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0. Introduction

X/C proper, smooth scheme (proper ⇔ X an = X (C) compact).
Example: X = V (f ) ⊂ Pn

C, f ∈ C[x0, · · · , xn] homogeneous,
deg(f ) > 0, with z ∈ Cn+1 − {0} ⇒ ∃i , ∂f /∂xi (z) 6= 0.

For n ∈ Z:

Betti cohomology: Hn(X an,C)

de Rham cohomology: Hn
dR(X/C) := Hn(X ,Ω•X/C),

Ω•X/C := (OX
d→ Ω1

X/C
d→ · · · d→ ΩN

X/C)

(N = dim(X )) the de Rham complex

Poincaré lemma: exactness of the sequence

0→ CXan → OXan
d→ Ω1

Xan/C
d→ · · · d→ ΩN

Xan/C → 0

and Serre’s GAGA

H j(X ,Ωi
X/C)

∼→ H j(X an,Ωi
Xan/C)



imply comparison isomorphism

(1) Hn(X an,C)
∼→ Hn

dR(X/C).

Moreover: Hodge decomposition (Deligne, 1968, for X proper, not
necessarily projective):

Hn(X an,C) = ⊕i+j=nH
i ,j = ⊕i+j=nH

j(X ,Ωi ).

In particular, Hodge-to-de Rham spectral sequence degenerates at
E1:

E ij
1 = H j(X ,Ωi )⇒ H i+j

dR (X/C).

Remark. Liftings mod p2 + Cartier isomorphism ⇒ algebraic proof
(Deligne-I, 1987).



Assume now that X/C has a proper smooth model X over
S = Spec(Z[1/m]), for some m ≥ 1: X = XC.

For p ∈ Spec(Z[1/m]) (i.e. p - m), Xp := X ⊗ Fp is smooth: good
reduction of XQ at p.

Example: X = V (f ) ⊂ Pn
C as above, with f ∈ Z[1/m][x0, · · · , xn]

(s. t. for all p - m, and all geometric points z 6= 0 of Xp,
∃i , ∂f /∂xi (z) 6= 0).

By
Hn(X an,C) = Hn(X an,Q)⊗ C,

Hn
dR(X/C) = Hn

dR(XQ/Q)⊗ C,

and the comparison isomorphism (1)

Hn(X an,C)
∼→ Hn

dR(X/C)

get the (highly transcendental) period isomorphism

(2) Hn
dR(XQ/Q)⊗ C ∼→ Hn(X an,Q)⊗ C.



Problems:

(a) How about replacing
• Q by Q` (` prime)?
• X by XQp (p prime)?

(b) How about integral variants of (2)?



Problem (a): replacing Q by Q`, X by XQp

Q 7→ Q`: inputs from étale cohomology:

Hn(X an,Q)⊗Q` = Hn(Xet,Q`) = Hn(XQ,et,Q`),

Galois group GQ := Gal(Q/Q) acts on

Hn(XQ,Q`) := Hn(XQ,et,Q`).

For Q ↪→ Qp chosen, decomposition group GQp := Gal(Qp/Qp)
acts through

Hn(XQp
,Q`)

∼→ Hn(XQ,Q`).

Recall
Qp → Qp,ur → Qp,

Inertia Ip = Gal(Qp/Qp,ur) ⊂ GQp

Gal(Qp,ur/Qp)
∼→ Gal(Fp/Fp) = Ẑ

(generator: arithmetic Frobenius σ : x 7→ xp).



• Assume first p - m (hence Xp smooth).

Two cases:

(i) ` 6= p. Then, we have a Galois equivariant isomorphism (wrt
GQp � GQp/Ip = Gal(Fp/Fp)(= Ẑ))

Hn(XQp
,Q`)

∼→ Hn(Xp ⊗ Fp,Q`),

which implies that Ip acts trivially, i.e. GQp acts through
Gal(Fp/Fp)

Action well understood by the Weil conjectures (Grothendieck,
Deligne). In particular:



Zeta function

Z (Xp, t) := exp(
∑
n≥1

](Xp(Fpn))
tn

n
),

given by
Z (Xp, t) =

∏
0≤i≤2d

Pi (t)(−1)i+1
,

Pi (t) := det(1− Ft,H i (Xp ⊗ Fp,Q`))

(d = dim(X ), F = σ−1 the geometric Frobenius), and

Pi (t) ∈ Z[t],

independent of `, with inverse roots Weil numbers of weight i .



(ii) ` = p. Ip no longer acts trivially on Hn(XQp
,Q`).

Example : X = P1
C.

Here, can take m = 1, X := P1
Z (good reduction of P1

Q
everywhere).

Recall:
Q`(1) := Q` ⊗ Z`(1), Z`(1) := lim←−µ`n(Qp)

( ∼→ Q` non canonicallly), with Galois action: gz = zχ(g),
χ : Gal(Qp/Qp)→ Z∗` the cyclotomic character, and for r ∈ Z

Q`(r) := (Q`(1))⊗r

Whether ` 6= p or ` = p, we have

H2(P1
Qp
,Q`) = Q`(−1).

But: • If ` 6= p, µ`n(Qp) ⊂ Qp,ur, Ip acts trivially, and

det(1− Ft,H2(P1
Fp
,Q`)) = det(1− Ft,Q`(−1)) = 1− pt.

• If ` = p, µ`n(Qp) 6⊂ Qp,ur, Ip acts nontrivially (with wild
ramification).



Miracle: action of GQp on Hn(XQp
,Qp) related to de Rham

cohomology:
Hn

dR(XQp/Qp)↔ Hn(XQp
,Qp),

by p-adic Hodge theory. How can it be? NO Galois action on LHS!

LHS has hidden extra structure, especially an action of Frobenius,
coming from crystalline cohomology:

Hn
dR(XQp/Qp) = Hn

dR(XZp/Zp)⊗Qp,

and, actually, Hn
dR(XZp/Zp) is uniquely determined by the special

fiber Xp:

Hn
dR(XZp/Zp) = H∗(Xp/Zp) (RHS:= crystalline cohomology)



The (absolute) Frobenius endomorphism F of Xp, though it does
not, in general, lift to XZp defines an isogeny

ϕ : Hn
dR(XZp/Zp)→ Hn

dR(XZp/Zp)

(i.e., ϕ⊗Qp an isomorphism), which, together with the Hodge
filtration on Hn

dR(XQp/Qp), enables to recover Hn(XQp ,et,Qp) via
Fontaine’s rings and p-adic period isomorphisms (Fontaine’s Ccris
conjecture).

