Riemann Conference

December 27-30, 2015 - Sanya - China

Glimpses on vanishing cycles, from Riemann to today

Luc Illusie

Université Paris-Sud

Plan

1. The origins
2. The Milnor fibration
3. Grothendieck and Deligne
4. Grothendieck's local monodromy theorem
5. The Deligne-Milnor conjecture
6. The Picard-Lefschetz formula
7. Euler numbers and characteristic cycles

1. The origins

Vanishing cycles in Riemann ?

No, but ...

Riemann (1857) studied the hypergeometric equation $E(\alpha, \beta, \gamma)$

$$
t(1-t) f^{\prime \prime}+(\gamma-(\alpha+\beta+1) t) f^{\prime}-\alpha \beta=0
$$

($\alpha, \beta, \gamma \in \mathbf{C}$), and the monodromy of its solutions around its singular points $(0,1, \infty)$.
$E(\alpha, \beta, \gamma)$ has regular singularities at these points (moderate growth of solutions).

The hypergeometric function

$$
F(\alpha, \beta, \gamma, t)=\sum_{n \geq 0} \frac{(\alpha, n)(\beta, n)}{(\gamma, n)} \frac{t^{n}}{n!}
$$

$(|t|<1)$, where $(u, n)=\prod_{0 \leq i \leq n-1}(u+i)$, is the unique solution which is holomorphic at 0 with value 1.

Solutions form a complex local system \mathcal{H}_{C} of rank 2 over $S=\mathrm{P}_{\mathrm{C}}^{1}-\{0,1, \infty\}$. For a chosen base-point $t_{0} \in S$, it is given by

$$
\rho: \pi_{1}\left(S, t_{0}\right) \rightarrow \mathrm{GL}\left(\left(\mathcal{H}_{\mathbf{C}}\right)_{t_{0}}\right) \simeq \mathrm{GL}_{2}(\mathbf{C})
$$

Suitable standard loops around $s=0,1, \infty$ give local monodromy operators $T_{s} \in \mathrm{GL}_{2}(\mathrm{C})$, satisfying $T_{0} T_{1} T_{\infty}=1$, generating the global monodromy group

$$
\left.\Gamma:=\rho\left(\pi_{1}\left(S, t_{0}\right)\right)\right) \subset \mathrm{GL}_{2}(\mathbf{C})
$$

What are the T_{s} 's ? What is Γ ?

An example: the Legendre family

Consider the family X / S of elliptic curves on $S=\mathbf{P}_{\mathrm{C}}^{1}-\{0,1, \infty\}$:

$$
x_{t}: y^{2}=x(x-1)(x-t) .
$$

For $\alpha=\beta=1 / 2, \gamma=1$,

$$
E(1 / 2,1 / 2,1): t(1-t) f^{\prime \prime}+(1-2 t) f^{\prime}-\frac{f}{4}=0
$$

is the DE satisfied by the periods of holomorphic differential forms on X_{t}.
The relative de Rham cohomology group $\mathcal{H}_{\mathrm{dR}}:=\mathcal{H}_{\mathrm{dR}}^{1}(X / S)$ is a free \mathcal{O}_{S}-module of rank 2, equipped with the Gauss-Manin connection ∇.

$$
\begin{gathered}
\mathcal{H}_{\mathrm{dR}}=\mathcal{O}_{S} e_{1} \oplus \mathcal{O}_{S} e_{2} \\
e_{1}=[d x / y], \quad e_{2}=\nabla(d / d t)\left(e_{1}\right)
\end{gathered}
$$

with

$$
\nabla(d / d t) e_{2}=\frac{(2 t-1) e_{2}}{t(1-t)}+\frac{e_{1}}{4 t(1-t)}
$$

Horizontal solutions $f_{1} e_{1}^{\vee}+f_{2} e_{2}^{\vee}$ of the dual of $\mathcal{H}_{\mathrm{dR}}$ are given by $f_{1}=f, f_{2}=f_{1}^{\prime}$, where f, a local section of \mathcal{O}_{S}, satisfies

$$
E(1 / 2,1 / 2,1): t(1-t) f^{\prime \prime}+(1-2 t) f^{\prime}-\frac{f}{4}=0
$$

We have

$$
\mathcal{H}_{\mathrm{dR}}^{\nabla=0}=\mathcal{H}_{\mathbf{z}} \otimes \mathbf{C}
$$

where $\mathcal{H}_{\mathbf{Z}}:=\mathcal{H}^{1}(X / S, \mathbf{Z})$, a rank $2 \mathbf{Z}$-local system, equipped with the (symplectic, unimodular) intersection form \langle,$\rangle .$

If γ is a local horizontal section of $\mathcal{H}_{\mathbf{Z}}^{\vee}=\mathcal{H}_{1}(X / S, \mathbf{Z})$, the period $\int_{\gamma} \frac{d x}{y}$ is a solution of $E(1 / 2,1 / 2,1)$. For example, the hypergeometric function

$$
F(1 / 2,1 / 2,1, t)=\frac{1}{\pi} \int_{1}^{\infty} \frac{d x}{y}
$$

is a solution.
The representation $\rho: \pi_{1}\left(S, t_{0}\right) \rightarrow \mathrm{GL}\left(\left(\mathcal{H}_{\mathbf{C}}\right)_{t_{0}}\right)$ is deduced from

$$
\rho: \pi_{1}\left(S, t_{0}\right) \rightarrow \operatorname{Sp}\left((\mathcal{H} \mathbf{c})_{t_{0}}\right) \simeq S L_{2}(\mathbf{Z})
$$

Local monodromies around 0 and 1 can be calculated by choosing suitable symplectic bases (γ, δ) of $\left(\mathcal{H}_{\mathbf{z}}\right)_{t}$, using the description of X_{t} as a 2-sheeted cover of $\mathrm{P}_{\mathrm{C}}^{1}$.

