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1. Statement of refined uniformization and refined de Jong’s theorems

1.0. Recall [EGA IV 7] that a scheme X is called quasi-excellent if X is locally

noetherian, its formal fibers are geometrically regular (i. e. the fibers of Spec ÔX,x →
SpecOX,x are regular and remain so after any finite extension), and for any scheme X ′ of
finite type over X , the set of regular points of X ′ is open. This last condition is implied
by the others when X is local. A scheme X is called excellent if it is quasi-excellent and
universally catenary, i. e. any ring of finite type over a local ring of X satisfies the chain
condition. Any scheme of finite type over a quasi-excellent (resp. excellent) scheme is
quasi-excellent (resp. excellent). The spectrum of a complete noetherian local ring, or of a
Dedekind ring of fraction field of characteristic zero is excellent. Quasi-excellent schemes
are universally Japanese. If a noetherian scheme X has the property that any scheme X ′

integral and of finite type over X is the target of a proper birational map whose source is
regular, then X is quasi-excellent.

Theorem 1.1 (Gabber). Let X be a noetherian, quasi-excellent scheme, and let Z ⊂ X
be a nowhere dense closed subset. Let ℓ be a prime number invertible on X. Then there
exists a finite family of maps of finite type pi : X ′

i → X with the following properties :
(a) X ′

i is regular, connected and the inverse image Z ′
i of Z in X ′

i is the support of a
strict ncd, or the empty space ;

(b) if η′
i is the maximal point of X ′

i, ηi = pi(η
′
i) is a maximal point of X and the fibers

(*) I heartily thank C. Nakayama for a careful reading of a first draft and many helpful
comments.
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at the maximal points of X of the morphism p : X ′ =
∐

X ′
i → X defined by the pi’s are

finite ;
(c) the morphism p admits a section after base change by a map g = g1g2g3g4, where

g1 : X1 → X0 = X is a nilpotent immersion, g2 : X2 → X1 is a modification, g3 : X3 → X2

is finite, flat, of degree prime to ℓ, and g4 : X4 → X3 is a Nisnevich étale cover.

By a modification we mean a proper, surjective morphism, sending each maximal point
to a maximal point, and which is an isomorphism above a dense open subset. A Nisnevich
cover is an étale covering family such that each point downstairs has a preimage with
trivial residual extension.

1.2. Let S be a noetherian scheme and ℓ a prime number. Let RS be the category whose
objects are reduced S-schemes of finite type whose all maximal points map to maximal
points of S with a finite residue field extension and morphisms are S-morphisms (note that
because of the condition on residue field extensions, S-morphisms send maximal points to
maximal points). The ℓ′-topology on RS is the topology generated by the covering families
of the following two types :

(i) Nisnevich covers
(ii) proper surjective morphisms X ′ → X with the property that for any maximal point

η of X there exists a maximal point η′ of X ′ above η such that k(η′)/k(η) is finite and of
degree prime to ℓ.

Fiber products in RS are defined by taking the reduced closure of fiber products at
maximal points. Typical examples of surjective maps for the ℓ′-topology are ℓ′-alterations,
i. e. proper surjective maps in RS with prime to ℓ residue field extensions at the maximal
points. One can show, using Gruson-Raynaud’s flattening theorem, that condition 1.1 (c)
is equivalent to saying that p is covering for the ℓ′-topology. One can also show that in 1.1
(c) one can permute g3 and g4. See [ILO] for details.

Theorem 1.1 is a local resolution theorem. However, as a by-product of the proof, Gabber
obtained the following global resolution theorems, which improve classical theorems of de
Jong [dJ1] :

Theorem 1.3 (Gabber). Let X be a scheme separated and of finite type over a field
k, Z ⊂ X a nowhere dense closed subset, ℓ a prime 6= char(k). Then there exists a finite
extension k′ of k of order prime to ℓ and an ℓ′-alteration p : X ′ → X over Spec k′ → Spec k,
with X ′ smooth and quasi-projective over k′ and p−1(Z) the support of a strict normal
crossings divisor.

Theorem 1.4 (Gabber). Let S be an excellent trait, X a scheme separated and of finite
type over S, ℓ a prime invertible on S, Z ⊂ X a nowhere dense closed subset. Then
there exists a finite extension S′/S of degree prime to ℓ and an ℓ′-alteration p : X ′ → X
over S′ → S, a sncd divisor T ′ in X ′ such that X ′ is regular and quasi-projective over
S′, Z ′ = p−1(Z) is a subdivisor of (X ′

s′)red ∪ T ′ (s′ denoting the closed point of S′),
with (X ′, T ′) étale locally given by X ′ = S′[t1, · · · , tn]/(ta1

1 ...tar
r − π), π a uniformizing

parameter in S′, gcd(p, a1, · · · , ar) = 1, p = char(k), k the residue field of S, and
T ′ = S′[t1, · · · , tn]/(tr+1 · · · tm).
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2. Reduction to the local complete case

2.0. As the problem of finding a uniformizing morphism p is local for the Nisnevich
topology, and henselization preserves quasi-excellency [EGA IV 18.7.6], by a standard
limit argument we may assume that the scheme X of 1.1 is local henselian. For the
convenience of further notations, we will denote it by S. The goal of this section is to
show that from uniformization data for the pair consisting of the completion Ŝ of S at
the closed point and the trace Ẑ of Z on Ŝ (the completion of a closed subscheme of S
having Z as underlying subspace) one can deduce similar data for (S, Z). This relies on
Artin-Popescu’s algebraization theorem and a method of approximation à la Artin-Rees
developed by Gabber, for which we give some algebraic preliminaries in 2.1-2.3. The main
geometric result needed for the algebraization of uniformization data is 2.6.

2.1. Les A be an abelian category having countable sums. If M is an object of A
endowed with a (decreasing) filtration F = (Fn)n∈Z, we define, as usual, M(n) to be M
endowed with the filtration F r(M(n)) = F r+nM . We set

(2.1.1) M(∗) = ⊕n∈ZM(n).

This is a Z-graded object of A, equipped with a (compatible) filtration F rM(∗) =
⊕n∈ZF rM(n). For an interval [a, b] of Z, we define the associated graded of M of width
[a, b] (or the [a, b]-graded of M , for short) to be

(2.1.2) gr.
[a,b](M) = (F a/F b)M(∗) = ⊕n∈ZF a+nM/F b+nM.

We sometimes write gr[a,b] instead of gr.
[a,b]. For [a, b] = [0, k], we simply say of width k

(or k-graded) and write gr.
k (or grk) instead of gr.

[0,k]. For k = 1, gr1(M) is the usual

associated graded gr M = ⊕FnM/Fn+1M . In general, gr[a,b] M is a succesive extension
of shifted gr : the filtration induced by F on gr[a,b] M , for b > a, has for associated graded

grF (gr[a,b]M) = ⊕a≤r≤b−1grM(r).

2.2. We’ll be mostly interested in the following situation : A is a comutative ring of a
topos (in practice, the structural sheaf of rings of a noetherian scheme or formal scheme),
I an ideal of A, and the I-adic filtration on A-modules M , defined by FnM = InM for
n ≥ 0 and FnM = M for n ≤ 0. Then, for k ≥ 1,

grI,kA = A/I ⊕ A/I2 ⊕ · · · ⊕A/Ik ⊕ I/Ik+1 ⊕ I2/Ik+2 ⊕ · · ·

(with A/Ik in degree zero) is a graded A/Ik-algebra, which is a (k − 1)-thickening of the
usual graded algebra grI A. For example, for k = 2, grI,2 A is an A/I2-extension

0→ grIA(1)→ grI,2(A)→ grI(A)→ 0

of grI A by grI A(1) viewed as an ideal of square zero. If M is an A-module,

grI,kM = M/IM ⊕M/I2M ⊕ · · · ⊕M/IkM ⊕ IM/Ik+1M ⊕ I2M/Ik+2M ⊕ · · ·
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(with M/IkM in degree zero) is a graded grI,k A-module, generated over grI,k A by its
degree zero part, i. e. the natural map

M/IkM ⊗A/Ik grI,kA→ grI,kM

is surjective. If B is a commutative A-algebra, then grk B is a graded grk A-algebra
(generated, as a module, by its degree zero part B/IkB). We will drop the index I
when no confusion can arise.

Let L, M be A-modules, and k a positive integer. Following Gabber, we define a (I, k)-
morphism from L to M (or k-morphism if there is no ambiguity on I) as a morphism
u : grk L → grk M of grk A-graded modules. If B, C are A-algebras, an (I, k)-morphism
from B to C (or k-morphism, for short) is a morphism u : grk B → grk C of grk A-graded
algebras. Composition of k-morphisms is defined in the obvious way. We say that L and
M (resp. B, C) are (I, k)-close (or k-close, for short) if there exists a k-isomorphism from
L to M (resp. B to C).

We have similar definitions for complexes. If L, M are complexes of A-modules, and
k is a positive integer, an (I, k)-morphism (or k-morphism) from L to M is a morphism
u : grk L → grk M of complexes of grk A-graded modules, and we say that L and M
are (I, k)-close (or k-close) if there exists a k-isomorphism from L to M . If L and M
are k-close, the cohomology sheaves HiL and HiM are not k-close in general. We have,
however, the following result (due to Gabber), which plays a key role in the subsequent
approximation of formal geometric data.

Lemma 2.3. Let A be a noetherian ring and I an ideal contained in the radical of A.
Let L be a complex of finitely generated A-modules, concentrated in degrees in [−2, 0], and
such that H−1L = 0. Then there exist integers k0 > c ≥ 0 such that for all k ≥ k0, if
M is a complex of finitely generated A-modules, concentrated in degrees in [−2, 0], which
is (I, k)-close to L, then, H−1M = 0 and for all i ∈ Z, HiM (resp. ZiM , BiM) is
(I, k − c)-close to HiL (resp. ZiL, BiL).

The proof relies on a lemma of Serre [Se, II 15] on the degeneration of the spectral
sequence of a filtered complex along a diagonal p + q = m, in the presence of Artin-
Rees assumptions. The hypothesis that H−1L = 0 is essential, as the case where

L = [ A
0 // A ] trivially shows. Recall that an Artin-Rees constant for a submodule

F of a finitely generated A-module E (and the I-adic filtration) is an integer c ≥ 0 such
that InE ∩ F ⊂ In−cF for all n ≥ c. Serre’s result is that if K is a bounded complex
of finitely generated A-modules, then c is an Artin-Rees constant for the images of the
differentials of the spectral sequence of K filtered by the I-adic filtration if and only if this
spectral sequence degenerates at Ec+1. When the components of L and M are free, this
easily yields the conclusion of 2.3 for B−1, B0 and H0. This partial result suffices for the
geometric application in 2.6. (See [ILO] for details.)

2.4. Let A be a henselian, noetherian, local ring, with maximal ideal m, S = Spec A,
Ŝ = Spec Â. We have a chain of morphisms

s = S0 → S1 → · · · → Sn → · · · → Ŝ → S,
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where Sn = Spec An, An = A/mn+1. The formal scheme S = Spf Â defined by Ŝ is the
direct limit of the Sn’s.