Study of action of Frobenius on crystalline cohomology of proper,
smooth varieties over perfect fields led to the theory of de
Rham-Witt complexes.



Problem (a) (replacing Q by Q`, X by XQp), cont’d.

• Assume now p | m, i.e. p /∈ Spec(Z[1/m]) (possibly bad
reduction of XQ at p).

(i) ` 6= p. Far less well understood than in the good reduction case.
Big open problems: weight monodromy conjecture (despite great
advances by Scholze), Serre’s and Serre-Tate’s conjectures of
independence of ` for characteristic polynomials of Frobenius (or
elements of the Weil group) on various `-adic cohomology groups
of the geometric generic fiber XQp

.

(ii) ` = p. No obvious crystalline cohomology groups in sight
(except in the case of semistable reduction, using log geometry),
but still get comparison theorems (p-adic period isomorphisms)
(Hodge-Tate conjecture, and Fontaine’s CdR conjecture).



Problem (b): Integral comparison.

Assume p - m (hence Xp smooth). Relations between

Hn
dR(XZp/Zp)↔ Hn(XQp

,Zp)(
∼→ Hn(X an,Z)⊗ Zp)

are the object of the (recent) integral p-adic Hodge theory and
prismatic cohomology (Bhatt-Morrow-Scholze, Bhatt-Scholze). In
particular,

lg(Hn
dR(XZp/Zp)tors) ≥ lg(Hn(X an,Z)p−tors)

Variants for p | m, semistable reduction case, due to
Cesnavicius-Koshikawa.
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1. Review of crystalline cohomology

May 1966: Grothendieck’s letter to Tate: crystals, crystalline site.
Sources of inspiration:

• Dieudonné theory (p-divisible groups) (Tate, Serre-Tate, Oda)
• de Rham cohomology: - Gauss-Manin connection
- Monsky-Washnitzer’s work on formal cohomology

Talks at IHES, fall of 1966; notes by Coates-Jussila

Crystalline cohomology developed in Berthelot’s thesis (SLN 407,
604 pp.), and later by many authors (Katz, Mazur, Ogus, etc.)



Notation
k : perfect field of characteristic p > 0, W = W (k),
Wn = Wn(k) = W /pnW , K = Frac(W )
σ : W

∼→W the Frobenius automorphism
(σ(a0, · · · , an, · · · ) = (ap0 , · · · , a

p
n , · · · ))

Definitions
• For X/k , crystalline site (X/Wn)crys with objects: thickenings
X ⊃ U ↪→ U ′,
U open in X , U ′/Wn, with PD (= divided powers) on the ideal of
U ↪→ U ′, compatible with that on (p),

morphisms: obvious, covering families: (Ui ↪→ U ′i )→ (U ↪→ U ′)
such that (U ′i ) = Zariski cover of U ′.

structural sheaf: O = OX/Wn
: (U ↪→ U ′) 7→ OU′ .

PD: a priori mysterious additional structure, motivated by acyclicity
of dR complex of PD-algebras W < t1, · · · , td >.



• crystalline cohomology

H i (X/Wn) := H i ((X/Wn)crys,O),
RΓ(X/W ) := R lim←−RΓ(X/Wn), H i (X/W ) = H iRΓ(X/W )

Main properties

• Weil cohomology
X/k proper smooth ⇒ H∗(X/W ) = ⊕H i (X/W ) is a finitely
generated W -algebra
X/k 7→ H∗(X/W )⊗ K (K = Frac(W )) is a Weil cohomology
theory filling the gap at p among `-adic cohomology theories
H∗(Xk ,Q`) (` 6= p, k = algebraic closure of k)
(i.e.: Künneth, Poincaré duality, cycle class). Moreover:

dimK (H i (X/W )⊗ K ) = dimQ`
(H i (Xk ,Q`)).

• Relation with de Rham cohomology
X/k lifted to Z/W proper and smooth ⇒ canonical iso

H∗(X/W )
∼→ H∗dR(Z/W ).



• Slopes of Frobenius
For X/k , by functoriality, absolute Frobenius FX of X (a 7→ ap on
OX ) defines σ-linear endomorphism

ϕ : H∗(X/W )→ H∗(X/W ).

Assume X/k proper, smooth.
Then H∗(X/W ) is finitely generated over W , and ϕ is an isogeny,
i.e., ϕ⊗ K is an isomorphism (if X is of pure dimension d , there
exists a σ−1-linear endomorphism v of H∗(X/W ) such that
ϕv = vϕ = pd). Hence, for each n ∈ Z,

(Hn(X/W ), ϕ)

is an F-crystal.

For k = Fq, q = pν , Katz-Messing:

det(1− ϕνt,H∗(X/W )⊗ K ) = det(1− Frob t,H∗(Xk ,Q`))

(` 6= p, Frob = relative Frobenius of X/k).



In general, Dieudonné-Manin decomposition into slopes:

Hn(X/W )⊗ K = ⊕λ∈QHn
λ ,

where Hn
λ = isoclinic component of pure slope λ (i.e., over

K (k) := Frac(W (k)), Hn
λ decomposes into ⊕K (k)σ[F ]/(F s − pr ),

λ = r/s).

Newton polygon Nwtn: slope λ, horizontal length dim(Hn
λ).

Main result (solution of Katz conjecture):

Theorem (Mazur-Ogus, 1972) X/k proper, smooth ⇒

Nwtn ≥ Hdgn,

where Hdgn = Hodge polygon, slope i , horizontal length hi ,n−i ,
hi ,j := dimk H

j(X ,Ωi
X/k).



Remarks: (a) by Katz-Messing, for k = Fq, Nwtn ≥ Hdgn implies
estimates on p-adic valuations of eigenvalues of Frob on
Hn(Xk ,Q`), and Chevalley-Warning type congruences on ]X (Fqm)
for smooth complete intersections in the projective space: for
X = V (a1, · · · , ar ) ⊂ Pd+r

k ,

]X (Fqm) ≡ ]Pd(Fqm) mod qcm,

where
c = sup(0, ceiling(

d + r + 1−
∑

ai
sup(ai )

)).

(generalizations by Katz (1971), Esnault-Katz (2005)).

(b) If X = Xk for a proper, smooth X/OL, [L : K ] <∞, then,
stronger inequality:

Nwtn ≥ Hdgn(XL).

Follows from Berthelot-Ogus comparison th. (1983):
Hn(X/W )⊗ L

∼→ Hn
dR(XL/L),

and Ccris comparison th. (⇒ weak admissibility of Hn
dR(XL/L))

(Tsuji et al., 1997 - ...).



