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Abstract
The subject area referred to as ‘wave chaos’, ‘quantum chaos’ or ‘quantum
chaology’ has been investigated mostly by the theoretical physics community
in the last 30 years. The questions it raises have more recently also
attracted the attention of mathematicians and mathematical physicists, due
to connections with number theory, graph theory, Riemannian, hyperbolic or
complex geometry, classical dynamical systems, probability, etc. After giving
a rough account on ‘what is quantum chaos?’, I intend to list some pending
questions, some of them having been raised a long time ago, some others more
recent. The choice of problems (and of references) is of course partial and
personal.

PACS number: 05.45.Mt

A brief overview of ‘quantum chaos’

Let us start by resolving the apparent paradox of the phrase ‘quantum chaos’. A classically
chaotic system is defined by an ordinary differential equation or a discrete-time map acting on
some finite-dimensional phase space; for the dynamics to be chaotic, the ordinary differential
equation (ODE) or the map is generally nonlinear in the phase space coordinates. In contrast,
the associated quantum system is defined by a linear operator acting on the quantum Hilbert
space; the quantum dynamics generated by this operator (either a selfadjoint Hamiltonian
or a unitary propagator) is by essence linear, but acts in a space of infinite (or at least large)
dimension. Let us assume that the spectrum of that operator is discrete: the quantum dynamics
is then quasiperiodic, and can be easily expressed in terms of the eigenvalues and eigenstates
of the operator. One is thus led, from a time-dependent (dynamical) problem, to a time-
independent (spectral) problem, which forms the ‘backbone’ of quantum chaos:

What are the spectral properties of a quantum Hamiltonian, the classical limit of
which generates a chaotic dynamics?

What do the corresponding eigenstates look like?
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These two questions are deliberately vague. Below I give more precise formulations. To fix
ideas, we consider one of the simplest chaotic systems, namely, the geodesic flow on a compact
Riemannian surface (X, g) of negative curvature (and unit area). The corresponding quantum
Hamiltonian is defined as the generator of the wave group on X, namely, P = √−�, where
� is the Laplace–Beltrami operator. P has discrete spectrum {λk, k ∈ N} associated with
eigenfunctions {ψk}.

The first question one can ask is ‘do we have exact, or at least asymptotic formulae to
describe the high-energy eigenvalues/eigenfunctions?’ For chaotic systems1, and as opposed
to the case of completely integrable systems (for which the Maslov–WKB method provides
asymptotic expansions to any order in λ−1), the answer is ‘no’.

1. Spectral statistics

We first investigate the spectrum {λk} of the quantum Hamiltonian P . Although there are no
asymptotic expressions for the eigenvalues, one can still obtain some crude information on their
distribution, especially in the high-energy limit λk → ∞. Indeed, this limit is a semiclassical
limit, where the classical dynamics is expected to be relevant.

1.1. Macroscopic spectral properties

Firstly, one can investigate the ‘macroscopic’ spectral distribution. For any surface of unit area,
the behaviour of the spectral counting function N(λ) = #{k ∈ N, λk � λ} is asymptotically
given by the celebrated Weyl’s law

N(λ) = λ2

4π
+ R(λ), with a remainder R(λ) = O(λ) when λ → ∞. (1)

The size of the remainder gives an idea of the ‘clustering’ of the eigenvalues. Maximal
clustering appears, e.g. for the standard sphere, where2 R(λ) = �(λ). The dynamics of the
geodesic flow is ‘invisible’ in the main term, but already pops up in the remainder term: for
a negatively curved surface, one can prove that R(λ) = O(λ/ log λ) [2]; one actually expects
that, for a ‘generic’ such surface, R(λ) = O(λε) for any ε > 0.

