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Abstract. Using coherent-state representations of quantum mechanics (Bargmann, Husimi,
and stellar representations), we describe analytically the phase-space structure of the general
eigenstates corresponding to a one-dimensional bilinear hyperbolic Hamiltonian,H = pq or
equivalentlyH = 1

2(P
2 − Q2). Their semiclassical behaviour is discussed for eigenvalues

either near or away from the separatrix energy{H = 0}, especially in the phase-space vicinity
of the saddle-point(q, p) = (0, 0).

1. Introduction

Semiclassical theory, and the quantum-classical correspondence, are still incompletely
understood at the level of long-time or invariant structures, especially when the classical
dynamics shows exponential sensitivity to initial conditions (instability, or positive
Lyapunov exponents).

We have therefore selected a simple hyperbolic one-dimensional system, the dilation
operator which quantizes the classical bilinear HamiltonianH(q, p) = qp, and collected
some detailed analytical properties of its eigenstates. Elementary as this quantum
Hamiltonian may be, seemingly unreported expressions for its eigenstates are given
here, precisely within the coherent-state (Bargmann or Husimi) formulations where the
semiclassical behaviour (¯h → 0 asymptotics) of quantum states is best seen.

Formulae for this ‘dilator’ should be useful tools to probe quantum phenomena linked
to unstable (here, hyperbolic) classical dynamics. Here are two actively studied examples
involving this Hamiltonian.

• In one dimension, classical hyperbolic dynamics takes place near a saddle-point
(assuming it is generic, i.e. isolated and nondegenerate); then it is locally equivalent to
H = pq in suitable canonical coordinates, i.e. the classical dilator is the local normal
form for this class of problems. At the quantum level, one-dimensional saddle-points also
challenge semiclassical analysis: like energy minima, they correspond to critical energy
values (i.e. the phase-space velocity vanishes); semiclassical analysis is fundamentally harder
at critical energy values than at regular energy values (where simple WKB theory works),
but saddle-points are even harder to understand than minima and their study has expanded
more recently [1–3].

• In higher dimensions, the search for quantum manifestations of unstable classical
motion forms one facet of the ‘quantum chaos’ problem. For instance, the role and imprint
of unstable periodic orbits upon quantum dynamics remain actively debated issues. It is
known that periodic orbits influence both the quantum bound state energy spectrum (through
trace formulae) and wavefunctions (through scarring). More specifically, the (stable) orbits
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296 S Nonnenmacher and A Voros

of elliptic type generate quantization formulae and quasimode constructions in a consistent
way. In chaotic systems, by contrast, trace formulae diverge and scarring occurs rather
unpredictably, so that periodic orbits (now unstable) have incompletely assessed quantum
effects; nevertheless, an essential role must still go to their linearized classical dynamics,
which is of hyperbolic type hence generated by (a) linear dilator(s).

Fully chaotic behaviour, a combination of global instability plus ergodic recurrence
cannot, however, be captured by integrable models; therefore, the place of the one-
dimensional dilator eigenfunctions in quantum structures corresponding to fully chaotic
dynamics remains to be further studied. At present, those eigenfunctions should primarily
find use as microlocal models for general one-dimensional eigenstates near saddle-points
(and for separatrix eigenstates in higher-dimensional integrable systems, by extension).

2. Coherent-state representations

2.1. Bargmann representation

The Bargmann representation [4] is a particular coherent-state representation of quantum
wavefunctions [5–7] in terms of entire functions. Although it can be defined in any
dimension, we will just use it for one-dimensional problems; it then transforms Schrödinger
wavefunctionsψ(q) defined over the whole real line into entire functionsψ(z) of a complex
variablez, as

ψ(z) = 〈z|ψ〉 = 1

(πh̄)1/4

∫
R

e
1
h̄
(− 1

2 (z
2+q ′2)+√

2zq ′)ψ(q ′) dq ′. (1)

Here |z〉 is a (Weyl) coherent state localized at the phase space point(q, p) where
z = 2−1/2(q − ip), and it satisfies〈z|z′〉 = ezz

′/h̄; i.e. these coherent states are neither
mutually orthogonal nor normalized, but the bra vector〈z| is a holomorphic function of its
label z. On the other hand, a closure formula exists which makes the Bargmann transform
invertible,

1I =
∫

C

d< (z) d= (z)
πh̄

e−zz/h̄ |z〉〈z|. (2)

The Bargmann transformation maps ordinary square-integrable wavefunctions into a
Hilbert space of entire functions of order6 2. We will, however, mostly deal with
generalized wavefunctionsψ(q), which are notL2 but only tempered distributions. They
can then still be Bargmann transformed by the integral formula (1), and into entire functions
of order6 2 as before, now bounded as

|ψ(z)| 6 c(1 + |z|2)Ne
|z|2
2h̄ for someN. (3)

This in turn constrains the distribution of their zeros [8]: the counting function

n(r) = #{zeroszm of ψ(z) st |zm| 6 r} (4)

(zeros will be always counted with their multiplicities) verifies

lim sup
r→∞

n(r)

r2
6 e

h̄
. (5)

It follows that a Bargmann function admits a canonical Hadamard representation as an
(in)finite product over its zeros,

ψ(z) = ea0+a1z+a2z
2
zn(0)

∏
zm 6=0

(
1 − z

zm

)
exp

(
z

zm
+ 1

2

z2

z2
m

)
(6)
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where the integern(0) > 0 is the multiplicity ofz = 0 as a zero ofψ(z). This decomposition
shows that the wavefunction is completely determined by the knowledge of all the Bargmann
zeros (with their multiplicities) plus three coefficientsa2, a1, and a0 (which only fixes a
constant factor).

When the Hamiltonian is a polynomial (or more generally an analytic function) in the
variables(q, p), it can be useful to express its quantum version as a pseudo-differential
operator acting on the Bargmann function [4], using the rules

a† = q̂ − ip̂√
2

(creation operator)→ multiplication byz

a = q̂ + ip̂√
2

(annihilation operator)→ h̄
∂

∂z
.

