Arithmetic upon intersection of two quadrics

Séminaire Géométrie arithmétique et groupes algébriques Southern University of Science and Technology Shenzhen, Chine
December 7th, 2022
Jean-Louis Colliot-Thélène
(CNRS et Université Paris-Saclay)

References

Retour sur l'arithmétique des intersections de deux quadriques, avec un appendice par A. Kuznetsov https://arxiv.org/abs/2208.04121v2

Also to be found on my webpage https ://www.imo.universite-paris-saclay.fr/ jean-louis.colliotthelene/
See also the note "Lichtenbaum's theorems."

Let k be a number field. Let k_{v} run through the completions of k. Let $X \subset \mathbb{P}_{k}^{n}$, be a smooth complete intersection of two quadrics :

$$
f\left(x_{0}, \cdots, x_{n}\right)=g\left(x_{0}, \cdots, x_{n}\right)=0
$$

A well known conjecture asserts :
For $n \geq 5$, for any such X, the Hasse principle holds, namely

$$
\prod_{v} X\left(k_{v}\right) \neq \emptyset \Longrightarrow X(k) \neq \emptyset
$$

When $X(k) \neq \emptyset$, and $n \geq 5$, one knows that $X(k) \subset \prod_{v} X\left(k_{v}\right)$ is dense.

For $n=3$, the Hasse principle need not hold. One then has a curve of genus one, the obstruction to the Hasse principle is related to the Tate-Shafarevich group of the jacobian of the curve.
For $n=4$, the Hasse principle need not hold (first explicit example: Birch and Swinnerton-Dyer 1975). Conjecturally, the defect is controlled by the Brauer-Manin obstruction.

Results were obtained for $n \geq 12$ by Mordell (1959) and for $n=10$ by Swinnerton-Dyer (1964).

Assume k is totally imaginary, and $n=12$. Assume $f\left(x_{0}, \ldots, x_{12}\right)$ is non-degenerate. Here is Mordell's argument. The quadratic form f may be written as the direct sum of a totally hyperbolic quadratic form in 10 variables and a quadratic form in 3 variables. On a linear space of codimension $5+3=8$, that is a \mathbb{P}_{k}^{4}, the form f identically vanishes. The restriction of g to this \mathbb{P}_{k}^{4} is given by a quadratic form in 5 variables, it has a nontrivial zero over k.

Formally real fields are handled by an elegant trick over the reals : consider the behaviour of the signature of the quadratic form $a f+b g$ as (a, b) varies over $a^{2}+b^{2}=1$. One proves the existence of quadratic forms in the pencil over \mathbb{R} with 6 hyperbolics.

The Hasse principle for smooth complete intersections of two quadrics in \mathbb{P}_{k}^{n} is known to hold :
For $n \geq 8$ (CT-Sansuc-Swinnerton-Dyer 1987) [Note: for $n \geq 8$, $X\left(k_{v}\right) \neq \emptyset$ for v nonarchimedean].
For $n \geq 4$ if X contains two lines globally defined over k (the case $n=4$ was known before 1970).
For $n \geq 5$ if X contains a conic (Salberger 1993, unpublished).
For $n=7$ (Heath-Brown 2018).
Taking two difficult conjectures (finiteness of \amalg of elliptic curves and Schinzel's hypothesis) for granted, Wittenberg (2007) gave a proof of the Hasse principle for $n \geq 5$.

Here is another special case for $X \subset \mathbb{P}_{k}^{5}$.
Theorem (J. lyer and R. Parimala 2022). Let $X \subset \mathbb{P}_{k}^{5}$ be a smooth complete intersection of two quadrics $f=g=0$ over a number field. Assume that X contains a line over each completion k_{v} of k. Assume also that the curve of genus 2 defined by

$$
y^{2}=-\operatorname{det}(\lambda f+\mu g)
$$

has index 1 , for instance has a rational point. Then $X(k) \neq \emptyset$.

Creutz and Viray (2021-2022) have investigated the question whether a smooth complete intersection of two quadrics $X \subset \mathbb{P}_{k}^{n}$, $n \geq 4$, over a local or over a global field k has a point in an extension K / k of degree ≤ 2. They have also considered the question whether the index $I(X)$ (gcd of degrees of closed points) is 1,2 or 4 . They proved :

- For $k p$-adic and $n \geq 4$, there exists a quadratic extension K / k such that $X(K) \neq \emptyset$.
- For k a number field and $n \geq 4, I(X)$ divides 2 . The proof is quite delicate. For $n=4$ it uses the birational equivalence between $\operatorname{Sym}^{2} X$ and the variety parametrizing pairs (L, Q) with Q quadric in \mathbb{P}^{4} in the pencil of quadrics containing X and L line of \mathbb{P}^{4} lying in the quadric Q. This variety is birational to the total space of a fibration over \mathbb{P}_{k}^{1} with general fibre a Severi-Brauer variety.

