
From Pierre Deligne’s secret garden :
looking back at some of his letters

Luc Illusie

It’s no secret that Pierre Deligne loves gardening. For many years he kept
a small garden at the Ormaille, in Bures-sur-Yvette, in which he had planted
trees, and grew flowers, herbs, and vegetables. But today I’d like to show
you parts of another beautiful garden of his, namely the collection of his
letters. From the mid 60’s up to now Pierre has had a huge correspondence
with a great number of mathematicians. Some of his letters were published
(or gave rise to publications), most of them were not, and many stories he
started telling in them generated developments which are still active today.
I will give you a few examples. The choice was difficult !

1. Three letters of 1976 : Hodge theory, Euler numbers

On October 28, 1976, Deligne wrote me three letters, on two different
topics.

Letter 1. Here he sketched a proof of a (particular case of a) conjecture
in Hodge theory he had made in a letter to me dated October 9, 1973. The
conjecture was the following.

Conjecture 1.1. Let X be a complex analytic space. Let ε : Y• → X be
a proper hypercovering, with Yn smooth over C for all n. Consider the total
complex Rε∗Ω

•
Y•/C

, filtered by the Hodge filtration Ω≥pY•/C on Ω•Y•/C, an object

of the derived category Ddiff(X) of filtered complexes of sheaves of C-vector
spaces, with differential operators of order ≤ 1, and OX-linear associated
graded. Then, inDdiff(X), Rε∗Ω

•
Y•/C

is independent of the choice of ε, namely
there should exist a transitive system of isomorphisms between these objects
when ε varies. He proposed to denote this object by Ω•X . In particular, for
all p, Ωp

X := grpΩ•X is a well defined object of D(X) := D(X,OX). Moreover,
for X projective, the spectral sequence

Epq
1 = Hq(X,Ωp

X)⇒ Hp+q(X,Ω•X)

degenerates at E1 and abuts to the Hodge filtration of (the mixed Hodge
structure) of H∗(X,C).

As an evidence, he explained the case of a smooth X and ε the 0-
coskeleton of the blow-up of a smooth subvariety Z of X. He also described
several formal properties that Ω•X should enjoy. In his letter of Oct. 28,
1976, he explained how, in the projective case, one could prove the sought
for independence by his favourite argument of pencils, a global argument,
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that he had used to prove finiteness of étale cohomology in ([33], Th. fini-
tude). Details and generalizations were written up by du Bois in his thesis
[9]. This complex Ω•X was later called the du Bois complex, and singularities
for which OX → gr0Ω•X(= Rε∗OY•) is an isomorphism, du Bois singularities.
They are important in birational geometry. They were studied by various
authors after du Bois (Steenbrink, Ishida, Kollar, etc.), see [30] for recent
applications. However, basic questions remain :

(a) Deligne’s conjecture 1.1 was for complex analytic spaces. As far as I
know, it is still open.

(b) For schemes separated and of finite type over C, can one define (in a
functorial way) a bifiltered complex (KX , F,W ) on X giving, by application
of RΓ(X,−), the mixed Hodge structure of X 1 ? A new insight into this
question was recently suggested by Beilinson’s work on the p-adic de Rham
comparison theorem [5] (a suitable variant of his construction of the dga AdR

on X could give a positive answer).

Letter 2. It starts like this : “Cher Luc, Voici une semi-continuité que
j’avais conjecturée dans le temps sur le conducteur de Swan.” The statement
is the following :

Theorem 1.2. Let f : X → S be a smooth morphism, separated and
of finite type, with relative dimension 1, where S is an excellent noetherian
scheme. Let Y ⊂ X be a closed subscheme, finite and flat over S, and let
u : U = X − Y ⊂ X be the open complement. Let ` be a prime number
invertible on S. Let F be a lisse sheaf of F`-modules on U , of constant rank
r. Consider the function ϕ : S → N defined by

ϕ(s) =
∑
y∈Ys

(Swy(u!F|Xs) + r),

where s is a geometric point over s, and Swy denotes the Swan conductor at
y. Then :

(i) ϕ is constructible and lower semi-continuous ;
(ii) if ϕ is locally constant, then f is universally locally acyclic with respect

to u!F .

An immediate corollary is that if moreover f is proper, then the local
constancy of ϕ implies that Rnf∗(u!F) is lisse for all n.