Let X be a noetherian formal scheme, of finite type over S (in particular, m̂OX is an
ideal of definition of X , and X = ind.limXn, where Xn = X ×S Sn is a scheme of finite
type over Sn). Consider the m̂-adic filtration on OX . For k > 0, the graded ring grkOX

(2.2) is a sheaf, on X0, of graded algebras over the graded ring grkOS . It is quasi-coherent
on Xk−1 as a sheaf of algebras over OXk−1

= OX /m̂kOX . The k-extended normal cone

Ck(X ) := Spec grkOX

is an k − 1-thickening of the (usual) normal cone (of X0 in X ),

C1(X ) = Spec(⊕m̂nOX /m̂n+1OX ),

extending the thickening X0 → Xk−1 of their vertices. IfM is a coherent sheaf on X , grkM
(calculated for the m̂-adic filtration) is a graded module over grkOX , quasi-coherent over
Xk−1 (and even over Ck(X )).

Let now X , Y be formal schemes of finite type over S, and k > 0. Assume we are
given a morphism ϕ : Xk−1 → Yk−1 of Sk−1-schemes. We define an (m, k)-morphism (or
k-morphism) from X to Y above ϕ (or extending ϕ) as a (homogeneous) morphism of cones
f : Ck(X )→ Ck(Y) over Ck(S) extending ϕ, i. e. a morphism of graded grkOS -algebras
ϕ−1 grkOY → grkOX over ϕ−1OYk−1

→ OXk−1
. If M (resp. N ) is a coherent sheaf

on X (resp. Y), a k-morphism from N to M above f is a morphism of graded modules
u : ϕ−1(grkN ) → grkM above f . Composition of k-morphisms f , or pairs (f, u), is
defined in the obvious way. In particular, we have a notion of k-isomorphism (above an
isomorphism ϕ). We say that X and Y (resp. (X ,M) and (Y ,N )) are k-close if there
exists a k-isomorphism from X to Y (resp. from (X ,M) to (Y ,N )) (above an isomorphism

Xk−1 → Yk−1). Finally, if X , Y are schemes of finite type over Ŝ (or S), we define k-

morphisms from X to Y as k-morphisms from X̂ to Ŷ , their formal completions along
their special fibers Xs, Ys. We have a similar definition for k-morphisms from (X, M) to
(Y, N), where M (resp. N) is a coherent sheaf on X (resp. Y ).

2.5. Assume from now on that S is quasi-excellent (or, equivalently, excellent , as A is
henselian). Consider a commutative diagram

T

f

��
Ŝ

g
@@��������

i // S

,

with T an S-scheme of finite type. As A is excellent, the morphism Ŝ → S is regular.
By Popescu’s theorem ([Po1], [Po2]), Â is therefore a filtering inductive limit of smooth
A-algebras of finite type. As A is moreover henselian, it follows that, for all n ∈ N, there
exists a section u of f such that

ui ≡ g mod. mn+1,
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which means that the compositions Sn → Ŝ → S → T and Sn → Ŝ → T (where the last
maps are respectively u and g) are equal. Such a section u is said to be n + 1-close to g.
It depends on n, and is not unique.

Write Â as a filtering inductive limit of A-algebras of finite type Bα, indexed by a
filtering ordered set E. Let Tα = Spec Bα, so that we get commutative diagrams

Tα

fα

��
Ŝ

gα

??�������� i // S

,

with Ŝ = inv.limTα. Let X be an Ŝ-scheme of finite type. Then there exists α0 ∈ E and
a model of X over Tα0

, i. e. a cartesian diagram

X //

��

Xα0

��
Ŝ

gα0 // Tα0

,

with Xα0
of finite type over Tα0

. Such a model is not unique. However, if Xα0
/Tα0

and
Xα1

/Tα1
are two such models, then there exists α2 greater than or equal to α0 and α1

such that Xα0
and Xα1

become isomorphic on Tα2
. For α ≥ α0, denote by Xα/Tα the

model of X deduced by pull-back of Xα0
/Tα0

.
Let n ∈ N and u : S → Tα be a section of fα which is n + 1-close to gα, and consider

the pull-back Xu of Xα by u, i. e. the S-scheme of finite type defined by the cartesian
diagram

Xα

��

Xu
oo

��
Tα Su

oo

.

Let jn : Sn → Ŝ be the inclusion. As gαjn = uijn, Xα, the pull-back of Xu to Sn is
identified with Xn, i. e. we have a cartesian square

(2.5.1) Xn
//

��

Xu

��
Sn

// S

.

If Y is a second Ŝ-scheme of finite type, and h : X → Y an Ŝ-morphism, one can similarly
find an α0, a model Yα0

of Y over Tα0
, and a model hα0

of h. Then, given u as above, we
get an S-morphism hu : Xu → Yu inducing hn : Xn → Yn.

The goal is to show that if X (resp. h) enjoys certain properties, e. g. reducedness,
regularity, etc. (resp. smoothness, regular immersion, etc.), then, for α and n sufficiently
large, Xu (resp. hu) enjoys the same properties in an open neighborhood of the special
fiber Xs. The main technical tool to do this is the following result (of Gabber) :
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Theorem 2.6. Let S and the projective system (Tα)α∈E be as in 2.5. Let X be an

Ŝ-scheme of finite type, Xα0
a model of X over Tα0

, Xα the model over Tα deduced by
base change. Then there exist α1 ∈ E, α1 ≥ α0, and integers n0 ≥ c > 0 satisfying the
following property :

For any n ∈ N with n ≥ n0, α ∈ E, α ≥ α1, and any section u of fα which is (n + 1)-
close to gα, there exists a unique (n + 1− c)-isomorphism (2.4)

a : X → Xu

extending the isomorphism Xn−c → (Xu)n−c deduced from (2.5.1).

As grkOX is generated over grkOS by OXk−1
, the uniqueness is clear. By the

uniqueness, one is reduced to the case where X is affine. Embedding X in a standard
affine space Am

S , one is reduced to a problem of approximation of coherent modules on

Z = Am
S , or equivalently, of finitely generated modules over the ring B = Â[t1, · · · , tm],

equipped with the I-adic filtration, where I = m̂B. Given a finitely generated B-module
M , choose a presentation of M of length 2 by free finitely generated B-modules :

(∗) L−2 → L−1 → L0 →M → 0.

In the case we are interested in, M = Γ(X,OX), and M is the pull-back of the Bα1
-module

Mα1
= Γ(Xα1

,O), where Bα1
= Aα1

[t1, · · · , tm], with α1 ≥ α0 such that Xα1
⊂ A

m
Tα1

is a

model of X/Â dominating Xα0
/Tα0

, and Tα1
= Spec Aα1

, L0 = B and the last map is a
surjective homomorphism of rings. Enlarging α1 we may assume that (∗) comes by base
change from a similar presentation of Mα1

,

(∗)α1
L−2

α1
→ L−1

α1
→ L0

α1
→Mα1

→ 0.

with Li
α1

free of the same rank as Li, L0
α1

= Bα1
= Aα1

[t1, · · · , tm], and the last map a
surjective homomorphism of rings. We denote by Lα → Mα (= Γ(Xα,O)) the pull-back
of (∗)α1

to Bα. Choose constants k0 = n0 + 1 > c as in 2.3 for the complex L = g∗
αLα,

where gα : Ŝ → Tα. Let n ≥ n0 and u : S → Tα be a section of Tα/S which is (n+1)-close

to gα. Then the complex of free B-modules Ku := (ui)∗Lα (where i : Ŝ → S) can be
identified componentwise with L. As u is (n +1)-close to gα, the matrix coefficients of the
differentials of Ku are congruent to those of L modulo m̂n+1, and therefore we have an
(n + 1)-isomorphism from grn+1 L to grn+1 Ku given by the identity componentwise. By

2.3, H0L and H0Ku are (n + 1 − c)-close as B-modules, and a fortiori as Â-algebras, by
an isomorphism compatible with the isomorphism Γ(Xn−c,O)→ Γ((Xu)n−c,O) deduced
from (2.5.1).

The problem with approximation is that given α, n, and the section u of fα which is
(n + 1)-close to gα, the fact that (Xu)n and Xn are isomorphic doesn’t tell us much on
Xu, as compared to X . For example, if we know the dimension of X at a point x of its
special fiber, we can’t even say anything about the dimension of Xu at x. The notion of
k-closeness repairs this. The following lemma (applied to localizations of the affine space
Am

Ŝ
above at points of the special fiber, and the ideal generated by m̂), combined with 2.6,

will allow to reduce uniformisation to the complete local case :
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Lemma 2.7. Let A be a noetherian local ring, with maximal ideal m, and I ⊂ m an
ideal. Let B = A/J and B′ = A/J ′ be quotients of A.

(i) If B and B′ are (I, 1)-close, then dim B = dim B′.
(ii) If B and B′ are (I, 2)-close, and B is regular, then B′ is regular.

Assertion (i) follows from the formula

dimB = dim grIBB

(itself a consequence, for codim V (I) ≥ 1, of dim B = dim Proj(⊕n∈NInB) = 1 +
dim Proj(⊕n∈N(InB/In+1B)). For assertion (ii), denote by ωB the Zariski cotangent space
of B at its closed point. Then, B is regular if and only if dimB = dimωB . In view of (i),
assertion (ii) follows from the fact that B → B/I2B induces an isomorphism on ω.

Gabber shows that reducedness and normality are similarly preserved by (I, n)-closeness,
for n sufficiently large. Is it the case, more generally, for the Rk and Sk conditions ?

2.8. Let Z ⊂ S be a closed, nowhere dense subsscheme, Ẑ ⊂ Ŝ its trace on Ŝ, and
suppose we are given ℓ′-uniformization data for Ẑ ⊂ Ŝ, i. e. a commutative diagram with
cartesian square

(2.8.1) D′

��

// X ′

p′

��

Ẑ // Ŝ Y ′
q′

oo

``AAAAAAAA

,

where X ′ is the disjoint sum of a finite number of regular schemes X ′
i, D′

red cuts out on
each X ′

i a strict normal crossings divisor (D′
red)i (or the empty space), p′ satisfies condition

(b) of 1.1, and q′ is a composition q′1q
′
2q

′
3q

′
4, with q′1 a thickening, q′2 a proper modification,

q′3 a finite flat surjective map of generic degree prime to ℓ, q′4 a Nisnevich cover. We want
to deduce from (2.8.1), by approximation, an analogous diagram

(2.8.2) D

��

// X

p

��
Z // S Y

qoo

``@@@@@@@

.

Finding the triangle is not so hard, from 2.6 and 2.7. The square demands extra work (see
[ILO] for details).

3. Cohen-Gabber

3.1. Glimpses on the strategy of the proof of 1.1.
As we are reduced to the local henselian (or even complete) case, we may in particular

assume the scheme X of 1.1 of finite Krull dimension. We prove 1.1 by induction on this
dimension. We assume that it holds for all pairs (X, Z) with dimX ≤ d− 1 and we prove
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it for X of dimension d. By the previous reduction it is enough to prove it for X local,
complete, of dimension d. A refinement, due to Gabber, of Cohen’s structure theorem,
explained in this section, will then allow us to fiber X in curves over a quasi-excellent
scheme of dimension d − 1. This will be done in the next section. Then the inductive
hypothesis and de Jong’s nodal curve theorem reduce the problem to a problem of log
geometry : this reduction is done in section 5. Finally, this last problem is solved in
sections 6, 7, 8.