Towards the de Rham-Witt complex

Grothendieck’s questions in letter to Barsotti, May, 1970.
Rewrite Hn(X/W )⊗ K as

Hn(X/W )⊗ K = ⊕i∈Z(Hn(X/W )⊗ K )[i ,i+1),

where
(Hn(X/W )⊗ K )[i ,i+1) = ⊕λ∈[i ,i+1)H

n
λ .

• Cohomological interpretation for (Hn(X/W )⊗ K )[i ,i+1)?

• (Hn(X/W )⊗ K )[i ,i+1) ⊗ (K , p−iσ) = F -(iso)crystal of slopes
∈ [0, 1)

↔ (by Cartier theory) formal p-divisible group G ij .

Dimension of G ij? Height of G ij?

dRW theory brings answers to these questions.



2. Old and new on the de Rham-Witt complex
2.1. Old

X/k smooth. For dim(X ) < p, p > 2, Bloch (1974) constructs the
so-called complex of typical curves

C = (C 0 → C 1 → · · · → Cdim(X ) → 0),

a complex of abelian sheaves on Xzar, with C 0 = WOX , C i

equipped with F , V satisfying FV = VF = p, dF = pFd , and
extending the usual F , V on WOX , with the property that, for
X/k proper and smooth, there is a natural isomorphism

H∗(X ,C )
∼→ H∗(X/W ),

with ϕ on H∗(X/W ) given by the endomorphism p•F of C .
Moreover he shows that dimH j(X ,C i )⊗ K <∞, and

H j(X ,C i )⊗ K = (H i+j(X/W )⊗ K )[i ,i+1),

solving one of Grothendieck’s questions in this case.



In particular,

Hn(X ,WO)⊗ K = (Hn(X/W )⊗ K )[0,1).

Construction inspired by Artin-Mazur formal groups Φi , with
Cartier modules H i (X ,WO): WO = TC (Gm), C i = TC (SKi+1)
(TC = typical curves), SKi+1 = symbolic part of Quillen’s K group.

1975: Deligne sketches differential geometric approach to Bloch’s
construction, with no K -groups, working without restrictions of
dimension or characteristic.
Inspired by work of Lubkin (1970) on de Rham complexes of Witt
vectors.
Carried out in [I, Complexe de de Rham-Witt et cohomologie
cristalline, Ann. ENS, 4ème série, 12, 1979, 501-661].



What is the de Rham-Witt complex?

Let k as before, and X a k-scheme. The de Rham-Witt complex of
X/k is a strictly commutative differential graded algebra on the
Zariski site of X :

WΩ•X = (WΩ0
X

d→WΩ1
X

d→ · · · ),

with WΩ0
X = WOX , and each component WΩi

X is equipped with
additive operators F , V , extending the usual ones on WOX ,
satisfying the following relations

FV = VF = p, xVy = V (Fx .y), Fx .Fy = F (xy), Fd [a] = [a]p−1d [a]

(for [a] = (a, 0, · · · , 0, · · · ) the Teichmüller representative of
a ∈ OX ), and

FdV = d .



FV = VF = p, xVy = V (Fx .y), Fx .Fy = F (xy), Fd [a] = [a]p−1d [a]

(for [a] = (a, 0, · · · , 0, · · · ) the Teichmüller representative of
a ∈ OX ), and

FdV = d .

Implies: for n ≥ 1, V nWΩ•X + dV nWΩ•X is a differential graded
ideal. Let

WnΩ•X := WΩ•X/(V nWΩ•X + dV nWΩ•X ) = (WnOX → · · · )

be the quotient. The projective system

W•Ω
•
X = (· · · →Wn+1Ω•X →WnΩ•X → · · · →W1Ω•X ),

together with the induced operators F : Wn+1Ωi
X →WnΩi

X ,
V : WnΩi

X →Wn+1Ωi
X , is characterized by a certain universal

property: universal F -V -pro-complex over WOX , in Langer-Zink’s
terminology.



W•Ω
•
X = (· · · →Wn+1Ω•X →WnΩ•X → · · · →W1Ω•X ),

Moreover, the sheaves WnΩi
X are quasi-coherent on Wn(X ), the

canonical map
Ω•WnOX /Wn

→WnΩ•X

is surjective, and an isomorphism for n = 1. For X = Spec(k),
WnΩ•k = Wn(k).



Short definition for X/k smooth

WΩ•X = Ω̂•WOX /W
/T ,

where T = closure of p-torsion T = Ω•WOX /W
[p∞] for topology

given by
Ω̂•WOX /W

= lim←−Ω•WnOX /Wn
,

i.e.,
WΩ•X = lim←−Ω•WOX /W

/(T + Kn),

where Kn := Ker(Ω•WOX
→ Ω•WnOX

).

Remark. T 0 = 0, but T 1 6= 0 if dim(X ) > 0, e.g., if x0 := [t],
x1 = Vx0, then xp1 = ppx0 ⇒
if y = xp−1

1 dx1 − pp−1dx0 ∈ Ω1
W (Fp [t])

, y 6= 0, py = 0.

Operators F , V , etc.: Use Fa ≡ ap mod p for a ∈WOX , F
induces ϕ on Ω1, uniquely divisible by p on Ω1/T , thus ϕ = piF
on Ωi/T ; V , relations follow.



Additional properties for X/k smooth.

• WΩi
X p-torsion free for all i , in particular, F , V injective

• WΩi
X = 0 for i > dim(X )

• (saturation) d−1(pWΩi+1
X ) = FWΩi

X (in particular, F bijective
on WΩ

dim(X )
X .

This property was the motivation for BLM (Bhatt-Lurie-Mathew)
approach (see below).

• WΩ•X/pWΩ•X →W1Ω•X = Ω•X is a quasi-isomorphism.

Main theorems

• Comparison with crystalline cohomology

• Structure of slope spectral sequence, and applications



Comparison with crystalline cohomology

Theorem 1. For X/k smooth, there is a canonical, functorial
isomorphism of graded algebras

H∗(X/W )
∼→ H∗(X ,WΩ•),

with Frobenius ϕ on H∗(X/W ) given by endomorphism p•F of the
complex WΩ•X .

Comes from refined, local theorem:



Theorem 1’. There exist a compatible system of (canonical,
functorial) isomorphisms

Ru∗OX/Wn

∼→WnΩ•X ,

where
u : (X/Wn)crys → Xzar

is Berthelot’s canonical map (u−1(U) = (U/Wn)crys).

