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1. The main theorem

1.1. Let k be a field. Let X be a smooth k-scheme. De Rham cohomology
of X/k, H∗

dR(X/k) = H∗(X,Ω•
X/k) is the abutment of the Hodge to de Rham

spectral sequence

(1.1.1) Eij
1 = Hj(X,Ωi

X/k) ⇒ H i+j
dR (X/k).

When X/k is proper, its terms are finite dimensional k-vector spaces, and it
degenerates at E1 if and only, for all n,

(1.1.2)
∑
i+j=n

hi,j = hn,

where hi,j = dimkH
j(X,Ωi

X/k), h
n = dimkH

n
dR(X/k). It follows from Hodge

theory that this is the case if k is of characteristic zero.
Suppose now that k is a perfect field of characteristic p > 0. It has been

known since the early 1960’s that there exist projective, smooth k-schemes
whose Hodge to de Rham spectral sequences do not degenerate at E1, already
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in dimension 2. However, it was shown in 1987 that, in presence of a smooth
lift to W2(k), at least some partial degeneration holds. More precisely:

Theorem 1.2 ([DI]). Let X0/k be a smooth scheme. The datum of

a smooth lift X1/W2(k) of X0 determines a decomposition in D(X
(1)
0 ) :=

D(X
(1)
0 ,O

X
(1)
0
)

(1.2.1) ⊕0⩽i<pΩ
i

X
(1)
0 /k

[−i]
∼→ τ<pF∗Ω

•
X0/k

(where X
(1)
0 is the pull-back of X0 by the Frobenius automorphism of Spec(k)

and F : X0 → X
(1)
0 is the relative Frobenius), inducing the Cartier isomor-

phism C−1 on H i for i < p.

In particular, the datum of X1 defines a section

(1.2.2) s : H1(F∗Ω
•
X0/k

)[−1] → τ⩽1F∗Ω
•
X0/k

,

of the canonical projection, and (1.2.1) is deduced from s by the multiplica-
tive structure of both sides. Moreover, the existence of such a section s is
equivalent to that of a lifting X1.

If we assume dim(X0) ⩽ p, by a duality argument it is shown in [DI] that
the datum of X1 forces the existence of a (non-canonical) decomposition

(1.2.3). ⊕0⩽i⩽pΩ
i

X
(1)
0 /k

[−i]
∼→ F∗Ω

•
X0/k

In particular, if X0/k is proper, smooth, of dimension ⩽ p, and admits a
smooth lift X1, by (1.1.2) the Hodge to de Rham spectral sequence degener-
ates at E1. That left open the question whether there might exist a proper,
smooth X0/k, of dimension p+1, admitting a smooth lift to W2(k), for which
the Hodge to de Rham would not degenerate at E1. This question has been
recently solved affirmatively by Petrov:

Theorem 1.3 [P]. There exists a projective smooth scheme X/W (k), of
relative dimension p+1, such that the Hodge to de Rham spectral sequence
of X0 := X ⊗W (k) k does not degenerate at E1, more precisely, for which

hp(X0) <
∑
i+j=p

hi,j(X0).

The goal of this talk is to explain the main ideas and steps in the proof
of Th. 1.3.

2. An overview of the strategy
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2.1. The obstructions.

The first (and main conceptual step) is the following: given X0 smooth
over k, admitting a (smooth) lift X1 over W2(k), exhibit the obstructions to:

(a) decomposability of τ⩽pF∗Ω
•
X0/k

in D(X
(1)
0 ),

(b) for X0/k assumed moreover to be proper, degeneration at E1 of the
Hodge to de Rham spectral sequence.

Petrov gives an explicit formula for the obstruction eX1,p to (a) in terms of
certain characteristic classes. The relation between this obstruction and that
to (b) is rather indirect as it involves the conjugate spectral sequence. The ob-
struction eX1,p determines in this spectral sequence a higher differential d0,pp+1,

with target Hp+1(X
(1)
0 ,O), whose non-vanishing ensures its non-degeneration

at E2, hence the non-degeneration at E1 of (1.1.1) for X0.
The above discussion works more generally for smooth Artin stacks. This

is crucial, as the construction of X/W (k) in Th. 1.3 is by approximation
from a smooth Artin stack over W (k) of the form BG, for a certain finite
flat group scheme G/W (k).

2.2. Petrov’s group scheme G.

Given k (perfect, of characteristic p > 0), Petrov chooses an elliptic curve
E/W (k) whose reduction E0 on k is supersingular. (If k = Fp, one can
choose a supersingular E0/k thanks to Honda-Tate, and one lifts it to Zp.)
Let q = p2. On the finite flat commutative W (k)-group scheme

H = E[p]⊗Fp Fp
q

(a product of 2p copies of E[p]) the group SLp(Fq) acts. Petrov defines
the (non-commutative) finite, flat W (k)-group scheme G as the semi-direct
product

G := SLp(Fq)⋉H.

Petrov’s main result is:

Theorem 1.3.a. The differential d0,pp+1 for BG0 is non-zero.

The proof is indirect, using the replacement of BG by a quotient stack
[A/SLp(OF )], for a certain abelian scheme A/W (k) acted on by SLp(OF ) for
a certain real quadratic extension F of Q. This proof is the longest and most
technical part of the whole paper. It combines inputs of homotopical alge-
bra related to Steenrod operations with delicate results on algebraic group
cohomology, in the style of Cline-Parshall-Scott-van der Kallen [CPSvdK].

2.3. The approximation X.
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By an adaptation of the method of Godeaux-Serre-Raynaud, combined
with a vanishing result of Antieau-Bhatt-Mathew [ABM], Petrov constructs
a projective, smooth scheme X/W (k), of relative dimension p + 1, which is
equipped with an fppf G-torsor Z, such that the map X → BG defined by Z
induces on the special fibers an injection Hp+1(BG0,O) → Hp+1(X0,O) on
the targets of the differential d0,pp+1. By functoriality of the conjugate spectral
sequence, Th. 1.3 then follows from Th. 1.3.a.

3. The obstructions

3.1. Let X0 be a smooth k-scheme, admitting a smooth lift X1 to W2(k).
For brevity, write dRX0/k for F∗Ω

•
X0/k

. Then X1 produces the decomposition

(1.2.2) of τ<pdRX0/k, but τ
⩽pdRX0/k may not be decomposable: the map d

of degree 1 of the triangle

τ<pdRX0/k → τ⩽pdRX0/k → Ωp

X
(1)
0

[−p]
d→

is the obstruction eX1,p to its decomposability (in D(X
(1)
0 )). By (1.2.2) this

obstruction is written as a map

eX1,p : Ω
p

X
(1)
0 /k

→ ⊕0⩽i<pΩ
i

X
(1)
0 /k

[−i][p+ 1].

