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Chaotic Eigenfunctions in Phase Space
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We study individual eigenstates of quantized area-preserving maps on the
2-torus which are classically chaotic. In order to analyze their semiclassical
behavior, we use the Bargmann-Husimi representations for quantum states as
well as their stellar parametrization, which encodes states through a minimal set
of points in phase space (the constellation of zeros of the Husimi density). We
rigorously prove that a semiclassical uniform distribution of Husimi densities on
the torus entails a similar equidistribution for the corresponding constellations.
We deduce from this property a universal behavior for the phase patterns of
chaotic Bargmann eigenfunctions which is reminiscent of the WKB approxima-
tion for eigenstates of integrable systems (though in a weaker sense). In order
to obtain more precise information on "chaotic eigenconstellations," we then
model their properties by ensembles of random states, generalizing former
results on the 2-sphere to the torus geometry. This approach yields statistical
predictions for the constellations which fit quite well the chaotic data. We finally
observe that specific dynamical information, e.g., the presence of high peaks
(like scars) in Husimi densities, can be recovered from the knowledge of a few
long-wavelength Fourier coefficients, which therefore appear as valuable order
parameters at the level of individual chaotic eigenfunctions.

KEY WORDS: Chaotic dynamics; quantum mechanics; quantum maps
on the torus; coherent-state representation; stellar representation; quantum
ergodicity; semiclassical analysis; random states; scars of periodic orbits.

1. INTRODUCTION

We present a detailed exploration of the eigenfunctions of certain quantum
maps, corresponding to classical chaotic maps defined over a torus phase
space. Those eigenfunctions will be described in phase space by means of
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the Bargmann-Husimi-stellar family of representations. This study is
intended to contribute towards understanding the general issue of the semi-
classical behavior of individual eigenfunctions, which is a basic and largely
unsolved problem when the classical dynamics is chaotic.

When this dynamics is integrable, we may consider that the semiclassical
behavior of the eigenfunctions is known: it follows a WKB Ansatz

where Sj are the (finitely many) branches of the classical action at energy
E and AJ are certain invariant 1/2-densities. Thus in principle (disregarding
fine points and technicalities), the eigenfunctions and all derived quantities
are computable in the semiclassical regime (e.g., the discrete eigenvalues are
yielded by EBK quantization formulae).

By contrast, no definite behavior is known when the classical
dynamics is far from integrable, namely chaotic (especially, ergodic). The
classical ergodic property creates a definite semiclassical constraint,
expressed by the Schnirelman (family of) theorem(s): basically, suitable
phase-space measures constructed from the eigenfunctions (e.g., their
Husimi densities) must tend towards the classical phase-space ergodic
measure as h -> 0. However, as far as the effective eigenfunction shapes
themselves are concerned, this property brings very weak and indirect
information, except on the negative side: it is strong enough to forbid all
familiar semiclassical patterns like WKB, Gaussian wave packets, etc.; but
at the same time, it yields no affirmative shape prediction (as yet).
Moreover, the theorem allows a tiny fraction of eigenstates to evade
ergodic behavior, and any of these will wholly escape description at this
stage.

We therefore intend to refine the description of quantum eigenfunc-
tions in a classically chaotic regime ("chaotic eigenfunctions," for short),
and will employ for this purpose a holomorphic phase-space representation
of quantum mechanics, which can highlight certain semiclassical features in
great detail.

We are going to probe a very restricted class of dynamical models
which minimize accessory complications. At the classical level we take
chaotic area-preserving maps acting on a 2-d torus (=one degree of
freedom), because this is the simplest (compact) phase space to admit of
such maps with rigorously proven chaotic behavior; out of these we select
linear automorphisms ("cat" maps) and the "baker's" map. In either case,
corresponding quantum dynamics are readily available. The semiclassical
behavior of the resulting eigenfunctions can then be examined in this
framework, and it already looks quite intricate. These simple, albeit abstract,
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models may then lend themselves more readily to basic exploratory investi-
gations than more realistic problems plagued with technicalities.

Our results are mixed, ranging from rigorous to empirical through
statistical. We definitely do not resolve the internal dynamical structure of
eigenfunctions in the chaotic regime, but gain several new ideas about their
behavior. We now list these results as we outline the contents of the paper.

The framework just described, and accompanying basic notations, are
summarized in Section 2, with the main emphasis placed upon the stellar
parametrization to be used throughout, i.e., the encoding of a wavefunction
in the zeros of its Husimi density. Interesting features of the quantum states
are not easily extracted from this (nonlinear) representation, and some
further study of this technique is in fact a parallel topic of this paper.

Section 3 reviews the semiclassical ergodic results mentioned above,
e.g., like Schnirelman's theorem for "chaotic quantum maps", and lists
unsolved questions about the precise way the Husimi densities converge
towards the ergodic measure. Various tools (Ls-norms and related func-
tionals) can be used to globally measure deviations from strict uniformity,
and we present extensive numerical results about the Husimi densities of
eigenstates for the quantum cat and baker maps. In particular we discuss
the semiclassical relevance of scars in this context. Finally, existing
ergodicity-related results on the Husimi zeros (the constellations, to be
further studied) are recalled here.

Section 4 exposes the new rigorous dynamical results of this paper.
First, semiclassical convergence of the Husimi densities towards the
uniform ergodic measure is shown to imply the equidistribution of the
corresponding zeros over the phase space in the classical limit. We further
state as a conjecture that the densities of zeros should do more than just
equidistribute, i.e., not only do their Fourier coefficients tend to zero, but
they should decay faster than a certain specified rate. Last but not least,
and counter to the belief that the phase information of quantum wavefunc-
tions is irretrievable in presence of classical chaos, we deduce (from the
equidistribution of zeros) a definite universal behavior for a phase-related
quantity, the local momentum of the eigenfunction in Bargmann form. This
result can be cast in a very WKB-like expression for the eigenstate, but to
be taken in a much weaker, measure-theoretical, sense than for classically
integrable systems.

Section 5 is devoted to statistical analyses of the distributions of
Husimi zeros. The discussion continues earlier works based on random
ensembles of functions, in the following new directions. The results for ran-
dom polynomials over the Riemann sphere are systematically transported
to the torus, for ensembles of theta-functions. At the same time, the effects
of parity and time-reversal symmetries are separately taken into account.
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Finally, emphasis is put on the resulting statistical properties of the
Fourier-transformed densities of zeros, with the analytical evaluation of a
corresponding form factor (alias structure function).

