Riemann Conference

December 27-30, 2015 - Sanya - China

Glimpses on vanishing cycles, from Riemann to today

Luc Illusie

Université Paris-Sud

Plan

- 1. The origins
- 2. The Milnor fibration
- 3. Grothendieck and Deligne
- 4. Grothendieck's local monodromy theorem
- 5. The Deligne-Milnor conjecture
- 6. The Picard-Lefschetz formula
- 7. Euler numbers and characteristic cycles

1. The origins

Vanishing cycles in Riemann ?

No, but ...

Riemann (1857) studied the hypergeometric equation $E(\alpha, \beta, \gamma)$

$$t(1-t)f''+(\gamma-(lpha+eta+1)t)f'-lphaeta=0$$

 $(\alpha, \beta, \gamma \in \mathbf{C})$, and the monodromy of its solutions around its singular points $(0, 1, \infty)$.

 $E(\alpha, \beta, \gamma)$ has regular singularities at these points (moderate growth of solutions).

The hypergeometric function

$$F(\alpha,\beta,\gamma,t) = \sum_{n\geq 0} \frac{(\alpha,n)(\beta,n)}{(\gamma,n)} \frac{t^n}{n!}$$

(|t| < 1), where $(u, n) = \prod_{0 \le i \le n-1} (u + i)$, is the unique solution which is holomorphic at 0 with value 1.

Solutions form a complex local system \mathcal{H}_{C} of rank 2 over $S = \mathbf{P}_{C}^{1} - \{0, 1, \infty\}$. For a chosen base-point $t_{0} \in S$, it is given by

$$\rho: \pi_1(S, t_0) \to \operatorname{GL}((\mathcal{H}_{\mathsf{C}})_{t_0}) \simeq \operatorname{GL}_2(\mathsf{C}).$$

Suitable standard loops around $s = 0, 1, \infty$ give local monodromy operators $T_s \in GL_2(\mathbf{C})$, satisfying $T_0T_1T_{\infty} = 1$, generating the global monodromy group

$$\Gamma :=
ho(\pi_1(S, t_0))) \subset \operatorname{GL}_2(\mathbf{C}).$$

What are the T_s 's ? What is Γ ?

An example : the Legendre family

Consider the family X/S of elliptic curves on $S = P^1_C - \{0, 1, \infty\}$:

$$X_t: y^2 = x(x-1)(x-t).$$

For $\alpha=\beta=1/2$, $\gamma=1$,

$$E(1/2, 1/2, 1): t(1-t)f'' + (1-2t)f' - \frac{f}{4} = 0$$

is the DE satisfied by the periods of holomorphic differential forms on X_t .

The relative de Rham cohomology group $\mathcal{H}_{dR} := \mathcal{H}^1_{dR}(X/S)$ is a free \mathcal{O}_S -module of rank 2, equipped with the Gauss-Manin connection ∇ .

$$\mathcal{H}_{\mathrm{dR}} = \mathcal{O}_{S} e_{1} \oplus \mathcal{O}_{S} e_{2},$$

 $e_{1} = [dx/y], \ e_{2} = \nabla (d/dt)(e_{1}),$

with

$$abla(d/dt)e_2 = rac{(2t-1)e_2}{t(1-t)} + rac{e_1}{4t(1-t)}.$$

Horizontal solutions $f_1e_1^{\vee} + f_2e_2^{\vee}$ of the dual of \mathcal{H}_{dR} are given by $f_1 = f$, $f_2 = f'_1$, where f, a local section of \mathcal{O}_S , satisfies

$$E(1/2,1/2,1):t(1-t)f''+(1-2t)f'-rac{f}{4}=0.$$

We have

$$\mathcal{H}_{\mathrm{dR}}^{\nabla=0}=\mathcal{H}_{\mathbf{Z}}\otimes\mathbf{C},$$

where $\mathcal{H}_{\mathbf{Z}} := \mathcal{H}^1(X/S, \mathbf{Z})$, a rank 2 Z-local system, equipped with the (symplectic, unimodular) intersection form \langle, \rangle .

If γ is a local horizontal section of $\mathcal{H}_{\mathbf{Z}}^{\vee} = \mathcal{H}_{1}(X/S, \mathbf{Z})$, the period $\int_{\gamma} \frac{dx}{y}$ is a solution of E(1/2, 1/2, 1). For example, the hypergeometric function

$$F(1/2, 1/2, 1, t) = \frac{1}{\pi} \int_{1}^{\infty} \frac{dx}{y}$$

is a solution.