On the other hand, for arithmetic surfaces, it is known that R(λ) = �(
√

λ/ log λ),
indicating a higher amount of clustering. In varying negative curvature, the smaller lower
bound R(λ) = �((log λ)P(−1/2H)/P(0)−ε) was recently shown in [17]. Here the (positive)
exponent is given in terms of the topological pressure P(•), a quantity characterizing the
classical dynamics.

To prove such spectral estimates, one applies a semiclassical approximation for the trace
of the propagator tr(eitP ), in the form of a sum over closed geodesics (the Gutzwiller trace
formula). A Fourier transform then maps the time-dependent traces to energy-dependent ones,
to finally yield N(λ). The rule of the game is: the further in time you control the propagator, the
more precise your spectral estimate becomes. For a chaotic system, trajectories separate from
each other at an exponential rate, which results in a breakdown of semiclassical approximations
around the Ehrenfest time TE ≈ (log λ/χLya), where χLya is the largest Lyapunov exponent.
In this view, a present line of investigation consists in trying to extend the validity of the
Gutzwiller approximation to larger times [11].

The result of [17] is characteristic of ‘quantum chaos’: to obtain spectral estimates which
are sharper than for general surfaces, one needs to take into account some refined properties of
1 Some particular quantum chaotic maps, like the quantum cat map, admit explicit expressions for eigenvalues and
eigenstates. However, this system is considered to be ‘non-generic’ in most respects.
2 We recall that R(λ) = �(f (λ)) means that lim supλ→∞(|R(λ)|/f (λ)) > 0.
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the classical dynamics. The topological pressure, the entropy, the Ruelle–Pollicott spectrum
associated with the geodesic flow, should ‘naturally’ arise in the description of the quantum
spectrum.

1.2. Microscopic spectral statistics

The Bohigas–Giannoni–Schmit (BGS, or ‘Random matrix theory’, RMT) conjecture [7] aims
at describing the spectral distribution in a finite window around λ � 1 at the microscopic scale,
namely, the scale of the mean level spacing δλ ∼ 2π/λ. At this scale, the spectrum resembles
an infinite sequence of ‘pseudorandom points’. The BGS conjecture claims that, provided the
classical dynamics is chaotic, this sequence is statistically equivalent with that formed by the
eigenvalues of a random matrix belonging to one of the three standard Gaussian ensembles
(in the present case the Gaussian orthogonal ensemble, made of real-symmetric matrices with
independent Gaussian entries). Thus, the local spectral statistics is ‘universal’. The statistical
observables studied to test this conjecture are, e.g., the 2-point correlation function and the
level-spacing distribution, which are known analytically in the case of the random matrix
ensembles [23].

Attempts have been made to semiclassically compute the 2-point correlation function, or
equivalently its Fourier transform called the spectral form factor K(t) ∝ 〈|tr(eitP )|2〉. The most
popular method (initiated by Berry) uses Gutzwiller’s approximate expression for the trace:
taking its square results in a sum over pairs of periodic orbits K(t) ∝ ∑

γ,γ ′ Aγ Āγ ′eiλ(
γ −
γ ′ )

with lengths 
γ + 
γ ′ close to the Heisenberg time TH ∼ λ. Berry assumed that, upon
some averaging over λ, only the pairs of equal lengths 
γ = 
γ ′ contribute to the sum [4].
More recently, Sieber and Richter identified pairs of almost identical lengths [32], which also
contribute. Elaborating on their insight (which implies some non-trivial combinatorics), the
Essen group (+ guests) managed to reproduce the RMT form factor from the periodic orbit
expansion [14].

Yet, this remarkable result is still far from achieving a rigorous proof of the BGS conjecture.
Firstly, the Gutzwiller approximation has been applied to times of order TH � TE, for which its
validity is only speculative (except for some special systems, like surfaces of constant curvature,
the quantum cat map, or quantum graphs). The second problem seems more formidable: one
needs to prove that the huge sum of ‘non-correlated pairs’ is effectively negligible compared
with that over correlated ones. Considering our knowledge of the orbit length distribution, this
objective seems presently out of reach [26].

