int_{S^{*} X}\left[S_{c}^{*} X\right] \wedge \psi:=\int_{S_{c}^{*} X} \psi
$$

For $\psi \in \Omega^{1}\left(S^{*} X\right)$, we set

$$
\int_{S^{*} X}\left[S_{c}^{*} X\right] \wedge \psi:=\int_{S_{c}^{*} X} \psi
$$

Write, for $T>0$,

$$
\left[\varphi^{T}\left(S_{c}^{*} X\right)\right]=\varphi^{-T *}\left[S_{c}^{*} X\right]
$$

For $\psi \in \Omega^{1}\left(S^{*} X\right)$, we set

$$
\int_{S^{*} X}\left[S_{c}^{*} X\right] \wedge \psi:=\int_{S_{c}^{*} X} \psi
$$

Write, for $T>0$,

$$
\left[\varphi^{T}\left(S_{c}^{*} X\right)\right]=\varphi^{-T *}\left[S_{c}^{*} X\right]=\left[S_{c}^{*} X\right]-\int_{0}^{T} \mathcal{L}_{V} \varphi^{-t *}\left[S_{c}^{*} X\right] d t
$$

For $\psi \in \Omega^{1}\left(S^{*} X\right)$, we set

$$
\int_{S^{*} X}\left[S_{c}^{*} X\right] \wedge \psi:=\int_{S_{c}^{*} X} \psi
$$

Write, for $T>0$,

$$
\begin{aligned}
{\left[\varphi^{T}\left(S_{c}^{*} X\right)\right]=\varphi^{-T *}\left[S_{c}^{*} X\right] } & =\left[S_{c}^{*} X\right]-\int_{0}^{T} \mathcal{L}_{V} \varphi^{-t *}\left[S_{c}^{*} X\right] d t \\
& =\left[S_{c}^{*} X\right]-\int_{0}^{T}\left(d \iota \nu+\iota_{V} d\right) \varphi^{-t *}\left[S_{c}^{*} X\right] d t
\end{aligned}
$$

For $\psi \in \Omega^{1}\left(S^{*} X\right)$, we set

$$
\int_{S^{*} X}\left[S_{c}^{*} X\right] \wedge \psi:=\int_{S_{c}^{*} X} \psi
$$

Write, for $T>0$,

$$
\begin{aligned}
{\left[\varphi^{T}\left(S_{c}^{*} X\right)\right]=\varphi^{-T *}\left[S_{c}^{*} X\right] } & =\left[S_{c}^{*} X\right]-\int_{0}^{T} \mathcal{L}_{V} \varphi^{-t *}\left[S_{c}^{*} X\right] d t \\
& =\left[S_{c}^{*} X\right]-\int_{0}^{T}\left(\iota_{\nu}+\iota_{V} d\right) \varphi^{-t *}\left[S_{c}^{*} X\right] d t \\
& =\left[S_{c}^{*} X\right]-d\left(\int_{0}^{T}{ }^{\iota} \varphi^{-t *}\left[S_{c}^{*} X\right] d t\right)
\end{aligned}
$$

The current

$$
R_{T}:=-\int_{0}^{T} \iota v \varphi^{-t *}\left[S_{c}^{*} X\right] d t
$$

represents the integration on the surface

$$
\left\{\varphi^{t}(x): x \in S_{c}^{*} X \text { and } 0 \leq t \leq T\right\} \subset S^{*} X .
$$

Proposition

Let c_{1} and c_{2} be two points in X and let $T>0$. Then, one has

$$
\mathcal{N}_{T}\left(c_{1}, c_{2}, s\right)=-\int_{S^{*} X}\left[S_{c_{2}}^{*} X\right] \wedge \int_{0}^{T} e^{-s t} \iota_{V} \varphi^{-t *}\left[S_{c_{1}}^{*} X\right] d t
$$

Proposition

Let c_{1} and c_{2} be two points in X and let $T>0$. Then, one has

$$
\mathcal{N}_{T}\left(c_{1}, c_{2}, s\right)=-\int_{S^{*} X}\left[S_{c_{2}}^{*} X\right] \wedge \int_{0}^{T} e^{-s t} \iota_{V} \varphi^{-t *}\left[S_{c_{1}}^{*} X\right] d t
$$