The representation $\rho : \pi_1(S, t_0) \to \operatorname{GL}((\mathcal{H}_{\mathsf{C}})_{t_0})$ is deduced from

$$\rho: \pi_1(S, t_0) \to \operatorname{Sp}((\mathcal{H}_{\mathsf{C}})_{t_0}) \simeq SL_2(\mathsf{Z}).$$

Local monodromies around 0 and 1 can be calculated by choosing suitable symplectic bases (γ, δ) of $(\mathcal{H}_{\mathsf{Z}})_t$, using the description of X_t as a 2-sheeted cover of $\mathsf{P}_{\mathsf{C}}^1$.

• In a suitable symplectic base, T_0 and T_1 are given by

$$T_0 = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \quad T_1 = \begin{pmatrix} 1 & 0 \\ -2 & 1 \end{pmatrix}$$

- Riemann's period mapping $t \mapsto (\int_{\gamma} \omega, \int_{\delta} \omega)$, where $\omega = \frac{dx}{y} \in H^0(X_t, \Omega^1)$, induces an isomorphism

$$S = \mathbf{P}^{1}_{\mathbf{C}} - \{0, 1, \infty\} \simeq D/\Gamma.$$

which extends to an isomorphism

$$\mathsf{P}^1_{\mathsf{C}} \simeq M_2 \; (= (D \cup \mathsf{P}^1(\mathsf{Q})) / \overline{\mathsf{\Gamma}}(2))$$

sending 0, 1, ∞ to the 3 cusps of M_2 ($\overline{\Gamma}(2)$ = image of $\Gamma(2)$ in $\mathrm{PSL}_2(\mathbf{Z})$).

In particular, as $\chi(S) = -1$, and $[SL_2(\mathbf{Z}) : \Gamma] = 12$, the Galois cover

$$D
ightarrow S = D/\Gamma$$

implies that $S = B\Gamma$, hence $\chi(\Gamma) = -1$, and

$$\chi(\operatorname{SL}_2(\mathbf{Z})) = -\frac{1}{12},$$

as is well known.

It was discovered by Picard (around 1880) that the form of T_0 is "explained" by the fact that δ vanishes when $t \to 0$, and that the singularity of the surface X at (x = 0, y = 0) is equivalent to $u^2 + v^2 = t^2$ (Picard-Lefschetz formula).

2. The Milnor fibration

Let $f : (\mathbf{C}^{n+1}, 0) \to (\mathbf{C}, 0)$ be a germ of holomorphic function having an isolated critical point at 0 with f(0) = 0.

Milnor (1967) proved that, for $\varepsilon > 0$ small, and $0 < \eta << \varepsilon$, if $B = \{z | \sum_{0}^{n} |z_i|^2 \le \varepsilon\}$, $D = \{|t| \le \eta\}$, the restriction of f to $B \cap f^{-1}(D)$, $f : B \cap f^{-1}(D) \to D$,

induces over $D - \{0\}$ a locally trivial C^{∞} fibration in (real) 2*n*-dimensional manifolds with boundary

$$M_t = f^{-1}(t) \cap B,$$

trivial along the boundary ∂M_t .

This is now called the Milnor fibration, and M_t is called a Milnor fiber.

Moreover, Milnor proved:

• M_t has the homotopy type of a bouquet of μ *n*-dimensional spheres:

 $S^n \lor \cdots \lor S^n \ (\mu \text{ terms}),$ hence, if $\widetilde{H}^i = \operatorname{Coker}(H^i(\mathrm{pt}) \to H^i),$ $(\mathbf{7}^{\mu} \text{ if } i = n)$

$$\widetilde{H}^{i}(M_{t}, \mathbf{Z}) = \begin{cases} \mathbf{Z}^{r} & \text{if } i \equiv n \\ 0 & \text{if } i \neq n. \end{cases}$$

• The Milnor number $\mu = \mu(f)$ is given by

$$\mu = \dim_{\mathbf{C}} \mathbf{C} \{z_0, \cdots, z_n\} / (\partial f / \partial z_0, \cdots, \partial f / \partial z_n).$$

Letting t turn once around zero clockwise in D gives an automorphism of $H^n(M_t, \mathbb{Z})$, the monodromy automorphism

$$T \in \operatorname{Aut}(H^n(M_t, \mathbf{Z})).$$

Milnor conjectured:

• The eigenvalues of *T* are roots of unity (i.e., *T* is quasi-unipotent).

Grothendieck proved it, using Hironaka's resolution of singularities and his theory of $R\Psi$ and $R\Phi$.

3. Grothendieck and Deligne

Given a 1-parameter family $(X_t)_{t\in S}$ of (algebraic, or analytic varieties), and a point $s \in S$, Grothendieck (1967) constructed in SGA 7 a complex of sheaves on X_s , called complex of vanishing cycles, measuring the difference between $H^*(X_s)$ and $H^*(X_t)$ for t "close" to s (special fiber X_s vs general fiber X_t), and a closely related one, called nowadays complex of nearby cycles.

