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1. The origins

Vanishing cycles in Riemann ?

No, but ...



Riemann (1857) studied the hypergeometric equation E (α, β, γ)

t(1− t)f ′′ + (γ − (α + β + 1)t)f ′ − αβ = 0

(α, β, γ ∈ C), and the monodromy of its solutions around its
singular points (0, 1,∞).

E (α, β, γ) has regular singularities at these points (moderate
growth of solutions).

The hypergeometric function

F (α, β, γ, t) =
∑
n≥0

(α, n)(β, n)

(γ, n)

tn

n!

(|t| < 1), where (u, n) =
∏

0≤i≤n−1(u + i), is the unique solution
which is holomorphic at 0 with value 1.



Solutions form a complex local system HC of rank 2 over
S = P1

C − {0, 1,∞}. For a chosen base-point t0 ∈ S , it is given by

ρ : π1(S , t0)→ GL((HC)t0) ' GL2(C).

Suitable standard loops around s = 0, 1,∞ give local monodromy
operators Ts ∈ GL2(C), satisfying T0T1T∞ = 1, generating the
global monodromy group

Γ := ρ(π1(S , t0))) ⊂ GL2(C).

What are the Ts ’s ? What is Γ ?



An example : the Legendre family

Consider the family X/S of elliptic curves on S = P1
C − {0, 1,∞}:

Xt : y2 = x(x − 1)(x − t).

For α = β = 1/2, γ = 1,

E (1/2, 1/2, 1) : t(1− t)f ′′ + (1− 2t)f ′ − f

4
= 0

is the DE satisfied by the periods of holomorphic differential forms
on Xt .

The relative de Rham cohomology group HdR := H1
dR(X/S) is a

free OS -module of rank 2, equipped with the Gauss-Manin
connection ∇.



HdR = OSe1 ⊕OSe2,

e1 = [dx/y ], e2 = ∇(d/dt)(e1),

with
∇(d/dt)e2 =

(2t − 1)e2
t(1− t)

+
e1

4t(1− t)
.

Horizontal solutions f1e∨1 + f2e
∨
2 of the dual of HdR are given by

f1 = f , f2 = f ′1 , where f , a local section of OS , satisfies

E (1/2, 1/2, 1) : t(1− t)f ′′ + (1− 2t)f ′ − f

4
= 0.

We have
H∇=0

dR = HZ ⊗ C,

where HZ := H1(X/S ,Z), a rank 2 Z-local system, equipped with
the (symplectic, unimodular) intersection form 〈, 〉.



If γ is a local horizontal section of H∨Z = H1(X/S ,Z), the period∫
γ

dx
y is a solution of E (1/2, 1/2, 1). For example, the

hypergeometric function

F (1/2, 1/2, 1, t) =
1
π

∫ ∞
1

dx

y

is a solution.

The representation ρ : π1(S , t0)→ GL((HC)t0) is deduced from

ρ : π1(S , t0)→ Sp((HC)t0) ' SL2(Z).

Local monodromies around 0 and 1 can be calculated by choosing
suitable symplectic bases (γ, δ) of (HZ)t , using the description of
Xt as a 2-sheeted cover of P1

C.





• In a suitable symplectic base, T0 and T1 are given by

T0 =

(
1 2
0 1

)
T1 =

(
1 0
−2 1

)

• The global monodromy group is conjugate in SL2(Z) to the

subgroup Γ = {
(
a b
c d

)
} of index 2 of the congruence

subgroup Γ(2) defined by a ≡ d ≡ 1 mod 4. It acts freely on
the Poincaré upper half plane D = {Imz > 0}.

• Riemann’s period mapping t 7→ (
∫
γ ω,

∫
δ ω), where

ω = dx
y ∈ H0(Xt ,Ω

1), induces an isomorphism

S = P1
C − {0, 1,∞} ' D/Γ.

which extends to an isomorphism

P1
C ' M2 (= (D ∪ P1(Q))/Γ(2))

sending 0, 1, ∞ to the 3 cusps of M2 (Γ(2) = image of Γ(2)
in PSL2(Z)).