Formally, we can then let $T \rightarrow+\infty$:

$$
\mathcal{N}_{\infty}\left(c_{1}, c_{2}, s\right)=-\int_{S^{*} X}\left[S_{c_{2}}^{*} X\right] \wedge \int_{0}^{+\infty} e^{-s t} \iota \nu \varphi^{-t *}\left[S_{c_{1}}^{*} X\right] d t
$$

Proposition

Let c_{1} and c_{2} be two points in X and let $T>0$. Then, one has

$$
\mathcal{N}_{T}\left(c_{1}, c_{2}, s\right)=-\int_{S^{*} X}\left[S_{c_{2}}^{*} X\right] \wedge \int_{0}^{T} e^{-s t} \iota V \varphi^{-t *}\left[S_{c_{1}}^{*} X\right] d t
$$

Formally, we can then let $T \rightarrow+\infty$:

$$
\begin{aligned}
\mathcal{N}_{\infty}\left(c_{1}, c_{2}, s\right) & =-\int_{S^{*} X}\left[S_{c_{2}}^{*} X\right] \wedge \int_{0}^{+\infty} e^{-s t} \iota \vee \varphi^{-t *}\left[S_{c_{1}}^{*} X\right] d t \\
& =-\int_{S^{*} X}\left[S_{c_{2}}^{*} X\right] \wedge \iota v\left(\int_{0}^{+\infty} e^{-s t} e^{-t \mathcal{L}_{V}} d t\right)\left[S_{c_{1}}^{*} X\right]
\end{aligned}
$$

Proposition

Let c_{1} and c_{2} be two points in X and let $T>0$. Then, one has

$$
\mathcal{N}_{T}\left(c_{1}, c_{2}, s\right)=-\int_{S^{*} X}\left[S_{c_{2}}^{*} X\right] \wedge \int_{0}^{T} e^{-s t} \iota V \varphi^{-t *}\left[S_{c_{1}}^{*} X\right] d t
$$

Formally, we can then let $T \rightarrow+\infty$:

$$
\begin{aligned}
\mathcal{N}_{\infty}\left(c_{1}, c_{2}, s\right) & =-\int_{S^{*} X}\left[S_{c_{2}}^{*} X\right] \wedge \int_{0}^{+\infty} e^{-s t} \iota V \varphi^{-t *}\left[S_{c_{1}}^{*} X\right] d t \\
& =-\int_{S^{*} X}\left[S_{c_{2}}^{*} X\right] \wedge \iota v\left(\int_{0}^{+\infty} e^{-s t} e^{-t \mathcal{L}_{V}} d t\right)\left[S_{c_{1}}^{*} X\right] \\
\mathcal{N}_{\infty}\left(c_{1}, c_{2}, s\right) & =-\int_{S^{*} X}\left[S_{c_{2}}^{*} X\right] \wedge \iota \nu\left(\mathcal{L}_{V}+s\right)^{-1}\left[S_{c_{1}}^{*} X\right] .
\end{aligned}
$$

Hence, formally, we need to understand the meromorphic continuation of

$$
\left(\mathcal{L}_{V}+s\right)^{-1}
$$

when acting on certain singular objects (here $\left[S_{c}^{*} X\right]$).

Hence, formally, we need to understand the meromorphic continuation of

$$
\left(\mathcal{L}_{V}+s\right)^{-1}
$$

when acting on certain singular objects (here $\left[S_{c}^{*} X\right]$).
Part 1 of our Theorem follows if we have the meromorphic continuation of the spectral resolvent

$$
s \in \mathbb{C} \mapsto\left(\mathcal{L}_{V}+s\right)^{-1}
$$

on appropriate Banach spaces of currents.

Hence, formally, we need to understand the meromorphic continuation of

$$
\left(\mathcal{L}_{V}+s\right)^{-1}
$$

when acting on certain singular objects (here $\left[S_{c}^{*} X\right]$).
Part 1 of our Theorem follows if we have the meromorphic continuation of the spectral resolvent

$$
s \in \mathbb{C} \mapsto\left(\mathcal{L}_{V}+s\right)^{-1}
$$

on appropriate Banach spaces of currents.
\rightsquigarrow Related to the sudy of transfer operators in dynamical systems.