Set-up : complex analytic, or étale.

Will discuss only the étale one.

Étale set-up

- $\mathcal{S} = (\mathcal{S}, \mathbf{s}, \eta)$, a strictly local trait
- η : the generic point
- $\overline{\eta}$: a separable closure of η .

For $f: X \to S$, get cartesian squares

Work with coefficients ring $\Lambda = \mathbf{Z}/\ell^{\nu}\mathbf{Z}$ (ℓ prime, invertible on S) (or \mathbf{Z}_{ℓ} , \mathbf{Q}_{ℓ} , $\overline{\mathbf{Q}}_{\ell}$, ℓ prime, invertible on S), write D(-) for $D(-,\Lambda)$. For $K \in D^+(X_{\eta})$, the complex of nearby cycles is:

$$R\Psi_f(K) := i^* R \overline{j}_*(K|X_{\overline{\eta}}) \in D^+(X_s).$$

Comes equipped with an action of the inertia group $I = \text{Gal}(\overline{\eta}/\eta)$ (complex of sheaves of *I*-modules on X_s).

For $K \in D^+(X)$, get an (*I*-equivariant) exact triangle

$$K|X_s \to R\Psi_f(K|X_\eta) \to R\Phi_f(K) \to$$
,

where $R\Phi_f(K)$ is called the complex of vanishing cycles.

A generalization

 $S = (S, s, \eta)$ henselian trait, not necessarily strictly local. Take strict localization of S at a separable closure \tilde{s} of s:

$$\widetilde{S} = (\widetilde{S}, \widetilde{s}, \widetilde{\eta}) \rightarrow (S, s, \eta).$$

For $f: X \to S$, base changed $\tilde{f}: \tilde{X} \to \tilde{S}$, and $K \in D^+(X_\eta)$ (resp. $K \in D^+(X)$), define

$$R\Psi_f K \ (ext{resp.} \ R\Phi_f K) \in D^+(X_{\widetilde{s}})$$

as $R\Psi_{\widetilde{f}}(K|\widetilde{X}_{\widetilde{\eta}})$ (resp. $R\Phi_{\widetilde{f}}(K|\widetilde{X})$). Get action of full Galois group $\operatorname{Gal}(\overline{\eta}/\eta)$ ($\overline{\eta} \to \widetilde{\eta}$), not just of inertia $I = \operatorname{Gal}(\overline{\eta}/\widetilde{\eta}) \subset \operatorname{Gal}(\overline{\eta}/\eta)$.

General properties

• Functoriality Consider a commutative diagram:

If h is smooth, the natural map

$$h^* R \Psi_Y \to R \Psi_X h^*$$

is an isomorphism. In particular, if f is smooth, $R\Phi_f(\Lambda) = 0$. If h is proper, the natural map

$$Rh_*R\Psi_X \to R\Psi_YRh_*$$

is an isomorphism. In particular (taking Y = S), if f is proper, for $K \in D^+(X_\eta)$, we have a canonical isomorphism (compatible with the Galois actions)

 $R\Gamma(X_{\widetilde{s}}, R\Psi_X K) \stackrel{\sim}{
ightarrow} R\Gamma(X_{\overline{\eta}}, K).$

For X/S proper, the triangle $K|X_{\widetilde{s}} \to R\Psi_f(K|X_\eta) \to R\Phi_f(K) \to$ gives an exact sequence

$$\cdots \to H^{i-1}(X_{\widetilde{s}}, R\Phi_X(K)) \to H^i(X_{\widetilde{s}}, K) \stackrel{\text{sp}}{\to} H^i(X_{\overline{\eta}}, K)$$
$$\to H^i(X_{\widetilde{s}}, R\Phi_X(K)) \to \cdots,$$

where sp is the specialization map:

$$\mathrm{sp}: H^i(X_{\widetilde{s}},K)\simeq H^i(X_{\widetilde{S}},K)
ightarrow H^i(X_{\overline{\eta}},K).$$

When $K = \Lambda$, $R\Phi_X(\Lambda)$ is concentrated on the points $x \in X_{\tilde{s}}$ where X/S is not smooth.

• Finiteness (Deligne, 1974) Nearby cycles are constructible: $R\Psi_X$ induces

$$R\Psi_X: D^b_c(X_\eta) \to D^b_c(X_{\widetilde{s}}).$$

• Perversity (Gabber, 1981) *R*Ψ commutes with Grothendieck-Verdier duality:

$$R\Psi(D_{X_{\eta}}K) \xrightarrow{\sim} D_{X_{\widetilde{s}}}R\Psi K,$$

induces $\operatorname{Per}(X_{\eta}) \to \operatorname{Per}(X_{\widetilde{s}})$.