In particular, as χ(S) = −1, and [SL2(Z) : Γ] = 12, the Galois
cover

D → S = D/Γ

implies that S = BΓ, hence χ(Γ) = −1, and

χ(SL2(Z)) = − 1
12
,

as is well known.

It was discovered by Picard (around 1880) that the form of T0 is
“explained" by the fact that δ vanishes when t → 0, and that the
singularity of the surface X at (x = 0, y = 0) is equivalent to
u2 + v2 = t2 (Picard-Lefschetz formula).



2. The Milnor fibration

Let f : (Cn+1, 0)→ (C, 0) be a germ of holomorphic function
having an isolated critical point at 0 with f (0) = 0.

Milnor (1967) proved that, for ε > 0 small, and 0 < η << ε, if
B = {z |

∑n
0 |zi |2 ≤ ε}, D = {|t| ≤ η}, the restriction of f to

B ∩ f −1(D),
f : B ∩ f −1(D)→ D,

induces over D − {0} a locally trivial C∞ fibration in (real)
2n-dimensional manifolds with boundary

Mt = f −1(t) ∩ B,

trivial along the boundary ∂Mt .

This is now called the Milnor fibration, and Mt is called a Milnor
fiber.





Moreover, Milnor proved:

• Mt has the homotopy type of a bouquet of µ n-dimensional
spheres:

Sn ∨ · · · ∨ Sn (µ terms),

hence, if H̃ i = Coker(H i (pt)→ H i ),

H̃ i (Mt ,Z) =

{
Zµ if i = n

0 if i 6= n.

• The Milnor number µ = µ(f ) is given by

µ = dimCC{z0, · · · , zn}/(∂f /∂z0, · · · , ∂f /∂zn).



Letting t turn once around zero clockwise in D gives an
automorphism of Hn(Mt ,Z), the monodromy automorphism

T ∈ Aut(Hn(Mt ,Z)).

Milnor conjectured:
• The eigenvalues of T are roots of unity (i.e., T is
quasi-unipotent).

Grothendieck proved it, using Hironaka’s resolution of singularities
and his theory of RΨ and RΦ.



3. Grothendieck and Deligne

Given a 1-parameter family (Xt)t∈S of (algebraic, or analytic
varieties), and a point s ∈ S , Grothendieck (1967) constructed in
SGA 7 a complex of sheaves on Xs , called complex of vanishing
cycles, measuring the difference between H∗(Xs) and H∗(Xt) for t
“close" to s (special fiber Xs vs general fiber Xt), and a closely
related one, called nowadays complex of nearby cycles.

Set-up : complex analytic, or étale.

Will discuss only the étale one.



Étale set-up
S = (S , s, η), a strictly local trait
η: the generic point
η: a separable closure of η.

For f : X → S , get cartesian squares

Xs

��

i // X

f
��

Xη

��

joo

s // S ηoo

.

Work with coefficients ring Λ = Z/`νZ (` prime, invertible on S)
(or Z`, Q`, Q`, ` prime, invertible on S), write D(−) for D(−,Λ).

For K ∈ D+(Xη), the complex of nearby cycles is:

RΨf (K ) := i∗Rj∗(K |Xη) ∈ D+(Xs).

Comes equipped with an action of the inertia group I = Gal(η/η)
(complex of sheaves of I -modules on Xs).



For K ∈ D+(X ), get an (I -equivariant) exact triangle

K |Xs → RΨf (K |Xη)→ RΦf (K )→,

where RΦf (K ) is called the complex of vanishing cycles.

A generalization
S = (S , s, η) henselian trait, not necessarily strictly local. Take
strict localization of S at a separable closure s̃ of s:

S̃ = (S̃ , s̃, η̃)→ (S , s, η).

