Fourier decay and nonlinearity of dynamical systems

Tuomas Sahlsten

University of Manchester

- Fourier transform of a probability measure μ on \mathbb{R} :

$$
\widehat{\mu}(n)=\int e^{-2 \pi i n x} d \mu(x), \quad n \in \mathbb{Z}
$$

- Fourier transform of a probability measure μ on \mathbb{R} :

$$
\widehat{\mu}(n)=\int e^{-2 \pi i n x} d \mu(x), \quad n \in \mathbb{Z}
$$

- Probability measure μ on \mathbb{R} is called Rajchman if

$$
|\widehat{\mu}(n)| \rightarrow 0, \quad|n| \rightarrow \infty
$$

- Fourier transform of a probability measure μ on \mathbb{R} :

$$
\widehat{\mu}(n)=\int e^{-2 \pi i n x} d \mu(x), \quad n \in \mathbb{Z}
$$

- Probability measure μ on \mathbb{R} is called Rajchman if

$$
|\widehat{\mu}(n)| \rightarrow 0, \quad|n| \rightarrow \infty
$$

- Any absolutely continuous μ is Rajchman
- Fourier transform of a probability measure μ on \mathbb{R} :

$$
\widehat{\mu}(n)=\int e^{-2 \pi i n x} d \mu(x), \quad n \in \mathbb{Z}
$$

- Probability measure μ on \mathbb{R} is called Rajchman if

$$
|\widehat{\mu}(n)| \rightarrow 0, \quad|n| \rightarrow \infty
$$

- Any absolutely continuous μ is Rajchman
- $\mu=$ middle third Cantor measure (distribution of $\sum \varepsilon_{k} 3^{-k}$, $\left.\varepsilon_{k} \sim \frac{1}{2} \delta_{0}+\frac{1}{2} \delta_{2}\right)$ is not Rajchman:

$$
\widehat{\mu}\left(3^{k}\right)=\widehat{\mu}(1) \neq 0, \quad \forall k \in \mathbb{N}
$$

Examples of Rajchman measures

- Random Cantor measure constructions (Salem, Shmerkin-Suomala et al.)

Examples of Rajchman measures

- Random Cantor measure constructions (Salem, Shmerkin-Suomala et al.)
- Bernoulli convolutions (Salem, Erdös)

Examples of Rajchman measures

- Random Cantor measure constructions (Salem, Shmerkin-Suomala et al.)
- Bernoulli convolutions (Salem, Erdös)
- Measures arising from Brownian motion (Kahane et al.)

Examples of Rajchman measures

- Random Cantor measure constructions (Salem, Shmerkin-Suomala et al.)
- Bernoulli convolutions (Salem, Erdös)
- Measures arising from Brownian motion (Kahane et al.)
- Constructions on well- and badly approximable numbers, Liouville numbers (Kaufman, Bluhm, Hambrook)

Examples of Rajchman measures

- Random Cantor measure constructions (Salem, Shmerkin-Suomala et al.)
- Bernoulli convolutions (Salem, Erdös)
- Measures arising from Brownian motion (Kahane et al.)
- Constructions on well- and badly approximable numbers, Liouville numbers (Kaufman, Bluhm, Hambrook)
- Equilibrium states for the Gauss map (Jordan-S., S.-Stevens)

Examples of Rajchman measures

- Random Cantor measure constructions (Salem, Shmerkin-Suomala et al.)
- Bernoulli convolutions (Salem, Erdös)
- Measures arising from Brownian motion (Kahane et al.)
- Constructions on well- and badly approximable numbers, Liouville numbers (Kaufman, Bluhm, Hambrook)
- Equilibrium states for the Gauss map (Jordan-S., S.-Stevens)
- Patterson-Sullivan measures for limit sets of convex co-compact hyperbolic surfaces and manifolds (Bourgain-Dyatlov, Li-Naud-Pan)

Examples of Rajchman measures

- Random Cantor measure constructions (Salem, Shmerkin-Suomala et al.)
- Bernoulli convolutions (Salem, Erdös)
- Measures arising from Brownian motion (Kahane et al.)
- Constructions on well- and badly approximable numbers, Liouville numbers (Kaufman, Bluhm, Hambrook)
- Equilibrium states for the Gauss map (Jordan-S., S.-Stevens)
- Patterson-Sullivan measures for limit sets of convex co-compact hyperbolic surfaces and manifolds (Bourgain-Dyatlov, Li-Naud-Pan)
- Stationary measures for random walks on split semisimple Lie groups with spectral gap (Li)

Examples of Rajchman measures

- Random Cantor measure constructions (Salem, Shmerkin-Suomala et al.)
- Bernoulli convolutions (Salem, Erdös)
- Measures arising from Brownian motion (Kahane et al.)
- Constructions on well- and badly approximable numbers, Liouville numbers (Kaufman, Bluhm, Hambrook)
- Equilibrium states for the Gauss map (Jordan-S., S.-Stevens)
- Patterson-Sullivan measures for limit sets of convex co-compact hyperbolic surfaces and manifolds (Bourgain-Dyatlov, Li-Naud-Pan)
- Stationary measures for random walks on split semisimple Lie groups with spectral gap (Li)
- Self-similar measures (Li-S., Brémont, Varjú-Yu, Solomyak)

Examples of Rajchman measures

- Random Cantor measure constructions (Salem, Shmerkin-Suomala et al.)
- Bernoulli convolutions (Salem, Erdös)
- Measures arising from Brownian motion (Kahane et al.)
- Constructions on well- and badly approximable numbers, Liouville numbers (Kaufman, Bluhm, Hambrook)
- Equilibrium states for the Gauss map (Jordan-S., S.-Stevens)
- Patterson-Sullivan measures for limit sets of convex co-compact hyperbolic surfaces and manifolds (Bourgain-Dyatlov, Li-Naud-Pan)
- Stationary measures for random walks on split semisimple Lie groups with spectral gap (Li)
- Self-similar measures (Li-S., Brémont, Varjú-Yu, Solomyak)
- Non-commuting self-affine measures (Li-S.)