In the analytic setup, there are analogous definitions and properties, and a comparison theorem (Deligne, 1968) between the étale $R\Psi$ and the analytic $R\Psi$, similar to Artin-Grothendieck's comparison theorem Betti vs étale.

Over **C**, nearby cycles have been extensively studied in connection with Hodge theory (Steenbrink et al.), and the theory of \mathcal{D} -modules (M. Saito et al.).

A crucial example

Let X/S be as above, with S strictly local, and $x \to X_s$ be a geometric point.

For $K \in D^+(X)$, by general nonsense on étale cohomology, the stalk of $R\Psi(K)$ (:= $R\Psi_X K$) at x is given by

$$(R\Psi K)_{x} = R\Gamma((X_{(x)})_{\overline{\eta}}, K).$$

Here $X_{(x)}$ is the strict localization of X at x (a kind of Milnor ball), and $(X_{(x)})_{\overline{\eta}}$ its geometric generic fiber (a kind of Milnor fiber).

But $(R^q \Psi K)_x$ is difficult to calculate!

Known for $K = \Lambda$ (constant sheaf), when X has semistable reduction at x, i.e., étale locally at x,

$$X \xrightarrow{\sim} S[t_1, \cdots, t_n]/(t_1 \cdots t_r - \pi)$$

(π a uniformizing parameter in S). Then:

$$(R^1\Psi\Lambda)_{\times} = \operatorname{Ker}(\mathbf{Z}^r \stackrel{\mathrm{sum}}{\to} \mathbf{Z}) \otimes \Lambda(-1)$$

$$(R^{q}\Psi\Lambda)_{x} = \Lambda^{q}(R^{1}\Psi\Lambda)_{x}$$

 $(\Lambda^q = q$ -th exterior power, $\Lambda(m) = m$ -th Tate twist).

• The inertia group I acts trivially on $(R^q \Psi \Lambda)_{\times}$.

For
$$X = S[t_1, \cdots, t_r]/(t_1 \cdots t_r - \pi)$$
,
topological model of $(X_{(x)})_{\overline{\eta}}$: fiber of

$$(S^1)^r \to S^1, \ (z_1, \cdots, z_r) \mapsto z_1 \cdots z_r.$$

Proof combines:

- Grothendieck's calculation of tame nearby cycles
 (R^qΨΛ)_t := (R^qΨΛ)^P (P ⊂ I the wild inertia), modulo
 validity of Grothendieck's absolute purity conjecture for
 components of (X_(x))_s
- validity OK and $(R^{q}\Psi\Lambda)_{t} = R^{q}\Psi\Lambda$ (Rapoport-Zink, 1982).

Recall Grothendieck's absolute purity conjecture:

For regular divisor $D \subset X$, X regular, $\Lambda = \mathbf{Z}/\ell^{\nu}\mathbf{Z}, \cdots$ as above, ℓ invertible on X,

$$\mathcal{H}^q_D(X,\Lambda) = egin{cases} \Lambda_D(-1) & ext{if } q=2 \ 0 & ext{if } q
eq 2. \end{cases}$$

Modulo absolute purity conjecture (OK if S/\mathbf{Q} , and now in general by Gabber (1994)), Grothendieck calculated tame nearby cycles for X étale locally of the form $S[t_1, \dots, t_n]/(ut_1^{n_1} \dots t_r^{n_r} - \pi)$ (u a unit):

$$R^q \Psi \Lambda_{\mathrm{t},x} = \mathsf{Z}[\mu_{\ell^m}] \otimes \Lambda^q(\mathrm{Ker}(\mathsf{Z}^r \stackrel{\sum \mathrm{n}_i \mathrm{x}_i}{
ightarrow} \mathsf{Z})) \otimes \Lambda(-q)$$

where $gcd(n_1, \cdots, n_r) = \ell^m d$, $(\ell, d) = 1$.

Here *I* acts on $Z[\mu_{\ell^m}]$ by permutation through its tame quotient $Z_{\ell}(1)$, in particular, acts on $R^q \Psi \Lambda_{t,x}$ through a finite quotient, hence quasi-unipotently on $R\Psi \Lambda_{t,x}$.

Combined with Hironaka's resolution of singularities, and functoriality of $R\Psi$ for proper maps, calculation yields a proof of Milnor's conjecture on the monodromy of isolated singularities.