Proving the meromorphic continuation of $\left(\mathcal{L}_{V}+s\right)^{-1}$ requires to introduce an appropriate functional framework made of distributions (or currents) with anisotropic Hölder/Sobolev regularity :

Proving the meromorphic continuation of $\left(\mathcal{L}_{V}+s\right)^{-1}$ requires to introduce an appropriate functional framework made of distributions (or currents) with anisotropic Hölder/Sobolev regularity :

- Using Markov partitions and/or analyticity. Ruelle, Bowen, Pollicott, Rugh, Fried, Dolgopyat, Jezequel, etc.

Proving the meromorphic continuation of $\left(\mathcal{L}_{V}+s\right)^{-1}$ requires to introduce an appropriate functional framework made of distributions (or currents) with anisotropic Hölder/Sobolev regularity :

- Using Markov partitions and/or analyticity. Ruelle, Bowen, Pollicott, Rugh, Fried, Dolgopyat, Jezequel, etc.
- Using Hölder spaces. Blank-Keller-Liverani, Gouëzel-Liverani, Butterley-Liverani, Giulietti-Liverani-Pollicott, Faure-Gouëzel-Lanneau, etc.

Proving the meromorphic continuation of $\left(\mathcal{L}_{V}+s\right)^{-1}$ requires to introduce an appropriate functional framework made of distributions (or currents) with anisotropic Hölder/Sobolev regularity :

- Using Markov partitions and/or analyticity. Ruelle, Bowen, Pollicott, Rugh, Fried, Dolgopyat, Jezequel, etc.
- Using Hölder spaces. Blank-Keller-Liverani, Gouëzel-Liverani, Butterley-Liverani, Giulietti-Liverani-Pollicott, Faure-Gouëzel-Lanneau, etc.
- Using Fourier and/or microlocal analysis. Baladi, Baladi-Tsujii, Faure-Roy-Sjöstrand, Faure-Sjöstrand, Tsujii, Faure-Tsujii, Dyatlov-Zworski, Dyatlov-Guillarmou, Bonthonneau-Weich, etc.

Proving the meromorphic continuation of $\left(\mathcal{L}_{V}+s\right)^{-1}$ requires to introduce an appropriate functional framework made of distributions (or currents) with anisotropic Hölder/Sobolev regularity :

- Using Markov partitions and/or analyticity. Ruelle, Bowen, Pollicott, Rugh, Fried, Dolgopyat, Jezequel, etc.
- Using Hölder spaces. Blank-Keller-Liverani, Gouëzel-Liverani, Butterley-Liverani, Giulietti-Liverani-Pollicott, Faure-Gouëzel-Lanneau, etc.
- Using Fourier and/or microlocal analysis. Baladi, Baladi-Tsujii, Faure-Roy-Sjöstrand, Faure-Sjöstrand, Tsujii, Faure-Tsujii, Dyatlov-Zworski, Dyatlov-Guillarmou, Bonthonneau-Weich, etc.
\rightsquigarrow Non exhaustive list...

Behaviour at $s=0$

$$
\mathcal{N}_{\infty}\left(c_{1}, c_{2}, s\right)=-\int_{S^{*} X}\left[S_{c_{2}}^{*} X\right] \wedge \iota_{V}\left(\mathcal{L}_{V}+s\right)^{-1}\left[S_{c_{1}}^{*} X\right]
$$

Behaviour at $s=0$

$$
\mathcal{N}_{\infty}\left(c_{1}, c_{2}, s\right)=-\int_{S^{*} X}\left[S_{c_{2}}^{*} X\right] \wedge \iota V\left(\mathcal{L}_{V}+s\right)^{-1}\left[S_{c_{1}}^{*} X\right]
$$

A key ingredient is the precise description of the spectral projector π_{0} on the eigenvalue 0 made by Dyatlov-Zworski (2017) :

Behaviour at $s=0$

$$
\mathcal{N}_{\infty}\left(c_{1}, c_{2}, s\right)=-\int_{S^{*} X}\left[S_{c_{2}}^{*} X\right] \wedge \iota_{V}\left(\mathcal{L}_{V}+s\right)^{-1}\left[S_{c_{1}}^{*} X\right]
$$