- In a suitable symplectic base, T_{0} and T_{1} are given by

$$
T_{0}=\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right) \quad T_{1}=\left(\begin{array}{cc}
1 & 0 \\
-2 & 1
\end{array}\right)
$$

- The global monodromy group is conjugate in $\mathrm{SL}_{2}(\mathbf{Z})$ to the subgroup $\Gamma=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\right\}$ of index 2 of the congruence subgroup $\Gamma(2)$ defined by $a \equiv d \equiv 1 \bmod 4$. It acts freely on the Poincaré upper half plane $D=\{\operatorname{Im} z>0\}$.
- Riemann's period mapping $t \mapsto\left(\int_{\gamma} \omega, \int_{\delta} \omega\right)$, where $\omega=\frac{d x}{y} \in H^{0}\left(X_{t}, \Omega^{1}\right)$, induces an isomorphism

$$
S=\mathrm{P}_{\mathrm{C}}^{1}-\{0,1, \infty\} \simeq D / \Gamma
$$

which extends to an isomorphism

$$
\mathrm{P}_{\mathrm{C}}^{1} \simeq M_{2}\left(=\left(D \cup \mathbf{P}^{1}(\mathbf{Q})\right) / \bar{\Gamma}(2)\right)
$$

sending $0,1, \infty$ to the 3 cusps of $M_{2}(\bar{\Gamma}(2)=$ image of $\Gamma(2)$ in $\left.\mathrm{PSL}_{2}(\mathrm{Z})\right)$.

In particular, as $\chi(S)=-1$, and $\left[\mathrm{SL}_{2}(\mathbf{Z}): \Gamma\right]=12$, the Galois cover

$$
D \rightarrow S=D / \Gamma
$$

implies that $S=B \Gamma$, hence $\chi(\Gamma)=-1$, and

$$
\chi\left(\mathrm{SL}_{2}(\mathrm{Z})\right)=-\frac{1}{12}
$$

as is well known.
It was discovered by Picard (around 1880) that the form of T_{0} is "explained" by the fact that δ vanishes when $t \rightarrow 0$, and that the singularity of the surface X at $(x=0, y=0)$ is equivalent to $u^{2}+v^{2}=t^{2}$ (Picard-Lefschetz formula).

2. The Milnor fibration

Let $f:\left(\mathbf{C}^{n+1}, 0\right) \rightarrow(\mathbf{C}, 0)$ be a germ of holomorphic function having an isolated critical point at 0 with $f(0)=0$.
Milnor (1967) proved that, for $\varepsilon>0$ small, and $0<\eta \ll \varepsilon$, if $B=\left\{\left.z\left|\sum_{0}^{n}\right| z_{i}\right|^{2} \leq \varepsilon\right\}, D=\{|t| \leq \eta\}$, the restriction of f to $B \cap f^{-1}(D)$,

$$
f: B \cap f^{-1}(D) \rightarrow D
$$

induces over $D-\{0\}$ a locally trivial C^{∞} fibration in (real) $2 n$-dimensional manifolds with boundary

$$
M_{t}=f^{-1}(t) \cap B
$$

trivial along the boundary ∂M_{t}.
This is now called the Milnor fibration, and M_{t} is called a Milnor fiber.

Moreover, Milnor proved:

- M_{t} has the homotopy type of a bouquet of μn-dimensional spheres:

$$
S^{n} \vee \cdots \vee S^{n}(\mu \text { terms })
$$

hence, if $\widetilde{H}^{i}=\operatorname{Coker}\left(H^{i}(\mathrm{pt}) \rightarrow H^{i}\right)$,

$$
\tilde{H}^{i}\left(M_{t}, \mathbf{Z}\right)= \begin{cases}\mathbf{Z}^{\mu} & \text { if } i=n \\ 0 & \text { if } i \neq n\end{cases}
$$

- The Milnor number $\mu=\mu(f)$ is given by

$$
\mu=\operatorname{dim}_{\mathbf{C}} \mathbf{C}\left\{z_{0}, \cdots, z_{n}\right\} /\left(\partial f / \partial z_{0}, \cdots, \partial f / \partial z_{n}\right)
$$

Letting t turn once around zero clockwise in D gives an automorphism of $H^{n}\left(M_{t}, Z\right)$, the monodromy automorphism

$$
T \in \operatorname{Aut}\left(H^{n}\left(M_{t}, \mathbf{Z}\right)\right)
$$

Milnor conjectured:

- The eigenvalues of T are roots of unity (i.e., T is quasi-unipotent).

Grothendieck proved it, using Hironaka's resolution of singularities and his theory of $R \Psi$ and $R \Phi$.