Examples of Rajchman measures

- Random Cantor measure constructions (Salem, Shmerkin-Suomala et al.)
- Bernoulli convolutions (Salem, Erdös)
- Measures arising from Brownian motion (Kahane et al.)
- Constructions on well- and badly approximable numbers, Liouville numbers (Kaufman, Bluhm, Hambrook)
- Equilibrium states for the Gauss map (Jordan-S., S.-Stevens)
- Patterson-Sullivan measures for limit sets of convex co-compact hyperbolic surfaces and manifolds (Bourgain-Dyatlov, Li-Naud-Pan)
- Stationary measures for random walks on split semisimple Lie groups with spectral gap (Li)
- Self-similar measures (Li-S., Brémont, Varjú-Yu, Solomyak)
- Non-commuting self-affine measures (Li-S.)
- Equilibrium states for non-linear iterated function systems (Kaufman, Mosquera-Shmerkin, S.-Stevens)

Fourier decay and Lebesgue like properties

- μ Rajchman $\Longrightarrow \operatorname{spt}(\mu)$ is set of multiplicity for trigonometric series: i.e. \exists sequences $\left(a_{n}\right)_{n \in \mathbb{Z}} \neq\left(b_{n}\right)_{n \in \mathbb{Z}} \subset \mathbb{C}$ such that $\forall x \in \mathbb{R} \backslash \operatorname{spt}(\mu)$:

$$
\sum_{n \in \mathbb{Z}} a_{n} e^{2 \pi i n x}=\sum_{n \in \mathbb{Z}} b_{n} e^{2 \pi i n x}
$$

Fourier decay and Lebesgue like properties

- μ Rajchman $\Longrightarrow \operatorname{spt}(\mu)$ is set of multiplicity for trigonometric series: i.e. \exists sequences $\left(a_{n}\right)_{n \in \mathbb{Z}} \neq\left(b_{n}\right)_{n \in \mathbb{Z}} \subset \mathbb{C}$ such that $\forall x \in \mathbb{R} \backslash \operatorname{spt}(\mu)$:

$$
\sum_{n \in \mathbb{Z}} a_{n} e^{2 \pi i n x}=\sum_{n \in \mathbb{Z}} b_{n} e^{2 \pi i n x}
$$

- $|\widehat{\mu}(n)|=O\left((\log \log |n|)^{-1-\varepsilon}\right),|n| \rightarrow \infty \quad \Longrightarrow \quad \mu$ a.e. x is normal

Fourier decay and Lebesgue like properties

- μ Rajchman $\Longrightarrow \operatorname{spt}(\mu)$ is set of multiplicity for trigonometric series: i.e. \exists sequences $\left(a_{n}\right)_{n \in \mathbb{Z}} \neq\left(b_{n}\right)_{n \in \mathbb{Z}} \subset \mathbb{C}$ such that $\forall x \in \mathbb{R} \backslash \operatorname{spt}(\mu)$:

$$
\sum_{n \in \mathbb{Z}} a_{n} e^{2 \pi i n x}=\sum_{n \in \mathbb{Z}} b_{n} e^{2 \pi i n x}
$$

- $|\widehat{\mu}(n)|=O\left((\log \log |n|)^{-1-\varepsilon}\right),|n| \rightarrow \infty \quad \Longrightarrow \quad \mu$ a.e. x is normal
- $|\widehat{\mu}(n)|=O\left((\log |n|)^{-2-\varepsilon}\right),|n| \rightarrow \infty$
$\mu\left(x:\left|x-\frac{p}{q_{n}}\right| \leq \frac{\psi\left(q_{n}\right)}{q_{n}}\right.$ for ∞ many $\left.(p, n)\right)= \begin{cases}1, & \sum_{n=1}^{\infty} \psi\left(q_{n}\right)=\infty ; \\ 0, & \sum_{n=1}^{\infty} \psi\left(q_{n}\right)<\infty\end{cases}$
for any lacunary sequence $\left(q_{n}\right) \subset \mathbb{N}$. (Khintchine type property)

Fourier decay and Lebesgue like properties

- μ Rajchman $\Longrightarrow \operatorname{spt}(\mu)$ is set of multiplicity for trigonometric series: i.e. \exists sequences $\left(a_{n}\right)_{n \in \mathbb{Z}} \neq\left(b_{n}\right)_{n \in \mathbb{Z}} \subset \mathbb{C}$ such that $\forall x \in \mathbb{R} \backslash \operatorname{spt}(\mu)$:

$$
\sum_{n \in \mathbb{Z}} a_{n} e^{2 \pi i n x}=\sum_{n \in \mathbb{Z}} b_{n} e^{2 \pi i n x}
$$