In Section 6, miscellaneous properties of these Fourier coefficients are
observed for eigenstates of the quantum cat and baker map, and compared
with the dynamical and statistical expectations. We find that the previous
random form factor imprints each eigenstate, through a globally strong
suppression of most lower-range Fourier coefficients (up to a distance
<^/N). Moreover, we identify a specific signature, within this dual
approach, of high peaks in Husimi densities (including scars by fixed points
of the classical map).

Section 7 provides a summary and some overall conclusions.

2. QUANTUM MODELS OVER THE TORUS

Generally speaking, the most elementary Hamiltonian dynamical
systems which can exhibit chaos are area-preserving maps over a 2-d com-
pact surface. Because such a phase space is not of the standard type (i.e.,
the cotangent bundle of a position space), quantum mechanics is not
canonically defined; the simplest alternative quantization method needs an
extra 1-d complex (Kahler) structure chosen on the surface. These compact
surfaces are topologically classified by their genus g. The most elementary
case g = 0 (the sphere) is the relevant phase space for spin dynamics(20)

The next case g = 1 (tori) will focus all of our attention since it is the simplest
to carry proven chaotic maps (the cat and baker maps), while its kinematics
(both the classical and the quantal) remain manageable. (The more
intricate g>2 cases would also deserve investigation, even though the
physical relevance of such phase spaces is unclear yet; see subsection 2.1.1
for a sketchy introduction to quantum mechanics on such surfaces).

On a 2-d torus, all inequivalent complex structures are labelled by a
modular parameter, re {3(i) >0}/SL(2,Z). Here, however, only one
z-dependent feature will be examined (see Section 3.3 and Appendix A).
Otherwise we will only consider the torus T2 built from the unit square,
with canonically conjugate real variables x = (q, p)e [0, 1)2 (mod 1), and
fix the complex coordinate z = (q — ip)/^/2eC (corresponding to the
choice T = i, the most suited to the discrete rotational symmetry of the
square; we call Tc the resulting complex torus, to differentiate it from the
underlying real torus T2). We now briefly recall the basic notations and
facts pertaining to the quantum mechanics over this phase space, fixed once
for all.

Admissible quantum wave functions |i/^> are to satisfy two quasi-
periodicity relations:(20,11)
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and they form a Hilbert space .WNt v of finite dimension N=1/h , a condi-
tion which restricts Planck's constant itself (h = 2nh) to inverse integer
values; the Floquet angle pair ( c p 1 , (p2) is arbitrary on the dual torus and
this freedom makes for a family of quantizations which can be labelled by
the complex combination cp =f cp1 + i</>2- However, any ^-dependent effects
will be neglected here, being of higher order in h than the leading semi-
classical features which already challenge our understanding.

2.1. Holomorphic and Phase-Space Quantum Structures
over Tc

We now quickly review (see ref. 20 for details) quantum representa-
tions which explicitly depend upon the choice of complex structure on T2,
here fixed as Tc (the complex torus defined above).

The Hilbert space of Eq. (2), J^NiV,xCN, can also be spanned by
doubly periodicized Gaussian coherent states, i.e.,

where |z> = e x p ( z a ^ / h ) |0> is a Weyl coherent state at the point (q, p) of
the plane (a+ = 2 - 1 / 2 ( q — ip) is the usual creation operator and |0> the
ground state of the harmonic oscillator); the state |z> is thus made to
depend holomorphically upon the coordinate z = (q + ip) /^ /2 , instead of
being normalized (and <z | z> =ezz/h). Then for all \ l / e J f N t V , \jt(z) =
<z 11^> is an entire function of z, subject to the two quasiperiodicity rela-
tions:(20)

These functions \l/(z) also span an N-dimensional Hilbert space of entire
functions, constituting the Bargmann representation of 3FNiV. Over the
torus Tc itself, however, they do not define intrinsic functions, only
holomorphic sections of the complex line bundle specified by the two equa-
tions above. It is then worthwhile to seek other representations based
exclusively on genuine phase-space entities.
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The most popular such construct is the Husimi density,

which is strictly doubly-periodic hence defines a (positive) density on the
torus; the normalization condition for the quantum state |i^> in 3?N<V

translates as

and H(x ) can be viewed as a phase-space localization probability for the
quantum state |i/r>. The Husimi representation thus maps the unit vectors
°f ^N,<P into probability measures over T2; however, the infinite codimen-
sion of this embedding makes it very uneconomical, and impractical to
invert.

A contrario,(20) we emphasize that \j/(z) can be mapped onto a much
leaner phase-space structure, namely the skeleton of its zeros {zk} (counted
with their multiplicities and modulo the periods; this is also called the divisor
of i/K(z)). Any Bargmann function has exactly N zeros on the torus TC,
linked by a single linear constraint,

and conversely, all such N-uples constitute an explicit and 1-1 parame-
trization of this Bargmann space, thanks to this special case of Hadamard
factorization (ref. 3, p. 22), for entire functions of order <2,

where

is the Bargmann function of the "singlet" state x, the unique state of
•^r-i,». = (1 +i)/2, possessing a single zero at z = 0 (we use the notations of
ref. 1 for the Jacobi theta functions and Weierstrass a function).

This immediately implies a nontrivial result, in the form of an explicit
criterion for a Husimi density to be a pure quantum state! Namely, by
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Eqs. (5)-(8), a Husimi density H^ is constrained first to vanish (quadrati-
cally) precisely at the N zeros zk of \f/(z), then to satisfy the factorization
identity

C^>0 is a constant factor to be adjusted via the normalization Eq. (6).
Conversely, any H(x) having the form (10), for an arbitrary subset of N
points on the torus, is the Husimi density of a wave vector, specified by
Eq. (8) within the space 3fN,v where now q> is constrained by Eq. (7).

A parametrization of pure quantum states is thus provided by this
direct 1-1 correspondence of their Husimi densities with all N-uples or
"constellations" of zeros, or equivalently with the (singular, normalized)
2-d Dirac distributions of these zeros,

This new density p(x) can now be studied in place of, or in parallel with,
the Husimi density H(x) itself. We hope that this nonlinear but "naked"
phase-space description of pure quantum states, which we call "stellar
representation," will shed new light on the semiclassical eigenfunction
problem. At the same time, however, we must still improve our under-
standing and control of this stellar representation which has not yet been
exhaustively studied.

The basic relationship between the densities p and H is deduced from
the factorization property (10), as

This approach thus privileges the logarithm of the Husimi density, as the
electric potential generated by a point-like unit charge at every zero minus
a uniform charge density exactly restoring global electric neutrality.