In particular, if RΓ(X/W ) := R lim←−RΓ(X ,Ru∗OX/Wn
),

Corollary. ForX/k proper and smooth,

RΓ(X/W )
∼→ RΓ(X ,WΩ•X )

is a perfect complex of W -modules, and, for X of pure dimension
d , the σ−1-linear endomorphism v of RΓ(X/W ) induced by the
endomorphism of WΩ•X given by pd−1−iV in degree i (and F−1 in
degree d) satisfies

ϕv = vϕ = pd .



Structure of slope spectral sequence and applications

Theorem 2. For X/k proper and smooth, the spectral sequence

E ij
1 = H j(X ,WΩi

X )⇒ H i+j(X ,WΩ•X )(
∼→ H i+j(X/W ))

(called slope spectral sequence) degenerates at E1 modulo
p-torsion, H j(X ,WΩi

X )/H j(X ,WΩi
X )[p∞] is finitely generated

over W , with V topologically nilpotent, H j(X ,WΩi
X )[p∞] is killed

by a power of p, and the degeneration induces an isomorphism

H j(X ,WΩi
X )⊗ K

∼→ (H i+j(X/W )⊗ K )[i ,i+1).

In particular,

H j(X ,WOX )⊗ K
∼→ (H j(X/W )⊗ K )[0,1)

When Artin-Mazur’s functor Φj is representable by a smooth formal
group, then H j(WO) is its Cartier module of typical curves, and
dimK (H j(X ,WOX )⊗ K ) is the height of its largest p-divisible
quotient.



Refinements and complements

by I., I.-Raynaud, Nygaard, Ekedahl, especially, theory of coherent
graded modules over the Raynaud ring (see slide 49)

In particular:

• (Nygaard) New (simpler) proofs of Rudakov-Shafarevich theorem
on K3’s (H0(X ,TX ) = 0), and Ogus’ th. (Nwtn ≥ Hdgn) (via
Nygaard filtration).

• (I.) (generalization of Igusa-Artin-Mazur inequality) For k = k ,

rk(NS(X )) = b2 − 2dim(H2(WO)⊗ K )− rkTp(Br(X )).

• (answers to Grothendieck’s question) (I., Ekedahl)
H j(X ,WΩi )/V -torsion = Cartier module of smooth formal group
G ij ; dimensions of p-divisible quotient and unipotent part of G ij are
interesting numerical invariants of slope spectral sequence
(Ekedahl’s theory of Hodge-Witt numbers). If H j(X ,WΩi ) is
p-torsion free, G ij is p-divisible, and
dim(G ij) = dimkH

j(X ,WΩi )/V , ht(G ij) = dimkH
j(X ,WΩi )/p.



• (I.) Study of torsion of H2(X/W ) (discovery of exotic torsion)

• (I. I.-Raynaud, Ekedahl, Bloch, Gabber, Kato, Kerz, Morrow)
Logarithmic Hodge-Witt sheaves, relation with Milnor K -groups,
and fixed points of F on H∗(X ,WΩ∗)

Further developments

• Hyodo-Kato’s theory of log crystalline cohomology and log de
Rham-Witt complexes (used in formulation - and proof - of
Fontaine-Jannsen’s comparison conjecture Cst)

• Relative variants (Langer-Zink) (application to theory of
displays), overconvergent variants (Davis-Langer-Zink), arithmetic
variants (Hesselholt-Madsen), recent links with THH and
cyclotomic spectra (BMS2), connections with integral p-adic
Hodge theory and prismatic cohomology (BMS1, BS).



2.2. New approach to de Rham-Witt (BLM)

For X/k proper, but singular, H∗(X/W ) bad (Bhatt’s examples
with dimKH

∗(X/W )⊗ K =∞), but Berthelot’s rigid cohomology
H∗rig(X/K ) good (finite dimensional over K , and ϕ an
isomorphism) (NB. vast generalizations by Kedlaya et al.). In
particular, slope decomposition:

Hn
rig(X/K ) = ⊕i∈ZH

n
rig(X/K )[i ,i+1),

BLM approach yield new dRW complexes WΩ•X with:

• WΩ•X = WΩ•X for X/k smooth,

• for certain singular X/k (conjecturally all proper X/k):

H∗(X ,WΩ•X ) finitely generated over W

H∗(X ,WΩ•X )⊗ K
∼→ H∗rig(X/K )

Slope spectral sequence and cohomological interpretation of slope
decomposition as in the proper smooth case.



Construction of BLM’s de Rham-Witt complexes

A Dieudonné algebra is a strict cdga

A = (A0 d→ A1 d→ · · · )

with each Ai equipped with an additive endomorphism F satisfying:

(Fx)(Fy) = F (xy), dF = pFd , Fa ≡ ap mod pA0

for a ∈ A0.

The Dieudonné algebra A is called saturated if, for all i , Ai is
p-torsion free, F : Ai → Ai is injective, and d−1(pAi+1) = FAi .

If A is saturated, there exists a unique additive V : Ai → Ai such
that FV = p. It follows that:

VF = p, FdV = d , xVy = V (Fx .y).

Then, for all n ≥ 1, V nA + dV nA is a dg ideal in A. One sets

WnA := A/(V nA + dV nA).



Examples.

(1) A = Ω•Zp [t1,··· ,tr ]/Zp
; lift ti 7→ tpi of Frobenius gives

endomorphism ϕ of Ω•, with ϕ = piF on Ωi ; (A, d ,F ) is a
Dieudonné algebra; not saturated.

Variant: R/k smooth; B/W smooth formal lifting, with lifting F of
Frobenius; then A := Ω̂•B/W , with F = p−iϕ on Ω̂i (ϕ =
endomorphism of A induced by F : B → B) is a Dieudonné algebra;
not saturated.

(2) R/k smooth; (WΩ•R , d ,F ) is a saturated Dieudonné algebra
(cf. p. 30, Additional properties).



Let A be a saturated Dieudonné algebra. Recall:

VF = p, FdV = d , xVy = V (Fx .y).

WnA := A/(V nA + dV nA).

Define
WA := lim←−WnA.

It’s again a saturated Dieudonné algebra.
One says that A is strict if the canonical map

A→WA

is an isomorphism. For example, WΩ•R in Example (2) is strict.

Note: A strict ⇒ A0/VA0 reduced, and A0 ∼→W (A0/VA0).



DA: Dieudonné algebras; DAstr: strict Dieudonné algebras

Theorem 1 (BLM). The functor

DAstr → Fp−alg, A 7→ A0/VA0

has a left adjoint R 7→ WΩ•R :

HomFp−alg (R,A0/VA0)
∼→ HomDAstr(WΩ•R ,A).

The strict Dieudonné algebra WΩ•R is called the saturated de
Rham-Witt complex of R.