The aim of the talk is to present alternate proofs and slight improvements of the recent results (2018-2022) listed above, except for the last statement in the case $n=4$.

A general remark is that there are good reasons to try to get results also for arbitrary, possibly singular, intersections of two quadrics.

One useful tool is the theorem: Over any field, if an intersection of two quadrics $X \subset \mathbb{P}_{k}^{n}$ has a rational point over an odd degree extension of k then it has a rational point.

Thisi is an immediate consequence of Springer's theorem (same statement for one quadric, over any field) and the theorem of Amer and of Brumer :

Let $k(t)$ be the rational function field in one variable. A sytem of two quadratic forms $f=g=0$ over a field k has a nontrivial zero if and only if the quadratic form $f+t g$ over the field $k(t)$ has a nontrivial zero.

When discussing a complete intersection of two quadrics $X \subset \mathbb{P}_{k}^{n}$ over a field k (char. not 2) given by a system $f=g=0$, one is quickly led to consider the pencil of quadrics $\lambda f+\mu g=0$ containing X. Ignoring subtle points with the singular forms in the pencil, there is a close relation between the following statements, where we assume $r \geq 1$:

- There exists a form $\lambda f+\mu g$ in the pencil which splits off $r+1$ hyperbolic planes.
- There exists a quadric in the pencil which contains a linear space $\mathbb{P}_{k}^{r} \subset \mathbb{P}_{k}^{n}$.
- The variety X contains an r - 1-dimensional quadric $Y \subset \mathbb{P}_{k}^{r} \subset \mathbb{P}_{k}^{n}$.
In this talk I shall igore the "subtle points". They are addressed in my typescript.

Theorem 1 (CT 2022) Let k be a p-adic field. Let $X \subset \mathbb{P}_{k}^{3}$ be an intersection of two quadrics given by a system

$$
f\left(x_{0}, x_{1}, x_{2}, x_{3}\right)=0, g\left(x_{1}, x_{2}, x_{3}\right)=0 .
$$

Then there exists a quadratic extension K / k with $X(K) \neq \emptyset$.
Proof.
When X is not a smooth complete intersection, this is proven by a case-by-case discussion. Assume X is a smooth complete intersection. Then X is a genus one curve.

Let \bar{k} be an algebraic closure of k, and $G:=\operatorname{Gal}(\bar{k} / k)$. The period of a curve X is defined as the positive generator of the image of the degree map $\operatorname{Pic}\left(X \times_{k} \bar{k}\right)^{G} \rightarrow \mathbb{Z}$.
The assumption that $g\left(x_{1}, x_{2}, x_{3}\right)$ involves only three variables implies that the "period" of the curve X divides 2 . This one sees by using the fact any conic has period 1 and that the curve X is a double cover of the conic $g\left(x_{1}, x_{2}, x_{3}\right)=0$.
For a curve of genus one, it is a theorem of Lichtenbaum (1969) that the period coincides with the index. Thus the index divides 2 . By Riemann-Roch, this implies that there exists a field K / k of degree at most 2 with $X(K) \neq \emptyset$.

Theorem 2 (Creutz-Viray 2022) Let k be a p-adic field. Let $X \subset \mathbb{P}_{k}^{n}, n \geq 4$ be an intersection of two quadrics. There exists a field K / k of degree at most 2 with $X(K) \neq \emptyset$.
(Alternate) proof. It is enough to handle the case $n=4$. Singular cases are handled by a case by case analysis. Assume X is a smooth complete intersection. It is then given by a system

$$
h\left(x_{0}, x_{1}, x_{2}\right)+x_{3} x_{4}=0=g\left(x_{0}, \cdots, x_{4}\right) .
$$

The section by $x_{4}=0$ is an intersection of two quadrics in \mathbb{P}_{k}^{3} as in the previous theorem. QED

Theorem (Creutz-Viray 2021). Let k be a number field and $X \subset \mathbb{P}_{k}^{n}$ be a smooth complete intersection of two quadrics. For $n \geq 4$, the index $I(X)$ divides 2.

The proof is very elaborate.
Theorem 3 (CT 2022) Let k be a number field and $X \subset \mathbb{P}_{k}^{n}$ be a smooth complete intersection of two quadrics. For $n \geq 5$ there exists a quadratic extension K / k with $X(K) \neq \emptyset$.

The question whether this holds for $n=4$ remains open. Partial results are given by Creutz-Viray.