(7)

2.2. Husimi representation

An alternative point of interest lies in certain semiclassical densities on phase space
associated to wavefunctions. In particular, the Wigner function is defined as

Wψ(q, p) = (2πh̄)−1
∫

R
ψ(q − r/2)ψ(q + r/2)eipr/h̄ dr (8)

and the Husimi function [9] as the convolution of the Wigner function with a phase-space
Gaussian,

Hψ(q, p) = (πh̄)−1
∫

R2
Wψ(q

′, p′)e−[(q−q ′)2+(p−p′)2]/h̄ dq ′ dp′. (9)

The Wigner representation has greater symmetry (invariance under all linear symplectic
transformations), but Wigner functions show a much less local semiclassical behaviour:
they tend to display huge nonphysical oscillations, which must be averaged out to reveal
any meaningful limiting effects. In the Husimi functions, the spurious oscillations get
precisely damped so as to unravel the actual phase-space concentration of the semiclassical
measures, but at the expense of reducing the invariance group. The Husimi function is
equivalently given by

Hψ(z, z) = 〈z|ψ〉〈ψ |z〉
〈z|z〉 = |ψ(z)|2e−zz/h̄ (10)

hence it constitutes the density of a positive measure on the phase space; for the scattering-
like eigenfunctions to be studied here, this measure will not be normalizable. (For a
normalized state, it is a probability measure thanks to the closure formula (2).)

It is interesting to study how the Husimi measure of an eigenfunction behaves as
h̄ → 0. For an energy away from the separatrix, a standard theorem states that this measure
concentrates on the energy surface, with a Gaussian transversal profile [10–12]. For energies
close to a separatrix, careful analyses were performed in [1–3]. Our aim here is to select
a simple tractable case, namely the eigenfunctions of the linear hyperbolic Hamiltonian
[13], and to carry further its description by means of the Bargmann representation, using
equation (10) to derive the Husimi density as a by-product.

2.3. Stellar representation

According to the factorized representation (6), one-dimensional quantum wavefunctions can
be essentially parametrized in a phase-space geometry by the distribution of their Bargmann
zeros which, by equation (10), is also the pattern of zeros for the Husimi density itself; this
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then constitutes a complementary viewpoint to the previous emphasis put on the high-density
behaviour of the Husimi function. We refer to the ‘reduced’ description of a wavefunction
by that discrete cloud of phase-space points as a stellar representation. This approach puts
quantum mechanics in a new perspective ([14–17]), but calls for a finer understanding of
both dynamical and asymptotic properties of Bargmann zeros if new results are to be awaited
therefrom. Consequently, our subsequent analysis of ‘toy’ eigenfunctions will largely deal
with explicit behaviours of their Bargmann zeros.

3. Description of the framework

3.1. The linear hyperbolic Hamiltonian

The classical one-dimensional Hamiltonian of linear dilation isH(q, p) = pq, which is
also equivalent to the scattering HamiltonianH = 1

2(P
2 −Q2) upon a symplectic rotation

of the coordinates byπ/4,

q = P +Q√
2

p = P −Q√
2
. (11)

A classical trajectory at any energyE 6= 0 is a hyperbola branch,

q(t) = q0et p(t) = p0e−t with E = p0q0 (12)

whereas theE = 0 set is a separatrix, made of a stable manifold (p-axis), an unstable
manifold (q-axis), and the hyperbolic fixed point(0, 0).

We study eigenfunctions of the operator obtained by Weyl quantization, namelyĤ =
h̄
i (q

d
dq + 1

2). This quantum Hamiltonian admits two independent stationary wavefunctions
for any real energyE:

ψE
± (q) = Kθ(±q)e(i Eh̄ − 1

2 ) log |q| (13)

where θ(q) is the Heaviside step function;K 6= 0 is a complex constant (having no
preferred value, since the solutions are not square-integrable). Microlocally, each of these
wavefunctions is supported by the Lagrangian manifolds3E

± = {pq = E, q ≷ 0}, i.e. half
of theE-energy surface [1].

In order to obtain finer semiclassical information, we will use the Bargmann
representation. For instance,

〈z|ψE
+〉 = ψE

+ (z) = K

(πh̄)1/4

∫ ∞

0
e

1
h̄
(− 1

2 (z
2+q ′2)+√

2zq ′+iE logq ′) 1√
q ′ dq ′ (14)

and we have of course

ψE
− (z) = ψE

+ (−z) ψ−E
± (z) = ψE± (z). (15)

Our aim in this paper is to describe the general eigenfunction of energyE in this
representation: up to a global (removable) constant factor, it reads asψE

λ (z) = ψE
+ (z) +

λψE
− (z) for any complex projective parameterλ, i.e.λ ∈ C = C∪{∞}. We can immediately

restrict attention toE > 0 due to the second part of equations (15). We will be particularly
interested, on the one hand, in the global profile of these functions, and on the other hand,
in the position of their zeros because these form the main skeleton of the Hadamard product
representation (6) [14, 15].

The motivation is to better describe the eigenfunctions of a general one-dimensional
Hamiltonian for eigenvalues close to a classical saddle-point energy value. Such an
eigenfunction cannot be simply of WKB form near the saddle-point; instead, it should
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be microlocally modelled by an eigenvectorψE
λ of the dilation operatorĤ near(q, p) = 0

with E ≈ 0 (up to straightforward displacements, in phase space and in energy). Thus, in
a Bargmann representation, that eigenfunction ought to behave likeψE

λ (z) nearz = 0 for
someE andλ; the actual values ofE andλ are accessible only by a global analysis of the
problem, so we have to keep them arbitrary within our purely local study. (In particular,
for a parity-symmetric one-dimensional Hamiltonian and for a saddle-point located at the
symmetry centre, only even or odd solutions ever come into play; parity conservation then
preselects the two eigenfunctions ofĤ with the special valuesλ = +1 and−1 respectively.)

3.2. Main analytical results

Due to equations (7), the functionsψE
λ (z) are solutions of the following equation,

i

2

(
−h̄2 d2

dz2
+ z2

)
ψE(z) = EψE(z). (16)

It is convenient to use the rotated variablesQ,P andZ = 2−1/2(Q − iP) = ze−iπ/4 in
parallel withq, p, andz. In those variables the quantum Hamiltonian reads as the quadratic-
barrier Schr̈odinger operatorĤ = 1

2(−h̄2d2/dQ2 −Q2). Its Bargmann transform happens
to be exactly the same operator in theZ variable, simply continued over the whole complex
plane, so that the eigenfunction equation can also be written as

1

2

(
−h̄2 d2

dZ2
− Z2

)
9E(Z) = E9E(Z). (17)

At the same time, the Bargmann representations obtained fromq andQ are equivalent
under a simple complex rotation,

9(Z) = ψ(z) with Z = ze−iπ/4. (18)

Consequently, as a main first result, the above solutions are directly related to the
parabolic cylinder functionsDν(y), defined for example in [18]. As a matter of fact, we
have :

9E
± (Z) = ψE

± (z) = K
h̄

iE
2h̄

π1/4
0

(
1

2
+ iE

h̄

)
D− 1

2 − iE
h̄

(
∓

√
2

h̄
z

)
. (19)

Up to rescaling, the Bargmann eigenfunctionψE
λ (z) is then simply a linear combination of

known functions, [λDν(y)+Dν(−y)] with the notationsy = √
2/h̄z andν = − 1

2 − i E
h̄

.
The situation simplifies even further on the separatrixE = 0, where parabolic cylinder

functions reduce to Bessel functions, as

D−1/2(y) = ((2π)−1y)1/2K1/4(y
2/4)

±D−1/2(y)+D−1/2(−y) = e±iπ/8(πy)1/2J∓1/4(iy
2/4).

