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1. The Hodge to de Rham spectral sequence

X/k proper smooth; k a field

de Rham cohomology

Hn
dR(X/k) := Hn(X ,Ω•X/k)

Hodge to de Rham spectral sequence

(1) E ij
1 = H j(X ,Ωi

X/k)⇒ H i+j
dR (X/k)

hij := dim(E ij
1 ) <∞ hn := dim(Hn

dR(X/k)) <∞.

(1) degenerates at E1 ⇔ ∀n hn =
∑

i+j=n h
ij .



char(k) = 0 ⇒ (1) degenerates at E1.

k = C:

dR comparison th. + Serre’s GAGA

Hn
dR(X/C)

∼→ Hn(X (C),C)

Hodge decomposition

Hn
dR(X/C)

∼→ ⊕i+j=nF
i ∩ F

j

H j(X ,Ωi
X/C)

∼→ F i ∩ F
j
,

(F i : Hodge filtration)

Algebraic proof of degeneration /k : [DI] (1987).



char(k) = p > 0 ⇒ (1) may not degenerate at E1

Smooth proper surfaces: Mumford (1961), I. (1979),
Raynaud-Szpiro (1981), Antieau-Bhatt-Mathew (2021)

However:

Theorem [DI]. k perfect field of char. p > 0, X/k proper smooth.
Assume:

(i) dim(X ) 6 p

(ii) X/k liftable to X̃/W2(k).

Then (1) degenerates at E1.

Question (DI 2.6 (iii)) Does there exist X/k proper smooth, of
dimension p + 1, liftable to W2(k), such that (1) does not
degenerate at E1?

Answer (A. Petrov, 2022). Yes! Can even choose X/k projective
and liftable to a smooth projective scheme over W (k).



2. The diffracted Hodge complex

k perfect field, char. p > 0.

Change notation: X/W (k) formal smooth, Y := Xk/k .

To X/W (k) Bhatt-Lurie associate the diffracted Hodge complex

Ω
/D
X/W (k) ∈ D>0(X ,OX )

a perfect complex of OX -modules, of perfect amplitude in
[0, dim(X/W (k))]

endowed with:
• a product structure

Ω
/D
X/W (k) ⊗

L Ω
/D
X/W (k) → Ω

/D
X/W (k)

underlying a cosimplicial commutative OX -algebra,



• multiplicative OX -linear isomorphisms

(∗) H i (Ω
/D
X/W (k))

∼→ Ωi
X/W (k),

• an endomorphism

ΘX ∈ End(Ω
/D
X/W (k)),

the Sen operator, acting as a derivation, and satisfying

ΘX |H i (Ω
/D
X/W (k)) = −iId,



• an isomorphism in D(Y (1),OY (1)):

εY : Ω
/D
Y (1)/k

∼→ F∗Ω
•
Y /k

where
Ω

/D
Y /k := Ω

/D
X/W (k) ⊗

L k ,

inducing the Cartier isomorphism on H i

C−1 : Ωi
Y (1)/k

∼→ F∗H
i (Ω•Y /k)

via the reduction mod p

H i (Ω
/D
Y /k)

∼→ Ωi
Y /k

of the isomorphisms (*).



Construction of Ω
/D
X/W (k) relies on Bhatt-Lurie-Drinfeld theory of

Cartier-Witt and Hodge-Tate stacks. See Appendix for a sketch.

As an object of D(X ,OX ), Ω
/D
X/W (k) is described as

Ω
/D
X/W (k) = ϕW (k)∗(qΩX/W (k)[[q−1]])

F∗
p

q=ζp

where qΩ denotes the q-crystalline complex (intrinsic form of the
(local) q-de Rham complexes).

But Θ usually invisible! We’ll show: Θ controls deep cohomological
invariants of Ω•Y /k = Ω•X/W (k) ⊗ k (key input in Petrov’s
construction).



Application: new structure on the de Rham complex

d := dim(X/W (k))

Θ|H iΩ
/D
X/W (k) = −i ⇒

∏
06i6d(Θ + i) ∈ End(Ω

/D
X/W (k)) nilpotent,

gives a decomposition of Ω
/D
Y /k = Ω

/D
X/W (k) ⊗ k into generalized

eigenspaces:

Ω
/D
Y /k = ⊕06i<p(Ω

/D
Y /k)i

with (Ω
/D
Y /k)i cohomologically concentrated in degrees ≡ i mod p,

and
Θ|(Ω

/D
Y /k)i = −iId + Θi

with Θi nilpotent.