Functorial in R . For R perfect, WΩ•R = W (R).

Proof of Theorem 1. Easy. Uses Deligne-Ogus décalage functor ηp.



For a complex M of p-torsion free abelian groups, define the
subcomplex

ηpM ⊂ M[1/p], (ηpM)i = piM i ∩ d−1(pi+1M i+1).

A p-torsion free Dieudonné algebra A is saturated if and only if

αF : A→ ηpA, a ∈ Ai 7→ piFa

is an isomorphism. The saturation functor

Sat : DA→ DAsat

defined by
Sat(A) := lim−→

αF

(ηp)n(A/A[p∞])

is left adjoint to the inclusion. For A = Ω•Zp [t1,··· ,tr ]/Zp
as in

Example (1), Sat(A) played crucial role in study of classical dRW in
smooth case (Deligne’s complex of integral forms).



Construction of saturated dRW

Put
WΩ•R :=WSat(Ω•W (Rred)

).

There is indeed a unique structure of Dieudonné algebra on
Ω•W (Rred)

inducing F in degree 0.

Construction globalizes on schemes, yielding, for X/Fp, the
saturated de Rham-Witt complex

WΩ•X = (WΩ0
X

d→WΩ1
X

d→ · · · )

a (strictly commutative) dga on Xzar (over W (k) if X/k , k as
before), with F , V satisfying same formulas as for the (classical)
dRW complex, except that:

WΩ0
X = W (WΩ0

X/VWΩ0
X ),

and adjunction map

OX →WΩ0
X/VWΩ0

X

not necessarily an isomorphism.



Basic properties

In what follows, we assume X/k , k as before. First of all,

WΩ•X = lim←−WnΩ•X ,

with
WnΩ•X :=WΩ•X/(V n + dV n),

and WnΩi
X quasi-coherent over Wn(X ), and compatible with étale

localization. For U = Spec(R) open in X ,

Γ(U,WnΩi ) =WnΩi
R .

The inverse system

W•Ω•X = ((WnΩ•X )n≥1,F ,V )

is a Langer-Zink F -V -pro-complex over W•OX , hence a canonical
map (of F -V -pro-complexes)

can : W•Ω
•
X →W•Ω•X .



Theorem 2. (BLM). For X/k smooth, the canonical map

can : W•Ω
•
X →W•Ω•X

is an isomorphism, hence so is the resulting map

can : WΩ•X →WΩ•X .

Proof. Formal consequence of known structure of WΩ•R for
R = Fp[t1, · · · , tr ].

Bonus.
• Independent, budget proofs for main results of I. on WΩ•X in
smooth case, including comparison with crystalline cohomology
(“laborious calculations” of I. avoided), and Ogus’ key lemma in
proof of Ntwn ≥ Hdgn, namely ϕ : Ru∗OX/W → Ru∗OX/W

induces isomorphism Ru∗OX/W
∼→ LηpRu∗OX/W .



Bonus (cont’d)

• Abstract formulation of I.-Katz-Raynaud’s reconstruction of
W•Ω

•
X from Ru∗OX/W• (in smooth case), in terms of a general

fixed point theorem for Lηp.

New features
(a)

WΩ•X
∼→WΩ•Xred

.

More generally: if X → Y is a morphism of k-schemes which is a
universal homeomorphism with trivial residue extensions,

WΩ•Y →WΩ•X

is an isomorphism. In particular, if Rsn is the Swan
seminormalization of an Fp-algebra R , then

WΩ•R →WΩ•Rsn

is an isomorphism, which gives the following formula for Rsn:

Rsn =WΩ0
R/VWΩ0

R .



(b) If X → Y is a universal homeomorphism (with possibly
non-trivial residue extensions), then

WΩ•Y ⊗ K →WΩ•X ⊗ K

is an isomorphism. In particular, the Frobenius endomorphism
ϕ :WΩ•X →WΩ•X is an isogeny, i.e.

ϕ⊗ K :WΩ•X ⊗ K →WΩ•X ⊗ K

is an isomorphism. More precisely, if X/k is of finite type, and
there is an integer d such that Ω1

X/k is generated by at most d
elements, then

WΩi
X = 0

for i > d . As in the smooth case (but d > dim(X ) if X is
singular), this implies that F :WΩd

X →WΩd
X is bijective, hence

v :WΩ• →WΩ•X defined by pd−1−iV in degree i (and F−1 for
i = d) satisfies

ϕv = vϕ = pd .



Remark. In contrast with the simplicity of the proofs of the general
properties of WΩ•, the results in (a) and (b) require delicate
arguments of commutative (and homological) algebra.

In particular, the proof of (b) uses the theory of derived de
Rham-Witt complex LWΩ•X and its (curious) relation with the
saturated one (which, roughly, says that WΩ•X is the derived
p-completion of the saturation of LWΩ•X ).



Questions and prospects

(1) The finiteness problem.
For the classical dRW complex, the canonical map
Ω•WnOX

→WnΩ•X (n ≥ 1) is surjective, in particular, for X/k of
finite type, WnΩi

X is coherent over Wn(X ) for all i .
The similar map

Ω•WnOX
→WnΩ•X

is not surjective in general, as (a) above shows (e.g. if
R = k[x , y ]/(x2 − y3), W1Ω0

R = k[t]). That raises:

Question 1. For X/k of finite type, is W1Ωi
X coherent on X?



Remarks.

(i) One can show that if W1Ωi
X is coherent on X for all i , then

WnΩi
X is coherent on Wn(X ) for all i .

(ii) Let

R = W (k)σ[F ,V ; d ]/(FV = VF = p,FdV = d , d2 = 0) = R0⊕R1

be the Raynaud ring of k , a non-commutative graded ring, where
R0 = Wσ[F ,V ]/(FV = VF = p) is the Cartier-Dieudonné ring,
and d is placed in degree 1. (Left) graded modules M over R
correspond to complexes M of W -modules, where each component
M i is equipped with (semi-linear) operators F , V , satisfying

FV = VF = p, FdV = d ,

e.g., a saturated Dieudonné complex (over W ) is a graded
R-module.



Derived category D(R) extensively studied by I.-Raynaud, Ekedahl,
especially the full subcategory Db

c (R) of Db(R) consisting of
complexes of (graded) R-modules M, with coherent cohomology
complexes H i (M), characterized by the fact that

M → R lim←−R/(V nR + dV nR)⊗L
R M

is an isomorphism and each H i (R/(VR + dVR)⊗L
R M) (a complex

of k-vector spaces) has finite dimensional cohomology.

