Conference in Honor of Joseph Steenbrink

Nijmegen, May 31 - June 2, 2007

Deligne's tubular neighborhoods in étale cohomology, after Gabber and Orgogozo

Luc Illusie

Université Paris-Sud

O. Gabber, *Finiteness theorems for étale cohomology of excellent schemes*, Conference in honor of P. Deligne on the occasion of his 61st birthday, IAS, Princeton, October 2005.

F. Orgogozo, *Modifications et cycles proches sur une base générale*, IMRN, vol. 2006, ID 25315, 38 p., 2006.

PLAN

- 1. Oriented products (Deligne's tubes)
- 2. Nearby cycles over general bases
- 3. Gabber's finiteness and uniformization theorems
- 4. Tubular cohomological descent
- 5. What next ?

1. ORIENTED PRODUCTS (DELIGNE'S TUBES) Recall :

- topos = {sheaves on a site}
- $f: X \to Y : (f^*, f_*)$
- point of X : morphism $x: Pt \to X$

(= fiber functor $x^* : F \mapsto F_x$)

Examples

• X =sober topological space,

X = Pt(X)

- X = scheme with étale topology,
- Pt(X) =geometric points of X
- (= morphisms Spec $k \to X$ (k sep. closed))

Specialization morphisms

 $f, g : X \to Y$ morphisms of toposes morphism $u : f \to g =$ morphism of functors $f_* \to g_*$ $(\Leftrightarrow g^* \to f^*)$ For $s, t \in Pt(X), u : t \to s =$ specialization from t to s

Examples

- X = scheme, Zariski topology , $t \to s \Leftrightarrow s \in \overline{\{t\}}$ $\Leftrightarrow t \in \operatorname{Spec} \mathcal{O}_{X,s}$
- X = scheme, étale topology

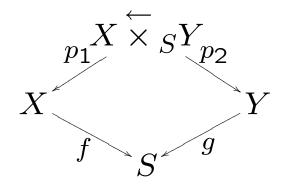
$$t \to s \Leftrightarrow t \to X_{(s)} \Leftrightarrow X_{(t)} \to X_{(s)}$$
$$X_{(s)} = \operatorname{Spec} \mathcal{O}_{X,s}$$
$$\mathcal{O}_{X,s} = \operatorname{strict} \text{ henselization at } s$$

Oriented products

Given morphisms of toposes

$$f: X \to S, g: Y \to S,$$

construct universal diagram of toposes :



 $\tau: gp_2 \to fp_1$

 $X \stackrel{\leftarrow}{\times}_S Y$: Deligne's oriented product

universal property : for any topos T{ morphisms $T \to X \stackrel{\leftarrow}{\times} _{S} Y$ } = { triples $(q_1 : T \to X, q_2 : T \to Y, t : gq_2 \to fq_1)$ }

In particular :

points of $X \times {}_{S}Y = \text{triples}$ (point x of X, point y of Y, specialisation $g(y) \to f(x)$) Defining site and structural maps $X \stackrel{\leftarrow}{\times} _{S}Y := \{ \text{ sheaves on site } C \}$ objects of $C = \{ (U \rightarrow V \leftarrow W) \text{ above } (X \rightarrow S \leftarrow Y) \}$ (U, V, W objects of defining sitesfor X, S, Y)

maps : obvious

topology defined by covering families of types :

(c)
$$V' \leftarrow W'$$
 (cartesian square)
 $U \rightarrow V \leftarrow W$

12

presheaf $(U \to V \leftarrow W) \mapsto F(U \to V \leftarrow W)$ = sheaf on C $\Leftrightarrow F$ satisfies sheaf condition for (a), (b), and $F(U \to V \leftarrow W) \xrightarrow{\sim} F(U \to V' \leftarrow W')$ for type (c)

$$p_1^{-1}(U) = (U \to S \leftarrow Y)$$

$$p_2^{-1}(W) = (X \to S \leftarrow W)$$

$$\tau : (gp_2)_*F \to (fp_1)_*F$$
defined by
$$F(X \to S \leftarrow g^{-1}(V)) \to F(f^{-1}(V) \to V \leftarrow g^{-1}(V)) \leftarrow$$

$$F(f^{-1}(V) \to S \leftarrow Y)$$

Examples (étale topology)

•
$$S =$$
 scheme ; $s \to S =$ geometric point $s \stackrel{\leftarrow}{\times} {}_S S = S_{(s)}$

