
Pre-notes for Sapporo seminar, March 2011
De Rham-Witt complexes and p-adic Hodge theory

Luc Illusie

1. Historical sketch

1956 : • Cartier isomorphism
• Serre’s Witt vector cohomology,
• Dieudonné’s theory of Dieudonné modules

1963-65 : • Manin’s work on formal groups,
• Gauss-Manin connection

1967 : • Cartier et al. : big Witt vectors, Cartier modules
• Tate : p-divisible groups, Hodge-Tate decomposition
• Monsky-Washnitzer’s cohomology
• Grothendieck : crystalline cohomology

1970 : • Berthelot’s thesis
• Grothendieck’s crystalline Dieudonné theory, problem of the mysterious

functor
• Mazur-Ogus : slopes of Frobenius (Katz inequality)

1974 : • Bloch : complex of typical curves on K-groups

1975 : • Deligne-Illusie : de Rham-Witt complex

1980 : • Fontaine’s p-adic period rings Bcris, BdR

1980-85 : • fine study of de Rham-Witt (Nygaard, Illusie-Raynaud,
Ekedahl)
• Bloch-Kato’s proof of Hodge-Tate decompositions (good ordinary case)
• Fontaine-Messing’s proof of Ccris (dim X < p, e ≤ p − 1), syntomic

cohomology
• Faltings’s almost étale theory, tentative proofs of Ccris, CdR in general

1988 : • Fontaine-Jannsen’s Cst conjecture
• Fontaine-Illusie-Kato : log schemes
• Hyodo-Kato log crystalline cohomology, log de Rham-Witt complex
• Kato’s proof of Cst (2 dim X < p− 1)

1988 - ... : • Berthelot’s rigid cohomology, arithmetic D-modules

1997 : • Tsuji : proof of Cst in the general case
• Faltings : sketch of corrected proof of almost purity lemma and Cst

(details worked out by Gabber-Ramero)

1998 : • Niziol’s proof of Ccris using K-theory
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2000 : • Fontaine, Colmez, André, Kedlaya, Christol-Mebkhout, .... :
proofs of main conjectures on p-adic representations (weakly admissible ⇔
admissible, dR⇔ pst, p-adic local monodromy conjecture, finiteness of rigid
cohomology)

2004 : • Hesselholt-Madsen’s absolute de Rham-Witt complex / Z(p)

• Langer-Zink’s relative de Rham-Witt complex / Z(p)

• Zink’s theory of displays

2007 : • Olsson : stack theoretic variants of de Rham-Witt

2008 : • Niziol’s K-theoretic proof of Cst
• Davis-Langer-Zink : overconvergent de Rham-Witt complex

2011 : • Beilinson : new proof of CdR using derived de Rham complexes

Witt vector H∗

de Rham−Witt complex

fffff
fffff

fffff
fffff

ff

UUUU
UUUU

UUUU
UUUU

U

de Rham and crystalline H∗

XXXXX
XXXXX

XXXXX
XXXXX

XX
Hodge H∗

iiii
iiii

iiii
iiii

i

p− adic étale H∗

2. Witt vectors

2.1. Witt polynomials, ghost components
p = prime number
wn(X0, · · · , Xi, · · · ) :=

∑
0≤i≤n p

iXpn−i
:

wo = X0

w1 = Xp
0 + pX1

w2 = Xp2

0 + pXp
1 + p2X2,

· · ·
Theorem 2.1.1. For a set A, let

W (A) := AN = {(a0, · · · , an, · · · ), ai ∈ A}.
There exists a unique functor A 7→ W (A) from rings to rings such that

w : W (A)→ AN

is a homomorphism of rings, where AN is equipped with the product structure.
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Proof. [CL, II, §§ 5, 6]. Alternate proof : use Dwork’s lemma : If
f : A→ A, f(a) ≡ ap mod p, (x = (x0, · · · ) ∈ w(AN)) ⇔ (xi = f(xi−1) mod
pi ∀i > 0). See also : [Demazure, III].

Ghost map, ghost components. 1 = (1, 0, · · · , 0, · · · ), 0 = (0, · · · , 0),
Sn(a, b), Pn(a, b), S0 = a0 + b0, S1 = a1 + b1−

∑
0<i<p p

−1(p!/i!(p− i)!)ai0b
p−i
0 ,

P0 = a0b0, P1 = bp0a1 + b1a
p
0 + pa1b1.

2.2. Operators R, F , V
Wn(A), R, V , short exact sequences, [x] = (x, 0, · · · )
There exists a unique F : W (A) → W (A) functorial in A such that

w(Fa) = (w1(a), w2(a), · · · ).
Fa = (f0(a), · · · , fn(a), · · · ), fn(a) = fn(a0, · · · , an+1), f0(a) = ap0 + pa1,

fn(a) ≡ apn mod p
F : Wn(A)→ Wn−1(A)
FV = p, xV y = V ((Fx)y), F [x] = [xp], (V F = p) ⇔ (p = 0 in A).
p = 0 in A ⇒ Fa = (ap0, · · · , apn; · · · ).
m ∈ Z invertible in A ⇒ m invertible in Wn(A) ; in particular, if A is a

Z(p)-algebra, so is Wn(A).

2.3. Examples

• Wn(A), A perfect of char. p
V = pF−1, Wn(A) = W (A)/pnW (A), W (A) = the (unique) strict p-ring

B of residual ring A (W (A)
∼→ B, a 7→

∑
r(an)p

−n
pn, r : A → B (the)

system of multiplicative representatives)
k perfect field of char. p⇒ W (k) = (the) Cohen ring of k ; W (Fp) = Zp.

• Wn(Fp[t])

Wn(Fp[t]) = E0/V nE0,

where E0 ⊂ Zp[t
p−∞ ] is the set of

∑
k∈N[1/p] akt

k such that the denominator

of k divides ak for all k, with F , V induced by F , V on Qp[t
p−∞ ] given by

Ft = tp, V = pF−1.
(see [DRW, I 2.3] : E0 =

∑
V nZp[t] ; there’s a unique Zp-algebra homo-

morphism E0 → W (Fp[t]) compatible with V , sending t to [t] ; it is injective
and induces an isomorphism on grV .)

Gives a decomposition

Wn(Fp[t]) =
⊕

k integral

(Z/pnZ)[t]k ⊕
⊕

k not integral

V u(k)(Z/pn−u(k)Z)[t]p
u(k)k,

(pu(k) being the denominator of k, and [t] the Teichmüller representative).
A similar description holds for Fp[t1, · · · , tr] (loc. cit.).
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• Wn(Z(p))

Wn(Z(p)) =
∏

0≤i≤n−1

Z(p)V
i1

(as a Z(p)-module), with V i1.V j1 = piV j1 (0 ≤ i ≤ j < n.
(see [Hesselholt-Madsen, 1.2.4] : grVWn(Z(p)) free over Z(p), (V i1) split

the filtration ;
∑

0≤i<n V
i[ai] =

∑
0≤i<n biV

i1, with ai, bi in Z(p) (and the 1-1
correspondence (ai)↔ (bi) given by complicated functions))

2.4. Link with big Witt vectors
W(A) := (1+A[[t]])∗, u+W v := uv, (1−at)−1.W(1− bt)−1 := (1−abt)−1

A/Z(p) ⇒ W (A) ⊂W(A), W (A) = πW(A), πx = E(t)x,
E(t) = exp(

∑
n≥0 t

pn/pn) =
∏

n∈I(p)(1 − tn)−µ(n)/n ∈ W(Z(p)) (Artin-

Hasse exponential)
a = (a0, · · · ) 7→

∏
n≥0E(ant

pn), W (A)
∼→ πW(A)

(see [DRW 0 1.2], [Demazure], [Bloch]).

2.4. Sheafification
For A a ring in a topos T , and n ∈ N, n > 0, the presheaf U 7→ W (A(U))

(resp. U 7→ Wn(A(U))) is a sheaf of rings, denoted W (A) (resp. Wn(A). If
X is a scheme, the underlying space of X together with the sheaf Wn(OX)
is a scheme, denoted Wn(X) (LZ, Appendix). If p is nilpotent in A, VWnA
is nilpotent (since it’s a DP-ideal, see 3.2). If p is nilpotent on X, Wn(X) is
a thickening of X.