Let πi denote the projection of the right hand side to the ith summand. By a
(recent) result of Drinfeld and Bhatt-Lurie [BL], the datum ofX1 decomposes
τ [1,p]dRX0/k, hence

πi(eX1,p) = 0

for i > 0. Therefore

(3.1.1) eX1,p ∈ Hom(Ωp

X
(1)
0 /k

,O
X

(1)
0
[p+ 1]).

3.2. Relation with the conjugate spectral sequence. Let X0 be a smooth
k-scheme. The canonical filtration of dRX0/k determines a spectral sequence,
called the conjugate spectral sequence, which, after a renumbering and use of
the Cartier isomorphism, reads:

(3.2.1) Ei,j
2 = H i(X

(1)
0 ,Ωj

X
(1)
0 /k

) ⇒ H i+j(dRX0/k).

Assume moreover X0/k proper, and let hi,j = dimkH
j(X0,Ω

i
X0/k

), hn =

dimkH
n
dR(X0/k) as in (3.1.2). Consider the Hodge to de Rham spectral

sequence (1.1.1) for X0 and the conjugate spectral sequence (3.2.1). Then
we have the equivalences
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(1.1.1) degenerates at E1 ⇔
∑

i+j=n h
i,j = hn ⇔ (3.2.1) degenerates at

E2.

Assume now that X0/k is proper and smooth, and admits a smooth lift
X1. Then (3.2.1) has the following partial degeneration properties:

(i) Since τ [0,p−1]dRX0/k is decomposable (Th. 1.2), we have Ei,j
2 = Ei,j

∞
for i+ j = p and i > 0. For the same reason, we have Ep+1,0

2 = Ep+1,0
p+1 .

(ii) Since τ [1,p]dRX0/k is decomposable (by the result of Drinfeld and

Bhatt-Lurie mentioned above), we have E0,p
2 = E0,p

p+1.

Finally:
(iii) The differential

d0,pp+1 : E
0,p
p+1 = E0,p

2 = H0(X
(1)
0 ,Ωp

X
(1)
0 /k

) → Hp+1(X
(1)
0 ,O) = Ep+1,0

2 = Ep+1,0
p+1

is obtained by applying eX1,p to H0(X
(1)
0 ,−).

Therefore we get the following criterion:

(iv) d0,pp+1 ̸= 0 ⇔ hp <
∑

i+j=p h
i,j

In particular, if d0,pp+1 ̸= 0, (3.2.1) does not degenerate at E2 (hence (1.1.1)
does not degenerate at E1).

A central result in [P] is the following formula:

Theorem 3.3 ([P], Cor. 7.5). The morphism

eX1,p ∈ Hp+1(X
(1)
0 ,ΛpT

X
(1)
0 /k

)

(3.1.1) (where T
X

(1)
0 /k

is the dual of Ω1

X
(1)
0 /k

) is given by

eX1,p = Bock
X

(1)
1
(obF,X1 ◦ α(Ω1

X
(1)
0 /k

)),

where the morphisms

α(Ω1

X
(1)
0 /k

) : Ωp

X
(1)
0 /k

→ F ∗
X

(1)
0

Ω1

X
(1)
0 /k

[p− 1],

obF,X1 : F
∗
X

(1)
0

Ω1

X
(1)
0

→ O
X

(1)
0
[1],

Bock
X

(1)
1

= Bockp
X

(1)
1

: Hp(X
(1)
0 ,ΛpT

X
(1)
0 /k

) → Hp+1(X
(1)
0 ,ΛpT

X
(1)
0 /k

)

are defined in 3.4. Here F
X

(1)
0

denotes the (p-linear) absolute Frobenius en-

domorphism of X
(1)
0 .
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3.4. (a) The Bockstein. For M ∈ D(X
(1)
1 ,O), the map Bockm

X
(1)
1

is the

boundary map
Hm(X

(1)
0 , i∗M) → Hm+1(X

(1)
0 , i∗M)

deduced from the exact sequence (of O
X

(1)
1
-modules)

0 → i∗OX
(1)
0

p→ O
X

(1)
1

→ i∗OX
(1)
0

→ 0,

(where X
(1)
1 is the pull-back of X1 by the Frobenius automorphism of W2(k),

and i : X
(1)
0 → X

(1)
1 the inclusion).

(b) The obstruction to lifting Frobenius. The map obF,X1 is the obstruc-

tion to lifting the absolute Frobenius of X
(1)
0 to a (σ-linear) endomorphism

of X
(1)
1 over W2(k).

(c) The class α. In contrast with the classes (a) and (b), the class α does
not depend on the lift X1, and is a particular case of a characteristic class
defined in a more general framework.

Let R be an Fp-algebra. Denote by F = FR the Frobenius endomorphism
of R. Let M be an R-module, and let M (1) : F ∗M . The map M → M (1)

given by x 7→ 1 ⊗F x is a homogeneous polynomial map of degree p (in the
sense of [R], cf. [SGA 4 XVII, 5.5.2.4], where it’s called a pic map), hence
defines a map

v : ΓpM → M (1).

For M flat, ΓpM = (M⊗p)Sp , and v is surjective, characterized by sending
x⊗p to 1⊗ x, and vanishing on the image of the symmetrization map

N : Sp(M) = (M⊗p)Sp → (M⊗p)Sp = Γp(M),

and the sequence

(3.4.0) Sp(M)
N→ Γp(M)

v→ M (1) → 0

is exact. The notation v is a wink to the Verschiebung. Indeed, whenM is the
R-algebra of a flat, affine, commutative group scheme G/R, the Verschiebung
morphism V : G(1) → G corresponds to the composite M → ΓpM

v→ M (1),
where the first map is induced by the comultiplication M → M⊗p, which
factors through ΓpM (cf. [SGA 3, VIIA, 4.2, 4.3]). For this reason, v could
be called a half-Verschiebung.

By left Kan extension v extends to a map

v : Γp(M) → M (1)
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for M ∈ D(R), and even for M ∈ D(S), if S is a scheme (or stack, or even,
prestack over Fp). If M = E[−1], with E a flat OS-module, by Quillen’s
décalage formula

Γp(E[−1])
∼→ Λp(E)[−p],

v can be re-written as a map

v : Λp(E) → E(1)[p− 1].

