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In the spring of 1971, in his course at the Collège de France, Grothendieck
proved the existence of infinitesimal liftings of truncated Barsotti-Tate groups.
This implies the smoothness of the corresponding stack. Grothendieck’s proof
was given in [7]. The purpose of this talk is to review the main statements,
in the hope that today’s tools could perhaps suggest simpler approaches and
provide further results and questions.

We fix a prime p.

1. The main statement.

Definition 1.1. Let S be a scheme and let n be an integer ⩾ 1. A
BTn on S (truncated Barsotti-Tate group of level n)1 is a finite, locally free
commutative group scheme G on S, which is annihilated by pn, is flat over
Z/pn as an fpqc sheaf of Z/pn-modules on S, and which, for n = 1, satisfies
the additional condition Ker(V ) = Im(F ), where F : G0 → G

(1)
0 (resp.

V : G
(1)
0 → G0) is the Frobenius (resp. Verschiebung) homomorphism of

G0 := G×S S0 where S0 := V (p) ⊂ S. 2

The flatness of G over Z/pn is equivalent to the exactness of the sequence

G
pn−1

→ G
p→ G (see [5], III 2.2) for more equivalences). On the other hand,

the condition Ker(V ) = Im(F ) is equivalent to Ker(F ) = Im(V ). As epimor-
phisms of affine commutative group schemes over a field are faithfully flat,
these conditions can be checked on the fibers.

If G is a sheaf of abelian groups, we use Grothendieck’s notation G(n) to
denote the kernel of the multiplication by pn (often denoted G[pn] nowadays).

If G is a BTn on S, for 1 ⩽ n′ ⩽ n, G(n′) is a BTn′ . The rank of G(1)
is of the form ph, where h is called the height of G, denoted ht(G) and the
rank of G is pnh.

Theorem 1.2. (Grothendieck) ([7] Th. 4.4, (a)). Let i : S → S ′ be a
nilimmersion, with S ′ affine. Let n ⩾ 1 and let G be a BTn on S. Then:

(i) there exists a BTn G′ on S ′ such that G′
S = G;

(ii) for 1 ⩽ n′ ⩽ n, if Def(−, i) denotes the set of isomorphism classes of
deformations from S to S ′, the map

Def(G, i)→ Def(G(n′), i)

1échelon n in Grothendieck’s terminology in [7].
2We write X(1) instead of X(p) for the pull-back of an S0-scheme X by the Frobenius

FS0 of S0.

1



is surjective.

This implies that, for fixed n ⩾ 1, h ⩾ 1, the Spec(Z(p))-stack BTn,h of
BTn’s of height h ([11] 1.8 (b)) is smooth, and the map BTn,h → BTn′,h, G 7→
G(n′) is smooth.

We will discuss corollaries, complements, and applications of Th. 1.2 in
the next section.

The proof relies on:

• The obstruction theory of [6]
• Key facts on the differential and cohomological structure of BTn’s, due

to Grothendieck.

Standard dévissages reduce the proof of 1.2 to the case where S ′ is artinian
local, with maximal ideal m, perfect residue field k of characteristic p, and
the ideal J of i is annihilated by m, so that i inserts itself into

(1.2.1) S0 = Spec(k) ↪→ S
i
↪→ S ′.

Though the obstruction theory of [6] provides a nice cohomological formula
for the obstruction o(G) to deforming G over S ′ ([7], Prop. 3.2, and p. 173),
namely

o(G) ∈ Ext2Z(G0, tG0 ⊗k J)

(where tG0 is the Lie algebra of G0 := GS0), it turns out to be out of reach to
prove directly that o(G) vanishes. Instead, Grothendieck’s proof of this van-
ishing uses auxiliary and complementary results which have to be established
beforehand. They involve the notion of BT (Barsotti-Tate) group.

Definition 1.3. Let S be a scheme. A BT group (or BT) over S is an
abelian fpqc sheaf G on S satisfying the following conditions:

(i) G is of p∞-torsion, i.e., G = lim−→n∈N G(n),
(ii) G is p-divisible, i.e., p : G→ G is an epimorphism,
(iii) G(1) is finite, locally free over S.

If G is a BT over S, then, for all n ⩾ 1, G(n) is a BTn ([7], 1.6).

The two crucial results needed in the proof of Th. 1.2 are the following:

Lemma 1.4. ([7], 1.7) (Gabber-Ekedahl). Let k be a perfect field of
characteristic p, and let G be a BTn over S = Spec(k). Then there exists a
BT H over S such that G = H(n).