• X = scheme; $Y \subset X$ closed, $U = X - Y \subset X$ $Y \overleftarrow{\times}_X U = \text{punctured (étale) tubular neighborhood}$ of Y in X $(= Y \overleftarrow{\times}_{X'} U' \text{ for } X' \text{ étale}$ neighborhood of Y in X, $U' = X' \times_X U$)

•
$$s = \operatorname{Spec} k$$
 ($k = \operatorname{field}$), X/s ,
 $X \stackrel{\leftarrow}{\times} {}_{s}s = X$

• $S = \text{strictly local trait, } s \text{ closed, } \eta \text{ generic, } Y/s$ $Y \stackrel{\leftarrow}{\times}_S \eta = \{ \text{ sheaves on } Y \text{ with continuous action of } \text{Gal}(\overline{\eta}/\eta) \}$ 2. NEARBY CYCLES OVER GENERAL BASES S = scheme, étale topology ; $\Lambda = \mathbb{Z}/n\mathbb{Z}$ (*n* invertible on *S*) For schemes *X*/*S*, *Y*/*S*, universal property of $X \times {}_{S}Y$

gives a morphism of toposes

$$\Psi = \Psi_{X/S} : X \times_S Y \to X \overleftarrow{\times}_S Y,$$
$$\Psi^{-1}(U \to V \leftarrow W) = U \times_V W$$

17

For Y = S,

$$R\Psi_*: D^+(X, \Lambda) \to D^+(X \stackrel{\leftarrow}{\times} {}_SS, \Lambda)$$

(denoted also $R\Psi$)

called nearby cycles functor

(Deligne, Laumon; 1981)

Example

- S =strictly local trait, s closed, η generic,
- $\overline{\eta} = \text{generic geometric}$

$$i:X_s \to X$$
, $\overline{j}:X_{\overline{\eta}} \to X$

$$(R\Psi F)|X_s \stackrel{\leftarrow}{\times}_S \eta = i^* R \overline{j}_*(F|X_{\overline{\eta}})$$

(usual (= SGA 7 XIII) functor $R\Psi$)

Stalks point $(x, s \leftarrow t)$ of $X \stackrel{\leftarrow}{\times} {}_S S$ $(x \rightarrow X, s \rightarrow S = \text{geom. pts, } s \leftarrow t = \text{specialization})$

$$(R\Psi F)_{(x,s\leftarrow t)} = R\Gamma(X_{(x)} \times_{S_{(s)}} S_{(t)}, F)$$
$$X_{(x)} \supset X_{(x)} \times_{S_{(s)}} S_{(t)} \supset X_{(x)} \times_{S_{(s)}} t$$

(Milnor ball \supset Milnor tube \supset Milnor fiber)

Vanishing cycles $p_1 \Psi = Id_X$ gives map

$$p_1^* o \Psi_*$$

and distinguished triangle

$$p_1^*F \to R\Psi F \to R\Phi F \to$$

 $R\Phi = \text{vanishing cycles functor}$ (for S = strictly local trait, $(R\Phi F)|X_s \stackrel{\leftarrow}{\times}_S \eta = \text{usual} (= \text{SGA 7 XIII}) R\Phi F)$

Constructibility

S noetherian, X/S, Y/S finite type sheaf of Λ -modules F on $X \times {}_SY$ constructible if $X = \cup X_i, Y = \cup Y_j$ (finite disjoint unions) and $F|X_i \times {}_SY_j$ locally constant of finite type

{constructible sheaves} = thick subcategory

 $D^b_c(X \stackrel{\leftarrow}{\times} _SY, \Lambda)$: bounded, constructible cohomology

Main result

THEOREM (F. Orgogozo, 2005) S noetherian, X/S finite type, $\Lambda = \mathbb{Z}/n\mathbb{Z}$, n invertible on S; $F \in D_c^b(X, \Lambda)$ There exists a modification $S' \to S$ such that for $X' = X \times_S S'$, $R\Psi_{X'/S'}(F|X')$ belongs to $D_c^b(X' \overleftarrow{\times}_{S'}S', \Lambda)$ and is base change compatible

Remarks

- S = trait: recover Deligne's th. in [SGA 4 1/2, Th. finitude]
- dim $(S) \ge 2$: in general, $R \Psi F$ not in D_c^b and not base change compatible :

Example : $f : X \to S =$ blow up of origin in the plane,

L = line through origin,

 $R\Psi((\Lambda)|f^{-1}(L))$ moves with L

• isolated singularities

if bad (= non universal local acyclicity) locus of (f, F)quasi-finite / S (e. g. $F = \Lambda$, f smooth outside Σ quasi-finite / S),

then $R\Psi F$ is in D_c^b and base change compatible

(no modification of base necessary)

main ingredient of proof :

de Jong's th. on plurinodal curves

3. GABBER'S FINITENESS AND UNIFORMIZA-TION THEOREMS

Recall :