3. Crystalline cohomology

3.1. Inputs from complex analytic geometry : Poincaré lemma, Gauss-
Manin connection
• Poincaré lemma
analytic : X/C smooth analytic space : C→ Ω.

X/C = quasi-isomorphism

formal : k = field of char. 0, t = (t1, · · · , tn) : k → Ω.
k[[t]]/k = quasi-

isomorphism
algebraic : k = field of char. 0, t = (t1, · · · , tn) : k → Ω.

k[t]/k = quasi-
isomorphism

(n = 1 ; 0→ k → k[t]→ k[t]dt→ 0 exact, ti 7→ iti−1dt (i ≥ 1)
char(k) = p > 0 ⇒ Ω.

k[t]/k quasi-isomorphic to k[tp] ⊗ (k ⊕ ktp−1dt[−1])

(generalization : Cartier isomorphism)

• Gauss-Manin
relative Poincaré lemma : f : X → Y smooth morphism of complex

analytic spaces ⇒ f−1OY → Ω.
X/Y quasi-isomorphism.
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If f proper, then Rif∗C = local system, and

Hi
dR(X/Y ) := Rif∗Ω

.
X/Y = OY ⊗Rif∗C.

⇒ For Y/C smooth, get integrable connection ∇ = d ⊗ Id : Hi
dR(X/Y ) →

Ω1
Y ⊗Hi

dR(X/Y ), with horizontal sections Rif∗C.
If Y = smooth C-scheme, f : X → Y proper smooth, by GAGA

Hi
dR(X/Y )an = Hi

dR(Xan/Y an),

and by Manin there exists a canonical integrable connection

∇GM : Hi
dR(X/Y )→ Ω1

Y ⊗Hi
dR(X/Y )

such that (∇GM)an = ∇. Purely alg. construction. Variants : Katz-Oda,
Grothendieck.
⇒ Grothendieck’s observation : k = perfect field of char. p > 0, W =

W (k), t = (t1, · · · , tn), X/S = SpecW [[t]] proper smooth such thatHi
dR(X/S)

free of finite type ∀i. Let u : SpecW → S, v : SpecW → S such that u ≡ v
mod p. Get : Xu := u∗X, Xv := v∗X such that Xu ⊗ k = Xv ⊗ k = Y , and
H i
dR(Xu/W ) = u∗Hi(X/S), H i

dR(Xv/W ) = v∗Hi(X/S). By ∇ = ∇GM , get
isomorphism

χ(u, v) : H i
dR(Xu/W )

∼→ H i
dR(Xv/W ),

u∗(x) 7→
∑
m≥0

(1/m!)(u∗(t)− v∗(t))mv∗(∇(D)mx)

(x ∈ Hi
dR(X/S), D = (D1, · · · , Dn), Di = ∂/∂ti), with χ(v, w)χ(u, v) =

χ(u,w), χ(u, u) = Id (NB. (1/m!)(u∗(t) − v∗(t))m ∈ W ; series converge
p-adically : p > 2 easy, by Berthelot in general).
⇒ question (Grothendieck) : for Y/k proper, smooth, X1, X2 proper

smooth liftings /W , can one hope for an isomorphism (generalizing χ(u, v))

χ12;H i
dR(X1/W )

∼→ H i
dR(X2/W )

with χ23χ12 = χ13 ? (Monsky-Washnitzer : analogue in the affine case OK)
Answer : Yes : solution : crystalline cohomology H i(Y/W ) (depending

only on Y , with no assumption of existence of lifting), providing can. iso :

χ : H i(Y/W )
∼→ H i

dR(X/W )

for any proper smooth lifting X/W of Y , such that for X1, X2 as above,
χ2 = χ12χ1.
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Berthelot-Grothendieck’s definition : H i(Y/W ) = proj.limnH
i(Y/Wn),

H i(Y/Wn) = H i((Y/Wn)cris,O), (Y/Wn)cris : crystalline site, O = structural
sheaf of rings.

Later : H i(Y/W ) = H i(Yzar,WΩ.
Y ), WΩ.

Y = de Rham-Witt complex.

3.2. Divided powers
I ⊂ A = ideal ; divided powers on I = family γn : I → A, n ∈ N,

satisfying formally the properties of xn/n! :
γ0(x) = 1, γ1(x) = x, γn(x) ∈ I for n ≥ 1,
γn(x+ y) =

∑
p+q=n γp(x)γq(y),

γn(λx) = λnγn(x),
γp(x)γq(x) = ((p+ q)!/p!q!)γp+q(x)
γp(γq(x)) = (pq)!/p!(q!)pγpq(x).
In particular,

n!γn(x) = xn.

DP-ideal, DP-structure.

Examples

• I = pW ⊂ W (W = W (k), k perfect, char. p > 0). Then : ∀n ∈ N,

pn/n! ∈ W.

Proof. vp(n!) = (n −
∑

0≤i≤r ai)/(p − 1), with n =
∑

0≤i≤r aip
i, 0 ≤ ai < p,

hence
vp(p

n/n!) = (n(p− 2) +
∑

ai)/(p− 1) ≥ 0,

and > 0 if n > 0).
Note : p > 2 ⇒ limn→∞p

n/n! = 0
p = 2 : v2(2n/n!) =

∑
ai (= 1 for n = 2m)

Induced DP on Wm.
A/W finite totally ramified, [A : W ] = e, π ∈ A uniformizing parameter,

then (πA has a DP structure) ⇔ (e ≤ p− 1).

• M an A-module,

ΓM = ⊕n≥0ΓnM = A⊕M ⊕ Γ2M ⊕ · · ·

the DP-algebra on M , Γ+M = ⊕n>0ΓnM (if M is locally free of finite type,
ΓnM = (Sn(M∨))∨ = TSnM). 1 There exists a unique DP on Γ+M extend-
ing M → ΓnM , x 7→ x[n].

A < t1, · · · , tr >:= Γ(⊕1≤i≤rAti) = ⊕k=(k1,··· ,kr)At
[k].

1TSnM = (M⊗n)Sn is the submodule of symmetric tensors of degree n.
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Divided power Poincaré lemma. There exists a unique integrable connection d
on the A[t] module A < t > such that dt

[n]
i = t

[n−1]
i dt and d(xy) = dx.y+y.dx,

and A→ A < t > ⊗Ω.
A[t]/A is a quasi-isomorphism.

• A a Z(p)-algebra ⇒ (γn)n≥1 on I is determined by γp (or (p − 1)!γp).
(see [Grothendieck, p. 74] or [LZ, 1.2]). 2

• R a Z(p)-algebra⇒ γn(V x) = (pn−1/n!)V xn is in VW (R) for x ∈ W (R),
n > 0, and (γn) (n > 0), γ0 = 1 is a DP on VW (R), called canonical.

Divided power envelope (Berthelot’s construction). For (B, J), J an ideal
in B, there exists a (unique) pair (DB(J), J), J , an ideal in DB(J) equipped
with DP γ and a morphism (B, J)→ (DB(J), J) universal for morphisms in
(C,K), with K a DP-ideal. Called DP-envelope of (B, J).

Variant for B an A-algebra, with a PD-ideal I in A, with γ on J made
compatible with the DP on I (i. e. PD of I extend to IDB(J) and compatible
with the DP of J on the intersection). Case of interest : A = Wn(k), I = (p).

Example. M = A-module, B = SM = ⊕n∈NSnM the symmetric algebra
on M , J = S+M ⇒ (DB(J), J) = (ΓM,Γ+M).

3.3. The crystalline site.
X/Wn, Wn = Wn(k), k perfect of char. p > 0
Crys(X/Wn) crystalline site : objects : (U, T, γ), U Zariski open (or étale)

in X, U → T closed immersion /Wn, with DP γ on I = Ker(OT → OU)
compatible with the canonical DP on pWn (NB. pn = 0 ⇒ I = nilideal :
U → T a thickening) ; morphisms : obvious ; covering families : (Ui, Ti) →
(U, T ) such that (Ti → T ) covering (Zar or étale). Zariski (resp. étale)
crystalline site.

