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Introduction

In all this talk, (X ,G ) will be a smooth (C∞), compact, connected,
oriented and Riemannian surface which has no boundary and which has
negative curvature (a priori non constant).
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Let c1 and c2 be two points in X and set 1

Pc1,c2 := {γ : geodesic arcs joining c1 and c2} .

Theorem (Delsarte (1942), Huber (1959), Margulis (1969))
There exists Ac1,c2 > 0 such that, as T → +∞,

NT (c1, c2) := |{γ ∈ Pc1,c2 : 0 < `(γ) ≤ T}| ∼ Ac1,c2e
Thtop ,

where `(γ) is the length of γ and htop > 0 is the topological entropy of
the geodesic flow.

In constant curvature K ≡ −1, htop = 1. Otherwise take this Theorem as
a definition of htop !

1. Geodesic arcs are parametrized by arc-length.
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I In constant curvature, related to the spectral decomposition of the
Laplacian (Delsarte, Huber).

I In variable curvature, related to the mixing properties of the
Bowen-Margulis measure (Margulis).

I For more informations on the behaviour of NT (c1, c2) and its
applications, see the survey of Parkkonen and Paulin (LMS Lecture
notes 425, 2016).
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Poincaré series as zeta renormalization of NT (c1, c2)

Let s ∈ C and set

NT (c1, c2, s) :=
∑

γ∈Pc1,c2 : 0<`(γ)≤T

e−s`(γ).

Thanks to Margulis Theorem, the Poincaré series

N∞(c1, c2, s) := lim
T→+∞

NT (c1, c2, s) =
∑

γ∈Pc1,c2 : `(γ)>0

e−s`(γ)

defines a holomorphic function in the half plane

{w ∈ C : Re(w) > htop} .
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Theorem (Dang-Rivière, 2020)
Let c1 and c2 be two points in X . Denote by χ(X ) = 2− 2g(X ) the
Euler characteristic of X . Then,

I the map
s 7→ N∞(c1, c2, s)

has a meromorphic continuation to C ;
I if c1 6= c2, one has

N∞(c1, c2, 0) =
1

χ(X )
;

I if c1 = c2, one has

N∞(c1, c2, 0) =
1

χ(X )
− 1.
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Comments and related results

I In the case of constant curvature K ≡ −1, it is plausible that the
result can be recovered using the relation with the Laplacian.

I In the case of constant curvature K ≡ −1, Paternain proved
(2000) :

lim
T→+∞

∫
X×X

NT (c1, c2, s)dvolG (c1)dvolG (c2) =
4π2χ(X )

1− s2 .

I Similar results for Ruelle zeta functions which “count periodic
orbits” (Selberg, Smale, Ruelle, Rugh, Fried, Kitaev, Baladi-Tsujii,
Giulietti-Liverani-Pollicott, Dyatlov-Zworski, Faure-Tsujii,
Dyatlov-Guillarmou, Jezequel, etc.)
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Meromorphic continuation of Poincaré series

Denote the geodesic flow by ϕt : S∗X → S∗X .

To a point c ∈ X , we can
associate the following curve :

S∗c X := {(c , p) ∈ T ∗c X : ‖p‖ = 1} ⊂ S∗X .

For γ ∈ Pc1,c2 , one has

ϕ`(γ)(S∗c1X ) ∩ S∗c2X 6= ∅.
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For ψ ∈ Ω1(S∗X ), we set∫
S∗X

[S∗c X ] ∧ ψ :=

∫
S∗
c X

ψ.

Write, for T > 0,

[ϕT (S∗c X )] = ϕ−T∗[S∗c X ] = [S∗c X ]−
∫ T

0
LVϕ

−t∗[S∗c X ]dt

= [S∗c X ]−
∫ T

0
(dιV + ιV d)ϕ−t∗[S∗c X ]dt

= [S∗c X ]− d

(∫ T

0
ιVϕ

−t∗[S∗c X ]dt

)
.
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The current

RT := −
∫ T

0
ιVϕ

−t∗[S∗c X ]dt

represents the integration on the surface{
ϕt(x) : x ∈ S∗c X and 0 ≤ t ≤ T

}
⊂ S∗X .
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Proposition
Let c1 and c2 be two points in X and let T > 0. Then, one has

NT (c1, c2, s) = −
∫
S∗X

[S∗c2X ] ∧
∫ T

0
e−stιVϕ

−t∗[S∗c1X ]dt.

Formally, we can then let T → +∞ :

N∞(c1, c2, s) = −
∫
S∗X

[S∗c2X ] ∧
∫ +∞

0
e−stιVϕ

−t∗[S∗c1X ]dt

= −
∫
S∗X

[S∗c2X ] ∧ ιV
(∫ +∞

0
e−ste−tLV dt

)
[S∗c1X ]

N∞(c1, c2, s) = −
∫
S∗X

[S∗c2X ] ∧ ιV (LV + s)−1[S∗c1X ].
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Hence, formally, we need to understand the meromorphic continuation of

(LV + s)−1

when acting on certain singular objects (here [S∗c X ]).

Part 1 of our Theorem follows if we have the meromorphic continuation
of the spectral resolvent

s ∈ C 7→ (LV + s)−1

on appropriate Banach spaces of currents.

 Related to the sudy of transfer operators in dynamical systems.
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Proving the meromorphic continuation of (LV + s)−1 requires to
introduce an appropriate functional framework made of distributions (or
currents) with anisotropic Hölder/Sobolev regularity :

I Using Markov partitions and/or analyticity. Ruelle, Bowen,
Pollicott, Rugh, Fried, Dolgopyat, Jezequel, etc.