4. Grothendieck's local monodromy theorems

Grothendieck's arithmetic local monodromy theorem is the following:

Theorem

 $S = (S, s, \eta)$ henselian, k = k(s), ℓ prime different from p = char(k). Assume that no finite extension of k contains all roots of unity of order a power of ℓ (e. g., k finite). Let

$$\rho: \operatorname{Gal}(\overline{\eta}/\eta) \to \operatorname{GL}(V)$$

be a continuous representation into a finite dimensional \mathbf{Q}_{ℓ} -vector space V. Then, there exists an open subgroup $I_1 \subset I$, such that, for all $g \in I_1$, $\rho(g)$ is unipotent.

Proof.

Exercise ! (Use strong action of $\operatorname{Gal}(\overline{k}/k)$ on tame inertia I_t : $g\sigma g^{-1} = \sigma^{\chi(g)}$, $\chi =$ cyclotomic character.)

A corollary is that there exists a unique nilpotent morphism

$$\mathsf{N}: \mathsf{V}(1) o \mathsf{V},$$

called the monodromy operator, such that, for all $\sigma \in I_1$ and $x \in V$,

$$\sigma x = \exp(N(t_{\ell}(\sigma)x)),$$

where $t_{\ell}: I \to \mathsf{Z}_{\ell}(1)$ is the ℓ -component of the tame character.

The operator N is $\operatorname{Gal}(\overline{\eta}/\eta)$ -equivariant. In particular, for $k = \mathbf{F}_q$, if $F \in \operatorname{Gal}(\overline{\eta}/\eta)$ is a lifting of the geometric Frobenius $(a \to a^{1/q})$, then

$$NF = qFN.$$

Led to the Weil-Deligne representation.

The geometric local monodromy theorem is the following result, due to Grothendieck in a weaker form, later improved by various authors:

Theorem

Let S be an (arbitrary) henselian trait. Let X_{η} be separated and of finite type over η . Then, there exists an open subgroup $I_1 \subset I$, independent of ℓ , such that for all $i \in \mathbf{Z}$ and all $g \in I_1$,

$$(g-1)^{i+1}=0$$

on $H^{i}(X_{\overline{\eta}}, \Lambda)$ (resp. $H^{i}_{c}(X_{\overline{\eta}}, \Lambda)$). History

 Existence of I₁ (a priori l-dependent) for Hⁱ_c with i + 1 replaced by uncontrolled bound, proved by Grothendieck, as a consequence of the arithmetic local monodromy theorem (reduction to k small). Method generalized to Hⁱ once finiteness of Hⁱ was proved (Deligne, 1974).

- Existence of I_1 (a priori ℓ -dependent), with bound i + 1, proved by Grothendieck for X_{η}/η proper and smooth, modulo validity of absolute purity and resolution of singularities, as a consequence of local calculation of $R^q \Psi \mathbf{Z}_{\ell}$ in the (quasi-) semistable case. Unconditional for $i \leq 1$, or p = 0.
- Existence of *I*₁, independent of *l*, but with *i* + 1 replaced by uncontrolled bound, proved by Deligne (1996), using Rapoport-Zink's calculation of *R*Ψ**Z**_l in the semistable case, and de Jong's alterations. Final result obtained by refinement of this method (Gabber I., 2014).

Why care for exponent i + 1? Grothendieck's motivation: for i = 1, exponent 2 is a crucial ingredient in his proof of the semistable reduction theorem for abelian varieties:

Theorem

With S as before, let A_{η} be an abelian variety over η . There exists a finite extension η_1 of η such that A_{η_1} acquires semistable reduction over the normalization (S_1, s_1, η_1) of S in η_1 , i.e., the connected component $A_{s_1}^0$ of the special fiber of the Néron model of A_{η_1} is an extension of an abelian variety by a torus:

$$0 \to (\text{torus}) \to A^0_{s_1} \to (\text{abelian variety}) \to 0.$$

Deligne-Mumford (1969) deduced from it the semistable reduction theorem for curves:

Corollary

Let X_{η} be a proper, smooth curve over η . There exists a finite extension η_1 of η such that X_{η_1} has semistable reduction over the normalization S_1 of S in η_1 , i.e., is the generic fiber of a proper, flat X_1/S_1 , with X_1 regular, and special fiber $(X_1)_{s_1}$ a reduced curve having simple nodes.

- Corollary is the key tool in Deligne-Mumford's proof of the irreducibility of the coarse moduli space M_g (over any algebraically closed field k).
- Proofs of corollary independent of theorem found later (Artin-Winters, 1971; T. Saito, 1987).
- For char(k) = 0, a generalization of corollary to arbitrary dimension proved by Mumford et al. (1973).
- Over S excellent (any char.), a generalization of corollary in a weaker form given by de Jong (1996). Recently improved by Gabber, Temkin.

5. The Deligne-Milnor conjecture

At the opposite of semistable reduction, we have isolated singularities.