A key ingredient is the precise description of the spectral projector π_{0} on the eigenvalue 0 made by Dyatlov-Zworski (2017) :

$$
\left(\mathcal{L}_{V}+s\right)^{-1}=\frac{\pi_{0}}{s}+\text { holomorphic remainder as } s \rightarrow 0
$$

Behaviour at $s=0$

$$
\mathcal{N}_{\infty}\left(c_{1}, c_{2}, s\right)=-\int_{S^{*} X}\left[S_{c_{2}}^{*} X\right] \wedge \iota_{V}\left(\mathcal{L}_{V}+s\right)^{-1}\left[S_{c_{1}}^{*} X\right]
$$

A key ingredient is the precise description of the spectral projector π_{0} on the eigenvalue 0 made by Dyatlov-Zworski (2017) :

$$
\left(\mathcal{L}_{V}+s\right)^{-1}=\frac{\pi_{0}}{s}+\text { holomorphic remainder as } s \rightarrow 0
$$

Moreover, they describe $\operatorname{Ran}\left(\pi_{0}\right)$ in terms of generators of the De Rham cohomology.

Using this result and the fact that $\left[S_{c}^{*} X\right]$ is exact ${ }^{2}$, one finds

$$
\pi_{0}\left(\left[S_{c}^{*} X\right]\right)=0
$$

2. To be explained in a couple of slides.

Using this result and the fact that $\left[S_{c}^{*} X\right]$ is exact ${ }^{2}$, one finds

$$
\pi_{0}\left(\left[S_{c}^{*} X\right]\right)=0
$$

Thus, one has

$$
\mathcal{N}_{\infty}\left(c_{1}, c_{2}, 0\right)=-\int_{S^{*} X}\left[S_{c_{2}}^{*} X\right] \wedge \iota_{V} \mathcal{L}_{V}^{-1}\left[S_{c_{1}}^{*} X\right]
$$

2. To be explained in a couple of slides.

Using this result and the fact that $\left[S_{c}^{*} X\right]$ is exact ${ }^{2}$, one finds

$$
\pi_{0}\left(\left[S_{c}^{*} X\right]\right)=0
$$

Thus, one has

$$
\mathcal{N}_{\infty}\left(c_{1}, c_{2}, 0\right)=-\int_{S^{*} X}\left[S_{c_{2}}^{*} X\right] \wedge \iota_{V} \mathcal{L}_{V}^{-1}\left[S_{c_{1}}^{*} X\right]
$$

Write now

$$
\left[S_{c}^{*} X\right]=\left(d \iota_{V}+\iota_{V} d\right) \mathcal{L}_{V}^{-1}\left[S_{c}^{*} X\right]=d\left(\iota_{V} \mathcal{L}_{V}^{-1}\left[S_{c}^{*} X\right]\right)=d R_{c}
$$

2. To be explained in a couple of slides.

Using this result and the fact that $\left[S_{c}^{*} X\right]$ is exact ${ }^{2}$, one finds

$$
\pi_{0}\left(\left[S_{c}^{*} X\right]\right)=0
$$

Thus, one has

$$
\mathcal{N}_{\infty}\left(c_{1}, c_{2}, 0\right)=-\int_{S^{*} X}\left[S_{c_{2}}^{*} X\right] \wedge \iota_{V} \mathcal{L}_{V}^{-1}\left[S_{c_{1}}^{*} X\right]
$$

Write now

$$
\left[S_{c}^{*} X\right]=\left(d \iota_{V}+\iota_{V} d\right) \mathcal{L}_{V}^{-1}\left[S_{c}^{*} X\right]=d\left(\iota_{V} \mathcal{L}_{V}^{-1}\left[S_{c}^{*} X\right]\right)=d R_{c}
$$

In summary, the value at 0 is given by :

$$
\mathcal{N}_{\infty}\left(c_{1}, c_{2}, 0\right)=-\int_{S^{*} X}\left[S_{c_{2}}^{*} X\right] \wedge R_{c_{1}}=:-\mathbf{L}\left(c_{1}, c_{2}\right) .
$$

2. To be explained in a couple of slides.

The value at 0 as the linking of two knots

One has

$$
\left[S_{c}^{*} X\right]=d R_{c} \quad \text { and } \quad \alpha \wedge\left[S_{c}^{*} X\right]=0
$$

where α is the contact 1-form on $S^{*} X$.

