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Abstract. We investigate the spectral distribution of the damped wave equation
on a compact Riemannian manifold, especially in the case of a metric of negative
curvature, for which the geodesic flow is Anosov (very chaotic). The final objective
is to obtain conditions (in terms of the geodesic flow on X, the structure of the
damping function) for which the energy of the waves decays exponentially fast, at
least for smooth enough initial data. The spectrum of the equation amounts to a
nonselfadjoint spectral problem.

Using semiclassical methods, we derive estimates and upper bounds for the high
frequency spectral distribution, in terms of dynamically defined quantities, like the
value distribution of the time-averaged damping. We also consider the toy model
of damped quantized chaotic maps, for which we derive similar estimates, as well
as a new upper bound for the spectral radius depending on the set of minimally
damped trajectories.
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1. Introduction

1.1. Spectrum of the damped wave equation. Given a given a Riemannian
manifold (X, g) and a damping function a ∈ C∞(X,R+), we are interested in the
solutions of the (linear) damped wave equation (DWE)

(1.1) (∂2
t −∆ + 2a(x)∂t)v(x, t) = 0, v(x, 0) = v0, ∂tv(x, 0) = v1 .

Equivalently, we want to solve the system

(1.2) (i∂t +A) v(t) = 0, A def
=

(
0 I
−∆ −2ia

)
, with v(t) = (v(t), i∂v(t)) .

Then, if a ̸≡ 0, the energy

(1.3) E(v(t)) =
1

2

(
∥∇v(t)∥2 + ∥∂tv(t)∥2

)
of any initial (v0, v1) will decay to zero.

To analyze the decay, we notice that A generates a strongly continuous semigroup
on the space H def

= H1(X)× L2(X), so the solution to (1.1,1.2) reads

(1.4) v(t) = e−itAv(0), v(0) ∈ H.

To analyze the decay of this solution it it natural to try to expand it in terms of
the spectrum of A. This spectrum is discrete, consisting of countably many complex
eigenvalues {τn} with Re τn → ±∞. It can be obtained by solving the generalized
eigenvalue equation

(1.5) P (τ)u =
(
−∆− τ 2 − 2iaτ

)
u = 0.

To each eigenvalue τn corresponds a quasi-stationary mode un(x) satisfying P (τn)un =
0. Such a mode leads to a solution

vn(t, x) = e−itτnun(x)

of the damped wave equation. Hence Im τn represents the quantum decay rate of
this stationary mode un. The corresponding eigenstate of A reads un = (un, τnun).

Lemma 1. If Re τn = 0, then − Im τn ∈ 2[amin, amax].
If Re τn ̸= 0 then − Im τn ∈ [amin, amax].

Proof. Expanding the imaginary part of ⟨u, P (τ)u⟩ = 0, we get

− Im
(
τ 2

)
∥u∥2 − 2 Re τ⟨u, au⟩ = 0.

If Re τ ̸= 0, this simplifies into

− Im τ ∥u∥2 = ⟨u, au⟩.

If τ = it, ⟨u, P (it)u⟩ = 0 becomes

∥∇u∥2 + t2 ∥u∥2 + 2t⟨u, au⟩ = 0 .

Since ⟨u, au⟩ ≥ 0, we have t ≤ 0, and then either t = 0 (which corresponds a
constant solution), or t < 0, which implies

−t ∥u∥2 ≤ 2⟨u, au⟩ =⇒ −t ∈ 2[amin, amax].

�
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Figure 1.1. Spectrum of the damped wave equation.

X
a(x)>0

Figure 1.2. A damped geodesic.

The spectrum is symmetric w.r.to the imaginary axis:

(τ, u) solution ⇐⇒ (−τ̄ , ū) solution.

1.1.1. The condition of geometric control. As we will see below, the distribution of
the quantum decay rates Im τn in the high frequency regime will be constrained by
the ergodic averages of the damping through the geodesic flow on S∗X, that is the
functions

⟨a⟩T =
1

T

∫ T

0

a ◦ Φs ds, on S∗X.

The damping a(x) is said to satisfy the Geometric Control Condition (GCC) if there
exists T0 such that, for any ρ ∈ S∗X, the trajectory Φt(ρ) meets the damped region
{a(x) > 0} for some time t ∈ [0, T0]. As a consequence, there exists c > 0 such that,
for T large enough, the function ⟨a⟩T ≥ c > 0 everywhere. We will show below
(Thm 8) that, as a consequence, the quantum decay rates satisfy Im τn ≤ −c+ o(1)
when Re τn →∞.

Lebeau [Leb93] showed that GCC is equivalent with the uniform exponential
decay of the energy for initial data in H, namely, there exists C > 0, γ > 0 such
that, for any data v(0) ∈ H,

(1.6) E(v(t)) ≤ C e−2γtE(v(0)) ≤ C e−2γt ∥v(0)∥2H .
In this GCC case, the optimal decay rate γ is given by min (G, a−), where G =
inf {Im τn, τn ̸= 0} is the spectral gap, while

a−
def
= lim

T→∞
min
S∗X
⟨a⟩T

is the minimal asymptotic damping. We will sketch a proof of this decay estimate
in §1.3.3.

Koch and Tataru [KoTa94] studied the same question in a more general context
(case of a manifold with boundaries, and of a damping taking place both in the
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“bulk” and on the boundary). They first showed that the minimum of ⟨a⟩T on S∗X
really governs the decay of the semigroup on H, up to compact subspaces.

Theorem 2. [KoTa94]For each ϵ > 0 and each t > 0 there exists a subspace Hϵ,t ⊂
H of finite codimension such that∥∥e−itA∥∥

Hϵ,t→H ≤ exp
{

max
S∗X
⟨a⟩T

}
+ ϵ.

Moreover, for any subspace H1 ⊂ H of finite codimension,

exp
{

max
S∗X
⟨a⟩T

}
≤

∥∥e−itA∥∥
H1→H .

A consequence of this result is the characterization of the Fredholm spectrum of
the semigroup. In the present situation of damped waves on a compact X withough
boundary, their result states1 that this Fredholm spectrum is given by the annulus
{z ∈ C, e−ta+ ≤ |z| ≤ e−ta−}.

In absence of GCC, one cannot have such a uniform exponential decay for arbitrary
data in H: one can cook up initial data in H with arbitrary slow decay, e.g. by
using Gaussian beams of higher and higher frequencies localized along undamped
geodesics. However, in case the spectral gap G is positive and one has algebraic
resolvent estimates in the eigenvalue free strip, it is possible to prove the presence
of such an exponential decay for more regular data. Typically, one can try to prove
exponential decay estimates of the form

(1.7) E(v(t)) ≤ Cs e
−γst ∥v∥Hs , ∀v ∈ Hs.

Here Hs = Hs+1 × Hs, s > 0, is a Sobolev space of “regular” data, and the decay
rate γs > 0. The example of thin Gaussian beams then breaks down, because the
Hs norms of such beams grows algebraically with the frequency. We provide the
proof of such a decay with loss of derivatives in §1.3.1.

1.2. High frequency limit – semiclassical formulation and generalization.
The main question we want to address is the distribution of eigenvalues τn, and in
particular of their imaginary parts, in the high-frequency limit Re τn ≫ 1.

A semiclassical reformulation was used in ([Sjo00]): take ~ ≪ 1 and consider
eigenvalues τn ≈ ~−1, by writing

(1.8) τ =

√
2z

~
with z ∈ D(1/2, C~).

The equation (1.5) becomes

(1.9) (P (~, z)− z)u = 0, P (~, z) = −~2∆

2
− i~
√

2z a = −~2∆

2
− i~a+O(~2).

More generally, we may consider operators of the type

(1.10) P (~, z) = −~2∆

2
+ i~ Op~(qz).

where q = qz ∈ S1(X) depends holomorphically on z ∈ D(1/2, C~). This is the
most general framework considered in [Sjo00]. The unboundedness of q ∈ S1(X)
when |ξ| → ∞ is not a real challenge, since one is interested in the region |ξ| ≈ 1.

1Their result holds under the condition that, for any T > 0, the set of T -periodic geodesics has
measure zero.
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However, for simplicity of presentation we will assume that q is real valued, that
it is independent of z, and that it is in the symbol class2 S0(X). This will imply the
convenient property that the “damping operator”

Q = Op~(q)

will be uniformly bounded in L2(X), for ~ small enough. By abuse, we will refer to
the function q(x, ξ) as “the damping”. We are then interested in the semiclassical
distribution of the eigenvalues zn(~) ∈ D(1/2, C~) of the operator

(1.11) P (~) = −~2∆

2
+ i~ Op~(q)

The principal symbol of this operator is p0 = |ξ|2
2

, which generates the geodesic flow
Φt = exp(tHp0) on T ∗X, with unit speed on the energy shell p−1

0 (1/2) = S∗X. The
function iq(x, ξ) is the subprincipal symbol of P (~).

1.3. From resolvent estimates to energy decay. (see [Leb93] [Hit03][BuHi07][Chris09]).

1.3.1. From the resolvent to the semigroup. We want to expand the semigroup eitA
using the resolvent (τ −A)−1. This resolvent always satisfies the bound∥∥(τ −A)−1

∥∥
H→H ≤

1

Im τ
, Im τ > 0.

For some integer k ≥ 2, we may write for any v(0) ∈ H and any t > 0:

(1.12) e−itA(I + iA)−kv(0) =
1

2iπ

∫
R+i/2

e−itτ (1 + iτ)−k (τ −A)−1 v(0) dτ.

By inserting (I + iA)−k we ensure that the above integral converges absolutely in
H.

Now, assume that we have proved a resolvent estimate3

(1.13)
∥∥(τ −A)−1

∥∥
H→H . τN in the strip {|Re τ | ≥ C, Im τ ≥ −γ}

for some height γ > 0 and power N ≥ 0. In particular, this implies that A has
finitely many eigenvalues such that Im τn > −γ. Up to taking a smaller γ, we may
assume that the only eigenvalue in {Im τ > γ} is the zero eigenvalue, corresponding
to the constant function. This function has no effect on the energy, so we may
remove it from the initial data v(0) and consider the evolution of
(1.14)

u(0) = (I−Π0)v(0), Π0 =
1

2iπ

∮
0

(τ−A)−1 dτ the spectral projector on the constant function.

The operator (τ−A)−1(1−Π0) is holomorphic in {Im τ ≥ −γ}. By taking k ≥ N+2,
we may deform the contour of integration of (1.15) into the line R− iγ, keeping an

2The class Sk(X) denotes the functions a(x, ξ; ~) satisfying the following bounds: for any multi-
indices α, β ∈ Nd, ∣∣∣∂α

x ∂β
ξ a(x, ξ; ~)

∣∣∣ ≤ Cα,β ⟨ξ⟩k−|β| uniformly for ~ ∈ (0, 1),

where we used the standard notation ⟨ξ⟩ =
(
1 + |ξ|2

)1/2.
3Below a(τ) . b(τ) will always mean that a(τ) ≤ Cb(τ) for some constant C > 0.

5



absolutely converging integral:

(I + iA)−k e−itAu(0) =
1

2iπ

∫
R−iγ

e−itτ (1 + iτ)−k (τ −A)−1 u(0) dτ(1.15)

=
e−tγ

2iπ

∫
R
e−itτ (1 + γ + iτ)−k (τ − iγ −A)−1 u(0) dτ.(1.16)

Using the bound (1.13), we obtain a uniform exponential decay:∥∥(I + iA)−k e−itAu(0)
∥∥
H . e−tγ ∥u(0)∥H .

This expression implies a uniform exponential decay for data u(0) = (I − Π0)v(0)
in the Sobolev space

{
v ∈ H, (1 + iA)kv ∈ H

}
= Hk:

∥u(t)∥H . e−tγ ∥u(0)∥Hk .

On the space H0 = (I −Π0)H, the norm ∥u∥2H is equivalent to the energy E(u), so
the above estimate implies an exponential decay of the energy for smooth enough
data:

(1.17) E(v(t)) . e−2tγ ∥(I − Π0)v(0)∥2Hk , ∀v(0) ∈ Hk.

