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1. The Poincaré lemma

The exterior derivative

U ⊂ Rn open ; f : U → R of class C∞

differential of f at x ∈ U: the linear form (df )(x) ∈ HomR(Rn,R)
such that

f (x + h) = f (x) + (df )(x).h + o(h).

Example: (dxi )(x) = e∨i : ej 7→ δij

df : U → HomR(Rn,R),

df =
∑

1⩽i⩽n

(∂f /∂xi )dxi .

(⇒ df ∈ C∞(U,HomR(Rn,R)))



Define, for i ∈ Z, the space of differential forms of degree i on U:

Ωi (U) := C∞(U,ΛiHomR(Rn,R))

for i ⩾ 0 (and 0 for i < 0).

In particular, Ω0(U) = C∞(U,R), and Ωi (U) = 0 for i > n.

Any ω ∈ Ωi (U) (i ⩾ 1) is uniquely written

ω =
∑

1⩽j1<···<ji⩽n

aj1···jidxj1 ∧ · · · ∧ dxji ,

with aj1···ji ∈ C∞(U,R).



Proposition. There exists a unique family of R-linear operators

d : Ωi (U)→ Ωi+1(U)

such that:
(i) for i = 0, df ∈ Ω1(U) is the exterior derivative of f ;
(ii) dd = 0;
(iii) d(a ∧ b) = da ∧ b + (−1)pa ∧ db for a ∈ Ωp(U), b ∈ Ωq(U).

Definition. The complex

Ω•(U) = (0→ Ω0(U)
d→ Ω1(U)

d→ · · · d→ Ωn(U)→ 0)

is called the de Rham complex of U (Georges de Rham, 1903 -
1990)

Known to differential geometers of late 19th century: Bianchi,
Poincaré, Ricci, Stokes, Volterra, ...

Its cohomology groups are called the de Rham cohomology groups
of U:

H i
dR(U) := H iΩ•(U).



Theorem (Poincaré lemma). Assume U star-shaped, i.e., stable
under x 7→ tx , t ∈ [0, 1]. Then the augmentation

ε : R→ Ω•(U), a 7→ (x 7→ a) ∈ Ω0(U) = C∞(U,R)

is a homotopy equivalence. In particular, H i
dR(U) = 0 for i > 0 and

H0
dR = R.

Proof. Let h : [0, 1]× U → U, h(t, x) := tx . Define
k : Ωp(U)→ Ωp−1(U) by

kω =

∫ 1

0
i∂th

∗(ω)dt,

where i∂t is the interior product by ∂t applied to
h∗(ω) ∈ Ωp([0, 1]× U). Then

Id− ε ◦ π = dk + kd : Ω•(U)→ Ω•(U),

where π : Ω•(U)→ R is the projection given by f 7→ f (0).



Remarks.

• Proof by Volterra (1889); Poincaré: ? (cf. E. Cartan, de Rham)

• Avatars of Poincaré Lemma: analytic, crystalline
(Berthelot-Grothendieck, 1970), ..., p-adic (Beilinson, 2012), ...

• If U not star shaped, the vanishing H i
dR(U) = 0 for i > 0 may

not hold, e.g., for n > 1,

Hn−1
dR (Rn − {0}) = R

(a consequence of the de Rham theorem).



2. The de Rham theorem
X : a C∞-manifold of dimension n.

Using an atlas X = ∪Vi ,
φi : Vi

∼→ φi (Vi ) ⊂ Rn, φij : φi (Vi ∩ Vj)
∼→ φj(Vi ∩ Vj),

for U ⊂ X open, glue the Ω•(φi (U ∩ Vi )) into a complex Ω•
X (U).

For variable U, get a complex of sheaves of R-vector spaces on X ,

Ω•
X : U 7→ Ω•

X (U)

called the de Rham complex of X ,

Ω•
X = (OX

d→ Ω1
X

d→ · · · d→ Ωn
X → 0).

OX : sheaf of real-valued C∞ functions on X ,

Ω1
X : sheaf of C∞ 1-forms on X , a rank n vector bundle on X , dual

to the tangent bundle TX

Ωi
X = ΛiΩ1

X .



Poincaré lemma for star shaped open subsets of Rn implies:

Theorem (Poincaré lemma). The augmented complex

0→ RX → OX → Ω1
X → · · · → Ωn

X → 0

is acyclic, in other words, the augmentation

RX → Ω•
X

is a quasi-isomorphism, hence induces isomorphisms1

RΓ(X ,R) ∼→ RΓ(X ,Ω•
X ),

(1) H i (X ,R) ∼→ H i
dR(X ) := H i (X ,Ω•

X ).

(first form of the de Rham theorem).