Sheaf on Zar (resp.ét) Crys(X/Wn) ↔ compatible family of Zar (resp.
ét) sheaves F(U,T ) and maps af : f ∗F(V,Z) → FU,T ) for f : (U, T ) → (V, Z)
such that af = iso if f : T → Z open (resp. étale). Topos of sheaves on
Crys(X/Wn) denoted (X/Wn)crys. Functorial in X/Wn. In particular, the
absolute Frobenius of X and σ : SpecWn → SpecWn, σ(a0, · · · , an−1) =
(ap0, · · · , a

p
n−1), induce a morphism F : (X/Wn)crys → (X/Wn)crys.

Example : (U, T ) 7→ OT is a sheaf of rings, called structural sheaf, denoted
OX/Wn .

Canonical maps.
i : X → (X/Wn)crys

2S. Yasuda observes that in fact the datum of a dp-structure is equivalent to that of
a single function g (= (p − 1)!γp) satisfying g(λx) = λpg(x), pg(x) = xp, and g(x + y) =
g(x) + g(y) +

∑
0<i<p(1/p)(p!/i!(p− i)!)xiyp−i.
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(X = Xzar or Xét), a closed immersion of ringed toposes,

0→ JX/Wn → OX/Wn → i∗OX → 0,

and a morphism of toposes (ringed by the constant ring Wn)

u = uX/Wn : (X/Wn)crys → X,

Γ(U, u∗F ) := Γ((U/Wn)crys, F ).
Crystalline cohomology

H i(X/Wn) := H i((X/Wn)crys,OX/Wn),

a Wn-module. In derived style

RΓ(X/Wn) := RΓ((X/Wn)crys,OX/Wn) = RΓ(X,Ru∗OX/Wn).

Remark. Crystalline site, topos, structural sheaf O, canonical map u
generalize to X → (S, I, γ), p nilpotent on S, I ⊂ OS ideal with DP γ
extendable to X.

3.4. Calculation of H∗(X/Wn)
Assume we have a closed embedding i : X → Z, of ideal I, with Z/Wn

smooth. Let (OD, I) be the DP-envelope of I (compatible with the DP on
(p)), so that X → Z factors as

X → D → Z,

with X → D a thickening. Then OD has a canonical integrable connection
d : OD → OD ⊗ Ω1

Z/Wn
such that d(x[m]) = x[m−1]dx for x ∈ I. Consider the

corresponding de Rham complex of Z/Wn with coefficients in OD :

OD ⊗ Ω.
Z/Wn

.

Theorem 3.4.1. (Berthelot-Grothendieck) There exists a canonical isomor-
phism

Ru∗OX/Wn

∼→ OD ⊗ Ω.
Z/Wn

in D(X,Wn).

(In fact, there is constructed a transitive system of isomorphisms for
variable embeddings X ⊂ Z.)

Corollary 3.4.2.

H∗(X/Wn)
∼→ H∗(Z,OD ⊗ Ω.

Z/Wn
).
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In particular, for X/k smooth, Z/Wn a smooth lifting,

H∗(X/Wn)
∼→ H∗dR(Z/Wn).

Proof of 3.4.1. The (sheaf defined by the) single DP-thickening X ⊂ D

covers the final object of (X/Wn)crys, its powers Dr (= DP-envelope of X
diagonally embedded in (Z/Wn)r) are acyclic for u∗, and u∗(OX/Wn|Dr) =
ODr . Therefore

Ru∗OX/Wn

∼→ Č(D,O)

with
Č(D,O) = (OD → OD2 → · · ·ODr → · · · ).

Using the DP-Poincaré lemma one shows that the above complex (called
the Čech-Alexander complex ) is isomorphic in D(X,Wn) to the de Rham
complex OD ⊗ Ω.

Z/Wn
.

Remark. Th. 3.4.1 generalizes to X → (S, I, γ), with an embedding
X → Z into Z smooth over S (see [B], [BO]).

3.5. Crystalline cohomology for X/k proper and smooth
For X/k proper and smooth,

H i(X/W ) := proj.limnH
i(X/Wn)

is a finitely generated W -module for all i. In fact, H i(X/W ) = H i of the
perfect complex RΓ(X/W ) := Rproj.limnRΓ(X/Wn). If Z/W is a proper,
smooth lifting of X/k, then

RΓ(X/k)
∼→ RΓdR(Z/W ) := RΓ(Z,Ω.

Z/W ).

For A/W finite, totally ramified, with e = [A : W ], and Z/A a proper,
smooth lifting of X (i. e. Z ⊗A k = X), one still has

H∗(X/W )⊗W A
∼→ H∗dR(Z/A)

if e ≤ p− 1 ; in general, only

H∗(X/W )⊗W K
∼→ H∗dR(Z/A)⊗A K,

for K = Frac(A) (Berthelot-Ogus).
For X/k proper, smooth, X 7→ H∗(X/W ) ⊗ K0 (K0 = Frac(W )) is a

Weil cohomology : Künneth, Poincaré duality, cycle class, with “correct”
Betti numbers, i. e. dimH i(X/W ) ⊗ K0 = dimH i(Xk,Q`) (k an algebraic
closure of k, ` 6= p), at least if X/k is projective (Katz-Messing) or liftable
to char. 0 (i. e. to A as above) (Berthelot-Ogus + Artin-Grothendieck).
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For k = Fq, q = pa, by Berthelot,

Z(X/Fq, t) =
∏

det(1− F at,H i(X/W )⊗K0)(−1)i+1

,

with det(1 − F at,H i(X/W )) ⊗ K0) = det(1 − F at,H i(Xk,Q`)) if X/k is
projective (Katz-Messing). 3

3.6. Slopes of Frobenius
Assume k algebraically closed, let X/k be proper, smooth, fix i ∈ Z, and

let H := H i(X/W ) ⊗ K0. Let ϕ : H → H be the σ-linear endomorphism
defined by F : (X/Wn)crys → (X/Wn)crys. Poincaré duality ⇒ ϕ is bijective,
i. e. H is an F-isocrystal. By Dieudonné-Manin,

(3.6.1) H = ⊕Hλ,

withHλ pure of slope λ, i. e. a direct sum ofmλ copies ofMλ := K0,σ[F ]/(F s−
pr), λ = r/s ≥ 0, (r, s) = 1, Fλ = σ(λ)F (the slopes 0 ≤ λ1 < · · · < λr of
H are the λ for which mλ 6= 0) (= p-adic valuations of “eigenvalues” of ϕ).
Newton polygon Nwti(X) = Nwt(H) : slope λi with horizontal length mλis
(r/s = λi). Hodge polygon Hdgi(X) = slope r with multiplicity the Hodge
number hr,i−r, hr,s := dimHs(X,Ωr

X/k). Basic inequality :

Theorem 3.6.2. (Mazur-Ogus) Nwti(X) lies above Hdgi(X).

In particular, for k = Fq, if H i(X,O) = 0, all eigenvalues of F a on
H i(X/W ) are divisible by q.

The proof of 3.6.2 uses the Cartier isomorphism as an essential tool. See
4.5.3 for a key lemma.

Remark. Assuming only k perfect, H decomposes as in (3.6.1) with Hλ

the largest sub-F -crystal such that the slopes of Hλ ⊗K0(k) are all λ, and
3.6.2 is still valid.

Remark. Suppose X = Z ⊗A k, Z/A proper, smooth as above. Then
hr,s(X) ≥ hr,s(ZK) (ZK = Z ⊗ K) (semi-continuity). Hence Hdgi(ZK) is
above Hdgi(X). p-adic Hodge theory (Ccris theorem) implies : Nwti(X) lies
above Hdgi(ZK).