- $|\widehat{\mu}(n)|=O\left((\log \log |n|)^{-1-\varepsilon}\right),|n| \rightarrow \infty \quad \Longrightarrow \quad \mu$ a.e. x is normal
- $|\widehat{\mu}(n)|=O\left((\log |n|)^{-2-\varepsilon}\right),|n| \rightarrow \infty$
$\mu\left(x:\left|x-\frac{p}{q_{n}}\right| \leq \frac{\psi\left(q_{n}\right)}{q_{n}}\right.$ for ∞ many $\left.(p, n)\right)= \begin{cases}1, & \sum_{n=1}^{\infty} \psi\left(q_{n}\right)=\infty ; \\ 0, & \sum_{n=1}^{\infty} \psi\left(q_{n}\right)<\infty\end{cases}$
for any lacunary sequence $\left(q_{n}\right) \subset \mathbb{N}$. (Khintchine type property)
- $|\widehat{\mu}(n)|=O\left(|n|^{-\alpha}\right),|n| \rightarrow \infty \Longrightarrow$
- μ is L^{p} improving: $\forall f \in L^{p}(\mathbb{R}), 1<p<\infty: f * \mu \in L^{p+\varepsilon}(\mathbb{R})$
- Hausdorff dimension of μ satisfies $\operatorname{dim}_{H} \mu \geq \min \{1,2 \alpha\}$

Avoiding lattices and Fourier decay

- Bernoulli convolution μ_{λ} : distribution of $\sum_{n \in \mathbb{N}} \varepsilon_{n} \lambda^{n}$ for $0<\lambda<1$ where $\varepsilon_{n} \sim \frac{1}{2} \delta_{-1}+\frac{1}{2} \delta_{1}$ i.i.d. for all $n \in \mathbb{N}$.

Avoiding lattices and Fourier decay

- Bernoulli convolution μ_{λ} : distribution of $\sum_{n \in \mathbb{N}} \varepsilon_{n} \lambda^{n}$ for $0<\lambda<1$ where $\varepsilon_{n} \sim \frac{1}{2} \delta_{-1}+\frac{1}{2} \delta_{1}$ i.i.d. for all $n \in \mathbb{N}$.
- Erdös-Salem: μ_{λ} is Rajchman if and only if $\left(d\left(\lambda^{-n}, \mathbb{Z}\right)\right)_{n \in \mathbb{N}} \notin \ell^{2}$.

IFS fractals

- Let $\left\{f_{a}: a \in \mathcal{A}\right\}$ be an iterated function system, i.e. $\mathcal{A} \subset \mathbb{N}, I \subset \mathbb{R}$ is an interval and $f_{a} \in C^{2}(I)$ is a contraction: $\left\|f_{a}^{\prime}\right\|_{\infty}<1$.

IFS fractals

- Let $\left\{f_{a}: a \in \mathcal{A}\right\}$ be an iterated function system, i.e. $\mathcal{A} \subset \mathbb{N}, I \subset \mathbb{R}$ is an interval and $f_{a} \in C^{2}(I)$ is a contraction: $\left\|f_{a}^{\prime}\right\|_{\infty}<1$.
- The IFS fractal defined by $\left\{f_{a}: a \in \mathcal{A}\right\}$ is the unique non-empty compact set $F \subset I$ satisfying

$$
F=\bigcup_{a \in \mathcal{A}} f_{a}(F)
$$

IFS fractals

- Let $\left\{f_{a}: a \in \mathcal{A}\right\}$ be an iterated function system, i.e. $\mathcal{A} \subset \mathbb{N}, I \subset \mathbb{R}$ is an interval and $f_{a} \in C^{2}(I)$ is a contraction: $\left\|f_{a}^{\prime}\right\|_{\infty}<1$.
- The IFS fractal defined by $\left\{f_{a}: a \in \mathcal{A}\right\}$ is the unique non-empty compact set $F \subset I$ satisfying

$$
F=\bigcup_{a \in \mathcal{A}} f_{a}(F)
$$

- If $\varphi: I \rightarrow \mathbb{R}$ is a function, then the equilibrium state μ_{φ} associated to φ is the measure on F satisfying $\forall h \in C^{0}(I)$:

$$
\int h(x) d \mu(x)=\sum_{a \in \mathcal{A}} \int e^{\varphi\left(f_{a}(x)\right)} h\left(f_{a}(x)\right) d \mu(x)
$$

IFS fractals

- Let $\left\{f_{a}: a \in \mathcal{A}\right\}$ be an iterated function system, i.e. $\mathcal{A} \subset \mathbb{N}, I \subset \mathbb{R}$ is an interval and $f_{a} \in C^{2}(I)$ is a contraction: $\left\|f_{a}^{\prime}\right\|_{\infty}<1$.
- The IFS fractal defined by $\left\{f_{a}: a \in \mathcal{A}\right\}$ is the unique non-empty compact set $F \subset I$ satisfying

$$
F=\bigcup_{a \in \mathcal{A}} f_{a}(F)
$$

- If $\varphi: I \rightarrow \mathbb{R}$ is a function, then the equilibrium state μ_{φ} associated to φ is the measure on F satisfying $\forall h \in C^{0}(I)$:

$$
\int h(x) d \mu(x)=\sum_{a \in \mathcal{A}} \int e^{\varphi\left(f_{a}(x)\right)} h\left(f_{a}(x)\right) d \mu(x)
$$

- Example: If $\mathcal{A}=\{1,2\}, I=\left[-(1-\lambda)^{-1},(1-\lambda)^{-1}\right]$, $f_{1}(x)=\lambda x+1, f_{2}(x)=\lambda x-1, \varphi(x) \equiv \log (1 / 2)$, then $\mu_{\varphi}=\mu_{\lambda}$, the Bernoulli convolution associated to $0<\lambda<1$.