The value at 0 as the linking of two knots

One has

$$
\left[S_{c}^{*} X\right]=d R_{c} \quad \text { and } \quad \alpha \wedge\left[S_{c}^{*} X\right]=0
$$

where α is the contact 1-form on $S^{*} X$.

We say that $S_{c}^{*} X$ is a Legendrian knot in $S^{*} X$.

The integral

$$
\mathbf{L}\left(c_{1}, c_{2}\right):=\int_{S^{*} X}\left[S_{c_{2}}^{*} X\right] \wedge R_{c_{1}}
$$

The integral

$$
\mathbf{L}\left(c_{1}, c_{2}\right):=\int_{S^{*} X}\left[S_{c_{2}}^{*} X\right] \wedge R_{c_{1}}
$$

is the linking number of $S_{c_{1}}^{*} X$ and $S_{c_{2}}^{*} X$.

The integral

$$
\mathbf{L}\left(c_{1}, c_{2}\right):=\int_{S^{*} X}\left[S_{c_{2}}^{*} X\right] \wedge R_{c_{1}}
$$

is the linking number of $S_{c_{1}}^{*} X$ and $S_{c_{2}}^{*} X$.

The integral

$$
\mathbf{L}\left(c_{1}, c_{2}\right):=\int_{S^{*} X}\left[S_{c_{2}}^{*} X\right] \wedge R_{c_{1}}=-\frac{1}{\chi(X)} .
$$

is the linking number of $S_{c_{1}}^{*} X$ and $S_{c_{2}}^{*} X$.

How to compute $\mathrm{L}\left(c_{1}, c_{2}\right)$?

How to compute $\mathrm{L}\left(c_{1}, c_{2}\right)$?

Suppose that $c_{1} \neq c_{2}$. Let f be a smooth Morse function all of whose critical points are distinct from c_{1}.

How to compute $\mathrm{L}\left(c_{1}, c_{2}\right)$?

Suppose that $c_{1} \neq c_{2}$. Let f be a smooth Morse function all of whose critical points are distinct from c_{1}.

Set

$$
S=\left\{\left(q, \frac{d_{q} f}{\left\|d_{q} f\right\|}\right): q \notin \operatorname{Crit}(f)\right\} \subset S^{*} X
$$

How to compute $\mathbf{L}\left(c_{1}, c_{2}\right)$?

Suppose that $c_{1} \neq c_{2}$. Let f be a smooth Morse function all of whose critical points are distinct from c_{1}.

Set

$$
S=\left\{\left(q, \frac{d_{q} f}{\left\|d_{q} f\right\|}\right): q \notin \operatorname{Crit}(f)\right\} \subset S^{*} X
$$

By Stokes formula,

$$
d[S]=-\sum_{a \in \operatorname{Crit}(f)}(-1)^{\operatorname{ind}(a)}\left[S_{a}^{*} X\right] .
$$

How to compute $\mathrm{L}\left(c_{1}, c_{2}\right)$?

Suppose that $c_{1} \neq c_{2}$. Let f be a smooth Morse function all of whose critical points are distinct from c_{1}.

Set

$$
S=\left\{\left(q, \frac{d_{q} f}{\left\|d_{q} f\right\|}\right): q \notin \operatorname{Crit}(f)\right\} \subset S^{*} X
$$

By Stokes formula,

$$
d[S]=-\sum_{a \in \operatorname{Crit}(f)}(-1)^{\operatorname{ind}(a)}\left[S_{a}^{*} X\right] .
$$

Implicitely, this shows that $\left[S_{a}^{*} X\right]$ is exact.

One can write

$$
1=\int_{S^{*} X}[S] \wedge\left[S_{c_{1}}^{*} X\right]
$$

One can write

$$
\begin{aligned}
1 & =\int_{S^{*} X}[S] \wedge\left[S_{c_{1}}^{*} X\right] \\
& =\int_{S^{*} X}[S] \wedge d R_{c_{1}}
\end{aligned}
$$

One can write

$$
\begin{aligned}
1 & =\int_{S^{*} X}[S] \wedge\left[S_{c_{1}}^{*} X\right] \\
& =\int_{S^{*} X}[S] \wedge d R_{c_{1}} \\
& =\int_{S^{*} X} d[S] \wedge R_{c_{1}}
\end{aligned}
$$