1.3.2. Case of geometric control. The resolvent (τ − A)−1 can be easily written in
terms of the resolvent R(τ)

def
= P (τ)−1, P (τ)

def
= (−∆− τ 2 − 2iaτ):

(1.18) (τ −A)−1 =

(
−R(τ)(2ia+ τ) −R(τ)

−R(τ)(2iaτ + τ 2)− 1 −τR(τ)

)
.

In case the geometric control condition holds, Thm 8 implies that, for any ϵ > 0,
there exists Cϵ > 0 such that the following holds:

(1.19) ∥R(τ)∥L2→L2 . τ−1 {Im τ ≥ −a− + ϵ, |Re τ | ≥ Cϵ} .
Choose 0 < γ < min(G, a−), such the only eigenvalue in {Im τ ≥ γ} is the constant
function. We still have

(1.20) ∥R(τ)∥L2→L2 . τ−1 {Im τ ≥ −γ, |Re τ | ≥ C} .
The same estimate holds in the operator norm Hs → Hs for any s ∈ R. By
expanding (−∆− τ 2 − 2iτa)R(τ) = I one gets, in the same region

(1.21) ∥R(τ)∥L2→H2 . τ so by interpolation ∥R(τ)∥L2→H1 . 1.

By duality, we deduce
∥R(τ)∥H−1→L2 . 1.

From the identity R(τ) (−∆− τ 2 − 2iτa) = I, we get the following norm for the
lower left entry in (1.18):∥∥R(τ)(2iaτ + τ 2) + 1

∥∥
H1→L2 = ∥R(τ)∆∥H1→L2 ≤ ∥R(τ)∥H−1→L2 ∥∆∥H1→H−1 . 1.

From there we obtain the resolvent estimate∥∥(τ −A)−1
∥∥
H→H . 1, {Im τ ≥ −γ, |Re τ | ≥ C} .

Applying the method of the previous subsection, this implies an energy decay for
data v(0) ∈ H2:

E(v(t)) . e−2γt ∥(I − Π0)v(0)∥2H2 .

This estimate is not optimal. As we will show in the next subsection, in case of
geometric control one has a uniform exponential decay for initial data v(0) ∈ H.
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1.3.3. Geometric control - energy decay without loss of derivatives. To show the
exponential decay of the energy without a loss of derivative, one has to proceed a
bit differently, namely by transforming the DWE into an inhomogeneous equation,
and by invoking a Parseval identity w.r.to the time variable. We only sketch the
argument, which first appeared in the context of obstacle scattering[Mora75].

Call u(t, x) the solution of (1.1) with the data u(0) = (I − Π0)v(0). Apply a
smooth cutoff in time χ ∈ C∞(R), χ(t) = 0 for t ≤ 1, χ(t) = 1 for t ≥ 2. The
function w(t, x)

def
= χ(t)u(t, x) satisfies the inhomogeneous equation

(∂2
t −∆ + 2a(x)∂t)w(t, x) = f(t, x),

where the RHS f = χ′′u+2χ′∂tu+2aχ′u is supported in X× [1, 2]t. Apply a Fourier
transform in the time variable:

(1.22) w(t, x) =

∫
e−itτ ŵ(τ, x)dτ.

The Fourier transforms of w and v then satisfy the equationP (τ) ŵ(τ, x) = f̂(τ, x).

From there we get, using the holomorphy of R(τ)f̂(τ) in the strip {Im τ ≥ −γ}:

(1.23) etγ w(t) =

∫
R
e−itτR(τ − iγ)f̂(τ − iγ) dτ

We now recall the resolvent estimates (1.19,1.21). The RHS in (1.23) is the Fourier
tranform of ŵ(τ − iγ) = R(τ − iγ)f̂(τ − iγ) ∈ H1

x. Parseval’s formula in the time-
frequency variables reads

∥e·γw(·)∥L2
t (R,H1

x) = ∥ŵ(· − iγ)∥L2
τ (R,H1

x)

.
∥∥∥f̂(· − iγ)

∥∥∥
L2

τ (R,L2
x)

. ∥f∥L2
t (R,L2

x) .

On the second line we used (1.21), and in the third one the fact that f(t) is compactly
supported.

An easy computation (using Gronwall’s inequality and the fact that f is supported
in t ∈ [1, 2]) shows that ∥f∥L2

t (R,L2
x) . ∥u(0)∥H. Conversely, one can transform the

L2
t estimate for etγw(t) into a L∞

t estimate, and obtain:

(1.24) ∥w(t)∥H1
x

. e−γt ∥u(0)∥H , ∀t ∈ R.

Using (1.19), one can similarly obtain

(1.25) ∥∂tw(t)∥L2
x

. e−γt ∥u(0)∥H .

Since w(t) = u(t) for t ≥ 2, we see that (1.24,1.25) provide a decay estimate of the
energy for the initial data v(0):

E(v(t)) . e−2γt ∥(I − Π0)v(0)∥2H . e−2γtE(v(0)).

2. Semiclassical spectral distribution of P (~)

2.1. Weyl law for the real parts. The rough distribution of the real parts Re zn
is not affected by the damping, it is asymptotically given by the same Weyl law as
in the undamped case:
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Theorem 3. [Markus-Matsaev, Sjöstrand] For any ϵ > 0 small enough (possi-
bly depening on ~). Then the number of eigenvalues of P (~) in the strip Sϵ =[

1
2
− ϵ, 1

2
+ ϵ

]
+ iR, satisfies

# {SpecP (~) ∩ Sϵ} = (2π~)−d Vol ({|p0(x, ξ)− 1/2| ≤ ϵ}) +O
(
~−d+1

)
,

where Vol corresponds to the symplectic volume in T ∗X. This estimate implies that,
for C > 0 large enough,

(2.1) # {SpecP (~) ∩ SC~} ≍ ~d−1.

Proof. (Sketch) One starts from the selfadjoint operator P0(~) = −~2∆
2

, for which
we now that the result is OK. We then deform it into

P̃0(~) = P0(~) + δP,

where the self-adjoint perturbation δP is chosen such that P̃0 has no eigenvalue in
C0~-neighbourhoods of E± = 1

2
± ϵ, and δP has a trace norm ≍ ~−d+1. This trace

control shows that the eigenvalues of P̃0 in Sϵ satisfies the above Weyl estimate. We
then deform P̃0 into the nonselfadjoint family

P̃t(~) = P (~) + δP + it~ Op(q), t ∈ [0, 1].

Provided the “forbidden width” C0~ is large enough, the resolvent of P̃t remains
under control along the lines Re z = E± for all t ∈ [0, 1], showing that P̃1 has the
same number of eigenvalues in Sϵ as P̃0.

The last part (the most technical one) consists in showing that the difference
between the number of eigenvalues of P (~) and P̃1 = P + δP in Sϵ is an O(~−d+1).
Here one uses the resolvent identity

(z − P )−1 =
(
z − P̃1

)−1
(

1 + ~
(
z − P̃1

)−1

δP

)
,

and a good control on the trace norm of
(
z − P̃1

)−1

δP for z in the “forbidden
strips”. This allows to define and study the determinant

det

(
1 + ~

(
z − P̃1

)−1

δP

)
,

the vanishing of which corresponds to the eigenvalues of P (~). �

2.2. Distribution of the imaginary parts. From any eigenvalue/vector (zn, un)
of P (~), one can construct a solution v(x, t) = e−izt/~u(x) for the time dependent
Schrödinger equation i~∂tv − Pv = 0. The solution v decays exponentially in time,
which explains why the value

Im zn/~
can be called the quantum decay rate4 associated with un.

The first simple constraint for the quantum decay rates is the generalization of
Lemma 1 to the damping function q(x, ξ).

4It is more standard to call 2 Im z/~ the quantum decay rate: it is associated with the decay of
the probability density |v(x, t)|2. However, we will keep with the present definition.
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Lemma 4. Take P (~) = −~2∆/2 + i~ Op~(q), q ∈ S0(X). Then, for any γ >
maxS∗X q and for any ~ > 0 small enough, the following resolvent estimate holds:

∀z ∈ D(1/2, C~) ∩ {Im z ≥ ~γ} ,
∥∥(P (~)− z)−1

∥∥ ≤ Cγ
~
.

A similar estimate holds if Im z/~ ≤ γ < minS∗X q.
As a consequence, all eigenvalues in D(1/2, C~) satisfy

min
S∗X

q − o~→0(1) ≤ Im z

~
≤ max

S∗X
q + o~→0(1).

Proof. Assume that z ∈ D(1/2, C~) and Im z/~ ≥ maxS∗X q + ϵ. We need to prove
that there exists C1 > 0 such that

∀u ∈ L2(X) normalized, ∥(P − z)u∥ ≥ C1~ ∥u∥ .
We will use the fact that either the “real part” or the “imaginary part” of (P − z)u
is large.

Indeed, let us decompose

(P − z)u = (P0 − 1/2)u− (Re z − 1/2)u+ i~ (Q− Im z/~)u,

so that (through the triangle inequality)

∥(P − z)u∥ ≥ ∥(P0 − 1/2)u∥ − |Re z − 1/2| ∥u∥ − ~ ∥(Q− Im z/~)u∥
≥ ∥(P0 − 1/2)u∥ − (2C + ∥Q∥) ~.

Assume that, for some C0 > 2 (2C + ∥Q∥), we have ∥(P0 − 1/2)u∥ ≥ C0~ ∥u∥ .
Then we are done: ∥(P − z)u∥ ≥ C0

2
~ ∥u∥ .

On the opposite, assuming ∥(P0 − 1/2)u∥ ≤ C0~ ∥u∥, we write

(2.2) ∥(P − z)u∥ ≥ |⟨u, (P − z)u⟩| = ~ |⟨u, (Q− Im z/~)u⟩| .
We then construct a symbol q̃ ∈ S0(X), such that q̃ = q on S∗X, while

max
T ∗X

q̃ = max
S∗X

q̃ = max
S∗X

q, min
T ∗X

q̃ = min
S∗X

q̃ = min
S∗X

q.

We can write q = q̃+ k(p0− 1/2) for some symbol k ∈ S−1(X), and at the quantum
level

(2.3) Q = Q̃+K(P0 − 1/2) +O(~), K = Op~(k).

We then insert this decomposition in (2.2), and use the triangle inequality:

∥(P − z)u∥ ≥ ~
∣∣∣⟨u,(Q̃− Im z/~ +K(P0 − 1/2) +O(~)

)
u⟩

∣∣∣
≥ ~

∣∣∣⟨u,(Q̃− Im z/~
)
u⟩

∣∣∣− ~ |⟨u, (K(P0 − 1/2) +O(~))u⟩| .

From the assumption on q̃ and the sharp Gårding inequality, the first term on the
RHS is bounded below by ~ϵ−O(~2). On the other hand from our assumption, and
the boundedness of K, the second term is bounded below by −O(C0~2), so for ~
small enough we have ∥(P − z)u∥ ≥ ϵ

2
~ ∥u∥ . �

The bound of the above lemma only uses the microlocalization of u in an ~-
neighbourhood of S∗X. One can be a bit more precise concerning this microlocal-
ization, and show that the semiclassical wavefront set of u = u(~) is contained in
S∗X.
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Lemma 5. [Microlocalization on S∗X] Take χ ∈ C∞
c ([1/2 ± ϵ]) with χ(s) = 1

near s = 1/2 and energy cutoff. Let u be an eigenvalue of P (~) with eigenvalue
z ∈ D(1/2, C~). Then,

(I − χ(P0))u = OL2(~∞).

Proof. Since the symbol p − z is elliptic away from S∗X, there exists an symbol
k = kz ∈ S2(X) such that

kz (p− z) = (1− χ(p0)) .

Working order by order, one can construct an operator K = Kz ∈ Ψ−2(X) of
principal symbol k(z), such that

Kz (P − z) = (I − χ(P0)) + r(z), r(z) ∈ ~∞Ψ−∞.

Applying Kz to the equation (P − z)u = 0 proves the lemma. �
2.3. Shrinking the interval of quantum decay rates by using time evolu-
tion.