The (elementary) proof uses (classical) Dieudonné theory and exploits
the condition Ker(V ) = Im(F ) on G(1).
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The next statement is the core of the matter:

Proposition 1.5. ([7], 4.5.1) Suppose i : S ↪→ S ′ of ideal J = Ker(OS′ →
OS) inserts itself into

S0 ↪→ S
i→ S ′,

where OS0 = OS′/K, with K ⊃ J , JK = 0, and pOS0 = 0. Let H be a BT
over S. Then:

(i) For any n ⩾ 1, there exists a BTn G′
n over S ′ extending Gn := H(n);

(ii) for any n ⩾ 1 and any BTn G′
n on S ′ extending Gn, there exists a BT

H ′ on S ′ extending H such that G′
n = H ′(n). In fact, denoting by Def(−, i)

the set of isomorphism classes of deformations from S to S ′, the restriction
map

Def(H(n+ 1), i)→ Def(H(n), i)

is bijective.

1.6. Let us show that Lemma 1.4 and Proposition 1.5 imply the special
case (1.2.1) of Th. 1.2 (and, consequently, Th. 1.2 in general). By Propo-
sition 1.5 (i) it suffices to show that there exists a BT H over S such that
G = H(n). The scheme S is artinian local with maximal ideal n (= m/J).
For r ⩾ 0 let Sr := Spec(A/nr+1), so that S = SN for some N ⩾ 0. One
shows the existence of H by induction on r. For r = 0, by Lemma 1.4 there
exists a BT H0 on S0 = Spec(k) such that G0 = H0(n) (where G0 := Gk).
Assume a BT Hr/Sr constructed, with Hr(n) = G|Sr. Then, by Lemma 1.5
(ii) applied to (S0 ↪→ Sr ↪→ Sr+1, Hr = G|Sr), one finds a BT Hr+1/Sr+1

such that Hr+1|Sr = Hr and Hr+1(n) = G|Sr+1.

1.7. Co-Lie and Lie complexes. For the proof of Prop. 1.5 we need the
notion of Lie and co-Lie complexes of truncated BT’s. Let S be a scheme and
let G be an S-group scheme which is flat and locally of finite presentation
over S. Let e : S → G be the unit section. We denote by

coLieG := e∗LΩ1
G = ℓG ∈ D(S,OS)

the co-Lie complex of G. It is of perfect amplitude in [−1, 0]. We denote its
dual by

LieG =
∨
ℓG := RHom(ℓG,OS).

We’ll use Grothendieck notation

ωG := H0(coLieG), nG := H−1(coLieG), tG := H0(LieG), νG := H1(LieG).

The product map m : G×S G → S induces the diagonal map coLieG →
coLieG×G = coLieG ⊕ coLieG (resp. the sum map LieG×G = LieG ⊕ LieG →
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LieG). The antipodism G → G, g 7→ g−1 induces −Id on both coLieG and
LieG. In particular, when G is commutative, for n ∈ Z, the morphism nIdG

induces nId on both coLieG and LieG.3 Thus, if G is annihilated by some
n ⩾ 1, the same holds for coLieG and LieG, but, in fact, these complexes
enjoy a richer structure (see 1.9).

It is difficult, in general, to calculate the co-Lie complex of G. When G
is commutative, finite and locally free, with Cartier dual G∗, the following
formula, due to Grothendieck ([9], 14.1), is of critical use: for any quasi-
coherent OS-module M , there exists a canonical, functorial isomorphism

(1.7.1) RHomOS
(coLieG,M)

∼→ τ⩽1RHomZ(G
∗,M).

For M = OS, this formula can be viewed as an infinitesimal form of the
biduality isomorphism G

∼→ Hom(G∗,Gm).

The proof of Prop. 1.5 relies on:
(a) the obstruction theory of [6];
(b) a number of differential and cohomological properties of truncated

BT’s, due to Grothendieck, that we list here. We will recall the main results
of (a) afterwards.

Lemma 1.8. Let S be a scheme such that pOS = 0. Let G be a BTn on
S (n ⩾ 1).

(1) The OS-modules ωG, nG, tG, νG are locally free of finite type, of the
same rank, equal by definition to the dimension of G, denoted dim(G). If
G∗ is the Cartier dual of G, one has

dim(G) + dim(G∗) = ht(G) = ht(G∗).