Let $S = (S, s, \eta)$ be a strictly local trait, with k = k(s)algebraically closed. Assume X regular, flat, finite type over S, relative dimension n, smooth outside closed point $x \in X_s$. Then $R\Phi\Lambda$ is concentrated at x, and in cohomological degree n:

$$(R\Phi^q\Lambda)_x = \begin{cases} 0 & \text{if } q \neq n \\ \Lambda^r & \text{if } q = n \end{cases}$$

The coherent module $\mathcal{E}xt^1(\Omega^1_{X/S}, \mathcal{O}_X)$ is concentrated at x, its length

$$\mu := \lg(\mathcal{E}xt^1(\Omega^1_{X/S}, \mathcal{O}_X))$$

generalizes the classical Milnor number.

The action of I on $\mathbb{R}^n \Phi \Lambda$ has a Swan conductor $Sw(\mathbb{R}^n \Phi \Lambda) \in \mathbb{Z}$, measuring wild ramification (= 0 if S of char. 0).

Deligne conjectured (SGA 7 XVI, 1972):

$$\mu = r + \operatorname{Sw}(R^n \Phi \Lambda).$$

Generalizes Milnor formula over **C**. Conjecture proved:

- if X/S finite, or x is an ordinary quadratic singularity, or S is of equal characteristic (Deligne, loc. cit.)
- if n = 1 (Bloch, 1987 + Orgogozo, 2003)

General case open. In equal char., generalization by T. Saito (2015) with Λ replaced by a constructible sheaf.

6. The Picard-Lefschetz formula

Let X/S as before, with relative dimension *n*. Assume *x* is an ordinary quadratic singularity of X/S, i.e., étale locally at *x*, X/S is of the form (π a uniformizing parameter):

$$\sum_{1 \le i \le m+1} x_i x_{i+m+1} = \pi$$

$$(n = 2m + 1),$$

 $\sum_{1 \le i \le m} x_i x_{i+m} + x_{2m+1}^2 = \pi$
 $(n = 2m, p > 2),$
 $\sum_{1 \le i \le m} x_i x_{i+m} + x_{2m+1}^2 + a x_{2m+1} + \pi = 0$

with $a^2 - 4\pi \neq 0$ (n = 2m, p = 2).

Then

$$(R^n\Phi\Lambda)_x \xrightarrow{\sim} \Lambda,$$

with action of inertia *I* trivial is *n* odd, through a character of order 2 if *n* even, tame if p > 2.

Assume now X/S proper, flat, of relative dimension n > 0, smooth outside $\Sigma \subset X_s$ finite, and each $x \in \Sigma$ is an ordinary quadratic singularity.

Then the monodromy of $H^*(X_{\overline{\eta}})$ is described as follows (Deligne, SGA 7 XV, 1972):

cn

• For
$$i \neq n$$
, $n+1$, $H^{i}(X_{s}) \stackrel{s_{p}}{\xrightarrow{\sim}} H^{i}(X_{\overline{\eta}})$.

• For each $x \in \Sigma$, there exists $\delta_x \in H^n(X_{\overline{\eta}})(m)$ (n = 2m or 2m + 1), well defined up to sign, called the vanishing cycle at x, and the sequence

$$0 \to H^n(X_s) \stackrel{\text{sp}}{\to} H^n(X_{\overline{\eta}}) \stackrel{(-,\delta_x)}{\to} \sum_{x \in \Sigma} \Lambda(m-n) \to H^{n+1}(X_s)$$

$$\stackrel{\mathrm{sp}}{\to} H^{n+1}(X_{\overline{\eta}}) \to 0.$$

is exact. One has $(\delta_x, \delta_y) = 0$ for $x \neq y$, $(\delta_x, \delta_x) = 0$ for n odd, and $(\delta_x, \delta_x) = (-1)^m \cdot 2$ for n = 2m. Here $(a, b) = \operatorname{Tr}(ab)$, where $\operatorname{Tr} : H^{2n} \to \Lambda(-n)$.