4. The de Rham-Witt complex

4.1. Witt complexes : the Langer-Zink construction

32011/3/14 : I just received a preprint by J. Suh, Symmetry and parity of slopes of
Frobenius on proper smooth varieties, in which he shows that this result and the one above
still hold in the proper smooth, not necessarily projective case.
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Definitions. (1) B an A-algebra (in some topos T ), I ⊂ B an ideal with
DP γn, M a B-module. An A-dp-derivation D : B → M is an A-derivation
such that Dγn(x) = γn−1(x)Dx for x ∈ I (i. e. local section of I). Denote
by d : B → Ω̃1

B/A,γ (or Ω̃1
B/A) the universal A-dp-derivation

Hom(Ω̃1
B/A,M) = DerA,γ(B,M).

(2) A B/A-dga is a strictly anticommutative graded B-algebra P = ⊕n∈NP n,
equipped with an A-linear map d : P n → P n+1 such that d2 = 0 and d(xy) =
dx.y + (−1)ix.dy for x ∈ P i, y ∈ P j. A B/A-dp-dga is a B/A-dga such that
B → P 0 → P 1 is a dp-derivation. Initial B/A-dp-dga denoted

Ω̃.
B/A,

with Ω̃i = ΛiΩ̃1, a quotient of Ω.
B/A.

(3) For A a Z(p)-algebra, a Witt complex over B/A is a projective system
of Wn(B)/Wn(A)-dga Pn for n ≥ 1

· · · → Pn+1 → Pn → · · · → P1

equipped with maps F : Pn+1 → Pn, V : Pn → Pn+1, satisfying :
WnB → P 0

n compatible with F , V ;
Fx.Fy = F (xy) ;
xV y = V (Fx.y) :
FV = p ;
FdV = d ;
Fd[x] = [xp−1]d[x] for x ∈ B
(here [x] = [x].1P 0

· by abuse).
A map of Witt complexes is a map of projective systems compatible with

all the structures.
(NB. The terminology Witt complex is borrowed from [HM] ; a Witt

complex is called an F -V -procomplex) in [LZ].)

Standard formulas in any Witt complex : dF = pFd, V d = pdV ,
V (xdy1 · · · dyr) = V x.dV y1. · · · .dV yr,
(e. g. V dx = V FdV x = V 1.dV x = d(V 1.V x) = d(V (FV x)) = pdV x).

Theorem 4.1.1. (Langer-Zink). For A a Z(p)-algebra, the category of Witt
complexes over B/A admits an initial object, denoted

W.Ω
.
B/A,

called the de Rham-Witt (pro)-complex of B/A. Moreover :

11



(a) WnΩ0
B/A = WnB for all n ;

(b) The de Rham-Witt complex of B/A is a projective system of dp-dga,
for the canonical DP structure on VWn−1B. The (unique) map of dp-dga

Ω̃.
WnB/WnA → WnΩ.

B/A

is surjective, and an isomorphism for n = 1 :

Ω.
B/A

∼→ W1Ω.
B/A.

(c) If p = 0 in A, then V F = p.

Proof. One first checks the following two key points :
(i) If P. is a Witt complex, then, for all n, d : WnB → P 1

n is a dp-derivation
(and hence Pn is a dp-dga)

(e. g., for x ∈ B, dγp(V [x]) = γp−1(V [x])dV [x]⇔ pp−2dV [x]p = pp−2V [x]p−1dV [x],
and already dV [x]p = d([x]V 1) = V 1d[x] = V Fd[x] = V ([x]p−1d[x]) =
V [x]p−1dV [x])

(ii) If D : WnA → M is a dp-derivation into a WnA-module M , then
FD : Wn−1A→ F∗M defined by

FDx = [ap−1]D[a] +DV b

for x = [a] + V b, is a dp-derivation.
It follows from (ii) that the projective system Ω̃.

WnB/WnA
acquires maps

(of graded algebras) F : Ω̃.
WnB/WnA

→ Ω̃.
Wn−1B/Wn−1A

satisfying some of the

formulas in (3) (FdV x = dx for x ∈ WnB, Fd[x] = [xp−1]d[x] for x ∈ B,
dFx = pFdx, for x ∈ Wn+1B). The projective system W.Ω

.
B/A is then

constructed inductively as a quotient of Ω̃.
WnB/WnA

.

In (ii), the fact that FD is a derivation (already is additive) makes crucial
use of the fact that D is a dp-derivation. Compare with the definition of the
Cartier operator C−1, sending dx to the class of xp−1dx, which is additive
(modulo boundaries). For A of char. p, F : W2Ω1

B/A → Ω1
B/A lifts the Cartier

operator C−1 : Ω1
B/A → Ω1

B/A/dB.

For a morphism f : X → S of schemes over Z(p),

W.Ω.
X/S := W.Ω

.
OX/f−1(OS)

is called the de Rham-Witt (pro)-complex of X/S.
Obvious functoriality in B/A and X/S. We are mainly interested in the

case where p is nilpotent in S, and even S = Speck, k a perfect field of char.
p.

12



4.2. Other constructions

• If A is a perfect ring of char. p, W.Ω
.
B/A coincides with Illusie’s de Rham-

Witt complex constructed in [DRW] (if I. is the latter, I. is a Witt complex
over B/A, and the corresponding map W.Ω

.
B/A → I. is an isomorphism, as

the universal property of I. as a V -pro-complex yields an inverse to it). This
isomorphism is compatible with F , V . Langer-Zink’s approach simplifies the
construction of F on I..

• For k a perfect field of char. p > 2 and X/k smooth of dim. < p, it
is shown in [DRW] that W.Ω.

X/k coincides with Bloch’s complex of typical

curves on SKi+1, · · · → CiX → · · · . (Kato [K1] sketched how to remove the
restrictions p > 2 and dimX < p in Bloch’s construction, and presumably
the isomorphism extends.)

• For X/k smooth as above, it is shown in [DRW] that

WΩ.
X := proj.limWnΩ.

X/k

is the quotient of proj.limΩ.
WnOX

by the closure (for the canonical filtration)
of the p-torsion, a quotient considered first by Lubkin.

• For B a Z(p)-algebra, Hesselholt-Madsen [HM] define a Witt complex
over B as a projective system of strictly anticommutative WnB-graded al-
gebras En, with operators F , d, V as in (3) above, (with d2 = 0 and
d(xy) = dx.y + (−1)ix.dy), forgetting the WnA-linearity of d. They show
that the category of Witt complexes over B has an initial object, called the
(absolute) de Rham-Witt complex of B,

W.Ω
.
B.

They study it for p > 2. The Langer-Zink complex W.Ω
.
B/A is a quotient of

W.ΩB, studied in [He].

• Other variants : Olsson’s variant of the Langer-Zink construction for
certain morphisms of algebraic stacks [O], Davis-Langer-Zink overconvergent
de Rham-Witt complex for X/k smooth [DLZ].

4.3. Local description of WΩ.
X/S (smooth case)

• Étale extensions
(1) For X/S, WnΩi

X/S is quasi-coherent on Wn(X) for all i, n.

(2) Assume p nilpotent on S. Then, for Y an S-scheme and X → Y étale,
Wn(X)→ Wn(Y ) is étale, and

WnOX ⊗WnOY
WnΩi

Y/S → WnΩi
X/S

13



is an isomorphism.

Proof. The main point is to show the first assertion of (2). See [LZ, appendix].
Much easier if p = 0 (cf. [DRW]). It is shown in [LZ] that (2) holds if,
instead of assuming p nilpotent on S, one assumes that Y is F -finite, i. e.
the absolute Frobenius of Y ⊗ Fp is finite.

• Canonical bases
For X/S smooth, the determination of the local structure of WnΩ.

X/S is

reduced by (2) to that ofWnΩ.
B/A for a polynomial algebraB = A[T1, · · · , Tr].

Case A = Fp. We have the following description of WnΩ.
B := WnΩ.