(2) For 1 ⩽ n′ ⩽ n, the inclusion G(n′) ↪→ G induces isomorphisms
ωG

∼→ ωG(n′), tG(n′)
∼→ tG, and, for n > n′, the zero morphisms nG → nG(n′),

νG(n′) → νG.
The epimorphism pn−n′

: G ↠ G(n′) induces isomorphisms nG(n′)
∼→ G,

νG(n′)
∼→ νG, and, for n > n′ the zero morphisms ωG(n′) → ωG, tG → tG(n′).

(3) If M is a quasi-coherent OS-module, for all i ∈ Z, the sheaves
ExtiZ/pn(G,M) and ExtiZ(G,M) are quasi-coherent, and the canonical mor-
phism

Ext2Z/pn(G,M)→ Ext2Z(G,M)

3Proof (Gabber). The first assertion uses only the fact that the compositions

G
(Id,e)→ G×S G

m→ G, G
(e,Id)→ G×S G

m→ G

are the identity maps. The other assertions follow.
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is an isomorphism. In particular, if S is affine,

Ext2Z/pn(G,M)→ Ext2Z(G,M)

is an isomorphism.

(4) If S is affine, the natural maps

Ext2Z/pn(G, tG ⊗M)→ Ext2Z/pn(G,LieG ⊗L M)

and
Ext1Z/pn(G,LieG ⊗L M)→ HomZ/pn(G, νG ⊗L M)

are isomorphisms (and in addition, HomZ/pn(G, νG ⊗L M)
∼→ tG∗ ⊗ νG ⊗M

by (1.7.1)).

(5) For 1 ⩽ n′ < n, the inclusion G(n′) ⊂ G induces the zero map

Ext2Z(G,M)→ Ext2Z(G(n′),M).

The proofs of (1), (2) are essentially in [10]. The quasi-coherence assertion
about the Exti in (3) follows from their calculation as spatial cohomology
([6], VI, 11.5.3.11). The remaining assertions in (3), (4), and (5) are delicate.
They make an essential use of Grothendieck’s formula (1.7.1). Lemma 1.8
only lists the ingredients used in the proof of 1.5. There are more general
statements in ([7], section 2). In particular, one can assume only pNOS = 0
provided that we have n ⩾ N (without this condition, it is no longer true
that ωG and νG are locally free, as the case of µp over Z/p2 already shows).

1.9. We now recall the obstruction results needed for the proof of Prop.
1.5. Let A be a commutative ring (in practice, A = Z or Z/pn. Consider
closed immersions

S0 ↪→ S ↪→ S ′

defined by ideals J ⊂ K, with JK = 0. Let G be a scheme in A-modules,
flat and locally of finite presentation over S. The co-Lie complex coLieG
(resp. Lie complex LieG) in D(S,OS) can be upgraded into an object of
D[−1,0](S,A⊗L

Z OS) (where A⊗L
Z OS is considered as an animated ring on S

([2], 5.1.3 (3))), which category, in this case, can be identified to the corre-
sponding derived category of differential graded modules over the differential
graded ring A⊗L

Z OS considered in ([6], VII 4.1.4). Let G0 := G×S S0.Then
([7], Prop. 3.2):

(a) There exists an obstruction

o(G) ∈ Ext2A(G0,LieG0 ⊗L J)

5



whose vanishing is necessary and sufficient for the existence of a scheme in
A-modules G′, flat and locally of finite presentation over S ′, extending G.
This obstruction has the following functorial property: if u : F → G is a
morphism of schemes in A-modules (flat and locally of finite presentation
over S), then

u∗
0o(G) = Lieu0o(F ) ∈ Ext2A(F0,LieG0 ⊗L J),

where

Ext2A(G0,LieG0 ⊗L J))
u∗
0→ Ext2A(F0,LieG0 ⊗L J))

Lieu0← Ext2A(F0,LieF0 ⊗L J).

(b) When o(G) = 0, the set of isomorphism classes of extensions G′ is an
affine space under Ext1A(G0,LieG0 ⊗L J), and the automorphism group of a
given extension G′ is HomA(G0,LieG0 ⊗L J).

We have similar results for deformations of morphisms. Let F ′ and G′

be schemes in A-modules, flat and locally of finite presentation over S ′, let
F := F ′

S, G := G′
S, F0 := F ′

S0
, G0 := G′

S0
, and let f : F → G be an

S-morphism of schemes in A-modules. Let f0 := fS0 : F0 → G0.