In his letter Deligne sketched the main steps of the proof. The details
were written up by Laumon [19]. Very roughly, the proof goes like this. By

1The filtration on Rε∗Ω•
Y•/C

by Rε∗Ω•
Y≥p/C

fails to achieve this, for trivial reasons,

already for X = SpecC.
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a local-to-global argument, which has often been imitated since then, one
reduces to the case where S is a strictly local trait. In this case, one proves a
more precise result, to the effect that the jump of ϕ from the generic point η
to the special point s of S is measured by a vanishing cycles group, namely,
assuming that Ys consists of a single point x, then, we have

(1.2.1) ϕ(s)− ϕ(η) = − dimF`
R1Ψ(u!F)x.

To prove this formula, by an ingenious deformation argument one constructs
a finite cover π : X̃ → X, étale around x, and a compactification Z̃ of X̃
such that the inverse image of F on X̃ − π−1(Y ) extends to a lisse sheaf on
Z̃ − π−1(Y ) (the construction given in [19] at this point differs from that
proposed by Deligne in his letter ; it is taken from another letter of Deligne
to me, of Dec. 29, 1978). One concludes by applying the Grothendieck-Ogg-
Shafarevich formula.

Letter 3. “Cher Luc, Troisième lettre (j’étais en forme hier)”. This letter
again deals with Euler-Poincaré characteristics. It has two distinct parts.

(a) Let k is an algebraically closed field and ` a prime number invertible
in k. Let X be a proper scheme over k.

It had been known (probably since the early 60’s) that, if k is of char-
acteristic zero, the (étale) Euler-Poincaré characteristic χ(X,F) of a con-
structible sheaf of F`-vector spaces F on X depends only on the rank func-
tion, x 7→ dimFx, a constructible function on X. Two years before Deligne’s
letter MacPherson [23] had even given a Riemann-Roch type formula for
χ(X,F) in terms of certain characteristic classes associated to this rank func-
tion - a formula which was to be revisited from a quite different perspective
by Brylinski-Dubson-Kashiwara [7] and many authors afterwards, expressing
χ(X,F) (for X smooth) as the intersection number, in the cotangent bundle
T ∗X, of the zero section and a characteristic cycle associated to F .

It was also well known that such a property fails if k is of characteristic
p > 0, as shown by the Grothendieck-Ogg-Shafarevich formula. Because of
the additivity property of χ, χ(X,F) depends only on the class of F in the
Grothendieck group K(X,F`) of constructible sheaves of F`-vector spaces on
X. In his letter Deligne proves the following striking result :

Theorem 1.3. If F1 and F2 are constructible F`-sheaves on X which
étale locally have the same image in the Grothendieck group, then χ(X,F1) =
χ(X,F2).

His proof is by induction on the dimension of X, using a pencil X ′ → P1
k

(after a modification X ′ → X), and the theory of vanishing cycles. By a
similar method Laumon [20] proved that, assuming only X/k separated and

3



of finite type, for any constructible Q`-sheaf F on X, χ(X,F) = χc(X,F),
where χc =

∑
(−1)idimH i

c, a result proved earlier by Grothendieck assum-
ing resolution of singularities, and unconditionally (and independently) par
Gabber (unpublished).

A couple of years later, in the course of his work with Lusztig, using a
totally different method, based on Brauer theory and the Lefschetz-Verdier
trace formula, Deligne gave a strong refinement of 1.3, namely that if on the
strata of a suitable stratification of X, F1 and F2 have the same rank and
the same wild ramification at infinity, then χ(X,F1) = χ(X,F2) (see ([12],
2.9, 2.12) for precise statements). In particular, if X is (proper) and normal,
j : U ↪→ X is a dense open subset, and F = j!G for a locally constant sheaf
G of rank r on U , tamely ramified along X − U , then

χ(X,F) = rχc(U) (= rχ(U))

This question was much later revisited by Vidal ([31], [32]), who proved
relative variants of this refinement. Another generalization was given by
Kato and T. Saito, using their construction of a Swan class ([17], 4.3.10).
See also [13] for further developments.