1where R is RX by abuse



Remarks. 1. Assume X paracompact. Then OX is a soft sheaf, the
sheaves of OX -modules Ωi

X are soft as well ([Go], II 3.4, 3.7),
hence acyclic for Γ(X ,−) ([Go] II, 4.4). Therefore

Γ(X ,Ω•
X )→ RΓ(X ,Ω•

X )

is an isomorphism in D(X ,R), hence

H i (Γ(X ,Ω•
X ))

∼→ H i
dR(X ),

and (1) can be rewritten

(1′) H i (X ,R) ∼→ H i (Γ(X ,Ω•
X ))



2. For X compact, the R-vector spaces H i (X ,R) and H i
dR(X ) are

finite dimensional2. Moreover, if X is orientable, the isomorphisms

H i (X ,R) ∼→ H i
dR(X ).

are compatible with Poincaré duality and de Rham duality.

The original de Rham theorem3 is a refinement of

(1′) H i (X ,R) ∼→ H i (Γ(X ,Ω•
X ))

using the description of H i (X ,R) as the cohomology of the
complex of singular cochains, integration of i-forms on singular
i-cycles and Stokes formula (see the next Appendix).

2By the Leray spectral sequence of an open cover and the existence of finite
covers of X by open subsets Ui such that all finite intersections Ui0 ∩ · · · ∩ Uij

are contractible ([Dem, 6.9]).
3Rigorously proved for the first time by Weil [W].



Appendix: the de Rham theorem and singular cohomology

Let

S•(X ,R) := (· · · → Sn(X ,R) d→ Sn−1(X ,R)→ · · · → S0(X ,R)→ 0)

be the complex of real C∞ singular chains of X ,

Sn(X ,R) = R(C∞(∆n,X )),

(the real vector space of basis the singular n-chains),

dγ =
∑

(−1)i∂iγ,

S•(X ,R) := Hom•(S•(X ,R),R) = (0→ S0(X ,R)→ · · · )

its dual, the complex of real C∞ singular cochains, with
(da)(γ) = (−1)i+1a(dγ) for γ ∈ Si .



Let SnX be the sheaf associated to U 7→ Sn(U;R), hence a complex
of sheaves S•X on X . It is known (see [DM] for references) that:

• The augmentation R→ S•X is a quasi-isomorphism
• The sheaves SnX are soft, hence

Γ(X ,S•X )
∼→ RΓ(X ,R)

• S•(X ,R)→ Γ(X ,S•X ) is a quasi-isomorphism,

hence

• S•(X ,R) ∼→ RΓ(X ,R) (in D(R)).



By Stokes formula ∫
γ
dω =

∫
dγ

ω,

the maps

Ωi
X (X )→ S i (X ,R), ω 7→ (γ 7→ (−1)i(i+1)/2

∫
γ
ω)

define a morphism of complexes

(2) Γ(X ,Ω•
X )→ S•(X ,R).

This morphism corresponds to the pairing

Γ(X ,Ω•
X )⊗ S•(X ,R)→ R, ⟨ω, γ⟩ = (−1)i(i+1)/2

∫
γ
ω.



Theorem (G. de Rham, 1931 [dR]). The map (2) is a
quasi-isomorphism, hence induces isomorphisms

H i (X ,R) ∼→ H i
dR(X ).

Proof. (2) sheafifies to a morphism

(2′) Ω•
X → S•X

and in the commutative square

Γ(X ,Ω•
X )

��

// S•(X ,R)

��
RΓ(X ,Ω•

X )
// RΓ(X ,S•X )

the vertical maps are isomorphisms. As (2’) is a quasi-isomorphism
(by the Poincaré lemma and acyclicity of open balls in Rn), the
bottow one is an isomorphism, and thus, the top one, too.



The numbers ⟨ω, γ⟩ for a cocycle ω ∈ Ωi (X ) (i.e., dω = 0) and a
cycle γ ∈ Si (X ) (i.e., dγ = 0) are called periods.

Example. ⟨(xdy − ydx)/(x2 + y2), γ : θ 7→ e iθ, θ ∈ [0, 2π]⟩ = 2π.

The de Rham theorem is equivalent to (a) + (b):

(a) (a cocycle ω is a boundary) ⇔ (all periods of ω vanish);

(b) There exists a cocycle ω ∈ Ωi (X ), unique up to a boundary,
having prescribed periods on a set of cycles forming a basis of
Hi (X ,R).



3. The analytic de Rham complex

X : a (paracompact) complex analytic manifold of (complex)
dimension d .

Ω•
X := (OX

d→ Ω1
X

d→ · · · d→ Ωd
X → 0)

the complex analytic de Rham complex.

OX : sheaf of holomorphic functions

Ω1
X : sheaf of holomorphic 1-forms, dual of the tangent bundle TX ,

Ωi
X := ΛiΩ1

X ,

d : Ωi
X → Ωi+1

X : the exterior differential (defined similarly to the
real, C∞-case).



Analytic Poincaré lemma: The augmentation

C→ Ω•
X

is a quasi-isomorphism (of complexes of sheaves of C-vector
spaces), hence induces isomorphisms

RΓ(X ,C) ∼→ RΓ(X ,Ω•
X ),

Hn(X ,C) ∼→ Hn
dR(X )(:= Hn(X ,Ω•

X )).