Can show (I.): if X/k is proper and Question 1 has a positive
answer for X , then one has RΓ(X ,WΩ•) ∈ Db

c (R), and, in
particular (by I.-Raynaud, Ekedahl):

• H∗(X ,WΩ•) is finitely generated over W .



• As in the smooth case, the slope spectral sequence

E ij
1 = H j(X ,WΩi )⇒ H i+j(X ,WΩ•)

degenerates at E1 modulo torsion, H j(X ,WΩi )/H j(X ,WΩi )[p∞]
is finitely generated over W , with V topologically nilpotent,
H j(X ,WΩi )[p∞] is killed by a power of p, and the degeneration
induces an isomorphism

H j(X ,WΩi )⊗ K
∼→ (H i+j(X ,WΩ•)⊗ K )[i ,i+1).

In particular, we have

H j(X ,WΩ0)⊗ K
∼→ (H j(X ,WΩ•)⊗ K )[0,1)



Status of Question 1 (finiteness problem)

Positive answer known in the following cases:

(a) (I.) X has normal crossing singularities, i.e. is locally smooth
over Y = Spec(k[t1, · · · , tr ]/(t1 · · · tr )).
If Di = V (ti ) ∈ Spec(W [t1, · · · , tr ]), then WΩ•Y is a du Bois type
complex:

WΩ•Y = Ker(⊕iWΩ•Di/W
→ ⊕i<jWΩ•Di∩Dj )/W

)

(and similarly for WnΩ•Y ). In particular,

W1Ω•Y = Ker(⊕iΩ
•
Di⊗k/k → ⊕i<jΩ

•
Di∩Dj )⊗k/k).

(b) (I.) X/k is a curve. Follows from invariance of WΩ• by passing
to the seminormalization (WΩ•R

∼→WΩ•Rsn) and local calculation
in seminormal case, using canonical factorization

X n → X sn → X

where X n (resp. X sn) is the normalization (resp.
seminormalization) of X .



(c) (Ogus, work in progress) X/k is an affine, toric scheme, i.e.,
X = Spec(k[P]) where P is a fine, saturated, torsion free monoid.

Proof uses lifting of Frobenius on W [P], F = a 7→ pa on P .

Hope: affine, toric can be relaxed to toroidal singularities.

(d) First unknown cases: conic singularities not of the above type,
e. g. for p > 2,

∑
1≤i≤5 x

2
i = 0.



(2) Comparison with rigid cohomology
Let X/k be proper. Recall Berthelot’s rigid cohomology H∗rig(X/K )
is finite dimensional over K , and has slope decomposition

Hn
rig(X/K ) = ⊕i∈ZH

n
rig(X/K )[i ,i+1).

Question 2. Can we construct a (functorial, ϕ-compatible)
isomorphism

H∗rig(X/K )
∼→ H∗(X ,WΩ•)⊗ K?

Remarks. (i) A positive answer would imply that

ϕ : RΓ(X ,WΩ•)→ RΓ(X ,WΩ•)

is an isogeny. This is a theorem by BLM: in fact,

ϕ⊗ K :WΩ•X ⊗ K →WΩ•X ⊗ K

is already an isomorphism (see slide 46).



(ii) By a result of Berthelot-Bloch-Esnault, there is a
(ϕ-compatible) canonical isomorphism

H∗rig(X/K )[0,1) → H∗(X ,WO)⊗ K .

By BLM, WΩ0
X = W (Osn

X ), and, as OX → Osn
X is a universal

homeomorphism,

H∗(X ,WO)⊗ K → H∗(X ,W (Osn))⊗ K

is an isomorphism (by elementary properties of H∗(WO)).
Therefore, when Question 1 (finiteness) has a positive answer,
hence (see slide 46)

H j(X ,WΩ0)⊗ K
∼→ (H j(X ,WΩ•)⊗ K )[0,1),

a positive answer to Question 2 yields Berthelot-Bloch-Esnault’s
result.



Status of Question 2.

Positive answer known only in cases (a) (snc singularities) and (b)
(curve) above, thanks to du Bois type property of WΩ•, and
Tsuzuki’s proper cohomological descent for H∗rig(X/K ).

Remark. H∗(X ,WΩ•) does not satisfy proper cohomological
descent (as Frobenius shows), and does not satisfy cdh descent
either (as an example of Bhatt-Lurie shows 1 ).

1(Added on Sept. 10, 2021) This example doesn’t quite show that, see ([L.
Illusie, A new approach to de Rham-Witt complexes, after
Bhatt-Lurie-Mathew, to appear in Rend. Sem. Math. Univ. Padova.], 6.1.3).



Further developments and problems

• (Zijian Yao) Log variants of BLM constructed.

• Relative variants (comparison with Langer-Zink)? Variants with
F -crystal coefficients? Relation with Ekedahl’s theory of F -gauges?

• Relation with prismatic cohomology?



3. Liftings mod p2, dRW and derived dR complexes

1. Review of Deligne-I. and statement of main result

k : perfect field, char(k) = p > 0, W = W (k), Wn = Wn(k)
For X/k , relative Frobenius F , sitting in

X

��

X ′oo

��

X

{{ww
ww
ww
ww
w

Foo

Spec(k) Spec(k)
Fkoo

F∗Ω
•
X/k ∈ Db(X ′,OX ′).

For X/k smooth, Cartier isomorphism

C−1 : Ωi
X ′/k

∼→ HiF∗Ω
•
X/k .



Theorem 1 (Deligne-I.). Assume X/k smooth and dim(X ) < p.
With any smooth lifting of X to W2 is associated a decomposition
in D(X ′) (= D(X ′,OX ′)):

⊕Ωi
X ′ [−i ]

∼→ F∗Ω
•
X

(/k omitted for brevity), inducing C−1 on Hi .

Recall: implies various Hodge degeneration and Kodaira vanishing
theorems.

Thanks to the multiplicative structures on both sides, Th. 1 follows
from:

Theorem 1’ (Deligne-I.). Assume X/k smooth. With any smooth
lifting of X to W2 is associated a decomposition in D(X ′):

OX ′ ⊕ Ω1
X ′ [−1]

∼→ τ≤1F∗Ω
•
X ,

where τ≤i denotes a canonical truncation.



Goal of this talk: sketch a proof of the following stronger result:

Theorem 2 (I., 2019). For any smooth X/k there is a canonical,
functorial isomorphism in D(X ′):

(τ≥−1LX ′/W2)[−1]
∼→ τ≤1F∗Ω

•
X ,

where τ≥i denotes a canonical truncation, and LX ′/W2 is the
cotangent complex of X ′/W2.