A ring A is quasi-excellent if A noetherian,

formal fibers of A are geometrically regular, and

for any A' of finite type over A, Reg(Spec A') open

- A scheme X is quasi-excellent (qe for short)
- if X = union of

open affine quasi-excellent schemes

Examples

- A complete, local, noetherian \Rightarrow A qe
- A Dedekind, Frac(A) of char. zero $\Rightarrow A$ qe
- Y qe, X/Y locally of finite type $\Rightarrow X$ qe

THEOREM 3.1 (Gabber, 2005) : Y noetherian, qe, $f : X \to Y$ f. t., $\Lambda = \mathbb{Z}/n\mathbb{Z}, n \ge 1$ invertible on Y, $F = \text{constructible } \Lambda\text{-module on } X$ Then :

(a) $R^q f_* F$ constructible $\forall q$, (b) $\exists N$ s. t. $R^q f_* F = 0$ for $q \ge N$.

Remarks :

- (a) + (b) $\Leftrightarrow Rf_* : D^b_c(X, \Lambda) \to D^b_c(Y, \Lambda)$
- f proper : Y qe, n invertible on Y superfluous (finiteness th. [SGA 4 XIV])
- char(Y) = 0 : Artin [SGA 4 XIX]

- f = S-morphism, X, Y f. t. /S regular, dim ≤ 1 : Deligne [SGA 4 1/2, Th. Finitude]
- f = S-morphism, X, Y f. t. /S noetherian \Rightarrow generic constructibility of $R^q f_* F$: Deligne [SGA 4 1/2, Th. Finitude]
- qe not needed for q = 0, needed for q > 0

General idea of proof :

reduce to absolute purity th. (Gabber, 1994) via cohomological descent

absolute purity th. \Rightarrow

THEOREM 3.2

X regular, locally noetherian $D = \sum_{i \in I} D_i \subset X \text{ snc } (= \text{ strict normal crossings}) \text{ divisor}$

$$j: U = X - D \to X$$

Then :

$$R^{q}j_{*}\Lambda = \begin{cases} \Lambda & \text{if } q = 0\\ \oplus \Lambda_{D_{i}}(-1) & \text{if } q = 1\\ \Lambda^{q}R^{1}j_{*}\Lambda & \text{if } q > 1. \end{cases}$$

In particular, $Rj_*\Lambda \in D^b_c(X,\Lambda)$

To prove 3.1 (a), easy reductions \Rightarrow

• enough to show : $Rj_*\Lambda \in D_c^+(X,\Lambda)$ for

 $j: U \to X$ dense open immersion, X qe

• if de Jong available,

(e. g. /schemes f. t. \mathbb{Z}), i. e. can find $\pi: X' \to X$ proper surjective, X' regular, $U' := \pi^{-1}(U)$ complement of strict dnc, construct cartesian diagram :

$$egin{array}{ccc} (*) & U_{\cdot} \stackrel{j_{\cdot}}{
ightarrow} X_{\cdot} & \downarrow^{arepsilon_{\cdot}} & \downarrow^{arepsilon_{\cdot}} & U \stackrel{j_{arepsilon}}{
ightarrow} X \end{array}$$

with

- ε_{\cdot} proper hypercovering
- X_n regular $\forall n$
- $j_n: U_n \to X_n =$ inclusion of

complement of strict dnc $\forall n$

cohomological descent for $\varepsilon_{\cdot} \Rightarrow$ $Rj_*\Lambda = R\varepsilon_{\cdot*}Rj_{\cdot*}\Lambda$ absolute purity $\Rightarrow Rj_{p*}\Lambda$ in D_c^b ε_p proper $\Rightarrow R^q\varepsilon_{p*}Rj_{p*}\Lambda$ constructible spectral sequence $(R^q\varepsilon_{p*}Rj_{p*}\Lambda \Rightarrow R^{p+q}j_*\Lambda)$ $\Rightarrow R^ij_*\Lambda$ constructible Instead of de Jong (not available), use Gabber's local uniformization theorem

S a scheme

pspf topology on (schemes loc. f. p. / S) : generated by :

- proper surjective f. p. morphisms
- Zariski open covers

(pspf = propre, surjectif, présentation finie)

pspf finer than étale

- S noetherian : pspf /S = Voevodsky's h-topology
- = Goodwillie-Lichtenbaum's ph-topology
- $S \text{ pspf local} \Leftrightarrow S = \operatorname{Spec} V$
- V valuation ring, Frac(V) alg. closed