2.3.1. A factorization of the Schrödinger propagator. The equation (P − z)u = 0
implies more than the microlocalization of Lemma 5. As we will see below, it implies
a propagation of singularities (Egorov’s theorem) which allows to get informations
on both u and Im z.

Let us give the rough idea. Consider a coherent state ψ0 localized on a point
ρ0 = (x0, ξ0) ∈ S∗X, locally of the form

ψ0(x) = ~−d/4a(x) exp

{
iξ0 · x

~
− ⟨(x− x0),M0(x− x0)⟩

2~

}
,

where M0 is a d × d symmetric matrix with ReM > 0, and a0(x) is a smooth
amplitude. Let us propagate it through the group,

ψt = e−itP/~ ψ0.

In the undamped case q ≡ 0, ψt = ψ0
t approximately remains a coherent state,

localized at the point ρt = Φt(ρ0) and modified matrix Mt. If we switch on the
skew-adjoint part i~Q, the state ψt remains an approximate coherent state localized
on ρt, but with a modified amplitude: to lowest order, one has

ψt = C(ρ0, t)ψ
0
t ,

with the factor C(ρ0, t) given by the damping accumulated between the times 0 and
t:

b(t, ρ0) = exp

∫ t

0

q (Φs(ρ0)) ds.

The imaginary subprincipal term i~Q thus has the effect to damp the state ψt. This
property can be recovered from the following

Lemma 6. Assume q ∈ C∞
c (T ∗X), and take P = P0 + i~ Op~(q).

For any fixed t ∈ R, decompose the Schrödinger propagator V t = e−itP/~ into

V t = U tB(t) ,

where U t = e−itP0/~ is the undamped propagator. Then, the operator B(t) is a PDO
in Ψ0(X) of principal symbol

b(t) = e
R t
0 q◦Φ

s ds.

10



Proof. From our assumption, ∥V t∥L2→L2 ≤ eCt for any t ∈ R. To show that B(t)
def
=

U−tV t is a PDO, we differentiate w.r.to time:

∂tB(t) =
−i
~
U−t (P (~)− P0(~))V t = U−tQV t = U−tQU tB(t).

Let us call Q(t)
def
= U−tQU t, so the above equation reads

∂tB(t) = Q(t)B(t), B(0) = I .

Egorov’s theorem shows that, for any fixed time t ∈ R, Q(t) ∈ Ψ0(X), with principal
symbol q ◦ Φt.

One can then use Beals’s lemma [EvZw, Thm 8.19] to show that B(t) ∈ Ψ0(X).
It suffices to show that, for any indices i1, . . . , iN , j1, . . . , jM , we have (in local

coordinates)∥∥∥adxi1
· · · adxiN

adDxj1
· · · adDxjM

B(t)
∥∥∥
L2(X)→HN

h (X)
= OL2→L2(~N).

Let’s assume this estimate holds up to order N −2 for all M , and to order N −1 up
to M − 1. Call (schematically) VN−1,M(t)

def
= (adx)

N−1 (adD)M B(t). Differentiate it
w.r.to time:

∂tVN−1,M(t) = (adx)
N−1 (adD)M Q(t)B(t),

Applying Leibnitz’s rule ad∗(AB) = (ad∗A)B + A ad∗B recursively, we may sepa-
rate the unique contribution where all ad∗ act on B(t), from the other ones:

(2.4) ∂tVN−1,M(t) = Q(t)VN−1,M(t) + EN−1,M(t), VN−1,M(0) = 0 .

The operator EN−1,M(t) is a linear combination of products (adx)
j1 (adξ)

j2 Q(t) (adx)
N−1−j1 (adξ)

M−j2 B(t),
where j1 + j2 ≥ 1 derivatives act on Q(t). From the fact that Q(t) ∈ Ψ0 and the
recurrence hypothesis, we see that ∥EN−1,M(t)∥L2→HN−1

h
= O(~N−1). The equation

(2.4) is solved by

VN(t) =

∫ t

0

V (t; s)EN−1,M(s) ds,

where V (t; s) is the solution of ∂t′V (t′; s) = Q(t′)V (t′; s) with condition V (s; s) = I.
This implies the bound ∥V (t; s)∥HN−1→HN−1 = O(1), so we get ∥VN−1,M(t)∥L2→HN−1 =
O(~N−1). This shows the hypothesis to order N − 1,M .

One proceeds in a similar way to show the hypothesis at order N,M , knowing it
at order N − 1,M .

To investigate the symbol of B(t), let us compare B(t) with the (invertible) PDO
B̃(t) = Op(e

R t
0 q◦Φ

sds). Differentiating in time, we get

∂tB̃(t)−1B(t) = B̃(t)−1
(
Q(t)−Op~(q ◦ Φt) +O(~)

)
B(t) = B̃(t)−1OL2→L2(~)B(t) .

From Duhamel’s formula and the initial condition B̃(0)−1B(0) = I, we infer

B̃(t)−1B(t) = I +Ot(~) =⇒ B(t) = B̃(t) +Ot(~) .

Hence B(t) ∈ Ψ0 has the principal symbol b(t). �
11



2.3.2. From propagator estimate to refined constraints on the decay rates. From the
factorization of Lemma 6 one may obtain sharper constraints on quantum decay
rates than in Lemma 4.

Take P = P0 + i~ Op~(q), q ∈ S1(X), and u a normalized eigenstate of P ,

Pu = zu , z ∈ D(1/2, C~).

We have shown in Lemma 5 that u is microlocalized on S∗X: for χ ∈ C∞
c ((1/2±ϵ)),

χ(s) = 1 near s = 1/2, one has

u = χ(P0)u+O(~∞) .

Hence, if we replace Q by Q̃ = χ1(P0)Q, where χ1 ∈ C∞
c (R), χ1 = 1 on suppχ, we

also have
P̃ u = zu+O(~∞), .

Then, for any t ∈ R, we apply the Schrödinger propagator Ṽ t = e−itP̃ /~ to u. From
the above identity, we have

Ṽ tu = e−itz/~u+Ot(~∞) .

On the other hand, using Lemma 6 for Ṽ t, we get:

U tB̃(t)u = e−itz/~u+Ot(~∞),

so that ∥∥∥B̃(t)u
∥∥∥
L2→L2

= et Im zn/~ ∥u∥+Ot(~∞).

This equation shows that the norm of B(t) constrains the quantum decay rate:

(2.5) et Im z/~ −Ot(~∞) ≤
∥∥∥B̃(t)

∥∥∥ ≤ max
T ∗X

b̃(t) +Ot(~),

where on the RHS we used the sharp Gårding inequality. Since the interval sup-
porting χ1 may be arbitrary small, we get for any t

(2.6) et Im z/~ ≤ max
S∗X

e
R t
0 q◦Φ

sds + o~→0(1).

This result shows that the imaginary parts Im zn of the eigenvalues are constrained
by the ergodic averages of the damping function q on the energy shell S∗X. Let
us set up some notations. The microcanonical average of the damping on S∗X is
denoted by

q̄ =

∫
S∗X

q(ρ) dµL,

where µL is the (normalized) Liouville measure on S∗X.
The time (or ergodic) averages of q are denoted by

⟨q⟩T (ρ) =
1

T

∫ T

0

q ◦ Φt(ρ) dt.

We will mostly restrict these averages to S∗X.

Fact 7. [Birkhoff’s theorem] These averages converge a.e. (w.r.to µL) to an L∞

function
⟨q⟩∞(ρ) = lim

T→∞
⟨q⟩T (ρ).

If the flow is ergodic on S∗X, then ⟨q⟩∞ = q̄ a.e.
12



−

+

ε ε1/2 1/2+1/2−

hq

hq

Figure 2.1. Eigenvalues of P (~) near 1/2.

We also define the asymptotic extremal values of the damping on S∗X:

q+
def
= lim

T→∞
sup
ρ∈S∗X

⟨q⟩T = sup
µ∈M

µ(q), q−
def
= lim

T→∞
inf

ρ∈S∗X
⟨q⟩T = inf

µ∈M
µ(q).

These are also the extremal values of the function ⟨q⟩∞.
From the bound (2.6) one obtains the following general bound on the distribution

of the quantum decay rates.

Theorem 8. [Leb93, Sjo00] For any ϵ > 0 and for ~ < ~ϵ, all eigenvalues zn ∈
D(1/2, C~) lie in the strip

{
Im z

~ ∈ [q− − ϵ, q+ + ϵ]
}
.

Proof. From 2.6 we get for any T > 0

Im z/~ ≤ max
S∗X
⟨q⟩T + o~→0(1).

On the other hand, for any ϵ > 0 there exists Tϵ > 0 such that for any T ≥ Tϵ one
has

max
S∗X
⟨q⟩T ≤ q+ + ϵ/2.

Taking T = Tϵ and sending ~→ 0, we get

Im z/~ ≤ q+ + ϵ.

The lower bound is obtained by applying (2.6) for negative times. �

2.3.3. Conjugating the generator P to time average the damping. The proof of Thm
8 given by Sjöstrand in [Sjo00] does not use the propagator, but directly works on
the operator P (~), by conjugating it by a well-chosen microlocal weight function
GT = Op~(gT ) indexed by a time parameter T > 0. The weight gT ∈ S0(X) is
constructed such as to take the following values near S∗X:

(2.7) gT =
1

2

∫ T/2

0

(
2s

T
− 1

)
q ◦ Φs ds+

1

2

∫ 0

−T/2

(
2s

T
+ 1

)
q ◦ Φs ds.

This weight has the following effect. The symbol of the conjugated operator

(2.8) PT
def
= e−GTPEGT = P + [P,GT ] +O(~2)

reads

pT = p− i~ {p, gT}+O(~2) = p0 + i~q − i~Hp0(gT ) +O(~2),(2.9)
def
= p0 + i~qT +O(~2) .(2.10)

13



The form of gT near S∗X implies that the subprincipal symbol qT is equal there to
the damping function averaged over a time window [−T/2, T/2]:

qT (ρ) = ⟨q⟩T (ρ)
def
=

1

T

∫ T/2

−T/2
q ◦ Φs(ρ) ds near S∗X.

One notices that the principal and subprincipal symbol are “a bit more commutative”
than the original ones:

{p0, qT} = O(1/T ) near S∗X,

which explains why this averaging procedure leads to better Weyl estimates.
One can then directly apply Lemma 4 to the operator PT to obtain Thm 8, as

well as the following

Corollary 9. For any γ > q+ and ~ small enough, we have the resolvent bound∥∥(P (~)− z)−1
∥∥ ≤ Cγ

~
, ∀z ∈ D(1/2, C~) ∩ {Im z/~ ≥ γ} .

Let us apply this resolvent bound to the DWE operator P (τ) (1.5) and its semi-
classical version (1.9), P (~, z) − z = ~2

2
P (τ) = −~2∆/2 − i~a + O(~2). Let us

assume the geometric control condition holds, so that a− > 0. In this case, the
above corollary shows that, for any ϵ > 0, one has∥∥(P (~)− z)−1

∥∥ ≤ Cγ
~
, z ∈ D(1/2, C~) ∩ {Im z/~ ≥ −a− + ϵ} .

Undoing the semiclassical scaling, this proves the resolvent estimate announced in
(1.19): ∥∥P (τ)−1

∥∥
L2→L2 ≤

C ′
γ

τ
, τ ∈ {|Re τ | ≥ C, Im τ ≥ −a− + ϵ} .

2.4. Questions on the spectral distribution. The following questions were raised
in [Sjo00, AschLeb, Anan10] concerning the semiclassical distribution of the quan-
tum decay rates Im zn(~)/~.

(1) is there asymptotic distribution of the quantum decay rates when ~ → 0?
More precisely, for a given interval I ⊂ [q−, q+] and 1 ≫ ϵ ≫ ~, does the
ratio

#
{
n, |Re zn − 1/2| ≤ ϵ, Im zn

~ ∈ I
}

# {n, |Re zn − 1/2|}
have a limit when ~ → 0? Is this distribution related with the value distri-
bution of ⟨q⟩∞ (which Asch-Lebeau call the geometric distribution)? If there
is not a unique limit distribution, how do the various limits look like?