(a1) There exists an obstruction

o(f) ∈ Ext1A(F0,LieG0 ⊗L J)

whose vanishing is necessary and sufficient for the existence of a morphism
f ′ : F ′ → G′ extending f . This obstruction is functorial in F ′ and G′ in the
obvious way.

(b1) When o(f) = 0, the set of extensions f ′ of f is an affine space under
HomA(F0,LieG0 ⊗L J).

1.10. Proof of 1.5 ([7], 4.5).

Proof of 1.5 (i). Observe first that the flatness criterion along the fibers
implies that if G′ is a commutative, finite, locally free group scheme over S ′

annihilated by pn that extends G, G′ is automatically a BTn. Therefore, by
1.5 (a) the obstruction to finding a BTn on S ′ extending G is an element

o(G) ∈ Ext2Z/pn(G0,LieG0 ⊗L J).

Using Lemma 1.8, one can observe that o(G) actually lies in a smaller group.
Indeed, consider the commutative square

(1.10.1) Ext2Z/pn(G0,LieG0 ⊗L J)
(1) // Ext2Z(G0,LieG0 ⊗L J)

Ext2Z/pn(G0, tG0 ⊗L J)

(3)

OO

(2) // Ext2Z(G0, tG0 ⊗L J),

(4)

OO
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where (1) and (2) are the forgetful maps, and ((3) and (4) are induced by
tG0 → LieG0 . By Lemma 1.8 (3), (2) is an isomorphism. By Lemma 1.8 (4),
(3) is an isomorphism. Finally, as S is affine and νG0 is locally free of finite
type (Lemma 1.8 (1)), LieG0 decomposes into tG0 ⊕ νG0 [−1], so that (4) is
the injection of a direct summand. So, denoting again by o(G) its image by
the isomorphism (2) ◦ (3)−1, we have

o(G) ∈ Ext2Z(G0, tG0 ⊗L J) ⊂ Ext2Z(G0,LieG0 ⊗L J)

where the inclusion is that of a direct summand. In other words, the existence
of a BTn on S ′ extending G is equivalent to the existence of a commutative,
finite locally free commutative group scheme on S ′ extending G, and the
obstruction lies in the direct summand Ext2Z(G0, tG0⊗LJ). We have a similar
picture with H(n+1). Therefore, by functoriality of the obstruction (1.9 (a)
applied to A = Z and u the inclusion G = H(n) ↪→ H(n+ 1), we have

u∗
0o(H(n+ 1)) = tu0o(G),

where

Ext2Z(H0(n+1), tH0(n+1)⊗ J)
u∗
0→ Ext2Z(G0, tH0(n+1)⊗ J)

tu0← Ext2Z(G0, tG0 ⊗ J)

are the functoriality maps. By Lemma 1.8 (2), tu0 is an isomorphism, while
u∗
0 = 0 by Lemma 1.8 (5). Hence o(G) = 0.

Proof of 1.5 (ii). Let F := H(n + 1). If F ′, F ′′ are deformations of F
over S ′, denoting by [−] the isomorphism class of a deformation, by 1.9 (b),
we have

[F ′]− [F ′′] ∈ Ext1Z/pn+1(F0,LieF0 ⊗L J)
1.8(4)
∼→ tF ∗

0
⊗ νF0 ⊗ J,

and this element is the obstruction o(IdF , F
′, F ′′) to extending IdF to an

isomorphism F ′ ∼→ F ′′ ([7], 3.3 (a)). Showing that

Def(H(n+ 1), i)→ Def(H(n), i)

is bijective is equivalent to showing that

(∗) tF ∗
0
⊗ νF0 ⊗ J → tG∗

0
⊗ νG0 ⊗ J, [F ′]− [F ′′] 7→ [F ′(n)]− [F ′′(n)]

is bijective. By functoriality of this obstruction (1.9 (a1)) for the morphism
p : F = H(n+ 1)→ G = H(n), we have

p∗o(IdG, G
′, G′′) = o(p : F → G,F ′, G′′) = p∗o(IdF , F

′, F ′′)
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where
tG∗

0
⊗ νG0 ⊗ J

p∗→ tF ∗
0
⊗ νG0 ⊗ J

p∗← tF ∗
0
⊗ νF0 ⊗ J

are the functoriality maps. By Lemma 1.8 (2), these maps are isomorphisms,
and the image of [F ′]− [F ′′] by (*) is (p∗)−1p∗([F

′]− [F ′′]), which finishes the
proof.

2. Complements

2.1. Grothendieck’s theorem ([7], Th. 4.4) contains several refinements
and corollaries to both Th. 1.2 and Prop. 1.5. We list some of them here.