(b) In this second part, Deligne tackles the problem of generalizing the
Grothendieck-Ogg-Shafarevich formula to higher dimension. He considers
the next case, namely : X is a proper surface over an algebraically closed
field k, that he assumes normal (“for simplicity”), ` a prime number invertible
in k, D a Weil divisor on X, j : U = X − D ↪→ X the complementary
open subset, and F a locally constant sheaf of F`-vector spaces on U , of
constant rank r. The problem is to write a formula for χ(X, j!F) in terms
of r, the Euler-Poincaré characteristics of U and of the components of D (or
suitable dense open subsets of them), and the ramification of F along D.
Wild ramification is admitted, but here he assumes that it is not too bad,
namely that at each generic point δ of D, if Xδ denotes the trait obtained
by localization of X at δ, with fraction field K, the normalization of Xδ in a
finite Galois extension of K trivializing F|SpecK doesn’t make appear any
inseparable extension of the residue field (this condition was later expressed
by Laumon [21] as F having non fierce ramification along D). Under this
condition Deligne shows the following :

(i) If δ is a geometric point above a generic point of D, one can define the
Swan conductor Sw(F , δ) of F at δ, an integer characterized by the property
that there exists a dense open subset D0 of D, smooth over k, such that for
any smooth curve Y cutting D transversally at a point a of D0 specialization
of δ, then Sw(F , δ) is equal to the Swan conductor at a of F|Y .
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(ii) For X projective, if (Di)1≤i≤N are the irreducible components of D,
D0
i := Di ∩ D0, and Swi(F) is the Swan conductor at a geometric generic

point of Di, then one has

(1.3.1) χ(X, j!F) = χc(U)rk(F)−
∑
i

χ(D0
i )Swi(F)−

∑
x∈D−D0

Swx(F),

where Swx(F) is a nonnegative integer, of local nature at x, defined in terms
of vanishing cycles at x for a suitable local pencil X → A1 at x.

Deligne sketches the proof and gives two key examples ((1) D a section
of a smooth pencil X → A1, an example closely related to 1.2, (2) F of rank
1 associated to an Artin-Schreier cover T p − T = y/xd of Spec k[x, y] (minus
x = 0) and a nontrivial additive character of Fp, with p = char(k) and d
prime to p. A complete proof was written up by Laumon in his thesis [22].
Similar results were obtained by S. Saito [26] by a different method.

1.4. Posterity.

Letters 2 and 3 marked the beginning of a systematic study of Euler-
Poincaré characteristics, both in geometric (over algebraically closed fields)
and arithmetic situations (over local fields). The ultimate goal would be to
state and prove Grothendieck Riemann-Roch type formulas for `-adic sheaves
in a relative setting, a goal which is far from having been reached today,
despite considerable progress. It is well beyond the scope of these notes to
give a comprehensive historical account of the development of this topic. I
will only briefly sketch a few points.

1.4.1. At the end of letter 3, Deligne raises the question of defining
“generic Swan conductors” in the same setting, but in the fierce case. He
comes back to this in a long letter to me, dated Nov. 4, 1976. His method is to
analyze the ramification of F along D (X and D are assumed to be smooth)
using high order jet bundles of curves transverse to D and suitable pencils.
He studies the Artin-Schreier case in detail, where crucial differential forms
appear. The program proposed in this letter has so far not been implemented
(except by Laumon in the non fierce case, as I mentioned above), though it
spurred a lot of research from various angles.

1.4.2. In the case of fierce ramification, but for F of rank 1, a break-
through was made by K. Kato [15], using local class field theory and analo-
gies with the theory of D-modules in characteristic zero. He discovered that
the ramification was controlled by certain differential forms (reminiscent of
those considered by Deligne in 1.4.1), and he introduced the key notions
of cleanliness and refined Swan conductor. He gave a Riemann-Roch type
formula for χ(X,F) involving this invariant.
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In the early 2000’s new methods appeared.

1.4.3. Ramification filtrations. In a series of papers ([1], [2], [4], [28])
Abbes and T. Saito, using (at first) techniques of rigid geometry, and also
techniques of log geometry, defined and studied upper numbering ramification
filtrations of Galois groups on traits with not necessarily perfect residue fields
(generalizing the classical ones in the perfect case). The graded quotients are
annihilated by p and define certain 1-forms on the residue field, generalizing
Kato’s refined Swan conductor. A prime-to-p Hasse-Arf theorem is proved.