(2) What are the possible accumulation points of the quantum decay rates? In
particular, are there sequences of decay rates (Im z(~)/~)~→0 converging to
the classical extremal values q±? (that is, is the result of Thm 8 sharp?)

(3) [Inverse problem] [Anan10] Can one recover the damping function q from
the knowledge of zn(~)? Note that we can hope to recover q only up to
cohomology equivalence q ≡ q + {p0, b}, with b is any smooth function. A
positive answer is conjectured for manifolds X of negative curvature and sim-
ple length spectrum: a trace formula should allow to recover all the averages∫
γ
q from the spectrum, which is equivalent of recovering the cohomology

class of q.
14
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Figure 2.2. Case of an ergodic flow: concentration of the eigenvalues
on the line {Im z/h = q̄}.

(4) [Inverse problem 2] [Anan10]Is the knowledge of the imaginary parts Im zn(~)

sufficient to recover q? In particular, if all imaginary parts Im zn(~)
~ → q̄, does

this imply that q is cohomologous to q̄? A positive answer is conjectured in
[Anan10], in the case of the twisted Laplacian (3.17).

Sjöstrand [Sjo00] addressed question 1. To express the result, we need to consider
the essential supremum and infimum of the function ⟨q⟩∞,

qess+ = ess-sup⟨q⟩∞, qess− = ess-inf⟨q⟩∞,
and notice that

q− ≤ qess− ≤ q̄ ≤ qess+ ≤ q+,

where all inequalities may be strict.

Theorem 10. [Sjo00] For any C > 0, ϵ > 0,

#

{
n, |Re zn − 1/2| ≤ C~,

Im zn
~
̸∈ [qess− − ϵ, qess+ + ϵ]

}
= o(~−d+1).

Comparing this bound with the Weyl law (2.1) shows that almost all the quantum
decay rates are contained in the interval [qess− − ϵ, qess+ + ϵ].

Corollary 11. [Sjo00]If the geodesic flow on (X, g) is ergodic, then almost all quan-
tum decay rates have values close to q̄.

In this case, the answer to the question 1 is positive, and the limit distribution δq̄
is equal to the geometric distribution.

2.5. Eigenvalue counting and phase space volumes. How is the distribution
of the quantum decay rates related with the so-called geometric distribution, namely
the value distribution of ⟨q⟩T on S∗X? This can be understood by a simple argu-
ment. We recall the Weyl law of Thm 3, which counts eigenvalues with Re z close
to 1/2. If we want to restict ourselves to the eigenvalues in the domain

Ω(C,α)
def
= {Re z ∈ [1/2± C~] , Im z/~ ≥ α} ,

it is tempting to believe that they are associated to the phase space region

RT (C,α) = p−1
0 ([1/2± C~]) ∩ q−1

T ([α, q+]) ,

and then estimate the number of these eigenvalues through the phase space volume
of the region RT (C,α). If P were a normal operator, meaning that P0 and QT would
commute, the correspondence would be effective. However, due to the nonnormality
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of P , we will see that such phase space arguments can only provide upper bounds for
the number of eigenvalues. One good reason to average over time the original oper-
ator is indeed to make the operator “less nonnormal”, by reducing the commutator
between real and imaginary parts:

(2.11) [P0, Q]χ(P0 − 1/2) = O(~), [P0, QT ]χ(P0 − 1/2) = O(~/T ).

In general there are several ways to get upper bounds on the distribution of the
Im zn/~.

One possibility is to connects the eigenvalues of PT with the singular values of
a related operator, and then use Weyl’s inequalities. This will be the approach we
will pursue in the case of quantum maps. In the next section we will use a different
approach, apparently more flexible in the case of a Schrödinger flow.

2.6. Eigenvalue counting using perturbations with controlled trace norm.

2.6.1. General strategy. A standard method to estimate the number of eigenvalues
of P in the region Ω(C, α) is to perturb P by an operator δP , such that the perturbed
operator

P̃ = P + δP

does not have eigenvalues in the region Ω(C,α), the operator norm of δP is under
control, and the trace norm of δP is also controlled in terms of a phase space volume
of a region RT (C ′, α′). The method is similar with the one used to get the Weyl law
of Thm 3.

More precisely, for z ∈ Ω(C, qmax) we write the identity

(z − P ) =
(
z − P̃

)
(1 +K(z)) , K(z) =

(
z − P̃

)−1

δP.

We want to control both
∥∥∥∥(
z − P̃

)−1
∥∥∥∥ for z ∈ Ω(C,α) and the trace norm ∥δP∥tr,

so that both the operator and trace norms of K(z) are under control for z ∈ Ω(C, α).
The eigenvalues are then given by solving

d(z) = 0, where d(z)
def
= det (1 +K(z)) , z ∈ Ω(C,α).

Consider a disk D(z0, γr) ⊂ Ω(C, α), with z0 ∈ Ω(C, qmax) and γ = 1 + ϵ. One can
use Jensen’s formula to bound the number of zeros of d(z) in the slightly smaller
disk D(z0, r). Indeed, if d(z0) ̸= 0, this formula yields we have

sup
z∈D(z0,γr)

log |d(z)| ≥ log |d(z0)|+ n(z0, r) log γ,

where n(z0, r) is the number of zeros of d(z) in the disk D(z0, r). The upper bound
on log d(z) is provided by our control of the traces:

log |d(z)| = log |det (1 +K(z))| ≤ ∥K(z)∥tr ,

which will be effective for z ∈ D(z0, γr), due to a good control on the resolvent:∥∥∥(P̃T − z)−1
∥∥∥ . ~−1, z ∈ D(z0, γr).

We also need a good lower bound on |d(z0)|. For this we use the formula

(1 +K(z0))
−1 = 1 + (z0 − P )−1 δP

16



which leads to

− log |d(z0)| = log
∣∣det

(
1 + (z0 − P )−1 δP

)∣∣
≤

∥∥(z0 − P )−1 δP
∥∥
tr

≤
∥∥(z0 − P )−1

∥∥ ∥δP∥tr .
We already control ∥δP∥tr. Since we assumed Im z0/~ > qmax, we have the estimate
of Lemma 4:

(2.12)
∥∥(z0 − P )−1

∥∥ . ~−1.

We thus get the upper bound

n(z0, r) ≤
∥δP∥tr
log γ

(
max

z∈D(z0,γr)

∥∥∥∥(
z − P̃

)−1
∥∥∥∥ +

∥∥(z0 − P )−1
∥∥)

(2.13)

. ∥δP∥tr
~ log γ

.(2.14)

This upper bound for eigenvalues in a disk D(z0, r) can be easily adapted to count
eigenvalues in rectangles of the form Ω(C,α).

2.6.2. Explicit construction of the perturbation δP [Sjo00]. Let us now describe more
precisely the perturbation δP considered in [Sjo00]. Instead of working directly with
the operator P , it makes more sense (and brings reward) to work with the conjugated
operator PT of (2.8).

Recall that the subprincipal symbol qT in (2.9), on S∗X, may take values in
[q− − ϵ, q+ + ϵ]. In particular, for α < q+ the region {ρ ∈ S∗X, qT ≥ α} is nonempty.
To set up the perturbation δP = δPT , we construct a function q̃T ≤ qT , such that
q̃T = qT in regions where qT (ρ) ≤ α − 2ϵ, while q̃T ≤ α − ϵ in regions where
qT (ρ) ≥ α − ϵ (at least in some nbhd of S∗X). Replacing q by q̃ thus amounts to
“cut” the large values of qT . A first guess δP = i~

(
Q̃T −QT

)
would ensure the

invertibility of P̃ − z for z ∈ Ω(C, α) and would control ∥δP∥, but we would have
no control on the trace. Since we work near the energy 1/2, we could take instead

δP = δPT = i~χ(P0 − 1/2)
(
Q̃T −QT

)
χ(P0 − 1/2),

with χ ≥ 0 a smooth cutoff localized in [−ϵ, ϵ] and equal to unity in [−ϵ/2, ϵ/2].
This perturbation is trace class. However, since we are counting eigenvalues on a
rectangle of width ∼ ~, it is crucial to minimize this trace by cutting off in energy
intervals of width ~. For this we take χ ∈ C∞(R,R+) (with f̂ of compact support),
and define the perturbation

δPT = i~χ
(
P0 − 1/2

~

) (
Q̃T −QT

)
χ

(
P0 − 1/2

~

)
.

This operator is not a PDO, but one can nevertheless estimate its norms:

∥δPT∥ ≤ ~ maxχ2 max
S∗X
|q̃T − qT |+ o(~),(2.15)

∥δPT∥tr ≤ Cd ~2−d ∥χ∥2L2

∫
S∗X

(qT − q̃T ) dL+ o(~2−d).(2.16)
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Remark 12. To get the second bound, one needs to assume that either supp χ̂ ⊂
(−Tmin/2, Tmin/2), where Tmin is the length of the shortest closed geodesics, or that
the union of all closed geodesics in S∗X has measure zero.

If we could analyze P̃T as a PDO, its symbol would be

p̃T = p0 + i~ q̂T +O(~2), q̂T
def
= qT + χ

(
p0 − 1/2

~

)2

(q̃T − qT ) .

Assuming χ(E) ≥ 1 for |E| ≤ C, the construction of q̃ implies that

q̂T (ρ) ≤ α− ϵ on p−1
0 ([1/2± C~]) .

Hence, for z ∈ Ω(C/2, α), we have |z − p̃(ρ)| ≥ θ~, with θ = min(ϵ, C/2). Even-
though the symbol p̂T is not in a decent symbol class, one can prove (following the
proof of Lemma 4) the requested resolvent bound

(2.17)
∥∥∥∥(
z − P̃T

)−1
∥∥∥∥ = O

(
1

θ~

)
, z ∈ Ω(C/2, α).

2.6.3. Ending the proof of Thm 10. We can now combine the arguments of the
previous section, inserted into the bound (2.16). We recall the estimate (2.12) for
Im z0/~ ≥ q+ + c, Re z ∈ [1/2 ± C~]. If we take a disk D(z0, γr) ⊂ Ω)C/2, ~), the
bound (2.17) holds inside this disk. Importantly, the implied constants are uniform
w.r.to T (the dependence on the derivatives of qT appears in lower-order terms in
~). Once c, θ have been chosen, the trace norm of δP (see (2.16)) is proportional to
the integral

(2.18)
∫

(qT − q̃T ) dL ≤ max (qT − q̃T ) Vol {ρ ∈ S∗X, qT (ρ) ≥ α− 2ϵ} ,

since we assumed that q̃T = qT in the region {qT ≤ α− 2ϵ}. We now recall that
qT is equal to the time average on S∗X. The definition of the essential supremum
shows that if α > qess+, then

Vol {ρ ∈ S∗X, ⟨q⟩T (ρ) ≥ α} T→∞−−−→ 0.

On the other hand, the maximal difference max(qT − q̃T ) can be assumed uniformly
bounded w.r.to T . Hence, if α− 2ϵ > qess+, for any δ > 0 we may choose T = T (δ)
such that

∫
(qT − q̃T ) dL ≤ δ. As a result, we obtain

(2.19) n(z0, r) ≤ C δ ~1−d,

with C > 0 independent of T (δ). This proves the part of the theorem for counting in-
genvalues in {Im z/~ > qess+ + ϵ}. The case of the eigenvalues {Im z/~ < α < qess− − ϵ}
is performed similarly, now constructing q̃T ≥ qT so that q̂T ≥ α+ϵ in p−1

0 ([1/2± C~]).�

3. Damped waves on Anosov manifolds

In order to get more precise informations on the distribution of the eigenvalues
zn(~), one needs to make specific assumptions on the classical dynamics, namely
the geodesic flow on X. For instance, the case of a completely integrable dynamics
has been considered by Hitrik-Sjöstrand. The less rigid case of a KAM system some
invariant tori has been studied by Hitrik-Sjöstrand-Vu Ngoc. In these cases, one can
transform the Hamiltonian flow into a normal form near the torus, which leads to
a precise description of the spectrum “generated” by the torus, which lives in some
region of D(1/2, C~).
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Figure 3.1. Structure of the Anosov flow near an orbit Φt(ρ)

Asch-Lebeau [AschLeb] addressed the question 2 for the case of the 2D standard
sphere, where they show that, if the damping function q is real analytic, then (un-
der some generic condition) there exists ϵ1 > 0 such that, for ~ small enough, all
eigenvalues zn ∈ D(1/2, C~) satisfy

Im zn/~ ∈ [q− + ϵ1, q+ − ϵ1] .
In view of Thm 8, the above property can be called a spectral gap. It shows that,
even in the semiclassical limit, the range of the quantum decay rates is strictly
smaller than the range of classical decay rates. We will see that such a phenomenon
may occur also in the case of Anosov geodesic flows.