A classical theorem of Cohen [EGA 0IV 19.8.8] asserts that if A is an integral,
noetherian, complete local ring of equicharacteristic and residue field k, and of dimension
d, then A is finite over a subring of the form k[[t1, · · · , td]]. Gabber improves this, both
in equal characteristic p > 0 and in mixed characteristic (0, p). We start with the equal
characteristic p theorem, whose statement, in its equivariant form, is used in the proof of
the mixed characteristic theorem.

Theorem 3.2 (Gabber). Let A be an equicharacteristic, reduced, complete, noetherian
local ring, of dimension d, with residue field k = A/m of characteristic p > 0, endowed
with an action of a finite group G of order invertible in k. Then there exists an injective
G-equivariant homomorphism h : k[[t1, · · · , td]]→ A, with k → A lifting the identity of k,
G fixing the ti’s, and h finite and generically étale.

3.3. Step 1 : The case A equidimensional, and G = {1}.
This is the crucial case. The main bulk of the proof consists in showing the existence

of a field of representatives κ of k in A (i. e. a subfield of A going isomorphically to k)

such that the generic rank of Ω̂1
A/κ is equal to d. If b = (bi)i∈I is a p-basis of k, fields of

representatives κ correspond to liftings b̃ of b in A (there is a unique κ containing the b̃i).

One makes a preliminary choice of b̃ and of a system of parameters y = (y1, · · · , yd) of A,
so that A is finite over its subring (of formal power series) κ[[y1, · · · , yd]], κ corresponding

to b̃. A technical difficulty is that the p-base b is not necessarily finite. Using a standard
stabilization result for differentials [Ma, §30, Lemma 6], one first finds a cofinite subfield

κ′ of κ such that the generic rank of Ω̂1
A/κ′ is equal to d + [κ : κ′]. One then modifies a

finite number of the b̃i’s (and consequently κ) in order to ensure that the generic rank of

Ω̂1
A/κ is d. Finally, one replaces the system of parameters y by the system of parameters

t defined by ti = yp
i (1 + fi), where fi (1 ≤ i ≤ d) is a system of elements of m such that

the dfi ∈ Ω̂1
A/κ’s are linearly independent at each maximal point. Then A is finite and

generically étale over κ[[t1, · · · , td]].

3.4. Step 2 : The general case
We first need the following lemma, for which no reference could be found. A proof (due

to Gabber) is given in [ILO].

Lemma 3.4.1. Let A be a noetherian ring endowed with an action of a finite group G
of order invertible on A, and let AG be its subring of invariants. Then AG is noetherian
and A is finite over AG. If A is reduced, so is AG, and A is generically étale over AG.

The trace operator Tr = (1/|G|)
∑

g∈G g shows that, if J is an ideal of AG, J =

(JA) ∩ AG, hence AG is noetherian, and reduced if A is. A priori, A is only integral
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over AG. To show that A is actually finite over AG, one first reduces to the case where A
is reduced, then using the form Tr(xy), one reduces to the case where A is a product of
fields, and eventually a field, which is classical (and shows the last assertion).

To show 3.2 in the equidimensional case, apply 3.3 to AG, which is of the same type as
A, with residue field kG : AG is finite over kG[[t1, · · · , td]]. As k is étale over kG, there is a
unique, hence G-equivariant, kG-homomorphism k → A lifting the identity of k. The non
equidimensional case requires a little additional work.

We now come to the mixed characteristic case :

Theorem 3.5 (Gabber). Let A be an integral, normal, complete noetherian local ring
of dimension d ≥ 2, with residue field k of characteristic p > 0 and fraction field of
characteristic zero. Let ℓ be a prime number invertible in k. Then there exist the following
data :

- a finite extension B of A, endowed with an action of an ℓ-group H, with B integral,
normal, complete local, with residue field k′, such that the degree of BH over A is prime
to ℓ ;

- a mixed characteristic complete discrete valuation ring C with residue field k′, endowed
with an action of H compatible with that of H on k′ ;

- an H-equivariant local morphism u : C[[t1, · · · , td−1]] → B, where the ti’s are fixed
by H, such that Spec u is finite and étale over an open subset whose intersection with the
special fiber is dense.

The scheme X = Spec A is over Zp. When its fiber Xp = X ⊗ Fp is reduced, it suffices
to apply the case G = {1} of 3.2 to Xp : Xp is finite and generically étale over a subring
Spec k[[x1, · · · , xd−1]] ; if C(k) is a Cohen ring for k, lifting the xi’s to ti’s in A and lifting
C(k) → k to C(k) → A yields a homomorphism C(k)[[t1, · · · , td−1]] → A which has the
desired properties (finite, and generically étale on the special fiber). No extension of A is
needed. The general case requires the full force of 3.2 and the following theorem of Epp
(see [ILO] and [Ga2], proof of th. 2.2 for details) :

Theorem 3.6 (Epp [Ep]). Let S (resp. T ) be a complete trait, with closed point s (resp.
t) of characteristic p > 0, g : T → S be a dominant, local morphism. Assume that k(s)
is perfect, and that the maximal perfect subfield k0 of k(t) is algebraic over k(s). Then
there exists a finite extension of traits S′ → S such that if T ′ denotes the normalization of
(T ×S S′)red, the special fiber T ′

s′ (where s′ is the closed point of S′) is reduced.

Remark 3.7. As T. Saito observes, the special fiber of BH in 3.5 is not necessarily
reduced, and in particular, SpecBH is not in general étale over an open subset of
Spec CH [[t1, · · · , td−1]] having a dense intersection with the special fiber. He gives the
following example. Let k be an algebraically closed field of characteristic p > 0, W = W (k)
the ring of Witt vectors on k, ℓ a prime different from p, A = W [[x, y]]/(xℓy − p). Let B
be the normalization of A⊗W W [t]/(tℓ− p). Then H = µℓ(k) acts on B (via its action on
W [t]/(tℓ− p)) and B satisfies the properties of 3.5. However, BH is A, whose special fiber
is not reduced.

4. Refined partial algebraization
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Theorem 4.1 (Gabber). (a) Let X = Spec A, where A is a reduced, complete,
noetherian local ring of dimension d ≥ 1, and of equicharacteristic p > 0. Then there
exists a diagram

(4.1.1) X
g // X ′

h

��
S

,

and a closed point x′ in X ′, where S is regular, complete, noetherian, local of equicharac-
teristic p and of dimension d− 1, h is a morphism of finite type sending x′ to the closed
point of S, and g induces an isomorphism from X to the completion of X ′ at x′. Moreover,
for any finite collection Zi (1 ≤ i ≤ n) of closed subschemes of X, there exists a diagram
(4.1.1) and closed subschemes Z ′

i of X ′ such that the pull-back of Z ′
i by g is Zi for all i.

(b) Let X = Spec A, where A is a normal, complete, noetherian local ring, of mixed
characteristic (0, p) and dimension d ≥ 2. Let ℓ be a prime number invertible on X. Then
there exists a diagram

(4.1.2) X X1
qoo g // X ′

h

��
S

and a closed point x′ in X ′, where S is regular, complete, noetherian, local of mixed
characteristic (0, p) and of dimension d − 1, h is a morphism of finite type sending x′ to
the closed point of S, q is a finite, surjective, local morphism of generic degree prime to
ℓ, with X1 normal, local, and g induces an isomorphism of X1 with the completion of X ′

at x′. Moreover, for any finite collection Zi (1 ≤ i ≤ n) of closed subschemes of X, there
exists a choice of (4.1.2) and closed subschemes Z ′

i of X ′ such that the pull-back of Z ′
i by

g is equal to the pull-back of Zi by q for all i.

The proof of (a) (resp. (b)) will combine Cohen-Gabber theorem 3.2 (resp. 3.5) with
the following algebraization result of Elkik :

Theorem 4.2 (Elkik, [El, th. 5]). Consider a cartesian diagram of affine schemes

Ŷ //

��

Y

��
X̂ // X

,

where X is an affine noetherian scheme, Y a closed subscheme, and X̂ is the completion of
X along Y (hence Ŷ

∼
−→ Y ). Assume that the pair (X, Y ) is henselian. Then the pull-back

functor from the category of finite X-schemes étale over X−Y to that of finite X̂-schemes
étale over X̂ − Ŷ is an equivalence.
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Recall that the fact that the pair (X, Y ) is henselian means that any étale map
X ′ → X which is an isomorphism above Y admits a section. Equivalently, if X = Spec A,
Y = Spec A/I, for any polynomial f ∈ A[T ], any root b of the reduction f of f mod I such

that f
′
(b) is a unit can be lifted to a root of f .

4.3. Sketch of proof of 4.1 (a)
By 3.2 (with G = {1}) A is finite and generically étale over k[[t1, · · · , td]]. We may

assume that A is étale outside V (f) for a non zero f ∈ k[[t1, · · · , td]]. By Weierstrass
preparation theorem, after a change of coordinates, we may assume that f is a Weierstrass
polynomial tNd +

∑
i<N ait

i
d, with ai in the maximal ideal of R = k[[t1, · · · , td−1]]. Let

R{td} the the henselization of R[td] at the origin. Using Weierstrass division theorem,
one sees that the (f)-adic completion of R{td} is R[[td]]. One checks moreover that the
pair (R{td}, (f)) is henselian. By 4.2 applied to (SpecR{td}, SpecR{td}/(f)), one finds

a reduced noetherian local ring Ã finite over R{td} and étale outside V (f) such that

A = R[[td]]⊗R{td} Ã (in other words, A is the td-adic completion of Ã). Writing Spec R{td}
as a filtering projective limit of étale neighborhoods Uα of the origin in SpecR[td], one can

descend Spec Ã to such a Uα, yielding the desired maps g and h in (4.1.1). Let Z be a

finite family of closed subschemes of X . We want to descend it to a suitable X̃ = Spec Ã.
Suppose first that Z is defined by a single primary ideal. If dimZ = d, Z is an irreducible
component of X , and therefore is the completion of an irreducible component of X̃ (by
Popescu, the completion of an integral excellent henselian local scheme is integral). If
dim Z < d, by Weierstrass again, one can change coordinates to simultaneously ensure
that X is étale outside V (f) with f the above Weierstrass polynomial, and Z is finite over

Spec R (and a fortiori finite over Ã. Then Z descends to X̃ (if B̂ is the J-adic completion

of a local noetherian ring, any quotient of B̂ which is finite over B descends to B, as an
Artin-Rees argument shows, [ILO]). The case of a finite family (Zi) is treated similarly.