3. Grothendieck and Deligne

Given a 1-parameter family $\left(X_{t}\right)_{t \in S}$ of (algebraic, or analytic varieties), and a point $s \in S$, Grothendieck (1967) constructed in SGA 7 a complex of sheaves on X_{s}, called complex of vanishing cycles, measuring the difference between $H^{*}\left(X_{s}\right)$ and $H^{*}\left(X_{t}\right)$ for t "close" to s (special fiber X_{s} vs general fiber X_{t}), and a closely related one, called nowadays complex of nearby cycles.

Set-up : complex analytic, or étale.
Will discuss only the étale one.

Étale set-up

$S=(S, s, \eta)$, a strictly local trait
η : the generic point
$\bar{\eta}$: a separable closure of η.
For $f: X \rightarrow S$, get cartesian squares

Work with coefficients ring $\Lambda=\mathbf{Z} / \ell^{\nu} \mathbf{Z}$ (ℓ prime, invertible on S) (or $\mathbf{Z}_{\ell}, \mathbf{Q}_{\ell}, \overline{\mathbf{Q}}_{\ell}, \ell$ prime, invertible on S), write $D(-)$ for $D(-, \Lambda)$.
For $K \in D^{+}\left(X_{\eta}\right)$, the complex of nearby cycles is:

$$
R \Psi_{f}(K):=i^{*} R \bar{j}_{*}\left(K \mid X_{\bar{\eta}}\right) \in D^{+}\left(X_{s}\right)
$$

Comes equipped with an action of the inertia group $I=\operatorname{Gal}(\bar{\eta} / \eta)$ (complex of sheaves of I-modules on X_{s}).

For $K \in D^{+}(X)$, get an (I-equivariant) exact triangle

$$
K \mid X_{s} \rightarrow R \Psi_{f}\left(K \mid X_{\eta}\right) \rightarrow R \Phi_{f}(K) \rightarrow
$$

where $R \Phi_{f}(K)$ is called the complex of vanishing cycles.
A generalization
$S=(S, s, \eta)$ henselian trait, not necessarily strictly local. Take strict localization of S at a separable closure \widetilde{s} of s :

$$
\widetilde{S}=(\widetilde{S}, \widetilde{s}, \widetilde{\eta}) \rightarrow(S, s, \eta)
$$

For $f: X \rightarrow S$, base changed $\widetilde{f}: \widetilde{X} \rightarrow \widetilde{S}$, and $K \in D^{+}\left(X_{\eta}\right)$ (resp. $K \in D^{+}(X)$), define

$$
R \Psi_{f} K\left(\text { resp. } R \Phi_{f} K\right) \in D^{+}\left(X_{\widetilde{s}}\right)
$$

as $R \Psi_{\tilde{f}}\left(K \mid \widetilde{X}_{\tilde{\eta}}\right)$ (resp. $R \Phi_{\widetilde{f}}(K \mid \widetilde{X})$). Get action of full Galois group $\operatorname{Gal}(\bar{\eta} / \eta)(\bar{\eta} \rightarrow \widetilde{\eta})$, not just of inertia $I=\operatorname{Gal}(\bar{\eta} / \widetilde{\eta}) \subset \operatorname{Gal}(\bar{\eta} / \eta)$.

General properties

- Functoriality Consider a commutative diagram:

If h is smooth, the natural map

$$
h^{*} R \Psi_{Y} \rightarrow R \Psi_{X} h^{*}
$$

is an isomorphism. In particular, if f is smooth, $R \Phi_{f}(\Lambda)=0$.
If h is proper, the natural map

$$
R h_{*} R \Psi_{X} \rightarrow R \Psi_{Y} R h_{*}
$$

is an isomorphism. In particular (taking $Y=S$), if f is proper, for $K \in D^{+}\left(X_{\eta}\right)$, we have a canonical isomorphism (compatible with the Galois actions)

$$
R \Gamma\left(X_{\widetilde{s}}, R \Psi_{X} K\right) \xrightarrow{\sim} R \Gamma\left(X_{\bar{\eta}}, K\right) .
$$

For X / S proper, the triangle $K \mid X_{\widetilde{s}} \rightarrow R \Psi_{f}\left(K \mid X_{\eta}\right) \rightarrow R \Phi_{f}(K) \rightarrow$ gives an exact sequence

$$
\begin{gathered}
\cdots \rightarrow H^{i-1}\left(X_{\widetilde{s}}, R \Phi_{X}(K)\right) \rightarrow H^{i}\left(X_{\widetilde{s}}, K\right) \xrightarrow{\mathrm{sp}} H^{i}\left(X_{\bar{\eta}}, K\right) \\
\rightarrow H^{i}\left(X_{\widetilde{s}}, R \Phi_{X}(K)\right) \rightarrow \cdots,
\end{gathered}
$$

where sp is the specialization map:

$$
\operatorname{sp}: H^{i}\left(X_{\widetilde{s}}, K\right) \simeq H^{i}\left(X_{\widetilde{S}}, K\right) \rightarrow H^{i}\left(X_{\bar{\eta}}, K\right)
$$

When $K=\Lambda, R \Phi_{X}(\Lambda)$ is concentrated on the points $x \in X_{\widetilde{s}}$ where X / S is not smooth.