3.0.4. Anosov manifolds. The opposite case of a fully chaotic flow was considered
by Anantharaman [?] and Schenck [Schenck-pressure]. Such a flow is obtained if the
manifold (X, g) has a negative sectional curvature everywhere: this negative curva-
ture is responsible for the uniform hyperbolicity of the flow, and conjugated with the
compactness of X one obtains an Anosov flow: with respect to the invariant Liou-
ville measure on S∗X, the flow is ergodic and exponentially mixing flow; it mimicks
a stochastic system. In a word, it is a strongly chaotic flow. A bit paradoxically,
the long time properties of such a strongly chaotic flow are rather well understood,
compared with less chaotic ones. Uniform hyperbolicity means that on each point
ρ ∈ S∗X, there exists a splitting of the tangent space

TρS
∗X = RHp(ρ)⊕ E+(ρ)⊕ E−(ρ),

where Hp(ρ) is the Hamiltonian vector field, E±(ρ) are the unstable and stable
subspaces at the point ρ. They both have dimension d − 1, are uniformly trans-
verse. The families {E±(ρ), ρ ∈ S∗X} form the unstable/stable distributions; they
are invariant w.r.to the flow (dΦt

ρE
±(ρ) = E±(Φt(ρ))), Hölder continuous, and are

characterized by the following contraction property: there exists C, λ > 0 such that

∀ρ ∈ S∗X, ∀v ∈ E∓(ρ), ∀t > 0,
∥∥dΦ±t

ρ v
∥∥ ≤ C e−λt ∥v∥ ,

That is, we have exponential contraction along the direction E− in the future, ex-
ponential contraction along E+ in the past.

Two important quantities will play a role:

the maximal expansion rate λmax
def
= lim

t→∞
sup
ρ∈S∗X

1

t
log

∥∥dΦt
ρ

∥∥(3.1)

the unstable Jacobian J+(ρ, t) = det
(
dΦt �E+(ρ)

)
, t > 0.
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The Jacobian depends on the choice of the norm chosen on the spaces TρS∗X, so
it is not intrinsic. However, its long time asymptotics, or its value along periodic
geodesics, will be independent of this choice. For t > 0 large enough, this Jacobian
grows exponentially. In practice, the contraction inside E− is not isotropic, but
proceeds slower or faster along certain directions of E−. The various contraction
rates are given by the positive Lyapunov exponents λj(ρ) > 0. The parameter λ is
a lower bound for the positive exponents.

The unstable Jacobian is often presented in its infinitesimal version,

φ+(ρ) = lim
t→0

log J+(ρ, t)

t
.

3.0.5. Manifolds of constant negative curvature. A particular class of Anosov man-
ifolds consists in quotients of the d-dimensional hyperbolic space Hd by co-compact
subgroups of its isometry group. These manifolds have a constant curvature −Λ25;
one can then show that, using the natural norms on TρS∗X, that for such manifolds

λmax = Λ, J+(ρ, t) = e(d−1)Λt, φ+(ρ) = Λ(d− 1).

Also, in each fiber E+(ρ) the positive Lypapunov exponents are all equal to Λ: the
contraction/expansion is both isotropic and homogeneous. The homogeneity of the
hyperbolicity simplifies the results, and makes them “optimal” compared with the
case of variable curvature.

3.1. Fractal Weyl upper bounds for the distribution of quantum decay
rates.

3.1.1. Averaging up to the Ehrenfest time. Assuming X has constant negative cur-
vature −Λ2, Anantharaman [Anan10] was able to improve Sjöstrand’s method for
the proof of Thm 10 (which for such flows takes the form of Corol. 11), by letting
the averaging time T explicitly depend on ~:

(3.2) T = TEhr = (1− ϵ) log 1/~
λmax

.

This time is called the Ehrenfest time. For an observable f ∈ S0(X) supported in a
thin neighbourhood of S∗X, the classically evolved observable f ◦Φt remains in the
“decent” symbol class S0

1/2−ϵ(X) for |t| ≤ TEhr. We recall that for δ ∈ [0, 1/2), the
symbols g ∈ S0

δ generally depend in ~, they may become more singular when ~→ 0,
but in a controlled way:

∀α ∈ Nd,∀ρ ∈ T ∗X, |∂αg(ρ)| ≤ Cα ~−δ|α|.

In this class one can still use pseudodifferential calculus, and the expansions in
powers of ~ still make sense.

One can easily construct a microlocal weight gT taking values (2.7) near S∗X,
and which remains in the class S0

1/2−ϵ if T ≤ TEhr. The resulting symbol qT in (2.9)
will also belong to this class.

5Usually one normalizes the metrics on Hd so that the curvature is −1. However, we prefer to
keep track of this curvature, that is of the hyperbolicity of the flow, in our notations.
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3.1.2. Large deviation estimates for Anosov flows – constant negative curvature. In
the case T = TEhr, the counting estimate (2.13), the resolvent estimates (2.12,2.17)
and the trace norm estimate (2.16) are still valid, as well as the connection (2.18)
with the volume of the region {qT ≥ α− 2ϵ}.

Now, compared with a generic ergodic system, the Anosov property of the flow
results in more precise convergence of the volumes when T → ∞. Such bounds
are called large deviation estimates. For any smooth observable q on S∗X, these
estimates take the following form ine the case of a manifold of constant curvature
−Λ2.

For any closed interval I,

(3.3) lim sup
T→∞

1

T
log Vol {ρ ∈ S∗X, ⟨q⟩T (ρ) ∈ I} ≤ sup

s∈I
H(s)− (d− 1)Λ.

The function s 7→ H(s) is called the rate function for these large deviations. It can
be defined as follows:

(3.4) ∀α ∈ R, H(α)
def
= sup {hKS(µ), µ ∈M, µ(q) = α} ,

where M is the set of probability measures on S∗X invariant w.r.to the flow Φt.
This rate function is continuous on [q−, q+], strictly concave and real-analytic on
(q−, q+), equal to −∞ outside [q−, q+]. Its maximum is reached at H(q̄) = Λ(d− 1).

There is an alternative definition for it. For any observable f , the topological
pressure P(f) associated with f and the geodesic flow on S∗X can be defined as

P(f) = sup {hKS(µ) + µ(f), µ ∈M} .

In the case of an Anosov flow, the pressure also reflects the statistics of long periodic
orbits:

P(f) = lim
T→∞

1

T
log

∑
γ:l(γ)∈[T,T+1]

e
R l(γ)
0 f(Φtργ) dt ,

where we sum over periodic orbits γ ⊂ S∗X of period T ≤ l(γ) ≤ T + 1, and ργ is
any point on γ.

Obviously, for any β ∈ R, we have

P(βq) = sup
α∈R

(αβ +H(α)) .

The above expression is a Legendre transform. Conversely, the rate function can be
obtained through the inverse Legendre transform

H(α) = inf
β∈R

(P(βq)− βα) .

In particular, the extremal values are given by

H(q+) = lim
β→+∞

P(βq)− βq+, H(q−) = lim
β→−∞

P(βq)− βq−.

3.1.3. Fractal Weyl upper bounds on Anosov manifolds – constant curvature. The
norm bound (2.16) can be sharpened to include higher orders in ~, leading to

∥δPT∥tr ≤ Cd ~2−d

[
∥f∥2L2

∫
S∗X

(qT − q̃T ) dL+
N−1∑
k=1

~kD2kf̂ 2(0)

∫
S∗X

∣∣D2k (qT − q̃T )
∣∣ dL+O(~N(1−2ϵ))

]
.
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This estimate is valid for symbols qT , q̃T ∈ S0
1/2−ϵ. The bound (2.18) can be easily

generalized to the derivatives D2k(qT − q̃T ), leading to

∥δPT∥tr ≤ Cd,q,f ~2−d Vol {ρ ∈ S∗X, qT (ρ) ≥ α− 2ϵ} , T = TEhr,

valid for ~ small enough. Finally, the volume estimate (3.3) applied to the time
T = TEhr, for q+ > α > α− 2ϵ > q̄, leads to the trace bound:

∥δPT∥tr ≤ Cd,q,f ~2−d e(ϵ+H(α−2ϵ)−Λ(d−1))TEhr

≤ Cd,q,f ~2−d ~−(ϵ+H(α−2ϵ)−Λ(d−1)) 1−ϵ
Λ

≤ Cd,q,f ~2−d ~d−1−H(α)
Λ

−Cϵ.

Since H(α) < Λ(d − 1) for α > q̄, the exponent in the second factor is positive,
so we have gained a power of ~ compared with the case of finite T . On the other
hand, the bounds for the resolvents involved in (2.13) are unchanged, so one gets,
using the same notations, the following bound for the number of eigenvalues in
D(z0, r) ⊂ {Im z/~ ≥ α+ ϵ}:

n(z0, r) ≤ Cϵ ~−H(α)
Λ

−Cϵ.

One again, this estimate in a disk can be modified to give an estimate in Ω(C, α).
We have then obtained fractal Weyl upper bounds for the number of eigenvalues with
Im z/~ > α > q̄.

Theorem 13. [Anan10]Assume X has constant negative curvature −Λ2. For any
α ≥ q̄, ϵ > 0, one has for ~ small enough

(3.5) #

{
n, |Re zn(~)− 1/2| ≤ C~,

Im zn(~)

~
≥ α

}
≤ ~−H(α)

Λ
+ϵ,

where H(α) is the rate function defined in (3.4).

Here (d − 1)Λ = λu can be interpreted as the (uniform) infinitesimal unstable
Jacobian, it is also the topological entropy of the flow.

3.1.4. Case of nonconstant negative curvature. In case the infinitesimal unstable
Jacobian φ+(ρ) is nonconstant, the large deviation estimates (3.6) should be replaced
by the following expressions. For I a closed interval,

(3.6) lim sup
T→∞

1

T
log Vol {ρ ∈ S∗X, ⟨q⟩T (ρ) ∈ I} ≤ sup

{
H̃(s), s ∈ I

}
,

with the new rate function

(3.7) H̃(s) = sup
{
hKS(µ)− µ(φ+), µ ∈M, µ(q) = s

}
,

which generalizes H(s) − Λ(d − 1) in the constant curvature case. This function
satisfies

H̃(s) ≤ P(−φ+) = 0 ,

with equality reached only for the measure µ = dL, and therefore s = q̄.
A global Ehrenfest time for the flow Φt on S∗X is

TEhr =
(1− ϵ) log 1/~

λmax

,

where λmax is the largest expansion rate (3.1).
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By using the same method as above, one obtains a fractal upper bound for α > q̄:
(3.8)

#

{
n, |Re zn(~)− 1/2| ≤ C~,

Im zn(~)

~
≥ α

}
≤ ~− H̃(α)

λmax
+(d−1)−ϵ, ~ < ~α,ϵ.

This estimate can be improved in dimension 2 [Anan10] by letting the time T depend
on the phase space points (that is, using local Ehrenfest times).

3.2. Finer spectral gaps for Anosov manifolds. We have seen above that up-
per bounds for the number of eigenvalues in ~-boxes Ω(C, α) could be obtained by
working directly on the generator P (~) of the quantum dynamics, namely by conju-
gating this generator with an appropriate microlocal weight. One then obtained a
conugated generator PT which is still a nonselfadjoint PDO, upon which one can ap-
ply standard counting methods (as in §2.6). Grossly speaking, this conjugation had
the aim to replace the subprincipal symbol q of P , which is generally not invariant
w.r.to Φt, by a subprincipal symbol q∞ which would be invariant under the flow. If
this were possible, we would ideally get at the quantum level a subprincipal symbol
Op~(q∞) commuting with P0, so that the distribution of the imaginary parts would
be given by the Weyl law for Op(q∞).

