TORSORS ON LOOP GROUPS AND THE HITCHIN FIBRATION

ALEXIS BOUTHIER AND KESTUTIS CESNAVICIUS

ABSTRACT. In his proof of the fundamental lemma, Ngo6 established the product formula for the
Hitchin fibration over the anisotropic locus. One expects this formula over the larger generically
regular semisimple locus, and we confirm this by deducing the relevant vanishing statement for
torsors over R((t)) from a general formula for Pic(R((¢))). In the build up to the product formula,
we present general algebraization, approximation, and invariance under Henselian pairs results for
torsors, give short new proofs for the Elkik approximation theorem and the Chevalley isomorphism
g/ G = t/W, and improve results on the geometry of the Chevalley morphism g — g/ G.

REsSUME. Dans sa preuve du lemme fondamental, Ngo établit une formule du produit au-dessus du
lieu anisotrope. On s’attend & ce qu’une telle formule s’étende au-dessus de I'ouvert génériquement
régulier semisimple. Nous établissons cette formule en la déduisant d’un résultat d’annulation de
torseurs sous des groupes de lacets & partir d’une formule générale pour Pic(R((t))). Dans le cours
de la preuve, nous montrons des résultats généraux d’algébrisation, d’approximation et d’invariance
hensélienne pour des torseurs ; nous donnons de nouvelles preuves plus concises du théoréme
d’algébrisation d’Elkik et de I'isomorphisme de Chevalley g/ G = t/W et améliorons les énoncés sur
la géométrie du morphisme de Chevalley g — g/ G.
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1. INTRODUCTION

1.1. The product formula for the Hitchin fibration. A key insight in Ngo6’s proof of the fun-
damental lemma in [Ng610] is to relate the affine Springer fibration, which over an equicharacteristic
local field geometrically encodes the properties of orbital integrals, to the Hitchin fibration, which
is global and whose geometric properties are easier to access. The mechanism that supplies the
relation between the two is the product formula that Ngo established over the anisotropic locus A"
of the Hitchin base A in [Ngo06, théoréme 4.6] and [Ng610, proposition 4.15.1] and expected to also
hold over the larger generically regular semisimple locus AY < A in [Ng610, before corollaire 4.15.2].
The product formula over A" has already been used, for instance, in [Yunl1, Proposition 2.4.1],
[Yunl4, Section 5.5, equation (34)], or [OY'16, proof of Proposition 6.6.3 (1)], and one of the main
goals of this article is to establish it in Theorem 4.3.8.

Roughly speaking, the product formula is a geometric incarnation of the Beauville-Laszlo glueing
for torsors: it translates this glueing into geometric properties of the morphism of algebraic stacks
that relates affine Springer fibers, which parametrize torsors over formal discs R[t], to Hitchin
fibers, which parametrize torsors over a fixed proper smooth curve Xp (for a variable base ring R).
Under this dictionary, the product formula eventually reduces to a statement that torsors on Xg
are obtained from the “Kostant—Hitchin torsor” over a fixed open Ur < Xg by glueing along the
punctured formal discs R((t)) at the R-points in X\U. One is thus led to studying torsors over R((t)).

Over A® the Hitchin fibration is separated and the intervening stacks are Deligne-Mumford. For the
product formula, these additional properties allowed Ngo to reduce to only considering those R that
are algebraically closed fields k, a case in which k((t)) is a field with relatively simple arithmetic. Over
A" however, such a reduction does not seem available, and we need to study more general R((t)).

1.2. Torsors under tori over R((t)). The product formula says that the comparison morphism
is a universal homeomorphism, so, due to the valuative criteria for stacks, the R that are most
relevant are fields and discrete valuation rings. Nevertheless, the valuative criterion for universal
closedness assumes that the map is quasi-compact, so, to avoid verifying this assumption directly,
it is convenient to allow more general R (see Lemma 4.3.7). Our R will in fact be seminormal,
strictly Henselian, and local, and the key torsor-theoretic input to the product formula is then
Theorem 3.2.4: for such an R and an R((t))-torus T that splits over a finite étale Galois cover whose
degree is invertible in R,

HY(R((t),T) = 0. (1.2.1)

Relative purity results from [SGA 4y11, exposé XVI|, whose essential input is the relative Abhyankar’s
lemma, reduce this vanishing to T' = G,,. In this case, there is in fact a general formula

Pic(R((t) = Pic(R[t™']) ® H}(R,Z) (1.2.2)

due to Gabber [Gab19] that is valid for any ring R and is presented in the slightly more general
setting of an arbitrary R-torus in Theorem 3.1.7. For seminormal R, we have Pic(R[t~1]) = Pic(R),
so if R is also strictly Henselian local, then all the terms in (1.2.2) vanish and (1.2.1) follows.

In addition, the vanishing (1.2.1) implies that for a seminormal, strictly Henselian, local ring R
and any n > 0 less than any positive residue characteristic of R, every regular semisimple n x n
matrix with entries in R((¢)) is conjugate to its companion matrix—see Theorem 4.2.14, which gives
a general conjugacy to a Kostant section result of this type.

Overall the argument for the product formula is fairly short—it suffices to read §§3.1-3.2, §4.3, and
review §4.2—but we decided to complement it with the following improvements and generalizations
to various broadly useful results that enter into its proof.
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1.3. Algebraization of torsors and approximation. A practical deficiency of the Laurent power
series ring R((t)) is that its formation does not commute with filtered direct limits and quotients
in R, so one often prefers its Henselian counterpart R{t}[}] reviewed in §2.1.2. We show that
such “algebraization” does not affect torsors: by Corollary 2.1.22, for any ring R and any smooth,
quasi-affine, R{t}[%]—group G,

H'(R{t}[7],G) — H'(R(1),G), (1.3.1)

which generalizes a result of Gabber-Ramero [GR03, Theorem 5.8.14] valid in the presence of a
suitable embedding G — GL,,. To prove (1.3.1), we exhibit a general procedure for showing that

F(R{t}[7]) — F(R(1))

for functors F' that are invariant under Henselian pairs: the idea, which appears to be due to
Gabber, is to consider the ring of t-adic Cauchy sequences (and double sequences) valued in R{t}[}]
and to show that this ring is Henselian along the ideal of nil sequences, see Lemma 2.1.13 and
Theorem 2.1.15. To verify that our functor F(—) = H'(—,G) is invariant under Henselian pairs, we
use recent results on Tannaka duality for algebraic stacks, see Proposition 2.1.4 and Theorem 2.1.6.

The idea of considering Cauchy sequences and, more generally, Cauchy nets also leads to a new
proof and a generalization of the the Elkik approximation theorem, for which we exhibit new
non-Noetherian versions in Theorems 2.2.2, 2.2.10 and 2.2.17. We then use them to extend the
algebraization results to non-affine settings in §2.3: for instance, we show that for a Noetherian ring
R that is Henselian along an ideal J and the J-adic completion ﬁ,

Br(U) — Br(Ug) for every open  Spec(R)\V(J) c U < Spec(R),

a result that was announced in [Gab93, Theorem 2.8 (i)]; see Corollary 2.3.5 for further statements
of this sort and the results preceding it in §2.3 for sharper non-Noetherian versions. For a concrete
situation in which such passage to completion is useful, see [éele, Proposition 3.3 and the proof of
Theorem 5.3|.

1.4. The Chevalley isomorphism and small characteristics. The construction of the Hitchin
fibration for a reductive group GG with Lie algebra g rests on the Chevalley isomorphism

g/ G ~t/W, (1.4.1)

where G acts on g by the adjoint action, t is the Lie algebra of a maximal torus T' < G, and
W := Ng(T)/T is the Weyl group. In Theorem 4.1.10, we give a short proof for (1.4.1) that is new
even over C but works over any base scheme S as long as G is root-smooth (see §4.1.1; this condition
holds if 2 is invertible on S or if the geometric fibers of G avoid types C,). The main idea is to
consider the Grothendieck alteration
g9

where g is the Lie algebra of the universal Borel subgroup of G, and to extend the W-action from
the regular semisimple locus §™ to the maximal locus gi® = §™2 over which the alteration is finite.
The result generalizes work of Chaput-Romagny [CR10], who adapted a classical proof to the case
of a general base S under more restrictive assumptions.

In §4.2, we use the Chevalley isomorphism to review the constructions that go into setting up the
product formula, such as building the group J that descends to t/W the centralizer of the universal
regular section of g, and we take the opportunity to improve their assumptions: roughly, it suffices
to assume that each residue characteristic of the base S is not a torsion prime for the root datum of
the respective fiber of G. This condition, described precisely in §4.1.12, is less restrictive than the
order of the Weyl group W being invertible on S, as is often assumed in [Ng610|, and is slightly
weaker than the conditions that appear in [Ric17], so we improve several results in these references.
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A key advance that permits this is the construction of the Kostant section under less restrictive
assumptions than before that was recently carried out in [AFV18, Section 2|.

1.5. Notation and conventions. All our rings are commutative, with unit, except that sometimes
we also use nonunital rings, whose only distinctive feature is that they need not have a multiplicative
identity (but are still commutative). Every ring is a nonunital ring and, more generally, so is every
ideal in any nonunital ring. For a module M over ring A and an a € A, we let M{a) denote the
elements of M killed by a and set

Ma®) = ;=0 M{a™).

For brevity, we call the spectrum of an algebraically closed field a geometric point. For a scheme S,
we denote a choice of a geometric point above an s € S by 5. We say that S is seminormal if every
universal homeomorphism S’ — S that induces isomorphisms on residue fields has a unique section
(compare with [SP, Lemma 0EUS, Definition OEUT|, where the seminormalization of S is defined as
the initial object of the category of such universal homeomorphisms); by [SP, Lemma 0EUQ)], every
seminormal S is reduced. For a vector bundle ¥ on a scheme S, we often identify ¥ with the S-scheme
MﬁS(Sym(“l/V)) whose functor of points is S’ — I'(S", ¥ ®gy Og) (see [SGA 3 ey, exposé I,
corollaire 4.6.5.1]). Unless indicated otherwise, we form cohomology in the fppf topology, but
whenever the coefficient sheaf is a smooth group scheme we implicitly make the identification
[Gro68b, théoréme 11.7] with étale cohomology.

We follow [SGA 3111 new| for the basic theory of reductive group schemes, which, in particular, are
required to have connected fibers (see the definition [SGA 31 ey, exposé XIX, définition 2.7]).
For instance, we freely use the étale local existence of splittings and pinnings (see [SGA 3111 new,
exposé XXII, définition 1.13, corollaire 2.3; exposé XXIII, définition 1.1]) or the classification of split
pinned reductive groups by root data (see [SGA 31 pew, exposé XXV, théoréme 1.1]). We let Z(G)
denote the root datum associated to a splitting of G by [SGA 311 ew, exposé XXII, proposition 1.14];
the choice of a splitting will not matter when we use Z(G). For a Lie algebra g and an a € g, we let

ad(a): g > g be the map z+— [a,z].

Similarly, we denote the adjoint action of a group G on Lie(G) by Ad(—). We let C(—) denote a
centralizer subgroup of G, and we let Cent(—) denote the center.

For a scheme S and an affine S-group G acting on an affine S-scheme X, we let X /G denote the
affine S-scheme given by the Spec s of the equalizer between the action and the inclusion of a factor

maps (so that the coordinate rings of X /G are the rings of invariants):
X)G:= SpecﬁS(Eq(ﬁX 3 0x Qo 0c)).

This and other quotient notation is abusive when used for left actions, for instance, in (1.4.1), where
the quotients are of left actions. The construction of X /G commutes with flat base change in S,
see [Ses77, page 243, Lemma 2|. If G is finite locally free over S, then we abbreviate X /G to X/G
because, by, for instance, [Ryd13, Theorem 4.1, Definition 3.17|, it agrees with the coarse moduli
space of the algebraic stack quotient [ X /G], which we always form in the fppf topology. Often G
will be a Weyl group scheme W of a reductive group scheme; we recall from [SGA 3y, exposé XII,
théoréme 2.1| that such a W is always finite étale. We let x & denote a contracted product, that is,
the quotient of the product of an object with a right G-action and an object with a left G-action by
the combined action given by g - (z,y) = (zg~ %, gy).

Acknowledgements. We thank Ofer Gabber for many helpful interactions; as the reader will

notice, this article owes a significant intellectual debt to his various unpublished results. We thank

Laurent Moret-Bailly for numerous suggestions of improvements and for exhaustive comments,
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2. APPROXIMATION AND ALGEBRAIZATION

Our first goal is the algebraization of torsors over loop groups R((t)), see Corollary 2.1.22. For this, we
consider rings of Cauchy sequences, which we discuss in §2.1 in the general setting of Gabber—Ramero
triples. The latter, in addition to supplying more general topologies, also simultaneously capture
the recurrent framework of Henselian pairs—consequently, the aforementioned Corollary 2.1.22
contains the more basic Theorem 2.1.6 as a special case. We combine the Cauchy sequence technique
with Beauville-Laszlo glueing in §2.2 to give a new proof of the Elkik approximation theorem, see
Theorem 2.2.20. The latter plays a role in extending the algebraization statements to nonaffine
settings in §2.3, see Corollary 2.3.5 for a concrete consequence.

2.1. Invariance of torsors under Henselian pairs and algebraization

The principal goal of this section is to show in Corollary 2.1.22 that for any ring R the Laurent
power series and the Henselian Laurent power series rings R((t)) and R{t}[1] (see §2.1.2) possess the
same collection of torsors under a given smooth, affine group scheme. The first step towards this is
the invariance of such collections under Henselian pairs, which we obtain in Theorem 2.1.6.

2.1.1. Zariski and Henselian pairs. We recall that a pair (A, I) consisting of a ring A and an
ideal I < A is Zariski if I lies in every maximal ideal, that is, if 1 + I < A*. A Zariski pair (A, ) is
Henselian if it satisfies the Gabber criterion' in the sense that every polynomial

() =TN(T - 1)+ anTV +---+a1T +ap  with a; el and N>1  (2.1.1.1)

has a (necessarily unique) root in 1 + I (by [Gab92, Proposition 1| or [SP, Lemma 09XI], this agrees
with other definitions). As observed by Gabber, these are properties of I, so we say that the nonunital
ring I is Zariski or Henselian, respectively, and extend this terminology to pairs with nonunital A.
This terminology is not entirely abusive because every nonunital ring I appears as an ideal in a
commutative ring, for instance, in the ring Z@® I with multiplication (z,%)(2',i") = (22, zi’ + 2/i + i7').

If (A, I) is Zariski or Henselian, then, by [SP, Lemmas 0DYD and 09XK], so is (A’, I’ A) for any ideal
I’ c I and any integral morphism A — A’ (such as a surjection). By [SP, Lemmas 0EM6 and 0CT7],
the category of Zariski (respectively, Henselian) pairs is closed under filtered direct limits, inverse
limits, and contains nilpotent thickenings, so (A, I.J) is Henselian whenever A — im _(A/1J™).
The Zariskization and, by [SP, Lemma 0AGV], also the Henselization of a Noetherian ring along any
ideal is Noetherian.

We will say that a functor F' defined on some subcategory of commutative rings is invariant under
Zariski pairs (respectively, is invariant under Henselian pairs) if for every Zariski (respectively,

IFor an ecarlier Henselianity criterion of this sort, a “Newton’s lemma,” see [Gru72, corollaire 1.3] or [Gre69,
Theorem 5.11].
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Henselian) pair (A, I) with both A and A/ in the domain of definition of F'; we have
F(A) = F(A/I).

The following instance of the Henselian pair formalism is particularly relevant for this article.

2.1.2. Henselian power series. For a ring R, we let R{t} denote the Henselian power series ring
over R, that is, the Henselization of R[t] with respect to (¢). In comparison to the power series
ring R[t], to which it admits the ¢-adic completion map R{t} — R[t], this ring is better behaved in
non-Noetherian settings: for instance, the functor R — R{t} commutes with filtered direct limits
and also with quotients in the following sense: for any ideal I < R, we have

R{t}/IR{t} = (R/T){t}
(see §2.1.1). These properties persist to the Henselian Laurent power series ring R{t}[1] that comes
equipped with the map R{t}[}] — R((t)) to the usual Laurent power series ring R((t)) = (R[t])[%].
For any ring R, the map
R{t} — R[t] is injective, and hence so is R{t}[+] — R(1);

indeed, for Noetherian R this follows from the Krull intersection theorem [SP, Lemma 00IQ] and, in
general, R is a filtered direct union of its finite type Z-subalgebras R;, so

R{t} = |, Ri{t} — U, R:[t] = R[] (2.1.2.1)

The argument of Theorem 2.1.6 will use the following general lemma.

Lemma 2.1.3. For a Henselian pair (A,I) with A Noetherian, if the geometric fibers of A — A
with A := @m>0(A/Im) are reqular,” then for any functor

F: A-algebras — Sets

that commutes with filtered direct limits,

~ ~

F(A) — F(A) and an element of F(A/I) liftsto F(A) if and only if it lifts to  F(A).
In particular, for a Noetherian ring B whose formal fibers are geometrically reqular, a functor
G: B-algebras — Sets

that commutes with filtered direct limits is invariant under Henselian pairs if and only if it is invariant
under those Henselian pairs that are obtained by completing o finite type B-algebra along some ideal.

Proof. By Popescu’s smoothing theorem [SP, Theorem 07GC], there is a filtered direct system
{A;}jes of smooth A-algebras such that

A=>lim, Aj, so that also F(A) = lim.
—Sje —je

ied F(A;).

J
By |Gru72, théoréme 1.8] (which is the affine scheme case of Proposition 2.1.4 below), the smooth
map A — A; has a retraction: the A/I-point of A; inherited from A lifts to an A-point. Thus,

~

the map F(A) — F'(A;) also has a retraction, so that F'(A) — F(A) and any lift of an element of

~

F(A/I) to F(A) first descends to a lift in some F'(A;) and then maps via the retraction to a desired
lift in F(A).

For the assertion about G, by a limit argument, we may assume that the Henselian pair (A, ) in
question is the Henselization of a finite type B-algebra along some ideal. By §2.1.1, such an A is

2By [EGA IV, proposition 7.4.6], this holds if the formal fibers of A are geometrically regular, for instance, if A is
quasi-excellent.
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Noetherian and, by [SP, Proposition 07PV, Lemma 0AH3|, it inherits geometric regularity of formal
fibers from B, so the claim about F' applied to G allows us to replace (A, I) by its I-adic completion
and to conclude. O

We combine Lemma 2.1.3 with recent results on Tannaka duality for algebraic stacks to extend
the lifting result for smooth affine schemes [Gru72, théoréme 1.8| used above to algebraic stacks as
follows.

Proposition 2.1.4. For a Henselian pair (A, I) and a smooth algebraic A-stack Z with quasi-affine
diagonal, the pullback map X (A) — X (A/I) is essentially surjective.’

Proof. By combining [SP, Lemmas 04Y9, 04XL, and 06FJ, Definition 04YB|, we see that any
A/I-point of 2 factors through a quasi-compact open substack, so we lose no generality by assuming
that 2" is quasi-compact. The assumptions then ensure that 2" is of finite presentation, so limit
formalism for algebraic stacks [LMBO00, proposition 4.18] reduces us to the case when (A, I) is the
Henselization of a finitely generated Z-algebra along some ideal. By §2.1.1,Athis A is Noetherian and,
by [SP, Lemmas 0AH2 and 0AH3|, the geometric fibers of the map A — A to the I-adic completion
are regular. Thus, due to limit formalism again, Lemma 2.1.3 applies and reduces us to the case
when A is Noetherian and I-adically complete.

In this case, by a general continuity result [HR19, Corollary 1.5 (ii)] for values of a Noetherian
algebraic stack with quasi-affine diagonal (alternatively, see [BHL17, Corollary 1.5]), the pullback
morphism

Z(A) - lim Z (A/T™) is an equivalence of categories.

By the infinitesimal lifting criterion for smoothness [SP, Lemma 0DPO]|, every A/I-point of 2~
extends to a compatible sequence of A/I™-points, and the desired conclusion follows. O

Example 2.1.5. For instance, 2" could be a smooth, quasi-separated A-algebraic space (or even a
scheme): by [SP, Lemma 03HK], the diagonal of a morphism of algebraic spaces is representable,
separated, locally quasi-finite, so, by [SP, Lemma 02LR], its quasi-compactness implies quasi-
affineness.

The H' aspect of the following consequence of the work above was announced in [Str83, Theorem 1]
for smooth affine G and was then proved in [GR03, Theorem 5.8.14| for smooth G that admit suitable
embeddings into GL,,. In turn, the H? aspect is a generalization of an unpublished result of Gabber,
who established it in the case G = G,,.

Theorem 2.1.6. Let (A,I) be a Henselian pair and G an A-group scheme.

(a) If G is smooth and quasi-separated, then
HY(A,G) — HY(A/I,G).

(b) If G is quasi-affine, of finite presentation, and flat over A, then’
HY(A,G) - HYA/I,G) (respectively, Ker(H*(A,G) — H*(A/I,G)) = {*}).

3Added in proof: The surjectivity also holds when £ is a smooth scheme (with no assumption on its diagonal), see
[Ces22, Proposition 6.1.1 (a)].
4Added in proof: For a similar result due to Toén in the case when A is local Henselian and G is no longer
quasi-affine, see [Ces15, Proposition B.13].
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In particular, Br(A) = Br(A/I) and if G is quasi-affine and A-smooth, then
HY(A,G) = HY(A/I,G).

Proof. For (a), by |[SP, Lemma 04SK], the functor of isomorphisms between two fixed G-torsors is
representable by a smooth, quasi-separated A-algebraic space X. Thus, Proposition 2.1.4 ensures

that X (A) - X (A/I), as desired.

In (b), we interpret the noncommutative H? in terms of gerbes ¢ bound by G (for agreement with
the derived functor cohomology when G is commutative, see [Gir71, chapitre IV, théoréme 3.4.2 (i)]).
By [SP, Theorem 06FI|, the classifying stack BG that parametrizes G-torsors is algebraic and, by,
for instance, [C‘eslS, Lemma A.2 (b), Proposition A.3], it is smooth, quasi-compact, with quasi-affine
diagonal. General descent results for algebraic stacks [SP, Theorem 06DC, Lemmas 0429 and 0423]
then imply that each ¢ is also algebraic, smooth, quasi-compact, with quasi-affine diagonal. Thus,
both assertions of (b) are immediate from Proposition 2.1.4.

The assertion about Br(—) follows from the rest for G = GLy and G = PGLy: indeed, by definition,
Br(A) = Uys1 Im(H'(A,PGLy) = H*(A,Gm)tors), and likewise over A/1. O

Remark 2.1.7. For smooth, quasi-separated G, the injection
HY(A,G) — HY(A/I,G)

of Theorem 2.1.6 (a) need not be surjective. Indeed, this may fail already for G = Z: if A
is a normal domain but A/I is not, then H'(A,Z) = 0, but H'(A/I,Z) # 0 is possible (see
[Wei91, Remark 5.5.2]).

Remark 2.1.8. Contrary to the assertion of the main theorem of [Str84], the injection
H*(A,G,,) — H*(A/I,G,,)

of Theorem 2.1.6 (b) need not be surjective. Indeed, if it were, then for any regular ring A and
any ideal I < A, the group H%(A/I,G,,) would be torsion: one could lift cohomology classes to
the Henselization of A along I and apply [Gro68a, corollaire 1.8|, which says that the values of
H?(—,G,,) on regular rings are torsion abelian groups. However, this fails for

A:=Clz,y,2z] and TI:= (2(y* — (23 — 2 — 2))) < C[z,y, 2],

for which Spec(A4/I) < A is the union of two copies of A% whose intersection C' is the punctured
elliptic curve 32> = 2% — z in the {z = 0} plane: indeed, the Mayer—Vietoris sequence [BouT7s,
chapitre IV, corollaire 5.2 shows that Pic(C) = H?(A/I,G,,), and Pic(C) has many nontorsion
elements given by restricting nontorsion elements of Pic’(C) ~ C/Z to C, where C is the smooth
compactification of C.

Our next goal is Corollary 2.1.22—the analogue of Theorem 2.1.6 that for any ring R compares
G-torsors over R{t}[1] and over R((#)). The following convenient formalism of Gabber-Ramero
introduced in [GR03, Section 5.4| unifies this situation with the Henselian pair setting (see Exam-
ple 2.1.10).