1.4.4. Characteristic class and characteristic cycle. A new approach, sug-
gested by logarithmic geometry, consisting in “blowing-up the ramification
locus R in the diagonal of X × X” (i. e., roughly speaking, first blowing-
up all Di × Di’s in X × X, for Di running through the components of D,
and then further blowing-up a suitable rational linear combination R of the
Di’s in the resulting diagonal embedding), was introduced and extensively
studied by T. Saito and his collaborators. The upshot is a Brylinski-Dubson-
Kashiwara type formula for χ. The strategy goes like this. Let X/k be
proper and smooth, and let j : U = X − D ↪→ X be the complement of a
divisor with simple normal crossings on X. Let F be a lisse F`-sheaf on U .
We want to “calculate” χ(X, j!F). Let a : X → Spec k be the projection.

(i) By the Lefschetz-Verdier trace formula, we have

χ(X, j!F) = a∗C(j!F),

where C(j!F) ∈ H0(X,KX) is the class of the identity morphism of j!F , and
a∗ the trace map (KX = a!F` being the dualizing complex ; here, as X/k
is smooth, H0(X,KX) = H2d(X,F`(d)) if d = dimX). Abbes and Saito [3]
call C(j!F) the characteristic class of F .

(ii) Under certain assumptions on the ramification of F , T. Saito [27]
defines a codimension d-cycle CC(F) on the (logarithmic) cotangent bundle
of X (a vector bundle of rank d on X), called the characteristic cycle of F ,
whose intersection with the zero section is the characteristic class

C(j!F) = (CC(F).X)

The construction of CC(F) relies on the properties of the ramification filtra-
tion of F at the generic points of D, and heavily uses the blow-up technique
alluded to above. A non log variant of this construction is given in [29]. On
the other hand, the above mentioned Swan class, defined in [17], gives rise
to a generalization of the Grothendieck-Ogg-Shafarevich formula in higher
dimension (and relative situations).
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1.4.5. Bloch’s conductor formula. For a scheme X separated and of finite
type over a complete discrete valuation field K, with perfect residue field k,
and a constructible sheaf F of Q`-vector spaces on X, one can consider the
Swan conductor

Sw(X,F) :=
∑
i

(−1)iSw(H i
c(XK ,F)),

where K is a separable closure of K and H i
c(XK ,F) is viewed as a rep-

resentation of Gal(K/K). Finding a formula for this integer in terms of
characteristic classes associated to F has been a longstanding problem in
ramification theory.

Assume that X/K is proper and smooth and is the generic fiber of proper,
regular, flat model X over S = SpecOK . In this case, one can define the
Artin conductor of X ,

Art(X/S) := χ(XK)− χ(Xk) + Sw(X,Q`),

where χ denotes an `-adic Euler-Poincaré characteristic. In [6] Bloch pro-
posed a formula for Art(X/S), as the degree of certain zero cycle on the spe-
cial fiber Xk, a localized Chern class of Ω1

X/S, and proved it for dimX = 1.

Bloch’s conjecture was proven by Kato and Saito [16] in any dimension, as-
suming that the reduced special fiber has normal crossings. Quite recently,
Kato and Saito [18] proved variants of this formula with the constant sheaf
Q` on X replaced by a constructible sheaf F (assuming char(K) = 0), and
as a by-product, established the 2-dimensional (arithmetic) case of Serre’s
conjecture on the Artin character of a finite group of automorphisms of a
regular local ring having the closed point as an isolated fixed point.

2. A letter of 1988 : from “divisors” to logarithmic structures

Deligne likes to use quotation marks to denote certain mathematical ob-
jects. For example, in the mid 60’s he introduced the notation “ lim←−i∈I ”Ki

(resp. “ lim−→i∈I ”Ki) to denote a pro- (resp. ind-) object, a notation more

suggestive than Grothendieck’s notation (Ki)i∈I , and which quickly became
standard. In a letter to me dated June 1, 1988, whose modest aim is to give
“quelques généralités sur les diviseurs à croisements normaux verticaux mais
relatifs”, he defines a “divisor” on a scheme X as the datum of an invertible
sheaf L on X and an OX-linear map u : L → OX . He emphasizes that, if e
is a local basis of L, one does not assume that u(e) is a nonzero divisor. One
could have u(e) = 0. Thus the notion of “divisor” is a natural generalization
of that of (effective) Cartier divisor.
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Next, as suggested by semistable reduction, given a morphism f : X → S
and a “divisor” E = (L, u) on S, Deligne defines a “relative vertical nor-
mal crossings divisor on X above E”, D =