One can write

$$
\begin{aligned}
1 & =\int_{S^{*} X}[S] \wedge\left[S_{c_{1}}^{*} X\right] \\
& =\int_{S^{*} X}[S] \wedge d R_{c_{1}} \\
& =\int_{S^{*} X} d[S] \wedge R_{c_{1}} \\
& =-\sum_{a \in \operatorname{Crit}(f)}(-1)^{\operatorname{ind}(a)} \int_{S^{*} X}\left[S_{a}^{*} X\right] \wedge R_{c_{1}}
\end{aligned}
$$

One can write

$$
\begin{aligned}
1 & =\int_{S^{*} X}[S] \wedge\left[S_{c_{1}}^{*} X\right] \\
& =\int_{S^{*} X}[S] \wedge d R_{c_{1}} \\
& =\int_{S^{*} X} d[S] \wedge R_{c_{1}} \\
& =-\sum_{a \in \operatorname{Crit}(f)}(-1)^{\operatorname{ind}(a)} \int_{S^{*} X}\left[S_{a}^{*} X\right] \wedge R_{c_{1}} \\
& =-\sum_{a \in \operatorname{Crit}(f)}(-1)^{\operatorname{ind}(a)} \mathbf{L}\left(c_{1}, a\right)
\end{aligned}
$$

One can write

$$
\begin{aligned}
1 & =\int_{S^{*} X}[S] \wedge\left[S_{c_{1}}^{*} X\right] \\
& =\int_{S^{*} X}[S] \wedge d R_{c_{1}} \\
& =\int_{S^{*} X} d[S] \wedge R_{c_{1}} \\
& =-\sum_{a \in \operatorname{Crit}(f)}(-1)^{\operatorname{ind}(a)} \int_{S^{*} X}\left[S_{a}^{*} X\right] \wedge R_{c_{1}} \\
& =-\sum_{a \in \operatorname{Crit}(f)}(-1)^{\operatorname{ind}(a)} \mathbf{L}\left(c_{1}, a\right) \\
& =-\chi(X) \mathbf{L}\left(c_{1}, c_{2}\right) .
\end{aligned}
$$

A more general picture

Let \mathbf{c}_{1} and \mathbf{c}_{2} in $\pi_{1}(X)$. If \mathbf{c}_{i} is nontrivial, one can find an unique geodesic c_{i} in the conjugacy class of $\mathbf{c}_{i} \in \pi_{1}(X)$. We say that it is a geodesic representative of \mathbf{c}_{i}.

Let \mathbf{c}_{1} and \mathbf{c}_{2} be two elements in $\pi_{1}(X)$ and let c_{1} and c_{2} be two of their geodesic representatives in X. Set
$\mathcal{P}_{c_{1}, c_{2}}:=\left\{\right.$ geodesic arcs joining c_{1} and c_{2} and directly \perp to c_{1} and $\left.c_{2}\right\}$.

Theorem (Dang-Rivière, 2020)
Let \mathbf{c}_{1} and \mathbf{c}_{2} be two elements in $\pi_{1}(X)$ and let c_{1} and c_{2} be two of their geodesic representatives in X. Then,

Theorem (Dang-Rivière, 2020)
Let \mathbf{c}_{1} and \mathbf{c}_{2} be two elements in $\pi_{1}(X)$ and let c_{1} and c_{2} be two of their geodesic representatives in X. Then,

- the map

$$
s \mapsto \mathcal{N}_{\infty}\left(c_{1}, c_{2}, s\right):=\sum_{\gamma \in \mathcal{P}_{c_{1}}, c_{2}: \ell(\gamma)>0} e^{-s \ell(\gamma)}
$$

has a meromorphic continuation to \mathbb{C};

Theorem (Dang-Rivière, 2020)
Let \mathbf{c}_{1} and \mathbf{c}_{2} be two elements in $\pi_{1}(X)$ and let c_{1} and c_{2} be two of their geodesic representatives in X. Then,

- the map

$$
s \mapsto \mathcal{N}_{\infty}\left(c_{1}, c_{2}, s\right):=\sum_{\gamma \in \mathcal{P}_{c_{1}, c_{2}}: \ell(\gamma)>0} e^{-s \ell(\gamma)}
$$

has a meromorphic continuation to \mathbb{C};