Petrov defines

(3.4.1) α(E) := v.

The following alternative definition of α(E) is useful in the proof of Th.
3.3. Let R be an Fp-algebra as above, and let M be an R-module. The map
M → Sp(M), x 7→ xp factors through an R-linear map

f : M (1) → Sp(M).

Here f could be thought of as a half-Frobenius, as, when M is a commutative

algebra, the composition M (1) f→ Sp(M) → M , where the second map is
defined by the algebra structure of M , is the (relative) Frobenius map.

Assume now that M is flat. Then the sequence (3.4.0) can be extended
to an exact sequence

(3.4.2) 0 → M (1) f→ SpM
N→ ΓpM

v→ M (1) → 0.

It is convenient to introduce, for M ∈ D(S) as above, Kaledin’s complex

(3.4.3) T (M) := Cone(SpM
N→ ΓpM) ∈ D(S).

It fits in triangles

T (M)[−1] → SpM → ΓpM
d→ T (M),

M (1)[1] → T (M) → M (1) →,

and the composition ΓpM
d→ T (M) → M (1) is just v : ΓpM → M (1). In

particular, for M = E[−1] with E flat, pushing out the triangle

T (E[−1])[−1] → Sp(E[−1]) → ΛpE[−p] →

by T (E[−1])[−1] → E(1)[−2] we get a triangle

(3.4.4) E(1)[−2] → τ⩾2Sp(E[−1]) → ΛpE[−p]
d→ E(1)[−1]
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where

(3.4.5). d = v = α(E) : ΛpE → E(1)[p− 1].

When p = 2, Petrov shows that the triangle (3.4.4) boils down to the short
exact sequence

(3.4.6) 0 → E(1) f→ S2E
m1m2 7→m1∧m2→ Λ2E → 0,

whose boundary map is α(E) ∈ Ext1(Λ2E,E(1)).

4. Proof of the central result

The proof of Th. 3.3 exploits Bhatt-Lurie’s theory of diffracted Hodge
complexes and Sen operators. In particular, it relies on a formula for the
action of the Sen operator ΘX1 on the weight zero part of τ⩽pdRX0/k (Th.
4.2). When X0 admits a formal smooth lift X to W (k), this formula is not
needed, and, instead, Th. 3.3 follows from a general theorem on derived
commutative algebras (Th. 4.3), applied to the diffracted Hodge algebra

Ω
/D

X(1)/W (k)
. This general theorem, that Petrov says was inspired to him by

Steenrod operations deriving from homology classes of symmetric groups,
plays a crucial role, later in the paper, in establishing the non-vanishing of
the differential d0,pp+1.

4.1. Diffracted Hodge complexes and Sen operators.

(a) Over W (k).

Let X be a smooth formal scheme over W (k). In [BL22a, 4.7.12] there is
defined an object

(4.1.1) Ω
/D
X/W (k) ∈ D(X) = D(X,OX),

(abbreviated Ω
/D
X if no confusion can arise), called the diffracted Hodge com-

plex of X, with the following structure and properties.

(i) It is a perfect complex (of perfect amplitude in [0, dim(X/W (k))), and
it is equipped with the structure of a derived commutative algebra in D(X)1

1In the sense of Mathew: a derived commutative algebra structure on A ∈ D(X)
is given by maps SnA → A (n ∈ N) with compatibility data imposed by the monad
structure of S• = ⊕Sn. In particular, a cosimplicial commutative algebra has such a
structure, but in general an E∞-algebra in D(X) has not. The calculation of prismatic
cohomology by certain Čech-Alexander complexes furnishes a cosimplicial commutative

algebra representing Ω
/D
X .
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(ii) There is a natural isomorphism of (graded commutative) algebras

H•(Ω
/D
X)

∼→ Ω•
X/W (k).

(iii) The diffracted Hodge complex is equipped with an operator

ΘX ∈ End(Ω
/D
X),

called the Sen operator, which acts as a derivation (i.e., satisfies Leibniz rule)

and induces the multiplication by −i on H i(Ω
/D
X).

(iv) A multiplicative isomorphism

ε : (Ω
/D
X ⊗L

W (k) k)
(1) ∼→ dRX0/k(= F∗Ω

•
X0/k

)

inducing the Cartier isomorphism C−1 on H i via (ii).

Denote again by ΘX the endomorphism of dRX0/k induced by ΘX via
ε. By (iii)

∏
i∈Z(ΘX + i) is nilpotent, hence induces a decomposition into

generalized eigenspaces

(4.1.2) dRX0/k
∼→ ⊕0⩽i⩽p−1(dRX0/k)i,

where the summand (dRX0/k)i has cohomology Hj concentrated in degree
j ≡ i mod p, and

ΘX |(dRX0/k)i = −iId + (ΘX)i,

with (ΘX)i nilpotent.

The decomposition (4.1.2) induces, in particular, a decomposition of the
partial truncations τ [a,a+p−1]dRX0/k, generalizing those of [DI] (1.2.1) and
Achinger-Suh. In particular, it provides a section

(4.1.3) sX0 : H
1(F∗Ω

•
X0/k

)[−1] → τ⩽1F∗Ω
•
X0/k

,

of the projection, which, by Li-Mondal [8], coincides with that of (1.2.3).

This section sX0 is in fact the reduction mod p of a section

(4.1.4) sX : H1(Ω /D)[−1] → τ⩽1Ω
/D
X/W (k)

of the projection. The reason is that the operator
∏

0⩽i⩽p−1(ΘX + i) on

τ⩽
p−1

Ω
/D
X/W (k) is nilpotent, and the decomposition of W (k)[T ]/

∏
0⩽i⩽p−1(T +

i) produces a decomposition

(4.1.5) ⊕0⩽i⩽p−1Ω
i
X/W (k)[−i]

∼→ τ⩽p−1Ω
/D
X/W (k).
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The diffracted Hodge complex is defined as

(4.1.6) Ω
/D
X/W (k) := Rπ /D

∗ OX /D ,

where X /D denotes the diffracted Hodge Tate stack, pull-back by the V (1)-
section η : Spf(W (k)) → WCartHT

W (k) = (BG♯
m)W (k) of the Hodge-Tate stack

WCartHT
X , and

π /D : X /D → X

denotes the composition

X /D → WCartHT
X

πHT

→ X

([BL22b], 3.8).

(b) Over Wn(k), n ⩾ 2.