For f : X → S , base changed f̃ : X̃ → S̃ , and K ∈ D+(Xη) (resp.
K ∈ D+(X )), define

RΨfK (resp. RΦfK ) ∈ D+(Xs̃)

as RΨ
f̃
(K |X̃η̃) (resp. RΦ

f̃
(K |X̃ )). Get action of full Galois group

Gal(η/η) (η → η̃), not just of inertia I = Gal(η/η̃) ⊂ Gal(η/η).



General properties
• Functoriality Consider a commutative diagram:

X

f
��

h // Y

g
~~~~
~~
~~
~~

S

If h is smooth, the natural map

h∗RΨY → RΨXh
∗

is an isomorphism. In particular, if f is smooth, RΦf (Λ) = 0.
If h is proper, the natural map

Rh∗RΨX → RΨYRh∗

is an isomorphism. In particular (taking Y = S), if f is proper,
for K ∈ D+(Xη), we have a canonical isomorphism
(compatible with the Galois actions)

RΓ(Xs̃ ,RΨXK )
∼→ RΓ(Xη,K ).



For X/S proper, the triangle K |Xs̃ → RΨf (K |Xη)→ RΦf (K )→
gives an exact sequence

· · · → H i−1(Xs̃ ,RΦX (K ))→ H i (Xs̃ ,K )
sp→ H i (Xη,K )

→ H i (Xs̃ ,RΦX (K ))→ · · · ,

where sp is the specialization map:

sp : H i (Xs̃ ,K ) ' H i (X
S̃
,K )→ H i (Xη,K ).

When K = Λ, RΦX (Λ) is concentrated on the points x ∈ Xs̃ where
X/S is not smooth.



• Finiteness (Deligne, 1974) Nearby cycles are constructible:
RΨX induces

RΨX : Db
c (Xη)→ Db

c (Xs̃).

• Perversity (Gabber, 1981) RΨ commutes with
Grothendieck-Verdier duality:

RΨ(DXηK )
∼→ DXs̃

RΨK ,

induces Per(Xη)→ Per(Xs̃).



In the analytic setup, there are analogous definitions and properties,
and a comparison theorem (Deligne, 1968) between the étale RΨ
and the analytic RΨ, similar to Artin-Grothendieck’s comparison
theorem Betti vs étale.

Over C, nearby cycles have been extensively studied in connection
with Hodge theory (Steenbrink et al.), and the theory of D-modules
(M. Saito et al.).



A crucial example

Let X/S be as above, with S strictly local, and x → Xs be a
geometric point.

For K ∈ D+(X ), by general nonsense on étale cohomology, the
stalk of RΨ(K ) (:= RΨXK ) at x is given by

(RΨK )x = RΓ((X(x))η,K ).

Here X(x) is the strict localization of X at x (a kind of Milnor ball),
and (X(x))η its geometric generic fiber (a kind of Milnor fiber).





But (RqΨK )x is difficult to calculate!

Known for K = Λ (constant sheaf), when X has semistable
reduction at x , i.e., étale locally at x ,

X
∼→ S [t1, · · · , tn]/(t1 · · · tr − π)

(π a uniformizing parameter in S). Then:
•

(R1ΨΛ)x = Ker(Zr sum→ Z)⊗ Λ(−1)

•
(RqΨΛ)x = Λq(R1ΨΛ)x

(Λq = q-th exterior power, Λ(m) = m-th Tate twist).
• The inertia group I acts trivially on (RqΨΛ)x .



For X = S [t1, · · · , tr ]/(t1 · · · tr − π),
topological model of (X(x))η : fiber of

(S1)r → S1, (z1, · · · , zr ) 7→ z1 · · · zr .

Proof combines:
• Grothendieck’s calculation of tame nearby cycles

(RqΨΛ)t := (RqΨΛ)P (P ⊂ I the wild inertia), modulo
validity of Grothendieck’s absolute purity conjecture for
components of (X(x))s

• validity OK and (RqΨΛ)t = RqΨΛ (Rapoport-Zink, 1982).



Recall Grothendieck’s absolute purity conjecture:

For regular divisor D ⊂ X , X regular, Λ = Z/`νZ, · · · as above, `
invertible on X ,

Hq
D(X ,Λ) =

{
ΛD(−1) if q = 2
0 if q 6= 2.



Modulo absolute purity conjecture (OK if S/Q, and now in general