Now, translating any property of one density concretely in terms of
the other becomes a central task, but an arduous one. First, the basic rela-
tionship (12) is highly nonlinear. Then, each zero is a maximally quantal
object (contributing one quantum of phase to the Bargmann function
\l/(z)), hence any semiclassical effects (which show up as high-density
regions) have to be coherent manifestations from a large number of zeros,
as observations will confirm.
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Due to all the aforementioned difficulties, the stellar representation
still requires development; the present work should then be viewed not
only in terms of raw results where it is perhaps exploratory, but also in
terms of methods where it suggests several novel approaches and directions
for further study.

2.1.1. Other Riemann Surfaces. As we already remarked,
a sphere is the natural phase space for the dynamics of angular momentum
(or spin). Its quantization involves finite-dimensional representations of
SU(2). A stereographic projection of the sphere then allows to represent
each state by a polynomial (its Bargmann function), leading to both
Husimi and stellar representations.(20)

Any higher genus (g#=2) surface Xg can also be given a Kahler struc-
ture, as a quotient of the Poincare unit disk by some Fuchsian group.
Although we are not aware of any interesting classical dynamics on such
a phase space, we briefly describe the associated quantum mechanics to be
able to generalize our rigorous results of Section 4 to such geometries.

The quantum states on Xg can be defined directly in the "Bargmann
representation": they consist of holomorphic sections on some canonically
defined line bundles over Xg, called automorphic forms; for each allowed
value of h, they form a finite-dimensional Hilbert space (ref 5; ref. 6, Sec-
tion 2.1.2). From these holomorphic sections, one can also define Husimi
densities, which verify factorization properties similar to Eq. (10), so that
a quantum state will be defined uniquely (up to a global prefactor) by its
constellation of zeros on Xg (ref. 6, Section 4.6).

2.2. Semiclassical Eigenfunction Problem in Reduced Setting

The issue stated in the introduction can now be considered in the
special setting of quantum maps on the torus. Let us mention that similar
considerations work on the 2-sphere, which is the phase space of a classical
spin.(20)

We first rapidly comment on the problem of quantizing a given area-
preserving map on the torus, i.e., how to associate to this classical transfor-
mation a sequence of NX N unitary matrices UN, v acting respectively on
Hilbert spaces 3FNtq>, with correct semiclassical properties;(7,8) the whole
sequence of matrices { U N i N > 1 is called a quantum map.

Such a quantization is in general not uniquely defined, assuming there
exists one. A systematic way of quantizing symplectic maps was recently
devised by Zelditch, using a Toeplitz operator formalism;(9) however, this
formalism does not in general lead to closed-form expressions for the UNt<p,
and is currently restricted to smooth maps. On the other hand, if the classical
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map is piecewise affine, a "down-to-earth" construction provides explicitly
a sequence of unitary matrices. We will restrict our numerical investiga-
tions to maps of the latter type, namely the baker's and the cat maps,
which are already quantized and studied in the literature.(38,39)

Whereas the Floquet angles q> will be fixed and subsequently implied,
dependence upon the integer N will be a crucial feature for us, with the
semiclassical regime corresponding to N=1/h-> +00.

(From the standpoint of physical systems, which are described by
quantum Hamiltonians as opposed to maps, the above construction
crudely models a quantum-dynamical reduction of a 2-d time-independent
Schrodinger equation to a 1-d quantum map, analogous to a Poincare
surface-of-section map for a classical flow;(35,36) our problem is thus "of
reduced type.")

The issue is then to compute (or describe) all (or some) of the eigen-
functions of the matrix family {U N } asymptotically as N-> +00, in con-
nection with the classical dynamics. We will moreover focus on phase-space
descriptions for these wave functions, privileging the stellar representation
for its nonredundancy; we coin the shortened notations "eigendensity,"
resp. "eigenconstellation," for the Husimi density of an eigenfunction, resp.
its constellation of zeros.

The two quantum maps we select both correspond to fully chaotic
area-preserving transformations of the torus in the classical setting. One is
the baker's map, quantized for even N,(39,40) and under antiperiodic bound-
ary conditions (q> = (1 +i)/2 in Eq. (2)) so as to preserve the classical
parity symmetry P: {q:—» — q,p\-^> — p}. The other consists of the cat maps
or linear hyperbolic automorphisms, given by matrices (a

c
 b

d)eSL(2, Z)
(with integer entries and unit determinant) such that tr(5) > 2; these will be
quantized under periodic boundary conditions (i.e., <p = 0).(38) Both of the
resulting quantum models commute with spatial parity, hence their eigen-
data separate into even and odd subsets.

As concerns "cat" maps, moreover, we will look at their quantizations
only for certain prime values of N that are "splitting"(42) and such that
spectral degeneracy (a potential source of extra complications) affects just
one eigenvalue (of multiplicity 2); for these values, semiclassical ergodic
behavior is fully proven.(12) We will however have to switch between two
distinct classical cat dynamics, of respective matrices

The reason is that S gives a time-reversal-invariant dynamics (a conse-
quence of a = d in that matrix), and this quanturn-mechanically implies real
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eigenfunctions. While this symmetry (T) does not interfere with most com-
putations, it greatly complicates the analysis of random ensembles to be
used as comparison models (Section 5); at that point it becomes simpler to
work with the other map like S', which has no anti-canonical symmetry
and is as easy to quantize, using the formulas in ref. 38. To prove that S'
has no extra symmetry (besides P, always present), we had to study con-
jugacy classes in SL(2, Z), and found no such map with a trace <36. More
generally, in order to avoid anti-canonical symmetries, in practice one has
to accept much larger Lyapunov exponents, which in turn make numerical
studies of semiclassical behavior (e.g., the search for scars) much more
delicate. Consequently, the map S will be more suitable for asymptotic
verifications, and S' for statistical ones.

3. MEASURES OF SEMICLASSICAL ERGODICITY

3.1. The Schnirelman Property

Semiclassical ergodicity reads as follows for quantum maps on the
torus.

Let { i j j ( j N ) } j = 1 , . . . , N be orthonormal eigenfunctions of a quantum map
UN defined over the space J#*N. Let t£ denote the (normalized) Liouville
density over the phase space for the corresponding classical map (namely,
the invariant area density). If this classical map is ergodic with respect
to Jzf, then almost any subsequence of Husimi "eigendensities" {//^<">}
converges to Z£ as JV-» + oo, in the weak-* topology for measures.

(Weak-* convergence of a sequence of measures {HN} on a compact
space X is defined by the convergence of every scalar sequence \xf^N
where f is any fixed continuous function (ref. 45, p. 113).)

We will say that a sequence of measures {/%} '""*•, y "has the
Schnirelman property"—by reference to the name "Schnirelman's theorem"
generically used for the many dynamical versions of the whole statement
above (the first one was worded for Riemannian Laplacians,(10) while we
directly stated the quantum-map version).