B/Fp
,

due to Deligne :
WnΩ·B = E·/(V nE· + dV nE·),

where E. is the so-called complex of integral forms, defined by

E· ⊂ Ω·C/Qp
, C = Qp[T

p−∞

1 , · · · , T p−∞r ],

with
V = pF−1, FTi = T pi ,

where (ω ∈ Ei) ⇔ (ω and dω integral) (i. e. coefficients in Zp).
Proof. As E0/V nE0 = Wn(B), E. := (E·/(V nE· + dV nE·))n≥1 is a Witt

complex over B/Fp, so we have a natural map W.Ω.
B/Fp

→ E. of Witt com-
plexes. To show that it’s an isomorphism, one uses :

As a complex of Zp-modules, E has a natural grading by the group

Γ = (Z[1/p]≥0)r,

E = ⊕k∈Γ kE,

where x =
∑
ai(T )dlogTi belongs to kE, i. e. is of homogeneous of degree k,

if and only if the polynomials ai(T ) are (here i = (i1 < · · · < im), dlogTi =
dlogTi1 · · · dlogTir).

Each kE
m has a canonical basis consisiting of elements ei(k) (i = (i1 <

· · · < im)) sent to specific elements in the de Rham-Witt complex.
Example : r = 1, B = Fp[T ], kE

0 = Zpe0(k), kE
1 = Zpe1(k), with

e0(k) = pu(k)T k if k /∈ Z where pu(k) is the denominator of k, e0(k) = T k

otherwise, e1(k) = T kdlogT (k > 0). Then e0(k) is sent to [T ]k if k ∈ Z, to

V u(k)[T ]p
u(k)k if k /∈ Z, e1(k) to [T ]kdlog[T ] := [T ]k−1d[T ] if k ∈ Z (k > 0),

dV u(k)[T ]p
u(k)k if k /∈ Z. One gets direct sum decompositions

Wn(B) =
⊕

k integral

(Z/pnZ)[T ]k ⊕
⊕

k not integral

V u(k)(Z/pn−u(k)Z)[T ]p
u(k)k,

14



WnΩ1
B/Fp

=
⊕

k>0, k integral

(Z/pnZ)[T ]kdlog[T ]

⊕
⊕

k not integral

dV u(k)(Z/pn−u(k)Z)[T ]p
u(k)k,

WnΩi
B/Fp

= 0, i > 1.

Key observation (Deligne) : WnΩ.
B/Fp

contains the de Rham complex Ω.
(Z/pnZ)[T ]

as a direct summand :

WnΩ.
B/Fp

= Ω.
(Z/pnZ)[T ] ⊕ (WnΩ.

B/Fp
)not integral,

and the complement (WnΩ.
B/Fp

)not integral is acyclic.
The limit

WΩ·B := proj.lim.WnΩ·B,

can be described as

WB = {
∑

k∈N[1/p]

akT
k, ak ∈ Zp, den(k)|ak∀k, lim

k→∞
ak = 0}

WΩ1
B = {

∑
k>0,k∈N[1/p]

akT
k(dT/T ), ak ∈ Zp, lim

k→∞
den(k).ak = 0}

WΩi
B = 0, i > 1.

All this is generalized to any r in [DRW] and to any A in [LZ]. In particular
:

WnΩ.
A[T1,··· ,Tr]/A = Ω.

Wn(A)[T1,··· ,Tr]/Wn(A) ⊕ (WnΩ.
A[T1,··· ,Tr]/A)not integral,

with the not integral part acyclic. And for X/S smooth of relative dimension
d :

WnΩ.
X/S = (0→ WnOX → WnΩ1

X/S → · · · → WnΩd−1
X/S → WnΩd

X/S → 0).

• The canonical filtration
WΩ.

X/S := proj.limnWnΩ.
X/S,

FilnWΩ.
X/S := KerWΩ.

X/S → WnΩ.
X/S

Then ([LZ)) : For X/S smooth,

FilnWΩi
X/S = V nWΩi

X/S + dV nWΩi−1
X/S.

Moreover ([DRW] for S perfect, [BER] in general) : For S/Fp, X/S smooth,
grnWΩi

X/S is an extension of Ωi−1
X/S/ZnΩi−1

X/S by Ωi
X/S/BnΩi

X/S :

0→ Ωi
X/S/BnΩi

X/S → grnWΩi
X/S → Ωi−1

X/S/ZnΩi−1
X/S → 0

15



In particular, grn is locally free of finite type, of formation compatible
with base change.

Here, Zn and Bn are the iterated cycles and boundaries of Ω.
X/S de-

fined inductively by the Cartier isomorphism, from Z0 = Ωi, B0 = 0, C−1 :
BnΩi

X(p)/S

∼→ Bn+1Ωi
X/S/B1, C−1 : ZnΩi

X(p)/S

∼→ Zn+1Ωi
X/S/B1.

4.3. De Rham-Witt complex and crystalline cohomology

Theorem 4.3.1. k perfect field of char. p, X/k smooth. There exists a
canonical isomorphism of projective systems of D(X,Wn) :

Ru∗OX/Wn

∼→ WnΩ.
X/k

(notations of 3.4.1).

This isomorphism is compatible with the multiplicative structures, and
functorial in X/k. It induces isomorphisms

RΓ(X/Wn)
∼→ RΓ(X,WnΩ.

X/k),

H∗(X/Wn)
∼→ H∗(X,WnΩ.

X/k).

Proof. First, suppose X affine. Choose an embedding i : X → Z into a

smooth W -scheme Z. Let Zn := Z ⊗ Wn. Construct inductively a com-
patible system of Wn-extensions un : WnX → Zn of the inclusion in :
X ↪→ Zn. Let X ↪→ Dn → Zn be the dp-envelope of in. As the ideal
of X ↪→ WnX has divided powers, un uniquely factors through Dn. We
get maps Ω.

Zn/Wn
→ Ω.

WnX/Wn
→ WnΩ.

X/k, whose composite factors through

Dn ⊗ Ω.
Zn/Wn

= Ω̃.
Dn/Wn

as d : WnOX → WnΩ1
X/k is a dp-derivation. The

resulting map
Ru∗OX/Wn

∼→ Dn ⊗ Ω.
Zn/Wn

→ WnΩ.
X/k

does not depend on the choice of the embedding. To check it’s an isomor-
phism, we may assume Zn lifts X, and even reduce to X = Speck[t1, · · · , tr],
Zn = SpecWn[t1, · · · , tr]. Then the result follows from the fact that the
inclusion

Ω.
Zn/Wn

⊂ WnΩ.
X/k

is a quasi-isomorphism (cf. 4.3, end of Canonical bases).
General case : hypercover by open affines, use cohomological descent.

Comparison th. 4.3.1 extended by Langer-Zink to X/S smooth, p nilpo-
tent on S :

Ru∗OX/Wn(S)
∼→ WnΩ.

X/S.

Same proof.
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Remark. The proof actually gives an isomorphism in the derived category
of projective systems ofWn-modules overX (this is finer, and needed to apply
Rlim functors).

4.4. The slope spectral sequence

4.4.1. Suppose now X/k proper and smooth. Then 4.3.1 gives :

RΓ(X/W )
∼→ RΓ(X,WΩ.

X/k)

and RΓ(X/W ) is a perfect complex, with RΓ(X/W ) ⊗LW k → RΓ(X,Ω.
X/k).

Moreover :
• The (σ-linear) endomorphism ϕ of RΓ(X/W ) induced by the absolute

Frobenius of X is induced by the endomorphism Φ of WΩ.
X/k such that

Φ = piF in degree i.
• F : WΩd

X/k → WΩd
X/k is bijective, which yields a σ−1-linear endomor-

phism v of RΓ(X/W ) such that ϕv = vϕ = pd.
The next result is deeper :

Theorem 4.4.2. For any (i, j), the canonical map

Hj(X,WΩi
X/k)→ proj.limnH

j(X,WnΩi
X/k)

is an isomorphism, Hj(X,WΩi
X/k) is separated and complete for the V -

topology, its subgroup T i,j of p-torsion is killed by a power of p, and

Hj(X,WΩi
X/k)/T

i,j

is a free W -module of finite rank.

Proof. The argument in [DRW], imitated from Bloch, consists in study-
ing H∗(X,WΩ≤i), with the operator Vi given on WΩ≤i by pi−jV in de-
gree j. Using the structure of grnW.Ω

., one shows that H∗(X,WΩ≤i) is
finitely generated over Wσ[[V ]] and of finite length modulo V . Using Φ (with
ΦVi = ViΦ = pi+1, this implies that H∗(X,WΩ≤i) is sum of a free W -module
of finite rank and a p-torsion module killed by a power of p, and 4.4.2 follows
by dévissage.