NB. Ω
/D
Y /k ∈ D(B(G]

m)k), where (G]
m)k = (µp × G]

a)k .

(Ω
/D
Y /k)i = summand of weight i in the Z/pZ-grading associated

with the µp-action.



By the isomorphism

εY : Ω
/D
Y (1)/k

∼→ F∗Ω
•
Y /k ,

get Θ ∈ EndO
Y (1)

(F∗Ω
•
Y /k) and Θ-stable decomposition

F∗Ω
•
Y /k = ⊕06i<p(F∗Ω

•
Y /k)i ,

with Θ = −iId + Θi on the summand of weight i .

In particular, get decompositions for all a ∈ Z,

τ [a,a+p−1]F∗Ω
•
Y /k = ⊕a6i<a+p−1H

i (F∗Ω
•
Y /k)[−i ]

generalizing those of [DI] and Achinger-Suh [AS].
(NB. depend only on X ⊗W2(k), and for a = 0 coincide with those
of [DI].)



3. Sen classes and obstructions
Fix X/W (k) formal smooth, Y := X ⊗ k . To get classes on Y
rather than on Y (1), use Petrov’s notation:

Y (−1)

��

Y

��

oo Y (−1)Foo

yyttt
tt
tt
tt
t

Spec(k) Spec(k)
Fkoo

(F : Y (−1) → Y the relative Frobenius).

In particular, the Cartier isomorphism

C−1 : Ωi
Y /k

∼→ H iF∗Ω
•
Y (−1)/k

is induced on H i by the basic isomorphism εY of diffraction theory,
which reads

εY : Ω
/D
Y /k

∼→ F∗Ω
•
Y (−1)/k

.



3.1. The first obstruction class:

eY ,X ∈ Extp+1
OY

(Ωp
Y /k ,OY )

is defined as follows.

Because τ [0,p−1] (resp. τ [1,p]) of F∗Ω•Y (−1)/k
is decomposable by

[DI] (resp. diffraction), the obstruction to decomposing
τ [0,p]F∗Ω

•
Y (−1)/k

, i.e., the map of degree 1 of the triangle

τ<pF∗Ω
•
Y (−1)/k

→ τ [0,p]F∗Ω
•
Y (−1)/k

→ HpF∗Ω
•
Y (−1)/k

[−p]→,

is a class

eY ,X ∈ Extp+1
OY

(HpF∗Ω
•
Y (−1)/k

,H0F∗Ω
•
Y (−1)/k

) = Extp+1
OY

(Ωp
Y /k ,OY ).



Equivalently, eY ,X is the map of degree 1 of the triangle

H0(τ [0,p](Ω
/D
Y /k)0)→ τ [0,p](Ω

/D
Y /k)0 → Hp(τ [0,p](Ω

/D
Y /k)0)[−p]→,

where (Ω
/D
Y /k)0 is the weight zero summand of Ω

/D
Y /k , as

H0(τ [0,p](Ω
/D
Y /k)0) = OY , H

p(τ [0,p](Ω
/D
Y /k)0) = Ωp

Y /k .



Relation with the Hodge to de Rham spectral sequence

In addition to the Hodge to de Rham spectral sequence, we have
the conjugate spectral sequence, deduced via the Cartier
isomorphism from the conjugate filtration of F∗Ω•Y (−1)/k

(i.e., the

canonical filtration τ6i ):

E ij
2 = H i (Y ,Ωj

Y /k)⇒ H i+j
dR (Y (−1)/k).

For Y /k proper, we have:

(Hodge to de Rham ss degenerates at E1) ⇔ (∀n,
∑

i+j h
ij = hn)

⇔ (Conjugate ss degenerates at E2)).