Proof of Th. 2 ⇒ Th. 1’.

Let X̃ be a smooth lifting of X to W2. Then

LX/W2 = LX/k ⊕ L
X/X̃

.

But
LX/k = Ω1

X , τ≥−1LX/X̃ = OX [1].



Remarks. (a) A generalization of Th. 2 to the prismatic set-up has
recently been obtained (independently) by Bhatt, private
communication. See comments at the end.

(b) If L = (L0 → L1) is a complex of O-modules over a locally
ringed space, with H1(L) locally free of finite type, a splitting of L
is a section of L1 � H1(L). Splittings exist locally, and two
splittings s1, s2 are locally related by an h : H1(L)→ L0 such that
s2 − s1 = dh. The sheaf of automorphisms of a splitting s is
isomorphic to H0(L).

Local splittings of L form a gerbe

Split(L).

Similarly, smooth liftings of X to W2 exist locally, and two such are
locally isomorphic, the sheaf of automorphisms of a fixed lifting is
the tangent sheaf TX . Local liftings form a gerbe

Lift(X/W2).



Th. 2 implies the S = Spec(k) special case of a theorem of
Deligne-I:

Theorem 1”. There is a natural equivalence of gerbes:

Lift(X ′/W2)
∼→ Split(τ≤1F∗Ω

•
X ).

(Note: here Lift(X ′/W2)
∼→ Lift(X/W2).)

Indeed, elementary theory of cotangent complex and deformations
yield:

Lift(X/W2)
∼→ Split(τ≥−1LX/W2)

Ũ 7→ (τ≥−1LU/W2

∼→ LU/k ⊕ τ≥−1LU/Ũ = Ω1
U ⊕OU [1])



2. Sketch of proof of Th. 2

Preliminary observation: LX/W is a perfect complex, of perfect
amplitude in [−1, 0], and

LX/W
∼→ τ≥−1LX/W2 .

If X ↪→ Y is a closed embedding in Y /W smooth, with ideal J,
then

LX/W
∼→ (J/J2 → OX ⊗ Ω1

Y )

(placed in degrees -1, 0).

Main ingredient of proof: the de Rham-Witt complex WΩ•X and its
Nygaard filtration.

A priori, no dRW complex in sight. How can it come on the scene?



It comes as a by-product of the construction of the comparison
map from crystalline cohomology to de Rham-Witt.

For simplicity, assume there exists a closed embedding X ↪→ Y ,
with Y /W smooth, and endowed with a lifting F of Frobenius. By
Cartier, there exists a unique F -compatible section

sF : OY →W (OY )

of the canonical projection. Composing with W (OY )→W (OX ),
get a map Ω•Y → Ω•W (OX )/W

, hence (composing with
Ω•W (OX )/W

→WΩ•X ) a map (of dga)

c : Ω•Y →WΩ•X ,

which, in degree 0, is OY →WOX , sending J ⊂ OY into
VWOX ⊂WΩ•X .



Therefore, for r ≥ 0,

c(J rΩ•Y ) ⊂ N rWΩ•X ;

Here:

Ω•Y = J0Ω•Y ⊃ JΩ•Y ⊃ · · · ⊃ J rΩ•Y ⊃ · · ·

is the J-adic filtration of Ω•Y , defined by

J rΩ•Y = (J r
d→ J r−1Ω1

Y → · · ·
d→ Ωr

Y
d→ Ωr+1

Y
d→ · · · ),

and

WΩ•X = N 0WΩ•X ⊃ N 1WΩ•X ⊃ · · · ⊃ N rWΩ•X ⊃ · · ·

is the Nygaard filtration defined, for r ≥ 1, by



N rWΩ•X = (pr−1VWOX
d→ pr−2VWΩ1

X
d→ · · · d→ VWΩr−1

X
d→WΩr

X

d→WΩr+1
X

d→ · · · ).

Thus, c induces a map

grrJΩ•Y → grrNWΩ•X .

For r = 1,
gr1JΩ•Y = (J/J2 d→ OX ⊗ Ω1

Y ),

with J/J2 placed in degree 0. Composing with the canonical
isomorphism LX/W

∼→ (J/J2 → OX ⊗Ω1
Y ) recalled above, we get a

map (in D(X ))

(1) LX/W [−1]→ gr1NWΩ•X ,

which a diagonal argument shows to be independent of the choice
of the embedding in (Y ,F ). What is the RHS?



For r ≥ 1, consider the map

N rWΩi
X ′ → F∗τ≤rΩ•X

sending pr−1−iVx to x for i ≤ r − 1, Fx for i = r (and 0 for i > r).
It induces a map (of complexes of OX ′-modules)

(2) grrNWΩ•X ′ → τ≤rF∗Ω
•
X .

A basic result is:

Lemma (Nygaard, 1981). The map (2) is a quasi-isomorphism.

Composing (2) with (1) (for X ′)

(1) LX ′/W [−1]→ gr1NWΩ•X ′ ,

and recalling the isomorphism LX ′/W
∼→ τ≥−1LX ′/W2 , we get the

map announced in Th. 2:

(3) (τ≥−1LX ′/W2)[−1]→ τ≤1F∗Ω
•
X .



To show that

(3) (τ≥−1LX ′/W2)[−1]→ τ≤1F∗Ω
•
X .

is an isomorphism, we may assume that X has a formal smooth
lifting (Y ,F ) over W . Then (3) boils down to the map

OX ′ ⊕ Ω1
X ′ [−1]→ F∗(OX

d→ ZΩ1
X )

induced by F : Y → Y , which is a quasi-isomorphism, inducing the
Cartier isomorphism C−1 on H∗.

This disposes of the case where there exists a closed embedding
X ↪→ Y , with Y /W smooth, and endowed with a lifting F of
Frobenius. The general case is reduced to this one by
cohomological descent for an open Zariski cover of X .



Remarks. (a) Let M be a saturated Dieudonné complex in the
sense of BLM: M is a complex of abelian groups, endowed with
F : M i → M i satisfying dF = pFd , and such that M is p-torsion
free, and

p•F : M → ηpM

is an isomorphism (saturation condition). Then M i is endowed with
V such that VF = FV = p and FdV = d . The Nygaard filtration

M ⊃ · · · ⊃ N rM ⊃ N r+1M ⊃ · · ·

is defined, for r ∈ Z, similarly to the case of WΩ•X , by
N rM i = pr−1−iVM i for i < r and N rM i = M i for i ≥ r . We have

N rM = (p•F )−1(prM ∩ ηpM)

Then, as WΩ•X/pWΩ•X → Ω•X is a quasi-isomorphism, the
following (easy lemma) generalizes Nygaard’s lemma:

Lemma (BLM). The map p•F induces an isomorphism

grrNM
∼→ τ≤r (M/pM).