For a flat scheme Xn−1/Wn(k) one defines the diffracted Hodge complex

Ω
/D
Xn−1/Wn(k)

in a way similar to (4.1.3). For this, the following refinement of

([BL22b], Example 5.15), due to Devalapurkar-Petrov, is needed: there is a
canonical isomorphism

(4.1.4) WCartHT
Wn(k)

∼→ G♯
a,Wn(k)

/G♯
m,Wn(k)

,

with the action of G♯
m on G♯

a given by scaling. (Over W (k), G♯
a = WF=0, and

G♯
m = (W×)F=1, where W is the Witt group scheme.).

One then defines the diffracted Hodge-Tate stack X
/D
n−1 by the cartesian

square

(Xn−1/Wn(k))
/D

��

//WCarHT
Xn−1

��
Spec(Wn(k)

η //WCartHT
Wn(k),

where η is the composition Spec(Wn(k)
0→ G♯

a,Wn(k)
→ G♯

a,Wn(k)
/G♯

m,Wn(k)
.

In particular, it has a natural action of G♯
m,Wn(k)

. One defines the diffracted

Hodge complex Ω
/D
Xn−1/Wn(k)

by

Ω
/D
Xn−1/Wn(k)

:= Rπ /D
∗ O(Xn−1/Wn(k)) /D ,

where π /D is the composition

π /D : (Xn−1/Wn(k))
/D → WCartHT

Xn−1

πHT

→ Xn−1
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(which is G♯
m-equivariant, with trivial action on the target). This complex

has a derived commutative algebra structure and an action of G♯
m, enabling

to define a Sen operator

ΘXn−1 ∈ End(Ω
/D
Xn−1/Wn(k)

),

with properties analogous to those of ΘX .
In particular, for X1/W2(k) smooth, X0 := X1 ⊗W2(k) k, we have an

isomorphism of O-algebras H•(Ω
/D
X1
)

∼→ Ω•
X1/W2(k)

, with Θ1 inducing −iId on

H i, an isomorphism
ε : (Ω

/D
X1

⊗L k)(1)
∼→ dRX0/k

through which ΘX1 produces a decomposition (4.1.2). When X0 is lifted to a

formal smooth X/W (k), Ω
/D
X1

= Ω
/D
X ⊗L W2(k), and ΘX induces ΘX1 , so that

the decomposition (4.1.2) depends only on X1.

The truncation τ⩽p(dRX0/k)0 has cohomology sheaves H i concentrated in
degrees 0 and p. As ΘX1 vanishes on them, ΘX1 comes from a morphism

cX1,p : Ω
p

X
(1)
0 /k

→ O
X

(1)
0
[p],

which one checks is unique. This morphism, which can be viewed as a class
cX1,p ∈ Hp(X

(1)
0 , T

X
(1)
0 /k

) could be named the Sen class in degree ⩽ p. A

crucial ingredient in the proof of Th. 3.3 is the following formula for cX1,p:

Theorem 4.2 ([P], Th. 7.1). Under the assumptions of Th. 3.3, we have

(4.2.0) cX1,p = obF,X1 ◦ α(Ω1

X
(1)
0 /k

).

By Th. 3.3 we thus have

(4.2.1) eX1,p = Bock
X

(1)
1
(cX1,p).

In particular, if τ⩽pdRX0/k is not decomposable, the Sen class cX1,p doesn’t
vanish, hence the Sen operator ΘX1 is not semi-simple.

Actually, Petrov proves Th. 4.2 in a slightly more general framework, with
X1/W2(k) assumed only quasi-syntomic instead of smooth. This extension
enables him to prove 4.2 (even in the smooth case) by flat descent from quasi-
regular semi-perfectoid algebras, where filtrations in the derived category are
replaced by filtrations on the nose.

As explained at the beginning of the section, when X0 = X ⊗W (k) k for a
smooth formal schemeX/W (k), Th. 4.2 is not needed, in fact Th. 3.3 follows
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from the following general result, applied to the diffracted Hodge complex
Ω

/D

X(1)/W (k)
(where X(1) is the pull-back of X by the Frobenius automorphism

of W (k)):

Theorem 4.3 ([P], Theorem 4.1). Let X be a formal scheme (or an
algebraic stack) flat over W (k), let X0 = X ⊗W (k) k be its special fiber. Let
A ∈ D⩾0(X,OX) be a derived commutative algebra satisfying the following
conditions:

(i) H0(A) = OX ,
(ii) H1(A) is a locally free OX-module of finite type, and multiplication

induces an isomorphism ΛH1(A)
∼→ H∗(A).

Assume further that there exists a section

s : H1(A)[−1] → τ⩽1(A)

of the canonical projection. Then:
(1) s induces a decomposition

⊕0⩽i⩽p−1H
i(A)[−i]

∼→ τ⩽p−1A

in D(X), 3.4 (c)).
(2) The extension class

eA,p : H
p(A) → (τ⩽p−1A)[p+ 1]

defined by τ⩽p−1 → τ⩽p → Hp[−p] is equal (up to a natural homotopy) to
the composition

Hp(A) = ΛpH1(A)
α(H1(A))→ H1(A/p)(1)[p− 1]

s→ τ⩽1(A/p)(1)[p]

(4.3.1)
φA/p→ (τ⩽1(A/p))[p]

BockA→ (τ⩽1A)[p+ 1] → (τ⩽p−1A)[p+ 1].

Here α(H1(A)) denotes the composition of the reduction mod pmapH1(A) →
H1(A/p) and the map α relative to H1(A/p) = H1(A)/p (3.4 (c)), and for
M ∈ D(A), the Bockstein map BockM : M/p → M [1] is defined by the

triangle M
p→ M → M/p.e

(3) When A is an augmented algebra, by ε : A → OX → A inducing an
isomorphism on H0, and s is the associated section, the composition of the
last four maps in (4.3.1) can be replaced by the composition
(4.3.2)

H1(A/p)(1)[p− 1]
φA/p→ H1(A/p)[p− 1]

BockH1(A)→ H1(A)[p] ↪→ (τ⩽p−1A)[p+ 1].