4.4. Sketch of proof of 4.1 (b) ([Ga2], proof of Th. 2 (2)).
We consider the H-equivariant morphism u : C[[t1, · · · , td−1]] → B of 3.5. By a

change of coordinates, we may assume that u is étale on the open set of invertibiliy of an
element f /∈ (mC , t1, · · · , td−2). One can make f an H-invariant Weierstrass polynomial
f ∈ R[td−1], where R = C[[t1, · · · , td−2]]. Then, applying 4.2 as above to the henselian
pair (R{td−1}, R{td−1}/(f)), one sees that B descends H-equivariantly to a finite local

R{td−1}-algebra B̃, endowed with an action of H compatible with that on R. Now, in the
diagram

A→ A1 = BH ← A′ = B̃H ,

A1 is local, complete, normal and finite over A of degree prime to ℓ, A′ → A1 induces
an isomorphism Â′ ∼

−→ A1, and A′ is finite over RH{td−1} = CH [[t1, · · · , td−2]]{td−1}.
The same passing to the limit argument then shows the existence of a diagram (4.1.2).
The algebraization of the families Z of closed subschemes is done as in 4.3 : one has first
to dispose of the case where the pull-back T of Z to Spec B consists of an irreducible
component of the special fiber (or a subscheme defined by a power of the ideal defining
such a component), and then, when the dimension of the special fiber is < d − 1, choose
coordinates making both f a Weierstrass polynomial as above and T finite over Spec R,
and one concludes as in 4.3.
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5. Reduction to the equivariant log regular case

5.0. Let X be a noetherian scheme, endowed with an action (on the right) of a finite
group G. Assume that the action is admissible. Recall [SGA 1 V 1] that this means that
a quotient p : X → Y = X/G of X by G exists as a scheme (in the sense that for any
scheme Z, p induces a bijection Hom(Y, Z)

∼
−→ Hom(X, Z)G), or equivalently that X is a

union of G-stable affine open subschemes (or any orbit Gx is contained in an affine open
subscheme). Moreover, the morphism p is integral, and OY

∼
−→ (p∗OX)G. The action

induced by G on any G-stable closed (resp. open) subscheme is again admissible.
One can ask whether p is finite (which implies that Y is noetherian (by Eakin’s theorem,

[Ma, p. 263])). Here are two cases where the answer is yes :
(a) If X is of finite type over a noetherian scheme S and G acts by S-automorphisms,

then Y is of finite type over S and p is finite [SGA 1 V 1.5].
(b) If the order of G is invertible on X , then p is finite (3.4.1).
For x ∈ X we denote by Gd(x) = {g ∈ G, gx = x} the decomposition group at x, and

Gi(x) = {x ∈ Gd(x), ga = a ∀a ∈ k(x)} the inertia group at x. The decomposition group
Gd(x) acts on the geometric points x over x, and the stabilizer Gx of x is Gi(x). We
say that G acts freely at x if Gi(x) = {1}, and acts freely if it acts freely at each point x
(equivalently, that for any scheme T , it acts freely on the set X(T )). We say that G acts
generically freely if it acts freely at each maximal point of X . Suppose p is finite. Let x
be a geometric point of X with image x. Consider the conditions :

(i) G acts freely at x (i. e. Gx = {1}) ;
(ii) in a neighborhood of p(x), the action of G makes X an étale Galois cover of Y of

group G [SGA 1 V 2.3].
(iii) p is étale in a neighborhood of x, i. e. the map induced by p on the strict

localizations X(x) → Y(p(x)) is an isomorphism.
Then we have (i)⇔ (ii)⇒ (iii). In particular, (i) is an open condition. G acts generically

freely if and only if there is a dense open subset V of Y such that p−1(V ) is an étale Galois
cover of V of group G. In general, (iii) does not imply (i). However, if G acts faithfully,
X is connected and p is étale, then G acts freely [SGA 1 V 2.4].

The main ingredient in this section is the following slightly weaker form of the nodal
curve theorem of de Jong [dJ2, 2.4] :

Theorem 5.1. Let f : X → Y be a proper morphism of integral excellent schemes, with
generic fiber Xη of dimension 1. Let Z be a proper closed subset of X. Then there exists a
finite group G and a commutative (non necessarily cartesian) square of G-schemes, where
f ′ is projective :

(5.1.1) X ′ a //

f ′

��

X

f

��
Y ′ b // Y

,

together with
• a divisor D in X ′
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• a G-stable closed and nowhere dense subset T ′ ⊂ Y ′

satisfying the following properties :
- G acts trivially on X, Y , faithfully on X ′, Y ′, and freely on Y ′ − T ′

- a, b are alterations and X ′/G→ X, Y ′/G→ Y are generically radicial
- f ′ is a nodal curve, smooth outside T ′

- D is étale over Y ′ and contained in the smooth locus of f ′

- Z ′ := a−1(Z) is contained in D ∪ f ′−1(T ′).

Here by an alteration we mean a proper, surjective and generically finite morphism. A
nodal curve is a proper and flat morphism, with geometric fibers of dimension 1, having
at most ordinary quadratic singularities.

5.2. We now start the proof of 1.1 by induction on the dimension of X as explained in 3.1.
By 2.8 we may assume X complete, local, of dimension d, and residue characteristic p > 0
(stronger results are available in characteristic zero !). We may even assume X normal.
By 4.1 and the fact that uniformization data for (X ′, Z ′) will induce uniformization data
for (X, Z = X ×X′ Z ′), we may replace X by an X ′ appearing in (4.1.1) or (4.1.2), so that
changing notations, and leaving out the assumption that X is complete, we may assume
that we have a morphism f : X → Y , with X and Y excellent, integral, Y being normal,
integral, of dimension d − 1 and the generic fiber of f a curve. In addition, we have a
nowhere dense closed subset Z of X , and a closed point x in Z. We want to show that,
locally around x for the ℓ′-topology, we can uniformize (X, Z). We may assume X and Y
affine, so that, compactifying f and changing notations, we may assume Y affine, normal,
and f proper. From now on we forget about the point x and look for a (global) covering
family (Xi → X) for the ℓ′-topology which uniformizes (X, Z). Replacing X by some
blow-up and Z by its inverse image, we may assume that Z is a Cartier divisor in X .

We apply 5.1 to f and Z ⊂ X . As X ′/G → X is covering for the ℓ′-topology, we may
assume that Y = Y ′/G, X = X ′/G. Fix an ℓ-Sylow H of G. Consider the factorization

X ′
a1 //

f ′

��

X ′/H

��

a2 // X

f

��
Y ′

b1 // Y ′/H
b2 // Y

.

As a2 is covering for the ℓ′-topology, we may replace X by X ′/H and Z by its inverse
image in X ′/H, Y by Y ′/H, and then G by H, so that we may assume that G is an
ℓ-group.

Apply the inductive assumption to (Y, T := T ′/G). We get a family (Yi, Ti) uniformizing
(Y, T ) ((Yi → Y ) covering for the ℓ′-topology, Yi regular connected, Ti the support of a
strict ncd). Take “normalized pull-backs” by b, i. e. let Y ′

i be the normalization of a
component of Y ′ ×Y Yi,. Replace Y by Yi, Y ′ by Y ′

i , G by the decomposition group Gi of
Y ′

i , and take the pull-back of the other data by Yi → Y , Y ′
i → Y ′. Working separately over

each Yi, and changing notations, we may assume that in the diagram (5.1.1), Y = Y ′/G
is regular connected, T = T ′/G is a strict ncd, and X = X ′/G.

At this point, log geometry enters. Before continuing, let us review a few basic
definitions and facts concerning log regularity and Kummer covers.
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5.3. A fine (resp. fs, i. e. fine and saturated) log scheme [K1] is a scheme endowed
with a log structure (for the étale topology) admitting étale locally charts modeled on a
fine (i. e. finitely generated and integral) (resp. fs) monoid. The sheaf of monoids of X is
usually denoted by MX , the structural morphism MX → OX by α, and we often write M
for M/O∗. All log schemes considered in these notes will be assumed locally noetherian.

Let X be an fs log scheme. If x is a geometric point of X , we often denote by Ix the
ideal of the strict localization OX,x generated by α(MX,x −O

∗
X,x). One says that X is log

regular at x if the subscheme Cx(X) of X(x) defined by Ix is regular and of codimension

rkM
gp

X,x. One says that X is log regular if it is log regular at each geometric point. This
notion is due to Kato [K3] for Zariski log schemes. The variant for étale log schemes was
treated by Niziol [N]. Here are some basic properties (loc. cit.) :

5.4. (a) If X is log regular at x, then X is log regular in an étale neighborhood of x.
(b) Suppose X log regular, let U be the open subset of triviality of its log structure,

denote by j : U → X the inclusion. Then

MX = OX ∩ j∗O
∗
U .

We shall say that a pair (X, Z) consisting of a scheme X and a closed subset Z is a
log regular pair if for the log structure on X defined by MX = OX ∩ j∗O

∗
U , where

j : U = X − Z → X is the open complement of Z, X is log regular and Z is the
complement of the open subset of triviality of its log structure.

(c) Assume X log regular. Let X(i) be the subset of X consisting of points x such that
at a geometric point x over x, rk M

gp

X,x = i. Then X(i) is locally closed, and underlies a

regular subscheme of X , of codimension i, whose trace on X(x), for x ∈ X(i), is Cx(X).

We call X(i) the stratum of codimension i defined by rkMgp. Here are two examples :
(i) If X is a regular noetherian scheme, with log structure defined by a strict ncd D, X

is log regular, and X(i) consists of the points through which pass exactly i components of
D.

(ii) If X is a toric variety over a field k, with torus T , equipped with its canonical log
structure, X is log regular, and X(i) is the union of smooth orbits of T of codimension i.

(d) Assume X log regular at x, let P = MX,x, k = k(x). Note that P is a sharp

(i. e. P ∗ = {0}) fs monoid. Let X̂x be the completion at the closed point of the strict
localization of X at x. Then X admits a chart modeled on P at x, and such a chart gives
rise to isomorphisms

(i)

X̂x ≃ Speck[[P ]][[t1, · · · , tn]]

if OX,x is of equal characteristic,
(ii)

X̂x ≃ SpecC(k)[[P ]][[t1, · · · , tn]]/(f)

ifOX,x is of mixed characteristic (0, p), where C(k) is a Cohen ring for k, and f is congruent
to p modulo the ideal generated by P − {0} and the ti’s.

(e) (Vidal [V]) Assume X log regular. Then X is regular at a geometric point x if and
only if MX,x ≃ Nr. In particular, if X is regular, the open subset of triviality of the log
structure is the complement of an ncd.
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(f) Let Y be a log regular log scheme, and f : X → Y a log smooth map. Then X is
log regular.

(g) (Gabber) Let (Y, T ) be a log regular pair. Let f : X → Y be a nodal curve (5.1),
smooth outside T . Let D be a divisor in X contained in the smooth locus of f and étale
over Y . Then the pair (X, f−1(T ) ∪D) is log regular and f is log smooth.

This follows from the local structure of f : by [SGA 7 XV 1.3.2] (see also [dJ1, 2.23]),
if x is a geometric point of the non smoothness locus of X , with image y in Y , we have

OX,x ≃ OY,y{u, v}/(uv − h),

where h is an element of OY,y invertible on Y −T , hence belonging to MY,y (5.4 (b)). One
can then extend a local chart c of Y at y modeled on P = MY,y to a local chart d of X
at x modeled on the monoid Q defined as the amalgamated sum of N

2 and Z × P along
the maps N → N2, 1 7→ (1, 1) and N → Z × P, 1 → (1, a) for the element a of P defined
by h = εa, ε a unit : d sends N

2 to OX,x by (1, 0) 7→ u, (0, 1) 7→ v, and on Z is given by
1 7→ ε.