Remark. As observed in [BBE], the proof shows that the conclusion of
4.4.2 holds for i = 0 and X/k proper, not necessarily smooth.

Corollary 4.4.3. Hj(X,WΩi
X/k)/T

i,j, with the operators F , V induced by

F , V on WΩi, is the Cartier module of a smooth formal p-divisible group.
Equipped with the operator piF , it’s an F -crystal of slopes in [i, i+ 1[.

Corollary 4.4.4. The (Φ-equivariant) spectral sequence

Eij
1 = Hj(X,WΩi

X/k)⇒ H i+j(X,WΩ.
X/k) (= H i+j(X/W ))
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degenerates at E1 modulo torsion and gives isomorphisms

Hj(X,Ωi
X/k)⊗K0

∼→ (H i+j(X/W )⊗K0)[i,i+1[,

where (H i+j(X/W )⊗K0)[i,i+1[ is the part of the F -isocrystal H i+j(X/W )⊗K0

of slopes in [i, i+ 1[

The spectral sequence of 4.4.4 is called the slope spectral sequence.

In particular :

Corollary 4.4.5. There is a natural isomorphism, for all j,

Hj(X,WOX)⊗K0
∼→ (H i(X/W )⊗K0))[0,1[

Remark. It was recently shown by Berthelot, Bloch and Esnault [BBE]
that 4.4.5 extends to the proper, possibly singular case, provided thatH i(X/W )⊗
K0 is replaced by Berthelot’s rigid cohomology H i

rigid(X/K0).

Remark. The slope spectral sequence is studied in more detail in [DRW],
[IR], and by Ekedahl [E]. See also the survey [I]. One application, described
in [DRW, II 5.12], is the (refined) Igusa-Artin-Mazur inequality : if k is
algebraically closed, and X/k projective, smooth, then

ρ = b2 − 2h− r,

where ρ = rkNS(X/k), b2 = dimH2(X/W ) ⊗ K0, h = dim(H2(X/W ) ⊗
K0)[0,1[, and r = rkTpH

2(X,Gm). When Artin-Mazur’s formal Brauer group
Φ2 of X is representable by a smooth formal group, h is the dimension of its
p-divisible part. The projectiveness assumption is used in loc. cit. to ensure
a symmetry property of slopes of Frobenius on H2. This property has been
shown by J. Suh to actually hold in the general proper smooth case as well
(see footnote 2).

4.5. Higher Cartier isomorphisms, alternate construction of the de Rham-
Witt complex

For X/S smooth, S/Fp, the Cartier isomorphism is an isomorphism of
graded algebras

C−1
X/S : ⊕Ωi

X(p)/S

∼→ ⊕HiF∗Ω
.
X/S,

where X(p) = pull-back of X by the absolute Frobenius of S, F : X → X(p)

the relative Frobenius, such that C−1 sends a ⊗ 1 ∈ OX(p) to ap and da ⊗ 1
to the class of ap−1da.

Suppose S = Speck, k perfect of char. p. Then F : W2Ωi
X → Ωi

X lifts
the absolute Cartier isomorphism C−1 (composed of C−1

X/S and the canonical
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isomorphism Ωi
X
∼→ ΩX(p)) (cf. 4.1.1 (ii)). (We drop /k for short.) More

generally :

Theorem 4.5.1. For n ≥ 1, F n : W2nΩi
X → WnΩi

X induces an isomorphism

WnΩi
X
∼→ HiWnΩ.

X ,

compatible with products, and equal to C−1 for n = 1.

Proof. Main point : show : F nW2nΩi
X = ZWnΩi

X . The proof given in
[DRW] is insufficient, corrected in [IR]. Makes crucial use of the description
of WnΩ.

X for X = Speck[t1, · · · , tr] in terms of the complex of integral forms
(4.3) and, of course, of the Cartier isomorphism.

By 4.3.1, F n induces Wn-linear isomorphisms

(4.5.2) WnΩi
X
∼→ σn∗Hi(X/Wn),

where Hi(X/Wn); = Riu∗OX/Wn .

Assume X lifted to formal smooth Z/W , let Zn := Z ⊗ Wn. Then
Hi(X/Wn) = Hi

dR(Zn/Wn) (3.4.1), and (4.5.2), for i = 0 and i = 1 are
given by :

i = 0 : a = (a0, · · · , an−1) ∈ WnOX sent to bp
n

0 + pbp
n−1

1 + · · · + pn−1bpn−1

in H0
dR(Zn/Wn), where bi in OZ lifts ai,

i = 1 : d(a0, · · · , an−1) in WnΩ1
X sent to

∑
bp

n−i−1
i dbi in H1

dR(Zn/Wn).
For i = 0, (4.5.2) factors the n-th ghost component wn : Wn+1(OZn+1)→

OZn+1 , and, for i = 1, the composite map (4.5.2)dR : Wn+1OX → Ω1
Zn
/dOZn

lifts F nd : Wn+1O → Ω1
X/dOX .

⇒ reconstruction of W.Ω
.
X (suggested by Katz) :

WnΩi
X := σn∗Hi(X/Wn),

F : Wn+1Ωi
X → WnΩi

X

given by the restriction Hi(X/Wn+1)→ Hi(X/Wn),

d : WnΩi
X → Wn+1Ωi+1

X ,

given locally by the Bockstein operator associated with the exact sequence

0→ Ω.
Zn/Wn

→ Ω.
Z2n/W2n

→ Ω.
Zn/Wn

→ 0,

where the first map is multiplication by pn,

V : WnΩi
X → Wn+1Ωi

X
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induced by multiplication by p on Ω.
Zn+1/Wn+1

.

To reconstruct R : Wn+1Ωi
X → WnΩi

X , suppose Z/W admits a formal
lifting Φ of Frobenius (exists if X/k affine). Then, Φ∗ is divisible by pi on
Ωi
Z/W , let f = p−iΦ on Ωi

Z/W . For x ∈ Hi(X/Wn+1) = Hi
dR(Zn+1/Wn+1),

there exists y ∈ Ωi
Z/W , unique modulo pnΩi

Z/W + dΩi−1
Z/W , such that x = fy

mod pn+1Ωi
Z/W + dΩi−1

Z/W . Then, for yn the image of y in Ωi
Zn/Wn

, dyn = 0,

and x 7→ class of yn in Hi
dR(Zn/Wn) defines R.

Existence and uniqueness of y rely on the following key lemma :

Lemma 4.5.3. (Ogus). With the above notations, let L ⊂ Ω.
Z/W be the

subcomplex defined by

Li = {x ∈ piΩi
Z/W |dx ∈ pi+1Ωi+1

Z/W}.

Then Φ∗ : Ω.
Z/W → Ω.

Z/W factors through L and induces, for each n ≥ 1, a
quasi-isomorphism

Ω.
Zn/Wn

→ Ln := L⊗Wn.

(To get y from x, apply 4.5.3 to the class of pix̃ in Hi(Ln), for x̃ ∈ Ωi
Z/W

lifting x.)
Proof. : [BO, 8.8] : dévissage, reducing to Cartier isomorphism. Lemma

4.5.3 is the crucial ingredient in the proof of the Mazur-Ogus theorem 3.6.2.

Applications.

• Structure (for X/W proper and smooth) of the conjugate spectral se-
quence

Eij
2 = proj.limH i(X,Hj(X/Wn))⇒ H i+j(X/W )

(degenerates at E2 modulo torsion), and analysis of the log-Hodge-Witt groups

Hj(X,WΩi
log) := proj.limHj(X,WnΩi

X,log),

where WnΩi
X,log ⊂ WnΩi

X is the additive subsheaf étale locally generated by
the forms dlog[x1] · · · dlog[xi], for xm ∈ O∗X , 1 ≤ m ≤ i.

• Construction of W.Ω
.
X via (4.5.2) works in the log context, see §6

(Hyodo-Kato).