In the case of arithmetic surfaces (or the quantum cat map), the orbit lengths are highly
degenerate (they are simple functions of integer numbers), so many more pairs of orbits are
correlated than in the generic case. The above approach implies that the 2-point function
converges to that of Poisson-distributed points, quite different from RMT [6]; this untypical
statistic has been numerically checked, but a rigorous proof is still lacking (mainly due to the
‘second problem’ mentioned above) [25].

1.3. ‘Generic’ versus ‘arithmetic’

1.3.1. Generic surfaces. Among the surfaces of negative curvature, some possess ‘arithmetic
symmetries’ in the form of a commutative algebra of ‘Hecke correspondences’. These
symmetries are not easily visible when characterizing the ergodic properties of the classical
system (like exponential mixing); they have more subtle consequences, such as large
degeneracies of the ‘length spectrum’ {
γ }, which, as we have seen, strongly impact the
quantum spectrum at the microscopic scale. Although the geodesic flow is fully chaotic, the
quantum spectrum is ‘non-universal’.
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The existence of such ‘exceptional’ surfaces invalidates any proof of the BGS conjecture
which would be only based on global chaotic properties. To prove the conjecture, one needs to
exhibit a more refined dynamical property able to explicitly separate the exceptional systems
from the generic ones. The above results suggest that this property may concern the length
spectrum: it should probably forbid large length degeneracies, but must also deal with almost-
degeneracies, maybe by requiring some diophantine condition on the differences {
γ − 
γ ′ }.

Once such a property has been identified, one could ask:

Among all surfaces of negative curvature, how generic are those satisfying this
property?

In the end, one can hope to prove the BGS conjecture for a ‘generic’ negatively curved surface,
where ‘generic’ could be understood in a topological, or a measure-theoretical sense. Let us
mention that ‘generic’ properties of classical dynamical systems have been investigated for
years (see, e.g. [5]).

1.3.2. Quantum genericity. So far the quantum Hamiltonian associated with the geodesic
flow on (X, g) has always been the Laplace–Beltrami operator. Yet, a perturbation of the
Laplacian by (selfadjoint) lower-order terms still makes up a ‘quantization’ of the geodesic
flow. More generally, the ‘quantization’ of a Hamiltonian dynamics proceeds by choosing a
certain quantization scheme, different schemes leading to different operators with different
spectra. The problem of ‘genericity’ then may as well concern the various quantizations
attached to a given classical dynamics [36]. For instance, if one perturbs the Laplacian on
an arithmetic surface by ‘generic’ lower-order terms, does the resulting spectrum become
universal? If yes, how large must be the perturbing terms to achieve ‘universality’?

2. Anatomy of chaotic eigenstates

Let us now consider a different question, namely, the description of the (high-energy)
eigenfunctions ψk(x) of the quantum system (we still stick to the Laplacian on (X, g)). There
are many ways to analyse those functions, we mention only some of them.

2.1. Macroscopic distribution of the eigenmodes: quantum ergodicity

Since |ψk(x)|2 represents the probability density of the particle to sit at the position x,
one first wonders whether a ‘stationary quantum particle’ can preferably be localized in
some region A ⊂ X, in the sense that3

∫
X\A |ψk(x)|2 dx  Vol(X \ A). This seems

counter-intuitive, considering the ergodicity of the classical flow. Shnirelman indeed showed
that almost all high-energy eigenstates are asymptotically equidistributed, in the sense that∫
A

|ψk(x)|2 dx ≈ Vol(A) [28].
To make the connection with classical dynamics, it is convenient to lift the wavefunction

ψk(x) into the phase space T ∗X [3, 35]. There exist various ways to associate with ψk a
‘semiclassical measure’ µk , which also describes the way the wavefunction is distributed in
‘momentum at the scale λk’. The extension of Shnirelman’s result to a phase space setting reads
as follows: there exists a subsequence S ⊂ N of full density, such that the measures (µk)k∈S

weak-∗ converge to µL, the Liouville measure on the unit cotangent bundle S∗X [8]. This
property of ‘generic high-energy eigenstates’ is called Quantum Ergodicity. Its proof is robust:
it only uses classical ergodicity of the dynamics, and some basic properties of quantization.