- Finiteness (Deligne, 1974) Nearby cycles are constructible: $R \Psi_{X}$ induces

$$
R \Psi_{X}: D_{c}^{b}\left(X_{\eta}\right) \rightarrow D_{c}^{b}\left(X_{\widetilde{s}}\right) .
$$

- Perversity (Gabber, 1981) $R \Psi$ commutes with Grothendieck-Verdier duality:

$$
R \Psi\left(D_{X_{\eta}} K\right) \xrightarrow{\sim} D_{X_{\bar{s}}} R \Psi K,
$$

induces $\operatorname{Per}\left(X_{\eta}\right) \rightarrow \operatorname{Per}\left(X_{\widetilde{s}}\right)$.

In the analytic setup, there are analogous definitions and properties, and a comparison theorem (Deligne, 1968) between the étale $R \Psi$ and the analytic $R \Psi$, similar to Artin-Grothendieck's comparison theorem Betti vs étale.

Over \mathbf{C}, nearby cycles have been extensively studied in connection with Hodge theory (Steenbrink et al.), and the theory of \mathcal{D}-modules (M. Saito et al.).

A crucial example

Let X / S be as above, with S strictly local, and $x \rightarrow X_{s}$ be a geometric point.

For $K \in D^{+}(X)$, by general nonsense on étale cohomology, the stalk of $R \Psi(K)\left(:=R \Psi_{X} K\right)$ at x is given by

$$
(R \Psi K)_{x}=R \Gamma\left(\left(X_{(x)}\right) \bar{\eta}, K\right)
$$

Here $X_{(x)}$ is the strict localization of X at x (a kind of Milnor ball), and $\left(X_{(x)}\right)_{\bar{\eta}}$ its geometric generic fiber (a kind of Milnor fiber).

But $\left(R^{q} \Psi K\right)_{x}$ is difficult to calculate!
Known for $K=\Lambda$ (constant sheaf), when X has semistable reduction at x, i.e., étale locally at x,

$$
X \xrightarrow{\sim} S\left[t_{1}, \cdots, t_{n}\right] /\left(t_{1} \cdots t_{r}-\pi\right)
$$

(π a uniformizing parameter in S). Then:

$$
\left(R^{1} \Psi \Lambda\right)_{x}=\operatorname{Ker}\left(\mathbf{Z}^{r} \xrightarrow{\mathrm{sum}} \mathbf{Z}\right) \otimes \Lambda(-1)
$$

$$
\left(R^{q} \Psi \Lambda\right)_{x}=\Lambda^{q}\left(R^{1} \Psi \Lambda\right)_{x}
$$

($\Lambda^{q}=q$-th exterior power, $\Lambda(m)=m$-th Tate twist).

- The inertia group $/$ acts trivially on $\left(R^{q} \Psi \Lambda\right)_{x}$.

For $X=S\left[t_{1}, \cdots, t_{r}\right] /\left(t_{1} \cdots t_{r}-\pi\right)$, topological model of $\left(X_{(x)}\right)_{\bar{\eta}}$: fiber of

$$
\left(S^{1}\right)^{r} \rightarrow S^{1}, \quad\left(z_{1}, \cdots, z_{r}\right) \mapsto z_{1} \cdots z_{r}
$$

Proof combines:

- Grothendieck's calculation of tame nearby cycles $\left(R^{q} \Psi \Lambda\right)_{\mathrm{t}}:=\left(R^{q} \Psi \Lambda\right)^{P}(P \subset I$ the wild inertia), modulo validity of Grothendieck's absolute purity conjecture for components of $\left(X_{(x)}\right)_{s}$
- validity OK and $\left(R^{q} \Psi \Lambda\right)_{\mathrm{t}}=R^{q} \Psi \Lambda$ (Rapoport-Zink, 1982).

Recall Grothendieck's absolute purity conjecture:
For regular divisor $D \subset X, X$ regular, $\Lambda=\mathbf{Z} / \ell^{\nu} \mathbf{Z}, \cdots$ as above, ℓ invertible on X,

$$
\mathcal{H}_{D}^{q}(X, \Lambda)= \begin{cases}\Lambda_{D}(-1) & \text { if } q=2 \\ 0 & \text { if } q \neq 2\end{cases}
$$

Modulo absolute purity conjecture (OK if S / \mathbf{Q}, and now in general by Gabber (1994)), Grothendieck calculated tame nearby cycles for X étale locally of the form $S\left[t_{1}, \cdots, t_{n}\right] /\left(u t_{1}^{n_{1}} \cdots t_{r}^{n_{r}}-\pi\right)(u$ a unit):

$$
R^{q} \Psi \Lambda_{\mathrm{t}, \mathrm{x}}=\mathbf{Z}\left[\mu_{\ell^{m}}\right] \otimes \Lambda^{q}\left(\operatorname{Ker}\left(\mathbf{Z}^{r} \xrightarrow{\sum \mathrm{n}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}} \mathbf{Z}\right)\right) \otimes \Lambda(-q)
$$

where $\operatorname{gcd}\left(n_{1}, \cdots, n_{r}\right)=\ell^{m} d,(\ell, d)=1$.
Here I acts on $\mathbf{Z}\left[\mu_{\ell^{m}}\right]$ by permutation through its tame quotient $\mathbf{Z}_{\ell}(1)$, in particular, acts on $R^{q} \Psi \Lambda_{\mathrm{t}, x}$ through a finite quotient, hence quasi-unipotently on $R \Psi \Lambda_{\mathrm{t}, x}$.

Combined with Hironaka's resolution of singularities, and functoriality of $R \Psi$ for proper maps, calculation yields a proof of Milnor's conjecture on the monodromy of isolated singularities.