12



For X formal smooth over W (k), applying Th. 4.2 to the diffracted

Hodge complex Ω
/D
X/W (k) (with the section sX (4.1.4), and using a formula

for the obstruction obF,X1 to lifting the Frobenius of X0 to X1 based on the

relation between the cotangent complex ofX
(1)
0 overW (k) and the truncation

τ⩽1dRX0/k [7], one obtains a formula for the obstruction eX,p : Ωp
X/W →

τ⩽p−1Ω
/D
X/W (k)[p+ 1] to split the canonical filtration of τ⩽pΩ

/D
X/W (k), namely:

Corollary 4.4 ([P], Th. 5.8). The class eX,p is the composition of

Ωp
X/W (k)

α(Ω1
X0/k

)

→ Ω1

X
(1)
0 /k

[p− 1]
obF,X1→ OX0 [p]

BockOX→ OX [p+ 1]

and the canonical map OX [p+ 1] → (τ⩽p−1Ω
/D
X/W (k)[p+ 1].

Th. 3.3 then follows from Cor. 4.4 by reduction mod p. In this proof,
formula (4.2.0) for the Sen operator cX1,p is not used.

Proof of Th. 4.3. This is more or less formal from the definition of
the class α. The multiplicative structure of A (in the strong sense described
above) is crucial. When A can be represented by a component-wise flat cosim-
plicial commutative algebra, then 4.3 follows from the alternate definition of
α given in (3.4.2) - (3.4.5) and the commutative diagram (of cosimplicial
sheaves on X:

SpA

m

��

N // ΓpA

m

��

// (A/p)(1)

φA/p

��
A

p! // A // A/p.

Remark 4.5. Th. 4.3, which is not used in the proof of Th. 3.3 in the
general case (of a lifting X1), turns out to be crucial in the proof of Th. 1.3.a.

5. Petrov’s auxiliary abelian scheme A

5.1. Construction of real quadratic fields. Petrov constructs, for any prime
number p, a real quadratic field F (depending on p) having the following
properties:

(i) p is inert in F , hence OF/p = Fp2 , and the completion of OF at p is
W (Fp2);

(ii) The map OF → OF/p = Fp2 induces a surjection O×
F ↠ {x ∈

Fp2|NFp2/Fp(x) = ±1};
(iii) There exists a unit u ∈ O×

F whose image u1 ∈ W2(Fp2) satisfies
Frp(u1) ̸= up

1.

This is easy: for p = 2, take F = Q(
√
5), for p > 2, take F = Q(

√
d2 + 1)

where d is a suitable lift in Z of 1
2
TrFp2/Fp(u0), where u0 ∈ F×

p2 is a generator

of the cyclic group {x ∈ Fp2|NFp2/Fp(x) = ±1}.

13



5.2. Recall the definition of Petrov’s finite flat group scheme G/W (k)
(2.2):

G := SLp(Fq)⋉H.

where E/W (k) is an elliptic curve with supersingular reduction E0 on k, and

H = E[p]⊗Fp Fp
q ,

where q = p2.
Choose F as in 5.1. Define the abelian scheme A/W (k) by

(5.2.1) A := E ⊗Z O⊕p
F ,

where the tensor product is taken in the sense of Serre. It is isomorphic to a
sum of 2p copies of E and it is equipped with a natural action of GLp(OF ).
The action of GLp(OF ) on A[p] factors through GLp(OF/p) = GLp(Fq) and
defines a GLp(Fq)-equivariant isomorphism

A[p]
∼→ H.

The classifying map A → BA[p] defined by the A[p]-torsor p : A → A is thus
identified to a GLp(OF )-equivariant morphism A → BH, which induces a
map

(5.2.2) f : [A/SLp(OF ) → [BH/SLp(Fq),

and
[BH/SLp(Fq)]

∼→ BG

as BH → BG is a G/H = SLp(Fq)-torsor.

It is easy to see ([P], Lemma 10.2) that f induces an isomorphism

(5.2.3) f ∗
0 : H0(BG0, LΩ

p

BG
(1)
0

)
∼→ H0([A

(1)
0 /SLp(OF ], LΩ

p

[A
(1)
0 /SLp(OF ]

),

where subscript zero means reduction on Spec(k). Therefore, by functoriality
of the differential d0,pp+1 in the conjugate spectral sequence, in order to prove
Th. 1.3.a (hence Th. 1.3), it suffices to prove:

Theorem 1.3.b ([P], Prop. 10.3). The differential d0,pp+1 in the conjugate
spectral sequence for [A0/SLp(OF )] is non-zero.

Remark 5.2.4. As shown in [DI], dRA0/k is decomposable, hence the
conjugate spectral sequence of A0/k degenerates at E2. However, Th. 1.3.b
shows that there is no SLp(OF )-equivariant decomposition of dRA0/k.
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5.3. The proof of Th.1.3.b consists of two steps.

(1) The first (and, by far, the most difficult) one consists in showing

that the truncated global dR cohomology complex τ⩽pRΓ(A
(1)
0 , dRA0/k) is not

SLp(OF )-equivariantly decomposable, more precisely, the canonical map

Hp
dR([A0/SLp(OF )]/k) → Hp

dR(A0/k)
SLp(OF )

is not surjective.
This relies on delicate results on the cohomology of SLp (in both algebraic

and discrete settings), and especially, refinements of basic results of Cline-
Parshall-Scott-van der Kallen [CPSvdK] (= [4]).

(2) The second one consists in showing that, in contrast, the truncated

global Hodge cohomology complex τ⩽pRΓ(A
(1)
0 ,⊕Ωi

A
(1)
0

[−i])

is SLp(OF )-equivariantly decomposable. This (much easier) step uses the
supersingularity of E0 in a crucial way. Then a showdown between Hodge
and de Rham implies the non-vanishing of d0,pp+1.

6. Cohomology of SLp

Let V be a p-dimensional k-vector space, and, as usual, let V (1) denote
its pull-back by the absolute Frobenius of k. There are three key results:

(a) The k-group scheme GL(V ), and a fortiori its subgroup SL(V ), acts
naturally on V , so that V can be viewed as a rank p vector bundle on BSL(V ).
One can consider its class

α(V ) : ΛpV → V (1)[p− 1]

in D(BSL(V ),O) (3.4.1). As the determinant trivializes ΛpV , a(V ) can be
rewritten as a class

(6(a)) α(V ) ∈ Extp−1(O, V (1)) = Hp−1(BSL(V ), V (1))

where the right hand side is often more classically written Hp−1(SL(V ), V (1)).

Theorem 6.1 ([P] Prop. 12.1, Lemma 12.4). The class α(V ) (6(a)) is
non-zero. Moreover, if p > 2, we have

H i(SL(V ), V (1)) = 0

for all i ̸= p− 1, and
Hp−1(SL(V ), V (1)) = k.
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(b) Assume now that k = Fq, with q > p. Then the inclusion of
SL(V )(Fq) = SLp(Fq) into SL(V ) as a discrete subgroup induces a map
BSLp(Fq) → BSL(V ).