(b) The Nygaard filtration has deep relations (see BMS2, BS3) with

- topological Hochschild homology,
- integral p-adic Hodge theory,
- prismatic cohomology.



3. Variants and generalizations

1. Let S be a k-scheme, S̃ a flat lifting of S to W2, X/S smooth,
X ′ = X ×(S ,FS ) S , F : X → X ′ the relative Frobenius. The
following generalization of Th. 1” is proved in Deligne-I.:

Theorem 3.1. There is a natural equivalence of gerbes:

Lift(X ′/S̃)
∼→ Split(τ≤1F∗Ω

•
X ).

(Note: here Lift(X/S̃) and Lift(X ′/S̃) are in general not
equivalent.)

Implies a canonical isomorphism

(τ≥−1LX ′/S̃)[−1]
∼→ τ≤1F∗Ω

•
X/S .

An independent direct proof can be given, though no dRW complex
is available.

Log variants of the above for log smooth morphisms of Cartier type
(Kato, 1989).



2. Prismatic variant (Bhatt)

Let (T = Spec(A), S : V (I ) ⊂ T , δ) be a prism. By definition:

• (A, δ) is a δ-ring, with associated Frobenius lift
ϕ : a 7→ ap + pδ(a)
• I is an ideal in A defining a Cartier divisor S in T
• A is derived (I , p)-complete (e.g. p-complete and f -complete if
I = (f ))
• S ∩ ϕ−1(S) ⊂ V (p).

Assume in addition (T , I , δ) bounded, i.e., A/I has bounded
p∞-torsion.



Let X/S formally smooth. Let (X/T )� be the prismatic site, and

ν : (X/T )� → Xzar

be the canonical projection (similar to the Berthelot map
u : (X/W )crys → Xzar ). Then:

Theorem 3.2 (Bhatt). There is a canonical isomorphism (in
D(Xzar,OX )

LX/T [−1]
∼→ τ≤1(Rν∗(O�

X/T )⊗L
A A/I )⊗ (I/I 2)

Recall 3.1. Th. 2 (I., 2019). For any smooth X/k there is a
canonical, functorial isomorphism in D(X ′):

(τ≥−1LX ′/W2)[−1]
∼→ τ≤1F∗Ω

•
X ,

where τ≥i denotes a canonical truncation, and LX ′/W2 is the
cotangent complex of X ′/W2.



Remark. Th. 3.2 (Bhatt) ⇒ Th. 2:

Take A = W (k), I = (p), ϕ(a) = σ∗(a). Then A/I = k . Use
crystalline comparison theorem (BS):

σ∗Rν∗O�
X/T

∼→ Ru∗OX/W ,

hence
Rν∗O�

X ′/T ⊗
L
A A/I

∼→ F∗Ω
•
X/k .

and
LX/T [−1]

∼→ τ≤1(Rν∗(O�
X/T )⊗L

A A/I )⊗ (I/I 2)

gives
(τ≥−1LX ′/W2)[−1] = LX ′/W [−1]

∼→ τ≤1F∗Ω
•
X/k .

Question: Common generalization of Th. 3.1 and Th. 3.2 ?



4. Inputs from derived de Rham complexes

Review of LΩ•.

For an A-algebra R ,

LΩ•R/A := Tot(Ω•P•(R)/A),

where P•(R) = standard simplicial resolution of R/A by polynomial
algebras.

Comes with Hodge filtration FiliHdgLΩ•R/A deduced from Ω≥i , with

griLΩ•R/A
∼→ LΩi

R/A[−i ](:= LΛiLR/A[−i ]).

Globalizes on schemes: LΩ•X/S , FiliHdg, gri = LΩi [−i ].



Back to the Nygaard filtration

Theorem 4.1 (I., 2019). Let X/k be smooth. There exists a
canonical filtered isomorphism:

c : LΩ•X/W /FilpHdg
∼→WΩ•X/N p,

where N i = N iWΩ•X is the Nygaard filtration, with filtrations
induced by the Hodge and the Nygaard filtration.

Corollary 4.2. For i < p,

griLΩ•X ′/W
∼→ τ≤iF∗Ω

•
X .

(i = 1: Cor 4.2 = Th. 2 (I.))



Corollary 4.3. A lifting X̃ of X to W2 gives a DI-decomposition

⊕iΩ
i
X ′ [−i ]

∼→ τ<pF∗Ω
•
X .

Apply Cor. 4.2 for i = p − 1, using the decomposition

LX/W = OX [1]⊕ Ω1
X

given by X̃ .

Remarks. (a) The isomorphism

c : LΩ•X/W /FilpHdg
∼→WΩ•X/N p,

of 4.1 does not extend to an isomorphism

LΩ•X/W
∼→WΩ•X .



Example (Bhatt). Take X = Spec(k). Then

R lim←−
n

(LΩ•k/Wn
)
∼→ (lim←−

n

Wn〈x〉)/(x − p),

where Wn〈x〉 means the PD-algebra on x . RHS has p-torsion (e.g.
(x − p)[p]).



(b) Generalization to prisms.

Theorem (Bhatt) Notation as in Th. 3.2:
(T = Spec(A), S = Spec(A/I ), ϕ : A→ A) a prism, X/S formal
smooth, ν : (X/T )� → Xzar the canonical projection.

There exists a canonical filtered isomorphism

LΩ•X/T/FilpHdg
∼→ (ϕ∗Rν∗O�

X/T )/N p

Here N i is the Nygaard filtration defined in such a way that the
basic isomorphism of prismatic cohomology, factorizing ϕ:

ϕ̃ : ϕ∗Rν∗O�
X/T

∼→ LηIRν∗O�
X/T

be a filtered isomorphism, where the RHS is equipped with the
filtration induced by the I -adic filtration (I r ∩ LηI ).



Remark. In the case (A, I ) = (W , p) one recovers the isomorphism
c of 4.1. Indeed, in this case the basic isomorphism ϕ̃ boils down to
the isomorphism

p•F : WΩ•X → ηpWΩ•X ,

expressing the saturation of dRW, and (cf. Remark p. 64) N r

becomes the Nygaard filtration previously defined.



Lci variants

For X/k , replace smooth by locally complete intersection.
Partial results by Bhatt:
decompositions (in presence of liftings), and partial degeneration of
Hodge to de Rham spectral sequences, both in char. p > 0 and in
char. 0.
Work in progress.