2.1.9. Gabber—Ramero triples. A Gabber—Ramero triple is a datum (A, ¢, I) of a commutative

ring A, an element ¢t € A, and an ideal I € A. Such a triple is bounded if, in the notation of §1.5,

Iy = 1INy for some N >0,
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that is, if I{t*) "tV = 0 for some N > 0, equivalently, if the t-adic topology of I induces the
discrete topology on I{t*). For instance, this happens when ¢ is a nonzerodivisor. In general, we set

A= A/JAG™Y and T:=I/I*")=TAc A,

so that the Gabber-Ramero triple (4, ¢, T) is bounded, in fact, ¢ is even a nonzerodivisor in A. It is
often useful to consider the intermediate bounded Gabber—Ramero triple

(A,t, 1) with A:= A/I¢&™).

The restriction of the surjection A — A to each coset of T is injective, to the effect that this surjection
is a local homeomorphism for the topologies that we are about to define.

We first endow the ideal I with its t-adic topology, then A with the unique ring topology for
which the ideal I < A is open, and, finally, A[f] with the unique ring topology for which the
map A — A[ ] is continuous and open (the existence of such ring topologies is ensured by the
axioms [BouTG, chapitre III, section 6, numéro 3, axiomes (AV1)—(AVyy)]). Concretely, the resulting
(t, I)-adic ring topologies on A and A[%] are determined by the respective open neighborhood bases
of zero
{t"I}=0 and {Im(t™I — A[%])}m>g.

In particular, we have the identification of topological rings

A[3] = A[1]. (2.1.9.1)
We caution that the topology on A[%] is not defined by ideals, in other words, it is not A[%]—linear,
only A-linear. We let A and A[%] be the completions, so that, explicitly,

A:=1lim _ (A/"1) and A[H =lim _ (A[}]/Tm(t"T — A[L])), (2.1.9.2)

—

where the individual terms that appear in the last limit need not be rings, only their limit A[%]

i

By (2.1.9.1), the topological ring A[%] depends only on the Gabber-Ramero triple (4,¢,1).

Both A and A[%] are complete topological rings and A comes equipped with the ideals

] ~ im _ (t"I/t"]) < A that form a neighborhood base of zero.

By [SP, Lemma 05GG]|, we have n] = t”f, so the topology of Ais (t, f)—adic and

A/t"T =~ AJt"I, and hence also  A/(t") =~ A/(t"), for every n > 0. (2.1.9.3)
The completion of a Gabber-Ramero triple (A, ¢, 1) is the Gabber-Ramero triple (A, ¢,1).
Maps (A,t,1) — (A’,t',I') of Gabber-Ramero triples are ring homomorphisms f: A — A’ that

satisfy f(t) =t and f(I) < I'. Any such is continuous and induces continuous homomorphisms

A[3] > A'[4] and A[}] — A[3].
A common example is the map (A,t, 1) — (121\, t,1 ) to the completion. Other useful cases are when
(A’ ¢, I') is a localization of (A,t¢,I) or when A = A’ with [ < I".

A Gabber-Ramero triple (A,t,1) is Zariski (respectively, Henselian) if so is the pair (A,tI) (a
weaker assumption than the same for (A,¢)), that is, if so is the nonunital ring ¢. For instance, by
§2.1.1, the Gabber-Ramero triple (A t,1 ) is always Henselian.

Example 2.1.10. The unification alluded to before §2.1.9 manifests itself as follows.
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(1) The case t = 1 amounts to that of a pair (A, ) that is often assumed to be Henselian. In
addition, A[}] =~ A and A~ A[}] = A/I, which is precisely the setting of Theorem 2.1.6.

(2) The case I = A amounts to that of a ¢ € A; a typical example: A = R{t} as above. The
topology is then t-adic, one often assumes that A has bounded ¢*-torsion, so that A[1] ~ /Al[%]

by the following lemma, and the goal is to compare algebraic structures over A[1] and A\[%]

Lemma 2.1.11. For a bounded Gabber—Ramero triple (A,t,I),
ﬁ[%] — @ as topological rings, APy > AG™,  I{H®Y = [{(H%) (2.1.11.1)

and A ~ A in such a way that ] =] for n> 0 (in particular, compatibly with topologies).

Proof. In the case when t is a nonzerodivisor in A, by (2.1.9.2), it is also a nonzerodivisor in /Al, and we
only need to argue the first part of (2.1.11.1). However, then we have the open continuous injection

A A[1]
of topological rings, which becomes a topological isomorphism after inverting ¢, as desired.

In general, the boundedness assumption implies that A(t*)-t"1, the a priori larger ideal AG®)nt™I,
and the even larger ideal ¢™ - I{t*) all vanish for m > N. In particular, since

Tor{'(A/I1, A/LL) = (I " ) /(11 - I5)
for any ideals I, Is < A, the system
{Tor{ (A, A/t™I)}m>0

is essentially zero. Thus, by forming linm over the exact sequences

=0
Torf (A, A/t™I) — A{U®Y @4 A/t™] — AJ/t™] — A/f™TA — 0

we obtain a short exact sequence: indeed, the transition maps of the system {A{t™) ®4 A/t 1} im0,
and hence also the maps between the images of the second arrow, are surjective, whereas, by the

previous sentence, the images of the first arrow form an essentially zero system, whose limm>O

vanishes; the resulting vanishing of the Lir_ni)po terms then gives the exactness. We conclude that

AU®Y = AU™Y,  that A= i, and, by replacing A by I, that also I{t®) = I(t), -1

By (2.1.9.3), we have t"T ~ ¢"] and, by (2.1.9.1) and the settled case when ¢ is a nonzerodivisor, we

have A[1] =~ A[1], so we obtain the desired topological identification A[1] = /I[%] O
The extension of Theorem 2.1.6 to the setting of Gabber-Ramero triples (so also to R{t}[1] and R((t)))
is a special case of the axiomatic algebraization theorem 2.1.15 that generalizes an unpublished result
of Gabber. Its proof given below rests on the following material on the Henselianity of rings of Cauchy
sequences along their ideals of null sequences. To the best of our knowledge, the idea of considering
rings of Cauchy sequences is due to Gabber. The idea of conceptualizing and generalizing our initial
arguments by working with general filters and nonunital rings was suggested by Moret-Bailly.

2.1.12. Rings of Cauchy nets. We fix a nonunital topological ring B and, for concreteness,

assume that B has an open neighborhood base of zero consisting of abelian subgroups. For a poset

S in which every two elements have a common upper bound, we say that a function f: S — B is

null (respectively, Cauchy) if for every neighborhood U < B of zero there is an s € S such that
10



(respectively, the pairwise differences of) the values of f on Ssg lie in U. We consider the nonunital
rings of functions
Null(S, B) := {functions f: S — B that are null},
Cauchy (S, B) := {functions f: S — B that are Cauchy},

as well as the resulting nonunital rings of germs of functions
Nullg(B) :=lim __,Null(S>5, B) and Cauchyg(B) := lim __, Cauchy(S=s, B).
Of course, Null(S, B) is an ideal in Cauchy(S, B) and Nullg(B) is an ideal in Cauchyg(B).

Lemma 2.1.13. Let S be a poset in which every two elements have a common upper bound, and
let B be a nonunital topological Ting that has an open monunital subring B’ < B whose induced
topology has an open neighborhood base of zero consisting of ideals of B'. If B is Zariski (respectively,
Henselian), then so is the nonunital ring Nullg(B).

Proof. Every null function eventually takes values in B’; so Nullg(B) =~ Nullg(B’) and we may
assume that B = B’. The assumption on the topology then ensures that Nullg(B) is an ideal in

h—r>nseS(HS>s B).

Thus, since, by §2.1.1, being Zariski (respectively, Henselian) is stable under products, filtered direct
limits, and passing to ideals, the claim follows. ]

Remark 2.1.14. Lemma 2.1.13 holds with the same proof for the ‘IN-Henselian’ property that is
defined for Zariski pairs by only considering polynomials of a fixed degree N in (2.1.1.1). Similarly,
instead of assuming that B’ be Henselian in Lemma 2.1.13, it is enough to assume that B’ has an
N-Henselian open ideal for every N > 0, equivalently, an open neighborhood base of 0 consisting of
N-Henselian ideals (possibly with no single ideal being N-Henselian for all N). We will not pursue
it, but this last improvement to Lemma 2.1.13 leads to analogous improvements to results below.

Theorem 2.1.15. Let B be a topological ring that has a Zariski (respectively, Henselian) open
nonunital subring B' < B whose induced topology has an open neighborhood base of zero consisting of
ideals of B, let S be the poset given by some neighborhood base of zero of B with the order relation
gwen by U < U’ if and only if U' < U, and consider a functor

F': B-algebras — Sets.
(a) If F satisfies
lim . F(By) = F(lim,_,By) and F(C)— F(C/J)

—UeS

for S-indexed direct systems of B-algebras {By} and Zariski (respectively, Henselian) pairs
(C,J), then

F(B) — F(B).

(b) If F satisfies
lim _F(By) — F(lim,, . By) and F(C)— F(C/J)

—UeS —UeS
for S-indexed direct systems of B-algebras {By} and Zariski (respectively, Henselian) pairs
(C,J), then

F(B) = F(B).
11



Proof.

By [BouTG, chapitre III, section 6, numéro 5 and chapitre III, section 7, numéro 2, corollaire 1]

that identifies the completion B with the inverse limit of quotients of B by open additive subgroups,
the assumption on the topology of B ensures that our poset S has the property that

B = Cauchyg(B)/Nullg(B). (2.1.15.1)

Likewise, since the diagonal is cofinal in the product poset S x S, we have

(a)

B = Cauchyg, ¢(B)/ Nullg,s(B). (2.1.15.2)
For every U € S, the map given by the constant functions
const: B — Cauchy(S>y, B) has a retraction evy: Cauchy(Ssy, B) — B
given by the evaluation at U. Thus, it induces an injection
F(B) — F(Cauchy(S>y, B)).
It remains to form the direct limit over U and combine Lemma 2.1.13 with (2.1.15.1).
To begin with, we claim that in any category, for a commutative diagram
X—Y ——X
ol
Xy —X
with monomorphisms as indicated and the bottom horizontal composition being the identity,
the top composition is also the identity, ¢ is a monomorphism, and the left square is Cartesian;
in addition, if the middle vertical monomorphism is split, then these assumptions, and hence

also the conclusions, are preserved by any functor. Indeed, the functorlahty is clear and, for
the rest, the Yoneda embedding reduces us to the case of sets, when X = XnYinY.

For every U € S, we apply the above to the diagram

evy

B¢ const Cauchy(S>y, B) B

*
Jconst ‘[prl Jconst
*

Cauchy(S>y, B)CL) Cauchy((S x S)>wv,v), B) SRACLIIEN Cauchy(S>y, B)
in which the maps pr} are obtained from the projections pr;: S x .S — S and the map evyxa
is given by the restriction of a Cauchy net indexed by (S x S)> (v, ¢ to the subnet indexed
by {U x U'}rrres.,,- The monomorphism prf is split by the analogous map evaxy. Thus, by
first applying the functor F' and then the aforementioned claim, we obtain a Cartesian square

F(const)

F(B)- F(Cauchy(S>y, B))

EF(const) E F(pr¥)
F(pr¥
F(Cauchy (S, B))(% F(Cauchy((S x S)>w,v), B))-

By forming the direct limit over U, we then obtain the Cartesian square

F(const)

F(B) F(Cauchyg(B))

F(const) F(pr¥)

F(pr¥
F(CauchyS(B))C% F(Cauchyg, g(B)).
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Here the right vertical map is bijective: by Lemma 2.1.13 and (2.1.15.1)—(2.1.15.2), its source

~

and target are compatibly identified with F/(B). Thus, the left vertical map is also bijective.

~

Since Lemma 2.1.13 and (2.1.15.1) identify its target with F'(B), the conclusion follows. O

The proof of Theorem 2.1.15 (a) also shows the following variant.

Variant 2.1.16. Let B and S be as in Theorem 2.1.15 and consider a functor
F: B-algebras — Pointed sets
If F satisfies
Ker(lim o F(By) — F(lim, . By)) = {*} and Ker(F(C) — F(C/J)) = {*}
for S-indezed direct systems of B-algebras { By} and Zariski (respectively, Henselian) pairs (C,J), then

~

Ker(F(B) — F(B)) = {*}.

Remark 2.1.17. Theorem 2.1.15 and Variant 2.1.16 continue to hold with the same proof if B
is only a nonunital ring, where we interpret a “B-algebra” to mean a nonunital ring C equipped
with a morphism B — C of nonunital rings (an abelian group homomorphism compatible with
multiplication). However, this extension to the nonunital case does not formally specialize to the
versions above when B is unital because, due to the requirement that morphisms of commutative
rings preserve the multiplicative unit, the categories of B-algebras differ in the two cases.

Example 2.1.18. Theorem 2.1.15 and Variant 2.1.16 apply in the case when B := A[%] for a
Zariski (respectively, Henselian) Gabber—Ramero triple (A, ¢, I) with B’ being the image of ¢t and

—

B = A[%] (see §2.1.1 and §2.1.9). In this case, the images of the t"I for n > 0 form a countable open
neighborhood base of zero, so one may choose S := N (if ¢ is a unit in A, then one may even choose
S to be a singleton) and Theorem 2.1.15 gives criteria for the following pullback to be injective or
bijective:

F(A[7]) — F(A[F])-

T

Thanks to this example, the following three corollaries apply to Henselian Gabber—Ramero triples

p—

(A,t,I) and show that the corresponding functors have the same values on A[1] and A[1], for instance,
that they have the same values on R{t}[1] and R((t)) for any ring R. They also apply in the context
of rigid geometry, namely, to Henselian Huber rings that were defined in [Hub96, Definition 3.1.2].

Corollary 2.1.19. For a topological ring B that has an open nonunital subring B’ < B that is
Henselian and whose induced topology has an open neighborhood base of zero consisting of ideals of B,
the map B — B induces a bijection on idempotents. In particular, for any ring R, all the maps in

R— R{t} > R[t] and R — R{t}[}] — R(t) induce bijections on idempotents,
so that Spec(R((t))) is connected if and only if so is Spec(R).

Proof. The functor F' that sends a ring C' to the set of idempotents in C' commutes with filtered
direct limits and, by [SP, Lemma 09XI], is invariant under Henselian pairs. Thus, Theorem 2.1.15 (b)
implies all the claims except for the assertion about R — R{t}[1]. For the latter, we may first
replace R by R'™! and then consider R — R((t)) instead. It remains to note that for reduced
R, by considering the term of lowest degree, the inclusion R[t] — R((t)) induces a bijection on
idempotents. [l

The case of the map R{t}[1] — R((t)) is also of practical interest in the following special case.
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Corollary 2.1.20. For a topological ring B that has an open nonunital subring B’ < B that is
Henselian and whose induced topology has an open neighborhood base of zero consisting of ideals of
B’, pullback gives an equivalence between the categories of finite étale algebras over B and B and

RI«(B,.7) — RFét(B’, F)  for every torsion abelian sheaf F on Be.

Proof. By [SP, Lemma 09ZL], the functor that associates to a ring the set of isomorphism classes
of finite étale algebras (respectively, the set of morphisms between fixed finite étale algebras) is
invariant under Henselian pairs. It also commutes with filtered direct limits, so Theorem 2.1.15 (b)
applies to give the claim about finite étale algebras. For the rest, it suffices to similarly observe
that, by [SGA 4y, exposé VII, corollaire 5.8], for each i € Z the functor B — H (B,.#) commutes
with filtered direct limits and, by the affine analogue of proper base change [Gab94, Theorem 1], is
invariant under Henselian pairs. O

The following example presents some functors that are well-behaved with respect to Zariski pairs.

Example 2.1.21. We recall that a module M over a ring C' is stably free if M @ C®" ~ C®" for
some n,n’ > 0. The functors

F: C > {finite projective C-modules} / ~ and F’: C' — {stably free C-modules} / ~

satisfy
F(C)— F(C/J) and F'(C)— F'(C/J) for Zariski pairs (C,J).
Indeed, if M is a projective C-module and M’ is a C-module, then any C/J-morphism
fiM/JM — M'/JM' lifts to a C-morphism  f: M — M’,

and Nakayama’s lemma [SP, Lemma 00DV] ensures that f is surjective whenever M’ is finitely
generated and f is surjective. Thus, since, by [Mat89, Theorem 2.4|, a surjective endomorphism of a
finite module is an isomorphism, we have F/(C) < F(C/J). Finally, to lift a stably free C'/J-module
to C', we note that any surjection

(/D) — (C/J)®" lifts to a necessarily split surjection C®" — C®",
We are ready for the promised extension of Theorem 2.1.6 that includes [GR03, Theorem 5.8.14] a
special case.

Corollary 2.1.22. Let B be a topological ring that has an open nonunital subring B’ < B that is
Zariski and whose induced topology has an open neighborhood base of zero consisting of ideals of B'.

(a) Base change induces an injection
{finite projective B-modules}/~ < {finite projective B-modules}/~,
as well as a bijection
{stably free B-modules}/~ —> {stably free B-modules}/~ .
If G is an inner form of GL,, g, then
H'(B,G) — H'(B,q).

(b) If B' is Henselian and G is a smooth, quasi-separated B-group scheme, then

H'(B,G) — H'(B,G).
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(c) If B' is Henselian and G is a quasi-affine, smooth B-group scheme, then

HY(B,G) = H'(B,q).

(d) If B' is Henselian and G is a quasi-affine, finitely presented, and flat B-group scheme, then
Ker(H*(B,G) — H*(B,G)) = {}.

In particular, for a ring R and a quasi-affine, smooth (respectively, quasi-affine, finitely presented,
and flat) R{t}[1]-group scheme G,

Hl(R{t}[%],G) = HY(R(t),G) (respectively, Ker(Hg(R{t}[%],G) — H?(R((t),Q)) = {#}).

Proof. In (a), by |Gir71, chapitre III, proposition 2.6.1 (i)], up to translation inner forms have
identical collections of torsors, so the claim about G follows from the rest. For the rest of (a)—(d),
by Example 2.1.21, Theorem 2.1.6, and limit formalism (that we already discussed in the proofs of
Proposition 2.1.4 and Theorem 2.1.6), Theorem 2.1.15 and Variant 2.1.16 apply to the functors in
question and give the claims. The ‘in particular’ then follows from Examples 2.1.18 and 2.1.10 (2). O

To further illustrate the Zariski aspects of Theorem 2.1.15, in Theorem 2.1.24 (d) we reformulate
the following conjecture of Lam that appeared in [Lam78, equation (H) on page XI| and [LamO06,
equation (H’) on page 180].

Conjecture 2.1.23 (Lam). For a local ring R, every stably free R[t]-module is free.

Theorem 2.1.24. Let R be a ring and set R(t) := (R[t]144r)[7], so that R(t) can be identified with
the localization of R[t] with respect to the monic polynomials (see the proof for this identification).

(a) Nonisomorphic finite projective R-modules cannot become isomorphic over R((t)).
(b) Nonisomorphic finite projective R(t)-modules cannot become isomorphic over R((t)).

(¢) Base change identifies the set of isomorphism classes of stably free R(t)-modules with the set
of isomorphism classes of stably free R((t))-modules.

(d) If R is local, then every stably free R[t]-module is free iff every stably free R((t))-module is free.
In particular, the following pullback maps are injective for n = 0:

HY(R,GL,) — H'(R(t),GL,) — HY(R((t)),CGL,).

Proof. Firstly, to exhibit the claimed identification of R(t), we let R(t)" be the localization of R[t]
with respect to the multiplicative set of the monic polynomials, view R(t)" as a localization of
R[t,t71], and then note that the involution ¢ — ¢~! exchanges R(t) and R(t)'.

Parts (b) and (c) are immediate from Corollary 2.1.22 (a). Part (a) follows by combining (b) with
[Lam06, Chapter V, Proposition 2.4], which is the version of (a) in which R((t)) is replaced with
R(t). Part (d) follows from (c) and [BR83, Theorem A], which is the version of (d) in which R((¢)) is
replaced with R(t).” O

5The blanket Noetherianity assumption of op. cit. is not needed for [BR83, Theorem A]: indeed, both [BR&3,
Theorem 2.2] and [Lam06, Chapter IV, Horrocks’ Theorem 2.1], which give the two implications, are susceptible to
limit arguments.
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Remark 2.1.25. Theorem 2.1.24 (¢) and (d) continue to hold even if one drops the finite generation
implicit in the definition of stable freeness: more precisely, by Gabel’s trick [Lam06, Chapter I,
Proposition 4.2], for a ring A, every A-module M that is not finitely generated and such that
M @ AD" ig free is itself free.

2.2. The Elkik—Gabber—Ramero approximation via Cauchy nets

The Cauchy net technique used in §2.1 leads to non-Noetherian versions of the Elkik approximation
theorem via a short argument that is also new in the Noetherian case, see Theorems 2.2.2 and 2.2.10.
It also strengthens the non-Noetherian version of this theorem presented in [GR03, Proposition 5.4.21]:
in Theorem 2.2.17 below, ¢ need not be a nonzerodivisor and the open U need not be Spec(A[1]). In
some sense, we invert the argument: Gabber and Ramero deduced their version from the Noetherian
case that was settled by Elkik in [Elk73] and restated in [GR03, Lemma 5.4.12|, whereas we first
settle the general non-Noetherian version and then deduce the Noetherian statement from it in
Theorem 2.2.20.

In spite of its slightly different flavor, Elkik approximation is spiritually close to §2.1: for instance,
the approximation statements could be considered as nonabelian incarnations of the phenomenon
that H {1t:0} tends to depend only on the formal ¢-adic neighborhood of the ring in question, and
hence should not change upon passage to t-adic completions. For a concrete such statement, see
Example 2.2.19, which ensures that the affine Grassmannian may be formed with Henselian loops.

Our core approximation idea is captured by Theorem 2.2.2, formulated using the following topologies.

2.2.1. Topology on points of affine schemes. We recall from [Conl2, Proposition 2.1] that for
any topological ring B there is a unique way to topologize the sets X (B) for affine B-schemes X of
finite type in such a way that

(1) any B-morphism X — X' induces a continuous map X (B) — X'(B);
(2) for each n > 0, the identification A"(B) =~ B" is a homeomorphism;
(3) a closed immersion X < X’ induces an embedding X (B) — X'(B).

Indeed, one chooses a closed immersion X < A and checks (loc. cit.) that the resulting subspace
topology on X (B) < B™ does not depend on the choice. In terms of any such embedding, elements
of X(B) are topologically close if and only if the resulting values in B of the corresponding standard
coordinates of A%, are close. Moreover, by [Conl2, Proposition 2.1, Example 2.2| and the definitions,

(4) the identifications (X x x» X')(B) — X (B) x xn(gy X'(B) are homeomorphisms;

(5) for a continuous homomorphism B — B’ of topological rings, the maps X (B) — X (B') are
continuous, for instance, for an open ideal I < B, the fibers of X (B) — X (B/I) are open;

(6) if a continuous homomorphism B — B’ of topological rings is a (respectively, open; respectively,
closed; respectively, discrete) embedding, then so are the maps X (B) — X (B') of topological
spaces because

X(B)=X(B')nA"(B) in A™(B’) for a closed immersion X < A"; (2.2.1.1)

(7) if the restriction of a continuous homomorphism B — B’ of topological rings to an open ideal
I c B is a (respectively, open) topological embedding, then the maps X (B) — X (B’) are
locally on their sources (respectively, open) topological embeddings because (2.2.1.1) holds
locally on A™(B).
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Theorem 2.2.2. Let B be a topological ring that has an open nonunital subring B < B that is
Zariski and whose induced topology has an open neighborhood base of zero consisting of ideals of B’,
and let X be a smooth, affine B-scheme. If either

(i) B’ is Henselian; or
(ii) X(C) — X(C/J) for every Zariski B-pair (C,J) with C/J =~ B;’
then the pullback map

~

X(B) — X(B) has dense image.

Example 2.2.3. For instance, B’ < B could be a Henselian pair J < C with J endowed with
its coarse topology. In this case, the completion C' =~ C/J is discrete and Theorem 2.2.2 recovers
[Gru72, théoréme L.8]: for a smooth, affine C-scheme Y, we have

Y(C)—-»Y(C/J).

This case is an input to the proof of Theorem 2.2.2, see also Proposition 2.1.4 for a generalization.