4. Grothendieck's local monodromy theorems

Grothendieck's arithmetic local monodromy theorem is the following:

Theorem
$S=(S, s, \eta)$ henselian, $k=k(s)$, ℓ prime different from
$p=\operatorname{char}(k)$. Assume that no finite extension of k contains all roots of unity of order a power of ℓ (e. g., k finite). Let

$$
\rho: \operatorname{Gal}(\bar{\eta} / \eta) \rightarrow \operatorname{GL}(V)
$$

be a continuous representation into a finite dimensional \mathbf{Q}_{ℓ}-vector space V. Then, there exists an open subgroup $I_{1} \subset I$, such that, for all $g \in I_{1}, \rho(g)$ is unipotent.

Proof.
Exercise! (Use strong action of $\operatorname{Gal}(\bar{k} / k)$ on tame inertia I_{t} : $g \sigma g^{-1}=\sigma^{\chi(g)}, \chi=$ cyclotomic character.)

A corollary is that there exists a unique nilpotent morphism

$$
N: V(1) \rightarrow V,
$$

called the monodromy operator, such that, for all $\sigma \in I_{1}$ and $x \in V$,

$$
\sigma x=\exp \left(N\left(t_{\ell}(\sigma) x\right)\right)
$$

where $t_{\ell}: I \rightarrow \mathbf{Z}_{\ell}(1)$ is the ℓ-component of the tame character.
The operator N is $\operatorname{Gal}(\bar{\eta} / \eta)$-equivariant. In particular, for $k=\mathbf{F}_{q}$, if $F \in \operatorname{Gal}(\bar{\eta} / \eta)$ is a lifting of the geometric Frobenius $\left(a \rightarrow a^{1 / q}\right)$, then

$$
N F=q F N
$$

Led to the Weil-Deligne representation.

The geometric local monodromy theorem is the following result, due to Grothendieck in a weaker form, later improved by various authors:

Theorem

Let S be an (arbitrary) henselian trait. Let X_{η} be separated and of finite type over η. Then, there exists an open subgroup $I_{1} \subset I$, independent of ℓ, such that for all $i \in \mathbf{Z}$ and all $g \in I_{1}$,

$$
(g-1)^{i+1}=0
$$

on $H^{i}\left(X_{\bar{\eta}}, \Lambda\right)\left(\right.$ resp. $\left.H_{c}^{i}\left(X_{\bar{\eta}}, \Lambda\right)\right)$.
History

- Existence of I_{1} (a priori ℓ-dependent) for H_{c}^{i} with $i+1$ replaced by uncontrolled bound, proved by Grothendieck, as a consequence of the arithmetic local monodromy theorem (reduction to k small). Method generalized to H^{i} once finiteness of H^{i} was proved (Deligne, 1974).
- Existence of I_{1} (a priori ℓ-dependent), with bound $i+1$, proved by Grothendieck for X_{η} / η proper and smooth, modulo validity of absolute purity and resolution of singularities, as a consequence of local calculation of $R^{q} \Psi \mathbf{Z}_{\ell}$ in the (quasi-) semistable case. Unconditional for $i \leq 1$, or $p=0$.
- Existence of I_{1}, independent of ℓ, but with $i+1$ replaced by uncontrolled bound, proved by Deligne (1996), using Rapoport-Zink's calculation of $R \Psi \mathbf{Z}_{\ell}$ in the semistable case, and de Jong's alterations. Final result obtained by refinement of this method (Gabber - I., 2014).

Why care for exponent $i+1$?
Grothendieck's motivation: for $i=1$, exponent 2 is a crucial ingredient in his proof of the semistable reduction theorem for abelian varieties:
Theorem
With S as before, let A_{η} be an abelian variety over η. There exists a finite extension η_{1} of η such that $A_{\eta_{1}}$ acquires semistable reduction over the normalization $\left(S_{1}, s_{1}, \eta_{1}\right)$ of S in η_{1}, i.e., the connected component $A_{s_{1}}^{0}$ of the special fiber of the Néron model of $A_{\eta_{1}}$ is an extension of an abelian variety by a torus:

$$
0 \rightarrow \text { (torus) } \rightarrow A_{s_{1}}^{0} \rightarrow \text { (abelian variety) } \rightarrow 0
$$

Deligne-Mumford (1969) deduced from it the semistable reduction theorem for curves:

Corollary

Let X_{η} be a proper, smooth curve over η. There exists a finite extension η_{1} of η such that $X_{\eta_{1}}$ has semistable reduction over the normalization S_{1} of S in η_{1}, i.e., is the generic fiber of a proper, flat X_{1} / S_{1}, with X_{1} regular, and special fiber $\left(X_{1}\right)_{s_{1}}$ a reduced curve having simple nodes.

- Corollary is the key tool in Deligne-Mumford's proof of the irreducibility of the coarse moduli space M_{g} (over any algebraically closed field k).
- Proofs of corollary independent of theorem found later (Artin-Winters, 1971; T. Saito, 1987).
- For $\operatorname{char}(k)=0$, a generalization of corollary to arbitrary dimension proved by Mumford et al. (1973).
- Over S excellent (any char.), a generalization of corollary in a weaker form given by de Jong (1996). Recently improved by Gabber, Temkin.

5. The Deligne-Milnor conjecture

At the opposite of semistable reduction, we have isolated singularities.