- if \mathbf{c}_{1} and \mathbf{c}_{2} are trivial in $H_{1}(X, \mathbb{Z})$, then

$$
\chi(X) \mathcal{N}_{\infty}\left(c_{1}, c_{2}, 0\right) \in \mathbb{Z}
$$

Theorem (Dang-Rivière, 2020)

Let \mathbf{c}_{1} and \mathbf{c}_{2} be two elements in $\pi_{1}(X)$ and let c_{1} and c_{2} be two of their geodesic representatives in X. Then,

- the map

$$
s \mapsto \mathcal{N}_{\infty}\left(c_{1}, c_{2}, s\right):=\sum_{\gamma \in \mathcal{P}_{c_{1}, c_{2}}: \ell(\gamma)>0} e^{-s \ell(\gamma)}
$$

has a meromorphic continuation to \mathbb{C};

- if \mathbf{c}_{1} and \mathbf{c}_{2} are trivial in $H_{1}(X, \mathbb{Z})$, then

$$
\chi(X) \mathcal{N}_{\infty}\left(c_{1}, c_{2}, 0\right) \in \mathbb{Z}
$$

- in that case, $\mathcal{N}_{\infty}\left(c_{1}, c_{2}, 0\right)$ is the linking number of the unit (direct) conormal bundles of c_{1} and c_{2}.

Comments.

- When c_{1} and c_{2} are both nontrivial in $\pi_{1}(X)$, the linking number we obtain is also the linking number of the closed orbits lifting c_{1} and c_{2} in $S^{*} X$.

Comments.

- When c_{1} and c_{2} are both nontrivial in $\pi_{1}(X)$, the linking number we obtain is also the linking number of the closed orbits lifting c_{1} and c_{2} in $S^{*} X$.
\rightsquigarrow Related results on the modular surface (Ghys, Duke-Immamoglu-Toth) and for suspension of toral automorphisms (Bergeron-Charollois-Garcia-Venkatesh).

Comments.

- When c_{1} and c_{2} are both nontrivial in $\pi_{1}(X)$, the linking number we obtain is also the linking number of the closed orbits lifting c_{1} and c_{2} in $S^{*} X$.
\rightsquigarrow Related results on the modular surface (Ghys, Duke-Immamoglu-Toth) and for suspension of toral automorphisms (Bergeron-Charollois-Garcia-Venkatesh).
- There is an explicit expression for the linking number of c_{1} and c_{2} in terms of Euler characteristics:

$$
\pm \mathcal{N}_{\infty}\left(c_{1}, c_{2}, 0\right)=\frac{\chi\left(X\left(c_{1}\right)\right) \chi\left(X\left(c_{2}\right)\right)}{\chi(X)}-\chi\left(X\left(c_{1}\right) \cap X\left(c_{2}\right)\right)+\frac{1}{2} \chi\left(c_{1} \cap c_{2}\right) .
$$

Conclusion

- Poincaré series can be meromorphically continued in any dimensions.

Conclusion

- Poincaré series can be meromorphically continued in any dimensions.
- In dimension 2, their value at 0 can be interpreted as a certain linking number.

Conclusion

- Poincaré series can be meromorphically continued in any dimensions.
- In dimension 2, their value at 0 can be interpreted as a certain linking number.
- In the arithmetic framework, similar phenomena occur for Dirichlet series (Duke et al. 2017) and L-functions (Bergeron et al. 2018). Relation with these results?

Conclusion

- Poincaré series can be meromorphically continued in any dimensions.
- In dimension 2, their value at 0 can be interpreted as a certain linking number.
- In the arithmetic framework, similar phenomena occur for Dirichlet series (Duke et al. 2017) and L-functions (Bergeron et al. 2018). Relation with these results?
- What about higher dimensions? Probably a pole when the dimension is odd.

Conclusion

- Poincaré series can be meromorphically continued in any dimensions.
- In dimension 2, their value at 0 can be interpreted as a certain linking number.
- In the arithmetic framework, similar phenomena occur for Dirichlet series (Duke et al. 2017) and L-functions (Bergeron et al. 2018). Relation with these results?
- What about higher dimensions ? Probably a pole when the dimension is odd.
- What can be extracted using the spectral decomposition of the Laplacian?

Thank you for your attention.