In the theorem, "almost any" means that the stated property may be
violated by an exceptional subset of eigenfunctions of asymptotic density
zero, i.e., if this subset reads as {il/(jN}}Jea(N} then # {Q(N)}/N-> 0.

For the torus maps we work with, the invariant measure 3? is just
the usual flat measure of uniform density 1 on T2. Then the Schnirelman
property for a family of Husimi densities is their uniform spread (as
measures) over the torus as N-> +00.

In full mathematical rigor, the above theorem was proved in ref. 9 for
arbitrary smooth ergodic classical maps (on the torus), quantized through
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the Toeplitz formalism; this includes in particular quantum cat maps.(11)

Moreover, direct calculations establish that the particular sequences of
quantum cat eigenstates we will numerically study have the Schnirelman
property(12) . By contrast, in the case of the baker's map the theorem is only
partially proved(13) but is believed to hold nevertheless.

We now display (Fig. 1) a sample of Husimi eigendensities of quantum
cat and baker's maps. Already at a glance, the situation shows a wealth of
complex behaviors which cannot be exhausted by just invoking the
Schnirelman property. The densities do show an overall tendency to unifor-
mization but only in a very coarse sense and at quite slow rates. Subdomi-
nant structures are quite significant, in fact their intricacy and profuseness
wildly grow with N. Certain patterns seem to occur recurrently but with no
definite regularities; in particular, periodic orbits are often scarred but not
in an obviously systematic way.

Our problem of concern will be, in general terms, to find various ways
to tackle on a finer scale such eigenstates obeying the Schnirelman theorem
(which constrains them on the coarsest scale only). This includes, e.g., the
popular topic of scarred eigenfunctions: how they should be derived, and
how they fit with the Schnirelman picture. Unresolved issues in this area
are:

(1) sharpen the Schnirelman property:

(a) assess convergence in stronger topologies;

(b) seek equivalent conditions upon the eigenfunctions them-
selves;

Fig. la. Husimi density plots and stellar representations (plus their Voronoi tessellations)
for a sample of even-parity eigenfunctions of the S-cat map (Eq. (13) ) quantized at N= 107,
a splitting prime. The Voronoi partition of a constellation gives an idea of its local density of
zeros (as the inverse area of each cell).

Top 2 rows, from left to right: the most uniformly spread eigendensity; one with typical
(random-like) values of invariants; a lattice state (the only non-real eigenstate; together with
the conjugate lattice state they span the doubly degenerate eigenspace of this operator).
Bottom 2 rows: the most strongly scarred eigenstate (at the fixed point (0,0)); another state
scarred around (0, 0) and along the stable and unstable lines; another localized eigendensity,
featuring the highest H-function and lowest geometric mean.

General caption for Husimi plots: Husimi densities are shown on a linear gray scale, com-
mon to all plots of each figure to preserve contrast differences (with zero as white); a small
white triangle locates a maximum, and the white circle around it materializes a Planck area
(equaling h = 1 / N ) ; main norms and invariants (Section 3.2) are listed at top; zeros are
located by black stars.
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(2) describe the fmite-N situation:

(a) estimate the convergence rates;

(b) analyze and classify the quantum corrections / /^<«>— <£ and
in particular any exceptional, non-ergodic ones.

3.2. Norms and Other Invariant Measures of Density
Fluctuations

One natural way to estimate the fluctuations of a density H(x) away
from flatness is by Lr-norms and related functionals. Keeping in mind that
H(x) is a nonnegative density on the torus T2 (and that the latter has unit
area), one defines, following ref. 28

For r > 1 these quantities define norms, called Lr, out of which the
L1-norm is taken by Eq. (6) to fix the normalization, as \\H\\1 = 1; then by
convexity (Jensen's inequality, see for instance, ref. 44, p. 70), \ \H\\S>
\ \ H \ \ r > 1 f o r s>r> 1, with equality precisely characterizing the flat case
H(x)= 1. Finally, those (and derived) quantities are geometric or shape
invariants.

Intuitively, fluctuations of H(x) push \\H\\r upwards, more so when r
is larger. Ultimately, H T / H ^ (=H m a x , the sup-norm) records the highest
enhancement only. A more global assessment of the non-uniformity
requires an intermediate norm, of which the simplest is the L2-norm; since
H is quadratic in the wave vector, \\H\\2

2 is an integral quartic in i/>, like the
inverse participation ratio commonly used as a measure of quantum
localization (but often in configuration space).

The weakest norm, hence "least remote" from the weak-* topology,
would be the L1-norm, had it not already been used up for normalization.
The closest approach then considers \\H\\r as r-> 1+, or rather the func-
tional (non-negative, by convexity)

Fig. 1b. Same as Fig. la for a sample of strongly scarred odd-parity eigenstates of the quan-
tum baker's map. Leftmost plots: two members (N = 48, 128) of the sequence of those eigen-
densities with the highest scars above the period-2 classical orbit (through (1/3, 2/3)); right:
an eigenstate strongly scarred along the stable and unstable lines of the singular fixed point
(0 ,0 ) .
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which has another important meaning, as the information content carried
by the probability density H (Boltzmann's H-function, or negative
entropy). This quantity is related to the "classical-like" entropy of a quan-
tum pure state (more generally, of a quantum density operator) introduced
by Wehrl,(17) then studied (on the plane and the 2-sphere) by Lieb and
Lee.(18) This function can be used to define the "dynamical quantum
entropy" of a unitary map,(19) which is supposed to generalize the
Kolmogorov-Sinai entropy of a classical system.

Last but not least, since the Husimi functions of pure quantum states
(the only ones of interest here) have a multiplicative structure, the
geometric mean of the density H is a natural functional to use (ref. 44, p. 70),

since it is itself multiplicative ( G M [ H 1 H 2 ] =GM[H1] GM[H2]). Thus,
for instance, the evaluation of GM on both sides of the Husimi factoriza-
tion formula Eq. (10) fixes the normalization factor C^, resulting in a more
precise expression for this factorization as

(with GM[HX] = ( 2 n ) - 3 / 2 r ( 1 / 4 ) 2 : see Appendix A.1 and Table I below).
More generally, a Husimi density will be denoted ft when we normalize it
by its geometric mean (instead of L1-norm).

GM[H], like \\H\\r for r<1, is not a norm (all convexity-related
inequalities get inverted with respect to r> 1); it satisfies 0<GM[H] < 1,
with equality in the flat case whereas fluctuations of H drive it downwards.

In summary, the L2- and sup-norms, the H-function, and the
geometric mean, all give useful size estimates for the fluctuations displayed
by finite-N Husimi densities. Although they yield largely similar density
rankings, the various functionals are inequivalent; at the same time we see
no compelling argument to favor any single one of them.