Let $S=(S, s, \eta)$ be a strictly local trait, with $k=k(s)$ algebraically closed. Assume X regular, flat, finite type over S, relative dimension n, smooth outside closed point $x \in X_{s}$. Then $R \Phi \wedge$ is concentrated at x, and in cohomological degree n :

$$
\left(R \Phi^{a} \Lambda\right)_{x}= \begin{cases}0 & \text { if } q \neq n \\ \Lambda^{r} & \text { if } q=n\end{cases}
$$

The coherent module $\mathcal{E} x t^{1}\left(\Omega_{X / S}^{1}, \mathcal{O}_{X}\right)$ is concentrated at x, its length

$$
\mu:=\lg \left(\mathcal{E} x t^{1}\left(\Omega_{X / S}^{1}, \mathcal{O}_{X}\right)\right)
$$

generalizes the classical Milnor number.

The action of I on $R^{n} \Phi \Lambda$ has a Swan conductor $\operatorname{Sw}\left(R^{n} \Phi \Lambda\right) \in \mathbf{Z}$, measuring wild ramification ($=0$ if S of char. 0).

Deligne conjectured (SGA 7 XVI, 1972):

$$
\mu=r+\operatorname{Sw}\left(R^{n} \Phi \Lambda\right)
$$

Generalizes Milnor formula over C. Conjecture proved:

- if X / S finite, or x is an ordinary quadratic singularity, or S is of equal characteristic (Deligne, loc. cit.)
- if $n=1$ (Bloch, 1987 + Orgogozo, 2003)

General case open. In equal char., generalization by T. Saito (2015) with Λ replaced by a constructible sheaf.

6. The Picard-Lefschetz formula

Let X / S as before, with relative dimension n. Assume x is an ordinary quadratic singularity of X / S, i.e., étale locally at $x, X / S$ is of the form (π a uniformizing parameter):

$$
\sum_{1 \leq i \leq m+1} x_{i} x_{i+m+1}=\pi
$$

$(n=2 m+1)$,

$$
\sum_{1 \leq i \leq m} x_{i} x_{i+m}+x_{2 m+1}^{2}=\pi
$$

($n=2 m, p>2$),

$$
\sum_{1 \leq i \leq m} x_{i} x_{i+m}+x_{2 m+1}^{2}+a x_{2 m+1}+\pi=0
$$

with $a^{2}-4 \pi \neq 0(n=2 m, p=2)$.

Then

$$
\left(R^{n} \Phi \Lambda\right)_{x} \xrightarrow{\sim} \Lambda,
$$

with action of inertia $/$ trivial is n odd, through a character of order 2 if n even, tame if $p>2$.

Assume now X / S proper, flat, of relative dimension $n>0$, smooth outside $\Sigma \subset X_{s}$ finite, and each $x \in \Sigma$ is an ordinary quadratic singularity.

Then the monodromy of $H^{*}\left(X_{\bar{\eta}}\right)$ is described as follows (Deligne, SGA 7 XV, 1972):

- For $i \neq n, n+1, H^{i}\left(X_{s}\right) \xrightarrow{\text { sp }} H^{i}\left(X_{\bar{\eta}}\right)$.
- For each $x \in \Sigma$, there exists $\delta_{x} \in H^{n}\left(X_{\bar{\eta}}\right)(m)(n=2 m$ or $2 m+1$), well defined up to sign, called the vanishing cycle at x, and the sequence

$$
\begin{aligned}
& 0 \rightarrow H^{n}\left(X_{s}\right) \xrightarrow{\mathrm{sp}} H^{n}\left(X_{\bar{\eta}}\right) \xrightarrow{\left(-, \delta_{x}\right)} \sum_{x \in \Sigma} \Lambda(m-n) \rightarrow H^{n+1}\left(X_{s}\right) \\
& \xrightarrow{\mathrm{sp}} H^{n+1}\left(X_{\bar{\eta}}\right) \rightarrow 0 .
\end{aligned}
$$

is exact. One has $\left(\delta_{x}, \delta_{y}\right)=0$ for $x \neq y,\left(\delta_{x}, \delta_{x}\right)=0$ for n odd, and $\left(\delta_{x}, \delta_{x}\right)=(-1)^{m} .2$ for $n=2 m$. Here $(a, b)=\operatorname{Tr}(a b)$, where $\operatorname{Tr}: H^{2 n} \rightarrow \Lambda(-n)$.

- The inertia I acts trivially on $H^{i}\left(X_{\bar{\eta}}\right)$ for $i \neq n$, and on $H^{n}\left(X_{\bar{\eta}}\right)$ through orthogonal (resp. symplectic) transformations for $n=2 m$ (resp. $n=2 m+1$), given by the Picard-Lefschetz formula:

For $\sigma \in I, a \in H^{n}\left(X_{\bar{\eta}}\right)$,

$$
\sigma a-a= \begin{cases}(-1)^{m} \sum_{x \in \Sigma} \frac{\varepsilon_{x}(\sigma)-1}{2}\left\langle a, \delta_{x}\right\rangle \delta_{x} & \text { if } n=2 m \\ (-1)^{m+1} \sum_{x \in \Sigma} t_{\ell}(\sigma)\left\langle a, \delta_{x}\right\rangle \delta_{x} & \text { if } n=2 m+1 .\end{cases}
$$