5.5. We will need the notion of Kummer étale cover, whose definition we recall.
(a) A homomorphism h : P → Q of integral monoids is called Kummer if h is injective

and if for any q ∈ Q there exists n ≥ 1 and p ∈ P such that nq = h(p),
(b) A morphism f : X → Y of fs log schemes is called Kummer if for all geometric point

x of X with image y = f(x) in Y , the induced morphism My →Mx is Kummer.
(c) A morphism f : X → Y of fs log schemes is called Kummer étale if it is Kummer

and log étale.
(d) A morphism f : X → Y of fs log schemes is called a finite Kummer étale cover if

f is Kummer étale, and finite as a morphism of schemes. The Kummer étale topology on
(the category of Kummer étale fs log schemes over) an fs log scheme S, is generated by
surjective families of Kummer étale maps.

(e) Let Y be an fs log scheme and G a finite group. A Kummer étale cover of Y of
group G is an fs log scheme X above Y , endowed with an action of G by Y -automorphisms
making p : X → Y into a G-torsor for the Kummer étale topology, or equivalently such
that the canonical map

(5.5.1) GY ×Y X → X ×Y X, (g, a) 7→ (a, ag)

is an isomorphism (the fiber product on the right hand side being taken in the category of
fs log schemes).

As the Kummer étale topology is weaker than the canonical topology (an fs log
scheme Z defines a sheaf on Y for the Kummer étale topology), p induces a bijection
Hom(Y, Z)

∼
−→ Hom(X, Z)G (where homomorphisms are taken in the category of log

schemes), in other words, Y is a geometric quotient of X (as a log scheme) : the
natural maps OY → (p∗OX)G and MY → (p∗MX)G are isomorphisms. In particular,
the underlying scheme of Y is the quotient by G of the underlying scheme of X .

Kummer étale covers will be further discussed in the next section. A basic fact about
them is the following theorem of Fujiwara-Kato, a particular case of which will play a
crucial role in the reduction in this section.
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Theorem 5.6 ([F-K, 3.1]. Let X be a log regular fs log scheme, and let U the open
subset of triviality of its log structure. Then the restriction functor from the category of
Kummer étale covers of X to the category of (finite) classical étale covers of U induces an
equivalence with the subcategory of those étale covers V → U which are tamely ramified
along X −U , i. e. such that if Z is the normalization of X in V , at all points x ∈ X −U
with dimOX,x = 1, the restriction of Z to SpecOX,x is tamely ramified.

5.7. Let us now return to the situation considered in 5.2 : we have a diagram (5.1.1),
with X = X ′/G, Y = Y ′/G, T = T ′/G, G a finite ℓ-group. Here Y ′ is normal integral, Y is
regular, connected, and T is a strict ncd. As G acts freely on Y ′−T ′, the restriction of Y ′

over Y − T is an étale Galois cover of group G. As Y ′ is normal, integral, and Y ′/G = Y ,
Y ′ is the normalization of Y in Y ′− T ′. It then follows from 5.6 that Y ′ is the underlying
scheme of the unique log scheme Kummer étale of group G over Y extending the étale cover
Y ′ − T ′ → Y − T . In particular, the pair (Y ′, T ′) is log regular. From 5.4 (g) we deduce
that the pair (X ′, f ′−1(T ′)) is log regular and f ′ is log smooth. Moreover, as the divisor
D is étale over Y ′ and contained in the smooth locus of f ′, the pair (X ′, f ′−1(T ′) ∪D) is
also log regular, and with this new log structure on X ′, f ′ is also log smooth (with open
subset of triviality contained in, not equal to, the inverse image of that of Y ′). Finally,
the inverse image Z ′ of Z in X ′ is a subdivisor of f ′−1(T ′) ∪D.

If the pair (X = X ′/G, (f ′−1(T ′)∪D)/G) was log regular, then Kato-Niziol’s resolution
of singularities of log regular pairs would easily finish the proof. However, the quotient
of a log regular scheme S by a finite group G of order invertible on S is not in general a
log regular scheme, as the example of trivial log structures already shows. This issue is
tackled in the next section.

6. Very tame actions

6.1. Let X be a noetherian scheme, endowed with an action (on the right) of a finite
group G. We say that G acts tamely at a point x if the order of Gi(x) is prime to char k(x),
and acts tamely if it acts tamely at each point. This notion is closely related to that of
Kummer étale cover. The purpose of Gabber’s theory of very tame actions is to make this
relation more precise and exhibit conditions (stronger than tameness) ensuring that the
quotient of a log regular scheme by a finite group action is a log regular scheme.

6.2. A standard Kummer étale cover of an fs log scheme Y is the pull-back by a strict
map Y → Spec Z[P ] of a morphism of log schemes of the form Spec Z[h] : Spec Z[Q] →
Spec Z[P ], where h : P → Q is a Kummer homomorphism of fs monoids such that the
cokernel of hgp is killed by an integer n invertible on Y .

Let f : X → Y be a standard Kummer étale cover. Choose a Kummer homomorphism
h : P → Q such that the square

X //

f

��

SpecZ[Q]

��
Y // SpecZ[P ]

,
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is cartesian, where the horizontal morphisms are strict. Applying the Cartier dual DZ

functor (on Spec Z) to the exact sequence

0→ P gp → Qgp → Γ→ 0,

we get an exact sequence of diagonalizable groups (on Spec Z) :

0→ ∆→ TQ → TP → 0,

with TQ and TP split tori, and ∆ = DZ(Γ) finite, becoming étale over Y (a product
µn1
× · · · × µnr

, if n1| · · · |nr are the invariants of P gp ⊂ Qqp, with n = n1 · · ·nr invertible
on Y ). The torus TP (resp. TQ) acts on ZP = Spec Z[P ] (resp. ZQ = Spec Z[Q]), and
the morphism Spec Z[h] is equivariant with respect to TQ → TP . Recall that this action
is described in the following way : if S is a scheme, an S-valued point g of TP , written as
g =

∑
p∈P gp gpp, with gp ∈ Γ(S,O∗

S), acts on the set of S-valued points of ZP by sending
a point a =

∑
p∈P app, with ap ∈ Γ(S,OS), to the point ga =

∑
gpapp. In other words,

the action of TP on ZP is given by the tautological family of characters χp : TP → Gm

indexed by P gp defined by the pairing TP ⊗P gp → Gm. As the action of TP on ZP extends
its action on TP , TP acts on the sheaves OZP

, (jP )∗O∗
TP

on ZP , where jP : TP → ZP

is the open immersion, and on the sheaf of monoids MZP
= OZP

∩ (jP )∗O∗
TP

in a way
compatible with the inclusion MZP

⊂ OZP
, i. e. it acts on the canonical log structure

of ZP . Similarly, TQ acts on ZQ by automorphisms of log schemes. The group ∆, via its
injection into TQ, acts on ZQ by ZP -automorphisms (of log schemes), and the resulting
morphism

(6.2.1) ∆×SpecZ ZQ → ZQ ×ZP
ZQ , (g, a) 7→ (a, ag)

(where the fiber product on the right hand side is taken in the category of fs log schemes)
is an isomorphism. By pull-back to Y , one obtains an action of ∆Y on X by Y -
automorphisms giving rise to similar isomorphisms

(6.2.2) ∆Y ×Y X
∼
−→ X ×Y X,

(6.2.3) δx ×X(x)
∼
−→ X(x) ×Y(y)

X(x),

where δx ⊂ (∆Y )y is the stabilizer of a geometric point x of X and y the image of x in Y .
The group δx acts on Mx : the image qx of q ∈ Q in Mx is sent by g ∈ δx to χq(g)xqx. It
follows that δx acts trivially on Mx. Moreover, δx acts trivially on Cx(X) ⊂ X(x) (5.3).
Indeed, for g ∈ δx, we have χq(g)(x) = 1 if q(x) 6= 0, so if a ∈ OX,x is the image of

∑
aqq

with aq ∈ OY,y, the image ga of
∑

χq(g)aqq is congruent to a modulo the ideal Ix of Ox

(5.3).

6.3. The importance of standard Kummer étale covers comes from the fact that if
f : X → Y is a Kummer étale morphism, then, if x is a geometric point of X and
y its image in Y , the morphism induced by f on the corresponding strict localizations
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X(x) → Y(y) is a standard Kummer étale cover, or equivalently, there exists an étale
neighborhood U (resp. V ) of x (resp. y) such that f restricts to a standard Kummer étale
cover U → V . In particular, the Kummer étale topology on (the category of Kummer étale
fs log schemes over) an fs log scheme S, is generated by standard Kummer étale covers
and surjective families of étale maps.

6.4. Let f : X → Y be a Kummer étale cover of Y of group G, and let x ∈ X ,
y = f(x), y a geometric point of Y above y, x a geometric point of Xy above x. Then
the inertia group Gx = Gi(x) = Gd(x) acts on the strict localization X(x) of X at x, by
Y(y)-automorphisms, making X(x) a Gx-torsor on Y(y) for the Kummer étale topology. Let
fx : X(x) → Y(y) denote the induced morphism. We know that fx is a standard Kummer
étale cover : one can choose a chart of f modeled on a Kummer morphism h : P → Q
making fx into a δx-torsor over Y(y), for some finite étale diagonalizable group δx over Y(y)

(6.2.3). These two torsors are related by a unique isomorphism

(6.4.1) Gx
∼
−→ δx.

In particular, the inertia group Gx is abelian and G acts tamely at x. Moreover, it follows
from the observations at the end of 6.2 that Gx acts trivially on Mx and Cx(X).

6.5. Let X be an fs log scheme endowed with an action of a finite group G.
(a) We will say that G acts in a Kummer way, or that the action is Kummer-like, if it

makes X into a Kummer étale cover of an fs log scheme Y of group G. The log scheme Y
and the map p : X → Y is then determined by (X, G) up to unique isomorphism (5.5 (e)).

The next definitions are due to Gabber.
(b) Let x be a geometric point of X , and Gx the corresponding inertia group. One says

that G acts very tamely at x if the following conditions are satisfied :
(i) Gx is of order prime to char(k(x)) (i. e. G acts tamely at x) and acts trivially on

Mx.
(ii) Gx acts trivially on the stratum Cx(X) (5.3).
(c) Given an integer n ≥ 1, a finite group G, and an fs monoid Q, a pairing

χ : Gab ⊗Qgp → µ := µn(C), g ⊗ q 7→ χq(g),

defines an action of G on the log scheme Spec Λ[Q], where Λ = Z[µ][1/n] : the action on
the underlying scheme and on the sheaf of monoids is characterized by g.q = χq(g)q for
q ∈ Q. If X is an fs log scheme endowed with an action of G, by an equivariant chart of
X modeled on Q and χ, one means a G-equivariant map of log schemes

X → SpecΛ[Q].

Proposition 6.6. Let a finite group G act on an fs log scheme X, and let x be a
geometric point of X.

(a) If condition (b) (i) of 6.5 is satisfied at x, étale locally at x, X admits a Gx-
equivariant chart modeled on Mx for some pairing χ relative to µ = µn(C), for n the
exponent of |Gx|.