Same proof. But contrary to the C∞-case, the sheaves Ωi
X are not

in general acyclic for Γ(X ,−).



Relation with the C∞-de Rham complex.

XR: underlying real, C∞ manifold (of dimension 2d).

Ωn
XR
⊗R C = ⊕i+j=nΩ

i ,j
X ,

where Ωi ,j
X : sheaf of C∞-forms of type (i , j), with Ωi ,j

X = Ωj ,i
X . Then

Ω•
XR
⊗R C = Tot(Ω•,•

X , d ′, d ′′),

where (Ω•,•
X , d ′, d ′′) = Dolbeault bi-complex. Recall Dolbeault’s

quasi-isomorphisms
Ωi
X → (Ωi ,•

X , d”),

hence a quasi-isomorphism

Ω•
X → Ω•

XR
⊗R C = Tot(Ω•,•

X ).

and, as Ωi ,j
X is soft, isomorphisms

Ωi ,•(X )
∼→ RΓ(X ,Ωi

X ),

Tot(Ω•,•(X ))
∼→ RΓ(X ,Ω•

X )(
∼→ RΓ(X ,C)).



The compact Kähler case.

Assume X compact, Kähler.

Let h be a Kähler metric on X : a hermitian form such that
d(Im(h)) = 0, where Im(h) ∈ Ω1,1(X ) is the imaginary part of h.

Let d∗, d ′∗, d ′′∗ be the adjoints of the operators d , d ′, d ′′ for the
Riemannian metric g = Re(h), and

∆ = dd∗ + d∗d , ∆′ = d ′d ′∗ + d ′∗d ′,∆′′ = d ′′d ′′∗ + d ′′∗d ′′

the corresponding Laplacian operators on Ω•,•(X ), so that

∆ = 2∆′ = 2∆′′.



Let
H i ,j(X ) := {ω ∈ Ωi ,j(X )|∆ω = 0}

= Ker(d) ∩Ker(d∗) = Ker(d ′′) ∩Ker(d
′′∗) ⊂ Ωi ,j(X )

be the space of harmonic forms of type (i , j).

Theorem (Hodge). The inclusions

H i ,j(X ) ⊂ Ωi ,j(X )

induce isomorphisms

H i ,j(X )
∼→ H j(X ,Ωi

X )

and a decomposition (the Hodge decomposition)

⊕i+j=nH
i ,j(X )

∼→ Hn(X ,Ω•
X ) (

∼→ Hn(X ,C)),

with
H i ,j(X ) = H j ,i (X ).



Hodge filtration and the Hodge to de Rham spectral sequence

Let

Ω⩾i
X := (0→ 0 · · · → 0→ Ωi

X → Ωi+1
X → · · · → Ωd

X → 0)

be the naive filtration of the de Rham complex. By the Dolbeault
isomorphisms, the associated spectral sequence coincides with the
first spectral sequence of the bicomplex Ω•,•(X ), and reads

(∗) E i ,j
1 = H j(X ,Ωi

X )⇒ H i+j
dR (X ).

By the Hodge theorem, (*) degenerates at E1, the map

Hn(X ,Ω⩾i
X )→ Hn

dR(X )

is injective for all i and its image is the abutment filtration
F iHn

dR(X ) ⊂ HdR(X ), called the Hodge filtration.



For i + j = n, the inclusions H i ,j(X ) ⊂ Hn
dR(X ) induce

isomorphisms

H i ,j(X )
∼→ (F i ∩ F j)Hn

dR(X )
∼→ griFH

n
dR(X ) = H j(X ,Ωi

X ),

and the Hodge decomposition can be rewritten

Hn
dR(X ) = ⊕i+j=nH

j(X ,Ωi
X ).

In particular the spaces Hn
dR(X ), H j(X ,Ωi

X ) are finite dimensional,
and if

hn(X ) := dimCH
n
dR(X )(= dimCH

n(X ,C)),
hi ,j(X ) := dimCH

j(X ,Ωi
X ),

we have, for all n, ∑
i+j=n

hi ,j(X ) = hn(X ),

and for all i , j , the Hodge symmetry

hi ,j(X ) = hj ,i (X ).



4. Algebraic de Rham complexes

Let f : X → S be a morphism of schemes.

A construction of Grothendieck functorially associates to f a
quasi-coherent sheaf of OX -modules, Ω1

X/S , called the module of
differential forms of degree 1 of X/S and an S-derivation
d : OX → Ω1

X/S defined as follows:

Ω1
X/S := I/I2,

where I ⊂ i−1(OX×SX ) is the ideal of the (locally closed) diagonal
immersion i : X ↪→ X ×S X , and I/I2 is viewed as an OX -module
via OX = i−1(OX×SX )/I.