by Gabber (1994)), Grothendieck calculated tame nearby cycles for
X étale locally of the form S [t1, · · · , tn]/(utn1

1 · · · tnrr − π) (u a
unit):

RqΨΛt,x = Z[µ`m ]⊗ Λq(Ker(Zr
∑

nixi→ Z))⊗ Λ(−q)

where gcd(n1, · · · , nr ) = `md , (`, d) = 1.

Here I acts on Z[µ`m ] by permutation through its tame quotient
Z`(1), in particular, acts on RqΨΛt,x through a finite quotient,
hence quasi-unipotently on RΨΛt,x .

Combined with Hironaka’s resolution of singularities, and
functoriality of RΨ for proper maps, calculation yields a proof of
Milnor’s conjecture on the monodromy of isolated singularities.



4. Grothendieck’s local monodromy theorems

Grothendieck’s arithmetic local monodromy theorem is the
following:

Theorem
S = (S , s, η) henselian, k = k(s), ` prime different from
p = char(k). Assume that no finite extension of k contains all
roots of unity of order a power of ` (e. g., k finite). Let

ρ : Gal(η/η)→ GL(V )

be a continuous representation into a finite dimensional Q`-vector
space V . Then, there exists an open subgroup I1 ⊂ I , such that,
for all g ∈ I1, ρ(g) is unipotent.

Proof.
Exercise ! (Use strong action of Gal(k/k) on tame inertia It :
gσg−1 = σχ(g), χ = cyclotomic character.)



A corollary is that there exists a unique nilpotent morphism

N : V (1)→ V ,

called the monodromy operator, such that, for all σ ∈ I1 and x ∈ V ,

σx = exp(N(t`(σ)x)),

where t` : I → Z`(1) is the `-component of the tame character.

The operator N is Gal(η/η)-equivariant. In particular, for k = Fq,
if F ∈ Gal(η/η) is a lifting of the geometric Frobenius (a→ a1/q),
then

NF = qFN.

Led to the Weil-Deligne representation.



The geometric local monodromy theorem is the following result,
due to Grothendieck in a weaker form, later improved by various
authors:

Theorem
Let S be an (arbitrary) henselian trait. Let Xη be separated and of
finite type over η. Then, there exists an open subgroup I1 ⊂ I ,
independent of `, such that for all i ∈ Z and all g ∈ I1,

(g − 1)i+1 = 0

on H i (Xη,Λ) (resp. H i
c(Xη,Λ)).

History
• Existence of I1 (a priori `-dependent) for H i

c with i + 1
replaced by uncontrolled bound, proved by Grothendieck, as a
consequence of the arithmetic local monodromy theorem
(reduction to k small). Method generalized to H i once
finiteness of H i was proved (Deligne, 1974).



• Existence of I1 (a priori `-dependent), with bound i + 1,
proved by Grothendieck for Xη/η proper and smooth, modulo
validity of absolute purity and resolution of singularities, as a
consequence of local calculation of RqΨZ` in the (quasi-)
semistable case. Unconditional for i ≤ 1, or p = 0.

• Existence of I1, independent of `, but with i + 1 replaced by
uncontrolled bound, proved by Deligne (1996), using
Rapoport-Zink’s calculation of RΨZ` in the semistable case,
and de Jong’s alterations. Final result obtained by refinement
of this method (Gabber - I., 2014).



Why care for exponent i + 1 ?
Grothendieck’s motivation: for i = 1, exponent 2 is a crucial
ingredient in his proof of the semistable reduction theorem for