3 We recall that the area of X is unity, and the eigenstates ψk are L2-normalized.
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2.1.1. Distribution of quantum averages. At which rate does this convergence take place?
Namely, for a given phase space observable f , how fast does µk(f ) → µL(f )? One would
actually like to understand the distribution of the elements {µk(f ), λk � λ} in the limit
λ → ∞. The proof of quantum ergodicity proceeds by showing that the variance of the
distribution (sometimes called ‘Quantum variance’) vanishes when λ → ∞. If the classical
flow is fast enough mixing, the best proven upper bound for the variance is O(1/ log λ) [37].
On the other hand, based on random matrix arguments and some form of central limit theorem,
Feingold and Peres have conjectured that, for a generic chaotic system, the distribution should
be Gaussian with variance ∼ Var(f )/λ, where Var(f ) is the variance appearing in the classical
central limit theorem [13]. This conjecture has been numerically checked for numerous non-
arithmetic systems [10]. The gap between the expected O(λ−1) and the proved O(1/ log λ) is
(once more) due to our present inability to control the quantum evolution beyond the Ehrenfest
time TE ∼ log λ.

The only systems for which the quantum variance could be asymptotically computed are
arithmetic: Luo and Sarnak showed that the quantum variance for the modular surface (for a
Hecke eigenbasis) behaves as V (f )/λ, but with a factor V (f ) slightly different from Var(f ).
Kurlberg and Rudnick obtained the same type of estimate for the quantum variance of arithmetic
(Hecke) eigenbases of the quantum cat map, for which there exist explicit formulas [19]; they
also show that the distribution is NOT Gaussian. This exemplifies a recurrent ‘dilemma’ of
quantum chaos: the systems for which some computations can be performed analytically
appear to be systematically ‘non-generic’.

2.1.2. Quantum Unique Ergodicity versus exceptional eigenstates. On the other hand,
Schubert showed that, for some (non-arithmetic) eigenbases of the same quantum cat map, the
quantum variance can behave as ‘badly’ as C/ log λ [30]. In that case, the large fluctuations
of the {µk(f )} seem due to the possibility, for this very special system, to construct sequences
of eigenstates which are NOT equidistributed, but for which µk → 1

2 (µL + ν), where ν

can be any classically invariant probability measure [12]. Such states belong to the ‘density
zero’ subsequence of ‘exceptional eigenstates’ allowed by Shnirelman’s theorem. So far,
such exceptional sequences could be constructed only for some very special quantum maps or
quantum graphs.

Rudnick and Sarnak have conjectured that exceptional sequences cannot exist on
negatively curved manifolds [27] (that is, the full sequence (µk)k∈N converges to µL),
this property being called ‘quantum unique ergodicity’ (QUE). This non-existence was
proved recently by Lindenstrauss for the Hecke eigenstates of arithmetic surfaces [21]4.
Lindenstrauss’s result has been extended to some higher-dimensional arithmetic manifolds
[31]. His proof uses the fact that the ψk are eigenstates of an infinite set of Hecke operators,
yet it is somewhat expected that a single Hecke operator (that is, a single ‘arithmetic symmetry’)
should suffice to apply the same strategy of proof5.