19



(b) If moreover Gx acts trivially on the stratum Cx(X), i. e. G acts very tamely at
x, then étale locally around x and its image in Y , the quotient Y = X/Gx exists as a
log scheme and the projection X → Y makes X into a strict closed sub log scheme of a
standard Kummer étale cover of Y .

(c) If X is log regular, G acts admissibly, generically freely, and very tamely at each
geometric point, then G acts on X in a Kummer way, and Y is log regular.

For (a), the choice of a splitting s : M
gp

x →Mgp
x of the exact sequence

(∗) 0→ O∗
X,x →Mgp

x →M
gp

x → 0

(as a sequence of abelian groups) lifts the cohomology class of (∗) to a 1-cocycle z ∈
Z1(Gx, Hom(M

gp

x ,O∗
x)) (g(sa) = z(g)(a)sa, for a ∈ M

gp

x ), which describes the action of

Gx on Mgp
x . The image of z in Z1(Gx, Hom(M

gp

x , k(x)∗)) (= H1(Gx, Hom(M
gp

x , k(x)∗)))

is a pairing χ ; z(g) is the unique lifting in Hom(M
gp

x ,O∗
x) of its image in Hom(M

gp

x , k(x)∗).
The restriction of s to Q = Mx gives an equivariant chart modeled on Q and χ. Note that
the map H1(Gx, Hom(M

gp

x ,O∗
x)) → H1(Gx, Hom(M

gp

x , k(x)∗)) is an isomorphism, since
(1+mx)× is n-divisible. For (b), one replaces X by its strict localization at x and G by Gx.
Then the quotient Y = X/G exists, is strictly local (with same residue field) and X → Y is
finite. One defines P ⊂ Q as the intersection with Q of the subgroup P ′ of Qgp consisting of
those q for which χq(g) = 1 for all g ∈ G ([Qgp : P ′] is finite and prime to char(k(x))). The
equivariant chart X → Spec Λ[Q] gives a morphism Y → Spec Λ[P ], defining a log structure
on Y for which (f∗MX)G = MY (f : X → Y the projection), and a chart of f modeled on
the Kummer map P → Q. Finally, as OX,x/Ix is invariant under G, OY,y (for y the image
of x) surjects to OX,x/Ix, hence k(x)[Q] = k(y)[Q] surjects to OX,x/myOX,x, and the
resulting map X → Y ×Spec Λ[P ] Spec Λ[Q] is a closed immersion. Under the assumptions
of (c), because Cx(X) is regular, and projects isomorphically to Cy(Y ) = Cx(X)/Gx, and

rkM
gp

x = rkM
gp

y , Y is log regular at x, and the above closed immersion is an isomorphism,
so X(x) is a Gx-Kummer cover of Y(y). As G acts generically freely, the restriction of X
over Y(y) is the extension from Gx to G of this torsor. (One could also use the local
structure 5.4 (d), which would give - in the mixed characteristic case, for example - a

Gx-equivariant isomorphism ÔX,x
∼
−→ R[[Q]][[t1, · · · , tr]]/(f), with f and R[[t1, · · · , tr]]

invariant, f congruent to p mod. (Q−{0}, t1, · · · , tr), and ÔY,y
∼
−→ R[[P ]][[t1, · · · , tr]]/(f).)

Corollary 6.7. (a) If G acts very tamely on X at x, then the inertia group Gx is
abelian.

(b) If G acts very tamely on X at x, then G acts very tamely in an étale neighborhood
of x.

Proposition 6.8. Let G act on the fs log scheme X in a Kummer way, and let Y be
the quotient. Suppose X is log smooth over an fs base S, over which G acts trivially, and
X → S is equivariant. Then Y is log smooth over S.

This is a particular case of descent by exact log flat or log smooth maps [K2]. Here
is a sketch of proof, due to Nakayama and Tsuji. By the technique of toric stacks (or
log products) ([Ol], [KS 4.3.3]), which expresses log smoothness in terms of classical
smoothness, one is reduced to proving the following result :
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Proposition 6.9. Let

X ′
g′

//

f ′

��

Y ′

f

��
X

g // Y

,

be a cartesian square of noetherian schemes, where f underlies a G-Kummer étale cover
of fs log schemes and g is of finite type. Then, g is flat (resp. smooth) if and only if g′ is
flat (resp. smooth).

It suffices to prove that if g′ is flat, g is flat. We may assume that f is deduced by base
change from Spec Λ[Q]→ Spec Λ[P ], for Λ = Z[µn(C), 1/n] and a Kummer homomorphism
h : P → Q with Qgp/P gp killed by n. Then by exactness of h, P acts on the complement
of Q in P , hence Λ[P ] is a direct summand of Λ[Q] as a Λ[P ]-module. One can then apply
the following elementary result :

Lemma 6.10 (Tsuji). Consider a cartesian square

X ′
g′

//

f ′

��

Y ′

f

��
X

g // Y

,

where f is affine and OY is a direct factor of f∗OY ′ as an OY -module. Then, g is flat if
and only if g′ is flat.

7. Canonical resolutions

7.1. Let X be a noetherian, quasi-excellent scheme. By a resolution tower of X one
means a sequence of morphisms

(7.1.1) X(n)
fn // · · ·

f1 // X(0) = X ,

where, for 1 ≤ i ≤ n, fi is a blow-up with non singular center disjoint from (X(i−1))reg,
and X(n) is regular. If Z is a nowhere dense closed subset of X , an embedded resolution
tower of (X, Z) (or resolution tower for short) is a resolution tower (7.1.1) such that if one
defines inductively Z(0) = Z, Z(i) = f−1

i (Z(i−1)), then fi is a blow-up with non singular
center contained in the union of Z(i−1) and the singular locus of X(i−1), and the pair

(X(n), Z
(n)
red ) consists of a regular scheme and a ncd in it.

Note that if X(·) → X is a resolution tower of X (resp. of (X, Z)), its pull-back by any
smooth map X ′ → X is a resolution tower of X ′ (resp. (X ′, Z ′)), where Z ′ is the pull-back
of Z. Note also that if X is regular and Z is a ncd in X , then de Jong’s canonical sequence
of blow-ups [dJ1, 7.2] (see 8.3) makes Z a sncd.
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7.2. Hironaka [H] proved the existence of embedded resolution towers for reduced
schemes separated and of finite type over a field of characteristic zero (or, more generally,
over a quasi-excellent local ring of characteristic zero). Temkin [T] showed how to deduce
embedded resolution for reduced, noetherian, quasi-excellent schemes X of characteristic
zero. Namely, he proves, for any closed nowhere dense subset Z in X , the existence of a
modification f : X ′ → X with X ′ regular and f−1(Z) the support of a strict ncd (though
he doesn’t construct embedded resolution towers).

On the other hand, for reduced schemes separated and of finite type over a field k of
characteristic zero, Bierstone-Milmann [B-M] showed the existence of canonical resolution
towers (and embedded resolution towers), “canonical” meaning that these towers are
compatible with pull-back by smooth maps. In other words, a suitable category Tk

of resolution towers, fibered by X(·) 7→ X(0) over the category Sk of reduced schemes
separated and of finite type over k having smooth k-maps as morphisms has a cartesian
section (*). This implies that, if G is a smooth group scheme over k, and X is a G-scheme
(separated and of finite type), then X admits a G-equivariant resolution tower.

7.3. We will see that this procedure yields canonical resolutions for toric varieties and
log regular schemes. A slight technical complication occurs here, though, as log blow-ups of
fs log schemes involve normalizations, which do not appear in the resolution towers. This
forces to work with non necessarily normal toric varieties and fine log schemes instead of
fs log schemes. The following definitions are due to Gabber. See [ILO] for details.

(a) Let R be a noetherian, regular, integral ring and T a split torus over R, with
character group Γ. A toric scheme (or variety) over R of torus T is an integral scheme
X , separated and of finite over R, endowed with an open embedding j : T → X and an
equivariant action of T (for its action on itself by translations), admitting a covering family
by affine open T -stable subsets Xα. If X is affine, then X = Spec R[P ], for a unique fine
submonoid P of Γ such that P gp = Γ, and thus X inherits a canonical Zariski fine log
structure. If X is a toric scheme over R of torus T , with a covering by a family (Xα) as
above, the log structures of the Xα’s glue and define a (Zariski) fine log structure on X
called canonical.

(b) Let X be a fine log scheme and Xsat its associated fs log scheme. One says that X
is log regular at a geometric point x if Xsat is log regular at any geometric point above x
(5.3). One says that X is log regular if X is log regular at every point.

For example, a toric scheme X over R, with torus T , is log regular, and T is the open
subset of triviality of its log structure (however, the map MX → OX ∩ j∗O

∗
T is not an

isomorphism in general, as the case where T = Spec C[t, t−1] ⊂ X = Spec C[t2, t3] already
shows).

If X → Y is a log smooth map between fine log schemes and Y is log regular, then X
is log regular.

7.4. Let X = Spec k[P ] be an affine toric variety over a field k of characteristic zero,
where P is a fine monoid with P gp torsionfree, with associated torus T = Spec k[P gp].
One sees inductively that all the floors X(i) of the canonical resolution tower of X are
again toric varieties, and the centers of blow-ups defining X(i+1) are finite disjoint unions

(*) Gabber warns that this statement lacks adequate references.
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of smooth closures of orbits of T . Moreover, if Xi = Spec k[Pi] (1 ≤ i ≤ N) is a finite
family of such toric varieties, and gi : S → Xi a family of smooth maps, with S in Sk (7.2),

then the pull-backs of the towers X
(·)
i by the gi’s are isomorphic (as towers of schemes). If

S = Spec k[Q] is also a toric variety and the gi’s are defined by homomorphisms of monoids
Pi → Q, the pull-backs of the towers are isomorphic as towers of toric varieties.

7.5. The blow-ups appearing in the resolution tower of X = Spec k[P ] can be defined
in a purely combinatorial way. To explain this we need to recall a few definitions and
constructions.

A fine fan, in the sense of Kato [K1], is a topological space F endowed with a sheaf of
monoids MF , which is locally of the form SpecP , for a fine monoid P (Spec P is the set of
prime ideals of P , equipped with the Zariski topology, and the sheaf of monoids whose set
of sections over an open subset where f ∈ P is invertible is P [1/f ] = P [1/f ]/(P [1/f ]∗).
The fan F is called torsionfree if the P gp’s are torsionfree. For example, if X is a toric
scheme over R, as in 7.3, with its canonical (Zariski) fine log structure, then the set F (X)
of points x ∈ X such that the ideal Ix of OX,x generated by α(Mx −O∗

x) is mx, equipped
with the topology induced by the Zariki topology of X and the sheaf of monoids induced
by MX , is a fine, torsionfree fan, called the fan associated with X (for X = Spec R[P ],
F = Spec P ). One has a canonical morphism of monoidal spaces (spaces endowed with a
sheaf of monoids) c : X → F inducing an isomorphism c−1MF

∼
−→MX .