3.3. Comparison states

As we intend to probe the finer structure of Husimi eigendensities,
beyond the Schnirelman property H w - * > J?, and since those are pure
states, we simply cannot dismiss their multiplicative structure at the finest
quantum scale: any such Husimi density is the product of N translates
of a single elementary building block, and is thereby determined by its
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constellation of N zeros (up to normalization: cf. Eq. (16)). Thus, quantum
mechanics imposes a granular microstructure upon these densities at finite N,
forcing them to vanish at precisely N points. If pure-state Husimi densities
uniformize as N-> oo, it can then happen in a coarse-grained sense only; in
no way can they look smoother and smoother, "classical-like," in the semi-
classical limit, as their inhomogeneities will only experience a shrinkage of
their geometric (x-) scale and not of their intensity. Any fine-scale semiclassi-
cal theory must then heavily acknowledge such rigid structural constraints.

A first step in this direction is to gather data about various patterns
of zeros that are at the same time characteristic enough and analytically
tractable. Such reference constellations will then provide a comparison scale:
we proceed to define a few of them now (up to unspecified translations).

3.3.1. Lattice States. Intuitively speaking, the most equidis-
tributed Husimi densities subject to the constraints (16) must be found
among lattice states, whose zeros form a 2-d lattice A with a fundamental
cell of area 1 /N. Such displays of zeros have maximal, "solid-state" rigidity.
Some of them occur in exceptional eigenstates of cat maps.

Up to scale invariance, the shape of a lattice A can be described by a
complex number T with 3(T)>0 (the modulus) such that the torus C/A
is conformally equivalent to the complex torus TT of generators {1,T}.
A Husimi density specified by the set of zeros A can be directly written
in terms of the (properly rescaled and displaced) elementary ( N = 1 )
Bargmann function x(z | T) quasiperiodic w.r.t. Tr and its Husimi density
Hx(T)(q, p), which are expressed by the formulae(54)

the normalization being

Although the present article restricts to quantum mechanics on the
square torus Tc = Ti (for which we recover our standard x(z) and Hx(x)),
this extension of scope to functions quasiperiodic w.r.t. any torus TT is use-
ful for three reasons. Firstly, Husimi densities of the form Hx(T)(Nq, Np)
for rational values T = (m + in ) /N have the square torus periodicity too,
and lattice eigenstates of quantum cat maps have precisely this form
(Section 4.4). Secondly, in Section 4.2.4 we will define Husimi densities
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whose constellations are deformed lattices, and their asymptotic expres-
sions will make use of the function Hx(T)(q, p) for variable T. A third reason
(already stated but excluded from the scope of the present work) is that
varying T (over the modular domain) also amounts to exploring the range
of complex structures over a fixed real torus, or all possible Bargmann-
Husimi representations for a prescribed problem.

For lattice states, the various norms and functionals are functions of
T alone (by scale invariance). With the phase space itself being of square
shape, the invariants for T = i arise the most readily (they describe the
elementary Husimi factor Hx of Eq. (10): see Figs. 2a, left and 4, left);
however, we expect the optimal equidistribution to be attained by the
closest packing of the zeros overall, namely the equilateral triangular lattice
(i.e., T = eiI/3). While this geometry cannot be realized on a square torus, it
can be approached in the limit N-> +00 (scale-equivalent to the infinite-
plane limit; cf. Fig. 2a, middle), so we conjecture that its invariants will be
the good ultimate bounds.

(In fact, we seem to encounter natural extensions of the close-packing
class of problems: to find the constellation(s) of TV points on the torus that
optimize any one of the invariants; the difficulty may increase by changing
the surface, as the review(49) on the spherical case suggests.)

We can already prove (see Appendix A) that two of the above
invariants (namely, the geometric mean and the L2-norm) are optimized by
the equilateral lattice within all lattice states. Curiously, such invariants are
related to spectral determinants of tori, studied for instance in ref. 50.

3.3.2. Localized States. At the other end, we should consider
patterns with highly concentrated zeros. Examples forming an important
class are the eigendensities of classically integrable systems, for which both
the Husimi densities and the densities of zeros respectively concentrate on
lines: one prototype is a plane wave (or delta wave, up to n/2 rotations),
which is in fact just a highly anisotropic lattice state (having T = i /N:
Fig. 2b, left). Still more localized is a coherent wave vector defined by
Eq. (3), with its Husimi density concentrated around a point in phase
space; its zeros lie on two perpendicular axes (those which meet at the
antipodal point: Fig. 2b, middle). The most extreme concentration is
however realized by the completely degenerate pattern in which all N zeros
coincide (Fig. 2b, right); even though this state is mainly a curiosity and
has a Husimi density barely different from the previous one, we include it
for the sake of completeness.

3.3.3. Statistical States. In-between the previous two classes, we
may consider statistical distributions of zeros for a random polynomial
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ensemble, inasmuch as these reproduce quite well (albeit empirically) the
local fluctuations seen for zeros in eigenfunctions of classically chaotic maps.
As in the random-matrix modeling of spectra, the dynamical symmetry of
the problem must be taken into account. The random coefficients have to be
taken fully complex for a model without any antiunitary symmetry (a sample
on Fig. 2a, right), and real otherwise (see Section 5 for details).

3.3.4. Analytical Results. The norms and invariants of the pre-
vious comparison states can be computed: either exactly, or asymptotically
for large N, or just numerically for a few. The results are listed in Table I
(upon setting all L1-norms to unity, as usual).

The lattice-state invariants are computed long-hand using classical
theta-function identities (see also Appendix A). A tricky point for the sup-
norm is that the maxima of the Husimi densities Hx(T) depart from the dual
lattice when T / i (for T = em/3, they lie at the centers of the equilateral tri-
angles of zeros).

The concentrated state examples (last three lines) are also expressed
using theta-functions, and furthermore all required integrations are per-
formed asymptotically (by stationary phase). Remark: the study of the
Bargmann representation over the whole plane (i.e., for the Hilbert space
L2(R)) shows (see ref. 18, Theorem 3) that for each r> 1, the Lr-norm of
H^ is well-defined for all i^e£2(R) and attains its maximal value when \jj
is a Weyl coherent state (and likewise for the H-function). It is reasonable
to expect these results to extend to the torus, at least semi-classically. Then,
with our normalization, those invariants would be bounded as follows
over 3?N:

and these maxima M r ( N ) should be reached at (or near) a torus coherent
state; indeed, their asymptotic estimates agree with those of the corre-
sponding coherent-state invariants in Table I.