The QUE conjecture is still wide open for non-arithmetic surfaces (and higher-dimensional
manifolds). Rather than proving that all semiclassical measures converge to µL, one can at least
try to obtain some information on the possible limit measures. Such measures are invariant
with respect to the geodesic flow, which still leave a large choice. Recently, some constraints
were obtained in the form of non-trivial lower bounds for the Kolmogorov–Sinai entropy of
the limit measures [1]: in the case of constant negative curvature, the entropy must be at least

4 To be more precise, the surface must be obtained by quotienting the Poincaré half-plane by a congruent subgroup
of SL2(R).
5 L Silberman, private communication.
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half its maximal value, showing that the eigenstates are ‘at least half-delocalized’ (to prove
QUE along these lines one would need to remove the half from the lower bound).

On the other hand, disproving QUE amounts to exhibiting a negatively curved manifold
and a sequence of exceptional eigenstates of the Laplacian, or of some perturbation of it by
lower-order terms. Like the BGS conjecture, it is possible that QUE holds only for ‘generic’
negatively curved surfaces, or ‘generic’ perturbations of the Laplacian.

Finally, one may wonder how chaotic a system should be to satisfy QUE. Does it need
to be uniformly hyperbolic (Anosov), like geodesic flows in negative curvature? Would it be
easier to construct exceptional states in case the manifold has some ‘flat parts’? The latter
question is related to the possible existence of bouncing ball modes in the stadium billiard
(which have been clearly identified in numerics) or on similar manifolds [9].

2.2. Beyond the macroscopic features: chaotic = random?

Even if true, QUE provides a rather poor description of the eigenfunctions (to be compared,
for instance, with the precision of WKB approximations). One would also wish to analyse
the wavefunctions ψk(x) at microscopic scales, or at least some intermediate scale between
1 and the wavelength λ−1. The main conjecture concerning these microscopic properties is
analogous to the BGS conjecture: the eigenfunctions are expected to be statistically equivalent
with ‘random states’ in some appropriate ensemble. This conjecture was first formulated by
Berry [3], who compared the ψk with random superpositions of isoenergetic plane waves,
and analysed the short-distance correlation functions of the latter. This conjecture has been
extended to quantum maps (the ensembles of random states are somewhat easier to describe
in this framework).

The statistical observables to be compared with the random models are manifold. They
include the value distribution for {ψk(x), x ∈ X}, correlation functions at distances ∼ λ−1,
the structure of the nodal set {x | ψk(x) = 0} and of the complementary nodal components.
One can analyse eigenstates individually, or by considering a large bunch of them in some
energy window.

To my knowledge, this field of research has mostly consisted in analysing the properties of
the random models, and then numerically checking that these properties are (approximately)
satisfied by the eigenstates of some selected quantized chaotic systems. Certain global
quantities, such as the moments of the distribution {ψk(x), x ∈ X} (that is the Lp norms
‖ψk‖p) have also been investigated analytically. As was the case for the remainder R(λ) of
the Weyl formula (1), one can obtain upper bounds valid for any Riemannian surface [34],
which are usually improved by some negative power of log λ in the negative curvature case.
Still, these upper bounds are expected to be much larger than the Lp norms of ‘random states’,
which are expected to be valid for ‘generic’ negatively curved surfaces. On the other hand,
sharper upper and lower bounds were obtained for the norms of Hecke eigenfunctions on
some arithmetic surfaces or manifolds [15]; in dimension � 3, one can exhibit such Hecke
eigenstates with ‘exceptionally’ large sup-norms [27]. The value of distribution of Hecke
eigenstates of quantum cat maps is much better understood: their sup-norms, for instance,
satisfy sharp upper bounds [18].

3. ‘Open’ quantum chaos

Quantum chaos is also concerned with the properties of certain types of non-selfadjoint
operators. One instance originates from the study of quantum scattering, in situations where
the corresponding classical scattering potential leads to some chaotic dynamics. The basic
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example of such systems is the scattering by 3 or more discs on the plane. Provided none of
the discs ‘shadows’ the other ones, the scattering trajectories are organized around a fractal
trapped set K ⊂ S∗X, consisting of points remaining in the ‘interaction region’ at all times.
At the quantum level, the square-root P of the (Dirichlet) Laplacian outside the obstacles has a
purely continuous spectrum on the real axis, but its resolvent (P −λ)−1 admits a meromorphic
continuation from {Im λ > 0} across the real axis into the ‘unphysical sheet’; each pole λk of
the continued resolvent is a resonance, associated with a metastable state ψk , which decays
with a half-time ∝ 1/|Im λk|.