An ideal in a fine fan F is a sheaf of ideals of MF , which, on open subsets where X is
of the form Spec P , is generated by an ideal of P . If I is an ideal of the fine fan F , there
is a fine fan F ′ = BlI(F ), called the blow-up of I, together with a morphism of fans (i. e.
of monoidal spaces) f : F ′ → F , such that f−1I is invertible (i. e. locally generated by
one element), and which is universal for this property. When F = Spec P , and I is defined
by an ideal (still denoted I) of P , F ′ is the union of the SpecPa, for a ∈ I, where Pa is
the submonoid of P gp generated by P and b − a, for b ∈ I. Let X be a fine Zariski log
scheme, and c : X → F a chart of X on a fine fan F , i. e. a morphism of monoidal spaces
inducing an isomorphism c−1MF

∼
−→MX as above. Let I be an ideal in F , J the ideal in

MX generated by c−1I, F ′ the blow-up of I in F , X ′ the log blow-up of J (when X is log
regular, this is the usual blow-up of the ideal of OX generated by J , [N, 4.3]). Then one
has a diagram

X ′

f

��

c′ // F ′

g

��
X

c // F

,

where g (resp. f) is the blow-up (resp. log blow-up) of I (resp. J), the diagram of
underlying monoidal spaces commutes, and c′ is a chart of X ′ on F ′. Moreover, the fine
log scheme X ′, together with the morphism of log schemes f and the morphism of monoidal
spaces c′, is universal in the obvious sense. One says that X ′ is the pull-back of F ′ by c,
and one writes

X ′ = X ×F F ′.

Suppose now that X is a toric variety over the field k, with torus T and associated fan
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c : X → F . Let X ′ be the blow-up of X centered at the closure of a T -orbit, corresponding
to an ideal I in F . Then X ′ = X ×F F ′, where F ′ = BlI(F ).

Coming back to the situation in 7.4, we see that the resolution tower of X = Spec k[P ]
is deduced by pull-back from a tower of blow-ups of fans

F (n)
gn // · · ·

g1 // F (0) = F ,

where F is the fan associated with X , and for 1 ≤ i ≤ n,

X(i) = X(i−1) ×F (i−1) F (i).

This in turn allows to construct T -equivariant resolution towers of toric schemes of the
form X = Spec Z[P ], with P as above, and T = Spec Z[P gp] : define X(i+1) inductively as
X(i) ×F (i) F (i+1). If Xi (1 ≤ i ≤ N) is a finite family of toric varieties Xi = Spec Z[Pi],
and gi : S → Xi a family of smooth maps, with S a scheme of finite type over Z, then

the pull-backs of the towers X
(·)
i by the gi’s are isomorphic (as towers of schemes), and

when S = Spec Z[Q] and the gi’s are defined by homomorphisms Pi → Q, the pull-backs
are isomorphic as towers of toric schemes.

7.6. Let X be a fine noetherian log regular log scheme (7.3). Using local charts and 7.5
one constructs a resolution tower X(·), where all the X(i)’s are log regular log schemes and
the maps fi’s log blow-ups. The top X(n) of the tower is a log regular fs log scheme, which
is regular (as the stalks of M are of the form Nr (5.4 (e))), and for which the complement
of the open subset of triviality of its log structure is an ncd (loc. cit). One can show
(Gabber) that the underlying tower of schemes depends only on the underlying scheme
of X (see [ILO]), at least if the maximal points of the strata of the natural stratification
by the rank of Mgp, cf. 5.4 (c), are of characteristic zero ; one hopes that this restriction
can be removed. It is called the canonical resolution tower of X . The composite map
X(n) → X is called the canonical resolution of X .

If a finite group G acts on X , using the functoriality again, one shows that G acts
naturally on the floors of the tower, by automorphisms of log schemes, and the fi’s are
G-equivariant.

8. Making actions very tame, end of proof

The main ingredient needed to complete the proof of 1.1 is the following theorem of
Gabber (see [S] for a result of a similar nature, but in a relative situation) :

Theorem 8.1. Let a finite group G act tamely and generically freely on a noetherian,
separated, log regular fs log scheme (X, Z). Let T be the complement of the largest stable
open subset of X over which G acts freely. Then there exists a projective equivariant
modification f : X ′ → X such that if Z ′ = f−1(Z ∪T ), then the pair (X ′, Z ′) is log regular
and the action of G on X ′ is very tame.

8.2. Step 1 : We may assume X regular and Z =
∑

Zi a strict ncd.
Use equivariant resolution of log regular schemes (7.6).
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8.3. Step 2 : We may assume moreover that Z is G-strict.
Recall that G-strictness means that Z is G-stable and that, for any irreducible

component D of Z and any g ∈ G, if gD is distinct from D, then D ∩ gD = ∅.
Use de Jong’s canonical blow-up [dJ1, 7.2] :

X̃ = X(1) → X(2) → · · · → X(d−1) → X(d) = X

(here X is assumed to have pure dimension d, Z is decomposed as the disjoint union
of locally closed subsets Z(i) (of codimension i) where the number of branches passing
through a point is exactly i, and the maps are defined inductively by blowing-up Z(d) in
X , then the closure of Z(d−1) in X(d−1), · · ·, the closure of Z(i) in X(i)). If f : X̃ → X is
the composition, Z̃ = f−1(Z)red is a G-strict ncd. The point is that the components of Z̃
are the closures of the inverse images by f of the components of the Z(i)’s.

Note that G-strictness implies that, at each geometric point x of X , the inertia Gx acts
trivially on Mx. Indeed, if Di, for 1 ≤ i ≤ r, are the branches of Z passing through x,
then Mx = ⊕1≤i≤rNei, with ei corresponding to Di, and by G-strictness gDi = Di for all
i.

8.4. Step 3 : We may assume moreover that the inertia groups are abelian and that G
acts freely on X − Z.

This requires several lemmas. The next one seems to be well known, but a reference is
apparently lacking.

Lemma 8.4.1. Let G be a finite group acting on a regular scheme X and of order
invertible on X. Then the fixed points scheme XG is regular.

Here the fixed point scheme XG is characterized by XG(S) = X(S)G for all schemes S.
We may assume X local, X = Spec A, so XG = Spec AG, AG = A/I, I the ideal

generated by ga − a, a ∈ m, g ∈ G (m the maximal ideal of A). We may furthermore
assume that G acts trivially on the residue field k of A, otherwise XG is empty. As
(XG)̂ = Spec(Â/IÂ) = (X̂)G, we may assume X complete, local. We prove the result by
linearizing the action of G.

Assume first that A is of equal characteristic p. Choose a basis (ti)1≤i≤r of T = m/m2

and elements xi ∈m lifting ti, thus forming a regular sequence of parameters in A. Choose
a field of representives, still denoted k, in A, and let

ϕ : k[[T ]]→ A

be the homomorphism sending ti to xi. The averaged homomorphism f : k[[T ]] → A
sending t = (ti) to

y = (1/|G|)
∑

g∈G

gϕg−1t

is G-equivariant and y is congruent to x mod m2, hence a regular system of parameters.
Then f induces an isomorphism k[[T ]]G = k[[TG]]

∼
−→ AG, where TG is the coinvariant

space of G on T .

25



Assume now that A is of mixed characteristic (0, p). Let C be a Cohen ring for k and
choose C → A lifting C → k. As G is of order prime to p, there exists a unique C[G]-
module V , free of finite type over C, lifting T = m/m2. Let (ti) be a basis of T , (vi) a
basis of V lifting (ti), and, as above, elements xi ∈ m lifting ti, thus forming a regular
sequence of parameters in A. Extend C → A to

ϕ : C[[V ]]→ A

by sending vi to xi. The averaged homomorphism f : C[[V ]]→ A sending v = (vi) to

y = (1/|G|)
∑

g∈G

gϕg−1v

is G-equivariant and y is congruent to x mod m2, hence a regular system of parameters.
The homomorphism f is surjective and describes X as a regular divisor in X ′ = Spec C[[V ]],
defined by an equation F = 0, where F is congruent to p modulo the ideal generated by the
vi’s. As F cuts a regular parameter in X ′G = Spec C[[VG]], XG = X ×X′ X ′G is regular.

8.4.2. It follows from 8.4.1 that for (X, Z) as in 8.3, i. e. X regular acted on tamely by
G, Z a G-strict ncd, if H is a subgroup of G, then the fixed points scheme XH is regular
(if XH 6= ∅, at a geometric point x of XH , H ⊂ Gx), hence the blow-up B = BlXH (X) of
X along XH is regular. The normalizer N = NG(H) of H in G stabilizes XH , hence acts
on B, and the map f : B → X is equivariant with respect to N → G. Moreover, f−1(XH)
is a regular divisor in B, and if D is a component of Z, as D is H-stable, D×X XH = DH

is regular, and the proper transform D̃ = BlDH (D) is a regular divisor crossing f−1(XH)
transversally. It follows that the reduced total transform f−1(Z)red is an N -strict ncd in
B.

Lemma 8.4.3. Let x be a geometric point of X at which the inertia group Gx is not
abelian, and let H be the commutator subgroup (Gx, Gx). Then Gx = NGx

(H) acts on
B = BlXH (X), and at each geometric point y of B above x, the inertia group (Gx)y is
strictly smaller than Gx.

The point y corresponds to a line L in the fiber at x of the normal bundle Tx/TH
x of

XH in X . If Gx fixes y, then Gx acts on L by a character, hence H acts trivially on L,
which is a contradiction, as (Tx/TH

x )H = 0. (Note that this shows in particular that when
H 6= {1}, XH is of codimension ≥ 2 at x.)

Lemma 8.4.4. Let f : B → X be the join of the blow-ups of the subschemes XH for
all subgroups H of G, H 6= {1}, i. e. the blow-up of the product of the ideals defining the
XH ’s. Then :

(a) G acts on B, and f is G-equivariant,
(b) B is regular and

f−1(Z ∪ (∪H(XH)))red

is a G-strict ncd,
(c) G acts freely on B − E, where E = ∪Hf−1(XH),
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(d) if at some geometric point x of X, Gx is not abelian, then at any geometric point y
of B above x, Gy is strictly smaller than Gx.

Proof : (a) follows from the formula

gXH = XgHg−1

,

which implies that the union of the XH ’s for H in a conjugacy class of subgroups of G is
G-stable. Assertion (b) will follow from 8.4.1 via the analysis of the respective positions
of the XH ’s and the components of Z. Observe that by 8.4.1 all finite intersections
∩i∈IX

Hi ∩ ∩j∈JZj (I a finite subset of the set of subgroups of G, J a finite subset of
the set of components of Z) are regular, as for any closed subscheme W of X , scheme-
theoretically

∩i∈IW
Hi = WH ,

where H is the subgroup generated by the Hi’s. This suggests the following definitions
(Gabber). Let F = (Fi)i∈I be a finite family of closed subschemes of X .

One says that F is in weakly good position if all finite intersections of members of F are
regular.

One says that F is in good position if at each geometric point x of X the finite
intersections of members of F cut out on the cotangent space T ∗

x = mx/m2
x to X at

x a family of linear subspaces for which there exists a basis (ei)1≤i≤r of T ∗
x such that each

such intersection is defined by equations forming a part of the set of the (ei)’s. This is
equivalent to saying that the filtrations of the cotangent space cut out by the Fi’s are
compatible in the sense of M. Saito [MS]. For a family consisting of two elements, good
position and weakly good position are equivalent. If F is in good position, F is in weakly
good position.