(20)

By virtue of equation (10), equations (19) and (20) yield the Husimi densities in closed
form, for all eigenfunctions; e.g. forψE

+ (z) and90
±1(Z) respectively,

HE
+(z, z) = |K|2√π

cosh(πE/h̄)
|D− 1

2 −i E
h̄
(−

√
2/h̄z)|2e−zz/h̄

H0
±1(Z,Z) = |K|2

√
2π3/h̄|Z||J∓1/4(Z

2/2h̄)|2e−ZZ/h̄.
(21)
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This is an interesting extension of earlier analogous results for the Wigner functions; e.g.
for ψE

+ , [19]

WE
+ (q, p) = |K|2

h̄ cosh(πE/h̄)
θ(q)e2ipq/h̄

1F1

(
1

2
+ iE

h̄
; 1; −4ipq/h̄

)
WE=0

+ (q, p) = |K|2h̄−1θ(q)J0(4ipq/h̄)

(22)

where 1F1(−ν; 1; x) ∝ Lν(x) (Laguerre functions). These expressions are especially
simple (constant along connected orbits) because the Wigner representation is exactlyĤ -
invariant under the symplectic evolution generated by the bilinear HamiltonianH . Inversely,
coherent-state representations can never preserve such a dynamical invariance of hyperbolic
type, hence closed-form results like (21) are necessarily more intricate than their Wigner
counterparts and not simply deducible therefrom.

Figure 1 shows contour plots for some of those Husimi densities, all with the
normalizationsK = h̄ = 1. The first example,HE=+1

+ (z, z), is specially plotted twice (top
row): once with equally spaced contour levels starting from zero (linear scale), and once
with contour levels in a geometric progression decreasing from the maximum (logarithmic
scale). The linear plot emphasizes the high-density modulations which control the measure
concentration of the Husimi density; the logarithmic plot reveals the subdominant structures
and especially the locations of the zeroszm. To demonstrate the role of these zeros, we
write the factorization formula (6) for the parabolic cylinder function itself as an example,

Dν(z) = ep(z)
∏
zm 6=0

(
1 − z

zm

)
exp

(
z

zm
+ 1

2

z2

z2
m

)
p(z) ≡ logDν(0)+ (logDν)

′(0)z + (logDν)
′′(0)z2/2

= − log
0( 1−ν

2 )

2ν/2
√
π

−
√

2
0( 1−ν

2 )

0(− ν
2)
z −

(
ν

2
+ 1

4
+

[
0( 1−ν

2 )

0(− ν
2)

]2)
z2.

(23)

In order to save figure space, we do not provide the log-plots used to locate the zeros for
the other Husimi densities but only their linear contour plots, with the zeros superimposed
as small dots. In addition, the same uniform contour level spacing will be used throughout
to make comparisons easier.

4. Asymptotic expansions

We can then rely upon the known asymptotic properties of theDν(y), which follow from
the integral representation (14), to investigate two asymptotic regimes for the eigenfunctions
of Ĥ . First, whenE/h̄ is kept finite, the asymptotic expansions will be valid in the limit
y → ∞; this corresponds to eigenenergies very close to the classical separatrix energy
E = 0. Secondly, if we fix the energyE at a non-vanishing value and let ¯h → 0, we have
to use a different type of asymptotics, namely, usual WKB expansions.

4.1. Energies close to zero

We use the expansions forDν(y) when |y| → ∞ [18] at fixedν, which are obtained from
integral representations using Watson’s lemma, and take different forms in various angular
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Figure 1. Contour plots of the Husimi densitiesHE
λ (z, z) (with h̄ = K = 1) for selected

eigenfunctionsψEλ of the quantum dilatorĤ , using uniform level spacing 0.2 (linear plots),
except for the top-right plot (drawn in a logarithmic scale of uniform level ratio 1/e from the
maximum downwards). The zeros of the Husimi densities, constituting the stellar representation,
are shown as dots (except in top row). Maxima properties in theE = 0 plots: HE=0+,max ≈ 3.6963
at z ≈ 0.5409 (at middle left);HE=0

+1 (even state, at middle right) very steeply peaks atz = 0,

with maximum value≈ 10.488; HE=0
−1 (odd state, at bottom left) vanishes atz = 0 and reaches

its maximum value≈ 2.0054 at the four points ij z0, z0 ≈ 1.162.
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sectors,

−π
2
< arg(y) < +π

2
Dν(y) ∼ yνe−y2/4(1 + O(y−2))

−π < arg(y) < −π
2

Dν(y) ∼ yνe−y2/4(1 + O(y−2))

−
√

2π

0(−ν)e−iνπy−ν−1ey
2/4(1 + O(y−2))

+π
2
< arg(y) < +π Dν(y) ∼ yνe−y2/4(1 + O(y−2))

−
√

2π

0(−ν)eiνπy−ν−1ey
2/4(1 + O(y−2)).

(24)

The sectors are specified here as non-overlapping and bounded by Stokes lines, i.e. curves of
maximal dominance of one exponential factor over the other. (Each asymptotic expansion
actually persists in a larger sector overlapping with its neighbours, but this extension will
not be of use here.) The above expansions are valid for|y| → ∞ within each sector and
provide approximations to the shape of the eigenfunctions and the positions of their zeros for
large|y|; we will use them to leading order only (up to O(y−2) terms), but the higher-order
corrections are known [18]. For the general eigenfunctionψE

λ (z) ∝ [λDν(y) + Dν(−y)],
equations (24) straightforwardly generate four different expansions in the fourz-plane
quadrantsSj , j = 0, 1, 2, 3 (named anticlockwise fromS0 = {0< argz < π/2}).