Proof. We use the notation of rings of Cauchy nets introduced in §2.1.12 and let S be the poset
consisting of the neighborhoods of zero U < B where U < U’ if and only if U’ < U, so that, as in
(2.1.15.1), we have the identification

B = Cauchyg(B)/ Nullg(B).

Lemma 2.1.13 and Example 2.2.3 then give us the surjection

~

lim . (X (Cauchy(Ssv, B))) = X (Cauchygq(B)) - X (B),

—UeS

so that every element of X (B) comes from some X (Cauchy(S>y7, B)). The elements of this last set
may be visualized as S>p-indexed posets of elements of X (B) such that the values in B of affine
coordinates of X converge to elements of B. Thus, by considering a finite set that generates the
coordinate ring of X as an B-algebra, we conclude that each neighborhood of every element of X (E’)
meets the image of X (B) (see §2.2.1), and the claimed density follows. O

We are going to extend Theorem 2.2.2 in two directions: beyond affine X in Theorem 2.2.10 and
beyond affine B in the context of Gabber—Ramero triples in Theorem 2.2.17. To remove the affineness
assumption on X it is important to be able to extend the definition of the topology on X (B). The
standard approach to this is to assume that B is local, so that every B-point of any X factors
through an affine open. We do not wish to restrict to local B—for instance, R((t)) is rarely local—so
in §2.2.7 we pursue the approach based on Lemma 2.2.6. For the sake of brevity, we use the following
notion that avoids a quasi-compactness assumption inherent in quasi-projective morphisms.

Definition 2.2.4. A scheme morphism X — S is subprojective if X is an open subscheme of a
projective S-scheme, so that, in particular, X is locally of finite type and separated over S.

We also use the following generalization of quasi-affineness that avoids quasi-compactness assumptions.
This definition seems to be due to Gabber and is given in [SP, Definition 0APG].

Definition 2.2.5. A scheme X is ind-quasi-affine if every quasi-compact open of X is quasi-affine.
A scheme map f: X — S is ind-quasi-affine if f~1(U) is ind-quasi-affine for every affine open U < S.

6The surjectivity assumption holds for every Zariski B-pair (C,J) if X is an fpqc inner form of GL, 5. Indeed,
such an X is the open subscheme cut out in the corresponding inner form X of the matrix algebra Mat, xn,B by the
nonvanishing of the inner form of the determinant; thus, since X (C') — X (C/.J) is identified with the reduction modulo
J surjection for a projective C-module and C* is the preimage of (C/J)*, we obtain the desired X (C) — X (C/J).
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An ind-quasi-affine morphism is separated because the intersection of any two affine opens in an
ind-quasi-affine scheme is affine. By [SP, Lemma 0AP9]|, separated, locally quasi-finite morphisms,
such as immersions or separated étale maps, are ind-quasi-affine. By [SP, Lemmas 0F1V, 0AP7,
and 0AP8|, ind-quasi-affineness is stable under composition, base change, is fpqc local on the base.
By |SP, Lemma 0APK] that is due to Gabber, fpqc descent is effective for ind-quasi-affine morphisms.

Lemma 2.2.6. For a ring B and a B-scheme X that is either ind-quasi-affine or subprojective,
every B-point of X factors through some affine open of X.

Proof. Every B-point factors through a quasi-compact open subscheme of B, so in the ind-quasi-affine
case we may assume that X is quasi-affine, in particular, that X = Spec(C)\V(J) for a B-algebra C
and an ideal J < C. The B-point C' - B in question maps J to the unit ideal, so there is a linear
combination ), ¢;j; with ¢; € C and j; € J such that the B-point factors through the affine open
1
Spec(C[Zi ) e X
The subprojective case is [GR03, Lemma 5.4.17|: similarly to the proof of Lemma 2.2.9 below, one
constructs a hyperplane not meeting the B-point in question, and hence reduces to the ind-quasi-affine
case. ]

2.2.7. Topology on points beyond affine schemes. Let B be a topological ring such that the
unit group B* < B is open and the inversion map of B* is continuous for the subspace topology.
By the proofs of [Conl2, Proposition 3.1] and of Lemma 2.2.6 above, these assumptions ensure that
an open immersion of affine B-schemes of finite type induces an open embedding on B-points for
the topology defined in §2.2.1. Lemma 2.2.6 then allows us to extend the definition of this topology
beyond affine X, namely, to topologize the set X (B) for every locally of finite type B-scheme
X that is either ind-quasi-affine or subprojective by declaring a subset to be open if and only if
its intersection with U(B) is open for every affine open U < X. With this definition, thanks to
Lemma 2.2.6,

(8) an open immersion X < X’ induces an open embedding X (B) — X'(B)

and §2.2.1 (1)=(7) hold, granted that we omit the closed embedding aspect of (6) and require B’ in
(5)—(7) to be such that B’”* < B’ is open and the inversion map of B’* is continuous. If B is local,
then Lemma 2.2.6 holds for all B-schemes and in this paragraph we may remove the assumption
that the locally of finite type B-scheme X be either ind-quasi-affine or subprojective.

The promised extension of Theorem 2.2.2 to nonaffine X rests on Lemma 2.2.9, which is an extension
of Lemma 2.2.6 to a case when X is no longer defined over B. The present version of this lemma
was suggested by Laurent Moret-Bailly and uses the following material on topologizing modules.

2.2.8. Canonical topology on finite modules. Let B be a topological ring. We endow every finite
B-module M with the quotient of the product topology with respect to a surjection m: B®" — M
of B-modules. By [GR18, Lemma 8.3.34, Corollary 8.3.37|, this canonical topology of M does
not depend on the choice of 7w, makes m an open map, and makes M a topological B-module.
By |GR18, Proposition 8.3.36], its formation is compatible with finite products, in particular, for
projective M it agrees with the subspace topology of M as a direct summand of a finite free B-module.
By |[GR18, Proposition 8.3.36, Corollary 8.3.37], every morphism (respectively, surjection) of finite
B-modules is continuous (respectively, open) in the canonical topology.

Claim 2.2.8.1. If B* < B is open and M and M’ are finite projective B-modules, then the surjective
homomorphisms form an open subset of the finite B-module Homp (M, M").
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Proof. There are finite B-modules M and M’ such that M o) M ~ B®" and M’ o) M~ B®Y
and by adding a free summand we arrange that there exist a B-module surjection f: M — M.
In particular, Hompg(M, M) is a direct summand of the free B-module HomB(B@”,B@"/). By
considering its coset given by f and vanishing crossed terms M — M’ and M — M’ , we therefore
reduce to considering Homp(B®* B®"). The latter is the B-module of n/ x n matrices and, by
Nakayama’s lemma [SP, Lemma 00DV|, which allows us to test the surjectivity B-fiberwise, the
locus of surjective homomorphisms corresponds to those matrices whose n’ x n’ minors generate
the unit ideal in B. Thus, since B* < B is open, the locus of surjective homomorphisms is also
open. [l

Claim 2.2.8.2. For a ring homomorphism By — B with a dense image, a finite Bo-module My, and
a topological B-module structure on M := B ®p, My (for instance, the one given by the canonical
topology), the image of the map My — M is dense.

Proof. Since M is a topological B-module, every B-module surjection B®" — M is continuous.
Thus, a choice of a surjection Bgan — My reduces us to the evident case when My = Bga" and its
base change M =~ B®" is endowed with the product topology. ([l

Lemma 2.2.9. Let B be a topological ring such that B* < B is open, let By — B be a ring map
with a dense image, and let X be a By-scheme. If either

(i) X is ind-quasi-affine; or
(il) X s subprojective and the map Pic(By) — Pic(B) is surjective;
then every B-point of X factors through an affine open of X.

Proof. We begin with the ind-quasi-affine case, in which, since every B-point factors through a
quasi-compact open, we may assume that X is quasi-affine. Then

X = Spec(C)\V(c) for some By-algebra C andideal ¢c C,
so a B-point of X is given by a map C' — B such that the images ¢; € B of some ¢; € ¢ satisfy
> bici=1 for some b; € B.
Since B* < B is open and By — B has dense image, there are b, € By whose images are close to the

b; such that ), bic; € B*. Thus, our B-point factors through the affine open Spec(C’[ﬁ]) c X.

In the remaining subprojective case, X is open in a closed subscheme of some P, so the settled
ind-quasi-affine case reduces us to X = P . A B-point of P, amounts to a B-module quotient

7. B®HY) M with M projective of rank 1.
By the surjectivity assumption for the Picard groups, M ~ B®p, M for a finite projective By-module
My of rank 1, and we consider the composition

id - TOo—
Homp, (Mo, BE"D) 22507, gomp(a1, B D) ™7, Homp (M, M).

Claims 2.2.8.1 and 2.2.8.2 applied to this composition supply a Bp-module map
s: My — B?(nﬂ) such that the composition mo (idp®p, s): M — M is surjective.

Since M is finitely generated, this composition is then an isomorphism, so that, in particular, the

map idp ®p, s: M — B®*1) is an inclusion of a direct summand that is complementary to Ker(r).

In particular, the map Spec(B) — Spec(By) factors through the maximal open U < Spec(By) over
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which the dual map sV : B?("H)

(n+1)

— My is surjective. Over this open, Ker(s") is locally a direct

summand of Bga , 8o, by forming duals again, s is locally an inclusion of a direct summand over U.

The settled ind-quasi-affine case shows that Spec(B) factors through an affine open of U. Thus, we
may assume that U = Spec(By), so that s: My — BSB (") is an inclusion of a direct summand. We
obtain a hyperplane H — P that parametrizes those projective rank 1 quotients of B((]JB "+ yhose

composition with s vanishes. By construction, the quotient given by 7 corresponds to a B-point of
5, that does not meet H, so that this point factors through the affine open ]P’%O\H , as desired. [

We now take advantage of the topology of §2.2.7 to present a nonaffine version of Theorem 2.2.2.
This generalizes [GR03, Proposition 5.4.21|, which, roughly speaking, is part (i) of the following
theorem in the case when B = A[}] for a Henselian Gabber—Ramero triple (A4, ¢, ).

Theorem 2.2.10. Let B be a topological ring such that B*c B is open and the inversion map of
B* is continuous in the subspace topology, assume that there is an open mnonunital subring B’ < B

that is Zariski and whose induced topology has an open neighborhood base of zero consisting of ideals
of B', and let X be a smooth B-scheme. If either

(i) B’ is Henselian and X is either ind-quasi-affine or subprojective; or

(ii) X s ind-quasi-affine and X (C) — X (C/J) for every Zariski B-pair (C, J) with C/J = B; or
(iii) B is local and B' is Henselian; or
(iv) B is local and X(C)— X(C/J) for every Zariski B-pair (C, J) with C/J = B;

then the pullback map

~

X(B) = X(B) has dense image for the topology defined in §2.2.7.

~

Proof. By Corollary 2.1.22 (c), in the case (i) the map Pic(B) — Pic(B) is an isomorphism. Thus,
Lemma 2.2.9 shows that every B-point of X factors through an affine open of X, which automatically

inherits the surjectivity assumption in (ii) and (iv). Consequently, the desired density follows from
the affine case established in Theorem 2.2.2 and the definitions of §2.2.7. U

We now turn to extending this approximation theorem beyond affine B in the setting of Gabber—
Ramero triples in Theorem 2.2.17. For this, we will use patching techniques: we review a generalization
of the Beauville-Laszlo patching in Lemma 2.2.11, deduce Proposition 2.2.12, then review the Ferrand
patching in Lemma 2.2.13, and deduce Proposition 2.2.15.

Lemma 2.2.11. Let A be a ring, lett € A, and let A — A’ be a ring map that induces an isomorphism
on derived t-adic completions (concretely, A/(t™) — A'/(t™) for m > 0 and AQ®) — A'{®)).

(a) Base change is an equivalence from the category of A-modules M such that M — M ®4 A’
nduces an isomorphism on derived t-adic completions, concretely, such that

M{®y > M@y A, (2.2.11.1)

to that of triples consisting of an A[%]-module, an A’-module, and an isomorphism of their
base changes to A’[%]; an A-flat M satisfies (2.2.11.1), and any M s flat (respectively, finite;
respectively, finite projective) if and only if the same holds for its base changes to both A’
and A[3].
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(b) (de Jong). For a flat, quasi-affine A-group scheme G, base change is an equivalence from the
category of G-torsors T to that of triples

(T, T, 0: Tppay = Thyya) (2.2.11.2)

consisting of a GA[;]—torsor T, a G ar-torsor T', and an indicated torsor isomorphism t.
t

Proof.

(a) Before entering the argument, we recall that the case when t is a nonzerodivisor on both A
and M and A’ is the t-adic completion A of A amounts to the main result of [BLI5]. The
case when ¢ is a nonzerodivisor and A’ is arbitrary follows from [BD19, Theorem 2.12.1]. The
nonzerodivisor assumption was removed by de Jong in [SP, Section 0BNI], whose argument
was partly inspired by that of Kedlaya—Liu carried out in [KL15, Section 2.7]. The proofs
of [SP, Section O0BNI] turned out to work beyond the case A" = A, and we have updated
[SP, Section O0BNI| to accommodate for this.

In more detail, by [SP, Lemma 0BNR]|, the pair (A — A’/t) is “glueing” and, by [SP,
Lemma 0BNW], the condition (2.2.11.1) is equivalent to M — M ®4 A’ inducing an isomor-
phism on derived t-adic completions and amounts to M being “glueable for (A — A’ t)”; by
[SP, Remark 0BNX], any A-flat M satisfies (2.2.11.1). Thus, [SP, Theorem 0BP2| gives the
claimed equivalence of categories. The assertion about testing properties over A" and A[%]
follows from [SP, Lemmas 0BP7, 0BNN, and 0BP6.

(b) The full faithfulness follows from [SP, Lemma 0F9T|, according to which a similar base change
functor is fully faithful even on the category of flat algebraic spaces with affine diagonal. For
the essential surjectivity, since T' and T” are quasi-affine, by [SP, Lemmas 0F9U and 0F9R],
any triple as in (2.2.11.2) arises from a faithfully flat, quasi-compact, separated A-algebraic
space 7. By the full faithfulness [SP, Lemma 0F9T]| again, 7 comes equipped with a G-action
for which the map

— (g7, 7

Gx T D= T

is an isomorphism. Consequently, 7 is a G-torsor (and hence is a quasi-affine scheme). O

Proposition 2.2.12. For a ring A, at € A, a ring map A — A’ that induces an isomorphism on
derived t-adic completions, a flat A-scheme U, and a U-scheme X that is either U-ind-quasi-affine
or U-subprojective,” we have

X(U) > X(Ua) xx X(Uypp)- (2.2.12.1)

Uarry)

Proof. The assumptions are stable upon replacing A (respectively, A’) by the coordinate ring of
a variable affine open of U (respectively, of its base change to A’). Thus, since the functors that
underlie both sides of (2.2.12.1) are Zariski sheaves on U, by passing to such an open we may

7Added in proof: Our assumption on X is not optimal, in fact, (2.2.12.1) holds for any U-scheme X and also for
any quasi-compact, quasi-separated U-algebraic space X. To argue this, first reduce to the case U = Spec(A) as in
the proof. Then the case of a quasi-compact, quasi-separated algebraic space follows from [Bhal6, Theorem 1.4 1.| (to
check its assumption, use [CSZU, Lemma 5.4.3]). In the remaining scheme case, by considering all the quasi-compact
opens of X we reduce to the case when X is quasi-compact. As in the proof of [CCSQQ, Proposition 6.1.1 (c)], at least
as far as ring-valued points are concerned, [SP, Lemma 03KO0] implies that a quasi-compact scheme is a filtered direct
limit of quasi-compact, quasi-separated schemes, so to reduce to the already settled case of the latter it remains to use
the fact that filtered direct limits of sets commute with fiber products.
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assume that U = Spec(A). In this case, which we now assume, [SP, Lemma 0BNR] shows that the
assumption on A — A’ implies that

A - A, XA/[l] A[%]
t
This key identification already gives (2.2.12.1) for affine X. It also implies that the surjection
Spec(A’) || Spec(A[$]) — Spec(A) (2.2.12.2)

is schematically dominant, so an A-point of an A-scheme Y factors through a given open (respectively,
closed) subscheme if and only if the same holds for its pullbacks to A’ and A[}]. In particular,
(2.2.12.1) for quasi-affine X follows from its case for affine X. Thus, for ind-quasi-affine X, the
identification (2.2.12.1) holds for every quasi-compact open X’ < X in place of X and, since every
finite collection of A-points (respectively, A’- and A[+]-points) of X factors through such an X', also
for X itself.

We turn to the remaining case when X is open in a projective A-scheme. The same reduction
allows us to assume that X is projective, then that X = P(&) for a quasi-coherent, finite type
module & on Spec(A), and finally, by choosing a surjection o9+l _, & that X = P*. By
[EGA I, corollaire 9.5.6], the schematic dominance of (2.2.12.2) and the separatedness of X ensure
that (2.2.12.1) is injective. For the remaining surjectivity, by the description of the functor of points
of P given in [EGA II, théoréme 4.2.4], we need to show that any pair of compatible surjections

AO(+1) o A oand (A[%])GB(TH'I)—»M”

with M’ (respectively, M”) a finite projective A’-module (respectively, A[$]-module) of rank 1 is
a base change of such a surjection of A-modules. Lemma 2.2.11 (a) supplies the unique candidate
7. A®(+D) 0 and implies that M is finite projective of rank 1. It remains to observe that 7 is

surjective, as may be checked after base change to the residue fields of A. O

Lemma 2.2.13 (|Fer03, théoréme 2.2 iv)]). For a fiber product Ry x g Ra of rings with either Ry — R
or Ry — R surjective, pullback is an equivalence from the category of flat (R1 x g Ra)-modules to that
of triples consisting of a flat Ri-module, a flat Ro-module, and an isomorphism of their base changes
to R; the same holds with ‘flat’ replaced by ‘finite projective.” Moreover, an (Ry X g R2)-module is
flat (respectively, finite; respectively, finite projective) if and only if so are its base changes to Ry and
Ry.® 0
Example 2.2.14. The case when both Ry — R and Rs — R are surjective corresponds to a ring A
and ideals I, Iy < A with I; n I3 = 0: then

A;A/Il XA/(I1+I2) A/IQ (22141)
For instance, for a Gabber—Ramero triple (A, ¢, I) with I{t®) = I{t") forann > 0 and A := A/I{t*),

A A X g gy AT (2.2.14.2)

8Added in proof: The lemma implies that for any flat, finitely presented, affine (R1 Xz Raz)-group scheme G,
pullback is an equivalence from the category of G-torsors to that of triples consisting of a G g, -torsor, a G gr,-torsor,
and an isomorphism of their base changes to R, see [Stal9, Lemma 3.1 and its proof]; the same holds for any flat,
affine (R1 x g Rz)-group scheme G granted that we consider torsors in the fpgc topology.
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Proposition 2.2.15. For a ring A and ideals 11,1s ¢ A with Iy n I3 =0, a flat A-scheme U, and
a U-scheme X that is either U-ind-quasi-affine or U-subprojective,’

X(U) = X(Ua/n) XX (Uay1,11,)) X Uasn,)- (2.2.15.1)

Proof. As in the proof of Proposition 2.2.12, both sides of (2.2.15.1) are Zariski sheaves in U, so we
may work locally on U to reduce to the case when U = Spec(A). Then the assumption I1 n Is = 0
implies the schematic dominance and the surjectivity of the map

Spec(A/I1) | |Spec(A/Iy) — Spec(A).

Thus, the arguments of the proof of Proposition 2.2.12 reduce to X = P™ and also prove the injectivity
of (2.2.15.1) in this case. For the surjectivity, we first use Lemma 2.2.13 to glue compatible surjections

(A/Il)ea(nﬂ) — M’ and (A/IQ)@("H) — M

onto finite projective modules of rank 1 to a unique A-module map 7: A®™+D) s M with M finite
projective of rank 1, and then check on the residue fields of A that 7 is surjective. O

2.2.16. The (t,I)-adic topology on A[1]-points. Let (A,t,I) be a Zariski Gabber-Ramero
triple and let B be a topological ring that is either A or A[%] (see §2.1.9). Then B* < B is
open and the inversion map of B> is continuous for the subspace topology: indeed, for instance,
multiplication by any a € A[%]X is a homeomorphism of A[%], so, by the Zariski assumption, the
a+at"l A[%]X for varying n > 0 form an open neighborhood base of a. Thus, §2.2.7 applies and
endows X (B) with a topology for every B-scheme X that is either ind-quasi-affine or subprojective. If
(A,t,I) is even Henselian, then, although we will not use this, smooth morphisms of quasi-projective
A[3}]-schemes induce open maps on A[1]-points, see [GR03, Proposition 5.4.29 (ii)] for a precise

t
statement.

We use the resulting (¢, I)-adic topologies on the sets of sections X (A) and X (A[1]) to topologize
sets of sections beyond the case of an affine base as follows. Fix an open subscheme

Spec(A[1]) = U < Spec(A)

and a locally of finite type U-scheme X that is either U-ind-quasi-affine or U-subprojective. For
every affine open V < U, consider the Zariskization Ay of the coordinate ring of V' along the
closed subscheme V1 as well as the Zariski Gabber-Ramero triple (Ay,t,IAy) (which vanishes if
Vapr = &). We endow X (U) with the coarsest topology for which the pullback maps

X(U)— X(A[}]) and X(U) > X(Ay) for affine opens V < U

are all continuous. By §2.2.7 and §2.2.1 (5), when U = Spec(A) or U = Spec(A[7]), this definition
agrees with the one given in the previous paragraph. Similarly, §2.2.7 and §2.2.1 (1) and (5) ensure
that a U-morphisms X — X’ induces a continuous map X(U) — X'(U) and that the restriction
map X (U) — X (U’) is continuous for every open Spec(A[1]) = U’ = U.

It is useful to know that the topology may be constructed using any affine open cover of U as follows.

9Added in proof: Our assumptions are not optimal, in fact, (2.2.15.1) holds for any U-algebraic space X and even
with A replaced by any fiber product R1 X g Rz as in Lemma 2.2.13 (compare with Example 2.2.14). To argue this,
first reduce to the case U = Spec(A) as in the proof. Then use the result of Temkin—Tyomkin [TT16, Lemma 4.1 and
Theorem 4.3], according to which Spec(—) transforms fiber products as in Lemma 2.2.13 into pushouts in the category
of algebraic spaces.
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Claim 2.2.16.1. For any affine open cover U = Spec(A[+]) U ;s Vi, the topology on X (U) defined
above is the coarsest one for which the maps X(U) — X(A[7]) and X(U) — X(Ay,) are all
continuous. In particular, for a morphism of Zariski Gabber—Ramero triples (A,t,1) — (A',t,I')
and an open subscheme Spec(A'[1]) = U’ = Uy, the map X(U) — X (U’) is continuous.

Proof. For the first assertion, we need to show that with this a priori coarser topology on X (U) and

every affine open V' < U, the pullback X (U) — X(Ay) is already continuous. If V' < V;, then this

follows from the continuity of X (Ay,) — X(Ay). If V < Spec(A[1]), then the topology of Ay is

the pullback of the discrete topology of Ay /I Ay, so A[%] — Ay is continuous, and we analogously

use the resulting continuity of X (A[}]) — X(Ay). In general, we cover V by affine opens V; each
1

one of which lies either in some V; or in Spec(A[3]) and we therefore reduce to showing that the

topology on X (Ay) is the coarsest one for which the maps X (Ay) — X (Ay,) are all continuous.

For showing that every open of X (Ay) is the pullback of an open of [ [; X (Ay;), we may first assume
that X is an Ay-scheme and then, by Lemma 2.2.6, that it is also affine, so that it is a closed
subscheme of some AY. The subset Spec(Ay) = V consists of the generizations of points in V) s
and likewise for each Vj. Thus, since the V; cover V, the map Ay — [] j Ay, is injective, so that

X(Av) = AN(Av) (@) Hj X(AVJ) inside Hj AN(AVJ)
This reduces us to the case X = AV, and then further to X = A'. In this case, since
Spec(Ay/(t"I)) = J; Spec(Ay;/(t"I)) for every n >0,

for every a € Ay the open a + t"IAy < Ay is the intersection of the preimages of the opens
a+t"I Ay, < Ay;. The cosets a +t"I Ay form a base of the topology of Ay, so the assertion follows.