IFSs from the Gauss map

- $I=[0,1], \mathcal{A}=\mathbb{N}, f_{a}(x)=(x+a)^{-1}, a \in \mathbb{N}$. Then f_{a} are the inverse branches of the Gauss map $T(x)=\frac{1}{x} \bmod 1$.

IFSs from the Gauss map

- $I=[0,1], \mathcal{A}=\mathbb{N}, f_{a}(x)=(x+a)^{-1}, a \in \mathbb{N}$. Then f_{a} are the inverse branches of the Gauss map $T(x)=\frac{1}{x} \bmod 1$.
- Jordan-S. 2016: For all equilibrium states μ_{φ} with $\operatorname{dim}_{H} \mu_{\varphi}>1 / 2$ and $\log \left|T^{\prime}\right|$ has a light tail at infinity w.r.t. μ_{φ}, we have

$$
\left|\widehat{\mu_{\varphi}}(n)\right|=O\left(|n|^{-\alpha}\right), \quad|n| \rightarrow \infty .
$$

IFSs from the Gauss map

- $I=[0,1], \mathcal{A}=\mathbb{N}, f_{a}(x)=(x+a)^{-1}, a \in \mathbb{N}$. Then f_{a} are the inverse branches of the Gauss map $T(x)=\frac{1}{x} \bmod 1$.
- Jordan-S. 2016: For all equilibrium states μ_{φ} with $\operatorname{dim}_{H} \mu_{\varphi}>1 / 2$ and $\log \left|T^{\prime}\right|$ has a light tail at infinity w.r.t. μ_{φ}, we have

$$
\left|\widehat{\mu_{\varphi}}(n)\right|=O\left(|n|^{-\alpha}\right), \quad|n| \rightarrow \infty
$$

Application:

- Salem (1943) conjectured the Minkowski question mark measure $\mu_{\text {? }}$ is Rajchman, where $\mu_{\text {? }}$ is the Stieltjes measure associated to the Minkowski's question mark bijection ? : $[0,1] \rightarrow[0,1]$ mapping quadratic irrational numbers onto dyadic rational numbers.
- Indeed, $\mu_{\text {? }}$ is an equilibrium state for $\varphi(x)=\log \left(2^{-a_{1}(x)}\right)$ where $a_{1}(x)$ is the first continued fraction digit of $x \in[0,1]$.

IFSs from convex co-compact hyperbolic surfaces

- $X=\Gamma \backslash \mathbb{H}$: convex co-compact hyperbolic surface.

Limit set: $\Lambda_{X} \subset \partial \mathbb{H}$ can be represented as a subset of an IFS fractal for some collection of maps $f_{a}(x)=\frac{r_{a} x+b_{a}}{\varrho_{a} x+c_{a}}, a \in \mathcal{A}$.

IFSs from convex co-compact hyperbolic surfaces

- $X=\Gamma \backslash \mathbb{H}$: convex co-compact hyperbolic surface.

Limit set: $\Lambda_{X} \subset \partial \mathbb{H}$ can be represented as a subset of an IFS fractal for some collection of maps $f_{a}(x)=\frac{r_{a} x+b_{a}}{\varrho_{a} x+c_{a}}, a \in \mathcal{A}$.

- If μ is the Patterson-Sullivan measure on Λ_{X}, it is equilibrium state with potential defined by $\varphi\left(f_{a}(x)\right)=\log \left|f_{a}^{\prime}(x)\right|^{\delta}$, for $\delta=\operatorname{dim}_{\mathrm{H}} \Lambda_{X}$.

IFSs from convex co-compact hyperbolic surfaces

- $X=\Gamma \backslash \mathbb{H}$: convex co-compact hyperbolic surface.

Limit set: $\Lambda_{X} \subset \partial \mathbb{H}$ can be represented as a subset of an IFS fractal for some collection of maps $f_{a}(x)=\frac{r_{a} x+b_{a}}{\varrho_{a} x+c_{a}}, a \in \mathcal{A}$.

- If μ is the Patterson-Sullivan measure on Λ_{X}, it is equilibrium state with potential defined by $\varphi\left(f_{a}(x)\right)=\log \left|f_{a}^{\prime}(x)\right|^{\delta}$, for $\delta=\operatorname{dim}_{\mathrm{H}} \Lambda_{X}$.
- Bourgain-Dyatlov 2017: $\exists \alpha(\delta)>0$ s.t. $\forall \varphi, g \in C^{2}(\mathbb{R})$,

$$
\begin{aligned}
& \|\varphi\|_{C^{1}}+\|g\|_{C^{2}}<\infty \quad \text { and } \quad \inf \left|\varphi^{\prime}\right|>0: \\
\Rightarrow \quad & \left|\int g(x) e^{-2 \pi i n \varphi(x)} d \mu(x)\right|=O\left(|n|^{-\alpha(\delta)}\right), \quad n \rightarrow \infty .
\end{aligned}
$$

IFSs from convex co-compact hyperbolic surfaces

- $X=\Gamma \backslash \mathbb{H}$: convex co-compact hyperbolic surface.