The construction presented in §2.3.3 and improved in §3.1.1, had the objective
to approach the function q∞ as much as possible, by averaging q over the time
evolution. We saw that the full average ⟨q⟩∞ is not a nice function on S∗X, since it
is not well-defined everywhere. Furthermore, on an Anosov manifold this function
is equal to q̄ almost everywhere. In any case, in order to keep qT in a decent symbol
class one needs to bound the averaging time by the Ehrenfest time TEhr, resulting
in a function qT still far from commuting with the flow. As a result, we could only
obtain upper bounds on the number of quantum decay rates Im z/~ away from the
typical value q̄.

These upper bounds leave the possibility for these quantum decay rates to take
values in the full classical range [q−, q+]. We remind the question 2 in §2.4: can
quantum decay rates accumulate, when ~→ 0, to any value in this interval (that is,
to any classically allowed value)?

3.3. A pressure estimate on the propagator. In this section we will show that
direct estimates on the propagator V t = e−itP/~ can lead to nontrivial constraints
on the quantum decay rates, namely the fact that all quantum decay rates belong
to a strictly smaller interval [q− + ϵ−, q+ − ϵ+] when ~ is small enough.

What are these estimates?
We recall Lemma 6 of §2.3. It implies that, when restricting oneself to a thin

energy window, the norm of the propagator at time t is given by∥∥V t
∥∥
L2→L2 = ∥B(t)∥L2→L2 = ∥b(t)∥L∞ +Ot(~).

Here we recall that b(t) = e
R t
0 q◦Φ

s ds χ(p0) is the principal symbol of B(t) ∈ Ψ0. The
asymptotic bound supS∗X b(t) ≤ et(q++ϵ) for t > Tϵ large enough, lead us to the
bound

∥B(t)∥L2→L2 ≤ et(q++2ϵ), t > Tϵ finite,
and then directly to the bound of Thm 8.

In order to improve on this estimate, one would need to let the time t depend on
~. The above argument can be pursued for times t as large as TEhr/2, where TEhr is
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the Ehrenfest time (3.2). This way, the operator B(t) still belongs to a decent PDO
class ~−βΨ0

1/2−ϵ, and admits the function b(t) = et/2⟨q⟩t/2χ(p0) as a leading symbol.
This shows that, even for this logarithmic time, the bound on

∥B(t)∥L2→L2 = ∥b(t)∥L∞ +Ot(~ϵ), t ≤ TEhr/2,

is still valid.
In order to get new information on the extremal decay rates, one actually needs

to study the propagator V t (or the operator B(t)) beyond (half) the Ehrenfest time.
The relevant times scales will still be logarithmic in ~, but they will be of the form

(3.9) t ∼ K log 1/~, with K > 0 arbitrary large.

For such large times, the operator B(t) is no more a PDO, and its norm is a priori
unrelated with the function b(t). For these long times, we will actually use the
representation V 1χ(P0) = U1B(1), that is integrate the damping over time 1. The
first estimate we will present on ∥V tχ(P0)∥ will be obtained in a very different
manner from the previous symbol calculus. It will use a phase space partition of
unity, and a crucial hyperbolic dispersion estimate.

3.3.1. Using a quantum partition of unity. In order to estimate the norm ∥V tχ(P0)∥
for t ∼ K log 1/~, we will propagate an arbitrary state ψ ∈ L2(X), normalized to
unity. The cutoff χ(P0) has the effect to microlocalize the state ψ0 = χ(P0) in a
thin neighbourhood of S∗X. Then, the strategy consists in splitting ψ0 into finitely
many pieces, each one microlocalized in a small domain in p−1

0 ([1/2± ϵ]). For this
we use an open cover

p−1
0 ([1/2± ϵ]) ⊂

J∪
j=1

Wj,

each Wj being an open subset of T ∗X of small diameter. One then constructs a
smooth partition of unity {πj ∈ C∞

c (Wj, [0, 1]), j = 1, . . . , J} adapted to this open
cover:

J∑
j=1

πj = 1 near p−1
0 ([1/2± ϵ]) .

This partition can be quantized into Πj
def
= Op~(πj), which is a partition of unity

microlocally near S∗X:

(3.10)
J∑
j=1

Πj ≡ I microlocally near p−1
0 ([1/2± ϵ]) .

Our aim is to estimate ∥V tψ0∥ . A crucial property is the fact that V tψj remains
microlocalized inside p−1

0 ([1/2± ϵ]) even for a “long logarithmic” time t.

Lemma 14. Consider two cutoffs χ1, χ2 ∈ C∞
c ([1/2± ϵ]), with χ2 ≡ 1 near suppχ1.

Then,
χ2(P0)V

t χ1(P0) = V t χ1(P0) +OL2→L2(~∞) ,

uniformly for |t| ≤ K log 1/~.

Proof. EXERCISE. Hint: insert a family of nested cutoffs for times 1, 2, . . . , t. �
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Using this property, we can split V tψ0 using the partition of unity (3.10). Assum-
ing t = n ∈ N, we may write

V nψ0 =
∑

α0,α1,...,αn

Vα0α1···αnψ0 +O(~∞), Vα0···αn

def
= ΠαnVΠαn−1 · · ·VΠα1VΠα0 ,

where all indices αj run over 1, . . . , J . For a bounded time t , each product Vα0α1···αn

can be written as Vα0α1···αn = V nΠα0α1···αn , where Πα0α1···αn is a PDO which “projects”
on points sharing the “history” α0 · · ·αn. These are the points ρ ∈ Wα0 which will
be in Wαj

at time j for any 0 ≤ j ≤ n: they define the subset

Wα0···αn = Wα0 ∩ Φ−1Wα1 ∩ Φ−2Wα2 ∩ · · ·Φ−nWαn .

This description leads to the simple norm estimates for finite n = |α|:
∥Vα∥ = O(~∞) if Wα = ∅(3.11)

∥Vα∥ ≤ b(α) +O(~) otherwise, b(α)
def
= max

Wα

b(n).

Fixing some large but finite N , we select the sequences α = α0 · · ·αN effectively
corresponding to physical trajectories, forming the set of sequences AN . Below these
allowed sequences will be renamed βj.

3.3.2. Local adapted Fourier expansion and a hyperbolic dispersion estimate. To im-
prove on the bound (3.11) for logarithmic times, consists in splitting the state
ψα0 = Πα0ψ0 into an adapted Fourier expansion. Namely, we may choose local
Darboux coordinates (y, η) in Wα0 , such that η1 = p0 − 1/2 is the energy variable,
Wα0 ⊂ {|y| ≤ ϵ, |η| ≤ ϵ}, and, most importantly, such that the local “momentum”
Lagrangian leaves Λ {(y, η), η = η0} are close from tangent to the weak unstable
foliation RHp0 ⊕ E+. To each leaf Λη0 is associated a “local momentum state” eη0 ,
microlocally supported near Wα0 , which we can assume to be L2-normalized. The
adapted Fourier expansion reads

(3.12) ψα0 =

∫
|η|≤ϵ

ψ(η) eη
dη

(2π~)d/2
+O(~∞),

with the bound ∥ψ∥L1 = O(1). We will then specifically propagate the “momentum
states” eη individually through Vα. Because eη is a WKB (or Lagrangian) state
supported on a Lagrangian leaf close to unstable, its image through Πα1V will also
be such a Lagrangian state, localized on the leaf Φ1(Λη)∩Wα1 . It turns out that one
can precisely describe the Lagrangian state Vαeη, even for times n = |α| ∼ K log 1/~:
it will be a localized on some Lagrangian Λn exponentially close to the unstable
manifold. In this process we are helped by the expanding dynamics along E+.

The amplitude of the Lagrangian state Vαeη can be described to any order in ~.
Its sup-norm depends on both the damping accumulated along the trajectory, and
the instability of the dynamics:

(3.13) ∥Vαeη∥ ≤ C b(α) J+(α)−1/2, |α| ≤ K log 1/~,
where J+(α) = minρ∈W (α) J

+
n (ρ) measures the (local) accumulated unstable expan-

sion. This new factor J+(α)−1/2 is due to the following mechanism. At each step the
dynamics V stretches the state (which is supported inside Wαj

) along the unstable
manifold, increasing its “unstable volume” by a factor ∼ J+

1 (αj). Then, the cutoff
Παj+1

truncates this volume into Wαj+1
, effectively reducing the norm of the state
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by a factor ∼ J+
1 (αj)

−1/2. From the estimate (3.13) and the expansion (3.12) we
deduce the following hyperbolic dispersion estimate

(3.14) ∥Vα∥ ≤ C ~−d/2 b(α) J+(α)−1/2, |α| ≤ K log 1/~.

This type of estimate was first proved by Anantharaman in the case of undamped
waves on an Anosov manifold X [Anan08, AN1], and used there to show that the
Kolmogorov-Sinai entropy of semiclassical measures associated with eigenstates of
∆X cannot be too small. The adaptation to the case of the damped wave equation
was written by Schenck in [Schenck-pressure].

3.3.3. Summing over the paths: link with the pressure. One can then add up the
bounds (3.14), taking into account also (3.11), to get the following bound for the
norm of V nNψ0, where N is the fixed integer used to define the admissible sequences
in AN , while n can be logarithmic in 1/~:∥∥V nNψ0

∥∥ ≤ ∑
β1,...,βn∈AN

∥Vβ1···βnψ0∥+O(~∞)

≤ C ~−d/2
∑

β1,...,βn∈AN

b(β1 · · · βn) J+(β1 · · · βn)−1/2 +O(~∞).

Here we call βj the allowed sequences α1 · · ·αN . Now, provided the diameters of
the open cover {Wj} is small enough, and provided the time N used to select the
admissible sequences is large enough, the above sum can be estimated in terms of a
certain topological pressure :∑

β1,...,βn∈AN

b(β1 · · · βn) J+(β1 · · · βn)−1/2 ≤ enN(P(q−φ+/2)+ϵ).

Now, if we choose nN ∼ K log 1/~ with K large enough, the prefactor C~−d/2

becomes smaller than enNϵ, and the remainder O(~∞) can be absorbed as well, so
one gets ∥∥V nNψ0

∥∥ ≤ enN(P(q−φ+/2)+2ϵ), n ∼ K log 1/~.
Taking into account the fact that eigenstates un with zn ∈ D(1/2, C~) are mi-

crolocalized on S∗X, one then obtains the following bound on the quantum decay
rates.

Theorem 15. [Schenck-pressure] Let X be an Anosov manifold. Then, for any
ϵ > 0 and ~ < ~ϵ, all eigenvalues zn(~) ∈ D(1/2, C~) satisfy

(3.15)
Im zn(~)

~
≤ P(q − φ+/2) + ϵ.

Furthermore, for any γ > P(q − φ+/2) there exists N > 0 such that, for ~ small
enough, the following resolvent estimate holds:

∀z ∈ D(1/2, C~) ∩ {Im z/~ ≥ γ} ,
∥∥(P (~)− z)−1

∥∥ . ~−N .

The proof of the resolvent estimate (inspired by [NZ3]) is left to the reader.
This pressure bound is nontrivial (that is, improves the bound q+ + ϵ) provided

this topological pressure satisfies

(3.16) P(q − φ+/2) < q+.
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Figure 3.2. Improved spectral gap in case the pressure P(q −
logφ+/2) < q+.

For a uniform damping q ≡ q̄, P(q̄−φ+/2) = q̄+P(−φ+/2) is always larger than q̄.
So, the condition (3.16) can be satisfied only for sufficiently inhomogeneous damping
functions.

In [Schenck10] Schenck explains how to construct damping functions q for which
the above condition is satisfied. In view of the original damping function a(x), the
idea is to consider a damping function q ≤ 0, which vanishes on a rather large set
U ⊂ S∗X, so that the ultimately undamped set

K =
∩
t∈R

Φt(U),

consisting of the points ρ ∈ S∗X which never enter the damping region, is nontrivial:
this implies that q+ = 0. This set K is flow-invariant and closed, so it makes sense
to define the pressure P(−φ+/2,Φt �K) associated with the flow Φt restricted on K.
Schenck proves that

lim
t→∞
P(tq − φ+/2) = P(−φ+/2,Φt �K).