abelian varieties:

Theorem
With S as before, let Aη be an abelian variety over η. There exists
a finite extension η1 of η such that Aη1 acquires semistable
reduction over the normalization (S1, s1, η1) of S in η1, i.e., the
connected component A0

s1 of the special fiber of the Néron model
of Aη1 is an extension of an abelian variety by a torus:

0→ (torus)→ A0
s1 → (abelian variety)→ 0.



Deligne-Mumford (1969) deduced from it the semistable reduction
theorem for curves:

Corollary
Let Xη be a proper, smooth curve over η. There exists a finite
extension η1 of η such that Xη1 has semistable reduction over the
normalization S1 of S in η1, i.e., is the generic fiber of a proper,
flat X1/S1, with X1 regular, and special fiber (X1)s1 a reduced
curve having simple nodes.



• Corollary is the key tool in Deligne-Mumford’s proof of the
irreducibility of the coarse moduli space Mg (over any
algebraically closed field k).

• Proofs of corollary independent of theorem found later
(Artin-Winters, 1971; T. Saito, 1987).

• For char(k) = 0, a generalization of corollary to arbitrary
dimension proved by Mumford et al. (1973).

• Over S excellent (any char.), a generalization of corollary in a
weaker form given by de Jong (1996). Recently improved by
Gabber, Temkin.



5. The Deligne-Milnor conjecture

At the opposite of semistable reduction, we have isolated
singularities.

Let S = (S , s, η) be a strictly local trait, with k = k(s)
algebraically closed. Assume X regular, flat, finite type over S ,
relative dimension n, smooth outside closed point x ∈ Xs . Then
RΦΛ is concentrated at x , and in cohomological degree n:

(RΦqΛ)x =

{
0 if q 6= n

Λr if q = n

The coherent module Ext1(Ω1
X/S ,OX ) is concentrated at x , its

length
µ := lg(Ext1(Ω1

X/S ,OX ))

generalizes the classical Milnor number.



The action of I on RnΦΛ has a Swan conductor Sw(RnΦΛ) ∈ Z,
measuring wild ramification (= 0 if S of char. 0).

Deligne conjectured (SGA 7 XVI, 1972):

µ = r + Sw(RnΦΛ).

Generalizes Milnor formula over C.
Conjecture proved:
• if X/S finite, or x is an ordinary quadratic singularity, or S is
of equal characteristic (Deligne, loc. cit.)

• if n = 1 (Bloch, 1987 + Orgogozo, 2003)

General case open. In equal char., generalization by T. Saito (2015)
with Λ replaced by a constructible sheaf.



6. The Picard-Lefschetz formula

Let X/S as before, with relative dimension n. Assume x is an
ordinary quadratic singularity of X/S , i.e., étale locally at x , X/S
is of the form (π a uniformizing parameter):∑

1≤i≤m+1

xixi+m+1 = π

(n = 2m + 1), ∑
1≤i≤m

xixi+m + x2
2m+1 = π

(n = 2m, p > 2),∑
1≤i≤m

xixi+m + x2
2m+1 + ax2m+1 + π = 0

with a2 − 4π 6= 0 (n = 2m, p = 2).



Then
(RnΦΛ)x

∼→ Λ,

with action of inertia I trivial is n odd, through a character of order
2 if n even, tame if p > 2.

Assume now X/S proper, flat, of relative dimension n > 0, smooth
outside Σ ⊂ Xs finite, and each x ∈ Σ is an ordinary quadratic
singularity.





Then the monodromy of H∗(Xη) is described as follows (Deligne,