Limit set: $\Lambda_{X} \subset \partial \mathbb{H}$ can be represented as a subset of an IFS fractal for some collection of maps $f_{a}(x)=\frac{r_{a} x+b_{a}}{\varrho_{a} x+c_{a}}, a \in \mathcal{A}$.

- If μ is the Patterson-Sullivan measure on Λ_{X}, it is equilibrium state with potential defined by $\varphi\left(f_{a}(x)\right)=\log \left|f_{a}^{\prime}(x)\right|^{\delta}$, for $\delta=\operatorname{dim}_{\mathrm{H}} \Lambda_{X}$.
- Bourgain-Dyatlov 2017: $\exists \alpha(\delta)>0$ s.t. $\forall \varphi, g \in C^{2}(\mathbb{R})$,

$$
\begin{aligned}
& \|\varphi\|_{C^{1}}+\|g\|_{C^{2}}<\infty \quad \text { and } \quad \inf \left|\varphi^{\prime}\right|>0: \\
\Rightarrow \quad & \left|\int g(x) e^{-2 \pi i n \varphi(x)} d \mu(x)\right|=O\left(|n|^{-\alpha(\delta)}\right), \quad n \rightarrow \infty .
\end{aligned}
$$

Application:

- Selberg zeta function on X :

$$
\zeta_{X}(s)=\prod_{\substack{\gamma \text { primitive } \\ \text { closed geodesic in } X}} \prod_{k=0}^{\infty}\left(1-e^{-(s+k) \ell(\gamma)}\right), \quad \operatorname{Re}(s) \gtrsim 1, s \in \mathbb{C} .
$$

IFSs from convex co-compact hyperbolic surfaces

- $X=\Gamma \backslash \mathbb{H}$: convex co-compact hyperbolic surface.

Limit set: $\Lambda_{X} \subset \partial \mathbb{H}$ can be represented as a subset of an IFS fractal for some collection of maps $f_{a}(x)=\frac{r_{a} x+b_{a}}{\varrho_{a} x+c_{a}}, a \in \mathcal{A}$.

- If μ is the Patterson-Sullivan measure on Λ_{X}, it is equilibrium state with potential defined by $\varphi\left(f_{a}(x)\right)=\log \left|f_{a}^{\prime}(x)\right|^{\delta}$, for $\delta=\operatorname{dim}_{\mathrm{H}} \Lambda_{X}$.
- Bourgain-Dyatlov 2017: $\exists \alpha(\delta)>0$ s.t. $\forall \varphi, g \in C^{2}(\mathbb{R})$,

$$
\begin{aligned}
& \|\varphi\|_{C^{1}}+\|g\|_{C^{2}}<\infty \quad \text { and } \quad \inf \left|\varphi^{\prime}\right|>0: \\
\Rightarrow \quad & \left|\int g(x) e^{-2 \pi i n \varphi(x)} d \mu(x)\right|=O\left(|n|^{-\alpha(\delta)}\right), \quad n \rightarrow \infty .
\end{aligned}
$$

Application:

- Selberg zeta function on X :

$$
\zeta_{X}(s)=\prod_{\substack{\gamma \text { primitive } \\ \text { closed geodesic in } X}} \prod_{k=0}^{\infty}\left(1-e^{-(s+k) \ell(\gamma)}\right), \quad \operatorname{Re}(s) \gtrsim 1, s \in \mathbb{C} .
$$

- $\forall \delta>0, \exists \alpha_{0}(\delta)>0$ such that $\zeta_{X}(s)=0$ for only finitely many $s \in \mathbb{C}$ with $\operatorname{Re}(s)>\delta-\alpha_{0}(\delta)$.

Nonlinearity

- Let $\left\{f_{a}: I \rightarrow \mathbb{R}: a \in \mathcal{A}\right\}$ be C^{2} IFS. Assume $I_{a}:=f_{a}(I), a \in \mathcal{A}$, are disjoint. Then there is an expanding map $T: I \rightarrow \mathbb{R}$ with

$$
\left(\left.T\right|_{I_{a}}\right)^{-1}=f_{a}
$$

Nonlinearity

- Let $\left\{f_{a}: I \rightarrow \mathbb{R}: a \in \mathcal{A}\right\}$ be C^{2} IFS. Assume $I_{a}:=f_{a}(I), a \in \mathcal{A}$, are disjoint. Then there is an expanding map $T: I \rightarrow \mathbb{R}$ with

$$
\left(\left.T\right|_{I_{a}}\right)^{-1}=f_{a}
$$

- $\left\{f_{a}: a \in \mathcal{A}\right\}$ is conjugated to a self-similar IFS if there exists $\psi: I \rightarrow \mathbb{R}$ constant on each I_{a} such that

$$
\log \left|T^{\prime}\right|=g \circ T-g+\psi
$$

for some $g \in C^{1}(I)$.
I.e. $\exists h \in C^{2}(I)$ such that $\left\{h f_{a} h^{-1}: a \in \mathcal{A}\right\}$ consists of similitudes.