To deduce the continuity of X (U) — X (U’), we first use the definition of the topology on X (U’) to
reduce to U’ = Spec(A’). We then apply the first part of the claim to A’ to reduce to the case when
U’ — U factors through an affine open V' < U, when the continuity of X (Ay) — X (A’) suffices. O

We use this more practical description of the topology of X (U) to exhibit the following openness.
Claim 2.2.16.2. If I{t*) = 0 and U is quasi-compact, then the pullback map

X(U) — X(A[2]) s open and a local homeomorphism.

In particular, if A{t™) =0 and U is quasi-compact, then X (U) = X(A[1]) is an open embedding.

Proof. If A{t*) = 0, then, by the separatedness of X and [EGA I, corollaire 9.5.6], the map
X(U) — X (A[1]) is injective, so the final assertion follows from the rest. By §2.1.9, the assumption
I{t*) = 0 implies that the restriction of the map A — A[}] to the open ideal I = A is an
open topological embedding, and analogously for Ay — Av[%] for every affine open V < U.
Thus, §2.2.7 and §2.2.1 (7) imply that the pullback maps X (Ay) — X(AV[%]) are open and local

homeomorphisms.

Quasi-compactness of U supplies a finite affine open cover U = Spec(A[%]) U Uies Vi. To exhibit an

open neighborhood W of a fixed z € X (U) such that X(U) — X(A[}]) maps W homeomorphically

onto an open subset Wi, we choose open neighborhoods W; < X (Ay;) and Wy < X(Avmvi/) of the

pullbacks of x such that the restrictions to W; and W;; of the pullbacks discussed in the previous

paragraph are homeomorphisms onto their open images W; ; and Wjy ;. We then let W < X(U)

(respectively, Wy ¢ X (A[%])) be the intersection of the preimages of the W; and W;; (respectively,
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Wi+ and Wy ). It remains to show that the continuous map W — W, induced by pullback is a
homeomorphism.

By fpqc descent, giving a w € W amounts to giving its image wy € Wy together with elements w; € W;
that agree with w; and are compatible under pullbacks to the X (Ay, ﬁVi/)' However, by construction
of W, the element w; alone gives rise to unique such compatible w;. Therefore, the map W — W, is
bijective. To conclude that it maps every open W' < W to an open of Wy, it remains to first recall
from Claim 2.2.16.1 that locally W’ is an intersection of an open of W; and of preimages of opens of
W; and to then note that, by construction, this intersection may equivalently be formed in W;. O

For the mere openness of the map in Claim 2.2.16.2, mere boundedness of (A, t, I) suffices as follows.
Claim 2.2.16.3. If U is quasi-compact, then the pullback maps

X(U) - X(Uapny) have open fibers.
If, in addition, the Zariski Gabber—Ramero triple (A, t,1) is bounded and A := A/I(t®), then both

X(U)— XUy and X(U)— X(A[}]) are open maps.
Proof. Since Uy g is covered by its intersections with finitely many affine opens V' < U, the claimed
openness of the fibers follows from its case U = Spec(A) supplied by §2.2.7 and §2.2.1 (5). For the
rest, due to Claim 2.2.16.2, it suffices to establish the assertion about X (U) — X (Ujy). However, by

Example 2.2.14 and Proposition 2.2.15, the boundedness assumption implies that for every n > 0
such that I{t*) = I{t"), we have

X(U) > X(U3) *xw,

In particular, for every such n, each fiber of the map X (U) — X(Uy/ny) maps bijectively to a
fiber of the map X (Ujz) — X(Uﬁ/(tnl))' By the first part of the claim, these fibers are open and,
by Claim 2.2.16.1, the bijections in question are continuous. For arguing that they are also open,

we choose a finite affine open cover U = Spec(A[+]) U J;e; Vi and combine Claim 2.2.16.1 with

the analogues of (2.2.16.4) for the Ay, to reduce to the case U = Spec(A4). We may then assume
that X is affine, so that it is a closed subscheme of some A. By again working with the fibers of
the reduction modulo t"I, we reduce further to X = AV, so even to X = Al. To then conclude
it remains to note that the cosets a + t"I for varying a € A and n > 0 form an open base for the
topology of A and that these cosets map onto their counterparts for A. O

We are ready for the following non-Noetherian version of the Elkik approximation theorem.
Theorem 2.2.17. Let (A, t,I) be a Zariski, bounded Gabber—Ramero triple, let
Spec(A[1]) = U < Spec(A)

be a quasi-compact open, and let X be a locally of finite type U-scheme that is either U-ind-quasi-affine
or U-subprojective and such that XA[;] 18 A[%]—smooth. Under one of the following assumptions:
t

(i) (A,t,I) is Henselian; or
(ii) X4p1y is ind-quasi-affine and X (C) — X(C/J) for Zariski A[}-pairs (C, J) with C/J = A\[%],
t

the following pullback map has a dense image for the topology defined in §2.2.16:

X(U) = X(Uy);
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in particular, for every ¥ € X(Ujz) and n > 0, there is an

2.1.9.3
re X(U) whose pullback to X (Upnpnr) ( ~ : X(Ug/tnf) agrees with that of T.

Proof. The last assertion follows from the rest and Claim 2.2.16.3. Moreover, in the key case when
U = Spec(A[2]) the desired density follows from Theorem 2.2.10. To deduce the general case, it

then remains to recall from Claim 2.2.16.3 (with Lemma 2.1.11) that the map X (Ujz) — X(A\[%]) is
open and to use the following identification supplied by Proposition 2.2.12 (with (2.1.9.3)):

X(U) = X(Uy) x X(A[L). O

(AD t

Remark 2.2.18. In Theorem 2.2.17, if (A, ¢, 1) is Henselian and X ;1; étale over A[3], then
t

X(U) = X(U;).

Indeed, the end of the proof reduces us to U = Spec(A[+]), when the target is discrete because, by
étaleness, an ﬁ[%]—point of XA[%] is an inclusion of a clopen that maps isomorphically to Spec(ﬁ[%]).

Example 2.2.19. For a ring R and a smooth, ind-quasi-affine R{t}-group scheme G, we have

G(R{t}[{])/G(R{t}) — G(R(1))/G(R[t]).

Indeed, the map is injective by Proposition 2.2.12 and, since G(R((t))) is a topological group and
G(R[t]) < G(R((t)) is an open subgroup (see §2.2.1 (4) and (6)), it is surjective by Theorem 2.2.17.

We are ready to deduce the promised Elkik approximation theorem in the Noetherian setting.

Theorem 2.2.20 (compare with [Elk73, théoréme 2 bis|). For a Henselian pair (A,J) with A
Noetherian, an open Spec(A)\V(J) < U < Spec(A), and a subprojective U-scheme X such that

Xspec(A\V () @8 smooth, letting A denote the J-adic completion, we have that

for every n>0 and 7€ X(Uz) thereisan xe X(U) with z=7 in X(Ua/m).

Proof. By [Mat89, Theorem 8.12], the completion of a Noetherian ring B with respect to an ideal
(b1,...,by) is isomorphic to B[ti,...,t4]/(t1 — b1,...,ty — bg). Thus, fixing generators a1, ..., aq of
our original J, we see that the J-adic completion of A agrees with the iterated a;-adic completion and
that the ideal generated by J is still Henselian (respectively, Zariski) in these resulting intermediate
completions (see §2.1.1). In conclusion, at the expense of applying the statement g times, we have
reduced to the case when J is principal, which is a special case of Theorem 2.2.17. U

Remark 2.2.21. In the proof of Theorem 2.2.20, the only role of Noetherianity is to ensure that
U is quasi-compact, that J is finitely generated, that the J-adic completion of A agrees with
the iterated completion with respect to a generating set a1,...,a4 of J, and that for 0 <7 < g
the iterated completion with respect to a1, ..., a; is a;;1-Henselian with bounded a; |-torsion (to
apply Theorem 2.2.17). Thus, granted that one imposes these assumptions, which hold if U is
quasi-compact, A is J-Henselian, and the sequence a1, ..., a4 is, for instance, A-regular, one obtains
a non-Noetherian generalization of Theorem 2.2.20. It is possible that a weaker condition on J could
suffice for this—for some guiding examples in this direction, see |[Nak18|.
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2.3. Algebraization beyond the affine case

As a final goal of §2, we take advantage of our work in §2.2 to exhibit a nonaffine version of invariance
under Henselian pairs in Theorem 2.3.3, a nonaffine version of Gabber’s affine analogue of proper
base change in Theorem 2.3.4, and concrete consequences for algebraization in the Noetherian case
in Corollary 2.3.5. To illustrate the method, we begin with a nonaffine variant of Corollary 2.1.19.

Theorem 2.3.1. For a map (A,t,I) — (A',t,I') of Henselian, bounded Gabber—Ramero triples such
that A/t"T — A’/t"I’ for all n > 0 and an open

Spec(A[1]) = U < Spec(A),

the map Uy — U induces a bijection on idempotents, in other words, every clopen subscheme of U s
is the base change of a unique clopen subscheme of U.

Proof. By Lemma 2.1.11, the topological rings A[%] and A’[%] have the same completion, so
Corollary 2.1.19 settles the case U = Spec(A[1]). Since At*) — A'(t*) and giving an idempotent

amounts to giving a map to Spec(Z[e]/(e? — €)), the general case then follows from (2.2.12.1). O

The following simple lemma will be useful in the proof of Theorem 2.3.3.

Lemma 2.3.2. For a scheme X, a closed Z < X, an abelian fppf sheaf .F on X, and the étale
sheafification H,(—, F) of the functor X' — HJ(X',.F), there is a functorial in X and F spectral
sequence

EY = HY{ (X, ", (-, 7)) = H,7 (X,.7). (2.3.2.1)

Proof. The spectral sequence will be the one associated to the composition of functors
Hgt(X7 HOZ(_7 *)) B H%(Xv *)

Indeed, the H’, are the derived functors of .# — H%(—,%): they form a J-functor that, by
[SGA 411, exposé V, proposition 4.7, section 4.6], kills injectives when j > 0, so the general criterion
[Har77, Chapter III, Theorem 1.3A, Corollary 1.4] for being the left derived functors applies. It
remains to note that, by [SGA 4y, exposé V, proposition 4.11 2)], if .# is injective, then H%(—, .¥)
computed in the fppf site is also injective sheaf and hence, by preservation of flasque sheaves under
pushforwards [SGA 411, exposé V, proposition 4.9 1), définition 4.1], is acyclic on the étale site. [

The Brauer group aspect of the following result includes the statement announced in [Gab04,
Theorem 2].

Theorem 2.3.3. Let (A, t,I) — (A, t,I') be a map of bounded Gabber—Ramero triples such that
AT — A/t for alln > 0, let

Spec(A[1]) = U < Spec(A)

be a quasi-compact open, and let G be a locally of finite type, U-ind-quasi-affine, flat U-group such
that G 41y is smooth over A[4].

t

(a) If (A, t, 1) is Zariski and GA[;] is an fpgc inner form of GLmA[ L then

1
HYU,G) — H Uy, G).

(b) If (A,t,I) is Henselian, then

HYU,G) — HY (U, G).
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(c) If (A t,I) and (A',t,I") are Henselian and G is U-quasi-affine, then
HYU,G) = H Uy, G), (2.3.3.1)
in particular, then Br(U) — Br(Uya/) (equivalently, H*(U,Gm)tors —> H?(Uar, Gi)tors);
(d) of (A, t,1I) is Henselian and G is commutative, U-quasi-affine, of finite presentation, then
H*(U,G) — H*(Uy/,G)

and the same also holds with a commutative, finite, locally free U-group G’ in place of G.

Proof. The assumption implies that the map A — A’ induces an isomorphism A= 1/4\’, so in all
parts we lose no generality by assuming that (A’ ¢, I') = (ﬁ, t, 7 ) (for which the assumptions are
retained by (2.1.9.3)). Moreover, by [SP, Lemma 0APK], the functor that parametrizes isomorphisms
between two G-torsors is representable by an ind-quasi-affine U-scheme X that is locally finite
type and whose base change to A[%] is smooth. Thus, (b) follows from Theorem 2.2.17 and, to
conclude that so does (a), we only need to check that in (a) the pullback map X (C) — X(C/J) is
surjective for every Zariski A[1]-pair (C,.J). However, by [Gir71, chapitre III, proposition 2.6.1 (i)],
up to translation inner forms have identical collections of torsors, so Example 2.1.21 implies that
if X(C/J) # &, then also X (C) # . If this happens, then, after choosing an element of X (C),
the map X (C) — X(C/J) becomes identified with G(C') — G(C/J), and hence is surjective by
footnote 6.

The injectivity in (c) is a special case of (b) and the bijectivity when U = Spec(A[1]) follows from
Corollary 2.1.22 (¢). The surjectivity in general then follows from the patching result recorded in
Lemma 2.2.11 (b) (whose assumptions are met by Lemma 2.1.11). The Brauer group assertion in (c)
follows from (2.3.3.1) applied to G = GLy and G = PGLy with varying N: indeed, by definition,

Br(U) := Uysi Im (H'(U,PGLN) = H*(U, G )tors)

and likewise for U 4/. The parenthetical assertion in (¢) then follows from Gabber’s theorem established
in [dJ02] that, in particular, identifies Br(—) with HZ (—, Gy )iors for quasi-affine schemes.

In (d), the finite locally free case follows from the rest applied to the terms of the Bégueri resolution
0— G/ - RGSG/*/U(Gm) i Q - O,

where G’* denotes the Cartier dual. Moreover, the case U = Spec(A[1]) follows from Corol-
lary 2.1.22 (d). For general U, we use the cohomology with supports along {t = 0} sequences, (c),
the U = Spec(A[1]) case of (d), and the five lemma, to reduce to showing that'’

H{Qt:O} (Ua G) - H{Qtzo} (UAH G)

As in Lemma 2.3.2, we let H?t=0} denote the étale sheafification of the flat cohomology with supports
in {t = 0}. Since these étale sheaves are supported on the closed subscheme cut out by ¢, we then
use the spectral sequences (2.3.2.1) to reduce to showing that the sheaves
H?t:o}(_? G) and ’H%tzo}(—, G) on (Ua)e are pullbacks of their counterparts on Ug
and that
Hir—y (= G) = Mgy ()4, G). (2.3.3.2)

These assertions are local, so we may replace A’ (respectively, A) by its strict Henselization at
a variable point of Uy ar (respectively, at its image in U) and assume that U = Spec(A) and

101y this step, in order to apply (2.3.3.1) to GA[%] we use the A[%]—smoothness of GA[%], which is a not an entirely

natural assumption: the case U = Spec(A[1]) settled in Corollary 2.1.22 (d) did not need it.
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U’ = Spec(A’) with I = A and I’ = A’. The H§t=0} are then simply Hft:o}’ and the assertion about

H({)t=0}(_7 G) follows from the following identification supplied by Proposition 2.2.12:
G(4) — G(4) Xaari G(A[7])

t
Letting A denote common t-adic completion of A (or of A’), this identification gives the injections
G(A[}])/Im(G(4)) = G(A'[}])/Im(G(A) — G(A[}])/ Tm(G(A)).

Theorem 2.2.17 (with Claim 2.2.16.3) ensures that this composition is surjective, so both arrows are
bijective. The five lemma and (c¢) (respectively, and Lemma 2.2.11 (b)) then give the desired
1 ~, 7l
H{t:O} (A, G) — H{t:O} (A/’ G)
(respectively, reduce the remaining (2.3.3.2) to showing that H2(A4,G) — H?(A’,G)). For the latter,
it suffices to apply Theorem 2.1.6 (b) to conclude that even the following composition is injective:

H*(A,G) — H*(A',G) — H*(A'tA|G) = H*(AJtA,G). O

The technique we used for Theorem 2.3.3 also leads to the following nonaffine generalization of

Gabber’s affine analogue of proper base change theorem [Gab94, Theorem 1| and of its nonabelian

analogue (the case t = 1 below recovers these affine versions). Related results appear in [Fuj95,

Corollary 6.6.4, Theorem 7.1.1], [ILO14, exposé XX, section 4.4, and [BM21, Corollary 1.18|, one

distinction being the present setting of Gabber—Ramero triples with a possibly nontrivial ideal 7. In
1

the case when U = Spec(A[;]) and t is a nonzerodivisor, the finite étale aspect of Theorem 2.3.4

appears in [GR03, Proposition 5.4.53].

Theorem 2.3.4. For a map (A, t,I) — (A’,t,I') of Henselian, bounded Gabber—Ramero triples such
that A/t"T — A'/t"T" for all m > 0, and an open

Spec(A[1]) € U < Spec(A),

pullback gives an equivalence between the categories of finite étale schemes over U and Uy and

RT& (U, ) — RU&(Unr,.F) for every torsion abelian sheaf F on Ug, (2.3.4.1)
in particular, for the closed subsets Z := Spec(A)\U and Z' := Spec(A'\Ua = Z 4/,
RUz(A,F) —> RUz (A, F) for every torsion abelian sheaf F on Ag. (2.3.4.2)

s

Proof. By Lemma 2.1.11, we have A[1] = A’[$], so Corollary 2.1.20 (with Example 2.1.18) gives the
case U = Spec(A[1]). For the general case, we begin with the claim about finite étale schemes and
use patching as follows. By Lemma 2.2.11 (a) (with Lemma 2.1.11), base change is an equivalence
from the category of flat quasi-coherent &p-modules M to that of triples

(M’,Mt,u M @y, AH 5 M@ ]A’[%D

consisting of a quasi-coherent, flat Oy ,,-module M', a flat A[3]-module M;, and the indicated
isomorphism ¢. Moreover, by Lemma 2.2.11, the Oy-module M is of finite type if and only if both
M ®g¢, Oy, and M [%] are of finite type as modules over Oy ,, and A[%], respectively. This implies
the same glueing for finite étale algebras, which bootstraps the desired equivalence between the

categories of finite étale schemes over U and Uys from the settled case U = Spec(A[%]).

Uar

= =

For the rest, we focus on (2.3.4.1) because, due to the cohomology with supports triangle, it implies

(2.3.4.2). Moreover, its settled case U = Spec(A[1]) reduces us to showing that

Hftzo}(Uv F) = Hftzo}(UA’a F) forevery ie€Z.
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The corresponding sheafified cohomologies with supports vanish away from the loci {¢ = 0}, and
U and Uy agree modulo ¢, so, due to the local-to-global spectral sequence [SGA 4y, exposé V,
proposition 6.4] (which is the version of Lemma 2.3.2 for the étale cohomology with supports), we
reduce further to showing that, for every i € Z, the sheaf

Hitzo}(—,ﬁ) on (Uar)e is the pullback of Hit=0}(—,9’) on Ug;. (2.3.4.3)

The pullback of the second sheaf maps to the first, so (2.3.4.3) may be checked after replacing U 4/
(respectively, U) by its strict Henselization at a point at which ¢ vanishes (respectively, at its image
in U). This reduces us to the case when U = Spec(A) and U’ = Spec(A’), a case in which the
invariance of étale cohomology under Henselian pairs (a special case of Corollary 2.1.20 and an input
to its proof) and the settled case U = Spec(A[1]) give the desired identifications

Hft:O} (Av 9) — Hft:O} (Alv j\) U
Parts (b) and (c) of the following corollary include the results announced in [Gab93, Theorem 2.8 (i)].
For a generalization of the results announced in [Gab93, Theorem 2.8 (ii)], see [CS20, Corollary 5.6.10].

Corollary 2.3.5. For a map A — A’ of Noetherian rings, an ideal J < A such that (A, J) and
(A’ JA") are Henselian (respectively, Zariski) pairs and A/J" — A'/J" A" for n > 0, and an open

Spec(A)\ Spec(A/J) < U < Spec(A),
we have
(a) for any quasi-affine, smooth U-group G,
HYU,G) = H (Uy,G)  (respectively, H(U,GL,) < H'(Ua,GLy));
(b) a pullback isomorphism
BI‘(U) — BI‘(UA/);
(¢c) for any commutative U-group G such that either
(i) G is quasi-affine and smooth over U; or
(ii) G is finite and locally free over U,
we have
H*(U,G) — H*(Ua,G);

(d) an equivalence of categories

Utst, — (Uar)set;

(e) for every torsion abelian sheaf F on Ug, pullback isomorphisms

Hét(Uaﬂ);’Hét(UA/,f) for every i€ Z.

Proof. Since the map A — A’ is an isomorphism on .J-adic completions, we lose no generality by
assuming that A’ is the J-adic completion A of A. Then, as in the proof of Theorem 2.2.20, by
forming the completion iteratively with respect to a fixed system of generators for J, we reduce to J
being principal. In this case the assertions amount to special cases of Theorems 2.3.3 and 2.3.4. [

Remark 2.3.6. When A is excellent, the injectivity aspects of Corollary 2.3.5 become straight-
forward consequences of Lemma 2.1.3 that is based on the Néron—Popescu approximation.
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3. TORSORS OVER R((1))

We enter a more detailed study of torsors over the base R((t)). In §3.1, we present a complete
description of such torsors when the group is a torus defined over R. In §3.2, we complement this
with a crucial for our goals vanishing statement when the torus need not descend to R.

3.1. A formula for H'(R((t)),T) for any R-torus T

By a result of Weibel [Wei91], for every commutative ring R we have

Pic(R) ® Pic(R[t])o @ Pic(R[t™1])o @ HL (R, Z) — Pic(R[t,t™]), (3.1.1)
where (—)o denotes the classes that die in Pic(R) under ¢ — 0 (respectively, t~! — 0) and the map
1—t

H}(R,Z) — Pic(R[t,t™']) is obtained from Z —— Gy, R[t,+-1]- For applying this formula, it is
sometimes useful to compute H ét (R,Z) in the Nisnevich topology, which is possible because every
Z-torsor over a Henselian local ring is trivial (see Theorem 2.1.6 (a) and the proof of Corollary 3.1.9).

Our goal in this section is to expose a similar description for Pic(R((t))) due to Gabber [Gab19]:
Pic(R) @ Pic(R[t"'])o ® HY (R, Z) —> Pie(R(?));

in fact, we present a mild strengthening valid for torsors under any R-torus T, see Theorem 3.1.7.
The results of this section originate in a letter of Gabber [Gab19] to the first named author.

We begin by reviewing the Weierstrass preparation theorem in a Henselian setting.
Proposition 3.1.2. For a Henselian local ring (R,m), every f € R{t}\m(R{t}) is of the form
f=Pu foraunique P=t4aq_ 1t 1+ - +ayg with a;em anda unique ue R{t}*;

moreover, the natural map R[t]/(P) — R{t}/(f) is an isomorphism.

Proof. The functor R — R{t} commutes with filtered direct limits (see §2.1.2), so we lose no generality
by assuming that R is Noetherian. The uniqueness can then be seen over the (m,t)-adic completion
ﬁﬂtﬂ of R{t}, which satisfies the usual Weierstrass preparation theorem |[BouAC, chapitre VII,
section 3, numéro 8, proposition 6.

For the existence, we begin by setting k := R/m, so that
k{t} = R{t}/m(R{t})

(see §2.1.2). Every nonempty closed subscheme of Spec(R{t}) meets Spec(k{t}) and Spec(k{t}/fk{t})
is Artinian local supported along {t = 0}. Thus, isolation of quasi-finite parts of finite type schemes
over Henselian local bases [EGA TV, théoréme 18.5.11 c)| applied to R'/(f), where R[t] — R is a
sufficiently small étale neighborhood of the zero section of R[t], implies that R{t}/(f) is a finite local
R-algebra that is isomorphic to a factor of R'/(f). In particular, the m-adic topology of R{t}/(f)
agrees with its (m,t)-adic topology, to the effect that

R{t}/(f) ®r R —> R{t}/(f) ®ryy RIt] = R[]/ fR[1].

However, ]%[[t]] / fﬁ[[t]] is R-flat by Weierstrass preparation [BouAC, chapitre VII, section 3, numéro 8,
proposition 5], so R{t}/(f) must be R-flat, and hence even finite free of some rank d > 0 as an R-
module. Let P € R[t] be the characteristic polynomial of the R-linear scaling by ¢ action on R{t}/(f).
By construction, P is of the form claimed in the statement, and the Cayley—Hamilton theorem
[BouA, chapitre III, section 8, numéro 11, proposition 20| supplies a map i: R[t]/(P) — R{t}/(f).
By Weierstrass preparation [BouAC, chapitre VII, section 3, numéro 8, proposition 5| again, i ®pr R
is an isomorphism, so 7 is too. In the resulting expression P = fv one must have v € R{t}*: indeed,
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since 4 is an isomorphism, v must reduce to a unit modulo m, that is, to a unit of the discrete
valuation ring k{t}. O

The following proposition and the subsequent Corollaries 3.1.4 and 3.1.5 capture some concrete
geometric consequences of the Henselian Weierstrass preparation established in Proposition 3.1.2.