Proof. By Bertini it is enough to prove the case $n=5$. In this case the variety $F_{1}(X)$ of lines on X is geometrically integral - it is actually a principal homogeneous space under an abelian variety. Hence there exists a finite set S of places of k such that $F_{1}(X)\left(k_{v}\right) \neq \emptyset$ for $v \notin S$. Thus for almost all v, any $\lambda f+\mu g$ splits off 2 hyperbolics over k_{v}.
For any place v, Theorem 2 gives a point of X in an extension of k_{v} of degree 2 , hence there exists a $\lambda_{v} f+\mu_{v} g$ in the pencil over k_{v} which splits off two hyperbolics.
Using weak approximation, we find $(\lambda, \mu) \in \mathbb{P}^{1}(k)$ such that $\lambda f+\mu g$ splits off 2 hyperbolics over each k_{v}. By a result of Hasse (1924) it splits off 2 hyperbolics over k. Thus X contains a point over a quadratic extension of k.

Theorem 4 (Salberger, CT, 1988/89) Let k be a number field and $X \subset \mathbb{P}_{k}^{4}$ be a smooth complete intersection of two quadrics which contains a conic. Then $X(k)$ is dense in the Brauer-Manin set $X\left(\mathbb{A}_{k}\right)^{\operatorname{Br}(X)} \subset X\left(\mathbb{A}_{k}\right)$.
Because X contains a conic, it admits a fibration into conics $X \rightarrow \mathbb{P}_{k}^{1}$ with 4 geometric degenerate fibres. Salberger's proof uses his work on zero-cycles. He proves $I(X)=1$ and on such X this implies $X(k) \neq \emptyset$. My proof uses universal torsors and results from CT-Sansuc-Swinnerton-Dyer 1987.

Theorem 5 (Salberger 1993, Harari 1994) Let k be a number field and $X \subset \mathbb{P}_{k}^{n}, n \geq 5$, be a smooth complete intersection of two quadrics which contains a conic. Then the Hasse principle holds and $X(k)$ is dense in $\prod_{v} X\left(k_{v}\right)$.

The proof uses the fibration method to reduce to Theorem 4. Salberger also discusses singular intersections.

Theorem 6 (lyer and Parimala 2022) Let k be a number field and $X \subset \mathbb{P}_{k}^{5}$ be a smooth complete intersection of two quadrics given by a system $f=g=0$. Let C be the double cover of \mathbb{P}_{k}^{1} given by the equation $y^{2}=-\operatorname{det}(\lambda f+\mu g)$. This is a curve of genus two. Assume $I(C)=1$. If X contains a line over each k_{v}, then $X(k) \neq \emptyset$.

Simplified proof (CT 2022)
Let t be a variable. The quadratic form $f+t g$ over the field $k(t)$ splits off two hyperbolics over each $k_{v}(t)$, that is we have an isomorphism
$f+t g \simeq<1,-1>\perp<1,-1>\perp \rho_{v}<1, \operatorname{det}(\lambda f+\mu g>$ for some $\rho_{v} \in k_{v}(t)^{*}$. Going over to the function field $k(C)$, one gets that $f+t g$ is isomorphic to the sum of there hyperbolics over each $k_{v}(C)$. One now uses the assumption $I(C)=1$. Standard reductions reduce to the case where there is a k-point of C in good position with respect to $C \rightarrow \mathbb{P}_{k}^{1}$. The image of this point gives a $t_{0} \in k$ with the property that the quadratic $f+t_{0} g$ over k splits off 3 hyperbolics over each k_{v}. By Hasse's result, it splits off 3 hyperbolics over k, hence $f+t_{0} g=0$ contains a \mathbb{P}_{k}^{2}, hence X contains a conic. Since $X\left(k_{v}\right) \neq$ for each v, Theorem 5 gives $X(k) \neq \emptyset$.

Theorem 7 (Heath-Brown 2018) Let k be a local field. Let $X \subset \mathbb{P}_{k}^{7}$ be a smooth complete intersection of two quadrics given by $f=g=0$. If $X(k) \neq \emptyset$, then there exists a nondegenerate form $\lambda f+\mu g$ in the pencil which splits off three hyperbolics.

Proof (CT 2022) Let $P \in X(k)$. The intersection C of X with the tangent \mathbb{P}_{k}^{5} at P is a cone with vertex P over an intersection of two quadrics $Y \subset \mathbb{P}_{k}^{4}$. By Theorem 2 (Creutz-Viray) there exists a point on Y in a quadratic extension K / k. This defines a line over K on C passing through the vertex P of the cone. One thus gets a pair of lines in $C \subset X$ passing through P and globally defined over k. Fix a k-point Q in the plane \mathbb{P}_{k}^{2} defined by these two lines, outside of the two lines. The form $\lambda f+\mu g$ vanishing at Q vanishes on the plane \mathbb{P}_{k}^{2} spanned by the two lines. If nondegenerate, this form splits off 3 hyperbolics. There is a simple way to handle the case where the form is of rank 7 .