Nonlinearity

- Let $\left\{f_{a}: I \rightarrow \mathbb{R}: a \in \mathcal{A}\right\}$ be C^{2} IFS. Assume $I_{a}:=f_{a}(I), a \in \mathcal{A}$, are disjoint. Then there is an expanding map $T: I \rightarrow \mathbb{R}$ with

$$
\left(\left.T\right|_{I_{a}}\right)^{-1}=f_{a}
$$

- $\left\{f_{a}: a \in \mathcal{A}\right\}$ is conjugated to a self-similar IFS if there exists $\psi: I \rightarrow \mathbb{R}$ constant on each I_{a} such that

$$
\log \left|T^{\prime}\right|=g \circ T-g+\psi
$$

for some $g \in C^{1}(I)$.
I.e. $\exists h \in C^{2}(I)$ such that $\left\{h f_{a} h^{-1}: a \in \mathcal{A}\right\}$ consists of similitudes.

- $\left\{f_{a}: a \in \mathcal{A}\right\}$ is totally non-linear if it is not conjugated to a self-similar IFS.

Conjugated to self-similar IFSs

Assume exists $\psi: I \rightarrow \mathbb{R}$ constant on each I_{a} and $g \in C^{1}(I)$ such that

$$
\log \left|T^{\prime}\right|=g \circ T-g+\psi
$$

and μ_{φ} equilibrium state with $\varphi(x)=\log p_{a(x)}$ for some $\sum_{a \in \mathcal{A}} p_{a}=1$, $0<p_{a}<1$, and $a(x) \in \mathbb{N}$ determined by $x=T\left(f_{a(x)}(x)\right)$.

Conjugated to self-similar IFSs

Assume exists $\psi: I \rightarrow \mathbb{R}$ constant on each I_{a} and $g \in C^{1}(I)$ such that

$$
\log \left|T^{\prime}\right|=g \circ T-g+\psi
$$

and μ_{φ} equilibrium state with $\varphi(x)=\log p_{a(x)}$ for some $\sum_{a \in \mathcal{A}} p_{a}=1$, $0<p_{a}<1$, and $a(x) \in \mathbb{N}$ determined by $x=T\left(f_{a(x)}(x)\right)$.

- Mosquera-Shmerkin 2018: inf $\left|g^{\prime}\right|>0$ and $\psi=$ constant, then μ_{φ} is Rajchman with power decay.

Conjugated to self-similar IFSs

Assume exists $\psi: I \rightarrow \mathbb{R}$ constant on each I_{a} and $g \in C^{1}(I)$ such that

$$
\log \left|T^{\prime}\right|=g \circ T-g+\psi
$$

and μ_{φ} equilibrium state with $\varphi(x)=\log p_{a(x)}$ for some $\sum_{a \in \mathcal{A}} p_{a}=1$, $0<p_{a}<1$, and $a(x) \in \mathbb{N}$ determined by $x=T\left(f_{a(x)}(x)\right)$.

- Mosquera-Shmerkin 2018: inf $\left|g^{\prime}\right|>0$ and $\psi=$ constant, then μ_{φ} is Rajchman with power decay.
- Li-S. 2019: if $g=0$ and ψ is not a lattice: $\psi(I) \not \subset c \mathbb{Z}$ for some $c \in \mathbb{R}$, then μ_{φ} is Rajchman.

Conjugated to self-similar IFSs

Assume exists $\psi: I \rightarrow \mathbb{R}$ constant on each I_{a} and $g \in C^{1}(I)$ such that

$$
\log \left|T^{\prime}\right|=g \circ T-g+\psi
$$

and μ_{φ} equilibrium state with $\varphi(x)=\log p_{a(x)}$ for some $\sum_{a \in \mathcal{A}} p_{a}=1$, $0<p_{a}<1$, and $a(x) \in \mathbb{N}$ determined by $x=T\left(f_{a(x)}(x)\right)$.

- Mosquera-Shmerkin 2018: inf $\left|g^{\prime}\right|>0$ and $\psi=$ constant, then μ_{φ} is Rajchman with power decay.
- Li-S. 2019: if $g=0$ and ψ is not a lattice: $\psi(I) \not \subset c \mathbb{Z}$ for some $c \in \mathbb{R}$, then μ_{φ} is Rajchman.
- Brémont 2019: if $g=0, \psi(I) \subset c \mathbb{Z}$ and μ_{φ} is not Rajchman, then e^{-c} is a Pisot number.

Conjugated to self-similar IFSs

Assume exists $\psi: I \rightarrow \mathbb{R}$ constant on each I_{a} and $g \in C^{1}(I)$ such that

$$
\log \left|T^{\prime}\right|=g \circ T-g+\psi
$$

and μ_{φ} equilibrium state with $\varphi(x)=\log p_{a(x)}$ for some $\sum_{a \in \mathcal{A}} p_{a}=1$, $0<p_{a}<1$, and $a(x) \in \mathbb{N}$ determined by $x=T\left(f_{a(x)}(x)\right)$.

- Mosquera-Shmerkin 2018: inf $\left|g^{\prime}\right|>0$ and $\psi=$ constant, then μ_{φ} is Rajchman with power decay.
- Li-S. 2019: if $g=0$ and ψ is not a lattice: $\psi(I) \not \subset c \mathbb{Z}$ for some $c \in \mathbb{R}$, then μ_{φ} is Rajchman.
- Brémont 2019: if $g=0, \psi(I) \subset c \mathbb{Z}$ and μ_{φ} is not Rajchman, then e^{-c} is a Pisot number.
- Varjú-Yu 2020: if $g=0, \psi(I) \subset c \mathbb{Z}$ with e^{-c} is not Pisot nor Salem number, then μ_{φ} is Rajchman with polylogarithmic decay.