The projections pr1, pr2 : X ×S X → X (which retract i) induce
ring homomorphisms p∗1 , p

∗
2 : OX → i−1(OX×SX )/I2, and an

S-derivation4

d := p∗2 − p∗1 : OX → I/I2 ⊂ i−1(OX×SX )/I
2.

For X , S affine, X = Spec(B), S = Spec(A), f given by a
homomorphism of rings A→ B , then Ω1

X/S is the quasi-coherent
sheaf associated to

Ω1
B/A := I/I 2,

where I = Ker(B ⊗A B → B, b1 ⊗ b2 7→ b1b2), and d : B → Ω1
B/A

is defined by da = 1⊗ a− a⊗ 1 modulo I 2.

4As Grothendieck observed, the definition of the sheaf of 1-forms Ω1 as
I/I2 works in other contexts as well: complex analytic, real anaytic, and even,
more surprisingly, C∞: for a real analytic manifold X , with associated
C∞-manifold X∞, by the division theorem of Malgrange the sheaf OX∞ is flat
over OX ([Tou], VI 1.3).



The B-module Ω1
B/A is the module of Kähler differentials of B/A

(Kähler, 1953). The pair (Ω1
B/A, d) is universal among

A-derivations of B into B-modules.

Example. For B = A[t1, · · · , tn],

Ω1
B/A = ⊕1⩽i⩽nBdti , db =

∑
(∂b/∂ti )dti .



The image of the derivation

d : OX → Ω1
X/S

OX -linearly generates Ω1
X/S , and d can be uniquely extended to a

complex

Ω•
X/S = (OX

d→ Ω1
X/S

d→ · · · d→ Ωi
X/S

d→ Ωi+1
X/S

d→ · · · )

where Ωi
X/S = Λi

OX
Ω1
X/S , in such a way that

d(ab) = da ∧ b + (−1)ia ∧ db for a of degree i .

This complex is called the de Rham complex of X/S . The
OX -module Ω1

X/S and the complex Ω•
X/S have nice functorial

properties. In particular, Ω•
X/S commutes with base change: for

X ′/S ′ pulled-back by g : S ′ → S from X/S ,

g∗Ω•
X/S

∼→ Ω•
X ′/S ′ .



Cotangent and derived de Rham complexes

For X/S smooth, Ω1
X/S is locally free of finite type (with basis

(dx1, · · · , dxn) if x = (x1, · · · , xn) : X → An
S is étale), and for a

first order thickening S ↪→ S ′ of ideal I , the groups

ExtiOX
(Ω1

X/S , I⊗OX ) = H i (X ,TX/S⊗I ), TX/S := Hom(Ω1
X/S ,OX )

for i = 0, 1, 2 control flat (hence smooth) deformations of X over
S ′.

No longer the case if X/S is only assumed to be flat. Need to
replace Ω1

X/S by the cotangent complex [I 71]

LX/S ∈ D⩽0(X ,OX ),

more often denoted LΩ1
X/S today.



For X/S corresponding to an A-algebra B , LΩ1
X/S is the complex

of quasi-coherent sheaves on X = Spec(B) associated to the
cotangent complex LΩ1

B/A (= LB/A) defined (independently) by
André and Quillen (around 1968):

LΩ1
B/A := Ω1

P•/A
⊗P• B ∈ D(B)

for a resolution (quasi-isomorphism) P• → B by a simplicial
A-algebra which is polynomial in each degree.

Definition extends to simplicial A-algebras B•.



In modern language, B• 7→ LΩ1
B•/A

is the left Kan extension

PolyA

��

Ω1
−/A// D(Mod(A−Alg))

D(A− alg)
LΩ1

−/A

66lllllllllllll

of the functor Ω1
−/A from the category PolyA of finitely generated

polynomial A-algebras to the ∞-category of animated A-algebras
D(A− alg). Here D(Mod(A−Alg)) is the ∞-category of
animated pairs (B,M), B an A-algebra, M a B-module.

This is the unique extension commuting with sifted colimits
(filtering colimits, and simplicial realizations).

LΩ1
X/S is recovered from the LΩ1

B/A’s (for
(Spec(B) ⊂ X )→ (Spec(A) ⊂ S)) by Zariski sheafification (works
in the ∞-categorical context).



By left Kan extension one defines similarly

LΩi
B/A = LΛiLΩ1

B/A

and the derived de Rham complex

LΩ•
B/A,

and its Zariski sheafification

LΩ•
X/S .

Explicitly,
LΩ•

B/A = Tot(Ω•
P•/A

)

for a simplicial resolution P• → B by polynomial algebras, and
Totn = ⊕i+j=n.



The derived de Rham complex comes equipped with the Hodge
filtration (deduced from the naive filtration of Ω•)

FiliHdgeΩ
•
X/S := LΩ⩾i

X/S

with associated graded

gri = LΩi
X/S [−i ].



Applications of cotangent complex and derived de Rham complex
theory

• first order deformation theory: schemes, group schemes, etc.
(Grothendieck, I., ...)

• relation with crystalline cohomology in mixed characteristic (I.,
Bhatt, Beilinson, ...)