As τ [0,p−1]F∗Ω
•
Y (−1)/k

and τ [1,p]F∗Ω
•
Y (−1)/k

are decomposable, we
have

H0(Y ,Ωp
Y /k)(= E 0,p

2 ) = E 0,p
p+1, H

p+1(Y ,OY )(= Ep+1,0
2 ) = Ep+1,0

p+1

and
d0,p
p+1 : H0(Y ,Ωp

Y /k)→ Hp+1(Y ,OY )

is the composition with eY ,X : Ωp
Y /k → OY [p + 1]. Moreover,

(hp =
∑
i+j=p

hij)⇔ (H0(Y ,Ωp
Y /k) = E 0,p

∞ )⇔ (d0,p
p+1 = 0)

Petrov constructs an example of a projective and smooth X/W (k),
of relative dimension p + 1 for which, not only eY ,X 6= 0 (hence
τ [0,p]F∗Ω

•
Y (−1)/k

not decomposable), but d0,p
p+1 6= 0, hence Hodge to

de Rham does not degenerate at E1). The diffracted Hodge
complex is crucial in his construction.



3.2. The first Sen class.

Back to the hypotheses and notation of 3.1: X/W (k) formal
smooth, and Y = X ⊗ k .

The restriction Θ = Θ0 of the Sen operator to τ6p(Ω
/D
Y /k)0 sits in

an endomorphism of the exact triangle

OY

0

��

// τ6p(Ω
/D
Y /k)0 //

Θ0
��

Ωp
Y /k [−p]

0
��

//

OY
// τ6p(Ω

/D
Y /k)0 // Ωp

Y /k [−p] //

hence is induced by composition (with the right upper arrow and
the left lower one) from a class (easily seen to be unique)

cY ,X ∈ Extp(Ωp
Y /k ,OY ),

called the first Sen class.



Petrov has the following useful interpretation of cY ,X .

Consider the diffracted Hodge complex Ω
/D
X/W (k) as an object of the

∞-derived category DN(OX ) of pairs (K , u) of a quasi-coherent
complex K and an endomorphism u. In particular, the extension
defined by the canonical filtration

0→ (OX , 0)→ (τ [0,p](Ω
/D
X/W (k))0,ΘX )→ (Ωp

X/W (k)[−p], p)→ 0

is a map

c ∈ HomDN(OX )((Ωp
X/W (k)[−p], p), (OX [1], 0)).



By the exact sequence (where i : Y ↪→ X )

0→ OX
p→ OX → i∗OY → 0,

(and definition of Hom in DN(OX )) we have

HomDN(OX )((Ωp
X/W (k)[−p], p), (OX [1], 0)) = Extp(Ωp

X/W (k), i∗OY )

and
Extp(Ωp

X/W (k), i∗OY ) = Extp(Ωp
Y /k ,OY )

by adjunction. We have

c = cY ,X ∈ Extp(Ωp
Y /k ,OY ).



Relation between the obstruction class and the first Sen class

Consider the Bockstein class

βY ,X ∈ Ext1OX /p2OX
(OY ,OY )

defined by the exact sequence

0→ OY
p→ OX/p

2OX → OY → 0.

Theorem 1 (Petrov). We have

eY ,X = βY ,X ◦ cY ,X ∈ Extp+1
OY

(Ωp
Y /k ,OY )

In particular:

Corollary. τ6pF∗Ω
•
Y (−1)/k

not decomposable ⇒ cY ,X 6= 0.



Proof of Corollary. Assume cY ,X = 0. Then
Θ ∈ End(τ6p(Ω

/D
X/k)0) is (exactly) divisible by p, say Θ = pΘ′.

Then Θ′ ⊗OY gives an endomorphism of the triangle

(∗) OY → τ6p(Ω
/D
Y /k)0 → Ωp

Y /k [p]→

which is zero on OY and an isomorphism on Ωp
Y /k [p], hence (*)

splits.



To unravel the Sen class cY ,X , Petrov constructs a new
characteristic class:

3.3. The class alpha

Let R be an Fp-algebra. For M an R-module, consider the sequence

0→ M(1) → SympM → ΓpM → M(1) → 0,

where M(1) = F ∗RM, and the first (resp. last map) is given by
x 7→ xp (resp. induced by x 7→ F ∗x , which is homogeneous
polynomial of degree p, cf. [Ro, Th. IV.1]), and the middle one is
the canonical one, in particular, sending xp to p!x [p]. It is exact for
M flat.



Left deriving, and using Petrov’s notation

T (M) := Cofib(SympM → ΓpM)

for M ∈ D(R)), get exact triangles

T (M)[−1]→ SympM → ΓpM →,

and
M(1) → T (M)[−1]→ M(1)[−1]→ .