Proposition 3.1.3. Let (R,m) be a Henselian local ring with the residue field k := R/m.

(a) Base change and schematic image give inverse bijections between the set of closed subschemes
of Py that do not meet Spec(k[t™1]) and the set of closed subschemes of Spec(R[t]141r[)
(respectively, of Spec(R{t})) that do not contain the k-fiber. Moreover, for any such closed
Z C IP}Q,

2 2Rt yony — ZR(Y-

(b) Base change and schematic image give inverse bijections between the set of closed sub-
schemes of Spec(R[t™!]) that do no meet Spec(k[t™1]) and the set of closed subschemes of
Spec((R[t]HtR[t])[%]) (respectively, of Spec(R{t}[1])) that do not meet the k-fiber."!

(¢) The bijections of (a) and (b) respect the property of being an effective Cartier divisor.

Proof. All the morphisms for which we consider schematic images are quasi-compact and quasi-
separated, so the formation of these images exhibits no pathologies, for instance, it commutes with
flat base change, see [EGA I, corollaire 9.5.2] and [EGA IV, numéro 1.7.8|.

(a) Firstly, the maps in question supplied by base change are injective: indeed, Spec(R[t]i¢r[)
is the Zariskization of P}, along {t = 0}, so it contains all the generizations in P}, of the
origin of P, and R{t} is faithfully flat over R[t]; ;gp). Moreover, the ideal of R{t} that
cuts out a closed subscheme Z’ < Spec(R{t}) not containing the k-fiber must contain an
f € R{t}\m(R{t}), so Proposition 3.1.2 implies that Z’ is the base change of a closed subscheme
Z < P}, that does not meet Spec(k[t~1]) (note that R[T]/(P) is R-finite for any monic P and
hence defines a closed subscheme of P}%). Consequently, the maps supplied by base change
are even bijective, their inverses are given by forming schematic images, and

Z = ZRltly somg — 2R

(b) Via schematic images in P}, the closed subschemes Z’ < Spec(R[t™1]) in question correspond
to those closed subschemes Z < P}, as in (a) for which ¢ is a nonzerodivisor on Z, and likewise
for Spec((R[t]lHR[t])[%]) or Spec(R{t}[1]). Thus, (a) gives the claim by using its isomorphy
aspect to handle the nonzerodivisor requirement.

(c¢) The isomorphy aspect of (a) ensures that the bijections respect the property of being of finite
presentation over the respective ambient schemes because the latter is equivalent to finite
presentation over R. Thus, by faithfully flat descent, it then also respects the further property
of being cut out by a nonzerodivisor at every stalk of the ambient space. ([l

Corollary 3.1.4. For a Henselian local ring (R, m), pullback maps induce isomorphisms
Pic(R[t™"]) — Pic((R[t]14:ri)[7]) — Pic(R{t}[7]) — Pic(R(1).
We will globalize Corollary 3.1.4 in (3.1.11.1) below.
HFor the sake of concreteness, we recall from Theorem 2.1.24 that the t-localized Zariskization (R[t]:4:r)[2] of

R[t] along {t = 0} is also isomorphic to the localization of R[t] with respect to the monic polynomials.
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Proof. The last map is an isomorphism by Corollary 2.1.22, so we focus on the other two. Moreover,
by limit arguments, we may assume that R is Noetherian. By Lemma 2.2.11, any line bundle
on R[t'] that trivializes over R{t}[1] extends to a line bundle on P}, and so it must be trivial
by, for instance, [Lam06, Chapter IV, Horrocks’ Theorem 2.2]. Thus, the first map and also its
composition with the second one are injective. Since every line bundle on R{t}[1] or (R[t]; 1, R[t])[%]
is associated to an effective Cartier divisor that may be chosen to not meet the special fiber (or
any finite set of points, see [SP, Lemma 0AYM]), the remaining surjectivity assertion follows from
Proposition 3.1.3 (c). O

Corollary 3.1.5. For a seminormal, Henselian local ring (R, m), we have Pic(R((t))) = 0.
Proof. 1t suffices to combine Corollary 3.1.4 with the seminormality criterion [Swa80, Theorem 1|. [

Corollary 3.1.5 is a special case of a general formula for H*(R((t)),T), which we present in The-
orem 3.1.7. For this, we begin with the following basic description of the units of R{t}[}] that
simultaneously records the basic structure of the affine Grassmannian of a torus.

Lemma 3.1.6. For a reduced ring R and an R-torus T, we have compatible isomorphisms
(X(T)HR) x T(R) — T(R[t. 7)), (Xu(D))(R) x T(R{t}) — T(R{t}[7]), (3.16.1)
(X«(T))(R) x T(R[t]) — T(R(2), o

where on X, (T) =~ Hom(Gyy,, T') the maps are obtained from Z RiadX G, Rt,+-1] via Hom(Z,T) = T'.

Proof. Since T is affine and R[t,t™'] < R{t}[1] = R((t) (see (2.1.2.1)), we have compatible inclusions
T(R[t]) = T(R{t}) = T(R[t]) and T(R[t,¢']) = T(R{t}[{]) = T(R(1))-
Moreover, by (2.2.12.1),
T(R[t]) = T(R[t,t7']) nT(R[t]) and T(R{t}) — T(R{t}[}]) nT(R[t]) in T(R(1)).
Thus, since T(R) — T(R[t]) (as may be checked étale locally on R), we reduce to the case of R((t)).

For an étale cover R — R', we see coefficientwise that both
R[t] - R[] 3 (Rer R)[t] and R(1) — R'(t) 3 (R ®r R)(1)

are equalizer diagrams. Consequently, again since T is affine, both functors R — T(R[t]) and
R — T(R((t)) are étale sheaves in R. Thus, we may work étale locally on R and assume that T = G,,.

For an f € R((t))*, the function ords: Spec(R) — Z that maps a prime p R to the t-adic valuation
of the image of f in k(p)((¢)) is upper semicontinuous: each p has an open neighborhood in Spec(R)
on which ordy is < ord(p) (concretely, a neighborhood on which the coefficient of t°r/®) is a
unit). Moreover, ords +ord ;-1 is identically zero. Thus, ordy is in fact locally constant, so there
is a unique R-point n of X,(G,,) = Z such that ords is identically zero. Consequently, at every
residue field of R the coefficient of t™ of ¢" f vanishes for m < 0 (respectively, is a unit for m = 0).
Thus, this coefficient lies in the nilradical and hence vanishes (respectively, is a unit) in R, so that
t"f e R[[t]*. O

Theorem 3.1.7. For a ring R and an R-torus T', we have the identification

HY(R[t1],T) ® H'(R, X, (T)) = H'(R{#}[1],7) "= H'(R(1),T), (3.1.7.1)
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where the map on H'(R, X.(T)) is obtained from Z EladX G, R[t,t-1] as in Lemma 3.1.6; thus,
HY(R,T) — H'(R(t),T)
and, for reduced R,

(X«(T))(R) AN H{ltZO}(R{t},T) = H{ltzo}(R[t],T) functorially in R and T (3.1.7.2)

Proof. We focus on (3.1.7.1)—the rest will follow: for H'(R,T) < H'(R((t)),T), one decomposes
1 (R).7) 2 1R T) @ Ker (1 (R, 7) 220 1R T)).

and for (3.1.7.2), one first deduces that H'(R{t},T) — H*(R{t}[1],T) (see Theorem 2.1.6), and then
combines the cohomology with supports sequence with Lemma 3.1.6 and excision [Mil80, Chapter III,
Proposition 1.27].

For (3.1.7.1) itself, by limit arguments based on [SGA 411, exposé VII, corollaire 5.9], we may assume
that R is Noetherian. The topological invariance of the étale site and the insensitivity of torsors
under smooth groups to the nilradical [SGA 3ij1 pew, exposé XXIV, lemme 8.1.8| then allow us to
replace R by R™4. We consider the functor .# defined on the category of étale R-algebras by

Fi R o (X1 X120 = T}/ ~,

where X is a T/y-17-torsor and ¢ is a trivialization of its pullback to R’ along t~1 + 0. Since R’

is reduced, we see étale locally on R’ that T'(R') — T(R'[t"']), to the effect that the pairs (X, )
have no nonidentity automorphisms. Thus, by descent, .# is an étale sheaf on R with global sections

Z(R) ~ Ker <H1(R[t_1],T) 0, Hl(R,T)> .

By Corollary 3.1.4 and limit arguments, for any TR{t}[ 17-torsor X there is an étale cover R — R’
t
such that the isomorphism class of Xy, (B[] lifts to a unique x € .#(R’). The unique lift continues to
t
exist over any refinement of the cover, so, since X begins life over R{t}[1] and .7 is an étale sheaf,
the local lifts glue to a unique global

ze.Z(R) c HY(R[t™1],T).

By adjusting X' by the pullback of the T’g;-1}-torsor determined by z, we reduce to the case when
x = 0. Such X are precisely the Ty 1y-torsors that trivialize over (R;h){t}[%] for every prime
t
p € R. By viewing p as a prime of R{t} that contains ¢, we have
(R;h){t} — R{t};h, compatibly with ¢ on both sides (3.1.7.3)

(both sides are initial among the strictly Henselian local Ry-algebras (A, m) equipped with a local

map R, — A and a t € m). Thus, the X" as above are precisely the T’ R{t}[ |-torsors that trivialize

over the pullback of some étale cover of R{t}, in other words, by the characterization of torsors under
pushforward groups |Gir71, chapitre V, proposition 3.1.3], they are precisely the (j (TR{t}[ 1 ]))—torsors
where

j Spec(R{t}[{]) = Spec(R{t}).
We have reduced to showing that

HI(R,T)(%HI(R,X*(T))%Hl(R{t},j*(TR{t}[%])) inside H'(R{t}[1],T). (3.1.7.4)
34



For this, we first exhibit the following short exact sequence on R{t}:
0 = Triy = Jx(Tryay) = i(Xu(T)) =0, (3.1.7.5)

where i: Spec(R) < Spec(R{t}) is the closed immersion complementary to j. To explain the third
map, we first note that, by the insensitivity of the étale site to nonreduced structure, the t-adic
completion of any étale R{t}-algebra A is canonically and functorially isomorphic to (A/(t))[t].
Thus, the third map is well-defined by letting it on A-points be the composition
3.1.6.1)
_

(
T(A[F]) = T((A/) (1) (X« (T))(A/(2))-
This makes (3.1.7.5) short exact because, by Theorem 2.2.17 (with Claim 2.2.16.3), an element of
(X+(T))(A/(t)) is in the image of T(A[]) after pullback along an étale A — A’ with A/(t) —> A'/(t).
We claim that (3.1.7.5) induces split short exact sequences on H? and H'. For HY, this is part of
Lemma 3.1.6. For H', the composition of the evaluation at ¢t map Xu(T)pgry — j*(TR{t}[;]) used
t

there with the third map of (3.1.7.5) is, by construction, the adjunction map Xy (T') gy — s (X«(T)),
and it then suffices to argue that the latter induces an isomorphism

H'(R{t}, X.(T)) —> H'(R, X4(T)).

Indeed, this last map is surjective because it has a section, and it is injective by Theorem 2.1.6 (a).
Finally, to deduce that the split exact sequence on H' gives (3.1.7.4), we use Theorem 2.1.6 again. [

Remark 3.1.8. We recall from [CTS87, Lemma 2.4| (with a limit argument that eliminates the
Noetherianity hypothesis) that if R is a normal integral domain, then

H'(R,T) = H'(R[t"'],T),
so that

1 1 (BL71)
H (RT)®H (R, X.(T)) =~  H (R(t),T).

In the following consequence of Theorem 3.1.7 the ring R could, for instance, be a normal domain.

Corollary 3.1.9. For a geometrically unibranch ring R whose spectrum is irreducible,
Pic(R[t™1]) = Pic(R((t)) (respectively, Pic(R) — Pic(R((t))) if R is also seminormal).

In particular, for a local normal domain R, we have Pic(R((t))) = 0.

Proof. Theorem 3.1.7 (respectively, and the characterization of seminormality given in [Swa80,
Theorem 1]) reduces us to showing that H)(R,Z) = 0. However, by the characterization of
components of étale schemes over normal bases [EGA IV, proposition 18.10.7], the sheaf Z on Ry
is the pushforward of Z from the generic point of Spec(R). Thus, letting K denote the residue field
at this generic point, we get that

HL(R,Z) c HL(K,Z) = Homeoy (Gal(K/K),Z) = 0. O

We conclude the section by generalizing the formula of Weibel [Wei91] for Pic(R[t,t~1]) recalled in
(3.1.1) to a formula for H'(R[t,t~1],T) valid for any R-torus T.
Theorem 3.1.10. For a ring R and an R-torus T, we have
HY R, T)® H (R[t],T)o ® H'(R[t '], T)o ® H' (R, X«(T)) — HY(R[t,t"'],T), (3.1.10.1)
where (=)o denotes the kernel of the evaluation t — 0 (respectively, t=1 +— 0) and the map on
HY(R, X (T)) is obtained from Z EiadX G, Rlt,t-1] analogously to the map in Lemma 3.1.6.
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Proof. Theorems 2.1.6 and 3.1.7 with cohomology sequences supply a commutative diagram

0— HY(R[t],T) — HY(R[t,t'],T) —» H(R[t,t"'],T)/H (R[t], T)—— H{Zt:O}(R[t], T)

Lt»—»() l l lw

0— HY(R,T) — H'(R{t}[7],T) — H'(R[t™'], T)o ® H'(R, X+(T)) H},_, (R{t}, T),

where we used excision [Mil80, Chapter III, Proposition 1.27| for the last vertical arrow. Consequently,
the third vertical arrow is injective and, since the splitting

HY(R[t™'],T)o ® H'(R, X+(T)) — H'(R{t}[{]. T)

supplied by Theorem 3.1.7 naturally factors through H'(R[t,t~'],T), it is also surjective. The
factorization then ensures that the top short exact sequence splits, and the desired (3.1.10.1)

follows. OJ

With the argument of Theorem 3.1.10, we now also describe T-torsors over R(t) o (R[t]14+ R[t])[%].

Variant 3.1.11. For a ring R and an R-torus T,
H'(R[t]141r, T) ®@ HY(R[t™'], T)o ® H' (R, X4(T)) — H'((R[t]11r) 3] T);
i particular,

Pic(R[t1]) @ H' (R, Z) —> Pic((R[t]1+r[)[1]) = Pic(R{t}[1]) = Pic(R((t)). (3.1.11.1)

Proof. Example 2.1.21 ensures that Pic(R) — Pic(R[t]14,pg[y), so the second assertion follows from
the first and Theorem 3.1.7. For the first assertion, the argument is as for Theorem 3.1.10. 0

3.2. Torsors under tame isotrivial tori over R((t))

We wish to extend the vanishing that we saw in Corollary 3.1.5 to tori over R((t)) that need not
come from R, see Theorem 3.2.4 below for a precise statement. This will be of central importance
for the product formula for the Hitchin fibration in the proof of Theorem 4.3.8. The arguments in
this section build on the ones explained by Gabber in a conversation with the first named author.

Lemma 3.2.1. For a strictly Henselian local ring (R, m), the finite étale Galois covers
R(t) — R(tV%) with d invertible in R

are cofinal among the tamely ramified relative to R finite étale R((t))-algebras;'” in particular, the
R-tame étale fundamental group of R((t)) is H#Char(R/m) Zy(1) and, via base change, the category of
tamely ramified relative to R finite étale R((t))-algebras is equivalent to its counterpart for R/m.

Proof. Corollary 2.1.19 ensures that Spec(R((t))) is connected, so the degrees of its finite étale
covers are constant. Moreover, R((t)) — R((t'/?)) is indeed finite étale Galois with group pg. By
Corollary 2.1.20, we may replace R((t)) and R((t"/%)) by R{t}[1] and R{tl/d}[%]. By the relative
Abhyankar’s lemma [SGA 1,ey, exposé XIII, proposition 5.5], for any tamely ramified relative to R
finite étale cover, its base change to R{t'/?}[1] extends to a finite étale cover of R{t*/¢} for some
d invertible in R. However, R{tl/ d} is strictly Henselian local, so its étale covers split. All the
assertions follow. O

12\e say that a finite étale R((t)-algebra S is tamely ramified relative to R if for every residue field k of R, the
étale algebra S @p(+) k((t)) is tamely ramified over the discretely valued field k((t)), compare with the definition of
tameness given in [SGA 1,cw, exposé XIII, définition 2.1.1].
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Lemma 3.2.1 leads to the following result on cohomology.

Proposition 3.2.2. For a strictly Henselian local ring R with residue field k and a finite, étale
R((t))-group scheme G of order invertible in R such that G becomes constant over a finite étale cover
of R((t)) that is tamely ramified relative to R, we have

HO(R(1),G) — HO(k(1),G) and H'(R(),G) — H'(k(1)),);
if G is commutative, then, in addition,

RU(R(t), Q) > RU(k(#),G) and HI(R(L),G)=0 for i>2.

Proof. Since G is tamely ramified relative to R, the statement about H° follows from the equivalence
of categories of Lemma 3.2.1. For H!, we first note that if G is constant, then G-torsors amount to
G-conjugacy classes of homomorphisms 7$'(R((t))) — G(R((t))), and likewise over k((t)). Due to the
assumption on the order of G, every such homomorphism factors through the maximal tame relative
to R quotient of 7¢*(R((t))), and likewise over k((t)), so Lemma 3.2.1 gives the statement about H'
for constant G. For general tamely ramified G, this argument shows that every G-torsor splits over
some tame relative to R cover R((t)) — R((t'/%)) that may be chosen so that G is constant over it, and
likewise over k((t)). Thus, Lemma 3.2.1 also gives the general case of the statement about H': now
G-torsors amount to twisted conjugacy classes of twisted homomorphisms 7§t (R((t))) — G(R((t"?),
and likewise over k((t)), compare with [Ser02, Chapter I, Sections 5.1-5.2] or [Gir71, chapitre III,
section 3.7].

For the rest of the proof, we assume that G is commutative. Since k is separably closed, the étale
cohomological dimension of the field £((¢)) is < 1, so the vanishing assertion follows from the assertion
about RI'. For the latter, as we saw, by Lemma 3.2.1, our group GG becomes constant over the finite
étale cover R((t)) — R((t'/?)) for some d that is invertible in R. Thus, we may find a resolution

0->G—->G —Gy— ...

of G in which each Gj is a finite étale group obtained from some constant group over R((t/%)) by
restriction of scalars. The cohomology spectral sequence associated to this resolution allows us to
replace G by Gy, so we only need to show that

HI(R(tVY), 2/nZ) = HI (k((t"/?),Z/nZ) for all jeZ and n invertible in R.

The case j < 1 follows from the previous paragraph. For j = 2, both sides vanish by the relative
cohomological purity [SGA 4y, exposé XVI, théoréme 3.7] (with Corollary 2.1.20 to replace ((—)) by

{=}[3D)- O

Example 3.2.3. Let R be a strictly Henselian local ring, let n € Z~¢ be invertible in R, and consider
G :=Z/nZ ~ p,. Proposition 3.2.2 implies that H'(R((t)), i) is cyclic of order n, with a generator
given by the image of ¢t under the connecting Kummer map R((t))*/R((t))*™ — H*(R(¢)), tn). It
follows that for such R the Picard group Pic(R((t))) has no torsion of order invertible in R.

Theorem 3.2.4. For a seminormal, strictly Henselian, local ring R and a R((t))-torus T that splits
over R((tY?h) for some d € Z~q that is invertible in R (for instance, a T that splits over some
W -torsor over R((t)) for a finite group W whose order is invertible on R), we have

HY(R(t),T) = 0.

Proof. Lemma 3.2.1 implies the parenthetical example. Moreover, by Corollary 3.1.5, we have

HY(R(tY%),T) = 0.
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Thus, by using the trace map constructed in [SGA 47, exposé XVII, section 6.3.13 up to propo-
sition 6.3.15, especially, proposition 6.3.15 (iv)], we conclude that H'(R((t)),T) is killed by d, so
that

H'(R(t),T) — H*(R(1)), T[d]).

Since pg ~ Z/dZ over R, Proposition 3.2.2 implies that the target of this injection vanishes. O

4. REDUCTIVE GROUP SCHEMES AND THE HITCHIN FIBRATION

We turn to the geometry and arithmetic of reductive group schemes. In §4.1, we present a new proof
of the Chevalley isomorphism valid over arbitrary bases. In §4.2, we record several improvements
that concern the geometry of the Chevalley morphism. Both §4.1 and §4.2 simultaneously build up
the setup for the product formula for the Hitchin fibration, which we finally take up in §4.3.

4.1. The Chevalley isomorphism for root-smooth reductive group schemes

The goal of this section is to show in Theorem 4.1.10 that for a reductive group G over a scheme S
equipped with a maximal S-torus 7' < G and its Lie algebra t c g, the map

t/W —g/G

is an isomorphism whenever G is root-smooth in the sense of §4.1.1 below (for instance, whenever
either 2 is invertible on S or Z(G) has no contributions of type C,). The statement seems new
already when S is an algebraically closed field of small positive characteristic with G nonsemisimple,
and it includes results of Springer—Steinberg [SS70, Chapter II, Section 3.17'] and Chaput-Romagny
[CR10, Theorem 1.1] as special cases.'? The proof seems new already over C and uses the Grothendieck
alteration g — g reviewed in §4.1.7. The idea is to extend the W-torsor structure on the regular
semisimple locus §™ to a W-action on the locus §i" over which the alteration is finite (that is,
the regular locus g€, although we do not use the identification gi® = §*°& that we later review
in Proposition 4.2.3). To control the W-invariants of the extended action, we use a reduction to
finite fields trick (see the proof of Proposition 4.1.9), and then conclude by using the fact the image
gfin — g of i is large enough to cover all the points of g that are S-fiberwise of height < 1.

4.1.1. Root-smoothness. A reductive group G over a scheme S is root-smooth if for every geometric
point 5 of S and every maximal s-torus T' < G, each root T' — G, 5 is a smooth morphism. For
each s € S, it suffices to verify this for a single 5 over s and a single T"  G5: the condition only
depends on the S-isomorphism class of (Gs,T'), and G(k(5))-conjugation acts transitively on the
possible T'. Thus, by the fibral criterion [EGA IV3, corollaire 11.3.11], a G with a maximal S-torus
T < G is root-smooth if and only if each root T' — G,,, is smooth over the étale cover over which
it is defined. The smoothness of T' — G,, amounts to the surjectivity of Lie(T) — Lie(G,,), so
root-smoothness is an open condition: if Gy is root-smooth for an s € S, then so is Gy for some
open neighborhood U < S of s; in particular, there is the unique largest open of S over which G is
root-smooth.

Root-smoothness amounts to a concrete combinatorial condition: indeed, a T" — Gy, 5 is smooth
if and only if it not divisible by char(k(3)) in X*(T'). For instance, by [Jan04, Section 13.3|, the
reductive group G is root-smooth whenever

e 2 is invertible on S; or

e Ger is adjoint (for instance, whenever G is adjoint semisimple); or

1?’ChaputfRomaugny point out in [CR10, footnote on page 692] that the Springer—Steinberg proof has an unclear
point, which seems to be inherited by several other references that claim this argument in root-smooth settings over a
field.
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e the root data of the geometric S-fibers of G have no contributions of type C,, with n > 1;

so certainly whenever the order of the Weyl group of G is invertible on S (of course, it even suffices
that each S-fiber of G satisfy one of the above conditions). A basic example of a G that is not
root-smooth is SLg in characteristic 2 (note that C; = Aj).

Root-smooth groups admit a Lie-theoretic characterization of maximal tori. We record this in
Proposition 4.1.3 because it generalizes [SGA 3y, exposé XIV, théoréme 3.18] that exhibited such
a description for adjoint semisimple G (see also [SGA 3y, exposé XIV, corollaire 3.19] where
root-smoothness is already visible).