Here $t_{\ell}: I \rightarrow \mathbf{Z}_{\ell}(1)$ is the tame character, and $\varepsilon_{x}: I \rightarrow \pm 1$ is the unique character of order 2 if $p>2$ and that defined by the quadratic extension $t^{2}+a t+\pi=0$ for X locally at x of the form

$$
\sum_{1 \leq i \leq m} x_{i} x_{i+m}+x_{2 m+1}^{2}+a x_{2 m+1}+\pi=0
$$

Difficult case in the proof: n odd, $n=2 m+1$. Use factorization:

$$
\begin{aligned}
& H^{n}\left(X_{\bar{\eta}}\right) \longrightarrow \oplus_{x \in \Sigma}\left(R^{n} \Phi \Lambda\right)_{x}, \\
& \sigma-1 \downarrow \\
& \downarrow \\
& H^{n}\left(X_{\bar{\eta}}\right) \longleftarrow \operatorname{Var}^{(\sigma)_{x}} \downarrow \\
& \oplus_{x \in \Sigma} H_{x}^{n}\left(X_{s}, R \Psi \Lambda\right)
\end{aligned}
$$

where:

- top row is part of specialization sequence
- bottow row $=$ composition of $H_{x}^{n} \rightarrow H^{n}$ and $H^{n}\left(X_{s}, R \Psi \Lambda\right)=H^{n}\left(X_{\bar{\eta}}\right)$.
- $\left(R^{n} \Phi \Lambda(m+1)\right)_{x}$ and $H_{x}^{n}\left(X_{s}, R \Psi \Lambda\right)(m)$ are isomorphic to Λ, with respective generators $\underline{\delta}_{x}^{\prime}, \underline{\delta}_{x}$ defined up to sign, with $\left\langle\underline{\delta}_{x}^{\prime}, \underline{\delta}_{x}\right\rangle=1$, for a perfect pairing with values in
$H_{x}^{2 n}\left(X_{s}, R \Psi \Lambda(n)\right) \xrightarrow{\sim} \Lambda$. We have $\underline{\delta}_{x} \mapsto \delta_{x} \in H^{n}\left(X_{\bar{\eta}}\right)$.

$$
\begin{aligned}
& H^{n}\left(X_{\bar{\eta}}\right) \longrightarrow \oplus_{x \in \Sigma}\left(R^{n} \Phi \Lambda\right)_{x} \quad, \\
& \sigma-1 \downarrow \quad \operatorname{Var}(\sigma){ }^{\downarrow} \downarrow \\
& H^{n}\left(X_{\bar{\eta}}\right) \longleftarrow \oplus_{x \in \Sigma} H_{x}^{n}\left(X_{s}, R \Psi \Lambda\right)
\end{aligned}
$$

The map $\operatorname{Var}(\sigma)_{x}$, called variation, is given by the local Picard-Lefschetz formula:

$$
\operatorname{Var}(\sigma)_{x}\left(\underline{\delta}_{x}^{\prime}\right)=(-1)^{m+1} t_{\ell}(\sigma) \underline{\delta}_{x},
$$

which is the crux of the matter.

- Original proof (Deligne) required lifting to char. 0 and a transcendental argument.
- Purely algebraic proof given later (I., 2000), as a corollary of Rapoport-Zink's theory of nearby cycles in the semistable case.

Over C, Milnor fiber M_{t} of $f:\left(x_{1}, \cdots, x_{2 m+2}\right) \mapsto \sum x_{i}^{2}$ is fiber bundle in unit balls of tangent bundle to sphere $S^{n}=\left\{x \in \mathbf{R}^{n+1} \mid \sum x_{i}^{2}=1\right\}$.

- $R^{n} \Phi_{x}$ corresponds to $\widetilde{H}^{n}\left(M_{t}\right)$,
- $H_{x}^{n}\left(X_{s}, R \Psi\right)$ corresponds to $H_{c}^{n}\left(M_{t}-\partial M_{t}\right)$,
- $\underline{\delta}_{x}$ dual to $\underline{\delta}_{x}^{\vee} \in H_{n}\left(M_{t}, \partial M_{t}\right)$ given by one fiber of M_{t} over S^{n},
- $\underline{\delta}_{x}^{\prime}$ dual to $\left(\underline{\delta}_{x}^{\prime}\right)^{\vee} \in \widetilde{H}_{n}\left(M_{t}\right)$ given by $S^{n} \subset M_{t}$.

Next slide: picture, for $n=1(m=0)$ of the dual variation map (T the positive generator of $\pi_{1}\left(S^{1}\right)$)

$$
\begin{aligned}
& \operatorname{Var}(T)^{\vee}: H_{1}\left(M_{t}, \partial M_{t}\right) \rightarrow \widetilde{H}_{1}\left(M_{t}\right), \\
& \underline{\delta}_{x}^{\vee} \mapsto-\left(\underline{\delta}_{x}^{\prime}\right)^{\vee} .
\end{aligned}
$$

Back to the Legendre family:

$$
X_{t}: y^{2}=x(x-1)(x-t)
$$

Locally at $x=y=t=0, X / S$ is $x_{1}^{2}+x_{2}^{2}=t^{2}$, instead of $x_{1}^{2}+x_{2}^{2}=t$, hence variation is doubled, and get

$$
T(\delta)=\delta, \quad T(\gamma)=\gamma \pm 2 \delta
$$

Arithmetic applications

- Grothendieck used the PL formula in his theory of the monodromy pairing for abelian varieties having semistable reduction (SGA 7 IX), with a formula for calculating the group of connected components of the special fiber of the Néron model. Variants, generalizations, and arithmetic applications by Raynaud, Deligne-Rapoport, Mazur, Ribet.
- Most importantly, the PL formula was the key to the cohomological study (by Deligne and Katz, SGA 7 XVIII) of Lefschetz pencils, which led to the fiirst proof, by Deligne, of the Weil conjecture (Weil I).