5. Review of log schemes

Pre-log structure, log structure, log scheme
Examples : trivial log str., OX ∩ j∗OU
Morphisms ; {schemes} ⊂ {log schemes}
Associated log structure Ma : push-out of

O∗ α−1(O∗)oo //M
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((u, a) ≡ (v, b) ⇔ ∃c, d ∈ α−1(O∗)|ad = bc, cu = dv for (u, a) and (v, b) in
(O∗,M)), universal property

f ∗M := (f−1M)a, strict morphism
Chart P →M , X → SpecZ[P ] ; chart of a morphism
Examples : SpecOS[T1, · · · , Tr], (t1 · · · tr = 0) ⊂ SpecA, A regular lo-

cal, (ti) regular parameters ; trait, standard log point (N → k, 1 → 0)a,
semistable reduction

P → P gp, integral, fine, fs monoid (resp. log scheme)
Examples : dnc, affine toric variety, toric variety (torus embedding),

toroidal embedding
Fiber products, base change, strict case
Ω1

(X;M)/(S,N), d, dlog, α(a)dloga = dα(a)

Ω1
(X;M)/(S,N) = (Ω1

X/S ⊕ (OX ⊗ZM
gp)/ < (dα(a), 0)− (0, α(a)⊗ a), (0, 1⊗

b) > (a ∈M gp, b ∈ N gp)
ω1
X/S, Ω1

X/S, Ωi
(X,M)/(S,L), log dR complex Ω.

(X,M)/(S,L) (or ω.X/S, or Ω.
X/S,

or Ω.
X/S)

Examples : relative dnc : Ω.
X/S(logD), semistable reduction : Ω.

X/S(log(D/E)),
toric varieties

Exact closed immersion, log thickening
Log smooth, log étale ; strict case ; chart characterization
Examples : toroidal embeddings, relative dnc, semistable reduction, Speck[x, y/x]→

Speck[x, y], log blow-up
Cartier isomorphism :
• semistable type : (s = Speck, L) standard log point, (X,M) of semistable

type over (s, L) : étale loc. X = Spec k[t1, · · · , td]/(t1 · · · tr), with charts

k[t1, · · · , td]/(t1 · · · tr) Nroo

k

OO

N

17→(1,··· ,1)

OO

17→0oo

(e. g. special fiber of semistable scheme over trait).
• more generally, log smooth Cartier type : f : (X,M) → (S, L), S/Fp,

log smooth and saturated morphism of fs log schemes (saturated = (log)
integral + reduced geometric fibers). (⇔ (log) integral and in the Frobenius
diagram (with cartesian square)

(X,M)

f
��

(X ′,M ′)oo

��

(X,M)Foo

fyyrrr
rrr

rrr
r

(S, L) (S, L)
Fabsoo
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the relative Frobenius F is exact, see [K2], [Ts, II 3.1]) (Fabs : a 7→ ap on OS
and on L). Examples : (poly) semistable reduction, log smooth saturated
toric morphism SpecA[P ] → SpecA[Q] ; Kummer étale (e. g. xn = t,
(n, p) = 1) : not Cartier type.

log smooth, Cartier type ⇒ Cartier isomorphism

C−1 : Ωi
(X′,M ′)/(S,L)

∼→ F∗HiΩ.
(X,M)/(S,L),

(a⊗ 1)dlogx1 · · · dlogxr 7→ apdlogx1 · · · dlogxr,

a ∈ OX , xi ∈M .

(⇒ decompositions of Deligne-Illusie type of F∗HiΩ.
(X,M)/(S,L) in situa-

tions lifted mod p2 and dimf < p. Applications to (classical) Hodge theory
(e. g. [IKN]).

Definitions of integral and exact : P , Q fine monoids, h : Q→ P integral
if Z[Q]→ Z[P ] flat ; h exact if Q = (hgp)−1(P ) in Qgp ; f : (X,M)→ (Y,N)
integral (resp. exact) if (f ∗N)x →Mx integral (resp. exact) ∀x ∈ X.

6. De Rham-Witt complex and log crystalline cohomology

See slides.

7. The Hyodo-Kato isomorphism

See [HK] and slides Illusie-Sapporo-Hyodo-Kato.pdf. See also [Nak, §7]
for complements and corrections to [HK]. For a new approach to the Hyodo-
Kato isomorphism, see [Be].

8. Rational points over finite fields for regular models of algebraic
varieties of Hodge type ≥ 1, after P. Berthelot, H. Esnault and K.
Rülling

8.1. Slopes of Frobenius and rational points

Recall : For q = pa, k = Fq, Y/k separated, finite type,

Z(Y, t) = exp(
∑
n≥1

|Y (Fqn)|tn/n) =
∏

(1− tdeg(x))−1 ∈ (1 + tZ[[t]]) ∩Q(t),

(Dwork), hence

Z(Y, t) =
∏

(1− αit)/
∏

(1− βjt),

αi, βj algebraic integers, αi 6= βj for all (i, j). By Grothendieck,

Z(Y, t) =
∏

det(1− F at,H i
c(Yk,Q`))

(−1)i+1

.

22



with inverse roots of det(1 − F at,H i
c(Yk,Q`)) algebraic integers (Deligne),

but we won’t use these results in this section. The next statement is an easy
consequence of the slope spectral sequence :

Proposition 8.1.1. Assume : (i) Y/k geometrically connected,
(ii) Y/k proper and smooth,
(iii) H i(Y,WOY )⊗Q = 0 for all i > 0.

Then :
(iv) For all finite extensions k′ = Fqn of k, |Y (k′)| ≡ 1 mod qn.

Proof. Recall Berthelot’s formula

(∗) Z(Y, t) =
∏

Pi(t)
(−1)i+1

,

Pi(t); = det(1− F at,H i(Y/W )).

As H i(Y,WOY ) ⊗Q = (H i(Y/W ) ⊗Q)[0,1[, (iii) ⇒ all slopes of Frobenius
on Hm(Y/W ) for m > 0 are ≥ 1, hence (Dieudonné-Manin) all αi, βj above
appearing in Pm, m > 0 are divisible by q. As P0(t) = 1− t by (i),

Z ′/Z =
∑
n≥1

|Y (Fqn)|tn−1 =
∑
n≥1

ant
n−1,

with an = |Y (Fqn| ≡ 1 mod qn.

In [BBE], Berthelot, Bloch and Esnault show that (i) and (iii) suffice
for (iv) to hold. By Étesse-Le Stum, Berthelot’s formula (*) holds with
crystalline cohomology replaced by Berthelot’s compactly supported rigid
cohomology H i

c,rig(Y/K0), and it is proven in [BBE] that a suitably defined
cohomology group with compact supports H i

c(Y,WO) ⊗ Q is finite dimen-
sional and, again, calculates the part of H i

c,rig(Y/K0) of slope < 1.

8.2. Berthelot-Esnault-Rülling’s theorem

Suppose now that Y = Xk is the special fibre of a scheme X over a dvr
R of mixed char. (0, p), with perfect residue field k and fraction field K.

Theorem 8.2.2. ([BER]) Assume :
(i) X regular, and proper and flat over R ;
(ii) XK geometrically connected ;
(iii) H i(XK ,OXK

) = 0 for all i > 0.
Then, if k = Fq, |Xk(Fqn)| ≡ 1 mod qn for all n ≥ 1.

Remarks.

(1) Esnault proved the conclusion of 8.2.2 assuming (i), (ii), and instead
of (iii), that XK is of coniveau ≥ 1 in degree > 0, i. e. for each i > 0, there
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exists a dense open U in XK such that the restriction map H i(XK ,Q`) →
H i(UK ,Q`) is zero. By mixed Hodge theory this condition implies (iii), and
should be equivalent to it according to Grothendieck’s generalized Hodge
conjecture.

(2) By Zariski connectedness theorem (i) and (ii) in 8.2.2 imply Y = Xk

is geometricall connected. Therefore, by [BBE] 8.2.2 follows from :

Theorem 8.2.3. ([BER]) Under the assumptions (i), (ii), (iii) of 8.2.2 one
has (for Y = Xk) :

(iv) H i(Y,WOY )⊗Q = 0 for all i > 0.