(i) In the situation of Th. 1.2, if Def(G, i) denotes the set of isomorphism
classes of deformations G′ of G over S ′, for n′ ⩽ n, the map

Def(G, i)→ Def(G(n′), i), G′ 7→ G′(n′)

is surjective.

(ii) Assumptions as in Prop. 1.5, but no BT H is given. Let G be a
BTn on S. The set of isomorphism classes of deformations G′ of G over S ′

is an affine space under tG∗
0
⊗ tG0 ⊗ J and the group of automorphisms of a

deformation G′ (inducing the identity on G) is isomorphic to tG∗
0
⊗ tG0 ⊗ J .

For n > n′, the corresponding homomorphism

Aut(G′)→ Aut(G′(n′))

vanishes.

(iii) Assumptions as in Prop. 1.5. For any n ⩾ 1, the map

Def(H)→ Def(H(n)), H ′ 7→ H ′(n)

is bijective. Moreover, the group of automorphisms of a deformation H ′ of
H (inducing the identity on H) is reduced to zero.

(iv) If S is noetherian, local, complete with perfect residue field of char-
acteristic p, then, for any BTn G on S there exists a BT H on S such that
G = H(n).

2.2. An apparent contradiction.4 Let k be an algebraically closed field of
characteristic p > 0, R = k[[t]]. Consider the situation of Prop. 1.5, with
S ′ = Spec(R/(tp+1)), S = Spec(R/(tp)), S0 : Spec(k), J = tp(R/(tp+1)),
K = t(R/(tp+1)). Take H to be the BT group Qp/Zp × (Qp/Zp)

∗ on S
(where (Qp/Zp)

∗ means the dual of Qp/Zp (often denoted Qp/Zp(1), where
4(after F. Oort and O. Gabber, private discussion, March 2006)
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(1) means Tate twist, a notation we will avoid here, for risk of confusion
with the kernel of p). If we believe 2.1 (iii), H ′ 7→ H ′(1) is a bijection
from the set of isomorphism classes of deformations of H over S ′ to the
set of isomorphism classes of deformations of E := H(1) = Z/p × µp over
S ′. However, there seems to be two non-isomorphic deformations H ′, H ′′ of
H over S ′ with H ′(1)

∼→ H ′′(1)
∼→ Z/p × µp on S ′, namely H ′ the trivial

deformation Qp/Zp × (Qp/Zp)
∗ of H, and H ′′ the (non-trivial) extension of

Qp/Zp by (Qp/Zp)
∗ given by the unit 1+ tp ∈ R/(tp+1). Indeed, H ′′(1) is the

µp-torsor
H ′′(1) = S ′[X]/(Xp − (1 + tp))

on S ′. However, this torsor has the section s : X 7→ 1 + t, hence is trivial.
What went wrong? In fact, nothing. The isomorphism σ : H ′(1)

∼→ H ′′(1)
given by s is not an isomorphism of deformations of E, because it reduces
mod tp to a non-trivial automorphism of E, given by 1 + t ∈ µp(R[t]/(tp)),
and 1 + t doesn’t lift to a p-th root of unity in R[t]/(tp+1).

2.3. Let k be a perfect field of characteristic p > 0. For n ⩾ 1, h ⩾ 1 fixed,
let B denote the restriction to Spec(W (k)) of the stack BTn,h considered after
Th. 1.2. Let G0 an object of B(k) (i.e., a BTn of height h on Spec(k)). Let
TG0(B) be the tangent Picard stack of B at G0. Then 2.1 (ii) implies

H−1(TG0(B)) = H0(TG0(B)) = tG∗
0
⊗ tG0 ,

where G∗
0 is the Cartier dual of G0. In particular,

dim(B/W (k)) = rk(TG0(B)) = 0.

The smoothness of B/W (k) implies that B has a smooth cover by a smooth
W (k)-scheme X. In particular, the triangle associated with X → B →
Spec(W (k)) implies that LΩ1

B/W (k), as an object of D(B) (:= limSpec(R)→BD(R))
is perfect, with perfect amplitude in [0, 1], and rank zero.

Not much seems to be known on the global structure of LΩ1
B.

2.4. The Deligne-Grothendieck formula.

Let i : S0 ↪→ S be a closed immersion defined by an ideal J of square
zero. Let G be a commutative group scheme over S, which is flat and locally
of finite presentation, and let G0 = GS0 . Let us work with the fppf topology
on Sch/S. Then there is a canonical isomorphism in D(S,OS)

Fib(G→ i∗G0)
∼→ i∗(LieG0 ⊗L J).