Theorem 6.2 ([P] Prop. 13.1). The restriction map

Hp−1(SL(V ), V (1)) → Hp−1(SLp(Fq), V
(1))

is injective.

This is a refinement, in this particular situation, of a general result of
Cline-Parshall-Scott-van der Kallen [4] asserting that for a split semi-simple
group G/Fq, with q = pr, and a finite dimensional G-module E, then, for
any given n, the restriction map Hn(G,E(e)) → Hn(G(Fq), E

(e)) is injective
for sufficiently large e and r (depending on n) (where E(e) is the pull-back of
E by the eth power of the absolute Frobenius).

(c) Finally, assume that k = Fq, with q = p2. Let Ṽ be a free W2(k)-

module lifting V , and denote again by Ṽ (1) its pull-back by the Frobenius
of W2(k). Let F/Q be a real quadratic extension constructed as in 5.1.
We have natural maps OF → W (k) → W2(k) → k, which, in particular,
define homomorphisms SLp(OF ) → SLp(W2(k)) → SLp(k), hence actions of

SLp(OF ) on V , Ṽ , Ṽ (1). The SLp(OF )-equivariant exact sequence

0 → V (1) p→ Ṽ (1) → V (1) → 0

defines Bockstein homomorphisms

Bocki : H i(SLp(OF ), V
(1)) → H i+1(SLp(OF ), V

(1)).

Theorem 6.3 ([P], Prop. 14.1). Let

α(V ) ∈ Hp−1(SLp(OF ), V
(1))

denote the pull-back of the class (6(a)) by the composite homomorphism
SLp(OF ) → SLp(k) → SL(V ). Then

Bockp−1(α(V )) ∈ Hp(SLp(OF ), V
(1))

is non-zero.

6.4. Glimpses on the proofs of Th. 6.1, Th. 6.2, Th. 6.3.

Proof of Th. 6.1. For p = 2, it is elementary to see that (S2V )SL2 = 0,
hence the short exact sequence (3.4.6) admits no SL2(V )-equivariant split-
ting.
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For p > 2, the proof is much more difficult. A crucial preliminary step is
to analyze Sp(V [−1]) in terms of derived coinvariants. For X an Fp-prestack,
and M ∈ D(X) denote by M 7→ M⊗p ∈ D(X,OX [Sp]) the functor defined by
left Kan extension from pth power tensor product on finite type projective
modules over an Fp-algebra, and M 7→ (M⊗p)hSp the derived coinvariant
functor, defined by

(M⊗p)hSp := M⊗p ⊗L
Fp[Sp] Fp.

Kaledin’s complex (3.4.3), together with Quillen’s décalage formula, shows
that Sp(V [−1]) is cohomologically concentrated in degrees 1, 2, and p, with
H1 = H2 = V (1), and Hp = ΛpV . The Sp-equivariant map V [−1]⊗p →
Sp(V [−1]) (with trivial action on the target) thus induces a map

(6.4.1) τ⩾1(V [−1]⊗p)hSp → Sp(V [−1]).

The crucial result is:

Lemma 6.4.2 ([P] Lemma 3.8). The map (6.4.1) is an isomorphism.

The proof relies on Priddy’s calculation of the cohomology of the left
hand side, which gives the same values as for the right hand side, the known
relation between HjS•Fp[−i] and natural transformations from H i to Hj of
Fp-cosimplicial commutative algebras, and finally, the fact that the Bockstein
H1(BFp,Fp) → H2(BFp,Fp) is an isomorphism.

From Lemma 6.4.2, the proof of Th. 6.1 uses classical results on the
(algebraic) cohomology of reductive groups (Kempf’s vanishing theorem,
Jantzen’s good filtrations) and for the assertions relative to H i(SL(V ), V (1)),
another interpretation of Sp(V [−1]) in terms of a certain truncated de Rham
complex, inspired by Friedlander-Suslin [FS] ([6]).

Proof of Th. 6.2. The strategy is the same as in [CPSvdK]. Let B ⊂
SL(V ) be a Borel subgroup. By Kempf’s vanishing theorem,H i(SL(V )/B,O) =
0 for i > 0, hence the restriction map RΓ(SL(V ), E) → RΓ(B,E) is an iso-
morphism for any SL(V )-module E. Therefore to show injectivity for the
restriction map for SL(V ) it suffices to do it for B. Writing B = T ⋉U , with
U the unipotent radical, and using that H i(T,M) = H i(T (Fq),M) = 0 for
i > 0 and p-torsion coefficients M , one has

H i(B,E) = H i(U,E)T , H i(B(Fq), E) = H i(U(Fq), E)T (Fq).

So one is reduced to showing injectivity of the restriction map

Hp−1(U, V (1))T → Hp−1(U(Fq), V
(1))T (Fq)
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The starting point is the known structure of H•(Ga, k) ([CPSvdK, Th. 4.1])
and H•(Ga(Fq), k) as a k-algebra: a symmetric algebra on H1 for p = 2, and,
for p > 2, the tensor product of an exterior algebra on H1 and a symmetric
algebra on H2, with an isomorphim H1 ∼→ H2 given by the Bockstein. See
([P], Lemma 13.4). The proof then goes differently for p = 2 and p > 2. For
p > 2, choosing a basis (ej) of V and identifying B the the group of upper
triangular matrices, the proof relies on a delicate combinatorial analysis of the
T -invariants of the cohomology groups H i(U, χp

j), where χj is the character
of T = B/U through which it acts on ej.

Proof of Th. 6.3. This is the final bouquet. Two important ingredients:
(a) the subgroup Ap

∼→ Gp−1
a ⊂ U of matrices acting trivially on V/⟨e1⟩

detects cohomology classes of V (1) in degree ⩽ p− 1;
(b) as the group of units O×

F is infinite, if χ : O×
F → k× is a non-trivial

character, then RΓ(T (OF ), χ) = 0.

6.5. Application to the proof of 5.3 (1). The defect of surjectivity of the
map

Hp
dR([A0/SLp(OF )]/k) → Hp

dR(A0/k)
SLp(OF )

is controlled by the exact sequence

Hp
dR([A0/SLp(OF )]/k) → Hp

dR(A0/k)
SLp(OF ) δ→ Hp+1(SLp(OF , τ

⩽p−1RΓdR(A0/k)).