• use in p-adic comparison theorems of p-adic Hodge theory
(Bhatt, Beilinson, ...)

• use in perfectoid geometry (Bhatt-Morrow-Scholze, Cesnavicius,
Mathew, ...) (starting point: LΩ1

B/Fp
= 0 if B is perfect)

• relation with Hochschild homology (B ⊗L
(B⊗L

AB)
B), cyclic

homology, syntomic cohomology, and K -theory
(Bhatt-Morrow-Scholze, Mathew, ...)

• use in prismatic cohomology theory (Bhatt-Lurie, Drinfeld,
Mathew, ...).



5. The case of smooth, complex, algebraic varieties

(A brief review of theorems of Serre (GAGA), Grothendieck, and
Deligne).

X : a smooth C-scheme, separated and of finite type, dim(X ) = d .

Then: Ω1
X := Ω1

X/C is locally free of rank d (hence Ωi
X locally free

∀i).

Poincaré lemma fails for Ω•
X : Hi (Ω•

X ) ̸= 0 for i > 0 (deep relations
with algebraic cycles (Bloch-Ogus)).

But, let
Xan = X (C)

the associated complex analytic variety,



and
ε : Xan → X

the canonical morphism (of ringed spaces). By Serre OXan is flat
over OX , and

Ωi
Xan = ε∗Ωi

X := OXan ⊗OX
Ωi
X ,

hence a canonical morphism of complexes

(∗) Ω•
X → ε∗Ω

•
Xan .

Remark For U ⊂ X open affine, Uan is Stein (as closed in some
(An

C)
an), hence H j(Uan,Ωi ) = 0 for all j > 0, hence

ε∗Ω
•
Xan

∼→ Rε∗Ω
•
Xan

.



Theorem (Serre, Grothendieck, Deligne).

(∗) Ω•
X → ε∗Ω

•
Xan .

is a quasi-isomorphism, hence induces an isomorphism (in D(C))

(∗∗) RΓ(X ,Ω•
X )

∼→ RΓ(Xan,Ω
•
Xan).

Combining with the (analytic) Poincaré lemma, we get:

(∗ ∗ ∗) RΓ(X ,Ω•
X )

∼→ RΓ(Xan,C).

hence, for all n,
Hn

dR(X )
∼→ Hn(Xan,C).



When X is affine, H j(X ,Ωi
X ) = 0 for all j > 0 by Serre, so in this

case
Hn

dR(X ) = Hn(Γ(X ,Ω•
X )),

and the theorem is equivalent to its special case (the most difficult
one!):

Theorem’. For X affine, the canonical map

Ω•
X (X )→ Ω•

Xan(X an)

is a quasi-isomorphism.

Glimpses on proof.

(a) The proper case. Assume X/C proper. The morphism (**)
induces a morphism of Hodge to de Rham spectral sequences

(E i ,j
1 (X ) = H j(X ,Ωi

X )⇒ H i+j
dR (X ))

→ (E i ,j
1 (X an) = H j(X an,Ωi

Xan)⇒ H i+j
dR (X an).

By Serre’s GAGA, this is an isomorphism on the E1 terms, hence an
isomorphism.



(b) The general case. By Nagata’s compactification theorem and
Hironaka’s resolution of singularities there exists a dense open
immersion

j : X ↪→ X ,

with X/C proper and smooth and D := X − X the support of a
strictly normal crossings divisor. Then the proof uses de Rham
complexes with logarithmic poles, both in the algebraic and analytic
contexts, whose local study near D provides isomorphisms

RΓ(X ,Ω•
X
(logD))

∼→ RΓ(X ,Ω•
X ),

RΓ(X an,Ω
•
Xan

(logDan)
∼→ RΓ(Xan,Ω

•
Xan)

with left hand sides isomorphic by GAGA.



Application to Hodge theory

(1) The proper smooth case. Let X/C be smooth and projective.
Hence X an is Kähler. Then degeneration and decomposition results
for X an imply, by GAGA,

(a) The (algebraic) Hodge to de Rham spectral sequence

E i ,j
1 = H j(X ,Ωi )⇒ H i+j

dR (X/C)

degenerates at E1.

(b) The Hodge decomposition of Hn
dR(X

an/C) induces by GAGA a
decomposition

Hn
dR(X/C) = ⊕i+j=nH

i ,j , H
i ,j

= H j ,i ,

also called the Hodge decomposition, where

H i ,j = F i ∩ F
j
,

F i := Hn(X , τ⩾iΩ•
X ) ⊂ Hn

dR(X/C) denoting the Hodge filtration.



Deligne generalized (a) and (b) to X proper (not necessarily
projective), while X an may fail to be Kähler.

Statement (a) is purely algebraic (equivalent to

hndR =
∑
i+j=n

hi ,j ,

with hi ,j := dimCH
j(X ,Ωi ). It generalizes to any proper, smooth

X/k , k a field of characteristic zero. A purely algebraic proof was
given in [DI].
In contrast, statement (b), which involves complex conjugation, is
of analytic nature.