4.1.2. Subgroups of type (C). For a reductive group G over a scheme S, we recall from [SGA 3y,
exposé XIII, proposition 4.4 and what follows; exposé XIV, définition 2.4| that a Lie S-subalgebra
¢ < Lie(G) is Cartan if ¢ is Zariski locally on S a module direct summand of Lie(G) and, for every
geometric point 5 of S, the Lie subalgebra ¢z < Lie(G)z is nilpotent and equal to its own normalizer.
Every Cartan ¢ arises from an S-subgroup: in fact, by [SGA 3y, exposé XIV, théoréme 3.9], the
functor H — Lie(H) induces a bijection between the closed, smooth, fiberwise connected subgroups
H c G such that Lie(H) < Lie(G) is a Cartan subalgebra (such H are the subgroups of type (C))
and the Cartan subalgebras of Lie(G). By [SGA 31, exposé XIV, corollaire 3.5, théoréme 3.9|, any
two subgroups of G of type (C) (respectively, any two Cartan subalgebras of Lie(G)) are G-conjugate
étale locally on S. If S = Spec(k) for a field k, then, by [SGA 31, exposé XIV, lemme 1.2], the group
G has a subgroup of type (C), equivalently, then the Lie algebra Lie(G) has a Cartan subalgebra.

Proposition 4.1.3. A reductive group G over a scheme S is root-smooth if and only if étale locally
on S it has a subgroup of type (C) that is a mazimal torus, in which case the subgroups of type (C)
of base changes of G are precisely the maximal tori; in particular, for a root-smooth G, the Cartan
subalgebras of Lie(G) are precisely the Lie algebras of the mazimal S-tori of G.

Proof. By [SGA 311, exposé X, corollaire 4.9], being a torus is a fibral condition on a closed, smooth,
fiberwise connected S-subgroup H < G, so we lose no generality by assuming that S is a geometric
point. We then let T' < G be a maximal torus with its Lie algebra t  g. Since t is abelian, by the
criterion [SGA 3q1, exposé XIII, proposition 4.4 and what follows|, it is a Cartan subalgebra of g
(that is, 7" is a subgroup of type (C)) if and only if there exists a v € t for which ad(v)|y/ is injective.
However, the root decomposition
g= td @a Gas

shows that ad(v)|q/ is semisimple with eigenvalues da(7), so the injectivity of ad(v)|q/ amounts to
the nonvanishing of each da(). Thus, G is root-smooth if and only if T is a subgroup of type (C).
To show that in this case every subgroup H < G of type (C) is a maximal torus, we first recall from
[SGA 3p1, exposé XIV, théoréme 1.1, corollaire 5.6 (with exposé XII, section 1.0)| that any such
H contains a maximal torus T of G. By [SGA 3q1, exposé XIII, proposition 4.4 and what follows],
Cartan subalgebras are maximal nilpotent Lie subalgebras of g, so the inclusion Lie(T") < Lie(H) is
an equality. It then follows from §4.1.2 that T'= H. ]

Remark 4.1.4. In general, Cartan subalgebras differ from Lie algebras of maximal tori. For instance,
we recall from [SGA 3y;, exposé XIII, remarques 6.6 c)| that the Lie algebra of G := (SL2)g, is
nilpotent, to the effect Lie(G) is its own unique Cartan subalgebra (and (SL2)g, is its own unique
subgroup of type (C)).

Root-smooth groups possess a well-behaved regular semisimple locus g** < g that will be used below.

4.1.5. The regular semisimple locus g < g. For a reductive group G over a scheme S and
a variable S-scheme S’; we recall from [SGA 3y, exposé XIII, proposition 4.2 and what follows;
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exposé XIV, définition 2.5] that a section v € g(S’) is reqular semisimple (called simply ‘regular’ in
loc. cit.) if it lies in some Cartan subalgebra ¢  gg/ (see §4.1.2) and for every geometric point s of
S’ we have

¢z = >0 Ker(ad(vys)").
By [SGA 3q1, exposé XIV, proposition 2.6|, for a regular semisimple v we have

¢ = U,so Ker(ad(7)"),

so the Cartan ¢ is uniquely determined. Conversely, if S is a geometric point and ~y € g(5) lies in at
least one and at most finitely many Cartans ¢ g, then, by [SGA 31, exposé XIII, théoréme 6.1], it
is regular semisimple, and so lies in a unique ¢. This immediately reveals pathologies: for instance,
by Remark 4.1.4, the entire Lie algebra of (SL2)g, is regular semisimple. To avoid them, we will
only discuss regular semisimple sections for root-smooth reductive G.

For example, if GG is reductive and root-smooth, then, by Proposition 4.1.3 and the characterization
of being regular semisimple in terms of the injectivity of the adjoint action modulo a Cartan
[SGA 3y, exposé XIII, proposition 4.6], a v € g(S) is regular semisimple if and only if it lies in the
Lie algebra t c g of a maximal S-torus T' < G and (da)(7s) # 0 for every geometric point s of S
and every root a: Ts — G,,. In particular, in the root-smooth case a regular semisimple section is
semisimple (and is also regular as we will see in Lemma 4.1.6 and §4.2.1, which will also show the
converse: sections that are both regular and semisimple are regular semisimple).

When G is reductive and root-smooth, [SGA 37, exposé XIV, proposition 2.9, corollaire 2.10] (with
Proposition 4.1.3) gives an S-fiberwise dense, stable under the adjoint action of G and under the
scaling action of G,, open

g c g that represents the subfunctor of regular semisimple sections.
For later use, we review the description of centralizers of semisimple and regular semisimple sections.
For a description of this sort over an arbitrary base, see Lemma 4.2.7 below.

Lemma 4.1.6. Let G be a reductive group over an algebraically closed field k, let T < G be a
mazimal k-torus with Lie algebra t = g and Weyl group W := Ng(T)/T, and fix a v € t(k). The
group Cg(7)? is reductive with the root system formed by those T-roots of G that vanish on -,

(Cg( ) (k) is generated by T(k) and the T-root groups Ug(k) with da(y) =0,
Ca())(k)
7 € Lie(Cent(Cg(7)?)). In particular, if G is root-smooth and v € g™(k) n t(k), then
Ca(v)’ =T.

is generated by (Cq(7)?)(k) and the elements of W  centralizing ~, and

Proof. Since 7y is semisimple, Cg(7) is k-smooth by [B(n 91, Chapter III, Section 9.1, Proposition].
Thus, [Ste75, Lemma 3.7] gives the claims about Cg(7)? and the descriptions of (Cg(7)?)(k) and
(Ca (7)) (k). Root decompositions of Lie(Cg(7)") show that v lies in the Lie algebra of every maximal
torus of Cg(7)?, so

7 € Lie(Cent(Ca(7)?))

by [SGA 3q1, exposé XII, proposition 4.10 and what follows|. The last claim follows from the rest
and §4.1.5. O

We turn to reviewing our main tool for studying the morphism t//W — g/ G in Theorem 4.1.10.
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4.1.7. The Grothendieck alteration. Let G be a reductive group over a scheme 5, let g be its
Lie algebra, let # be the smooth, projective S-scheme that parametrizes Borel subgroups of G
and that was constructed in [SGA 3y peyw, exposé XXII, corollaire 5.8.3|, and consider the closed
G-stable S-subscheme of Z x g g defined as a subfunctor by

§:={(B,y) e B xs0|veLie(B) g}« # xs0,

in other words, g is the Lie algebra of the universal Borel subgroup of G. The formation of § commutes
with base change and the projecting to g gives a projective morphism, the Grothendieck alteration

g9
which is G-equivariant and surjective as indicated: indeed, if S is a geometric point, then [SGA 3y,
exposé XIV, théoréme 4.11] ensures that g is the union of the Lie algebras of Borel subgroups of G.
The projection

g%

is also G-equivariant and Zariski locally on % isomorphic to a relative affine space (namely, to the
total space of the Lie algebra of the universal Borel subgroup of G). Thus, g is S-smooth and its
geometric S-fibers are integral, of the same dimension as those of G. In particular, by the dimension
formula [EGA IV, corollaire 5.6.6], the open g™ = g over which the Grothendieck alteration is finite
is S-fiberwise dense in g (Proposition 4.2.3 reviews a group-theoretic description of gfi®). In fact,'*

g™ contains all the points of g that are of height < 1 in their S-fiber, (4.1.7.1)

indeed, for all s € S, the preimage of gs\g is a proper closed subscheme of gs, so the dimension
bound [EGA TV3, équation 10.6.1.2] gives dim(gs) — 1 = dim(gs\gi") + 1. Due to the S-smoothness
of its source and target, the fibral criterion [EGA V3, corollaire 11.3.11], and miracle flatness
[EGA IVs, proposition 6.1.5],

n

the base change g — g™ of §—» g is finite locally free. (4.1.7.2)
By transport of structure, the open gi* is G-stable.

For any Borel S-subgroup B < G, the quotient B — T by the unipotent radical defined in
[SGA 3111 new, exposé XXII, proposition 5.6.9] with its Lie algebra map pr: b — t gives a morphism

g — t defined by (B',7)— pr(Ad(g)y) (4.1.7.3)

where ¢ is an étale local section of G such that gB’g~! = B: the map is well defined because
T is abelian and the self-normalizing property of Borel subgroups [SGA 3111 pew, exposé XXII,
corollaire 5.8.5| ensures that g is unique up to left multiplication by a section of B. Moreover, if
B has an S-Levi T' c B, then, since the maps t - g/ G and b — g/ G induced by inclusion are
compatible with pr: b — t (as is seen from [AFV18, Step 2 of the proof of Lemma 13]), we have a
commutative diagram

i l (4.1.7.4)
g—g/G+—t/W.

We are ready to describe a W-action on the preimage §™ of g* and then to extend it to gi®

Myf G s root-smooth, then this claim is a special case of a much more general property of the Grothendieck
alteration, namely, of its smallness [Jan04, Section 12.17; Section 13.2, Lemma).
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Proposition 4.1.8. Let G be a root-smooth reductive group over a scheme S, let T < G be a
mazimal S-torus with Lie algebra t < g, set £ :=tn g™, let W := Ng(T)/T be the Weyl group, and
let T'c B < G be a Borel S-subgroup. The restriction

TS s
g —9g

of the Grothendieck alteration has the structure of a W -torsor that is compatible with the G-actions
on g* and g*° and is supplied by the W-action on G/T x gt over g given by

w- (gT,7) = (gw™'T, Ad(w)y)
and by the commutative diagram

T, — (gB _1,Ad ~.
G/T x4 £ (9T, 7)— (g Ng (9)7) i

(4.1.8.1)
(9T, ) — Ad(g)7

Is

g-.

(4.1.7.3)

In terms of this diagram the map g t corresponds to the projection onto t°, and so is
W -equivariant. In particular, for root-smooth G, we have

grs - gﬁn ]

Proof. We may focus on the claim about (4.1.8.1) because it implies the other assertions. A W-action
makes g™ a W-torsor over g™ if and only if the maps

Wgrs X grs ars (w, z) — (wz, z) Ers X grs ars
and g /W — g' are isomorphisms. Thus, thanks to the fibral criterion [EGA IV, corollaire 17.9.5],
we may pass to S-fibers and assume that S is a geometric point. Moreover,

(9T, ~) — (9T, Ad(g))

G/T xst . or == {(gT,v) |ve Ad(g9)(t)} = G/T xs g,

and in terms of the target of this isomorphism the map to g € & xgg =~ G/B xg g becomes
(9T,~) — (gB,7). Thus, [Jan04, Section 13.4, Lemma] shows that the top horizontal arrow in
(4.1.8.1) is an isomorphism and the vertical ones are finite étale. It then remains to show that W
acts simply transitively on the S-fibers of g™ — g™. In terms of gr, the W-action is

(w, (¢T,7)) = (gw™'T, ),

and hence commutes with the evident G-action, for which the projection gr — g is G-equivariant.
By §4.1.5, the G(S)-translates of t'5(S) exhaust g™(.S), so we only need to consider the S-fibers
above t™ c g's. For the latter, we fix a v € t**(S) and apply the last assertion of Lemma 4.1.6 to get
Ca(7)? = gTg~! for every S-point (¢gT,v) of g7 above . This means that that the S-fiber above
is precisely {(wT,v)|w € W(S)}, and the desired simple transitivity follows. O

Proposition 4.1.9. Let S, G, T c Bc G, tc g, and W be as in Proposition 4.1.8. The W -action
on g™ over g constructed there extends uniquely to a W-action on g™ over g™ that commutes with
the G-actions on g™ and gi™, this extension satisfies
~ ~ ~fn (4173 ‘ o
g w = ¢fin o and the map g™ @173, t is W-equivariant.
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Proof. We may work étale locally on S, so we lose no generality by assuming that G is split.
Moreover, since g is S-smooth with integral geometric fibers (see §4.1.7) and g™ < g is S-fiberwise
dense (see §4.1.5), the uniqueness aspect follows from the relative characterization of support
[EGA IV, proposition 19.9.8|. Similarly, the compatibility with the G-actions and the W-equivariance
of g — ¢ will follow from Proposition 4.1.8. For the existence and the identification §i" /I, granted
that we show that the formation of the coarse space §i"/IW commutes with any base change, we
reduce to S being open in Spec(Z) (passage to an open ensures root-smoothness, see §4.1.1).

In the case when S is a localization of Spec(Z), the scheme §i" (and also §) is normal, so, by
(4.1.7.2), it is the normalization of g™ in §™. The W-action then extends by the functoriality of
normalization. By the normality of rings of invariants [AMG69, Proposition 7.8], the coarse quotient
gfin /W inherits normality and finiteness over gfi® from §i". In addition, by Proposition 4.1.8, the
map gi* /W — g is an isomorphism over g™. Since the latter is dense in gfi™ (see §4.1.5), it follows
that this map is the normalization morphism for g™ in its function field, so, by normality, it must
be an isomorphism. The same argument works if the base is a finite field instead of a localization of
7, so the formation of g™ /W commutes with base change to every finite field. It then follows from
the Z-fibral criterion [Ccsl?, Lemma 3.3.1] that its formation commutes with any base change, as
promised. O

We turn to the Chevalley isomorphism for root-smooth groups. Even though root-smoothness is a
very mild condition, it is not always necessary: for instance, by [CR10, Theorem 1.2], for G = Spy,,
(type Cy,) the Chevalley map is an isomorphism if and only if S has no nonzero 2-torsion, but such
G is root-smooth if and only if 2 is invertible on S.

Theorem 4.1.10. For a reductive group G over a scheme S, the adjoint action of G on its Lie
algebra g, and a mazimal S-torus T < G with Lie algebra t < g and Weyl group W := Nq(T')/T,

t/W — g//G is a schematically dominant map that is an isomorphism if G is root-smooth.

Proof. The schematic dominance was settled in [AFV18, Remark 14| (and in [CR10, Theorem 3.6]
in a special case), so we assume that G is root-smooth and seek to show the isomorphism. The
formation of t/W — g/ G commutes with flat base change (see §1.5), so we work étale locally on
S to assume that S = Spec(A) is affine and G is split with respect to T', equipped with a Borel
T < B c G. Our task is to show that the injection A[g]¢ < A[t]" is surjective. The idea is to
consider the diagram

(4.1.7.3)

G/T x g ¢ ghin t
grs( gﬁn

supplied by Propositions 4.1.8 and 4.1.9. The square is Cartesian and the top horizontal maps
compose to a projection and are W-equivariant. Pullback of an a € A[t]"V along this projection is a
G-invariant and W-invariant global section f of G/T x g t*. Since the left vertical map is a W-torsor,
the W-invariance means that f comes from a G-invariant global section of g*® whose restriction
to t*°, by construction, agrees with the restriction of . Thus, by the relative characterization of
support [EGA TV, proposition 19.9.8|, all that remains is to extend f to a global section of g, which
will then necessarily be unique and G-invariant. In fact, since the open

gﬁn cg
contains all the points of g that have height < 1 in their S-fiber (see (4.1.7.1)), loc. cit. even ensures

that it suffices to extend f to a global section of gfi®. For this, the pullback of o along the second
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top horizontal map extends f to a W-invariant global section of g™, which, by Proposition 4.1.9,
descends to a desired extension of f to gfi. 0

Remark 4.1.11. As we already mentioned, in general the map t/W — g//G is not an isomorphism:
for instance, by [CR10, Section 6.1], for G = (SL2)r, equipped with its diagonal torus,

(Fo[g])® — (Fo[t))"Y may be identified with the inclusion Fo[z?] < Fa[x].

In contrast, the group version of Theorem 4.1.10 does hold in general: for any reductive G over any
base scheme S and any maximal S-torus T' < G, by [Leel5, Section 1, Theorem],

T/W — G /G, where G acts on itself by conjugation.

The formation of the adjoint quotient g / G need not commute with nonflat base change, see
[CR10, Theorem 1.3] for (root-smooth) counterexamples with G of type B,, or D,, in characteristic
2. Nevertheless, Theorem 4.1.10 relates this base change to its analogue for the a priori simpler
quotient t/W. For instance, it implies that for root-smooth G, if the order of W is invertible on S,
then the formation of g/ G commutes with arbitrary base change. In fact, by Proposition 4.1.14
below, a significantly weaker condition based on the following notion of torsion primes suffices for
this.

4.1.12. Torsion primes for a root datum. Fix a reduced root datum
X=X, 0,XV, V)
and consider its associated semisimple, simply-connected root datum
R = (X, B, (X)), dY),

so that (X5¢)V = Z®Y < XV. By [SGA 3111 new, exposé XXI, corollaires 7.1.6 et 7.4.4, remarque 7.4.6],
the datum #°° is a product of semisimple, simply-connected root data of one of the well-known
Dynkin types: A, with n > 1, or B,, with n > 2, or C}, with n > 3, or D,, with n > 4, or Fg, or E7,
or Eg, or Fy, or Gy. Following [Dem?73, proposition 6; proposition 8 and what follows|, we say that a
prime p is a torsion prime for Z if either

(1) p| # Coker(X — X*5¢) (for an Z associated to a split reductive group G, by [SGA 3111 new,
exposé XXII, propositions 4.3.1 et 6.2.7; exposé XXIII, théoréme 4.1], this cardinality is the
degree of the isogeny (Gger)*® — Gger); OF

(2) p =2 and Z*° has a factor of one of the following types: By, D,, E¢, E7, Eg, Fy, Ga;
(3) p =3 and Z°° has a factor of one of the following types: Fg, Er, Eg, Fy;
(4) p =5 and #Z* has a factor of type Es.

By [Dem?73, lemme 7|, torsion primes for # divide the order of the Weyl group of Z. The converse
fails: for instance, a semisimple, simply connected Z of type C), has no torsion primes. Being a
torsion prime for a root datum (as above) is different than being a torsion prime for the associated
root system in the sense sometimes used in the literature (compare with footnote 17 below).

Definition 4.1.13. For a reductive group G over a scheme S, we say that Z(G) has no torsion
residue characteristics if char(k(s)) is not a torsion prime for Z(G5) for every s € S. Conversely, we
say that a prime p is a torsion residue characteristic for Z(QG) if there is an s € S with p = char(k(s))
such that p is a torsion prime for Z(Gs).
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Proposition 4.1.14. For a reductive group G over a scheme S with Lie algebra g, if Z(G) has
no torsion residue characteristics, then g//G is of formation compatible with base change and étale
locally on S an affine space of relative dimension rk(QG).

We will refine the compatibility with base change aspect of Proposition 4.1.14 in (4.2.8.1) below.

Proof. We work étale locally to assume that G is split. The claims then follow from [AFV1S,
Proposition 10 (with Remark 8)|, which provides an isomorphism between g/ G and a Kostant
section § < g that is an affine space of relative dimension rk(G) and commutes with base change
(see also §4.2.4). O

Remark 4.1.15. The combination of Theorem 4.1.10 and Proposition 4.1.14 implies that for a
root-smooth reductive group G over a scheme S such that Z(G) has no torsion residue characteristics
and a maximal S-torus T' G with Lie algebra t ¢ g and Weyl group W := Ng(T')/T, the formation
of t/W commutes with arbitrary base change—this reproves [Dem?73, corollaire sur la page 296].

Question 4.1.16. For a reductive group G over a scheme S, its Lie algebra g, and an S-scheme S’,
is the map gg |G — (9)/G)s always a universal homeomorphism?

For t/WW, the positive answer is a general property of coarse moduli spaces, so Theorem 4.1.10 gives a
positive answer whenever G is root-smooth. Proposition 4.1.14 does the same whenever Z(G) has no
torsion residue characteristics; in fact, this also follows from the following variant of Theorem 4.1.10.

Corollary 4.1.17. For a reductive group G over a scheme S and a mazimal S-torus T < G with
Lie algebra t € g and W := Ng(T)/T, if Z(G) has no torsion residue characteristics, then the
schematically-dominant morphism t/W — g/ G is a universal homeomorphism.

Proof. We use the fpqc local on the base nature of being a universal homeomorphism [SP, Lemma 0CEX|
to work étale locally on S and assume that G is split with respect to 1. By Proposition 4.1.14, the
formation of g/ G commutes with any base change. For the coarse space t/W, the same holds up to
a universal homeomorphism, so we may assume that S = Spec(Z). Then, since T is split,

T ~ Hom(X*(T),G,,), so Lie(T) = (X*(T))", and hence t= Spec(Sym(X*(7T)))

(see §1.5). By [Dem?73, théoréme 3|, the assumption on the residue characteristics implies that
the W-invariants of Sym(X*(7")) form a polynomial algebra, so t/W is an affine space of relative
dimension rk(G). Moreover, by [Jan04, Section 7.13, Claim]|, the map t/W — g// G is bijective on
points valued in every algebraically closed S-field. Consequently, since g/ G is also an affine space of
relative dimension rk(G) (see Proposition 4.1.14), the fibral criterion [EGA IV3, corollaire 11.3.11]
and [EGA IV, proposition 6.1.5] ensure that t/W — g/ G is flat. Since this map is also of finite
presentation, it is an open, continuous bijection on topological spaces, and remains so after any base
change, so it is a universal homeomorphism. O

The preceding corollary allows us to describe the basic geometric properties of the map g — g/ G.

Corollary 4.1.18. Let G be a reductive group over a scheme S such that either G is root-smooth,
or 2 is not a torsion residue characteristic for Z(G), or S is the spectrum of a field. The affine map

g — g/ G is surjective, with irreducible geometric fibers of dimension dim(G) — rk(G). (4.1.18.1)

These geometric fibers consist (set-theoretically) of finitely many G-orbits with exactly one semisimple
orbit, those above the points in 0 € (g//G)(S) consist precisely of the nilpotent sections of g, and if G
is Toot-smooth, then the geometric fibers of g — g//G that meet g™ consist of a single G-orbit.
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Proof. We may work étale locally on S, so we fix a maximal S-torus T < GG. Moreover, since G
becomes root-smooth after inverting 2 on S, we may weaken the case ‘2 is not a torsion residue
characteristic for Z(G)’ to ‘Z(G) has no torsion residue characteristics.” Then, by Theorem 4.1.10
and Corollary 4.1.17, the assumed conditions ensure that up to a universal homeomorphism the
formation of g/ G commutes with base change. Thus, (4.1.18.1) and all the subsequent claims
except for the one about g™ follow from the geometric point case supplied by [Jan04, Section 7.13|.
For the assertion about g, suppose that G is root-smooth, let 5 be a geometric S-point, and let
v € g™(35). By [Bor91, Chapter III, Section 9.2, Theorem], the adjoint orbit of v is closed in g and,
by Lemma 4.1.6 its dimension is dim(G) — rk(G). Thus, due to (4.1.18.1), this orbit sweeps out the
entire s-fiber of g — g/ G. O

Remark 4.1.19. If the answer to Question 4.1.16 is positive, then, except for the claim about g™,
Corollary 4.1.18 holds without any assumptions on the reductive group G over a scheme S.