I Using Hölder spaces. Blank-Keller-Liverani, Gouëzel-Liverani,
Butterley-Liverani, Giulietti-Liverani-Pollicott,
Faure-Gouëzel-Lanneau, etc.

I Using Fourier and/or microlocal analysis. Baladi, Baladi-Tsujii,
Faure-Roy-Sjöstrand, Faure-Sjöstrand, Tsujii, Faure-Tsujii,
Dyatlov-Zworski, Dyatlov-Guillarmou, Bonthonneau-Weich, etc.

 Non exhaustive list...
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Behaviour at s = 0

N∞(c1, c2, s) = −
∫
S∗X

[S∗c2X ] ∧ ιV (LV + s)−1[S∗c1X ].

A key ingredient is the precise description of the spectral projector π0
on the eigenvalue 0 made by Dyatlov-Zworski (2017) :

(LV + s)−1 =
π0

s
+ holomorphic remainder as s → 0.

Moreover, they describe Ran(π0) in terms of generators of the De Rham
cohomology.
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Using this result and the fact that [S∗c X ] is exact 2, one finds

π0([S∗c X ]) = 0.

Thus, one has

N∞(c1, c2, 0) = −
∫
S∗X

[S∗c2X ] ∧ ιVL−1
V [S∗c1X ].

Write now

[S∗c X ] = (dιV + ιV d)L−1
V [S∗c X ] = d

(
ιVL−1

V [S∗c X ]
)

= dRc .

In summary, the value at 0 is given by :

N∞(c1, c2, 0) = −
∫
S∗X

[S∗c2X ] ∧ Rc1 =: −L(c1, c2).

2. To be explained in a couple of slides.
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= dRc .

In summary, the value at 0 is given by :

N∞(c1, c2, 0) = −
∫
S∗X

[S∗c2X ] ∧ Rc1 =: −L(c1, c2).

2. To be explained in a couple of slides.
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The value at 0 as the linking of two knots

One has
[S∗c X ] = dRc and α ∧ [S∗c X ] = 0,

where α is the contact 1-form on S∗X .

We say that S∗c X is a Legendrian knot in S∗X .
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The integral

L(c1, c2) :=

∫
S∗X

[S∗c2X ] ∧ Rc1

= − 1
χ(X )

.

is the linking number of S∗c1X and S∗c2X .
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How to compute L(c1, c2) ?

Suppose that c1 6= c2. Let f be a smooth Morse function all of whose
critical points are distinct from c1.

Set

S =

{(
q,

dqf

‖dqf ‖

)
: q /∈ Crit(f )

}
⊂ S∗X .

By Stokes formula,

d [S ] = −
∑

a∈Crit(f )

(−1)ind(a)[S∗aX ].

Implicitely, this shows that [S∗aX ] is exact.
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One can write

1 =

∫
S∗X

[S ] ∧ [S∗c1X ]

=

∫
S∗X

[S ] ∧ dRc1

=

∫
S∗X

d [S ] ∧ Rc1

= −
∑

a∈Crit(f )

(−1)ind(a)
∫
S∗X

[S∗aX ] ∧ Rc1

= −
∑

a∈Crit(f )

(−1)ind(a)L(c1, a)

= −χ(X )L(c1, c2).
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A more general picture

Let c1 and c2 in π1(X ). If ci is nontrivial, one can find an unique
geodesic ci in the conjugacy class of ci ∈ π1(X ). We say that it is a
geodesic representative of ci .
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Let c1 and c2 be two elements in π1(X ) and let c1 and c2 be two of their
geodesic representatives in X . Set

Pc1,c2 := {geodesic arcs joining c1 and c2 and directly ⊥ to c1 and c2} .
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Theorem (Dang-Rivière, 2020)
Let c1 and c2 be two elements in π1(X ) and let c1 and c2 be two of their
geodesic representatives in X . Then,

I the map

s 7→ N∞(c1, c2, s) :=
∑

γ∈Pc1,c2 : `(γ)>0

e−s`(γ)

has a meromorphic continuation to C ;
I if c1 and c2 are trivial in H1(X ,Z), then

χ(X )N∞(c1, c2, 0) ∈ Z,

I in that case, N∞(c1, c2, 0) is the linking number of the unit
(direct) conormal bundles of c1 and c2.
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Comments.

I When c1 and c2 are both nontrivial in π1(X ), the linking number we
obtain is also the linking number of the closed orbits lifting c1
and c2 in S∗X .

 Related results on the modular surface (Ghys,
Duke-Immamoglu-Toth) and for suspension of toral automorphisms
(Bergeron-Charollois-Garcia-Venkatesh).

I There is an explicit expression for the linking number of c1 and c2
in terms of Euler characteristics :

±N∞(c1, c2, 0) =
χ(X (c1))χ(X (c2))

χ(X )
−χ(X (c1)∩X (c2))+

1
2
χ(c1∩c2).
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Conclusion

I Poincaré series can be meromorphically continued in any dimensions.

I In dimension 2, their value at 0 can be interpreted as a certain
linking number.

I In the arithmetic framework, similar phenomena occur for Dirichlet
series (Duke et al. 2017) and L-functions (Bergeron et al. 2018).
Relation with these results ?

I What about higher dimensions ? Probably a pole when the
dimension is odd.

I What can be extracted using the spectral decomposition of the
Laplacian ?
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Thank you for your attention.