(2) The general case. For X/C proper smooth, the data of the
lattice Hn(X an,Z) and the decomposition

Hn(X an,Z)⊗ C ∼→ ⊕i+j=nH
i ,j , H

i ,j
= H j ,i

is called a pure Hodge structure of weight n. (Classical) Hodge
theory is the study of such structures.

In a series of remarkable papers (Hodge I, Hodge II, Hodge III)
Deligne constructed an extension of this theory to arbitrary X/C
(separated and of finite type), called mixed Hodge theory.

In the past 50 years Hodge theory of complex algebraic varieties has
become a central topic in algebraic geometry, with deep
connections with number theory and representation theory.



6. De Rham complexes in positive characteristic
In positive characteristic the Poincaré lemma is outrageously false.
But this failure is the source of a miraculous isomorphism, the
Cartier isomorphism, which turns out to control the whole
differential calculus in positive and mixed characteristic.

Let S be an Fp-scheme, and X a smooth S-scheme. We have a
commutative square

X

��

X (1)

��

oo X
Foo

}}||
||
||
||
|

S S ,
FSoo

where FS (resp. the upper composite) is the absolute Frobenius of
S (resp. X ), F the relative Frobenius of X/S , and the square is
cartesian. The complex F∗Ω

•
X/S is OX (1)-linear. In particular,

⊕iH
i (F∗Ω

•
X/S) is a graded commutative OX (1)-algebra.



The following result (due to Katz in its formulation) is classical
([K]):

Theorem (Cartier). The homomorphism OX (1) → Ker(d) ⊂ F∗OX

extends uniquely to a homomorphism of graded algebras

C−1 : ⊕iΩ
i
X (1)/S

→ ⊕iH
i (F∗Ω

•
X/S)

such that, for any local section f of OX , C−1(d(1⊗ f )) = class of
f p−1df in H1F∗Ω

•
X/S . And C−1 is an isomorphism.



Proof. Existence and uniqueness easy:
(∗)

(f+g)p−1(df+dg)−f p−1df−gp−1dg = d(
∑

0<i<p

(1/p)
(
p

i

)
f p−ig i ).

Proof that C−1 is an isomorphism by reduction to S = Spec(Fp),
X = Spec(Fp[t1, · · · , tn]) (and finally, n = 1). In this case, C−1 is
an isomorphism

Ω∗ := ⊕Ωi
X/S

∼→ ⊕H i (Ω•
X/S)

(H∗(Ω•) as big as Ω∗!).

Remark. (*) has tight links with: δ-structures, Witt vectors, liftings
mod p2.



Derived Cartier isomorphism

For S/Fp, and X/S , the canonical filtration τ⩽i on F∗Ω
• defines an

increasing filtration
Filconj

i F∗LΩ
•
X/S

on F∗LΩ
•
X/S , called the conjugate filtration, with associated graded

calculated by a derived Cartier isomorphism

C−1 : LΩi
X (1)/S

[−i ] ∼→ griF∗LΩ
•
X/S ,

where X (1) is the derived pull-back of X/S by FS , and
F : X → X (1) the relative Frobenius.

This filtration, defined and studied by Bhatt [Bh], plays an
important role in p-adic Hodge theory.



7. Crystalline cohomology

Let k be a perfect field of characteristic p and W (k) its ring of
Witt vectors (e.g., k = Fp, W (k) = Zp).

Let Y /k be proper smooth, and suppose X1/W (k), X2/W (k) are
proper, smooth liftings of Y . Analogy with work of
Monsky-Washnitzer (in the affine case) and an algebraic
construction (due to him and, independently, Katz-Oda) of the
Gauss-Manin connection on relative de Rham cohomology led
Grothendieck to conjecture (in [GCJ])

(1) There should exist a canonical isomorphism

χ(X1,X2) : H
∗
dR(X1/W (k))

∼→ H∗
dR(X2/W (k)),

(satisfying the natural transitivity condition for X1, X2, X3);



(2) A new cohomology theory, crystalline cohomology,
Y /k 7→ H∗(Y /W (k)) defined for all Y /k proper and smooth (not
necessarily liftable), of which he proposed a definition, should give
rise, for any (proper smooth) lifting X/W (k), to a canonical
isomorphism

χ(X ) : H∗(Y /W (k))
∼→ H∗

dR(X/W (k),

with χ(X1,X2)χ(X1) = χ(X2) for any X1, X2 lifting Y .

This theory (with a slightly modified definition), and in a much
greater generality, was worked out by Berthelot [B].

Berthelot proved that, for Y /k proper and smooth, H∗(Y /W (k))
is finitely generated over W (k), and Y 7→ H∗(Y /W (k))⊗Qp is a
Weil cohomology theory.