• The inertia I acts trivially on $H^i(X_{\overline{\eta}})$ for $i \neq n$, and on $H^n(X_{\overline{\eta}})$ through orthogonal (resp. symplectic) transformations for n = 2m (resp. n = 2m + 1), given by the Picard-Lefschetz formula:

For
$$\sigma \in I$$
, $a \in H^n(X_{\overline{\eta}})$,

$$\sigma a - a = \begin{cases} (-1)^m \sum_{x \in \Sigma} \frac{\varepsilon_x(\sigma) - 1}{2} \langle a, \delta_x \rangle \delta_x & \text{if } n = 2m \\ (-1)^{m+1} \sum_{x \in \Sigma} t_\ell(\sigma) \langle a, \delta_x \rangle \delta_x & \text{if } n = 2m + 1. \end{cases}$$

Here $t_{\ell}: I \to \mathbb{Z}_{\ell}(1)$ is the tame character, and $\varepsilon_x: I \to \pm 1$ is the unique character of order 2 if p > 2 and that defined by the quadratic extension $t^2 + at + \pi = 0$ for X locally at x of the form

$$\sum_{1 \le i \le m} x_i x_{i+m} + x_{2m+1}^2 + a x_{2m+1} + \pi = 0.$$

Difficult case in the proof: n odd, n = 2m + 1. Use factorization:

$$\begin{array}{c} H^n(X_{\overline{\eta}}) \longrightarrow \bigoplus_{x \in \Sigma} (R^n \Phi \Lambda)_x \quad , \\ \sigma_{-1} \middle| \qquad \qquad \forall \operatorname{Var}(\sigma)_x \middle| \\ H^n(X_{\overline{\eta}}) \longleftarrow \bigoplus_{x \in \Sigma} H^n_x(X_s, R \Psi \Lambda) \end{array}$$

where:

- top row is part of specialization sequence
- bottow row = composition of $H_x^n \to H^n$ and $H^n(X_s, R\Psi\Lambda) = H^n(X_{\overline{\eta}}).$
- (RⁿΦΛ(m+1))_x and Hⁿ_x(X_s, RΨΛ)(m) are isomorphic to Λ, with respective generators δ'_x, δ_x defined up to sign, with (δ'_x, δ_x) = 1, for a perfect pairing with values in H²ⁿ_x(X_s, RΨΛ(n)) → Λ. We have δ_x → δ_x ∈ Hⁿ(X_η).

$$\begin{array}{c} H^n(X_{\overline{\eta}}) \longrightarrow \bigoplus_{x \in \Sigma} (R^n \Phi \Lambda)_x \quad , \\ \sigma_{-1} \bigg| \qquad \qquad \forall \operatorname{Var}(\sigma)_x \bigg| \\ H^n(X_{\overline{\eta}}) \longleftarrow \bigoplus_{x \in \Sigma} H^n_x(X_s, R \Psi \Lambda) \end{array}$$

The map $Var(\sigma)_x$, called variation, is given by the local Picard-Lefschetz formula:

$$\operatorname{Var}(\sigma)_{\times}(\underline{\delta}'_{\times}) = (-1)^{m+1} t_{\ell}(\sigma) \underline{\delta}_{\times},$$

which is the crux of the matter.

- Original proof (Deligne) required lifting to char. 0 and a transcendental argument.
- Purely algebraic proof given later (I., 2000), as a corollary of Rapoport-Zink's theory of nearby cycles in the semistable case.

Over **C**, Milnor fiber M_t of $f: (x_1, \dots, x_{2m+2}) \mapsto \sum x_i^2$ is fiber bundle in unit balls of tangent bundle to sphere $S^n = \{x \in \mathbb{R}^{n+1} | \sum x_i^2 = 1\}.$

- $R^n \Phi_x$ corresponds to $\widetilde{H}^n(M_t)$,
- $H_x^n(X_s, R\Psi)$ corresponds to $H_c^n(M_t \partial M_t)$,
- $\underline{\delta}_x$ dual to $\underline{\delta}_x^{\vee} \in H_n(M_t, \partial M_t)$ given by one fiber of M_t over S^n ,
- $\underline{\delta}'_x$ dual to $(\underline{\delta}'_x)^{\vee} \in \widetilde{H}_n(M_t)$ given by $S^n \subset M_t$.

Next slide: picture, for n = 1 (m = 0) of the dual variation map (T the positive generator of $\pi_1(S^1)$)

$$\begin{aligned} \operatorname{Var}(\mathcal{T})^{\vee} &: H_1(M_t, \partial M_t) \to \widetilde{H}_1(M_t), \\ & \underline{\delta}_x^{\vee} \mapsto - (\underline{\delta}_x')^{\vee}. \end{aligned}$$

Back to the Legendre family:

$$X_t: y^2 = x(x-1)(x-t).$$

Locally at x = y = t = 0, X/S is $x_1^2 + x_2^2 = t^2$, instead of $x_1^2 + x_2^2 = t$, hence variation is doubled, and get

$$T(\delta) = \delta, \ T(\gamma) = \gamma \pm 2\delta$$

Arithmetic applications

- Grothendieck used the PL formula in his theory of the monodromy pairing for abelian varieties having semistable reduction (SGA 7 IX), with a formula for calculating the group of connected components of the special fiber of the Néron model. Variants, generalizations, and arithmetic applications by Raynaud, Deligne-Rapoport, Mazur, Ribet.
- Most importantly, the PL formula was the key to the cohomological study (by Deligne and Katz, SGA 7 XVIII) of Lefschetz pencils, which led to the fiirst proof, by Deligne, of the Weil conjecture (Weil I).