4.2. The geometry of the Chevalley morphism on the regular locus

As we discuss in this section, the Chevalley map g — g/ G is particularly well behaved when
restricted to the regular locus g8 c g (equivalently, to gi", see Proposition 4.2.3). The main point
is that the results below hold under weaker assumptions than known previously and over an arbitrary
base—roughly, it suffices to assume that the torsion primes for the root datum of G are invertible
on S. Under this assumption, we show that the map g'*® — g/ G is smooth (see Proposition 4.2.6),
construct a canonical descent J to g/ G of the centralizer of the universal regular section of g (see
Theorem 4.2.8), and review a Galois-theoretic description of J|gs /¢ that will be crucial for §4.3
(see Proposition 4.2.13). This generalizes and improves various statements in the literature, notably
from [Ngo10] and [Ric17], builds the setup for studying the Hitchin fibration in §4.3, and leads to a
concrete result about the conjugacy class of the Kostant section that is presented in Theorem 4.2.14.

We begin by recalling the definition of the regular locus g™® < g and analyzing its nilpotent sections.

4.2.1. The regular locus g'¢ c g. For a reductive group G over a scheme S, its Lie algebra g,
and an S-scheme S’, the centralizer () © Gsr of a section v € g(.S’) under the adjoint action of
G on g is a closed S’-subgroup of G'g» whose formation commutes with base change. We have'”

dim(Cg(7y)s) = 1k(Gs) for every se S,
and we say that v is regular if the equality holds:
dim(Cg(v)s) = tk(Gs) for every se S’ (4.2.1.1)

The function s — 1k(Gy) is locally constant on S’, so the Chevalley semicontinuity theorem
[EGA 1V3, théoréme 13.1.3] (applied along the identity section of Cz(7y)) ensures that the s € S” at
which (4.2.1.1) holds form an open subscheme of S” whose formation commutes with base change.
By considering the universal case S’ = g, we find an open subscheme

g'®® c g that represents the subfunctor of regular sections.

By transfer of structure, the adjoint action of G on g preserves g*°®, and so does the scaling action
of G, on g. Lemma 4.1.6 implies that

g < g™ for root-smooth G

and gives a converse: if each geometric fiber of g'*® has semisimple sections, then G is root-smooth.

L5For the sake of completeness, we recall the argument. Letting k be the algebraic closure of the residue field at s, we
choose a Borel subgroup B < Gy, with v € Lie(B) (see §4.1.7), and we let U < B be the unipotent radical. Since B/U
is commutative, the B-orbit of v4 has a constant image in Lie(B/U), so the dimension of this orbit is < dim(U), and
hence dim(Cg(v5)) = rk(Gs). Consequently, since Cp(vg) < Ca(y)x, we obtain the desired dim(Cea(v)s) = rk(Gs).
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4.2.2. Regular nilpotent elements. The regular locus g'*® is S-fiberwise dense in g: indeed, if G

has semisimple rank > 1 and S = Spec(k) is a geometric point, then g"(k) has nilpotent elements,
see [Jan04, Sections 6.3-6.4] (for k of low characteristic, this relies on the type-by-type analysis of
nilpotent G-orbits in g). Moreover, regular nilpotent elements of g(k) form a single G(k)-conjugacy
class (loc. cit.). We may use [Spr66, proof of Lemma 5.8] to describe such elements explicitly: granted
that we choose a splitting of G, then its pinning {e, € ga}aeca, and then extend to a system of bases
{eqa € ga}a=0 (for instance, to the positive part of a Chevalley system whose existence is ensured by
[SGA 3111 new, exposé XXIII, proposition 6.2]), a nilpotent element of g(k) is regular if and only if it
is G(k)-conjugate to some

Za>0§aea with §a¢0 for ae€A.

Thus, by [Spr66, proof of Lemma 5.3], every regular nilpotent element of g(k) lies in the Lie algebra
of a unique Borel subgroup of G. Conversely, a nilpotent element v € g(k) that is not regular lies in
the Lie algebras of infinitely many Borel subgroups: indeed, by conjugation we may assume that
T = ,-0&aa With {g = 0 for some € A, so that

X € Lie(Ru<P5)) C Lie(BA)

for the Borel BA < G associated to A and the minimal parabolic BA < Pz < G whose Lie
algebra contains g_g (for the construction of Pg and a characterization of its unipotent radical, see
[SGA 3111 new, exposé XX VI, propositions 1.4 et 1.12 (i)]); since

Ad(g)x € Lie(R,(Pg)) < Lie(Ba) for ge Pg(k),
the Lie algebras of the infinitely many Borels {gilBAg}gGPB(k)/BA(k) all contain x.
We are ready to relate the regular locus g"® to the Grothendieck alteration g — g reviewed in §4.1.7.

Proposition 4.2.3. For a reductive group G over a scheme S and its Lie algebra g, the locus gi®
over which the Grothendieck alteration § — g has finite fibers is precisely the reqular locus g*® < g,

that 1is,

gﬁn _ greg

side g.

Proof. By passing to fibers, we assume that S is the spectrum of an algebraically closed field &,
and we need to show that a v € g(k) is regular if and only if there are only finitely many Borel
k-subgroups of G whose Lie algebras contain . For nilpotent ~, we saw this in §4.2.2. In general,
[Bor91, Chapter I, Section 4.4, Theorem| supplies the Jordan decomposition v = 75 + 7y, with ~s
semisimple, 7, nilpotent, and [vs,,] = 0, so that

¥n € Lie(Ca(7s))-

The functoriality of the decomposition under isomorphisms implies that a g € G(k) centralizes = if
and only if it centralizes both ~4 and ~,, so

Ca(y) and Cgp(y,)(7n) agree set-theoretically in - G.
Thus, since, by Lemma 4.1.6, the group (Cg(vs))° is reductive, of the same rank as G,
v e g (k) if and only if ~, € (Lie(Cg(vs)?))™8(k), (4.2.3.1)
equivalently, by §4.2.2,
v € g8(k) if and only if , € (Lie(Ca(vs)°) (k). (4.2.3.2)

On the other hand, by the uniqueness of the Jordan decomposition, the Lie algebra of a Borel

B < G contains v if and only if it contains 75 and ~,. In this case, Cg(vs) N B = Cg(7s), so

[Bor91, Chapter III, Section 9.1, Proposition| ensures that this intersection is smooth. Moreover,

vs lies in the Lie algebra of a maximal torus of B, so Lemma 4.1.6 ensures that the smooth,
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solvable group (Cg(vs) n B)? is of sufficiently large dimension to be a Borel of Cg(7s)?. Since
Yn € Lie(Cg(vs) N B), we find that if v € g™8(k), then B contains a fixed Borel of Cg(7s) (see
(4.2.3.1) and §4.2.2), so also a fixed maximal torus of C(vs). The latter is also maximal for G, so
B belongs to a finite list of Borels, and hence v € gf*(k).

Conversely, by its solvability, every Borel of Cg(7s) lies in a Borel of G. Since «; lies in its Lie
algebra (see Lemma 4.1.6), this Lie algebra contains =, if and only if it contains . Thus, if v € g (k),
then 7, € (Lie(Cga(vs)?)) ™ (k), and so, by (4.2.3.2), also € g*8(k), as desired. O

The promised analysis of the map g**® — g//G will rest on the construction of its Kostant section.

4.2.4. A Kostant section. Let (#Z,A) be a based root datum, as defined in [SGA 3111 ey, €x-
posé XXIII, section 1.5], let 74 be the product of the torsion primes for Z (see §4.1.12), let G be a
split, pinned reductive group over Z[-=] associated to (#,A), let {€n € ga}aca be the basis given
by the pinning, set

1
T

€= ZaeA Ca;
let B c GG be the Borel opposite to the one associated to A, and let U < B < G be its unipotent
radical with Lie algebra u = b = g. By [Ricl7, proof of Lemma 3.1.2],'° the map

[e,—]: u— b is injective and its cokernel b/[e,u] is Z[é]—free.

We may therefore find a Z[é]—splitting b = 5@ [e,u] such that s < g is graded for the filtration

g = @,z 0" reviewed in footnote 16. A Kostant section of (#,A) is the closed Z[-=]-subscheme

1
T%
S:=e+sc g cg that depends on the choice of s,

where |Ric17, Equation (3.1.1)] ensures the factoring through g*&. By [AFV18, Proposition 10|, the
scheme S is indeed a section to the map g — g/ G: for any Z[%]—scheme S,

S gs/Gs = (g)G)s.

By construction, letting 2p: G,, — G denote the sum of all the positive coroots, the action of Gy,
on g given by

—

(t.7) = 172 Ad((20) (1)) (7) (4.24.1)

preserves S  g. If we endow g// G with the G,,-action induced from (t,v) + t~27, then the
isomorphism & — g // G becomes G,,-equivariant because v and Ad((2p)(t))(y) have the same
image in g//G.

16The statement of [Ric17, Lemma 3.1.2| is weaker—there one inverts 2 for type C,, and 3 for type G2, whereas
we do not—but its argument still works as follows (this improvement was also observed in [AFV18, Section 2.3,
especially, Remark 8]). By the definition of 74, especially, by §4.1.12 (1), we may replace G by (Gder)* (to keep
track of Borel subgroups under this one uses [SGA 3111 new, exposé XXVI, proposition 1.19]). Then we consider the
grading g = P,, g’ by the heights of roots (or by the half of the cocharacter given by the sum of positive coroots, as
is equivalent [SGA 3111 new, exposé XXI, proposition 3.5.1]), so that

u=@,_,¢ and b=@@,, 9"

The formulas for the Lie bracket given in [SGA 3111 new, exposé XXII, remarque 5.4.10] ensure that the map [e, —]
restricts to a map g — g'™!. The desired injectivity and freeness of the cokernel of the latter for i < 0 follow
from [Spr66, Propositions 2.2 and 2.4, Theorem 2.6], which classifies the possible torsion in the cokernel: indeed, in
[Spr66, Theorem 2.6], for type C,, with p =2 and type G2 with p = 3 the elementary divisors only occur for ¢ > 0,
whereas the definition of 74, especially, §4.1.12 (2)—(4), rules out the other occurrences.
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Remark 4.2.5. Keeping the setup §4.2.4, we assume that our split, pinned G is instead defined over
a scheme S on which # (71 (%22%)) and every prime that appears in the expression of some root of %
in terms of a base of simple roots is invertible,'” and that one has a G-equivariant S-isomorphism
L1 g — g* (equivalently, a perfect G-equivariant S-pairing on g).'® We claim that then

there are canonical choices for s and & over S that depend on «¢.

Indeed, by [Spr66, Proposition 2.4 and Theorem 2.6], the cokernel of [e,—]: g — g is locally free, so,
since this map respects the grading discussed in footnote 16, it suffices to exhibit a canonical graded
complement to [e, g] < g. In fact, Ker([e, —]) is such a complement: by the flatness of g/[e, g], this
kernel is locally free, of formation compatible with base change, so we may assume that the base is
a field and need to argue that [e, g] n Ker([e, —]) = 0. However, Ker([e, —]) is even orthogonal to
[e, g] under the perfect pairing (-,-), on g determined by ¢ because, by deriving the G-equivariance
of (+,+),, we get

([v,],9). = (z,[-7,9]). and may choose v =e, ze€g, yeKer([e,—]).

We now improve [Ricl7, Proposition 3.3.3] by showing that g™ — g/ G is smooth under weaker
hypotheses.

Proposition 4.2.6. For a reductive group G' over a scheme S such that Z(G) has no torsion residue
characteristics, the map g — g//G (already discussed in Proposition 4.1.18) is finitely presented, flat,
with reduced, local complete intersection geometric fibers, its restriction

g"® — g/ G is smooth of relative dimension dim(G) — rk(G) and surjective,

and g'® < g forms a single nonempty G-orbit over each geometric (g /) G)-fiber.

Proof. By Proposition 4.1.14, the S-scheme g/ G is finitely presented, of formation compatible
with base change. Thus, by [SP, Lemma 02FV]|, the map g — g/ G is also finitely presented
and, by the fibral criterion [EGA V3, corollaire 11.3.11], the remaining claims are reduced to
the case when S is the spectrum of algebraically closed field k. The surjectivity of g**¢ — g/ G
then follows from the existence of a Kostant section S < g'*® (see §4.2.4) and the G-orbit claim
is part of [Jan04, Section 7.13, Proposition|. Thus, by G(k)-conjugation, for the smoothness of
g"°¢ — g/ G it suffices to consider the points of g™ that lie on S, at which the map is indeed
smooth by [EGA IV, théoréme 17.11.1] because it is surjective on tangent spaces due to S — g//G.
Moreover, for dimension reasons, that is, by Corollary 4.1.18 and [EGA IV, proposition 6.1.5],
the map g — g/ G between smooth k-schemes is flat, and hence, by [SP, Lemma 0E9K], it is
automatically a relative complete intersection. In particular, the geometric fibers of g — g/ G are
Cohen—Macaulay and, due to the relative density of g™, also generically smooth, so the (Rg)+(S1)
criterion [SP, Lemma 031R| ensures that they are reduced. O

171 terms of the appearing types, the following primes divide some coefficient in the expression of some root
(equivalently, the highest root) in terms of a base of simple roots (compare with the shorter list in §4.1.12 (2)—(4)):
e p =2 for types By, Cyn, Dy, Es, E7, Eg, F4, and G3;
e p =3 for types Es, Fr, Eg, Fy, and Ga;
e p =5 for type Es.
The primes not in this list are often called “good,” as is done, for instance, in [Spr66, Section 2.10]. The “bad” primes,
that is, the ones in the list divide the order of the Weyl group, as does #(m1 (%2*?)).
181f S is over an algebraically closed field k, then ¢ exists: indeed, the other assumptions imply that char(k) must be
“very good for G” in the sense of [Let05, Definition 2.5.5], so the criterion [Let05, Proposition 2.5.12] for the existence
of ¢ applies.
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The smoothness of the map g**® — g// G supplied by Proposition 4.2.6 leads to the description of
the basic properties of the centralizer of the universal section of g"® in Theorem 4.2.8. The latter
generalizes [Ric17, Corollary 3.3.8, Proposition 3.3.9] and [Ngo610, lemme 2.1.1, proposition 2.2.1]
and rests on the following lemma.

Lemma 4.2.7. For a root-smooth reductive group G over a scheme S such that char(k(s)) is prime
to #(m1(Gaers)) for s € S, a mazimal S-torus T = G, and its Lie algebra t < g, the Weyl group

W := Ng(T)/T acts freely on t°:=tng™® and T — Cg(y) forany ~et(9).

Proof. The freeness of the W-action amounts to the following map being an isomorphism:

s Rind SIPIN (W xgt%) xgsy s, A %, where W xgt™® A lind CoTRIN £ x gt

Thus, the fibral criterion [EGA IV, corollaire 17.9.5] reduces us to the case when S = Spec(k)
for an algebraically closed field k. For such S, the assertion about the W-action follows from
[Ric17, Lemma 2.3.3|, and, once the freeness of the W-action is known, T'— Cg(7) follows from
Lemma 4.1.6. ([l

Theorem 4.2.8. Let G be a reductive group over a scheme S such that Z(G) has no torsion residue
characteristics and let C < Gy be the centralizer of the universal section of g := Lie(G). The g™&-
group Cgres is commutative, flat, affine, a relative local complete intersection (so of finite presentation),
and there is a unique (g// G)-group scheme J equipped with a G-equivariant isomorphism

Jgres =~ Cyres,  which then extends to a unique G-equivariant g-group map Jy — C,
where the G-actions on scheme valued points are described by

9-(j:7) = (,Ad(g)y) and g-(c,7) — (geg™", Ad(g)7).
Moreover, g /|G is the coarse moduli space of the algebraic stack quotient [g"¢/G], more precisely,
[08 /G| — g//G is a gerbe bound by J  for the fppf topology, (4.2.8.1)

and if G is root-smooth, then J (respectively, C') is a torus over the image (g)/G)™ of g*° (respectively,
over g").

Proof. We begin with the claims about Cgres and note that the parenthetical claim will follow from
the local complete intersection aspect [SP, Lemma 069H]|. For these claims, by the fpqc local on
the base nature of local complete intersection morphisms and their stability under base change
[SP, Lemmas 069K, 02VK, and 01UI|, we may first work étale locally S and then reduce to S being
a localization of Spec(Z). In the Cartesian square

Cgreg —— G xg greg

l v (1,7)

g1reg greg X 4G greg

J(g, ¥) = (v, Ad(g)7)

the S-scheme g'®® x4, g"*® is smooth by Proposition 4.2.6, so the bottom horizontal map is a
regular closed immersion. Due to this smoothness and an S-fibral dimension count that uses
Propositions 4.1.14 and 4.2.6, the miracle flatness [EGA IVy, proposition 6.1.5], and the fibral
criterion [EGA IV3, corollaire 11.3.11], the finitely presented map

,y) — (7, Ad
G xgges 200D, e gres s faithfully flat, (4.2.8.2)

19This condition holds if Z(G) has no torsion residue characteristics, see §4.1.12
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Consequently, Cgrez is flat over g™ and is locally cut out by a regular sequence in the smooth
S-scheme G x g g*®8. Thus, by, for instance, [SGA 2,,.,, exposé XIV, proposition 5.2|, the ideal of any
closed immersion Cgres — Afies is locally generated by a regular sequence, so Cyres is a relative local
complete intersection over g™8. Due to the g'®8-flatness of Cgyres, its commutativity can be tested
after base change to a geometric generic point 77 of g'®. Since 7 lies over Q and is regular semisimple
(see §4.1.5), Lemma 4.2.7 ensures that the centralizer Cj is a torus, and hence is commutative.

Next we turn to the claims about J, so we revert to S being arbitrary. Since C is g-affine, by descent,
the existence and uniqueness of J amount to the group Cgres admitting a unique G-equivariant
descent datum ¢ with respect to the smooth surjection g™& — g/ G of Proposition 4.2.6. For this,
we let S’ be a variable S-scheme and view ¢ as a collection of group isomorphisms

byret Ca(11) = Ca(v2) forall 71,72 € g"®(S’)  that have the same image in  (g/G)(S")

such that the ¢, ,, are compatible with pullback in S” and are subject to the cocycle condition

byg,y3 O byr, o = ly1, 73>

compare with this kind of description of descent data in [BLR90, Section 6.1, before Lemma 3|;
concretely,

tyiye 18 Ca(m) = J Xa/Gm S~ J X /G, S < Cq(72).

The G-equivariance amounts to
Ly, Ad(g)yy: Ca(7) — Ca(Ad(g)y) being given by conjugation by g for € g"*(5’), g € G(5').

By (4.2.8.2), fppf locally on S’ every (y1,72) is of this form, so the G-equivariance determines ¢, -,
uniquely, the cocycle condition is automatic, and the existence of ¢ reduces to ¢, pq(g)y N0t depending
on g. However, if Ad(g)y = Ad(g¢')7, then ¢’ = gc with ¢ € (Ci(7))(S"), so the independence follows
from the fact that the conjugation by ¢ has no effect because the group Cg(7) is commutative.

By descent, the group J inherits properties from Cyres: it is commutative, flat, affine, and a relative
complete intersection over g/ G. Moreover, (4.1.7.1) and Proposition 4.2.3 ensures that Jgres is
S-fiberwise of codimension > 2 in J;. Thus, since C is affine, the relative version of Hartogs
extension principle [EGA IV, proposition 19.9.8] supplies the unique morphism J; — C' extending
Jgree >~ Cgres and, by allowing one to check the commutativity of all the relevant diagrams over g*°8,
shows that it is a G-equivariant g-group homomorphism.

Y

The algebraicity of the stack [g"8/G] is ensured by the general criterion |SP, Theorem 06FI|. By
Proposition 4.2.6, the map [g™¢/G] — g/ G is an fppf (even smooth) surjection and, by (4.2.8.2),
two objects of [g"°8/G] above the same scheme-theoretic point of g/ G are fppf locally isomorphic.
Thus,

[6%/G] —> g/ G

is a gerbe by the criterion [LMBO00, remarques 3.16], and it is bound by J by the construction of the
latter.

By Corollary 4.1.18, if G is root-smooth, then the preimage of (g/G)™ in g is precisely g™. Thus,
the last assertion follows from §4.1.5 and Lemma 4.2.7. O

Remark 4.2.9. Of course, the gerbe [g"¢/G] — g//G is neutral whenever the map g"¢ — g//G has a
section, such as a Kostant section when G is split and pinned (see §4.2.4, as well as Proposition 4.3.2
below for a quasi-split case).
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Remark 4.2.10. Both g™ and g carry compatible scaling by G, s actions, which lift to a G, s-
action on C. The descent datum ¢ that gives J is equivariant for this action, so G,,, s also acts on J
compatibly with its action on g/ G. Consequently, for every G,, s-torsor . with the twist

gy =g x¢" %,
we obtain a unique (g.¢ /G)-group J equipped with a G-equivariant isomorphism
(4.2.10.1)

Jgg;g o~ Cgi;g, which extends to a G-equivariant g -group map Jy, — Cy.,,

and, by Theorem 4.2.8, the map [g'g*/G] — g /G is a gerbe bound by J.
Under the following stronger assumption on the residue characteristics, Cyreg is even g'®-smooth.

Proposition 4.2.11. Let G be a reductive group over a scheme S such that char(k(s)) for s € S
divides neither #m1(((Gs)der)®®) nor any coefficient in the expression of a root of G in terms of a
base of simple roots. The (g//G)-group J defined in Theorem 4.2.8 is smooth and the centralizer

Cgres < Ggres  of the universal reqular section of the Lie algebra g of G is g"*®-smooth.

Proof. The assumptions imply that Z(G) has no torsion residue characteristics (see §4.1.12 and
footnote 17). Thus, the claim about J follows from the rest by descent (see Proposition 4.2.6).

For the rest, the g'®®-flatness of Cgres established in Theorem 4.2.8 allows us to assume that S is
the spectrum of an algebraically closed field k. Moreover, the open locus of g over which Cgyree is
smooth is open and stable both under the G,,-scaling and the adjoint action of G. Thus, since the
map g™ — g//G is open and its geometric fibers consist of single G-orbits (see Proposition 4.2.6),
the open of g"*& over which Cgres is smooth is a preimage of a G,-stable open U < g/ G. The
Gm-action on g/ G extends to a map

A x4 g/G — g//G that maps {0} xxg/G to {0}cg/G.

Thus, once we show that {0} = U in g/ G, it will follow that the preimage V < Al x, g/ G of U
under the action map G, xj g/ G — g/ G contains {0} x5 g/G. Then V will meet every geometric
fiber of the projection G,, x; g/ G — g//G, and hence, being stable under the G,-action on the
first coordinate, V' will contain every such fiber. The desired U = g//G will follow.

To argue the remaining inclusion {0} c U, since the fiber of g"*® — g/ G above {0} consists of the
regular nilpotent sections (see Corollary 4.1.18), we need to show that the centralizer C(7) of every
regular nilpotent v € g*°¢(k) is smooth. Such ~ form a single G(k)-conjugacy class (see §4.2.2), so it
suffices to show that Cg(7) is smooth when

YV i=Dea €a for some pinning {eq}aea of G.

Then, letting Z < G be the maximal central torus, we have the group homomorphism

Z x Cay., (7) = Ca(v),

which is surjective and hence also flat. It remains to note that Cg, (7) is smooth by [Spr66,
Theorem 5.9 a)| (which even shows that our assumption on char(k(s)) is sharp). O

The “Galois-theoretic” description of the torus J ](g Jc)rs presented in Proposition 4.2.13 is key for §4.3
and mildly generalizes [Ng610, proposition 2.4.2] by weakening its assumption that the cardinality
of the Weyl group be invertible on the base (in turn, loc. cit. builds on [DGO02, Section 11| that
considered a situation over C). The proof of this description will use the following lemma, which
improves [Ricl7, Lemma 3.5.3].
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Lemma 4.2.12. Let G be a root-smooth reductive group over a scheme S such that Z(G) has no
torsion residue characteristics, let T < G be a maximal S-torus with Lie algebra t — g and let
W := Ng(T)/T be the Weyl group scheme. The map t — t/W is finite locally free of degree #W
and is a W-torsor over /W and for any Borel S-subgroup T < B < G the maps

~ (417 4.1.10
th and g—g/G = /W
mduce an isomorphism
g — @' xyp t over g (4.2.12.1)

Proof. The map (4.2.12.1) is well-defined by (4.1.7.4). By Theorem 4.1.10 and Proposition 4.1.14,
we have t/W =~ g/ G compatibly with base change, so, after first reducing to the split, pinned
case, we may assume that S is a localization of Spec(Z). Over the geometric S-fibers the finite
map t — t/W is a morphism of affine spaces of the same dimension, so, by the fibral criterion
[EGA 1V3, corollaire 11.3.11], it is flat; its degree may be read off over "5/, over which it is a
W-torsor by Lemma 4.2.7. By Proposition 4.2.6, the S-scheme g"®® xy t is smooth, so it is the
normalization of g"® in (g8 X/ t)|grs. The same holds for g™ (see §4.1.7 and Proposition 4.2.3), so
we need to argue that (4.2.12.1) is an isomorphism over g™. By Proposition 4.1.8 and Lemma 4.2.7,
both sides of (4.2.12.1) are W-torsors over g**, so it suffices to note that the map is W-equivariant:
in terms of the isomorphism G/T xg t*° =~ g™ of Proposition 4.1.8, the map to t is simply the
projection. O

Proposition 4.2.13. Let G be a root-smooth reductive group over a scheme S such that %(Q)
has no torsion residue characteristics, let T' < G be a mazimal S-torus with Lie algebra t C g, set
5 :=tn g™, let W := Ng(T)/T be the Weyl group, let T < B < G be a Borel S-subgroup, and let
m:t — t/W be the indicated quotient map. The group J defined in Theorem 4.2.8 admits a

(t/W)-group homomorphism J — (m(T1))V  that is an isomorphism over /W, (4.2.13.1)

where and W acts on the restriction of scalars wy(Ty) via its actions on T and t. In particular,
J]trs/W becomes isomorphic to a base change of T over the finite étale cover 5 — '8 /W .