4.2. WKB expansions for a fixed non-vanishing energy

The previous expansions are inapplicable when ¯h → 0 with the classical energy kept fixed
at a non-zero value (in the following we will supposeE > 0). In this regime, we have to
use WKB-type expansions instead. These can be obtained from the integral representations
of the solutions (14), by performing saddle-point approximations; equivalently, they can be
found directly from the Schrödinger equation written in Bargmann variables (17). Formulae
are more conveniently expressed in theZ variable; however, all figures will be drawn in
the z variable for easier comparison. (The correspondence between thez andZ variables
is made visible on figure 2, right.)

The general WKB solution can be written, to first order in ¯h, as

9E(Z) ∼ (2E + Z2)−1/4(α(h̄)e+iφ(Z0,Z)/h̄ + β(h̄)e−iφ(Z0,Z)/h̄) (25)

where the exponents are now the classical action integrals, taken from an (adjustable) origin
Z0,

φ(Z0, Z) =
∫ Z

Z0

PE(Z
′) dZ′ PE(Z) ≡

√
2E + Z2 (26)

with the determination of the square rootPE(Z) fixed by the cuts indicated on figure 2 (left)
and byPE(0) > 0. This approximation is valid for ¯h → 0, whenZ stays far enough from
the two turning pointsZ± = ±i

√
2E in the sense that|φ(Z±, Z)| � h̄. The coefficients

α andβ a priori depend upon ¯h and the region of the complex plane whereZ lies. More
precisely, the complexZ-plane is to be partitioned by the Stokes lines, specified for each
turning point by the condition

iφ(Z±, Z)/h̄ real. (27)

Three such lines emanate from every turning point. When the variableZ crosses a Stokes
line, the coefficientsα andβ change according to connection rules (see [20] for instance);
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Figure 2. Stokes partition for the asymptotic ¯h → 0 expansions of the eigenfunctions ofĤ . Left:
fixedE regime (equations (29) and (31)), with the two turning pointsz±, and argh̄ = ε > 0 (for
ε −→ −ε, the figure must be flipped with respect to the(z+, z−) axis); cuts for the multivalued
functions used in section 4.2 are conveniently placed over two Stokes lines (heavier curves).
Right: fixed E/h̄ regime (equations (24), (49)–(52)); this picture is the scaling limit of the
preceding one forE → 0 whenε = 0 (except for the place of cuts).

the application of these rules yields the global structure of the solution. For full consistency,
no Stokes line should link two turning points; this restriction forces us to slightly rotate ¯h

into the complex plane, as ¯h → eiεh̄, with the resulting partition of thez-plane drawn on
figure 2 (left). The explicit form of exponentially small WKB contributions is generally
sensitive to the choiceε = ±0. However, such is not the case for the subsequent results at
the order to which they will be expressed, so that we may ultimately resetε = 0.

Before studying a particular solution, we introduce the hyperbolic angle variable
θ = arcsinh(Z/

√
2E) which allows to integrate the action in closed form, as

φ(Z0, Z) = E

2

[
sinh(2θ ′)+ 2θ ′]θ

θ0
= 1

2[Z′√2E + Z′2 + log(Z′ +
√

2E + Z′2)]ZZ0
(28)

the turning points correspond toθ± = ±iπ/2; the action valuesφ(0, Z±) = ±iπE/2 are
frequently needed.

We fully describe one eigenfunction as an example,9E
+ (Z) (corresponding toλ = 0).

We identify its WKB form first in the regionsS ′, S1, S2 of figure 2 (left), by noticing
that this eigenfunction must be exponentially decreasing forZ → ∞ in a sector around
argZ = −3π/4 (i.e. z → −∞) overlapping with those three regions, and then in the
remaining regions by using the connection rules. The result is

9E
+ (Z) ∼ C(h̄)

PE(Z)1/2
e+iφ(0,Z)/h̄ in the regionsS ′,S1,S2

9E
+ (Z) ∼ C(h̄)

PE(Z)1/2
e−πE/2h̄(e+iφ(Z+,Z)/h̄ + ie−iφ(Z+,Z)/h̄) in S0

9E
+ (Z) ∼ C(h̄)

PE(Z)1/2
e+πE/2h̄(e+iφ(Z−,Z)/h̄ − ie−iφ(Z−,Z)/h̄) in S3.

(29)

The overall normalization factorC(h̄) is determined by comparison with the direct saddle-
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point evaluation of the integral (14):

C(h̄) = K(2πh̄)1/4e−πE/4h̄e−iπ/8(E/e)iE/2h̄. (30)

Equations (29) readily yield the WKB expansions for the general solution as

9E
λ (Z) ∼ C(h̄)

PE(Z)1/2
[e+iφ(0,Z)/h̄ + λe−iφ(0,Z)/h̄] in S ′

9E
λ (Z) ∼ C(h̄)

PE(Z)1/2
[e+iφ(0,Z)/h̄ + (λ− c−)e−iφ(0,Z)/h̄] in S0

9E
λ (Z) ∼ C(h̄)

PE(Z)1/2
[(1 − λc+)e+iφ(0,Z)/h̄ + λe−iφ(0,Z)/h̄] in S1

9E
λ (Z) ∼ C(h̄)

PE(Z)1/2
[(1 − λc−)e+iφ(0,Z)/h̄ + λe−iφ(0,Z)/h̄] in S2

9E
λ (Z) ∼ C(h̄)

PE(Z)1/2
[e+iφ(0,Z)/h̄ + (λ− c+)e−iφ(0,Z)/h̄] in S3

(31)

with the notations

c± = −e±iπν = ±ie±πE/h̄ (c− = 1/c+). (32)

5. Large values of the Husimi density

5.1. In the WKB framework

We study the particular solution9E
+ (Z) for a fixed positive energyE as an example.

From the WKB expansions (29), we derive the Husimi density of this solution, using the
hyperbolic angle as variable (cf equation (28)). In the regionsS ′, S1, S2, away from the
turning points, we obtain

HE
+(Z,Z) ≈ |C(h̄)|2

[E(cosh 2<(θ)+ cos 2=(θ))]1/2

× exp

{
E

h̄
(− cosh 2<(θ)[sin 2=(θ)+ 1] + cos 2=(θ)− 2=(θ))

}
. (33)

This formula shows that the Husimi measure concentrates semi-classically along the maxima
of the exponential factor. Since the variableθ is restricted to the strip|=(θ)| 6 π/2,
those maxima occur on the line=(θ) = −π/4, which corresponds exactly to the branch
of hyperbola of energyE in the half-plane=(Z) < 0. In the regionS0 ∩ {=(Z) 6 0},
HE

+(Z,Z) also obeys equation (33) up to exponentially small terms, so that the discussion
covers the wholeE-hyperbola branch in the lowerZ-half-plane. The above expression
simplifies around this maximum curve, according to the following remarks. First of all,
the variables(Z,Z) are (up to a factor−i) symplectic transforms of the original variables