One has to show that δ ̸= 0.
A general result ([P], Prop. 9.3) on de Rham cohomology of abelian vari-

eties A0/k acted on by a discrete group, itself a consequence of generalization
of Th. 4.3 (3) to equivariant augmented derived commutative algebras, ap-
plied to the augmented algebra RΓdR(A0/k), implies that:

(i) there is an SLp(OF )-equivariant isomorphism

τ⩽p−1RΓdR(A0/k)
∼→ ⊕i⩽p−1H

i
dR(A0/k)[−i];

(ii) δ lands in the direct summand Hp(SL(OF ), H
1
dR(A0/k)) and is given

by the composition of

Hp
dR(A0/k)

SLp(OF ) = ΛpH1
dR(A0/k)

SLp(OF ) c→ Hp(SL(OF ), H
1
dR(A0/k)

(1)),

where
c := Bockp−1(α(H1

dR(A0/k)))

(Bockstein being relative to the lift H1
crys(A0/W2(k)) of H

1
dR(A0/k)), and

F ∗
A0

: Hp(SL(OF ), H
1
dR(A0/k)

(1)) → Hp(SL(OF ), H
1
dR(A0/k)).
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is the Frobenius morphism. For V = Fp
q as in Th. 6.3, choosing ξ ∈

H1
dR(E0/k) such that F ∗

E0
(ξ) ̸= 0 and looking at the corresponding embed-

ding of k ⊗Fp V into H1
dR(E0)⊗k (k ⊗ V ) ↪→ H1

dR(A0/k), one finds that Th.
6.3 implies the non-vanishing of δ.

6.6. Proof of 5.3 (2). It relies on the following general result:

Proposition 6.6.1 ([P], Prop. 9.1). Let A be an abelian scheme over
W (k) endowed with an action of a discrete group Z.

(i) There is a Z-equivariant isomorphism

τ⩽p−1RΓ(A,O)
∼→ ⊕0⩽i⩽p−1H

i(A,O)[−i].

(ii) The extension class e : Hp(A,O) → τ⩽p−1RΓ(A,O)[p+1] inDU(W (k))
defined by τ⩽pRΓ(A,O) is the composition of the maps

ΛpH1(A,O)
α→ H1(A0,O)(1))[p− 1]

F ∗
A0→ H1(A0,O)[p− 1]

Bock→ H1(A,O)[p]

and the inclusion of the direct summandH1(A,O)[p] in τ⩽p−1RΓ(A,O)[p+1].
In particular, if F ∗

A0
: H1(A0,O) → H1(A0,O) is zero, then there is a

Z-equivariant isomorphism

τ⩽pRΓ(A,O)
∼→ ⊕0⩽i⩽p−1H

i(A,O)[−i],

and, more generally, for all 0 ⩽ j ⩽ p, a Z-equivariant isomorphism

τ⩽pRΓ(A,Ωj[−j])
∼→ ⊕0⩽i⩽p(H

i(A,Ωj[−j])[−i],

This follows from Th. 4.3 (3) applied to the derived commutative alge-
bra RΓ(A,O) in DZ(W (k)), augmented by the map e∗ : RΓ(A,O) → W (k)
deduced from the identity section, as F ∗

A0
can be identified with the Frobe-

nius morphism of the derived commutative algebra RΓ(A0,O). The last
assertion comes from the fact that Ω1

A/W (k) = π∗e∗Ω1
A/W (k), where π : A →

Spec(W (k)).
Then 5.3 (2) follows as A0 is a sum of 2p copies of the supersingular

elliptic curve E0, hence F ∗
A0

is zero on H1(A0,O).

7. The showdown Hodge vs dR: end of proof of the main theo-
rem

The rough story is that in a lifted situation acted on by a discrete group,
where the τ⩽p-truncation of Hodge cohomology is equivariantly decomposable
but that of de Rham cohomology is not, then Hodge and de Rham shoot at
each other, and the result is the non-vanishing of d0,pp+1. More precisely:
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Proposition 7.1 ([P], Lemma 10.6). Let X1 be a smooth scheme over
W2(k) acted on by a discrete group Z, and let X0 = X1 ⊗ k. Assume that:

(i) for all 0 ⩽ j ⩽ p, there is a Z-equivariant isomorphism

τ⩽pRΓ(X0,Ω
j[−j])

∼→ ⊕0⩽i⩽p(H
i(X0,Ω

j[−j])[−i];

(ii) The map
Hp

dR([X0/Z]/k) → Hp
dR(X0/k)

Z

is not surjective.
Then, in the conjugate spectral sequence for the stack [X0/Z], the differ-

ential
d0,pp+1 : H

0([X0/Z]
(1), LΩp

[X0/Z](1)/k
) → Hp+1([X0/Z]

(1),O)

(see 3.2) does not vanish.

The conclusion is equivalent to saying that the map

Hp
dR([X0/Z]

(1)/k) → H0(X
(1)
0 ,Ωp)Z

induced by Filconjp → grconjp is not surjective. The proof is formal.

7.2. End of proof of main theorem (Th. 1.3.a). As explained in 5.2, it is
enough to prove Th. 1.3.b, i.e., that the differential d0,pp+1 for [A0/SLp(OF )]
is non-zero. We check conditions (i) and (ii) for X = A and Z = SLp(OF ).
Condition (i) is satisfied by 5.3 (2), proved in 6.6. Condition (ii) is satisfied
by 5.3 (1), proved in 6.5. That finishes the proof of Th. 1.3.a, hence of Th.
1.3, modulo the approximation results in 2.3, which we will omit.