Let H denote the family of subgroups of G, and Z the family of components of Z. One
checks the following :

(i) The family Z is in good position.
(ii) The family (XH)H∈H is in weakly good position. It is not in good position in

general, as the case of G the dihedral group D3 acting in the standard way on the plane
already shows.

(iii) For any H in H, the family (XH ,Z) is in good position.
(iv) Let Y1 ⊂ · · · ⊂ Yn is a nested sequence of closed regular subschemes of X and

D = (Di)i∈I a family of regular closed subschemes of X in good position. Assume that for
each i ∈ I, (Di, (Yj)) is in good position, then the family ((Di), (Yj)) is in good position.
This is a particular case of general properties of compatible filtrations. It applies, for
example, to the family Z and any family (XHi), for a decreasing sequence H1 ⊃ · · · ⊃ Hn

of subgroups of G.
(v) For every point x ∈ B, there is a nested sequence H1 ⊃ · · · ⊃ Hn of subgroups of

G such that if B′ is the blow-up of the increasing family XH1 ⊂ · · · ⊂ XHn , the canonical
morphism B → B′ is a local isomorphism at x.

(vi) Let F be a family in good position such that the intersection of any two members
of F is a disjoint union of members of F , and let p : X ′ → X be the join of the blow-ups of
the members of F (blow-up of the ideal which is the product of the ideals of the members of
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F ). Then X ′ is regular, and p−1(∪S∈F S)red is a strict ncd in X ′. (This is a generalization
of the situation occuring in de Jong’s blow-up (8.3).)

Assertion (b) of 8.4.4 follows from (i)-(vi). Assertion (c) is clear, and (d) follows from
8.4.3.

As the non abelian inertias strictly decrease, and the union of the XH ’s is the
complement of the largest open subset of X on which G acts freely, repeating the
construction a finite number of times will complete step 3.

8.5. Step 4 : Etale locally around each geometric point x of X, up to enlarging Z, we
may assume that the action of G on (X, Z) is very tame.

Consider the stratum S = Cx(X). This is the trace on X(x) of Z(i), with i = rkM
gp

x , in
the notation of 8.3 (cf. 5.4 (c)). By G-strictness, it is Gx-stable, but the inertia Gx does
not necessarily act trivially on it, in other words, G does not necessarily act very tamely on
(X, Z) at x. However, as Gx is abelian, its action on the cotangent space T ∗

X,x = mx/m2
x

at x decomposes (non uniquely) T ∗
X,x as a sum of Gx-stable lines,

T ∗
X,x = ⊕1≤i≤nkti,

where k = k(x), with
T ∗

S,x = ⊕1≤i≤rkti

for some r ≤ n. The action of Gx is given by characters χi. By the linearization process
used in the proof of 8.4.1, one can lift the ti’s to parameters yi’s of the completion of
X such that gyi = χi(g)yi for g ∈ Gx. By approximation and algebraization, one finds
similar parameters (zi) in the strict localization X(x) for which gzi = χi(g)zi. With these
parameters,

∏
i>r zi = 0 is an equation of Z at x, and zr+1 = · · · = zn = 0 is a system of

equations of S. Let D be the divisor in X(x) with equation
∏

1≤i≤r zi = 0. Then G acts
very tamely on (X(x), D ∪ Z(x)) at x, as the new stratum Cx is reduced to {x}, and we

have an equivariant chart modeled on Mx = Nn and the characters χi.

8.6. Step 5 : Gluing local modifications, end of proof of 8.1.
In an étale neighborhood U of x, choose a Gx-stable divisor D such that, in U , D ∪ Z

is a Gx-strict ncd and the action of Gx on (U, H = D ∪ Z) is very tame (for brevity
we write Z for the trace of Z on U). The quotient (V = U/Gx, H/Gx) is log regular,
and étale over X/G at the image y of x. Moreover, the underlying scheme of V , which
has toric singularities, and Z/Gx ⊂ H/Gx depend only on (X, Z) restricted to U . Let
c : W → V be the canonical resolution of V (7.6). The map c is log étale, W is regular
and log regular, and the reduced subscheme of c−1(H/Gx) = c−1(D/Gx) ∪ c−1(Z/Gx) is
a strict ncd. Consider the normalized pull-back of U/V by c :

U

p

��

Ũd
oo

q

��
V Wc

oo

.

As p is a Kummer étale cover of group Gx, the same is true of q. Hence (Ũ , D̃∪ Z̃), where

D̃ = d−1(D), Z̃ = d−1(Z), is log regular. Note that the pair (W, c−1(Z/Gx)) depends
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only on (U, Z). Moreover, as Gx acts freely on U − Z, q restricts to an étale cover of

group Gx of W − c−1(Z/Gx), so that Ũ is the normalization of W in this cover. Therefore

the pair (Ũ , Z̃) is log regular, and with its (very tame) action of G through Gx, depends
only on (U, Z). These local constructions glue and yield the desired global G-equivariant
modification of (X, Z).

8.7. End of proof of 1.1.
We return to the situation obtained at the end of 5.7. Let us summarize what

we have achieved. We may assume that the given pair (X, Z) in 1.1 is of the form
(X = X ′/G, Z = Z ′/G), for X ′ underlying a log regular scheme, endowed with an action
of a finite ℓ-group G, and Z ′ the support of an equivariant subdivisor of the complement
D′ of the locus of triviality of X ′ (D′ = f ′−1(T ′)∪D in the notation of 5.7). Moreover, G
acts freely on X ′ −D′. Now apply 8.1 to (X ′, D′). We get a commutative diagram

(X ′′, D′′) //

p

��

(X ′′/G, D′′/G)

q

��
(X ′, D′) // (X, D) = (X ′/G, D′/G)

,

where p is a G-equivariant modification, the horizontal maps are the canonical projections,
(X ′′, D′′) is log regular, with X ′′ − D′′ contained in p−1(X ′ − D′), and the action of
G on (X ′′, D′′) very tame. By 6.6 (c), (X ′′/G, D′′/G) is a log regular pair. Applying
Kato-Niziol’s desingularization ([K3], [N]) to (X ′′/G, D′′/G), we find a log blow-up

b : X̃ → X ′′/G, with X̃ regular, and a strict ncd D̃, such that X̃ − D̃ is contained in

b−1(X ′′/G−D′′/G). Then Z̃ := (qb)−1(Z) is the support of a subdivisor of D̃, hence the
support of a strict ncd, too. This last modification qb uniformizes (X, Z) as required in
1.1.

The proofs of 1.3 and 1.4 are independent of 1.1. They rely on the following
reinforcement of 8.1 :

Theorem 8.1’ (Gabber). In the situation of 8.1, assume that we are given a log regular
pair (S, W ) endowed with a trivial action of G, and a G-equivariant log smooth map
X → S. Then there exists a modification f satisfying the properties of 8.1 and such that
moreover the pair (X ′, Z ′) is log smooth over (S, W ) as well as its quotient (X ′/G, Z ′/G).

Here, by a pair (Y, E) being log smooth over (S, W ) we mean that Y is log smooth over
S (and E (resp. W ) is the complement of the open subset of triviality of the log structure).

8.8. The log smoothness of (X ′, Z ′) over (S, W ) is proven with the help of the following
lemma on the local equivariant structure of log smooth maps :

Lemma 8.8.1 (Gabber). Let f : X → S be an equivariant log smooth map between fine
log schemes endowed with an action of a finite group G. Let x be a geometric point of X,
with image y in S. Assume that G is the inertia group at x and is of order invertible in S.
Assume furthermore that G acts trivially on Mx and My and we are given an equivariant
chart a : S → Spec Λ[P ] at y, modeled on some pairing χ : Gab ⊗ P gp → µ = µn(C) in the
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sense of 6.5 (c), where Λ = Z[1/n, µ], with n the exponent of G. Then, up to replacing X
by an étale equivariant neighborhood of x, there is an equivariant chart b : X → Spec Λ[Q]
extending a, such that P gp → Qgp is injective, the torsion of its cokernel being invertible
in X, and the resulting map b′ : X → X ′ = S×Spec Λ[P ]Spec Λ[Q] smooth. Moreover, up to
shrinking X, b′ lifts to an equivariant étale map c : X → X ′ ×Spec Λ Spec SymΛ(V ), where
V is a finitely generated projective Λ-module equipped with a G-action.

To prove that (X ′, Z ′) is log smooth over (S, W ) one has to check that log smoothness
is preserved at each step of the construction. This is trivial for steps 1 and 2, as the
resolutions used in them are sequences of log blow-ups. Note the following variant of 8.4.1
:

Lemma 8.8.2. Let S be a fine log scheme and f : X → S a log smooth map. Assume
f is equivariant with respect to an action of a finite group G of order invertible on S, G
acting trivially on S. Let XG denote the (fine) log scheme of fixed points of G. Then XG

is log smooth over S.

It suffices to check the formal log smoothness of XG over S. For this one uses averaging
on G to lift invariant points to an exact thickening of order 1.

However, the formation of the fine log scheme of fixed points does not commute in
general with taking the underlying scheme. Therefore the preservation of log smoothness
at steps 3 and 4 does not follow from 8.8.2. Additional arguments, using 8.8.1, are needed
to complete the proof of 8.1’.

8.9. Sketch of proof of 1.3.
By de Jong’s theorem [dJ1, 4.1], up to a radicial extension of k, we may assume that

we have a G-alteration p1 : X1 → X , with G an ℓ-group, X1 smooth and quasi-projective
over k, Z1 = p−1

1 (Z) the support of a strict ncd, and X1/G → X generically finite of
degree prime to ℓ. By 8.1’ we can find a G-equivariant modification f : X2 → X1 and
a G-strict equivariant divisor E2 on X2, containing Z2 = f−1(Z1) as a subdivisor, such
that the pair (X2, E2) is log smooth over k (with the trivial log structure), as well as the
quotient (X3, E3) = (X2, E2)/G. Finally, there exists a log modification X ′ → X3, such
that X ′ is log smooth and smooth over k, and the (reduced) inverse image E′ of E3 a sncd.
The (reduced) inverse image Z ′ of Z in X ′ is then a sub sncd of E′. As X3 → X is an
ℓ′-alteration, so is X ′ → X .

8.10. Sketch of proof of 1.4.
The proof is similar to that of 1.3. One applies de Jong’s theorem [dJ1, 6.5]. One first

reduces to the case where we have a G-alteration p1 : X1 → X of group G an ℓ-group
(with X1 quasi-projective over S and X1/G → X generically finite of degree prime to ℓ),
and a sncd E1 in X1 containing the inverse image of Z as a subdivisor, together with a G-
alteration S1 of S, such that the pair (X1, E1) is semistable over S1 (with its standard log
structure), and in particular log smooth. Then one proceeds as before, using 8.1’ applied
to the composition X1 → S1 → S1/G.
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math. IHES 20 (1964), 24 (1965), 28 (1966), 32 (1967).

[SGA 1] Revêtements étales et groupe fondamental, Séminaire de Géométrie Algébrique
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