The random-model averages are computed from the distribution law
for the Husimi density values, P(H) ~e-H in the N-> +00 limit (for either
the real or the complex Gaussian ensemble). We can then compute any
integral in average as
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and this yields the constant values listed as typical for the ensemble. The
standard deviations from the average values are estimated using integrals
of the type:

for real positive (s, t) (see Section 5 for details). The sup-norm expectation
value diverges in this regime, and needs.a more delicate finite-N analysis
(Appendix C).

The "most naive" ergodic assumption (H~ 1 pointwise) would set all
invariants to unity (except the H-function, to zero). By contrast, the
tabulated values for the lattice, resp. random, models mark the incom-
pressible, resp. the typical, levels of quantum inhomogeneity. Far from
vanishing in the semiclassical limit, these levels are independent of N: this
rules out convergence towards classical ergodicity in any of the correspond-
ing stronger topologies. Furthermore, the random invariants are substan-
tially above the optimal lattice values, confirming the visual impression
from the two rightmost plots on Fig. 2a that random densities are quite
non-uniform.

3.4. Invariant Data for Eigenfunctions

Concerning now the invariants of eigendensities corresponding to
classically chaotic dynamics, our results consist of numerical data displayed
graphically. We have computed the full set of invariants for all eigenstates,
at selected values of N, of two quantum maps with highly chaotic classical
limits, i.e., the baker's map and the cat map S specified in Section 2.2. We
plot and compare the distributions of the invariants for the resulting
eigenstate families. Figure 3a plots the values of four functionals for the
even-parity eigenstates of the quantization of the cat map S, with the
geometric mean plotted downwards for full visual consistency (the odd-
parity plots look much the same, and are not shown); Fig. 3b plots the
values of two functionals for both parity eigenstates of the quantum baker's
map.

3.4.1. General Observations. The figures first show the values
of the invariants to be substantially depressed in comparison to the concen-
trated state examples, but still broadly scattered, with relatively few
isolated values or clusters: this confirms the visual impression that indi-
vidual eigenfunctions within a single matrix (a quantum map at given N)
retain widely differing global fluctuation patterns. For each eigendensity
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Fig. 3a. Some invariant fluctuation measures of the even-parity eigenstates for the quantization of
the S-cat map of Eq. (13) , with the following splitting prime values of N: 13,37,59,61,83, 107, 109,
131,157,179,227,347,397. The following functionate of the Husimi eigendensities are shown: (a) sup-
norm; (b) L2-norm; (c) H-function (negative entropy); (d) Geometric Mean (flipped upside-down).
The " + " mark all individual values and the thick curve connects their suitable averages at fixed N (up
to 131). The bullets pinpoint the values corresponding to the most scarred state above the fixed point
(0, 0) for each N (meaning for us the state giving the highest Husimi value H(0, 0)); the dashed curve
connects these values, only for visual emphasis; all curves drawn here are devoid of significance outside
of the computed points they interpolate between. Data for some comparison states of Table 1 are
added: the equilateral triangle lattice value (long-dashed line), the random-ensemble value (dot-
dashed lines, including the typical deviations around the averages—except for the sup-norm, where
the line is only the upper bound of Table I), and the two integrable-state examples (solid curves).
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F'ig. 3b. Some invariant fluctuation measures of the eigenstates for the quantum baker's
map, with selected even values of N up to 512. The following functionals of the Husimi eigen-
densities are shown: (a) sup-norm for even-parity states; (b) same for odd-parity states;
(c) H-function (negative entropy) for even-parity states; (d) same for odd-parity states. The
" + " mark all individual values and the thick curve connects their suitable averages at fixed
N (up to 128). The bullets mark the values corresponding to the most scarred state above a
specific periodic point for each N, namely: the fixed point (0, 0) in the even-parity case, and
the period-2 point (1/3, 2/3) in the odd-parity case (cf. the 2 leftmost plots of Fig. 1b); curves
moreover connect two special N-subsequences from the latter set, i.e., ,N = 2h (dashed), and
N = 3 x 2 k (dotted—for odd states only) . The same comments apply to curves as in the
preceding figure.
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the value of a particular invariant is determined by its N zeros, but large
values of this number N do not suffice to enforce a statistical averaging
towards a universal behavior in this respect. Besides, that ordering of eigen-
densities according to their global contrast is generally barely sensitive to
the particular choice of functional. At a more detailed level: the cat fluctua-
tion values are much more squeezed than the odd baker values, themselves
more squeezed than the even baker ones. This difference could be related
to the singular nature of the baker dynamics, whose discontinuity will be
more felt by even-parity states (especially those scarred above the irregular
fixed point (0, 0) which straddles the discontinuity, whereas the period-2
point is regular).

We next see that, upon further averaging over the entire eigenfunction
set (for a given N), each invariant then comes fairly close to the typical ran-
dom value (third line of Table I). This convergence is striking for the cat
map, whose eigenfunctions thus appear to fulfill generic expectations (of
compliance to a random model) somewhat better than the baker's map in
spite of its arithmetic idiosyncrasies. (This is the exact opposite of the situa-
tion for the eigenvalues: cat map spectra are highly non-generic, whereas
the baker map spectrum is fairly GOE.) The reason may again be that the
baker eigendensities tend to be unusually bumpy above the map discon-
tinuities. By contrast, the cat map possesses a few specially regular lattice
and crystal states (always yielding values of the functionals among the
lowest-lying), but these atypical states do not seem to drive the averaged
behavior away from genericity (at least for our selected values of N).

We stress again that those density fluctuations (of the same order as
in the random ensemble) already represent an appreciable and invariant
(N-independent) degree of spatial inhomogeneity. We can raise to a conjec-
ture the empirical observation that in average, the invariants appear to be
reliably constrained to the universal random model values. This entails that
the average convergence of eigendensities towards uniformity is truly poor.
Eigendensities displaying a reasonably high level of homogeneity or rigidity
must then have invariants well below that average (for example, the lattice
eigenfunctions in cat maps), and for the sake of global balance some other
states will then have to display higher inhomogeneity or localization than
if they were random (such as numerous states scarred by periodic orbits).

Concerning N-related behaviors: most fluctuation sizes grow fairly
slowly with N, especially for the cat map; N-dependences are erratic as a
rule; their irregularity is reduced but not wholly suppressed when a restric-
tion is made to special values of N (primes, powers of 2, etc.) and/or to
specially selected states (most scarred, or most ergodic, etc.).

All this confirms that the individual behaviors of eigendensities may
not be easy to characterize or classify, whereas the quantum fluctuations
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seem to follow the random model not only microlocally, but also globally
once averaged upon all eigenstates.