The definition of H∗(Y /W (k)) uses the crystalline site
(Y /Wn(k))crys, whose objects (for any Y /k) are
Wn(k)-thickenings U ↪→ V of open subschemes of Y , endowed
with a divided power structure on the ideal of the thickening, with
coverings defined by the Zariski topology.

There is a natural sheaf of rings OY /Wn(k), (U ↪→ V ) 7→ OV , and

RΓ(Y /Wn(k)) := RΓ((Y /Wn(k))crys,OY /Wn(k)),

and (for Y /k proper, smooth)

H∗(Y /W (k)) := lim←−H∗(Y /Wn(k)).

For any X/W (k) proper smooth lifting Y , there exists a canonical
inverse system of isomorphisms

χn(X ) : RΓ(Y /Wn(k))
∼→ RΓdR(Xn/Wn(k))

where Xn = X ⊗Wn(k), giving the above χ(X ).



A different construction of H∗(Y /Wn(k) was later provided by the
de Rham-Witt complex, an inverse system of (strictly) graded
commutative differential algebras on Y

WnΩ
•
Y = (WnOY

d→WnΩ
1
Y

d→ · · · d→WnΩ
i
Y

d→ · · · ),

with
W1Ω

•
Y = Ω•

Y /k ,

operators F : WnΩ
i
Y →Wn−1Ω

i
Y , V : WnΩ

i
Y →Wn+1Ω

i
Y

extending F and V on WOY , and satisfying a number of relations
(such as FV = VF = p, FdV = d).

Moreover, for Y /k smooth, an inverse system of isomorphisms

RΓ(Y /Wn(k))
∼→ RΓ(Y ,WnΩ

•
Y )

(functorial in Y , compatible with products, and, for Y /k proper,
smooth, identifying the Frobenius morphism on RΓ(Y /W (k)) with
the endomorphism of RΓ(Y ,WΩ•

Y ) defined by piF on WΩi
Y .



First constructed by Bloch (under some restrictions), then by I. in
general, following suggestions by Deligne. Further generalizations
by Langer-Zink and Hesselholt-Madsen.

New, simplified approach by Bhatt-Lurie-Mathew [BLM], giving
reasonable results for certain singular Y /k (saturated de
Rham-Witt complexes).



8. p-adic Hodge theory

Let k , W (k) as before, K := Frac(W (k)), K an algebraic closure
of K , GK = Gal(K/K ).

Let X/W (k) be proper and smooth, and let Y = X ⊗ k ,
XK = X ⊗ K . Associated with X are two kinds of cohomological
objects:

(a) de Rham cohomology H∗
dR(X/W (k))

(b) p-adic étale cohomology H∗(XK ,Zp).

For all n, Hn
dR(X/W ) is finitely generated over W (k), in particular

dimK (H
n
dR(XK/K )) < +∞.

Similarly, Hn(XK ,Zp) is finitely generated over Zp, in particular

dimQp(H
n(XK ,Qp)) < +∞.



It follows from the comparison theorems between algebraic and
analytic de Rham cohomology on one hand, and between Betti
cohomology and p-adic étale cohomology (over complex algebraic
varieties) (Artin) on the other hand that

(∗) dimK (H
n
dR(XK/K )) = dimQp(H

n(XK ,Qp)).

Natural to ask whether (*) could be refined into an isomorphism

after a suitable extension of scalars. But de Rham cohomology and
p-adic étale cohomology are quite different in nature:

• Hn(XK ,Qp) has a continuous Galois action (of GK );

• Hn
dR(XK/K ) has no Galois action. As a K -vector spaces, it

depends only on the special fiber Y :

Hn
dR(XK/K )

∼→ Hn(Y /W (k))⊗ K .



But Hn
dR(XK/K ) has other pieces of structure:

(i) the Hodge filtration

F iHn
dR(XK/K ) = Hn(XK ,Ω

⩾i
XK/K

) ⊂ Hn
dR(XK/K ).

(ii) the σ-linear Frobenius automorphism

φ : Hn
dR(XK/K )

∼→ Hn
dR(XK/K ),

deduced from the Frobenius isogeny φ on crystalline cohomology
and the isomorphism Hn(Y /W (k))

∼→ Hn
dR(X/W (k).



Example. Suppose X/W (k) is an abelian scheme of dimension g .
Then

H1
dR(X/W (k)) = H1(Y /W (k))

is free of rank 2g over W(k), and with its natural operators F , V
satisfying FV = VF = p, is the Dieudonné module of the
p-divisible group Y [p∞]/k . One has φ = F , and the Hodge
filtration is given by

F 1H1
dR(X/W (k)) = H0(X ,Ω1

X/W (k)) = Lie(X )∨.

On the other hand, H1(XK ,Qp) is the Tate module of X∨, with its
natural Galois action

H1(XK ,Qp) = Tp(X
∨
K
)⊗Qp = (lim←−X∨

K
[pn])⊗Qp.



By results of Serre-Tate, Tate and Grothendieck, both the filtered
Dieudonné module (H1(Y /W (k))⊗ K ,F 1) and the Galois
representation Tp(X

∨
K
)⊗Qp characterize XK .