8. Complement 1: Sen operators and Kodaira-Spencer classes

8.1. As observed after (4.2.1), for X0/k smooth and liftable to X1/W2(k),
if τ⩽pdRX0/k is not decomposable, then the Sen class cX1,p is not zero. This
is the case for the smooth projective schemes X0/k (of dimension p+1) con-
structed by Petrov (2.3). For X0/k of dimension < p (smooth and liftable
to W2(k)), dRX0/k is decomposable, and we have (trivially) cX1,p = 0, as
Ωp

X0/k
= 0. For X0/k of dimension p, it is still true that dRX0/k is decompos-

able (see (1.2.3)), but a priori it might happen that cX1,p does not vanish.
This is indeed the case, as Petrov shows. In fact, the examples he constructs
are, in contrast to the bizarre looking BG, quite familiar varieties. They
arise from a beautiful relation that Petrov discovered, for reductions mod p
of smooth pencils of relative dimension p − 1 over W2(k), between the Sen
class cX1,p, the Kodaira-Spencer class of the pencil, and the obstruction to
lifting the Frobenius of the base curve.
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8.2. Let
f : X1 → Y1

be a smooth morphism between smooth W2(k)-schemes, with dim(Y1) = 1,
dim(X1/Y1) = p − 1. As usual, denote by the subscript (−)0 the reduction
mod p. Let

KSf0 ∈ Hom(Ω1
X0/Y0

, f ∗
0Ω

1
Y0/k

[1]) = Hom(TY0/k, Rf0∗TX0/Y0)[1])

denote the extension given by the short exact sequence

0 → f ∗
0Ω

1
Y0/k

→ Ω1
X0

→ Ω1
X0/Y0

→ 0,

and let
ksf0 : TY0/k → R1f0∗TX0/Y0

the morphism deduced by applying H0. Applying (−)⊗p−1 to it and compos-
ing with the cup-product produces a map

ksp−1
f0

: OY0 → T⊗1−p
Y0/k

⊗Rp−1f0∗Λ
p−1TX0/Y0 .

On the other hand, the obstruction obF,Y1 to lifting the absolute Frobenius
of Y0 is a map

obF,Y1 : OY0 → F ∗
0 TY0/k[1] = T⊗p

Y0/k
[1].

Finally, the (pull-back by (F ∗
0 )

−1 of) the Sen class of Th. 4.2 is a class

cX1,p ∈ Hp(X0,Λ
pTX0/k) = H1(Y0, TY0/k ⊗Rp−1f0∗Λ

p−1TX0/Y0).

Petrov’s relation is:

Theorem 8.3 ([P], Th. 8.1). Up to multiplication by an element of F∗
p,

we have

(8.3.0) cX1,p = obF,X1 · ks
p−1
f0

.

Proof. Formula (4.2.0) gives

(8.3.1) cX1,p = obF,X1 · α(Ω1
X0/k

),

where
α(Ω1

X0/k
) ∈ Hp−1(X0, (F

∗
X0
TX0/k)

∨ ⊗ ΛpTX0/k)

is the class (3.4.5) for Ω1
X0/k

. To identify (up to a unit) the right hand sides

of (8.3.0) and (8.3.1), Petrov uses a general formula ([P], Lemma 8.2) for the
class α(E) when E is given as an extension of vector bundles 0 → L → E →
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E ′ → 0, with L a line bundle. For p = 2 its proof is elementary, but for
p > 2, Petrov deduces it from Th. 6.1 and additional technical results used
in the proof of Th. 6.2.

Corollary 8.4 ([P] Prop. 8.4). Assume k = Fp. There exists a projective
smooth scheme X/W (k), of relative dimension p, such that the Sen class
cX,p ∈ Hp(X0,Λ

pTX0/k) is non-zero.

Proof. Such a scheme is defined as

X := (S/Y )p−1(= S ×Y · · · ×Y S) (p− 1 factors)

for suitable choices of:

• Y/W (k): a geometrically connected smooth projective curve

• h : S → Y : a smooth projective morphism of relative dimension 1,

such that the Kodaira-Spencer map ksh0 is an injection of vector bundles,
whose cokernel is a sum of line bundles of degree < (1/p− 1)deg(ωY0)
(in particular, Y0 and the fibers of h have genus ⩾ 2). The scheme Y is
constructed as a complete intersection of ample divisors in an appropriate
compactification of Mg for g ⩾ max(4, p

3
+ 1).

9. Complement 2: de Rham decomposability of quasi-F -split
varieties

Theorem 9.1 (A. Petrov, Oct. 22). Let Y/k be a smooth scheme.
Denote by F the (p-linear) absolute Frobenius endomorphism of Y . Consider
the ring homomorphism

σY : OY → F∗W (OY )/p

sending a to [a]p, where [a] denotes the Teichmüller representative. Then

F∗W (OY )/p⊗OY,σ
F∗Ω

•
Y/k

is (non-canonically) decomposable, i.e., isomorphic to the direct sum of its
H i[−i].

Remark 9.2. As F : OY → OY factors through σY , F
∗F∗Ω

•
Y/k is decom-

posable as well. This corollary had been observed independently by B. Bhatt
and V. Vologodsky.

Proof of Th. 9.1. Consider the relative Hodge-Tate stack

πHT : WCartHT
Y → Y
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(relative to the crystalline prism (W (k), (p))). For R a reduced k-algebra,
WCartHT

Y (R) = Y (W (R)/p) (where W (R)/p is the discrete groupoid given
by the natural action of W (R)∗). By ([BL22b], Prop. 5.12), it is a gerbe
banded by T ♯

Y/k, and by ([BL22b], 6.4), we have

dRY/k = RπHT
∗ O.

As the (formal) scheme W (Y )k lifts to the δ-scheme W (Y ), the proof of
([BL22b], Prop. 5.12) shows that the pull-back of πHT by the map

σY : W (Y )k → Y

corresponding to the ring homomorphism σY above admits a section. There-
fore the above gerbe is trivial:

WCartHT
Y

∼→ BT ♯
Y/k.

Viewing it as the affine stack T ♯
Y/k[1], we find, by Quillen’s décalage formula,

RπHT
∗ O ∼→ Γ•(T∨

Y/k[−1]) = Λ•(Ω1
Y/k)[−•] = ⊕iΩ

i
Y/k[−i].

Recall the following definition, due to Yobuko:

Definition 9.3 ([Y],4.1). Let m be a positive integer. A projective,
smooth scheme Y/k is called m quasi-F -split if the map induced by σY

σY,m : OY → F∗Wm(OY )/p

splits as OY -modules.

For m = 1, Y is called F -split, this is an earlier notion, due to Mehta-
Ramanathan.

Corollary (A. Petrov). If Y is m-quasi-F -split for some m, then F∗Ω
•
Y/k

is decomposable.

Proof. By Th. 9.1, The pull-back of dRY/k by σY,m is decomposable. The
conclusion follows from the projection formula (σY,m)∗(σY,m)

∗M = (σY,m)∗O⊗
M , using an OY -linear retraction of σY,m.

This is the case, for example, if Y is a Calabi-Yau variety of finite height.
Indeed, by Yobuko ([Y], 4.5), if h ∈ N ∪∞ is the height of the Artin-Mazur
formal group Φn (n = dim(Y )), then h = hs, where hs is the minimum m > 0
for which Y is m quasi-F -split, or ∞ it no such m exists.
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