This isomorphism was conjectured by Grothendieck ([3], (4.1.9)) after reading
[8] and was proved by Deligne shortly afterwards (unpublished). A recent
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proof for G affine is given in ([2], Th. 5.1.13), using Clausen-Scholze’s theory
of animated rings.

Grothendieck (loc. cit., (4.1.12)) observes that R1i∗G0 = 0 (for the fppf
topology, and already for the syntomic topology) and asks whether Rqi∗G0 =
0 for q ⩾ 2. The answer in general seems to be unknown.5 Assuming it is
positive (at least for q = 2), Grothendieck deduces an obstruction theory for
deformations of extensions 0→ H → E → G→ 0 over S, for given G and H,
reducing on S0 to a given extension 0 → H0 → E0 → G0 → 0 (obstruction
in Ext2(G,LieH0 ⊗L J , set of isomorphism classes of deformations a torsor
under Ext1(G,LieH0 ⊗L J), and automorphism group of a fixed deformation
being Ext0(G,LieH0 ⊗L J . From this he deduces, by arguments similar to
those used in the proof of Th. 1.2 that, if G and H are BT’s over S, S
being assumed affine, any extension E0 of G0 by H0

6 can be deformed to
an extension E of G by H, and the obvious map E(E0, i) → E(E0(n), i) is
surjective (with additional refinements as in 2.1). It would be desirable to
complete this program, especially as the obstruction theory for deformations
of extensions is not addressed in ([6] VII 4.2).

Extensions of G0 by H0 can be viewed as homotopy fibers of maps G0 →
H0[1] (this is the starting point of Grothendieck’s reasoning above). Simi-
larly, biextensions of G0 by (P0, Q0) can be viewed as maps P0⊗L

ZQ0 → G0[1]
([4], Cor. 3.6.5). This seems to cry for new foundational material on commu-
tative group objects in higher, derived Artin stacks. One can hope that such
foundations could also lead to a better understanding (and simplification) of
the obstruction theory of [6].

2.5. A question.

(Raynaud’s example of drooping (or sagging). Let K be a complete dis-
crete valuation field of mixed characteristic, with ring of integers OK and
perfect residue field k = OK/m. Assume that Qp(ζp) ⊂ K, where ζp is a
primitive p-th root of 1, so that in particular e ⩾ p− 1. Let S = Spec(OK).
Let

u : (Z/pZ)S → (µp)S

be the morphism of group schemes sending 1 to ζp. Then uK : (Z/p)K →
(µp)K is an isomorphism while uk : (Z/p) → (µp)k is the trivial morphism.
Pulling back by u the extension

0→ (µp)S → (µp2)S → (µp)S → 0

5If G is finite locally free, then the answer is yes, because G has a 2-term resolution
0 → G → H0 → H1 → 0 with Hi smooth, affine, commutative (the Bégueri resolution
([1],2.2)), see ([2], Th. 5.2.7).

6Such an extension is automatically a BT ([5], III 5.2).
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gives an extension

0→ (µp)S → E → (Z/p)S → 0,

where E is a commutative, locally free group scheme over S, whose generic
fiber EK is isomorphic to µp2 , and special fiber Ek isomorphic to µp ⊕ Z/p.

Similarly (Raynaud, p-torsion du schéma de Picard, 4.2), pushing out by
u the extension

0→ (Z/p)S → HS → (Z/p)2S → 0,

where HS is the constant Heisenberg group of rank 3 on S, produces an
extension

0→ (µp)S → G→ (Z/p)2S → 0,

where G is a finite locally free group scheme over S whose generic fiber
is isomorphic to H, in particular, is non-commutative, and special fiber is
isomorphic to the sum µp ⊕ (Z/p)2.

Let Sn = Spec(OK/m
n+1). Let G0 be a commutative, finite locally free

group scheme on S0 = Spec(k). For a deformation Gn of G over Sn (as a
commutative group scheme, or as a Z/pr-module scheme if G0 is annihilated
by pr) the theory of deformation Tn of Gn to Sn+1 (obstruction, isomorphism
classes, automorphisms of an extension) depends only on G0 (as πn/πn+1 ∼→
k), and is the same as if S was Spec(W (k)). However, it seems that the above
examples can’t occur over W (k) (they seem to require e ⩾ p − 1). Where
does the discrepancy lie? Is it in the projective system of Tn’s? 7
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