Around 1970 Grothendieck asked whether one could find an
algebraic machinery enabling to recover the filtered Dieudonné
module from the p-adic Galois representation and vice-versa. A
special case of his problem of the mysterious functor.

On the other hand, let C := K̂ . The action of GK on K extends to
a continuous action on C . Let C (1) be the rank one GK -module
over C deduced from the cyclotomic character GK → Z∗

p. His
results on abelian varieties and p-divisible groups led Tate to
conjecture (around 1968) the existence of canonical,
GK -equivariant decomposition for any proper smooth Z/K (not
necessarily of the form XK as above)

(HT ) ⊕i+j=nH
i (Z ,Ωj

Z/K )⊗ C (−j) ∼→ Hn(ZK ,Qp)⊗ C ,

later called Hodge-Tate decomposition.



Fontaine’s period rings and the birth of p-adic Hodge theory

The sought for algebraic machinery was patiently built by Fontaine
in the 1970’s and early 1980’s. He constructed rings denoted B (for
Barsotti), equipped with filtrations, φ and Galois actions, called
rings of p-adic periods, and conjectured the existence of canonical
period isomorphisms of the form

B ⊗ H∗
dR

∼→ B ⊗ H∗(−,Qp),

compatible with the induced Galois and φ-actions and filtrations,
and in such a way that H∗

dR (resp. H∗(−,Qp)) could be recovered
from B ⊗ H∗(−,Qp) (resp. B ⊗ H∗

dR) by simple operations. There
were 3 rings,

Bcris ⊂ Bst ⊂ BdR,

and corresponding comparison conjectures denoted Ccris, Cst, CdR.



The simplest one: BdR

BdR is a complete discrete valuation field with residue field C ,
equipped with a filtration (from the valuation) and a continuous
action of GK . Technically:

B+
dR := lim←−

n

(Ainf ⊗ K/JnK ), BdR := Frac(B+
dR),

where
Ainf := lim←−

n

W (O♭
C )/((ξ) + (p))n

is the perfect prism associated with the perfectoid ring OC

(O♭
C := lim←−F

OC/p),

θ : W (O♭
C )→ OC

the (surjective) Fontaine map, with kernel (ξ), and

JK := Ker(θ : Ainf ⊗ K → OC ).



Construction works more generally for any finite, totally ramified
extension K of Frac(W (k)). See [Ber] for a nice exposition. One
has

BGK
dR = K ,

grBdR = ⊕iC (i).

Fontaine’s CdR conjecture was the existence, for Z proper and
smooth over K , of a functorial isomorphism

(CdR) BdR ⊗K H∗
dR(Z/K )

∼→ BdR ⊗Qp H
∗(ZK ,Qp),

compatible with filtrations and Galois actions. Implies the
Hodge-Tate decomposition (HT), and H∗

dR(Z/K ), with its Hodge
filtration, is recovered as

H∗
dR(Z/K ) = (BdR ⊗Qp H

∗(ZK ,Qp))
GK .



Fontaine’s CdR conjecture, as well as the companion conjectures
Ccris, Cst, was eventually proven by various authors, using different
methods:

Tsuji (for Cst, plus de Jong to get CdR) (1999), Faltings (2002),
Niziol (2008), Beilinson (2012). See [Ber] for a historical survey.



Integral p-adic Hodge theory, prismatic cohomology

Let X/W (k) be proper, smooth as above, and Y = X ⊗W (k).
For any n,

Hn
dR(X/W (k))(

∼→ Hn(Y /W (k))) and Hn(XK ,Zp)

are finitely generated modules over W (k) and Zp respectively, of
the same rank.

In the late 1960’s Grothendieck asked:

Question. Compare the torsion subgroups

Hn
dR(X/W (k))tors and Hn(XK ,Zp)tors.

This question was out of reach of Fontaine et al.’s comparison
theorems, which all neglect torsion.



Answer recently given by Bhatt-Morrow-Scholze:

Theorem [BMS1, Th. 1.1 (ii)]. We have, for all n, and all m ⩾ 1,

lgthW (k)(H
n
dR(X/W (k))/pm) ⩾ lgthZp

(Hn(XK ,Zp)/p
m),

in particular,

dimk H
n
dR(Y /k) ⩾ dimFp H

n(XK ,Fp).

Remark. Inequality of lengths can be strict, and in case of equality,
structures of elementary divisors can be different.

The proof relies on a new theory, the Ainf -cohomology theory,
enabling, in the case of good reduction (over W (k) or ramified
rings over W (k)), to compare crystalline cohomology and p-adic
étale cohomology integrally. Which theory turned out to be a
special case of a more general and flexible one, prismatic
cohomology, due to Bhatt-Scholze, Bhatt-Lurie, Drinfeld ([BL],
[BL1], [Dr]), of which we will discuss a few aspects in the second
part of these lectures.
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