Through a complex scaling procedure, one can deform P into a non-selfadjoint operator
Pθ , which admits the {λk} as bona fide eigenvalues, associated with L2 eigenstates ψ̃k obtained
by deforming the ψk . One can now ask similar questions as in the selfadjoint case:

What is the connection between the distribution of high-energy resonances and the
eigenstates ψ̃k on one side, the chaotic dynamics on the trapped set K on the other
side?

3.1. Fractal Weyl laws

These questions have received less attention than their ‘selfadjoint’ counterparts, and even
conjectures are sparse. An interesting aspect concerns the number of resonances in the strip
N(λ, C) = #{λk, |Re λk| � λ, Im λk � −C}, which was first investigated by Sjöstrand [33].
One expects a fractal Weyl law

N(λ, C) ∼ f (C) λν, λ → ∞, (2)

where the fractal exponent ν = (1 + dim(K))/2 is related to the (Minkowski) dimension of the
trapped set, and f (C) is some function of the strip width. This estimate interpolates between the
case of a compact surface (dim(K) = 3, see equation (1)) and that of a trapped set consisting
of a single hyperbolic geodesic (dim(K) = 1), for which the resonances form a deformed
lattice. Because the metastable states are ‘living’ on K (see below), the above estimate naively
originates from counting how many states (each occupying a phase space region of size λ−2)
can be squeezed in the λ−1/2-neighbourhood of K . Yet, the spectra of non-selfadjoint operators
are notoriously more difficult to analyse than their selfadjoint counterparts, which explains why
only the upper bound in (2) could be proved by Sjöstrand and Zworski [33].

An ansatz for the ‘shape function’ f (C) in (2) was proposed by Schomerus and Tworzydło,
in terms of an ensemble of (subunitary) random matrices [29]; so far, the numerical data
performed on quantum maps are not very conclusive. Even numerically checking the exponent
ν is a non-trivial task when one deals with a real scattering system [20].

The only system for an asymptotic of the form of (2) that could be proved is a simplistic
‘open quantum baker’s map’ [24]. Even in that model, the resonance spectrum may, for some
choices of parameters, degenerate to a much smaller density (equivalent with the case of a
single periodic geodesic). This shows that the estimate (2) is probably only true for ‘generic’
scattering systems, or ‘generic quantizations’ of them.

Considering the difficulty of settling the validity of this ‘Weyl law’, analysing the finer
(e.g. ‘microscopic’) distribution properties of the resonance spectrum seems presently quite
difficult.

3.2. Structure of metastable states

The metastable states ψk associated with resonances in the above strip can also be described
through semiclassical measures µk . Since ψk is not normalizable, the measure µk is infinite;
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yet, only the part lying in the ‘interaction region’ is physically interesting (one can alternatively
consider the measure µ̃k associated with the deformed L2 eigenstates ψ̃k). The structure of
µk in that region is intimately connected with the classical trapped set K: any limit measure µ

of some subsequence (µkj
) is supported on the unstable manifold of the trapped set; µ is not

invariant through the geodesic flow, but decays at the rate  = −2 limk Im λkj
. As opposed to

the case of compact manifolds (where the Liouville measure prevails as a ‘limit semiclassical
measure’), in the present case quantum mechanics does not seem to ‘preferably select’ any
limit measure. Some numerical (and analytical) results in the framework of ‘open quantum
maps’ seem to rather indicate a ‘democracy’, with a multiplicity of semiclassical phase space
distributions [16], but the general situation is still unclear at the moment.
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