Conjugated to self-similar IFSs

Assume exists $\psi: I \rightarrow \mathbb{R}$ constant on each I_{a} and $g \in C^{1}(I)$ such that

$$
\log \left|T^{\prime}\right|=g \circ T-g+\psi
$$

and μ_{φ} equilibrium state with $\varphi(x)=\log p_{a(x)}$ for some $\sum_{a \in \mathcal{A}} p_{a}=1$, $0<p_{a}<1$, and $a(x) \in \mathbb{N}$ determined by $x=T\left(f_{a(x)}(x)\right)$.

- Mosquera-Shmerkin 2018: inf $\left|g^{\prime}\right|>0$ and $\psi=$ constant, then μ_{φ} is Rajchman with power decay.
- Li-S. 2019: if $g=0$ and ψ is not a lattice: $\psi(I) \not \subset c \mathbb{Z}$ for some $c \in \mathbb{R}$, then μ_{φ} is Rajchman.
- Brémont 2019: if $g=0, \psi(I) \subset c \mathbb{Z}$ and μ_{φ} is not Rajchman, then e^{-c} is a Pisot number.
- Varjú-Yu 2020: if $g=0, \psi(I) \subset c \mathbb{Z}$ with e^{-c} is not Pisot nor Salem number, then μ_{φ} is Rajchman with polylogarithmic decay.
- Solomyak 2019: if $g=0$, for all ψ except zero Hausdorff dimensional parameter set of ψ, μ_{φ} is Rajchman with power decay.

Totally non-linear case

Theorem (S.-Stevens 2020)
Assume $\left\{f_{a}: I \rightarrow \mathbb{R}\right\}$ is totally non-linear and \mathcal{A} is finite. Then every non-atomic equilibrium state μ_{φ} is Rajchman with power decay.

Totally non-linear case

Theorem (S.-Stevens 2020)

Assume $\left\{f_{a}: I \rightarrow \mathbb{R}\right\}$ is totally non-linear and \mathcal{A} is finite. Then every non-atomic equilibrium state μ_{φ} is Rajchman with power decay.
A. Algom, F.-R. Hertz, Z. Wang (work in progress) can also prove Rajchman property but not power decay for $C^{1+\gamma}$ IFSs when $\left\{-\log \left|f_{a}^{\prime}\left(x_{a}\right)\right|: a \in \mathcal{A}\right\}$ is not contained in an arithmetic progression, where x_{a} is the fixed point of f_{a}.

Large deviations

Write $I_{\mathbf{a}}:=f_{\mathbf{a}}(I)$ for the composition $f_{\mathbf{a}}:=f_{a_{1}} \circ \cdots \circ f_{a_{n}}, \mathbf{a} \in \mathcal{A}^{n}$.

Large deviations

Write $I_{\mathbf{a}}:=f_{\mathbf{a}}(I)$ for the composition $f_{\mathbf{a}}:=f_{a_{1}} \circ \cdots \circ f_{a_{n}}, \mathbf{a} \in \mathcal{A}^{n}$.

- Large deviations for light tailed observables: for any $\varepsilon>0$ and $n \in \mathbb{N}$, we can find words $\mathcal{R}_{n}(\varepsilon) \subset \mathcal{A}^{n}$ such that for $\mu=\mu_{\varphi}$:

$$
\mu=\left.\sum_{\mathbf{a} \in \mathcal{R}_{n}(\varepsilon)} \mu\right|_{I_{\mathbf{a}}}+\left.\sum_{\mathbf{a} \in \mathcal{A}^{n} \backslash \mathcal{R}_{n}(\varepsilon)} \mu\right|_{I_{\mathbf{a}}}
$$

where
(1) for $\lambda=\int \log \left|T^{\prime}\right| d \mu$ and $\delta=\operatorname{dim}_{\mathrm{H}} \mu$ we have

$$
\begin{array}{ll}
e^{-\varepsilon n} e^{-\lambda n} \lesssim\left|I_{\mathbf{a}}\right| \lesssim e^{\varepsilon n} e^{-\lambda n}, & \mathbf{a} \in \mathcal{R}_{n}(\varepsilon) \\
e^{-\varepsilon n}\left|I_{\mathbf{a}}\right|^{\delta} \lesssim \mu\left(I_{\mathbf{a}}\right) \lesssim e^{\varepsilon n}\left|I_{\mathbf{a}}\right|^{\delta} & \mathbf{a} \in \mathcal{R}_{n}(\varepsilon)
\end{array}
$$

(2) and the tail is exponentially small:

$$
\sum_{\mathbf{a} \in \mathcal{A}^{n} \backslash \mathcal{R}_{n}(\varepsilon)} \mu\left(I_{\mathbf{a}}\right)=O\left(e^{-\delta(\varepsilon) n}\right)
$$

Non-concentration and spectral gap

- The key to find $\varepsilon_{0}>0$ and $c_{0}>0$ such that the derivatives

$$
f_{\mathbf{a}}^{\prime}(x), \quad \mathbf{a} \in \mathcal{R}_{n}(\varepsilon), \quad x \in I
$$

non-concentrate in the scales $m \in \mathbb{N}, \frac{\varepsilon_{0}}{2} n \leq m \leq \varepsilon_{0} n$ in the following sense: for any $x \in I, y \in \mathbb{R}$:

$$
\frac{\sharp\left\{\mathbf{a} \in \mathcal{R}_{n}(\varepsilon): e^{\lambda n} f_{\mathbf{a}}^{\prime}(x) \in B\left(y, e^{-\varepsilon_{0} m}\right)\right\}}{\sharp \mathcal{R}_{n}(\varepsilon)} \lesssim e^{\varepsilon n} e^{-c_{0} m}
$$