Proof. The proof is similar to that of [Ng610, proposition 2.4.2], but we include it since our
assumptions are slightly weaker. Firstly, t — t/W is finite locally free and a W-torsor over 'S/
by Lemma 4.2.12, so, by [BLR90, Section 7.6, Theorem 4, Proposition 5|, the restriction of scalars
(T x g t) is a smooth, affine (t/W)-group and it suffices to settle (4.2.13.1). For the latter, we will
use the Cartesian square supplied by Lemma 4.2.12 using our fixed Borel B:

reg (417:3)
gres — st

g8 /W

in which the vertical arrows are finite locally free and the horizontal ones are smooth by Propo-
sition 4.2.6. In particular, since the map (4.1.7.3) is W-equivariant (see Proposition 4.1.9) and
t/W =~ g//G (see Theorem 4.1.10), by arguing by descent as in the proof of Theorem 4.2.8 it suffices
to produce a G-equivariant homomorphism

Japor = (7 (Tyees))
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that is an isomorphism over g™ (that is, over the preimage of t'°/W, see Corollary 4.1.18). The
group Jgreg is G-equivariantly identified with the centralizer Cyres of the universal regular section of
g (see Theorem 4.2.8), the restriction of 7’ to g™ is a W-torsor, so that

g — (mL(E)"

and likewise for Cyrs, and the G- and W-actions on g™® commute (see Proposition 4.1.9). Thus, all
we need to do is to exhibit a G-equivariant and W-equivariant homomorphism Cyres — Tires that is
an isomorphism over g*.

The group Gres comes equipped with two subgroups: the base change Cyreg of the universal centralizer
and the base change By of the universal Borel, and we claim that Cyres © Byreg. For this we may
first work étale locally on S and then reduce to S being a localization of Spec(Z). Moreover, by
Theorem 4.2.8, the g*&-group Cyres is flat, so it suffices to check that Cys < Bys. By Theorem 4.2.8
again, Cys is reduced, so this inclusion may be checked fiberwise and amounts to the assertion that
for a geometric S-point s, the G-centralizer of a v € g™(5) lies in every Borel whose Lie algebra
contains . This, however, follows from the Jordan decomposition and Lemma 4.2.7.

The universal Borel B may be identified with the universal (G/B)-conjugate of our fixed Borel T' c B
and, in particular, the quotient by its unipotent radical is canonically a base change of T'. Thus,
the inclusion Cﬁreg c Bﬁreg gives a desired homomorphism Cg’reg — Tareg that is G-equivariant and
W -equivariant by construction: for instance, to check the W-equivariance, one may work over g,
use Proposition 4.1.8 to identify g** >~ G/T x g t, and then note that on the quotient Bgres — Tyreg the
difference between the “conjugating back” by ¢g~! and by (gw~!)~! is the action by w on T'. Finally,

the map Cﬁreg — Tres is an isomorphism over g' because it is so fiberwise by Lemma 4.2.7. OJ

The following result about the conjugacy class of the Kostant section illustrates the utility of the
Galois-theoretic description of .J supplied by Proposition 4.2.13 and complements the fact that the
geometric fibers of g — g//G above points in (g/G)™ consist of single G-orbits (see Corollary 4.1.18).

Theorem 4.2.14. For a seminormal, strictly Henselian, local ring R and a reductive R-group G
with Lie algebra g, if the order of the Weyl group of G is invertible in R, then the

fibers of g™ (R((t)) — (g/G)™*(R((t) are precisely the G(R((t)))-conjugacy classes in g**(R((t))).

Proof. Since the order of the Weyl group is invertible in R, the group G satisfies all the “no small
residue characteristics” assumptions that appear earlier in this chapter (see §4.1.1, §4.1.12, and
footnote 17), so we may freely apply the preceding results in this proof. In the statement, we let

(9/G)"cg/G

denote the open image of g (see Proposition 4.2.6); by Corollary 4.1.18, its preimage in g is precisely
g". Thanks to a Kostant section (see §4.2.4), the map is surjective as indicated.

The map g™ — g/ G is invariant under G-conjugation, so G(R((t)))-conjugate elements of g*s(R((t)))
agree in (g/G)(R((t)). Conversely, fix v1,v2 € g"™(R((t))) that have a common image

7€ (8/G)"(R(1) = (9/G)(R(1))-
Theorem 4.2.8 ensures that
[67/G] — (8/G)"
is a gerbe bound by J(g/q)s, so the functor that parametrizes isomorphisms between the images of
71 and 72 in [g"/G] is a torsor under Jg(y) (pullback of J along 7). By Proposition 4.2.13, this

JRr() is an R((t)-torus that splits over a W-torsor for some finite group W whose order is invertible
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in R. Thus, by Theorem 3.2.4, the torsor in question is trivial and the images of v; and =5 in
[9"°/G])(R((t))) may be identified. The fiber of the map

g° — [67/G]

over this common image is a G'g(y)-torsor trivialized both by 71 and 72, so the latter are indeed
G(R((t)))-conjugate, as desired. O

4.3. The product formula for the Hitchin fibration beyond the anisotropic locus

Our final goal is Ngo's product formula over the entire A" stated precisely in Theorem 4.3.8 below.
The construction of the stack morphism that encodes this formula amounts to glueing torsors with
the help of a twisted Kostant section for quasi-split groups, so our first goal is to construct this
section in Proposition 4.3.2. We begin with a brief review of quasi-splitness in order to remind that
beyond semilocal bases this is a more stringent condition than the existence of a Borel.

4.3.1. Quasi-split reductive groups. We recall from [SGA 311 e, exposé XXIV, section 3.9|
that a reductive group G over a scheme S is quasi-split if it has a maximal S-torus and a Borel
S-subgroup 7' B < G such that on the S-scheme Dyn(G) of Dynkin diagrams the line bundle g.
given by the universal root space that is simple with respect to B is trivial. In this case, a choice of
T c B c G and a trivialization e of g, constitutes a quasi-pinning of G. For example, when G is
split with respect to T, a choice of B amounts to that of a system A of positive simple roots,

Dyn(G) = [ Joen S,
the line bundle g, is given by the T-root space g, on the copy of .S indexed by «, and e amounts to
a trivialization of each g, (equivalently, to a nilpotent section of g := Lie(G) that is principal with
respect to A). Thus, in the split case the datum of a quasi-pinning amounts to that of a pinning.

We are ready to build a twisted Kostant section under more general conditions than in [Ngo610,
lemme 2.2.5].

Proposition 4.3.2. Let T' € B < G be a quasi-split reductive group over a scheme S with Lie
algebras t < b < g and Weyl group W := Ng(T)/T, let G be the reductive S-group that is the form
of G that is split Zariski locally on S,*" and suppose that there is a G-isomorphism

t: Lie(G) — Lie(G)*

and that char(k(s)) for s € S divides neither #71(((Gs)der)®) nor any coefficient in the expression
of a root of G5 in terms of a base of simple roots. The Chevalley morphism

g — t/W  admits a section e: t/W — g'*® (4.3.2.1)
and for any Gu,-torsor £ on S with ty 1=t x(gfm L and gy =9 xgm £, the induced S-morphism
[0.902/G] — tgee/W admits a section eg: tye /W — [g'g%:/G]. (4.3.2.2)

Proof. The assumption on #m;(((Gs)ger)®?) implies that G is root-smooth (see §4.1.1), so the
Chevalley morphism makes sense (see Theorem 4.1.10). We are assuming that G is quasi-split with
respect to T' B, so we choose a trivialization e that extends them to a quasi-pinning of G (see
§4.3.1). By passing to the clopens of S on which Z(Gs) is constant, we assume that G is split.

For (4.3.2.1), by descent, we may assume that G = G and that G is split with respect to T" at the
expense of needing to check that the canonical Kostant section § built in Remark 4.2.5 using e
and ¢ is invariant under any automorphism of G that preserves the pinning. The construction of &

20We recall from [SGA 3111 new, exposé XXII, définition 1.13] that the root datum of a split group is necessarily
constant on the base.
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gives this invariance because it only involves structures respected by every automorphism of G that
preserves T', B, and e (in particular, the formula for S does not use ¢, which need not be preserved
by such an automorphism). To deduce (4.3.2.2), we first note that ggee = g, and tgee = ty,
where (—)" means that the contracted product is formed with G, acting on g and t by the square
of its scaling action (in terms of a local trivialization ¢ for .2, the identifications are induced by
(7, £%%) > (7, £)). To then construct the desired section

i ty/W — [d3%/G] of [gy/G]— ty/W,
it suffices to find a functorial isomorphism given by G-conjugation that transforms the map
G xst/W x5 L — g'y® givenby (¢, (1,0)) = (e(1),€) into (¢, (7,0)) — (e(t™>7),tl).
Letting 2p: G,, — G be the sum of those coroots that are positive with respect to B, we have
(€(727), 1) = (Pelt™r),0) 2D (Ad(@0)(0)elr). ) i g,
so the desired functorial conjugation is t — Ad((2p)(t)). O

4.2.4.1)

The subsequent §§4.3.3—4.3.5 review the main actors that appear in the product formula.

4.3.3. The Hitchin fibration. Let S be a scheme, let m: X — S be a proper, smooth scheme
morphism with connected geometric fibers of dimension 1, let G be a reductive X-group with Lie
algebra g, and let . be a Gy,-torsor on X. The total Hitchin space associated to this data is the
restriction of scalars

My = m([02/G]), where gy :=gx5".Z and G acts via its adjoint action on g
(in spite of abusive notation, we stress that G acts on gy on the left, compare with §1.5).

By the general criterion for the algebraicity of restrictions of scalars [HR19, Corollary 9.2 (ii)] (or by
the more specific [Ng610, section 4.2.2]), the stack M ¢ is algebraic, locally of finite presentation
over S, and has an affine diagonal. Concretely, for an S-scheme S’, the groupoid M ¢ (S’) consists of
left Gx,-torsors E equipped with a G-equivariant X-map E — g, equivalently, it is the groupoid
of left G x,-torsors E equipped with a section

pe H(Xg,(E xx, (82)x5)/Gxg); (4.3.3.1)
where Gx,, acts on both factors of E' xx, (g.#)x,, - For a maximal X-torus T' = G with its Lie
algebra t ¢ g and Weyl group W := Ng(T')/T, the Hitchin base is the restriction of scalars of to/W:

Ag i=m(ty/W), where tg:=t x%" Z.
If G is root-smooth, then we have the regular semisimple locus
tS/W cty/W, where {35 :=tyngh.
Its preimage under the universal section X 4., — (tf/W)XAg is an open (X4, )" < X4, whose
image is the open
AS; c Ay over which the (X4, )™ is fiberwise dense in X 4.,.
The map [gy/G] — t/W supplied by Theorem 4.1.10 induces the Hitchin fibration morphism
fo Mgy —> Agp. (4.3.3.2)

If G is quasi-split with respect to T' and, say, #W is invertible on S, then for every algebraically
closed S-field k, Proposition 4.3.2 (with Remark 4.2.5, especially, footnote 18, to obtain the pairing
¢) supplies a Kostant section

ez tgee/W — [g56:/Gl,
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which induces a Kostant—Hitchin section
€t A‘g@z% — M2®2,E of the k-fiber of the Hitchin fibration f‘%@Q’E: M$®2,E — A2®27E.
By construction, the Kostant—Hitchin section factors through the open substack
MGz = mi([8.562/G]) © M gen.

4.3.4. The affine Springer fibers. In the setting of §4.3.3, suppose that G is quasi-split and #W
is invertible on S, let k& be an algebraically closed S-field, let a € A 422 (k) be a k-point as indicated,
let the corresponding section of the map (tge2/W)x, — X7 be

a: Xz — (tgez/W)x, andlet Xg° < Xz be the a-preimage of (£9g:/W)x, < (tge/W)x,,

so that, by definition, a € A;@ (k) if and only if X[ # . Moreover, consider a k-point v of Xz,

let O, ~ K[t,] be the completed local ring of X3 at v, and let
al, € (teee/W)(Oy)

be the resulting @U—point. The affine Springer fiber at v is the functor M ge2 , , that sends a
k-algebra R to the groupoid of lifts

Spec(R[t,]) = Spec(O,®gR) - - + [g.4e2/G]

T |

tywe /W

equipped with an isomorphism between the restriction to (@U@)ER)[%] and the corresponding restric-
tion of the Kostant—Hitchin lift € ¢ (a). Analogously to after (4.3.3.1), the data being parametrized
amount to a G@v @R—torsor E, equipped both with a G-equivariant X-morphism F, — g g2 that
lifts al 3, and an isomorphism after localizing away from v with the analogous data determined by
e (a). Since t, is a nonzerodivisor in R[t,], this rigidification with respect to the Kostant—Hitchin

section eliminates nontrivial automorphisms, so the functor M g2 , ,, is set-valued.

By [Ng610, proposition 3.2.1] (see also [KL88, Section 2, Proposition 1] and [Yunl7, Theorem 2.5.2|),
if al GulL] factors through t%,,/W, as happens if and only if a € Af;@)z (k), then Mggo , , is

T
representable by an ind-scheme whose associated reduced Mf;fgm u.p 18 a locally of finite type,

finite-dimensional k-scheme.

4.3.5. Symmetries of the Hitchin and affine Springer fibers. Assume the setting of §§4.3.3—
4.3.4 with G quasi-split and #W invertible on S, and a point a € A »2(k). We use the corresponding
section a: Xz — (tgez/W)x, to pull back the descent J of the universal regular centralizer
constructed in Remark 4.2.10. Thanks to the G-equivariant homomorphism

(4.2.10.1)

ng®2
to the universal G-centralizer, the resulting Xz-group J, acts on the objects of the Xz-stack
[9.492/G]x,. Thus, descent allows us to twist these objects by J,-torsors, so the a-fiber M g2 , of
the Hitchin fibration (4.3.3.2) admits an action of the Picard k-stack

Pa = (m5)«(B(Ja)),
where B(—) denotes the classifying stack. By the general criterion [HR19, Corollary 9.2 (ii)] for

representability and properties of restrictions of scalars, the stack P, is algebraic and its diagonal is
affine.

JB$®2
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Under the assumption that a € .A_Q; (k), for each closed point v € X7 we also consider the functor Py,
that for a variable k-algebra R parametrizes J,-torsors over Ov@)gR equipped with a trivialization
over (OU@R)[%] The same considerations as for P, show that P, , acts on the affine Springer

fiber M g2 4 ,. By [Ngo10, section 3.3, especially, lemme 3.3.1], the functor P, , is representable by
d

(2

an ind-scheme whose associated reduced P;%, is a locally of finite type k-scheme. Due to its group

structure, Pé?‘g is even k-smooth, and it inherits an action on the locally of finite type k-scheme
d
M.f;”@z,a,v'

4.3.6. The product formula morphism. Assume the setting of §§4.3.3-4.3.5 with G quasi-split
and #W invertible on S, in particular, fix a point a € AE@ (k) valued in an algebraically closed
field, so that X;® < X7 is a dense open, and let U, < X;® be a dense open. Due to the moduli
interpretation of M g2 , and M g2 , ,, Beauville-Laszlo glueing in the style of Lemma 2.2.11 of
the Kostant-Hitchin section e« (a)|y, to sections of affine Springer fibers at the points in Xz\U,
gives a k-stack morphism

HUGXE\UG Mi”@?,a,v - M$®2,a- (4361)
A similar glueing gives an action of [ [, XA\Us Pa, v on P,. Thus, by twisting the glueing that gives

the morphism (4.3.6.1) by variable J,-torsors as in §4.3.5, we obtain the k-stack morphism

HueXE\Ua Pa,v Pa N Mj@Q,a (4362)

H’UEX?\UQ M$®2,a,v X
whose source is the stackification of the prestack quotient that is described in general®' in [Ngo06,
before lemme 4.7, see also [Rom05, proof of Proposition 2.6] (since M g2 , , and Pq,, are only ind-
schemes, we do not claim any algebraicity for this source). The map (4.3.6.2) is fully faithful: since
its target is already a stack and stackification sheafifies the morphism functors |[SP, Lemma 02ZN],
it suffices to see this on points valued in a k-algebra R before the stackification, and then we use the
Beauville-Laszlo glueing as follows. An isomorphism in M g2 , between the glueings of

((my),p) and  ((m,),p’)

amounts to both a J,-torsor isomorphism p|y, — p'|u, (see the gerbe aspect of Remark 4.2.10),
which, after twisting by uniquely determined (p,) in [ [, X\Ua Pa, v (the difference between the

Ja-torsors p’ and p), extends to a J,-torsor isomorphism p — p/, and, granted this uniquely
determined adjustment, isomorphisms

my — m;, for ve Xp\Us.

To counter the potentially nonalgebraic nature of the source of (4.3.6.2), one considers the following
variant. As reviewed in §§4.3.4—4.3.5, both M§d®2 0 p and Pffd are locally of finite type k-schemes,

v
red

with 73;??) even a smooth k-group that acts on M'sg, . The smoothness ensures that the stack

red

]__[ M X HUEXE\UQ 7)2?% P
veXz\Ua L2 q v

a

is algebraic and, by [SP, Lemma 076V] and [Rom05, Theorem 4.1 and its proof], may be formed in
the étale topology. Consequently, the explicit description of the quotients before the stackification

21We recall that for a 1-category 2 and a group G acting on 2, the quotient 2" /G is the 1-category whose objects
are those of 2" and morphisms between objects z and z’ are given by pairs (g,¢) with g € G and + € Hom & (gz, z').
The source of (4.3.6.2) is the stackification of this construction performed on groupoids of sections.
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reviewed in footnote 21 and the agreement of Mgk, . and M gez , , (respectively, of 77;?‘3 and

Pa,v) on reduced rings implies that the morphism

red
d HveXf\Ua Pa, v HveXf\Ua Pa,v
HveXE\Ua M2 44 % z Py — HUEXE\Ua Mgz 4, % z Pa (4.3.6.3)

is an equivalence on R-points for every reduced k-algebra R. The composition of (43()72) and
(4.3.6.3) is the promised product formula morphism between locally of finite type algebraic k-stacks:

H'u - ’Pr?d
[oexpo, Mghe o, < 575" Py —> Myger . (4.3.6.4)

By the above, this map is fully faithful on groupoids of R-points for every reduced k-algebra R.

The proof of the product formula in Theorem 4.3.8 will rely on the following general lemma, whose
argument shows that the locally of finite type over a field assumption could be weakened significantly.

Lemma 4.3.7. Let f: X — Y be a map of algebraic stacks that are locally of finite type over a
field k. If f(R) is an equivalence for normal, strictly Henselian, local k-algebras R, then f is a
universal homeomorphism.

Proof. The assumption about R is stable under base change along any )’ — ). Thus, by passing to
a smooth cover of ) and using the fppf local on the base nature of being a universal homeomorphism
[SP, Lemma 0DTQ], we may assume that ) is an affine scheme. Moreover, by letting R be a field,
we see that the map X — ) induces a continuous bijection on the underlying topological spaces
defined in [SP, Lemma 04XL, Definition 04XG|, and continues to do so after any base change. Thus,
we only need to argue that it is also universally closed. For this, we consider the normalization
morphism y — Y, which, due to our setup over k and [SP, Lemmas 035Q and 035S], is finite
and surjective. These properties are preserved after base change along X — ), so, for proving
the remaining universal closedness of X — ), we may pass to &' xy 37 — )7 and assume that )
is normal. The assumption now implies that the morphisms Spec(ﬁi}jy) — Y lift to X, so, since
the latter is locally of finite presentation over k, we conclude from a limit argument that the map
X — Y has a section étale locally on ). In particular, after base change to some étale cover of Y,
by [SP, Lemma 0DTQ)] again, we may assume that our universal continuous bijection X — ) has a
section, a case in which it certainly is a universal homeomorphism. ]

Theorem 4.3.8. Let S be a scheme, let X be a proper, smooth S-scheme with geometrically connected
fibers of dimension 1, let £ be a Gy,-torsor on X, let G be a quasi-split reductive group over X,
and let k be an algebraically closed S-field in which the order of the Weyl group of G is invertible.

(a) For an a € Af;@ (k) and a dense open U, = X, the morphism of locally of finite type
algebraic k-stacks

pred 4.3.6.4
HUEXE\UG MGo2 o sl lvexguva P Pa SR Mg q (4.3.8.1)

is a universal homeomorphism that induces an equivalence on the groupoids of R-points for
every seminormal, strictly Henselian, local k-algebra R.

(b) If k is the algebraic closure of a finite field”” and a € .Af;@ (k) is anisotropic in the sense that
the set of connected components wy(Pg) is finite, then the universal homeomorphism (4.3.8.1)
is a finite morphism that is representable by schemes.

22The only purpose of the finite field assumption is to be able to apply results from [Ngo10], especially, [Ng610,
proposition 4.15.1].
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Proof. Lemma 4.3.7 reduces the universal homeomorphism aspect to the claim about R-points. For
the latter, since a seminormal R is reduced (see §1.5), we already know from §4.3.6 that the map
(4.3.8.1) is fully faithful on R-points. For the essential surjectivity, fix an m € M ge2 ,(R). By
the gerbe aspect of Remark 4.2.10 and the agreement of g g2 and 92%2 over t'%5, /W ensured by
Corollary 4.1.18, the restrictions m|y, and e¢(a)|y, differ by a uniquely determined (Jg|y, )-torsor.
Thus, it suffices to show that this (J4 |y, )-torsor extends to a J,-torsor over the entire Xz—we would
then be able to absorb it together with m into the source of (4.3.8.1). By Beauville-Laszlo glueing
(see Lemma 2.2.11 (b)), restriction to the punctured formal neighborhoods R((t,)) of (X%)r along the
points v € X3:\U, then reduces us to arguing the triviality of J,-torsors over such R((t,)). However,
the Galois-theoretic description supplied by Proposition 4.2.13 implies that J,| R((t,) 18 & torus that
trivializes over some W-torsor. Since #W is invertible in R, Theorem 3.2.4 ensures that

H' (R((tv))a Ja) =0,
and it follows that m is in the essential image, as desired.

Assume now the setup of (b), so that, by [Ngo10, proposition 4.15.1], the source of (4.3.8.1) is
Deligne-Mumford with quasi-compact and separated diagonal. By §4.3.3, the diagonal of the
target of (4.3.8.1) is even affine. Thus, since the map (4.3.8.1) induces an equivalence on points
valued in algebraically closed fields, by the criterion [Ces17, Lemma 3.2.2 (b)] for which in the
Deligne-Mumford case it suffices to consider field-valued points as indicated there, it is representable
by algebraic spaces. By bootstrap [SP, Lemma 050N], this map is also quasi-separated, so the
valuative criterion [SP, Lemma 03K V] and the first part of the claim for R a valuation ring imply that
(4.3.8.1) is separated. However, by [Ryd10, Corollary 5.22], a separated universal homeomorphism
of algebraic spaces is representable by schemes. Thus, since it is also locally of finite type and, by
[SP, Lemma 04DF], integral, it is necessarily a finite morphism. ([l
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