(q, p), so the expression of the classical energyE = − 1
2Z

2+V (Z), whereV (Z) is analytic,
implies the following classical velocity along theE-energy curve:

Ż = i
∂E

∂Z
= −iZ (34)

and along this curve, we also have|Z|2 = E cosh 2<(θ). Furthermore, if we decompose a
small variationδθ as

δZ‖ =
√

2E coshθ<(δθ)
δZ⊥ = i

√
2E coshθ=(δθ)

(35)
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(δZ⊥ is a variation ofZ perpendicularly to theE-hyperbola), we obtain the following
expression of the Husimi density around this maximum curve:

HE
+(Z,Z) ≈ |K|2√2πh̄

1

|Ż|e−2|δZ⊥|2/h̄ (36)

that is, the density decreases as a Gaussian of constant width normally to the maximum
curve, its height being given by the inverse of the phase-space velocity. This corresponds
semi-classically to a conserved probability flux along this curve, and confirms earlier
predictions [10] (cf figure 1, top left and bottom right).

As a new feature, by contrast, in the upperZ-half-plane there is a maximum curve
in the regionS0 only, and well above the anti-Stokes line where the zeros of9E

+ (Z) lie.
This maximum curve satisfies=(θ) = +π/4, i.e. it is part of the other branch of theE-
hyperbola. Around it, the Husimi density behaviour is precisely equation (36) times the
constant factor exp(−2πE/h̄), an exponentially small contribution compared to that from
the lower half-plane; hence this enhancement is semi-classically ‘invisible’ but can be seen
on the log-plot in figure 1, top right.

5.2. Energies close to zero

Now using the expansions (24), we can analyse the large values of the Husimi density in the
case whereE/h̄ stays bounded, still in the semiclassical limit ¯h → 0. If we still consider
the functionψE

+ (z), we find a concentration along an invariant subset of the separatrix, i.e.
the positive real and the imaginaryz-axes. More precisely, if|z|2 � h̄, we have

HE
+(z, z) ∼ |K|2√2πh̄

1

|ż|e−2E arg(z)/h̄e−2=(z)2/h̄ when | arg(z)| < π

4

HE
+(z, z) ∼ |K|2

cosh(πE/h̄)

√
πh̄

2

1

|ż|e2E arg(−z)/h̄e−2<(z)2/h̄ when | arg(−z)| < 3π

4
.

(37)

We notice that both the longitudinal dependence of the density, and its Gaussian decrease
away from the separatrix, are exactly the same as for a regular energy curve. Thus, away
from the unstable fixed pointz = 0, the singular limitE → 0 behaves straightforwardly.
Moreover, equations (21) provide an exact description of the Husimi density all the way
down to the saddle-pointz = 0 at any energy; e.g.

HE
+(0, 0) = |K|2√

8π

∣∣∣∣0 (
1

4
+ i

E

2h̄

)∣∣∣∣2

. (38)

We can likewise obtain the rough shape of the Husimi density for a general solutionψE
λ .

As before, whichever type of expansion we use, we find along each of the four half-axes
(which are asymptotes to the classical energy curves)

HE
λ (z, z) ≈ I

1

|ż|e−2|δZ⊥|2/h̄ (39)

where the constantI , depending onλ and on the half-axis we consider, can be interpreted
semi-classically as the invariant intensity of a flux of particles moving with velocityż = z

along this branch of classical curve. ForE � h̄, the flux is separately conserved along
each of the two hyperbola branches: with obvious notations,

I+ = I−i = |K|2√2πh̄

I− = I+i = |K|2|λ|2√2πh̄.
(40)
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When the energy approaches its critical value 0, the intensities become

I+ = |K|2√2πh̄

I− = |K|2√2πh̄|λ|2

I+i = |K|2√2πh̄

2 cosh(πE/h̄)
{|λ|2eπE/h̄ + 2=(λ)+ e−πE/h̄}

I−i = |K|2√2πh̄

2 cosh(πE/h̄)
{|λ|2e−πE/h̄ − 2=(λ)+ eπE/h̄}.

(41)

Now the flux is only conserved globally: it is easy to check thatI+i + I−i = I+ + I−.

6. Asymptotic study of the zeros

The asymptotic geometry of the zeros for a general solution can be deduced from the
following general principles. When a functionf (Z) has an asymptotic expansion (within
a sector) combining two exponential behaviours, the function can only vanish when both
exponential factors are of the same order of magnitude. Thus, the two exponents must have
equal real parts: this necessary condition defines the anti-Stokes lines of the problem in
the complexZ-plane. Zeros of the function can then only develop along anti-Stokes lines
(always in the large-|Z| approximation), and provided both exponentials are present in the
given sectorial expansion, with fixed non-zero prefactors. In the present problem, zeros will
be more conveniently parametrized in theZ variable; as already stated, however, all figures
will be drawn in the rotatedz-plane (cf figure 2, right).

6.1. Energies close to zero—general case

Here the expansions (24) have to be used, the exponential factors read as e+iZ2/2h̄ and
e−iZ2/2h̄, and the anti-Stokes lines on which they balance each other, namely the bisecting
lines Lj of the quadrantsSj , are simply the real and imaginaryZ-axes (figure 2, right).
Now, for each fixedj , two independent solutions8(j)

± of equation (17) can be specified by
imposing single-exponential asymptotic behaviours alongLj , as8(j)

± ∼ f
(j)
± (Z)e±iZ2/2h̄. A

general solution9(Z) is then proportional to
[
38

(j)
+ +8

(j)
−

]
for some3 ∈ C, and satisfies

9(Z) ∝ 3f
(j)
+ (Z)e+iZ2/2h̄ + f

(j)
− (Z)e−iZ2/2h̄ Z → ∞ in Sj (42)

whence the condition9(Z) = 0 in the sectorSj asymptotically reads as

Z2/h̄ ∼ (−1)j2πm+ i log[3r(j)(Z)] for m → +∞
r(j)(Z) ≡ −f (j)+ (Z)/f

(j)
− (Z).