For E flat, using Quillen’s décalage formula

Γp(E [−1])
∼→ (ΛpE )[−p],

get exact triangles

T (E [−1])[−1]→ Symp(E [−1])→ (ΛpE )[−p]→,

E (1)[−2]→ τ>2Symp(E [−1])→ (ΛpE )[−p]→,

and a class
α(E ) ∈ Extp−1(ΛpE ,E (1)).

Remark. For p = 2, α(E ) is the class of the canonical extension

0→ E (1) → Sym2E → Λ2E → 0.



3.4. The obstruction to lifting Frobenius

Let X2 := X ⊗W2(k). The obstruction to lifting F : Y (−1) → Y

to a W2(k)-map X
(−1)
2 → X2 is a class

obF ,X ∈ Ext1(F ∗Ω1
Y /k ,OY (−1)) = Ext1(F ∗absΩ

1
Y /k ,OY )

where Fabs : Y → Y is the absolute Frobenius.

Petrov’s key result is the following description of the first Sen class:

Theorem 2 (Petrov). The Sen class cY ,X is the composition

Ωp
Y /k

α(Ω1
Y/k

)
→ F ∗absΩ

1
Y /k [p − 1]

obF ,X→ OY [p].



Main ingredients of proof of Theorem 2:

• The description of Ω
/D
X/W (k) as a cosimplicial commutative

algebra, in particular, enabling the definition of a map

Ω
/D
Y /k → Ω

/D
Y /k , a 7→ ap

inserting itself in a map of exact triangles (with B = Ω
/D
X/W (k),

A = Ω
/D
Y /k),

SympB
N //

m

��

ΓpB //

m

��

i∗F
∗
absA

a 7→ap

��

//

B
p! // B // i∗A //

where N is the norm map, and m the multiplication map.



• The section

s : Ω1
Y /k [−1]→ τ [0,1]F∗Ω

•
Y (−1)/k

given by the Z/p-grading, whose composition with the projection
to F∗OY (−1) is the obstruction to lifting Frobenius.

• The interpretation of cY ,X as a map in DN(OX ):

cY ,X : (Ωp
X/W (k)[−p], p)→ (OX [1], 0).



4. Petrov’s example

Recall Petrov’s main result:

Theorem 3 (Petrov). There exists a projective, smooth scheme
X/W (k), of relative dimension p + 1, such that

hpdR(Xk) <
∑
i+j=p

hij(Xk),

where Xk = X ⊗ k , hndR = dimHn
dR(−), hij = dimH j(−,Ωi ).

In particular, both the Hodge to de Rham spectral sequence and
the conjugate spectral sequence for Xk do not degenerate at their
first page.



Construction is in 2 steps.

A. Construction of a finite, flat group scheme G/W (k) such that,
in the conjugate spectral sequence for Gk = G ×Spec(W (k)) Spec(k)

E ij
2 = H i (BGk ,Ω

j
BGk/k

)⇒ H i+j
dR (BG

(−1)
k /k),

for which

d0,p
p+1 : H0(BGk ,Ω

p
BGk/k

)→ Hp+1(BGk ,O))

(see slide 17) does not vanish (and in particular, the obstruction

eBGk ,BG : Ωp
BGk/k

→ OBGk
[p + 1]

to splitting the pth step of the conjugate filtration does not
vanish). Here differentials are taken in the derived sense, for the
stack BGk over k . Implicit is a generalization of diffraction theory
to smooth Artin stacks (see [KP1], [KP2]).



B. Approximation of BG .

By a variant of the method of Godeaux-Serre-Raynaud (cf. [ABM]),
construct a projective smooth scheme X/W (k), of relative
dimension p + 1, and a morphism f : X → BG , such that the map

f ∗ : Hp+1(BGk ,O)→ Hp+1(Xk ,O)

is injective.



A. Definition of G .

Le E/W (k) be an elliptic curve whose reduction Ek is
supersingular.) Fix q = pr , with r > 2, and consider the flat
commutative group scheme over W (k)

E [p]⊗Fp F⊕pq

(a sum of p[Fq : Fp] copies of E [p]). The discrete group SLp(Fq)
acts on it via its action on the second factor. Petrov defines

G := SLp(Fq) n (E [p]⊗Fp F⊕pq ).

This is a finite, flat, non-commutative group scheme over W (k).