3.4.2. About Point Scars in Eigenfunctions. The plots allow
us to start a quantitative analysis of scars in eigendensities. The supnorm,
and to a lesser extent the L2-norm, are the best invariants to select the
states with the strongest local density enhancements. One currently debated
issue concerns the semiclassical weight of scars: in particular, do scarred
states still follow the Schnirelman property or not? This question is hard
to settle partly because this convergence property is specifically weak-*
(and not metric, for instance), hence it is difficult to establish a single and
intrinsic general scar strength scale.

We can however get a clearer idea about the simplest, point-like scars.
Scars are features localized near unstable periodic orbits, and in reduced
dynamics these consist of discrete points. Quite a few Husimi eigendensities
of maps do present sharp enhancements that are very localized near peri-
odic points, and we can focus upon the most strongly scarred states of this
type. We always find the widths of such point scars to scale, very reliably,
like N - 1 / 2 in all phase space directions (matching the distances of the
nearest zeros when these distribute uniformly, as the figures confirm). The
value of the Husimi density at the scarring point (the sup-norm if the highest
scar is under scrutiny, as will be the case here) is then a good strength
indicator: the area of such a scar being of order 1 /N , a safe criterion for it
to produce an asymptotically vanishing contribution (as a measure) in a
sequence of densities {HN} is

hence \\HN\\ao=o(N): the height of the scar should grow strictly less than
the sup-norm of a coherent state (Table I). Observing each log-log plot of
sup-norms, we can then compare the growth trend (with N) of the upper-
most points in the cloud of sup-norm values against the (unit) slope of the
straight line of coherent state sup-norms, to get a (necessarily rough) idea
about the asymptotic persistence of such scars.

For the cat map, those uppermost points are irregularly distributed
with respect to N, nevertheless heuristic upper bounds for the slope a are
0.5 for odd states (not shown) and 0.34 for even states; this is consistent
with the proven fact that all cat map eigenstates used here satisfy the
Schnirelman property. For the baker's map, the most strongly scarred
states form more regular families and estimates look more robust; they
yield slopes below 0.85 for odd states and 0.8 for even ones (but the even-
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state scars are stronger in the range of N under display). The slopes for the
baker's map are thus much closer to the critical value <x= 1, while we can-
not control the error range of our crude estimation process. Hence all we
say is that the plots slightly favor the hypothesis that even the most
strongly point-scarred baker eigenstates still satisfy the Schnirelman
property.

We must however add that there also exist eigenstates which are
strongly enhanced along whole stretches of stable and unstable manifolds
(or neighboring arcs of hyperbolae); the baker's map shows many such
instances, especially about the (singular) fixed point (0, 0) (Fig. 1b, right).
Because of the extended character of these scars, their sup-norms need not
lie anywhere as high as those of point scars for them to have stronger
classical imprints; at the same time, the functionals used above may not
suffice to quantify this strength precisely enough.

3.5. Ergodicity and the Zeros

A deeper way to incorporate the multiplicative structure (10) of eigen-
densities into their analysis is however to handle the eigenfunction problem
entirely within the stellar representation, or to describe directly the phase-
space densities of zeros p(x) of individual eigenfunctions. In particular, the
semiclassical eigenfunction problem is then to unravel the large-N behaviors
of these "eigenconstellations."

Ideally, we would like to be able to to compute or control p(x) (the
zeros) ab initio, directly from the underlying quantum-dynamical equa-
tions, and we have begun investigating this approach as well. However, the
simplest Schrodinger operator already yields for the zeros a dynamical
system of nonlinear equations involving strong M-body interactions,(22)

where M ranges from 1 to min(degree of potential, N); apart from a few
trivial cases (always yielding completely rigid motions for the constella-
tions), it is currently unclear how such a system can be handled. In our
reduced setting, moreover, the dynamics is that of a quantum map, i.e., it
is no longer local, meaning that zeros must fare even worse; and indeed, we
cannot in the least simplify the equations of discrete-time motion in terms
of the zeros (except for certain "lattice states" under cat maps).

That leaves us with indirect approaches where we try to relate the
stellar representation to more familiar ones, especially Husimi's. Similar
questions can be asked about p(x) as were listed for Husimi densities H(x)
in Section 3.1; now, moreover, any answers will directly refer to the eigen-
functions via the stellar parametrization, implicitly settling question (1b).
However, each property now requires translation from one density to the
other: in particular, the Schnirelman property, the scar phenomenon etc.,
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should be redescribed in terms of the zeros, with the hope of a better
understanding later. Concrete problems of this sort are, typically:

(1c) describe the densities of zeros and their higher-order correla-
tions, with their dependence on classical dynamics;

(2c) classify the fluctuations of their distributions as dynamical
(e.g., scars?) or statistical (and: universal?).

3.5.1. Existing Observations. Some features of eigenconstella-
tions have already received dynamical interpretations(20-24)

For integrable systems, eigenfunctions follow a WKB-type Ansatz like
(1) in the Bargmann representation too, from which it follows that eigen-
constellations have to coalesce as N-> oo onto fixed curves, namely certain
anti-Stokes lines of the complex classical action in the z variable, along
which the zeros moreover distribute regularly with spacings of order 1 /N .

In chaotic systems, by contrast, numerical computations of Husimi
eigendensities indicate that eigenconstellations roughly equidistribute in
(almost) all of phase space, with spacings of order 1 / ^ / N ; moreover,
higher-order correlations between the zeros are found to very accurately
follow a universal model, namely the statistics of the zeros of a Gaussian
random ensemble of polynomials (which acts nicely as an analog for eigen-
functions of random-matrix ensembles for eigenvalues). All those findings
about chaotic systems have remained mostly empirical.

More systematic observations of eigenconstellations at increasing N
(Fig. 1) show a proliferation of vaguely lookalike but not uniform patterns
in want of ordering. It is specially challenging to try to correlate some
spectacular fluctuations of eigendensities, like scars above unstable periodic
points, with specific patterns of zeros. Around every high peak of the
Husimi density there is necessarily a region devoid of zeros, and sometimes
the nearest of these vaguely affect a hyperbolic distribution, but the connec-
tion is tenuous: the decrease of the density of zeros under a scar is quite
moderate and, conversely, regions with an equally low density of zeros do
not build high Husimi densities above them as a rule.

3.5.2. Some Directions of Analysis. A more systematic
description of the eigenconstellations on the one hand, of the high-density
fluctuations (e.g., scars) within the Husimi densities on the other hand, and
of explicit relationships between the two, is still lacking. We just know as
a matter of principle that the zeros have to embody a full description of the
states, which then includes their semiclassical behavior. The issue is then to
locate and decipher the dynamical information (order parameters) buried in
the zeros.
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At best, each zero in an eigenconstellation might follow some predict-
able rules, at least semiclassically; but even if we restrict to exceptional sub-
sequences of states or zeros this may be too demanding, as the dynamics
of the zeros is exceedingly complicated. At worst, the information could be
so scrambled up that only quasi-random features could be asserted. We
will seek to identify intermediate types of information within the zeros,
weaker and thereby hopefully more accessible than the individual locations,
but still dynamical (i.e., stronger than statistical). These could lie within
collective coordinates of some sort (e.g., we recall that semiclassical effects
can only be collectively generated).