Actually, an even stronger result is proven in [BER] :

Theorem 8.2.4. ([BER]) Let X be regular and proper and flat over R. If,
for one q ∈ Z, Hq(XK ,O) = 0, then (for Y = Xk) Hq(Y,WOY )⊗Q = 0.

Note : base changing by SpecR̂ changes neither assumptions nor conclu-
sions so we may and will assume R complete.

Particular cases.

(a) Assume X/R smooth. Then the conclusion of 8.2.4 means that the
slopes of Frobenius on Hq(Y/W ) are ≥ 1. Assume furthermore :

(a1) Hq(X,O) = Hq+1(X,O) = 0.
Then, by base change, Hq(Y,O) = 0, so, by the Mazur-Ogus inequality,

the slopes ofHq(Y/W ) are≥ 1 (One can also show by inductionHq(Y,WnO) =
0, hence Hq(Y,WO) = 0.)

Without the assumption (a1), it may happen that Hq(Y,O) 6= 0 (Serre’s
examples of failure of Hodge symmetry in char. p). In this case, the Mazur-
Ogus inequality says nothing. However, as observed in 3.6.2, p-adic Hodge
theory (the Ccris theorem) implies that the Newton polygon of Hq(Y/W ) is
above the Hodge polygon of Hq

Hdg(XK), hence the slopes of Hq(Y/W ) are
≥ 1.

(b) Assume X/R has semistable reduction. By the slope spectral sequence
for the log de Rham-Witt complex, the conclusion of 8.2.4 still means that
the slopes of Frobenius on Hq(Y/(W,W (L)) ((Speck, L) the standard log
point) are ≥ 1, and this is true by the Cst theorem.

8.3. Strategy of proof of 8.2.4.

The general idea is to reduce to the semistable case by using de Jong
alterations and cohomological descent.

• Use of de Jong alterations
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Starting point : because X is integral and flat over R, by de Jong, there
exists a finite extension K1 of K, with ring of integers R1, and a commutative
diagram

X

��

Zoo

��
SpecR SpecR1

oo

,

with Z integral, semistable over R1, and Z → X a projective alteration.
The morphism ZK1 → XK1 may not be surjective, but passing to a Galois
extension K ′ of K containing K1 and taking a disjoint sum X0 of translated
by the Galois group of pull-backs of Z/SpecXR1 to SpecR′, (X0)K′ → XK′ is
surjective.

Iteration : Fix m > q. Iterating the process, one constructs an augmented
m-truncated simplicial scheme

ε : X• → XR′

(R′ the ring of integers of a suitable extension K ′ of K), such that :
- each Xn is a sum of pull-backs of semistable schemes over rings of

integers of subextensions of K ′

- εK′ : (X•)K′ → XK′ is a proper m-truncated hypercovering
- X0 is, as above, the disjoint sum of base changes of a semistable Z/R1,

with f : Z → X a projective alteration, Z integral.

• Use of cohomological descent and classical Hodge theory

Since q < m, as each (Xn)K′ is smooth over K ′ and εK′ is a proper
m-truncated hypercovering, it follows from Deligne’s mixed Hodge theory
that

Hq(XK′ ,Ω
.
XK′/K

′)→ Hq((X•)K′ ,Ω
.
(X•)K′/K

′)

is an isomorphism of filtered spaces (for the Hodge filtration). In particular,
Hq((X•)K′ ,O) = 0.

• Use of p-adic Hodge theory

By the Cst theorem for truncated simplicial semistable schemes (Tsuji),
it follows that the slopes of Frobenius on Hq((X•)k′/(W (k′),W (L))) are ≥
1. By a generalization of de Rham-Witt theory to the truncated simplicial
semistable case, this means that

(8.3.1) Hq((X•)k′ ,WO)⊗Q = 0.

• A trace argument
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If the map
εk′ : (X•)k′ → Xk′

was a truncated proper hypercovering, cohomological descent for rigid co-
homology (Tsuzuki) - and its compatibility with slopes - would give the
vanishing of Hq(Xk′ ,WO) ⊗Q, hence that of Hq(Xk,WO) ⊗Q. However,
εk′ is not in general a truncated proper hypercovering. Still, the functoriality
map

(8.3.2) Hq(Xk,WO)⊗Q→ Hq((X0)k′ ,WO)⊗Q

is zero, as it factors through Hq((X•)k′ ,WO)⊗Q = 0. Therefore it’s enough
to show that (8.3.2) is injective. By the construction of X0 as a sum of
pull-backs of Z, it’s enough to show that

(8.3.3) f ∗k : Hq(Xk,WO)⊗Q→ Hq(Zk,WO)⊗Q

is injective. This is achieved by a trace argument. One constructs a trace
map

τfk : Hq(Zk,WO)⊗Q→ Hq(Xk,WO)⊗Q

such that

(8.3.4) τfkf
∗
k = r.Id,

where r is the generic degree of the alteration f .

8.4. The trace map

As X and Z are regular, integral, with dimZ = dimX, f : Z → X is
a complete intersection morphism of virtual relative dimension zero (i. e.
locally defined by a regular immersion of codimension d in a smooth X-
scheme of relative dimension d). Moreover, f is projective (in the sense that
Z is a closed subscheme of some projective space Pd

X). The construction of
τfk and the proof of (8.3.4) uses essentially only these facts. There are three
steps. Denote by (−)n the reduction mod pn+1.

• Step 1

Construction of (compatible) trace maps

Trfn : Rfn∗OZn → OXn

with

(8.4.1) Trfnf
∗
n = r.Id
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(where f ∗n = OXn → Rfn∗OZn is the adjunction map).
This is more or less standard Grothendieck duality [Ha] (with signs made

precise by Conrad [C]). In terms of a factorization

Z

f

��

i // P = Pd
X

π

zzvv
vv
vv
vv
v

X

(with i a regular immersion of codimension d), Trfn is the composition

Trfn = TrπnTrin ,

with Trπn given by the canonical isomorphism Rdπn∗Ω
d
Pn/Xn

∼→ OXn , and
Trin by the cohomology class of in.

• Step 2

Construction of (compatible) trace maps, for n ≥ 1,

(τf0)n : R(f0)∗WnOZ0 → WnOX0 .

This is a new construction, similar to the previous one, but using the de
Rham-Witt complex (of Langer-Zink) of P0/X0.

• Step 3

Comparison of trace morphisms and proof of the key formula

(8.4.2) (τf0)n(f0)∗n = r.Id,

where (f0)∗n : WnOX0 → R(f0)∗WnOZ0 is the adjunction map. (This formula
implies (8.3.4) because Zk ⊂ Z0, Xk ⊂ X0 are nilpotent immersions, and (by
a result of [BBE]) the restriction mapsHq(X0,WO)⊗Q→ Hq(Xk,WO)⊗Q,
Hq(Z0,WO)⊗Q→ Hq(Zk,WO)⊗Q are isomorphisms.)

This is the most ingenious part of the proof of 8.2.4. The basic tool is
the unique factorization of the n-th phantom map

wn = F n : Wn+1(OXn−1)→ OXn−1 ,

wn(b0, · · · , bn) = bp
n

0 + · · ·+ pn−1bpn−1 + pnbn = bp
n

0 + · · ·+ pn−1bn−1,

into
Wn+1(OXn−1)

��

Fn
// OXn−1

Wn(OX0)

F̃n
77ppppppppppp

.
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Comparing cohomology classes of a regular immersion in both theories, one
shows the commutativity of the diagram

f0∗Wn(OZ0)

��

H0(τ) //Wn(OZ0)

��
fn−1∗OZn−1

H0(Tr) // OXn−1

,

where the vertical maps are given by F̃ n. It follows that (τf0)n(f0)∗n is the
multiplication by a class cn ∈ H0(X0,Wn(OX0)) such that c := proj.limcn ∈
H0(X0,WOX0) has the following two properties :

(i) Fc = c,
(ii) F̃ n(c− r) = 0 for all n ≥ 1.
One shows that this implies that c − r = 0, hence cn = r. One shows

more generally that Ker(F − 1) ∩ ∩n≥1Ker(F̃ n : WOX0 → OXn−1) = 0.
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