Theorem 4 (Petrov). The differential

d0,p
p+1 : H0(BGk ,Ω

p
BGk/k

)→ Hp+1(BGk ,O))

in the conjugate spectral sequence of BGk does not vanish.



Glimpses on proof.

The difficulty is that the extension class

e = eBGk ,BG : Ωp
BGk/k

→ OBGk
[p + 1]

is a product of 3 classes

e = Bockstein ◦ obF ◦ α(Ω1).

Not only each of them must not vanish, but the product must not
vanish either, nor the map d0,p

p+1 it induces on H0(BGk ,−).

• As Ek is supersingular, the obstruction obF to lifting F doesn’t
vanish.

• The non-vanishing of α(Ω1), which uses the action of SLp, is
more difficult (and the non-vanishing of d0,p

p+1 requires further
delicate arguments).



The non-vanishing of α(Ω1) relies on the following key lemma:

Lemma. (Petrov) Let V be a k-vector space of dimension p,
viewed as a vector bundle on BSL(V ) via the standard
representation. Then the map

k(det) = H0(BSL(V ),ΛpV )→ Hp−1(BSL(V ),V (1))

induced by the class

α(V ) : ΛpV → V (1)[p − 1]

of 3.3 is an isomorphism.

Remark. For p = 2, the statement of the lemma boils down to the
following: the canonical extension

0→ V (1) → Sym2V → Λ2V → 0

admits no SL(V )-invariant splitting (this is elementary).



Proof of lemma. Delicate analysis of the map (M)⊗pSp
→ SympM

(Sp the symmetric group), using, in addition to the non-vanishing
of certain Steenrod operations, that V⊗p has a good filtration (i.e.,
with quotients of the form F (λ) = H0(SL(V )/B,L(−λ)) for λ
dominant weights of SL(V )) (Jantzen, Mathieu), Kempf vanishing
theorem (H i (SL(V ),F (λ)) = 0 for i > 0), and an additional
vanishing (Petrov), namely H i (BSL(V ),V (1)) = 0 for i 6= p − 1
(and Hp−1(BSL(V ),V (1)) = k).

Scheme-theoretic vs discrete cohomology. Petrov’s group G
involves not the group scheme SL(V ) but the discrete group of its
Fq-points, SLp(Fq). A result of Cline-Parshall-Scott-van der Kallen
[CPSvdK] ensures that the map

Hp−1(BSL(V ),V (1))→ Hp−1(BSLp(Fq),V (1))

induced by SLp(Fq)→ SL(V ) is injective. This is a key ingredient
in the proof of Th. 4.



B. Approximation of BG .

Recall the statement:

Theorem 5 (Godeaux, Serre, Raynaud, Antieau-Bhatt-Mathew).
There exists a projective smooth scheme X/W (k), of relative
dimension p + 1, and a morphism f : X → BG , such that the map

f ∗ : Hp+1(BGk ,O)→ Hp+1(Xk ,O)

is injective.

Proof of Th. 3. Commutative diagram:

H0(BGk ,Ω
p
BGk/k

)

��

d0,p
p+1(BGk )

// Hp+1(BGk ,O)

f ∗

��
H0(Xk ,Ω

p
Xk/k

)
d0,p
p+1(Xk )

// Hp+1(Xk ,O)

(d0,p
p+1(BGk) 6= 0 (Th. 4) + f ∗ injective (Th.5)) ⇒ d0,p

p+1(Xk) 6= 0.



Sketch of proof of Th. 5.

Lemma 1. (Godeaux-Serre-Raynaud) H: a finite, flat group scheme
over a local scheme S .

For any integer d > 0 there exists

(i) a projective space P = PN
S , equipped with a linear action of H,

such that if UP is the largest open over which H acts freely, and
ZP = P − UP , ZP has codimension > d + 1 on each fiber.

(ii) a relative complete intersection

X̃ = V (f1, · · · , fN−d) ⊂ UP ,

of relative dimension d , stable under H, which is an H-torsor, and
such that

X := X̃/H (= [X̃/H])

is smooth over S .

Proof. [R, 4.2.3], [BMS, Lemma 2.7] (plus [G] or [Po] if the residue
field is finite).