Hence, provided the set K is thin enough for the pressure P(−φ+/2,Φt �K) to be
negative, one also gets a negative pressure P(tq − φ+/2) if t≫ 1.

This possibility of an upper bound P(q−φ+/2) < q+ shows that the fractal upper
bound (3.8) cannot always be sharp.

3.4. An arithmetic example in dimension 2[Anan10]. In order to study the
existence of quantum decay rates Im zn/~ away from q̄, a specific example was
investigated by Anantharaman, namely a twisted Laplacian expressed in terms of a
harmonic 1-form ω on a surface X of constant curvature −1:

(3.17) P (~) = −~2∆

2
+ i~⟨ω, ~d•

i
⟩+ ~2∥ω∥

2
x

2
= −~2∆

2
+ i~ Op~(⟨ωx, ξ⟩) +O(~2).

This operator is of the form (1.9), with the damping function

(3.18) q(x, ξ) = ⟨ωx, ξ⟩ ∈ S1(X),

depending on both position and momentum. This damping function (restricted to
S∗X) satisfies q− = −q+ < q̄ = 0 < q+, and the relevant pressures

q+ ≤ P(q) ≤ q+ + 1 and P(q − φ+/2) = P(q)− 1/2.
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Using the exact Selberg trace formula, together with the degeneracies of the length
spectrum for arithmetic surfaces, Anantharaman obtains the following lower bounds
for the density of eigenvalues away from the real axis.

Theorem 16. [Anan10]Assume X is an arithmetic surface of curvature −1, and
take the damping function (3.18) for some harmonic 1-form ω.

Then, for any β ∈ (0, 1) and ϵ > 0, if ~ < ~β,ϵ there exist eigenvalues of the
twisted Laplacian (3.17) in the box

{
|Re z − 1/2| ≤ ~1−β, Im z

~ ≥ P(q)− 1
2
− 1+ϵ

2β

}
.

Notice that lower bound is positive only for q+ large enough.

Remark 17. If we multiply the above damping q by t > 0, in the large t limit one
has the estimate

P(tq) = tq+ + ot→∞(1),

corresponding to a limiting rate function H(q+) = 0. As a result, the pressure
involved in Thm 15 satisfies

P(tq − φ+/2) = tq+ −
1

2
+ ot→∞(1) .

In this regime the above theorem shows that there exist eigenvalues in the region{
|Re z − 1/2| ≤ ~1−β, tq+ −

1

2
− 1 + ϵ

2β
≤ Im z

~

}
,

which lies strictly above the real line for t ≫ 1. On the other hand, according to
Thm 15, for t≫ 1 and ~ small enough there are no eigenvalue in the strip{

|Re z − 1/2| ≤ ~1−β, tq+ −
1

2
+ ϵ ≤ Im z

~

}
.

4. Spectral study of damped quantum maps

As we have seen , the spectral analysis of P (~) in a disk D(1/2, C~) only involves
the classical and quantum dynamics near S∗X. In order to obtain optimal results
concerning the eigenvalue distribution, we were forced to modify the subprincipal
symbol Op~(q) in order to localize it on S∗X (for instance in §2.3.2), or project in a
~-thin energy layer to minimize a trace (in §2.6.2). These procedures are necessary
because the global operator P (~) does simultaneously act on all energy shells, but
it somehow obscures the dynamical ingredients of our proofs, which only refer to
the flow on S∗X. For this reason, we will in this section consider a simplified
Anosov systems, which are quantized Anosov maps on the torus. This model has
proved convenient in the past in the study of quantum chaos, both on numerical and
analytical aspects [DEG03]. In this section, we will consider a damped version of
these quantized Anosov maps, aimed at modelling the damped wave system studied
above [NonSche08].

4.1. Damped quantum maps. In classical dynamics, one may study the flow on
S∗X by setting up a Poincaré section Σ ⊂ S∗X, that is a finite set of hypersurfaces
in S∗X transverse to the flow, and consider the Poincaré return map κΣ : Σ → Σ.
If the flow Φt is symplectic, the section Σ is naturally equipped with a symplectic
structure, which is preserved by the map κΣ.
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For our toy model, we will construct by hand a symplectomorphism6 κ defined on
a compact phase space Σ (typically, the torus T2d−2), which will mimic the properties
of κΣ. At the quantum level, we will replace the Schrödinger propagator e−itP0/~ on
L2(X) by a quantum map, that is a family of unitary operators U~ = U~(κ) defined
on Hilbert spaces H~ of dimensions N~ ∼ C ~1−d, which satisfy some form of Egorov
theorem (one can view U~ as a discrete type of Fourier Integral Operator)7.

We will select κ to be of Anosov type. Such maps are easy to construct on T2d−2,
by taking hyperbolic automorphisms or their Hamiltonian perturbations.

In Lemma 6 we have seen that the damping function q has the effect to modify
the propagator by a PDO:

e−iP/~ = e−itP0/~B(1), σpr (B(1)) = b(1) = e
R 1
0 q◦Φ

s ds.

To introduce a damping in our system, we will simply choose some positive function
b on Σ, and define our damped quantum map as

(4.1) M~
def
= U~(κ)B, B = Op~(b) .

This function plays the same role as b(1) �S∗X . We are now interested in the dis-
tribution of the N~ eigenvalues λj(~) of M~ (counted with multiplicities). From the
formal analogy

{λj(~)}←→
{
e−izn(~)/~, Re zn ∈ [1/2± π~]

}
,

we see that the quantum decay rates are the numbers log |λj(~)|. Furthermore,
studying the eigenvalues zn in an ~-strip near 1/2 is equivalent with studying the
full spectrum of M~.

4.2. Spectral bounds for damped quantum (Anosov) maps. In this frame-
work, we can now state and prove the analogues of the spectral results mentioned
in previous sections.

The first result, namely the “horizontal” Weyl law of Thm 3, simply results from
the “kinematics” of this toy model. Namely, then number of eigenvalues of M~ is
given by the dimension N~ ∼ CΣ ~1−d of the quantum Hilbert space. This is of the
same order as the number of eigenvalues zn in the strip {|Re zn − 1/2| ≤ π~]}.

The analogue of Lemma 4 is also obvious. Namely, since the symbol b(x, ξ) ∈
[bmin, bmax] with bmin > 0, one has from the sharp Gårding inequality

∥B∥ = bmax +O(~),
∥∥B−1

∥∥ = b−1
min +O(~).

(here the norms are the Hilbert norms on H~). Since U~ is unitary, we directly get

∥M~∥ = bmax +O(~),
∥∥M−1

~
∥∥ = b−1

min +O(~),

so that all eigenvalues of M~ satisfy

|λj(~)| ∈ [bmin −O(~), bmax +O(~)] .

6That is κ is an invertible map M→M, which preserves the symplectic structure on M.
7The quantization procedure κ 7→ U~(κ) is not unique, one usually uses some “recipe”. The

parameter ~ cannot take all possible values: for instance, on T2d it must satisfy the condition
(2π~)−1 ∈ N. The limits ~→ 0 will be taken along these discrete sequences.
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4.2.1. Time averaging. Using Egorov’s theorem, the iteration of the map M~ reads

(M~)
n = UBUB · · ·UB

= Un(U−n+1BUn−1) · · · (U−2BU2)(U−1BU)B

= Un Op(b(n)) +O(~∞)(4.2)

where b(n) ∈ S0 admits the principal symbol

b
(n)
0 = b ◦ κn−1b ◦ κn−2 · · · b ◦ κb = en⟨log b⟩n ,

where we use the notation ⟨•⟩n for the (arithmetic) time average from the time 0
through n− 1. From this expression we easily recover the analogue of Thm 8:

Theorem 18. For ~ > 0 small enough all eigenvalues of M~ satisfy

|λj(~)| ∈ [b− − ϵ, b+ + ϵ],

where
log b+ = lim

n→∞
max
M
⟨log b⟩n, log b− = lim

n→∞
min
M
⟨log b⟩n.

4.2.2. Fractal Weyl upper bounds. Here we state the analogue of Thm 13 for Anosov
damped maps. The method is the one used by Schenck [Schenck-map].

The expression (4.2) can be pushed forward until the time n ≈ TEhr/2, keeping
b(n) ∈ S1/2−ϵ. A similar decomposition holds on the opposite side,

(M~)
n = Op~(b

(−n))Un +O(~∞),

where b(−n) ∈ ~∗S1/2−ϵ admits the principal symbol

b
(−n)
0 = b ◦ κ−nb ◦ κ−n+1 · · · b ◦ κ−1.

As a result, we may write

(4.3) (M~)
2n = Un Op~(b

(−n,n))Un +O(~∞), b(−n,n) = b(n)♯b(−n) ∈ ~∗S1/2−ϵ.

The singular values of M2n
~ are given by the spectrum of

(4.4) A(−n,n) def
=

√
Op~(b

(−n,n))∗ Op~(b
(−n,n)),

a positive PDO with leading symbol e2n⟨log b⟩2n . Then, for α > log b, the number of
singular values sj(2n) > e2nα is approximately given by

(2π~)−d+1 Vol
{
ρ, ⟨log b⟩2n ≥ α

}
∼ ~−d+1e2nH̃(α) ∼ ~−d+1−H̃(α)/λmax ,

where we used the rate function

(4.5) H̃(s) = sup
{
hKS(µ)− µ(log J+), µ invariant, µ(log b) = s

}
,

and J+ = J+
1 is the unstable Jacobian of the map. Like for an Anosov flow, this

function is strictly convex on [log b−, log b+], negative on this interval except for the
value H̃(log b̄) = 0.

Let J = J(α) be the number of eigenvalues |λj| ≥ eα. Weyl’s inequalities read

αJ ≤
J∑
j=1

log |λj| ≤
1

2n

J∑
j=1

log sj(2n).
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Call β = 1
2n

log sJ(2n), so that J ≈ (2π~)−d+1+H̃(β)/λmax , while the higher concentra-
tion of smaller singular values implies that

1

2n

J∑
j=1

log sj(2n) ≤ J(β + ϵ).

As a result, α ≤ β + ϵ, so that H̃(α) ≤ H̃(β + ϵ). We thus have obtained the
following fractal Weyl upper bound on J(α), similar with the bound in (3.8):

Theorem 19. Take α > log b̄. Then, for any ϵ > 0 and ~ > 0 small enough,

# {λ ∈ Spec(M~), |λ| ≥ eα} ≤ ~−d+1− H̃(α)
λmax

−ϵ,

where H̃(α) is the rate function given in (4.5).

4.3. A topological pressure condition for a gap. The analogue of the pressure
bound of Thm 15 can be proved for the damped quantum map M~:

Theorem 20. For any ϵ > 0 and ~ > 0 small enough, all eigenvalues of M~ satisfy

|λj(~)| ≤ eP(log b−log J+/2)+ϵ.

As in the case of the flows, this upper bound can be smaller than b+ only if log b
is sufficiently inhomogeneous. In the next section we will prove an alternative up-
per bound for the spectral radius of M~, which can be nontrivial even for weakly
inhomogeneous dampings. This upper bound (Thm 23 below) will only depend on
the structure of the set of weakest damping (that is the set of points for which
⟨log b⟩∞ = log b+).

4.4. A topological entropy condition for a spectral gap.

4.4.1. Splitting the eigenstate into weakly and strongly damped components. Let us
come back to the decomposition (4.3) for the “optimal” time n = TEhr/2. The PDO
Op~(b

(−n,n)) is usually not positive, but it can be put in polar form as

Op~(b
(−n,n)) = W (−n,n)A(−n,n), A(−n,n) def

=
(
Op(b(−n,n))∗ Op(b(−n,n))

)1/2
,

W (−n,n) = Op(b(−n,n)) (A(−n,n))−1 unitary,

and both A and W are in ~∗Ψ1/2−ϵ. A(−n,n) still has leading symbol b(−n,n)
0 =

e2n⟨log b⟩2n . In particular, we have

(4.6)
∥∥A(−n,n)

∥∥ = e2n(log b++o(1)).