SGA 7 XV, 1972):

• For i 6= n, n + 1, H i (Xs)
sp
∼→ H i (Xη).

• For each x ∈ Σ, there exists δx ∈ Hn(Xη)(m) (n = 2m or
2m + 1), well defined up to sign, called the vanishing cycle at
x , and the sequence

0→ Hn(Xs)
sp→ Hn(Xη)

(−,δx )→
∑
x∈Σ

Λ(m − n)→ Hn+1(Xs)

sp→ Hn+1(Xη)→ 0.

is exact. One has (δx , δy ) = 0 for x 6= y , (δx , δx) = 0 for n
odd, and (δx , δx) = (−1)m.2 for n = 2m . Here
(a, b) = Tr(ab), where Tr : H2n → Λ(−n).



• The inertia I acts trivially on H i (Xη) for i 6= n, and on Hn(Xη)
through orthogonal (resp. symplectic) transformations for
n = 2m (resp. n = 2m + 1), given by the Picard-Lefschetz
formula:

For σ ∈ I , a ∈ Hn(Xη),

σa− a =

{
(−1)m

∑
x∈Σ

εx (σ)−1
2 〈a, δx〉δx if n = 2m

(−1)m+1∑
x∈Σ t`(σ)〈a, δx〉δx if n = 2m + 1.

Here t` : I → Z`(1) is the tame character, and εx : I → ±1 is
the unique character of order 2 if p > 2 and that defined by
the quadratic extension t2 + at + π = 0 for X locally at x of
the form ∑

1≤i≤m
xixi+m + x2

2m+1 + ax2m+1 + π = 0.



Difficult case in the proof: n odd, n = 2m + 1. Use factorization:

Hn(Xη)

σ−1
��

// ⊕x∈Σ(RnΦΛ)x

Var(σ)x
��

Hn(Xη) ⊕x∈ΣH
n
x (Xs ,RΨΛ)oo

,

where:
• top row is part of specialization sequence
• bottow row = composition of Hn

x → Hn and
Hn(Xs ,RΨΛ) = Hn(Xη).

• (RnΦΛ(m + 1))x and Hn
x (Xs ,RΨΛ)(m) are isomorphic to Λ,

with respective generators δ′x , δx defined up to sign, with
〈δ′x , δx〉 = 1, for a perfect pairing with values in

H2n
x (Xs ,RΨΛ(n))

Tr
∼→ Λ. We have δx 7→ δx ∈ Hn(Xη).



Hn(Xη)

σ−1
��

// ⊕x∈Σ(RnΦΛ)x

Var(σ)x
��

Hn(Xη) ⊕x∈ΣH
n
x (Xs ,RΨΛ)oo

,

The map Var(σ)x , called variation, is given by the
local Picard-Lefschetz formula:

Var(σ)x(δ′x) = (−1)m+1t`(σ)δx ,

which is the crux of the matter.
• Original proof (Deligne) required lifting to char. 0 and a
transcendental argument.

• Purely algebraic proof given later (I., 2000), as a corollary of
Rapoport-Zink’s theory of nearby cycles in the semistable case.



Over C, Milnor fiber Mt of f : (x1, · · · , x2m+2) 7→
∑

x2
i is fiber

bundle in unit balls of tangent bundle to sphere
Sn = {x ∈ Rn+1|

∑
x2
i = 1}.

• RnΦx corresponds to H̃n(Mt),
• Hn

x (Xs ,RΨ) corresponds to Hn
c (Mt − ∂Mt),

• δx dual to δ∨x ∈ Hn(Mt , ∂Mt) given by one fiber of Mt over Sn,
• δ′x dual to (δ′x)∨ ∈ H̃n(Mt) given by Sn ⊂ Mt .

Next slide: picture, for n = 1 (m = 0) of the dual variation map (T
the positive generator of π1(S1))

Var(T )∨ : H1(Mt , ∂Mt)→ H̃1(Mt),

δ∨x 7→ −(δ′x)∨.





Back to the Legendre family:

Xt : y2 = x(x − 1)(x − t).

Locally at x = y = t = 0, X/S is x2
1 + x2

2 = t2, instead of
x2
1 + x2

2 = t, hence variation is doubled, and get

T (δ) = δ, T (γ) = γ ± 2δ



Arithmetic applications

• Grothendieck used the PL formula in his theory of the
monodromy pairing for abelian varieties having semistable
reduction (SGA 7 IX), with a formula for calculating the group
of connected components of the special fiber of the Néron
model. Variants, generalizations, and arithmetic applications
by Raynaud, Deligne-Rapoport, Mazur, Ribet.

• Most importantly, the PL formula was the key to the