THEOREM 3.3 (Gabber, 2005)

X noetherian, qe, $Y \subset X$ nowhere dense closed subset Then :

- \exists finite family $(f_i : X_i \rightarrow X)$ $(i \in I)$ s. t. :
- (f_i) pspf covering
- $\forall i, X_i$ regular, connected
- $Y_i = f_i^{-1}(Y) =$ support of strict dnc (or \emptyset)
- $\forall i, f_i$ generically quasi-finite and

sends maximal pts to maximal pts

- NB. f_i not necessarily proper
- 3.3 = |oca| uniformization theorem

compare with

- Hironaka (/ \mathbb{Q})
- de Jong (f. t. /S regular, dim. \leq 1)

which are both global

Rough outline of proof

- \bullet reduction to X local henselian
- \bullet reduction to X local complete :

uses : Artin-Popescu's th.

+ Gabber's new formal approximation technique

- by induction on dim(X), proof in local complete case relies on :
- Gabber's refined Cohen structure th.
- de Jong's th. on nodal curves
- log regularity and resolution of toric singularities
 (Kato)

4. TUBULAR COHOMOLOGICAL DESCENT

• enough to show : $Rj_*\Lambda \in D_c^+(X,\Lambda)$ for

 $j: U \to X$ dense open immersion, X qe

• using uniformization theorem,

construct

with $\varepsilon_{\cdot} = pspf$ hypercovering (and X_n , j_n as above)

pb : ε_n no longer proper

- circumvent this by :
- Deligne's generic constructibility th. ([SGA 4 1/2
- Th. fin.])
- Gabber's hyper base change th. [G2]

• by standard criterion of constructibility, have to show :

(P) $\forall i \geq 0, \forall g : X' \to X$ closed irreducible subset, \exists dense open $V \subset X'$ s. t. $g^*R^ij_*\Lambda|V$ constructible

• by Gabber's hyper base change th. (Gabber, 2005) $g^*Rj_*\Lambda = R\varepsilon'_*g_*(Rj_*\Lambda)$ where $g_{\cdot}, \varepsilon'_{\cdot}$ defined by cartesian diagram $X' \stackrel{g_{\cdot}}{\longrightarrow} X_{\cdot}$ $\downarrow \varepsilon'_{\cdot} \downarrow \stackrel{|\varepsilon_{\cdot}}{\longrightarrow} X_{\cdot}$ $\chi' \stackrel{g_{\cdot}}{\longrightarrow} \chi$

Remark

base change by g for ε_n not OK

as ε_n non proper

only hyper base change works

Proof of constructibility (modulo hyper base change)

• by absolute purity,

$$K_p := g_p^*(Rj_{p*}\Lambda) \in D^b_c(X'_p,\Lambda)$$

- by Deligne's generic constructibility th.
- \exists dense open $V_{pq} \subset X'$ s. t.

 $R^q \varepsilon'_{p*} K_p | V_{pq}$ constructible

• spectral sequence

 $R^q \varepsilon'_{p*} K_p \Rightarrow g^* R^{p+q} j_* \Lambda$

implies $\exists V \text{ satisfying } (\mathsf{P})$

Main ingredient for hyper base change :

Tubular cohomological descent

Idea :

Consider punctured tube

$$\begin{split} \overleftarrow{U'} &= X' \overleftarrow{\times}_X U : \\ & & \overleftarrow{U'}_{p_2} \\ X' & & U \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\$$

general fact : tubular base change holds : $g^*Rj_*F = Rp_{1*}p_2^*F$ for $F \in D^+(U, \Lambda)$

Remarks

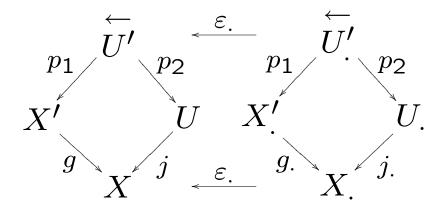
- base change not OK for $U' = X' \times_X U$!
- \bullet tubular base change holds more generally for oriented product $X \overleftarrow{\times}_S Y$

with Y/S quasi-compact and quasi-separated

Similarly, consider simplicial tube

$$\overleftarrow{U'_{\cdot}} = X'_{\cdot} \overleftarrow{\times}_{X_{\cdot}} U_{\cdot}$$

and map



By tubular cohomological descent

$$\Lambda_{\overleftarrow{U'}} = R\varepsilon_{\cdot*}\Lambda_{\overleftarrow{U'_{\cdot}}}$$

so hyper base change follows from :

$$g^*Rj_*\Lambda = Rp_{1*}\Lambda_{\stackrel{\leftarrow}{U'}} \text{ (tubular base change)}$$