Non-concentration and spectral gap

- The key to find $\varepsilon_{0}>0$ and $c_{0}>0$ such that the derivatives

$$
f_{\mathbf{a}}^{\prime}(x), \quad \mathbf{a} \in \mathcal{R}_{n}(\varepsilon), \quad x \in I
$$

non-concentrate in the scales $m \in \mathbb{N}, \frac{\varepsilon_{0}}{2} n \leq m \leq \varepsilon_{0} n$ in the following sense: for any $x \in I, y \in \mathbb{R}$:

$$
\frac{\sharp\left\{\mathbf{a} \in \mathcal{R}_{n}(\varepsilon): e^{\lambda n} f_{\mathbf{a}}^{\prime}(x) \in B\left(y, e^{-\varepsilon_{0} m}\right)\right\}}{\sharp \mathcal{R}_{n}(\varepsilon)} \lesssim e^{\varepsilon n} e^{-c_{0} m}
$$

- For us ε_{0} and c_{0} and depends on the spectral gap for $\mathcal{L}_{\varphi-s \log \left|T^{\prime}\right|}$ with $s=\delta-2 \pi i \xi$. Stoyanov (2011) has a proof for the spectral gap under a local non-integrability assumption for the roof functions of the symbolic Markov codings of C^{2} Axiom A flows on C^{2} complete Riemannian manifolds. This follows under total non-linearity of T with the roof $\log \left|T^{\prime}\right|$.

Reduction to sum-product bounds

Cauchy-Schwartz and bounded distortions give us whenever

$$
|\xi| \sim e^{(2 k+1) n \lambda} e^{\varepsilon_{0} n}
$$

that

$$
\begin{aligned}
|\widehat{\mu}(\xi)|^{2} \lesssim e^{\kappa \varepsilon n} e^{-\lambda(2 k+1) \delta n} & \sum_{\mathbf{a}_{0} \ldots \mathbf{a}_{k} \in \mathcal{R}_{n}(\varepsilon)^{k+1}} \\
\sup _{e^{\varepsilon_{0} n / 2} \leq|\eta| \leq e^{\varepsilon n} e^{\varepsilon_{0} n}} & \sum_{\mathbf{b}_{1} \ldots \mathbf{b}_{k}} e^{-2 \pi i \eta \zeta_{1}\left(\mathbf{b}_{1}\right) \ldots \zeta_{k}\left(\mathbf{b}_{k}\right)} \mid .
\end{aligned}
$$

for the maps

$$
\zeta_{j}(\mathbf{b}):=e^{2 \lambda n} f_{\mathbf{a}_{j-1} \mathbf{b}}^{\prime}\left(x_{\mathbf{a}_{j}}\right)
$$

and $x_{\mathbf{a}_{j}}$ is the center point of $f_{\mathbf{a}_{j}}(I)$ and $f_{\mathbf{a}_{j}}$ is the composition of the maps corresponding f_{a} to the word $\mathbf{a}_{j}=\left(a_{1}, \ldots, a_{n}\right)$.

Sum-product bound

Lemma 8.43 (J. Bourgain: The Discretized Sum-Product and Projection Theorems, 2010)

For all $\kappa>0$, there exists $\varepsilon_{3}>0, \varepsilon_{4}>0$ and $k \in \mathbb{N}$ such that the following holds.

Let ν be a probability measure on $\left[\frac{1}{2}, 1\right]$ and let N be a large integer. Assume for all $1 / N<\varrho<1 / N^{\varepsilon_{3}}$ that

$$
\max _{a} \nu(B(a, \varrho))<\varrho^{\kappa}
$$

Then for all $\xi \in \mathbb{R},|\xi| \sim N$:

$$
\left|\iint \ldots \int e^{-2 \pi i \xi x_{1} \ldots x_{k}} d \nu\left(x_{1}\right) \ldots d \nu\left(x_{k}\right)\right|<N^{-\varepsilon_{4}} .
$$

One can make this into a version involving multiple $\nu_{1}, \nu_{2}, \ldots, \nu_{k}$ for ν_{j} a scaled version of $\mu_{j}=\frac{1}{\sharp \mathcal{R}_{n}(\varepsilon)} \sum_{\mathbf{b} \in \mathcal{R}_{n}(\varepsilon)} \delta_{\zeta_{j}(\mathbf{b})}$.

Representation theory and higher dimensions

- Li 2018: Renewal theoretic approach for Fourier decay of the Furstenberg measures on the projective spaces. This should help to get higher dimensional, totally non-linear case.
- Li-Naud-Pan 2019: PSL(2, © $)$ version of Bourgain-Dyatlov proved
- Li-S. 2019: Self-affine measures, non-commuting matrices using Li 2018
- Fourier decay for self-similar measures in higher dimensions when assuming dense rotations is difficult, closely related to problem of finding spectral gap for non-lattice random walks on $S O(d)$. Currently known for algebraic parameters by Benoist-Saxcé 2014.