(43)

This yields an asymptotic sequence of zeros, asZ
(j)
m ∼ eijπ/2

√
2πmh̄ to leading order;

thereupon, to the order O(1) included,

Z(j)2m /h̄ ∼ (−1)j2πm+ i log r(j)(eijπ/2
√

2πmh̄)+ i log3+ O(m−1 logm)

m → +∞. (44)

The final square-root extraction is straightforward,

Z(j)m /
√
h̄ ∼ eijπ/2

(√
2πm+ (−1)j i

log r(j)(eijπ/2
√

2πmh̄)+ log3

2
√

2πm
+ O

(
log2m

m3/2

))
(45)



Eigenstate structures around a hyperbolic point 307

so that the simpler form (44) will be preferred for further displays of results.
When the asymptotic analysis concerns a fixed linear combination given as [λDν(y)+

Dν(−y)], 3 turns into a sector-dependent function3(j)(λ), which is the linear fractional
transformation induced by the change of basis{Dν(y),Dν(−y)} −→ {8(j)

+ (Z),8
(j)
− (Z)}.

The equations for zeros like (44) become singular for the two values ofλ which map
to 3(j) = 0 or ∞, which yields the pure8(j)

− or 8(j)
+ solutions with no zeros (at least

asymptotically) in the sectorSj .
We now list more explicit results. In the sectorS0, corresponding to{0 < argy <

+π/2},

λDν(y)+Dν(e
−iπy) ∼ (λ+ e−iπν)yνe−y2/4 +

√
2π

0(−ν)y
−ν−1e+y2/4. (46)

Upon the substitutions3(0)(λ)r(0)(Z) ≡ (
√

2π/0(−ν))y−2ν−1/(λ + e−iπν), y =√
2/h̄eiπ/4Z andν = − 1

2 − iE
h̄

, the asymptotic equation (44) for zeros becomes

Z(0)2m

h̄
∼ (2m− 1)π − E

h̄
log 4mπ i − i log

0( 1
2 + i E

h̄
)√

2π
− i log(λ+ ie−πE/h̄)

−π
4
< argZ < +π

4
. (47)

A geometrical interpretation will prove useful. LetC± be the two circles in theλ-plane
respectively specified by the parameters (cf equation (32) and figure 3)

centres:c± = ±ie±πE/h̄ radii: R± = (1 + e±2πE/h̄)1/2 (48)

(these two circles are centred on the imaginary axis and intersect orthogonally atλ = +1
and−1). Let us also write, for realt , 0( 1

2 + it)/
√

2π in polar form as(2 coshπt)−1/2ei2(t),
defining the phase2(t) by continuity from2(0) = 0. The formula (47), and its partners
in the other sectors, then become:

in S0 = {−π/4< argZ < +π/4},
Z(0)2m

h̄
∼ (2m− 1)π − E

h̄
log 4mπ +2(E/h̄)− i log

λ− c−
R−

(λ /∈ {c−,∞}) (49)

in S1 = {+π/4< argZ < +3π/4},

−Z
(1)2
m

h̄
∼ (2m− 1)π + E

h̄
log 4mπ −2(E/h̄)+ i log

λ−1 − c+
R+

(λ /∈ {0, c−}) (50)

in S2 = {−5π/4< argZ < −3π/4},
Z(2)2m

h̄
∼ (2m− 1)π − E

h̄
log 4mπ +2(E/h̄)− i log

λ−1 − c−
R−

(λ /∈ {0, c+}) (51)

in S3 = {−3π/4< argZ < −π/4},

−Z
(3)2
m

h̄
∼ (2m− 1)π + E

h̄
log 4mπ −2(E/h̄)+ i log

λ− c+
R+

(λ /∈ {c+,∞}). (52)

For general values of the parameters we cannot get more precise information this way,
except by going to higher orders (but still in the asymptotic sense). We have yet no idea
about the position, or even existence, of small zeros. Our subsequent strategy will be to start
from very special cases for which the pattern of zeros is well known, and from there to vary
continuously the parametersE andλ and keep track of the zeros along these deformations:
zeros are topological defects, so they move continuously with respect to both parameters.
We will then exploit symmetries of equation (17), especially the reality of its solutions (a
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Figure 3. The complex plane of the coefficientλ with the circlesC− corresponding toZ-
real solutions andC+ corresponding to iZ-real solutions; the finite special values 0, c−, c+ are
marked (the fourth one beingλ = ∞).

real function of a complex variablet is one satisfyingf (t) = f (t)). Equation (17) is
a differential equation with real coefficients, hence it admits real solutions, whose zeros
are symmetrical with respect to the realZ-axis. During a deformation of a real solution,
zeros could leave (or enter) the real axis only in conjugate pairs, but at the same time
the functions considered here (solutions of a second-order equation) cannot develop double
zeros; consequently, each zero is bound to stay permanently real (or nonreal) in the course
of a real deformation.

6.2. Even–odd solutions of zero energy

We use theE = 0 expressions equation (20) in terms of the Bessel functionsJ±1/4(Z
2/2h̄)

to view the pattern of zeros more precisely in this particular case.
We know that, for realµ, t−µJµ(t) is a real even function having only real zeros

±jµ,m, m = 1, 2, · · ·, with jµ,m > 0 andjµ,m ∼ π(m+ µ

2 − 1
4) for largem. This translates

into theZ variable as follows.
For λ = +1: the even solution (figure 1, middle right)

90
+1(Z) = K(2π3/h̄)

1/4
Z1/2J−1/4

(
Z2

2h̄

)
(53)

(a real function forK real), is not just even but also invariant underZ −→ iZ; all its zeros
are purely real or imaginary, themth positive zero admits the approximation

Z(0)m |λ=+1 ∼
√
h̄(2mπ − 3π/4) (54)

and all other zeros follow by the rotational symmetry of order 4.
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For λ = −1: the odd solution (figure 1, bottom left)

90
−1(Z) = Keiπ/4(2π3/h̄)

1/4
Z1/2J1/4

(
Z2

2h̄

)
(55)

has exactly the same symmetries for its zeros as the even one (because the auxiliary function
e−iπ/490

−1(Z)/Z has all the symmetries of90
+1(Z)); besides an obvious zero at the origin,

themth positive zero of90
−1(Z) lies approximately at

Z(0)m |λ=−1 ∼
√
h̄(2mπ − π/4). (56)

6.3. Even–odd solutions of non-zero energy

If we ‘switch on’ the energy, keepingλ = +1, the solutions will not be Bessel functions
any longer, but they still exhibit interesting features. Equation (17) has real coefficients,
hence its even and odd solutions are real up to a constant factor, i.e. up to an adjustment
of argK. For the even solution9E

+1(Z), the reality condition is

9E
+1(0) = K

(
2

π

)1/4

(2h̄)
iE
2h̄ 0

(
1

4
+ iE

2h̄

)
real. (57)