Variants and generalizations

- Tame variation

Recall the case of isolated singularities:
X regular, flat, finite type over S, relative dimension n, smooth outside closed point $x \in X_{s}$. Then $R \Phi \Lambda$ is concentrated at x, and in cohomological degree n :

$$
\left(R \Phi^{q} \Lambda\right)_{x}= \begin{cases}0 & \text { if } q \neq n \\ \Lambda^{r} & \text { if } q=n\end{cases}
$$

Moreover,

$$
H_{\{x\}}^{n}\left(X_{s}, R \Psi \Lambda\right)=\Lambda^{r}
$$

with a perfect intersection pairing

$$
R^{n} \Phi(\Lambda)_{x} \otimes H_{\{x\}}^{n}\left(X_{s}, R \Psi \Lambda\right) \rightarrow H_{\{x\}}^{2 n}\left(X_{s}, R \Psi \Lambda\right)=\Lambda(-n)
$$

Finally, if I acts tamely on $R \Psi \Lambda$, i.e., through its quotient $\mathbf{Z}_{\ell}(1)$, and if σ is a topological generator of it, then $\sigma-1$ induces an isomorphism

$$
\operatorname{Var}(\sigma): R^{n} \Phi(\Lambda)_{x} \xrightarrow{\sim} H_{\{x\}}^{n}\left(X_{s}, R \Psi \Lambda\right)
$$

called the variation at x (I., 2003), a (weak) generalization of the local Picard-Lefschetz formula. The analogue over C had been known since the 1970's (Brieskorn).

- Thom-Sebastiani theorems

The Picard-Lefschetz theory describes vanishing cycles, monodromy and variation at the isolated critical point $\{0\}$ of the function

$$
x_{1}^{2}+\cdots+x_{m}^{2} .
$$

The classical Thom-Sebastiani theorem (/C) describes the same invariants at the isolated critical point $\{0\}$ of a function of the form

$$
f\left(\underline{x}_{1}, \cdots, \underline{x}_{m}\right)=f_{1}\left(\underline{x}_{1}\right)+\cdots+f_{m}\left(\underline{x}_{m}\right)
$$

where the \underline{x}_{i} are independent packs of $n_{i}+1$ variables, and $f_{i}: \mathbf{C}^{n_{i}+1} \rightarrow \mathbf{C}$ has an isolated critical point at $\{0\}$.

If $n=\sum n_{i}(=$ rel. dim. of $f)$, then (for coefficients \mathbf{Z})

$$
R^{n} \Phi_{f}=\otimes_{1 \leq i \leq m} R^{n_{i}} \Phi_{f_{i}},
$$

with monodromy

$$
T=\otimes_{1 \leq i \leq m} T_{i}
$$

and variation

$$
\operatorname{Var}=\otimes_{1 \leq i \leq m} \operatorname{Var}_{i}
$$

Algebraic analogues ?
(over an alg. closed field k, in the étale set-up)

Deligne's observation: analogue wrong in general, tensor product must be replaced by
local convolution product *
of Deligne-Laumon.
Formulas in this framework given by Fu Lei (2014), I. (2015).

7. Euler numbers and characteristic cycles

Quite recently, T. Saito, in conjunction with Beilinson's construction of a singular support

$$
S S(\mathcal{F}) \subset T^{*} X
$$

for a constructible sheaf \mathcal{F} on a smooth X / k (an equidimensional conic closed subset of $T^{*} X$, of dimension $=\operatorname{dim}(X)$), defined a characteristic cycle supported on $S S(\mathcal{F})$, with coefficients in $\mathbf{Z}[1 / p]$ (actually, in Z (Beilinson)):

$$
C C(\mathcal{F}) \in Z_{\operatorname{dim}(X)}\left(T^{*} X\right)
$$

proved a generalization of the Deligne-Milnor formula (equal characteristic case), and as a corollary, a global index formula for the Euler number of \mathcal{F}.

The global index formula reads:
For X / k proper and smooth, k alg. closed, $\Lambda=\mathbf{Q}_{\ell}$,

$$
\chi(X, \mathcal{F})=\left(C C(\mathcal{F}), T_{X}^{*} X\right)
$$

Here $\chi(X, \mathcal{F})=\sum_{i}(-1)^{i} \operatorname{dim} H^{i}(X, \mathcal{F}), T_{X}^{*}(X)=0$-section of $T^{*} X$.

This work was inspired by Kashiwara-Schapira's analogous theory over C, and various conjectures of Deligne.

Ingredients

- Radon and Legendre transforms (Brylinski), geometric theory of Lefschetz pencils (Katz, SGA 7 XVII)
- Ramification theory for imperfect residue fields (Abbes, T. Saito)
- Deligne's theory of vanishing cycles over general bases (Deligne, Gabber, Orgogozo) (also used in generalized Thom-Sebastiani theorems).

Thank you!