Lemma 2 ([ABM, Th. 2.1]). In Lemma 1, assume S = Spec(k).
Let f : X → BH be the map defined by the H-torsor X̃ → X .
Then, for i + j 6 d , the map

f ∗ : H j(BH,Ωi
BH/k)→ H j(X ,Ωi

X/k)

is injective (Ωi
BH/k taken in the derived, stack-theoretic sense). In

particular, for j 6 d , the map

f ∗ : H j(BH,OBH)→ H j(X ,OX )

is injective.

Remark. This is a weak Lefschetz type property. Main difficulty in
loc. cit.: X̃ may be singular. Same result for S = Spec(W (k)), or
even S = Spec(OK ) (K : Frac(W (k)] <∞), [Li, 4.13].



Proof of Th. 5. In Lemma 1, take S = Spec(W (k)), H = G ,
d = p + 1. Choose X as in (ii).
Lemma 2 (for H = Gk) ⇒

f ∗ : Hp+1(BGk ,O)→ Hp+1(Xk ,O)

is injective.



5. Open problems

5.1. Higher Sen and extension classes.

Let X/W (k) be formal smooth, and Y = Xk .

(a) By the decomposition into weights

Ω
/D
Y /k = ⊕06i6p−1(Ω

/D
Y /k)i

the Sen operator Θ induces nilpotent operators

Θi = Θ + i ∈ End((Ω
/D
Y /k)i ).

In particular, we have classes

ci ,j ∈ Extp(H i+p(j+1)(Ω
/D
Y /k)i ,H

i+pj(Ω
/D
Y /k)i ) = Extp(Ω

i+p(j+1)
Y /k ,Ωi+pj

Y /k )

induced by Θi on τ [i+pj ,i+p(j+1)](Ω
/D
Y /k)i .



Questions. (i) Can one recover ci ,j from c0,0, at least for j + 1 not
divisible by p? (Plausible, according to Petrov.)

(ii) When some ci ,j (resp. ei ,j) vanish, higher Sen (resp. extension)
classes appear. How are they related?

(b) Let d = dim(Y ). As Ω
/D
Y /k ∈ D [0,d ](Y ,O), one has, for all i ,

Θ
[d/p]+1
i = 0,

i.e., the exponent of nilpotence of Θi is 6 [d/p] + 1. Can one
improve that bound?



5.2. Sen and Kodaira-Spencer classes.

Assume p = 2. Let S → Spec(W (k)) be formally smooth of
relative dimension 1, and f : X → S formally smooth of relative
dimension 1. Consider the Sen class for Y = Xk ,

cY ,X = obF ,X ◦ α(Ω1
Y /k) : Ω2

Y /k → OY [2],

where
α(Ω1

Y /k) : Ω2
Y /k → F ∗absΩ

1
Y /k [1],

and
obF ,X : F ∗absΩ

1
Y /k → OY [1]

is the obstruction to lifting F to W2(k).



On the other end, consider the Kodaira-Spencer class,

KSfk : Ω1
Y /Sk

→ f ∗k Ω1
Sk/k

[1].

and the map deduced from the functoriality map f ∗k Ω1
Sk/k
→ Ω1

Y /k

by applying F ∗abs:

γ : (f ∗k Ω1
Sk/k

)⊗2 = F ∗absf
∗
k Ω1

Sk/k
→ F ∗absΩ

1
Y /k .

Proposition (Petrov). α(Ω1
Y /k) is the composition

Ω2
Y /k = f ∗k Ω1

Sk/k
⊗ Ω1

Y /Sk

u→ (f ∗k Ω1
Sk/k

)⊗2[1]
v→ F ∗absΩ

1
Y /k [1],

with u = f ∗k Ω1
Sk/k
⊗KSfk and v = γ[1].

Application. Using this Petrov constructs, for p = 2, examples of
fibered relative surfaces X/S/W (k) for which Θ on X ⊗ k does
not vanish.

Problem. Investigate more generally relations between Sen
operators and Kodaira-Spencer classes.



5.3. Relative variants.

(a) Smooth bases over W (k).