We now fix some α ∈ (log b, log b+) and construct an orthogonal projector

Π+,α
def
= 1lA(−n,n)≥e2nα .

The rank of this projector has been estimated above using the large deviation esti-
mates:

rank Π+,α ∼ (2π~)−d+1 Vol
{
ρ ∈ Σ, ⟨log b⟩2n ≥ α

}
∼ ~−d+1e2nH̃(α) ∼ ~−d+1−H̃(α)/λmax .

We may then write
M2n

~ = UnW (−n,n)A(−n,n)Un.
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Let us now decompose the square of this operator using the projector Π+,α and its
supplement Π−,α = I − Π+,α:

M4n
~ = UnW (−n,n)A(−n,n)U2nW (−n,n)A(−n,n)Un(4.7)

= UnW (−n,n)A(−n,n) (Π+ + Π−)U2nW (−n,n) (Π+ + Π−)A(−n,n)Un.

The RHS gives 4 terms. For each term containing at least one factor Π−, we use
the obvious bound

(4.8)
∥∥A(−n,n)Π−

∥∥ ≤ e2nα.

On the other hand, to estimate the term containing the factor

U2n
++

def
= Π+U

2nW (−n,n)Π+,

we will use a crucial hyperbolic dispersion estimate, which depends on the size of the
set {ρ ∈ Σ, ⟨log b⟩2n ≥ α}. To state this estimate we need some notations. Due to
uniform hyperbolicity, there exists 0 < νmin ≤ λmax such that, for t large enough,

(4.9) J+
t (ρ) ≥ et(d−1)νmin = ~−(d−1)

νmin
2λmax everywhere on Σ.

Now, let us assume that the rate function H̃ satisfies:

(4.10) H̃(log b+) < (d− 1)
(νmin

2
− λmax

)
.

This condition depends on the set of weakest damping, K =
∪
{suppµ, µ(log b) = log b+}:

H̃(log b+) = sup
{
HKS(µ)− µ(log J+), suppµ ⊂ K

}
= P(− log J+,Φt �K) .

By continuity of H̃, assuming (4.10) it is possible to choose α ∈ (log b̄, log b+) such
that

(4.11) β(α)
def
= (d− 1)

(νmin

2
− λmax

)
− H̃(α) > 0.

Remark 21. In case of constant hyperbolicity (all positive Lyapounov exponents
equal Λ = λmax), we have H̃(s) = H(s) − Λ(d − 1) with H(s) ≥ 0 a restricted
topological entropy. The conditions (4.10,4.11) are replaced by

(4.12) H(log b+) < Λ
d− 1

2
, β(α) = Λ

d− 1

2
−H(α) > 0 .

Under the above assumptions, we will prove in §4.4.2 the following hyperbolic dis-
persion estimate.

Proposition 22. Assume the set of minimal damping satisfies the condition (4.10),
and the paramter α ∈ (log b, log b+) is sufficiently close to log b+ so as to satisfy
(4.11). Then, in the limit ~→ 0, one has the operator bound∥∥U2n

++

∥∥ ≤ e−2n[β(α)−o(1)], n = TEhr/2.

Inserting this estimate and (4.6,4.8) in the identity (4.7), we get∥∥M4n
~

∥∥ ≤ e4n(log b++o(1))
∥∥U2n

++

∥∥ + 2e2n(log b++α+o(1)) + e4nα

. e4n(log b++o(1))
(
e−2nβ(α) + e2n(α−log b+) + e4n(α−log b+)

)
.
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The third term on the RHS is obviously subdominant w.r.to the second one. We
may optimize this upper bound over α : the optimal value of the exponent is reached
for the parameter αc solving

β(αc) = (d− 1)
(νmin

2
− λmax

)
− H̃(αc) = log b+ − αc,

and the optimal value is

γc =
log b+ + αc

2
< log b+.

This leads to the following spectral radius estimate, which is the main result of this
section.

Theorem 23. Assume that the set of minimal damping satisfies the condition
(4.10). Then, for any ϵ > 0 and ~ small enough, all eigenvalues of M~ satisfy

|λj(~)| ≤ eγc+ϵ .

We also have “for free” a resolvent estimate (inspired from [NZ3]):

(λ−M~)
−1 = λ−1

∑
j≥0

M j
~λ

−j

converges for |λ| ≥ eγ > eγc , and has a norm∥∥(λ−M~)
−1

∥∥ ≤ |λ|−1
(
1− (eγ/|λ|)2TE

)−1
2TE−1∑
j=0

∥∥M j
~
∥∥ |λ|−j.

Let us only use the trivial bound
∥∥M j

~
∥∥ ≤ bj+. If |λ| < b+ (that is, λ is in the “spectral

gap” zone), the sum on the RHS is of order (b+/|λ|)2TE = exp
{

2 log ~−1

λmax
log(b+/|λ|)

}
.

For |λ| = b+ we get a logarithmic bound. Altogether, we have an algebraic bound
on the resolvent for λ in an annulus:

(4.13)
∥∥(λ−M~)

−1
∥∥ . ~− 2 log(b+/|λ|)

λmax log ~−1, eγc+ϵ ≤ |λ| ≤ elog b+ .

4.4.2. A hyperbolic dispersion estimate for U2n
++. In this section we prove Proposition

22, that is obtain a nontrivial upper bound for the norm∥∥U2n
++

∥∥
L2→L2 =

∥∥Π+,αU
2nW (−n,n)Π+,α

∥∥ , n = TEhr/2.

To estimate this norm, it will be useful to replace the projector Π+ by a smoothed
microlocal projector obtained by the anti-Wick (positive) quantization of some sym-
bol χ+.

Lemma 24. There exists a symbol χ+ = χ+,α ∈ S0
1/2−ϵ supported on {ρ ∈M, ⟨log b⟩2n ≥ α− 2δ},

such that
Π+ = Op+(χ+) Π+ +O(~∞).

Using this lemma, we have∥∥U2n
++

∥∥ = sup
∥ψ1∥=∥ψ2∥=1

∣∣⟨ψ2,Π+U
2nW (−n,n)Π+ψ1⟩

∣∣
= sup

∥ψ1∥=∥ψ2∥=1

∣∣⟨Op+(χ+)Π+ψ2, U
2nW (−n,n) Op+(χ+)Π+ψ1⟩

∣∣ +O(~∞)

≤ sup
∥ψ1∥=∥ψ2∥=1

∣∣⟨Op+(χ+)ψ2, U
2nW (−n,n) Op+(χ+)ψ1⟩

∣∣ +O(~∞)
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We thus need to bound from above

⟨U−n Op+(χ+)ψ2, U
nW (−n,n) Op+(χ+)ψ1⟩

=

∫
dρ1 dρ2

(2π~)2(d−1)
ψ2(ρ2)ψ1(ρ1)χ+(ρ2)χ+(ρ1)⟨U−neρ2 , U

nW (−n,n)eρ1⟩,

with eρ ∈ H~ an essentially normalized coherent state at ρ, and ψ(ρ) = ⟨eρ, ψ⟩.
We are able to propagate coherent states eρ up to times |n| ≤ TEhr/2. Firstly,

applying W (−n,n) ∈ Ψ1/2−ϵ will essentially only multiply eρ1 by a global phase. Then,
applying U t will transport eρ1 to states localized at κt(ρ1), and deform the state along
the unstable direction. By the time t = n ≈ TEhr/2 the state Uneρ1 is a Lagrangian
state supported on an unstable leaf of volume ∼ ~(d−1)/2J+

n (ρ1) ≤ 1.
Similarly, the state U−neρ2 is a Lagrangian state supported on a stable leaf of

volume ∼ ~(d−1)/2J+
n (ρ2) ≤ 1. These two leaves intersect at at most one point, and

are uniformly transverse to each other. As a result, the overlap of these two states
is bounded by:∣∣⟨U−neρ2 , U

nW (−n,n)eρ1⟩
∣∣ ≤ C~(d−1)/2 1

~(d−1)/2
√
J+
n (ρ1)J+

n (ρ2)
.

and this bound is essentially sharp. On the other hand, the volume estimate for
suppχ+ reads

Vol suppχ+,α ≤ e2n[H̃(α−2δ)+0],

where the rate function H̃(s) ≤ 0 is given in (4.5). We thus obtain a factorized
bound:

⟨U−n Op+(χ+)ψ2, U
nW (−n,n) Op+(χ+)ψ1⟩

≤
∫

dρ1

(2π~)(d−1)
|ψ1(ρ1)|

χ+(ρ1)√
J+
n (ρ1)

∫
dρ2

(2π~)(d−1)
|ψ2(ρ2)|

χ+(ρ2)√
J+
n (ρ2)

.

To use the L2 bound on ψj, let us apply Cauchy-Schwarz to each factor:∫
dρ1

(2π~)(d−1)
|ψ1(ρ1)|

χ+(ρ1)√
J+
n (ρ1)

≤

√∫
dρ1

(2π~)(d−1)
|ψ1(ρ1)|2

√∫
dρ1

(2π~)(d−1)

χ+(ρ1)2

J+
n (ρ1)

≤ C ~−(d−1)/2 ∥ψ1∥
√∫

suppχ+

dρ1(J+
n (ρ1)−1.

≤ C ~−(d−1)/2
√

Vol suppχ+(inf J+
n )−1.(4.14)

From the lower bound (4.9) on J+
n and (4.14) we get the main result of this subsec-

tion,

(4.15)
∥∥U2n

++

∥∥ ≤ ~−(d−1) ~(d−1)
νmin

2λmax ~−[H̃(α−2δ)/λmax+0] = e−2n[β(α)−O(δ)],

where we used the parameter β(α) of 4.11. �

4.5. A spectral gap for the DWE. Similar spectral gap estimates can be proved
in the case of the damped wave equation on an Anosov manifold. Compared with
the case of Anosov maps, the main supplementary difficulty in the proofs consists
in appropriately localizing in the energy direction, as was the case in the proof of
Thms 10 and 13.
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Theorem 25. [Work in progress] Consider the operator P (~) = −~2∆/2 − i~a on
an Anosov manifold, with damping function a(x) ≥ 0. Assume that the uncontrolled
set K =

∪
{suppµ, µ(a) = 0} is sufficiently “thin” such that

(4.16) P(−φ+,Φt �K) < (d− 1)
(νmin

2
− λmax

)
,

where φ+ is the infinitesimal Jacogian, and νmin is a lower bound for the growth of
the unstable Jacobian as in (4.9). Then, there exists γ > 0 such that, for ~ > 0
small enough, all eigenvalues of P (~) in D(1/2, C~) satisfy

Im zn/~ ≤ −γ.
Besides, there exists N > 0 such that, for ~ small enough, we have the following
resolvent estimate:

∀z ∈ D(1/2, C~) ∩ {Im z/~ ≥ −γ} ,
∥∥(P (~)− z)−1

∥∥ . ~−N .

Corollary 26. [Work in progress] Under the condition (4.16), there exists γ > 0,
C > 0 such that the region {|Re τ | ≥ C, Im τ ≥ −γ} does not contain any eigenvalue
of the DWE, and one has the following resolvent estimate in that region:

∥R(τ)∥L2→L2 . τN−2.

This resolvent estimate, which directly provides a similar estimate for (τ −A)−1,
can then be used as in §1.3 to prove an exponential decay of the energy for smooth
enough data.

Remark 27. Burq and Hitrik [BuHi07] considered the DWE in the stadium billiard,
in cases where the damping function is positive in the half-disks but may vanish in
some part of the rectangle. The (broken) geodesic flow in the billiard is ergodic and
mixing, but it includes marginally stable orbits, namely the 1D family of bouncing
ball orbits inside the rectangle. In the situation they consider, the set K of uncon-
trolled trajectories consists of a subfamily of boucing ball orbits, and the topological
pressure P(− logφ+,Φt �K) = 0 (in particular the condition (4.16) is not satisfied).
In this situation, they can prove that the energy decays algebraically for smooth
enough data.
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