∑
i∈I Di, as a finite collection

Di = (Li, ui) of “divisors” Di = (Li, ui), i ∈ I, on X, together with an
isomorphism f ∗L ∼→ ⊗iLi, compatible in an obvious way with the data u
and ui. Given such a “relative divisor” D, he defines a module of relative
logarithmic differentials

Ω1
X/S(logD),

generated by Ω1
X/S and symbols dlog si for si a local basis of Li, subject to

the relations : dlog(asi) = da/a + dlog si for a ∈ O∗X ;
∑

i dlog si = 0 if
f ∗(s) = ⊗isi for s a local basis of L ; ui(si)dlog si = dui(si).

He observes that these notions have the advantage of being stable under
base change. In particular, in characteristic p > 0, they give rise to a relative
Frobenius morphism, possibly entailing a Cartier isomorphism, and under
suitable dimension and liftability assumptions, decomposition theorems of
the de Rham complex as in [8].

In a post-scriptum Deligne says that he encountered “divisors” while
studying extensions of a local field K with ramification ≤ e (in the upper
numbering set-up) : “they depend only on the “divisor” (m/me+1,m/me+1 →
V/me) on V/me”, where V is the ring of integers of K and m the maximal
ideal. However, the timing of his letter (June 1, 1988) is not insignificant.
From February through May, 1988 Fontaine had run a seminar at the IHÉS
on p-adic periods [11]. Attention had been focused on a conjecture of his
and Jannsen, the so-called Cst-conjecture, comparing p-adic étale cohomol-
ogy and de Rham cohomology in the semistable reduction case. A “hidden”
structure on de Rham cohomology of the generic fiber had been discovered,
bearing some analogy with the Steenbrink limit Hodge structure of the com-
plex case. It involved a certain de Rham-Witt complex with log poles along
the special fiber, constructed by Hyodo. This complex depended on the spe-
cial fiber plus some (at the time) mysterious extra structure coming from the
integral model. It’s in trying to pinpoint this extra structure that Fontaine
and I conceived the notion of logarithmic structure (log structure, for short)
on a scheme X : roughly2, a pair consisting of a sheaf of monoids M on
X (for the étale topology) containing O∗X and a multiplicative homomor-
phism α : M → OX extending the inclusion of O∗X into OX . The idea of
the definition largely stemmed from Deligne’s “divisors”. His construction
of Ω1

X/S(logD) also inspired that of Ω1 for morphisms of log schemes.
At about the same time, and independently, Faltings considered objects

similar to Deligne’s “divisors” ([10], §2). Deligne’s and Faltings’ objects

2In the formal definition given later, α has to induce an isomorphism α−1(O∗
X)

∼→ O∗
X .
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turned out to be indeed particular cases of log structures. The theory was
developed by Kato in [14], introducing the key notion of chart of a log struc-
ture. The precise relation is explained in ([14], Complement 1). A “divisor”
(L, u) on a scheme X is the same as a log structure M together with a ho-
momorphism t : NX → M/O∗X which étale locally lifts to a chart of M :
L is recovered as the line bundle associated to the O∗X-torsor inverse image
of t(1) in M , and u is deduced from α : M → OX . There is a similar de-
scription for “relative divisors”. In [14] Kato developed differential calculus
on log schemes. Deligne’s Ω1

X/S(logD) is the logarithmic differential mod-

ule associated to the morphism of log schemes defined by (X,D) → (S,E).
Kato also constructed a Cartier isomorphism (under suitable assumptions,
satisfied in particular by “relative divisors”) and (under extra assumptions
of dimension and lifting mod p2) a Deligne-Illusie type decomposition, thus
confirming Deligne’s expectations.

That should have been the end of the story. However, in 2000 L. Lafforgue
revisited Deligne’s notion of “divisor”. He observed that a “divisor” D =
(L, u) on X is the same as a morphism from X to the quotient stack [A1/Gm]
on SpecZ : such a morphism indeed consists of a Gm-torsor P on X, whose
associated line bundle is L, and a Gm-equivariant morphism f : P → A1,
which defines u = f∧Gm Id : L = P ∧GmO → O. This remark was seminal in
the stack-theoretic viewpoint in log geometry, developed by Olsson in [24].
Among the applications, let me mention the Gabber-Olsson theory of the
cotangent complex in log geometry [25] (used by Beilinson in [5]).
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