Theorem 8 (Heath-Brown, 2018) Let k be a number field. Let $X \subset \mathbb{P}_{k}^{7}$ be a smooth complete intersection of two quadrics given by $f=g=0$. The Hasse principle holds for X.

Hasse principle for $X \subset \mathbb{P}_{k}^{7}$
Proof (CT 2022, some ingredients from HB's proof). The variety $F_{2}(X)$ of planes $\mathbb{P}_{k}^{2} \subset X \subset \mathbb{P}_{k}^{7}$ is a geometrically integral variety it is actually a principal homogeneous spaces under an abelian variety. Hence there exists a finite set S of places of k such that $F_{2}(X)\left(k_{v}\right) \neq \emptyset$ for $v \notin S$. Thus each $v \notin S$, any nondegenerate $\lambda f+\mu g$ splits off 3 hyperbolics over k_{v}. By Theorem 7 , for each $v \in S$ the assumption $X\left(k_{v}\right) \neq \emptyset$ implies that there exists a point $\left(\lambda_{v}, \mu_{v}\right) \in \mathbb{P}^{1}\left(k_{v}\right)$ such that $\lambda_{v} f+\mu_{v} g$ is nondegenerate and contains 3 hyperbolics. By weak approximation on \mathbb{P}_{k}^{1}, there exists $(\lambda, \mu) \in \mathbb{P}^{1}(k)$ such that $\lambda f+\mu g$ is nondegenerate and contains 3 hyperbolics over each k_{v}. By Hasse 1924 it contains 3 hyperbolics over k. Thus X contains a conic. Theorem 5 (Salberger) and the hypothesis $\prod_{v} X\left(k_{v}\right) \neq \emptyset$ then give $X(k) \neq \emptyset$.

What about singular complete intersections of two quadrics?
Let k be a number field and $X \subset \mathbb{P}_{k}^{n}$ a possibly singular complete intersection of two quadrics. Assume it is geometrically integral and not a cone. One is interested in the Hasse principle for a smooth projective model Y of X.
In CT-Sansuc-Swinnerton-Dyer 1987, we proved the Hasse principle for Y under the assumption $n \geq 8$. We proposed: Conjecture. For $n=6$ or $n=7$ the Hasse principle holds for Y. For such n, one has $\operatorname{Br}(Y) / \operatorname{Br}(k)=0$ so there is no Brauer-Manin obstruction. Under various additional hypotheses on Y, the conjecture is proved in CT-S-SD 1987. Salberger 1993 proves it when X contains a smooth conic.
The present proof of Theorem 7 (Heath-Brown's local theorem) could open the way to a proof of the above conjecture for $n=7$.

More on $X \subset \mathbb{P}_{k}^{5}$
Let k be a field and $X \subset \mathbb{P}_{k}^{5}$ be a smooth complete interesection of two quadrics $f=g=0$. The following construction appears in M. Reid's thesis (1972). It has been recently considered by Hassett and Tschinkel.
Let C be the double cover of \mathbb{P}_{k}^{1} defined by $y^{2}=-\operatorname{det}(\lambda f+\mu g)$. Let $G_{2}(X)$ be the variety of pairs (H, Q) where Q is a quadric of \mathbb{P}_{k}^{5} containing X and $H \subset Q \subset \mathbb{P}_{k}^{5}$ is a linear space $\mathbb{P}_{k}^{2} \subset \mathbb{P}_{k}^{5}$. We have the Stein factorisation

$$
G_{2}(X) \rightarrow C \rightarrow \mathbb{P}_{k}^{1}
$$

of the map sending (H, Q) to (λ, μ) with Q defined by $\lambda f+\mu g=0$.

The map $G_{2}(X) \rightarrow C$ defines a Severi-Brauer scheme with associated class $\alpha \in \operatorname{Br}(C)[2]$ of index 4 in $\operatorname{Br}(k(C)$.
The image of α in $\operatorname{Br}(k(C))$ is the class of the Clifford algebra associated to the quadratic form $f+\operatorname{tg}$ over $k(C)$, where $k\left(\mathbb{P}^{1}\right)=k(t)$.
Theorem. If there is a point $m \in C(k)$ unramified over C and such that $\alpha(m)=0$, then X contains a conic.
Theorem. The variety X contains a $\mathbb{P}_{k}^{1} \subset \mathbb{P}_{k}^{5}$ if and only if $\alpha=0 \in \operatorname{Br}(C)$.
One may use these results to give a variant proof of the lyer-Parimala theorem.