This even solution can be seen as a real deformation of the solution (53). It maintains the
symmetry with respect to the origin and to the twoZ coordinate axes; only theπ/2 rotation
symmetry is lost forE 6= 0. Due to the two mirror symmetries, as explained above, the
only possible motion of the zeros during this deformation is a ‘creeping without crossing’
along the four half-axes, symmetrically with respect to the origin. This can be checked on
the O(1) terms of the expansions (49)–(52), and on the sequence of plots: figure 1 (middle
right), figure 6 (right), figure 1 (bottom right). At the same time, this deformation allows
to properly count the zeros at all energies, by continuity fromE = 0 where equation (54)
does count the zeros: in each of the expansions (49)–(52),Z

(j)
m remains the actualmth zero

on the half-axisLj if the corresponding complex log functions are defined atλ = +1 as

log(1 − c±) = log |1 − c±| ∓ i arctan e±πE/h̄ (58)

where the arctan function has the usual range(−π/2, π/2).
The same analysis can be performed for the odd real solution9E

−1(Z) of (17), a
deformation of the solution (55), for which the reality condition is

d9E
−1

dZ
(0) = K

(
27

π

)1/4

(2h̄)−
1
2 + iE

2h̄ 0

(
3

4
+ iE

2h̄

)
eiπ/4 real. (59)

6.4. Real solutions

We now consider more general families of real solutions, i.e.9E
λ (Z) = 9E

λ (Z), ∀Z ∈ C.
These exist only for certain values ofλ, for which we have to adjustK. Since (17) is a
second-order equation with real coefficients, it has the real solutions

9E(Z) = κ(9E
+1(Z)+ t9E

−1(Z)) for κ ∈ R∗, t ∈ R ∪ {∞} = R. (60)

Under the change of basis{9E
+1(Z),9

E
−1(Z)} −→ {Dν(y),Dν(−y)}, the set{t ∈ R} is

mapped to a circle in the projectiveλ-plane, passing throughλ|t=0 = +1, λ|t=∞ = −1.
The full circle can be determined long-hand using equations (57)–(59), but more easily by
asking the expansions (49) and (51) to yield asymptotically real zeros as reality demands:
the resultingλ-circle isC− (note thatλ ∈ C− ⇐⇒ 1/λ ∈ C−).
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Let us now analyse the motion of the zeros in the four sectors of theZ-plane as we vary
λ aroundC− anticlockwise from 1 to e2iπ . We already know that the real zeros cannot leave
the realZ-axis by symmetry. In the expansions (49) and (51) forS0 andS2 respectively,
the only modifications are that arg(λ − c−) increases by 2π , and arg(λ−1 − c−) decreases
by 2π , inducing a re-labelling of the large zeros in those two sectors. Hence each large
positive or negative zero creeps to the right until it reaches the former position of its right
neighbour after one cycle. The small zeros, trapped on a real bounded interval in-between
by reality, and unable to cross one another, can then only share this behaviour.

By contrast, in each of the two remaining sectors, the zeros are not confined to the
imaginaryZ-axis, and the cycleC− is homotopically trivial in the Riemann surface of the
relevant logarithmic function. According to the expansions inS1 (resp.S3), the large zeros
in these sectors perform a clockwise (resp. anticlockwise) loop beginning and ending at their
location on the imaginary axis forλ = 1. The geometric relationλ− c+ = R2

+(λ
−1 −c+)−1

is the asymptotic remnant of reality:{9(Z) = 0 ⇒ 9(Z) = 0}. This motion inS1 andS3

has been thus proven only for large zeros, but we may argue a similar behaviour for the
smaller ones by homotopy; moreover, these zeros cannot cross the realZ-axis by reality,
and they are confined to a bounded region around the origin (contrary to the real zeros,
they cannot migrate to infinity whenλ keeps revolving aroundC−); orbits of nonreal zeros
during the describedλ-cycle are also symmetrical with respect to the imaginary axis, thanks
to a λ ↔ 1/λ symmetry of the real solutions.

The evolution of all the zeros under theλ-cycleC− is globally depicted forE = 0 on
figure 4 (left), in thez variable.

Similarly, the solutions corresponding toλ ∈ C+ can be chosen real with respect to
the variable iZ (observing that equation (17) is invariant under the change{Z → iZ,E →
−E}), and analysed likewise.

Figure 4. Left: positions of the zeros ofψE=0
λ (z) for four values ofλ in an anticlockwise

succession on the circleC−: λ0 = +1, λ1 = (
√

2 − 1)i, λ2 = −1, andλ3 = (−√
2 − 1)i.

Right: same for the decreasing positive sequenceλn = 10−n, n = 0, 3, 6; figure 1 (middle left)
displays the limiting special valueλ = 0.
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6.5. Singular values ofλ

Each of the expansions (49)–(52) becomes singular for two values ofλ from the set
{0,∞, c−, c+}. The solutions are thenψE

± (z), ψ
−E
± (iz), corresponding to ‘pureDν

functions’, and equations (24) clearly show thatDν(y) has large zeros only in two out
of four sectors, namely along the pair of adjacent anti-Stokes lines{argy = ±3π/4}. That
is why the zeros in the two other sectors must ‘escape to infinity’ asλ moves towards one
of its special values. Let for instanceλ decrease from+1 (the even solution case) to the
special value 0 along the interval [0, 1]. For simplicity we first restrict ourselves to the
caseE = 0, where the eigenfunctions are combinations of Bessel functions. The zeros’
expansions (49)–(52) (withR±|E=0 = √

2) then become singular in the sectorsS1 andS2,
whereas they stay perfectly uniform in the two other sectors. InS2, equation (51) holds
uniformly asZ(2)2m /h̄ → ∞, which amounts to− logλ+2πm � 1, and the same conclusion
is reached for equation (50) inS1. As λ → +0, the two formulae merge into a single one,

Z2
n/h̄ ∼ i log

λ√
2

+ (2n− 1)π in S1 ∪ S2 for any n ∈ Z (61)

where the global counting indexn ∈ Z matches withm in the sectorS2 for n � 0 and
with (−m + 1) in S1 for n � 0. These zeros thus tend to follow the hyperbola branch
{2<(Z)=(Z) = h̄ log λ/

√
2, <(Z) < 0}, which itself recedes to infinity asλ → +0, as

can be seen on figure 4 (right) followed by figure 1 (middle left).
This description can be generalized to the case of a non-vanishing (but small) energy.

The asymptotic condition for zeros inS1 ∪ S2 when λ → 0 must now be drawn from
equation (43) itself and reads as

Z2
n

h̄
≈ (2n− 1)π − i log

(
λ−1 − c∓
R−

)
− E

h̄
log

(
2
Z2
n

h̄

)
+2(E/h̄) for n → ±∞.