cohomological study (by Deligne and Katz, SGA 7 XVIII) of
Lefschetz pencils, which led to the fiirst proof, by Deligne, of
the Weil conjecture (Weil I).



Variants and generalizations

• Tame variation
Recall the case of isolated singularities:
X regular, flat, finite type over S , relative dimension n,
smooth outside closed point x ∈ Xs . Then RΦΛ is
concentrated at x , and in cohomological degree n:

(RΦqΛ)x =

{
0 if q 6= n

Λr if q = n

Moreover,
Hn
{x}(Xs ,RΨΛ) = Λr ,

with a perfect intersection pairing

RnΦ(Λ)x ⊗ Hn
{x}(Xs ,RΨΛ)→ H2n

{x}(Xs ,RΨΛ) = Λ(−n).



Finally, if I acts tamely on RΨΛ, i.e., through its quotient Z`(1),
and if σ is a topological generator of it, then σ − 1 induces an
isomorphism

Var(σ) : RnΦ(Λ)x
∼→ Hn

{x}(Xs ,RΨΛ),

called the variation at x (I., 2003), a (weak) generalization of the
local Picard-Lefschetz formula. The analogue over C had been
known since the 1970’s (Brieskorn).



• Thom-Sebastiani theorems
The Picard-Lefschetz theory describes vanishing cycles,
monodromy and variation at the isolated critical point {0} of
the function

x2
1 + · · ·+ x2

m.

The classical Thom-Sebastiani theorem (/C) describes the
same invariants at the isolated critical point {0} of a function
of the form

f (x1, · · · , xm) = f1(x1) + · · ·+ fm(xm),

where the x i are independent packs of ni + 1 variables, and
fi : Cni+1 → C has an isolated critical point at {0}.



If n =
∑

ni (= rel. dim. of f ), then (for coefficients Z)

RnΦf = ⊗1≤i≤mR
ni Φfi ,

with monodromy
T = ⊗1≤i≤mTi ,

and variation
Var = ⊗1≤i≤mVari .

Algebraic analogues ?
(over an alg. closed field k , in the étale set-up)



Deligne’s observation: analogue wrong in general, tensor product
must be replaced by

local convolution product ∗

of Deligne-Laumon.

Formulas in this framework given by Fu Lei (2014), I. (2015).



7. Euler numbers and characteristic cycles

Quite recently, T. Saito, in conjunction with Beilinson’s
construction of a singular support

SS(F) ⊂ T ∗X

for a constructible sheaf F on a smooth X/k (an equidimensional
conic closed subset of T ∗X , of dimension = dim(X )), defined a
characteristic cycle supported on SS(F), with coefficients in Z[1/p]
(actually, in Z (Beilinson)):

CC (F) ∈ Zdim(X )(T ∗X ),

proved a generalization of the Deligne-Milnor formula (equal
characteristic case), and as a corollary, a global index formula for
the Euler number of F .



The global index formula reads:

For X/k proper and smooth, k alg. closed, Λ = Q`,

χ(X ,F) = (CC (F),T ∗XX ).

Here χ(X ,F) =
∑

i (−1)idimH i (X ,F), T ∗X (X ) = 0-section of
T ∗X .

This work was inspired by Kashiwara-Schapira’s analogous theory
over C, and various conjectures of Deligne.

Ingredients
• Radon and Legendre transforms (Brylinski), geometric theory
of Lefschetz pencils (Katz, SGA 7 XVII)

• Ramification theory for imperfect residue fields (Abbes, T.
Saito)

• Deligne’s theory of vanishing cycles over general bases
(Deligne, Gabber, Orgogozo) (also used in generalized
Thom-Sebastiani theorems).



Thank you!