Variants and generalizations

Tame variation

Recall the case of isolated singularities: X regular, flat, finite type over S, relative dimension n, smooth outside closed point $x \in X_s$. Then $R\Phi\Lambda$ is concentrated at x, and in cohomological degree n:

$$(R\Phi^q\Lambda)_x = \begin{cases} 0 & \text{if } q \neq n \\ \Lambda^r & \text{if } q = n \end{cases}$$

Moreover,

$$H^n_{\{x\}}(X_s, R\Psi\Lambda) = \Lambda^r,$$

with a perfect intersection pairing

$$R^n\Phi(\Lambda)_x\otimes H^n_{\{x\}}(X_s,R\Psi\Lambda) \to H^{2n}_{\{x\}}(X_s,R\Psi\Lambda) = \Lambda(-n).$$

Finally, if I acts tamely on $R\Psi\Lambda$, i.e., through its quotient $Z_{\ell}(1)$, and if σ is a topological generator of it, then $\sigma - 1$ induces an isomorphism

$$\operatorname{Var}(\sigma): R^n \Phi(\Lambda)_x \xrightarrow{\sim} H^n_{\{x\}}(X_s, R\Psi\Lambda),$$

called the variation at x (I., 2003), a (weak) generalization of the local Picard-Lefschetz formula. The analogue over **C** had been known since the 1970's (Brieskorn).

Thom-Sebastiani theorems

The Picard-Lefschetz theory describes vanishing cycles, monodromy and variation at the isolated critical point $\{0\}$ of the function

$$x_1^2 + \cdots + x_m^2$$

The classical Thom-Sebastiani theorem (/C) describes the same invariants at the isolated critical point $\{0\}$ of a function of the form

$$f(\underline{x}_1,\cdots,\underline{x}_m)=f_1(\underline{x}_1)+\cdots+f_m(\underline{x}_m),$$

where the \underline{x}_i are independent packs of $n_i + 1$ variables, and $f_i : \mathbf{C}^{n_i+1} \rightarrow \mathbf{C}$ has an isolated critical point at $\{0\}$.

If $n = \sum n_i$ (= rel. dim. of f), then (for coefficients **Z**) $R^n \Phi_f = \bigotimes_{1 \le i \le m} R^{n_i} \Phi_{f_i},$

with monodromy

$$T=\otimes_{1\leq i\leq m}T_i,$$

and variation

$$\operatorname{Var} = \bigotimes_{1 \leq i \leq m} \operatorname{Var}_i.$$

Algebraic analogues ? (over an alg. closed field *k*, in the étale set-up) Deligne's observation: analogue wrong in general, tensor product must be replaced by

local convolution product *

of Deligne-Laumon.

Formulas in this framework given by Fu Lei (2014), I. (2015).

7. Euler numbers and characteristic cycles

Quite recently, T. Saito, in conjunction with Beilinson's construction of a singular support

$$SS(\mathcal{F}) \subset T^*X$$

for a constructible sheaf \mathcal{F} on a smooth X/k (an equidimensional conic closed subset of \mathcal{T}^*X , of dimension = dim(X)), defined a characteristic cycle supported on $SS(\mathcal{F})$, with coefficients in $\mathbb{Z}[1/p]$ (actually, in \mathbb{Z} (Beilinson)):

$$CC(\mathcal{F}) \in Z_{\dim(X)}(T^*X),$$

proved a generalization of the Deligne-Milnor formula (equal characteristic case), and as a corollary, a global index formula for the Euler number of \mathcal{F} .

The global index formula reads:

For X/k proper and smooth, k alg. closed, $\Lambda = \mathbf{Q}_{\ell}$,

$$\chi(X,\mathcal{F})=(CC(\mathcal{F}),\,T_X^*X).$$

Here $\chi(X, \mathcal{F}) = \sum_{i} (-1)^{i} \dim H^{i}(X, \mathcal{F}), T_{X}^{*}(X) = 0$ -section of $T^{*}X$.

This work was inspired by Kashiwara-Schapira's analogous theory over C, and various conjectures of Deligne.

Ingredients

- Radon and Legendre transforms (Brylinski), geometric theory of Lefschetz pencils (Katz, SGA 7 XVII)
- Ramification theory for imperfect residue fields (Abbes, T. Saito)
- Deligne's theory of vanishing cycles over general bases (Deligne, Gabber, Orgogozo) (also used in generalized Thom-Sebastiani theorems).

Thank you!