(62)

For small values ofλ, these zeros tend to follow asymptotically two half-branches of
hyperbolae which differ asn → +∞ or −∞ (because of the=(logZ2

n) contribution); the
matching between this set of zeros for smallλ and the set of zeros of9E

+1(Z) on R− ∪ iR+
can be done as in the caseE = 0.

6.6. WKB expansions of zeros at a fixed non-vanishing energy

We first consider the particular solution9E
+ (Z). In the semiclassical limit of equations (29),

9E
+ (Z) can vanish only within the regionsS0 and S3 and along anti-Stokes lines, now

defined by the conditions:φ(Z±, Z)/h̄ real, respectively. From the complete set of anti-
Stokes lines (shown on figure 5, top left, with arg ¯h = 0 henceforth), the only relevant ones
in this case are: inS3, the straight half-line fromZ−; and inS0, the anti-Stokes line from
Z+ asymptotic to the positive realZ-axis (figure 5, bottom right). The zeros themselves
are given asymptotically by the equations

φ(Z+, Z) = (+m− 1
4)h̄π m ∈ N, m � 1 in S0

φ(Z−, Z) = (−m+ 1
4)h̄π m ∈ N, m � 1 in S3.

(63)

Finally, the expansions

φ(Z+, Z) ∼ +Z2/2 whenZ → +∞
φ(Z−, Z) ∼ +Z2/2 whenZ → −i∞ (64)
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Figure 5. Top left: the anti-Stokes lines for the semiclassical expansions of the eigenfunctions
of Ĥ in the fixed E regime. Remaining five plots: positions of the zeros ofψE=+1

λ (z),
exceptionally withh̄ = 0.2, for a decreasing positiveλ-sequence:λ = +1; |c−| � λ < 1;
λ = |c−| (= e−πE/h̄); 0 < λ � |c−|; λ = 0. The light curves are the Stokes lines; the heavy
curves are the branches of theH = E hyperbola where the Husimi measure does concentrate
semiclassically.
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restore the former large zero behaviours,Z
(j)
m ∼ eijπ/2

√
2h̄mπ for j = 0, 3 respectively.

We can also see how the zeros in regionsS1 andS2 go to infinity for a more general
eigenfunction9E

λ (Z), when the parameterλ decreases from 1 to 0 along [0, 1] as in
subsection 6.5, but now for a fixed non-vanishing energy. We will then be able to compare
the results in the two frameworks.

Using the WKB expansions (31) in the different regions of theZ-plane, we study the
equation9E

λ (Z) = 0 in each of them [21]. Forλ = 0 we found zeros along only two
anti-Stokes lines. For a general value, there will be zeros in all regions (and, in as much as
λ varies independently of ¯h, those zeros are not confined near the above anti-Stokes lines).
Moreover, we know from symmetry properties that forλ = ±1, the zeros can only lie on
the real and imaginaryZ-axes. It is also obvious, from the different expansions, that the
zeros’ pattern depends on the ratioλ/c− = λc+ (cf equation (32)).

In the range 1> λ � |c−|, the differences between the formulae (31) for regionsS ′,
S0, S2 are irrelevant as far as the position of the zeros is concerned, so that the first one
suffices to localize the zeros in those three regions by means of the equations

=φ(0, Z) = −(ih̄/2) logλ

<φ(0, Z) = h̄π/2 modh̄π.
(65)

For λ = 1, the zeros are exactlyZ-real by symmetry. Whenλ decreases towards|c−|, the
curve (65) gets deformed towardsZ+, keeping the real axis as asymptote at both ends. At
the same time, the zeros inS1 ∪ S3 stay along the imaginaryZ-axis. Whenλ ≈ |c−|, there
are zeros along all anti-Stokes lines fromZ+ and along the imaginary axis inS3. When
λ � |c−|, the zeros along the anti-Stokes lines inS0 ∪ S3 stabilize, whereas the ones in
the regionsS1 ∪ S2 lie along the curve (65), which recedes to infinity whenλ → 0 as in
the previous subsection, and with the same asymptotes. All these phenomena appear on the

Figure 6. Left: fifteenth eigenstate of the Harper model quantized in dimensionN = 1/(2πh̄) =
31 with periodic boundary conditions; this Husimi density contour plot exceptionally uses level
spacing 0.089 to match the spacing-to-maximum ratio of the comparison plot (next); (the zero
of the Bargmann function914(Z) at the origin has to be double in order to get the correct count
of 14 zeros within the{HH < E} region—and (31–14) outside [14]). Right: the appropriate
comparison Husimi densityHE

+1 (see text), plotted as in figure 1 (maximum value≈ 6.752, at
the origin).
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sequence of plots in figure 5. Once more, we can recover the previous asymptotic large
zeros by expanding the action integralsφ(0, Z) along the four half-axes.

7. Conclusion

The above study should help to better understand more complicated one-dimensional systems
when the eigenenergy is very near a saddle-point value and standard WKB theory fails.

This can be illustrated upon the eigenstates of a quantum Harper model. The
classical Harper Hamiltonian isHH = − cos(2πP ) − cos(2πQ) on the torus phase
space(Q mod 1, P mod 1). It can be quantized on the Hilbert space of wavefunctions
with periodic boundary conditions, which has a finite dimensionN to be identified with
(2πh̄)−1. The eigenfunctions of this model are not computable analytically. For a numerical
calculation we choseN = 31, and selected the eigenfunction9n immediately below the
separatrix energyE = 0; this is an even state with quantum numbern = 14, and its
Husimi density over the torus is shown on figure 6, left (cf also [14], figure 2(a)). Now,
by expanding the Hamiltonian near one saddle-point like(Q = 0, P = ± 1

2) we recover a
quadratic-barrier problem. This suggests to compare914 with the even dilator eigenfunction
9E

+1(Z) for E/h̄ ≡ 2πN |E14|/(2π)2 andz ≡ h̄−1/2eiπ/4(Q− iP)/
√

2 ≈ 10×eiπ/4(Q− iP)
(see figure 6, right). We then observe that not only the high densities of both figures around
the saddle-points fit very nicely (a result to be expected from semiclassical comparison
arguments [13, 10]), but also, more surprisingly, the sequences of zeros for the Harper
eigenfunction match the comparison zeros quite well, and not just near the saddle-points
but practically all the way out to the extremal points; at these points the lines supporting the
zeros intersect and that correspondence must break down, but this happens much beyond
its reasonable range of validity anyway.
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