Let S/W (k) be formal smooth. For f : X → S formal smooth,
with special fiber fk : Xk → Sk it was shown in [I] (in a slightly
more general form) that:

(i) locally on Sk , the choice of a lifting of Frobenius to S produces
a decomposition of τ<pF∗Rfk∗Ω

•
Xk/Sk

in D(S
(1)
k ,O);



(ii) if moreover f is proper, and

H := ⊕R i fk∗Ω
•
Xk/Sk

denotes the relative de Rham cohomology of f , endowed with its
Gauss-Manin connection ∇ : H → Ω1

Sk/k
⊗ H, and Ω•Sk/k(H) the

associated de Rham complex, with its Hodge filtration Fil, then, if
dim(Xk) < p, there is a canonical decomposition

⊕igriFilΩ
•
S

(1)
k /k

(H(1))
∼→ F∗Ω

•
Sk/k

(H)

in D(Sk ,O) (with the left-hand side the Kodaira-Spencer Higgs
field).



Generalizations of various kinds obtained later by Kato, Ogus,
Ogus-Vologodsky, and many others.

Question. Can these results be explained - and viewed as a special
case of a richer structure - by a suitable relative variant of the
diffracted Hodge complex?

By [BL1, 9.1] the Hodge-Tate stack

WCartHT
S → S

is a gerbe for the group-scheme T ]
S/W (k) oG]

m, and the choice of a
local lifting of Frobenius of Sk to S (equivalently, a δ-structure on
S) splits it into

WCartHT
S = B(T ]

S/W (k) o G]
m).



The relative diffracted Hodge complex

Ω
/D
X/S ∈ D(X ×S WCartHT

S ,O)

(defined by WCartHT
X → X ×WCartHT

S ), in the case S is endowed
with a δ-structure has a concrete description [BL1,9.2] in terms of
a triple

(Ω
/D
X/S ∈ D(OX ),Θ, ψ : Ω

/D
X/S → Ω

/D
X/S ⊗ Ω1

S/W (k){−1}),

where Θ ∈ End(Ω
/D
X/S) is a Sen operator and ψ a Higgs field.

As (hopefully)

Ω
/D
X/S ⊗OSk

∼→ (FXk
)∗Ω
•
Xk/Sk

,

could that explain (i) above?



(b) Non-crystalline prisms.

Prismatic variants of [DI] ([Li], [Li-Liu]) suggest to investigate
analogues of diffracted Hodge complexes, with (W (k), (p))
replaced by non-crystalline prisms (A, I ). For X/(A/I ) formal
smooth, lifted to X̃/A, which extra structure would one get on
Ω•X/A?

Work in progress by Bhatt.



Appendix: The diffracted Hodge complex (sketch of
construction)

Ingredients:

• The absolute prismatic site

�W (k) = {Spf(W (k))← Spf(A/I )→ Spf(A)}

• The associated Bhatt-Lurie-Drinfeld Cartier-Witt and Hodge-Tate
stacks

WCartHT
W (k) ↪→WCartW (k)

• The description of WCartHT
W (k) as a classifying stack:

WCartHT
W (k)

∼→ B(G]
m)W (k),

where (G]
m)W (k) = PD-envelope of (Gm)W (k) at 1



• The identification of the category of p-complete Hodge-Tate
crystals A 7→ E (A/I ) ∈ D̂(A/I ) on �W (k) with that of
quasi-coherent complexes on WCartHT

W (k),

D(WCartHT
W (k)) = D(B(G]

m)W (k))

• Description of D(B(G]
m)W (k)) as category of pairs

(M ∈ D̂(W (k)),Θ ∈ End(M)) (Θ the Sen operator), such that
Θp −Θ is locally nilpotent on H∗(M ⊗L k).

• The basic Hodge-Tate and de Rham prismatic comparison
theorems of [BS].



The diffracted Hodge complex Ω
/D
X/W (k) is defined as the object of

D(WCartHT
W (k)) associated with the Hodge-Tate crystal

(A ∈ Spf(W (k))�) 7→ �X(A/I )/A,

where X(A/I ) is the pull-back of X/W (k) by
Spf(A/I )→ Spf(W (k)), and �X(A/I )/A is the (relative) Hodge
prismatic cohomology of X(A/I ) over A.

Upshot:

Ω
/D
X/W (k) = �X/P = ϕ∗(qΩX/W (k)[[q−1]])

F∗
p

q=ζp
∈ D(X ,OX ),

where (P, I ) = (W (k)[[q − 1]], ([p]q))F
∗
p is the F∗p-invariant q-de

Rham prism (P/I = W (k)), and qΩX/W (k)[[q−1]] the q-crystalline
complex ([BS], 16.18).
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