= $Rp_{1*}R\varepsilon_{\cdot*}\Lambda_{\stackrel{\leftarrow}{U'}} \text{ (tubular cohomological descent)}$
= $R\varepsilon_{\cdot*}Rp_{1*}\Lambda_{\stackrel{\leftarrow}{U'}} \text{ (trivial)}$
= $R\varepsilon_{\cdot*}g_{\cdot}^*Rj_{\cdot*}\Lambda_{\stackrel{\leftarrow}{X'}} \text{ (tubular base change)}$

NB. More general tubular cohomological descent :

- $F = R\varepsilon_{*}\varepsilon_{}^{*}F$, $F \in D^{+}(U', \Lambda)$
- oriented products $X \stackrel{\leftarrow}{\times} {}_SY$, Y/S f. p.

Ingredients for proof :

- classical cohomological descent (pspf case)
- tubular base change (easy)
- cohomological invariance of tubes under blow-ups

$$Y' \rightarrow Z'$$
 f proper, square cartesian,
 $\downarrow \qquad \downarrow f \searrow Z \leftarrow U$

 $Y \subset Z, \ Y' \subset Z'$ closed, U = Z - Y = Z' - Y' giving map of tubes

$$\overleftarrow{f}: T' = Y' \overleftarrow{\times}_{Z'} U \to T = Y \overleftarrow{\times}_{Z} U$$

Then (cohomological invariance):

$$F = R \overleftarrow{f}_* \overleftarrow{f}^* F \qquad F \in D^+(T, \Lambda)$$

- 5. WHAT NEXT ?
- 5.1. Problems in the étale set-up
- More on general nearby cycles
- calculations for specific families,

(e.g.: - semistable reduction along dnc, log smooth maps

- confluences of semistable reduction and quadratic singularities (S. Saito, U. Jannsen))

- discuss iterated monodromies and variations
- compatibility of $R\Psi$ with duality ?
- perversity of $R\Psi$?

- find applications !

(so far : conjugation of vanishing cycles in Lefschetz pencils (Gabber-Orgogozo, 2005))

e. g. : revisit Deligne's approach (1976) to RR pbs via nearby cycles for families of local pencils ? (relation with ramification, variation of Swan conductor, Abbes-K. Kato-T. Saito's work on $\chi(X, F)$)

- Investigate cohomology of tubes (six operations, finiteness, ...)
- 5.2. Other set-ups and comparison problems
- Complex analytic case
- Pb 1: Define oriented product $\mathcal{X} \stackrel{\leftarrow}{\times}_{\mathcal{S}} \mathcal{Y}$ for maps
- $\mathcal{X} \to \mathcal{S}, \ \mathcal{Y} \to \mathcal{S}$ of complex analytic spaces,

canonical map

$$\varepsilon: X^{\operatorname{an} \overleftarrow{\times}}{}_{S^{\operatorname{an}}} Y^{\operatorname{an}} \to X \overleftarrow{\times}{}_{S} Y$$

for $X \to S$, $Y \to S$ maps of schemes of f. t. $/\mathbb{C}$ with adjunction map $F \to R\varepsilon_*\varepsilon^*F$

being an isomorphism for $F \in D_c^b(X \times S^{\leftarrow} S^{\leftarrow} S^{\leftarrow})$ (after possible modification of S ?) work in progress (D. Treumann) for stratified topological analogues (related to MacPherson's theory of exit paths) Pb 2 : Find common generalization of Orgogozo's th. and Sabbah's th. (1981)

(proper $f: X \to S$

between complex an. spaces

acquires good punctual theory of nearby cycles for

constant sheaves after modification of S)

Pb 3 : Find de Rham (or D-modules) analogues,
generalize (to higher dimensional bases)
Steenbrink's formula

$$R\Psi\mathbb{C}=\omega_{X_0}^{\cdot}$$

for X semistable / disc
(log variants in [I-Kato-Nakayama])

• Rigid analytic case

Define oriented products $\mathcal{X} \times \mathcal{S} \mathcal{Y}$ for maps

 $\mathcal{X} \to \mathcal{S}, \ \mathcal{Y} \to \mathcal{S}$ of rigid analytic spaces

generalizing Fujiwara's tubes

(for X closed in S noetherian, Y = S - X),

get comparison isomorphism rigid vs étale as in Pb 1 above (work in progress : Gabber, Berkovitch)