One possibility inspired by the integrable situation (regularly spaced
zeros on a curve produce WKB-like wave functions) would be to build up
wave functions through patching together local 2-d patterns of zeros of a
few definite types. This approach is valuable if forms of short-range order
can be identified in eigenconstellations even when the classical dynamics is
chaotic. Such regularities are actually not infrequent, but are not systematic
either: chaotic eigenconstellations mostly look like gases or liquids of zeros,
as opposed to solids (except for the few lattice eigenstates in cat maps).
Zeros thus appear to substantially use their 2-d freedom of relative motion,
making it difficult to greatly reduce the number of their parameters.

If individual zeros prove difficult to isolate, a valuable complementary
approach is to analyze their density p(x) in the dual Fourier space which,
for our torus phase space, is the lattice of integer vectors k = (kq, kp) e Z2:
the Fourier coefficients of the density are

under the normalization p0 = 1. Some valuable features of this approach
are, for instance:

(1) the basic relationship (12), from the logarithm of the Husimi
function to the density of zeros, becomes diagonal in Fourier space: denoting

we find that Eq. (12) is mapped to the simple relation

where 8 k =1 if k = (0, 0), else 0 (Kronecker symbol)



Chaotic Eigenfunctions in Phase Space 461

(2) if the zeros form a lattice, then the Fourier transform pk is simply
the Dirac delta distribution on the dual lattice (this expresses the Poisson
summation formula);

(3) if the zeros form a more disordered distribution of points, this
Fourier transformation can be well controlled statistically in terms of
structure functions, alias form factors (see Section 5).

However, this Fourier analysis is deferred to Section 6 of this paper,
because some critically relevant information still has to be gathered before:
some rigorous dynamical results about the zeros are presented next,
whereas a statistical approach is developed in the section thereafter.

4. DYNAMICAL RESULTS

In this section we study the analytical properties of sequences of states
with the Schnirelman property, i.e., such that their Husimi densities HN

converge weak-* towards the Lebesgue measure y on the torus. We prove
that the constellations also equidistribute in the weak-* sense, and we
deduce from this some universal properties of the phases of their Bargmann
functions. We also give examples showing the limitations of this rigorous
approach, as well as stronger results for a class of eigenstates of quantum
cat maps (i.e., lattice eigenstates).

4.1. Equidistribution of the Eigenconstellations

Using the fact that the Husimi density is the square of a holomorphic
function (up to a trivial Gaussian factor), it is possible to extract valuable
information about the densities of zeros pN(x) from Schnirelman's property.

The link between both densities is provided by the logarithm of the
Husimi density. Namely, the factorization property (16) implies the very
simple relation

where the function h(x) is the logarithm of the building block Hx, shifted
such that its average over T2 vanishes: h(x) = log fix(x}. This function
corresponds (up to the sign) to the electric potential generated by a delta-
like unit charge at the origin, balanced by a uniform negative charge to
ensure global electric neutrality. Precisely, we have

from which we easily recover Eq. (12).
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Using the above representation of the Husimi functions, we will now
prove that Schnirelman's property for a sequence of Husimi densities
implies the weak-* convergence of the corresponding densities of zeros to
the Lebesgue measure y? as N-> oo.

The densities of zeros are positive and normalized, so they belong to
a compact set of measures in the weak-* topology (this is the Banach-
Alaoglu theorem (see ref. 45, p. 105)). Therefore, we can extract a sub-
sequence converging to a positive normalized measure px (the elements of
this subsequence will henceforth be noted pN).

Our first task is to compare as precisely as possible the finite-N and
limiting electric potentials hN = h*pN and haa = h * p a o . The weak-*
property pN-+ p^ obviously implies hN

 w ~ * > hx, but we need information
in stronger topologies.

h(x) is at the same time upper semi-continuous (u.s.c) (see ref. 44,
p. 37) and in Ls(T2) for all 1 =£;.$• < oo. This, combined with the fact that the
measures p# are normalized and positive (#stands for N or oo), implies
that the potentials h# are also u.s.c. and in Ls(T2), with ||h#||s <||h||s;

(46)

furthermore, they are bounded above by M = sup h(x) (all these properties
can be shown by considering a decreasing sequence of continuous functions
converging pointwise to h(x), as in ref. 46, Theorem 3.6).

These properties, combined with the weak-* convergence of the pN,
imply (see ref. 46, p. 209):

Equivalently, \/x, hN(x) is smaller than h m ( x ) +K for N large enough. This
inequality can be proven to be uniform w.r.t. x by using subharmonicity
properties of the potentials. The functions hN themselves are not subhar-
monic, because their Laplacians involve a uniform negative charge (inde-
pendent of N). Removing this constant charge amounts to systematically
adding the function nx2 to the potentials. The resulting (non-periodic)
potentials g # ( x ) = h # ( x ) + nx2 are uniformly bounded above over the
square [0, 1]2 (like h#), but they are also subharmonic. Therefore, we can
apply to the sequence {gN} several lemmas pertaining to subharmonic
functions (see for instance ref. 47, Section 1.8 or ref. 48, Chapter 3), and
then transfer them back to the h-potentials by subtracting the nx2 term.

To obtain the uniformity in Eq. (26), we need to consider a decreasing
sequence of continuous functions {hx,m}meN on T2 converging pointwise
to hx,(x) (the existence of such a sequence is due to the upper semi-con-
tinuity o f / Z M ) . Then, we have Hartogs' lemma (see ref. 47, Theorem 1.31):
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Lemma 1.

Before using this uniformity result, we state additional properties of
the function h^(x), also due to the subharmonicity and the uniform upper-
boundedness of the g-potentials.

Lemma 2. The function .xi—> g 0 0 ( x ) = hx.(x) + nx2 is "almost sub-
harmonic."

This means that it is equal almost everywhere to a (unique) subhar-
monic function gj,. This function can be defined as an upper regularization
of gx: g£(x) = l im r_ 0 1 / ( x r 2 ) \ { l y _ x l < r } gao(y)dy, which yields the property
g a o ( x ) < g * 0 ( x ) o n T 2 .

g£> can also be defined as the lowest subharmonic majorant of #«,.
Therefore, from the inequality (26) we deduce

This, combined with the weak-* convergence hN-*hx, entails the identity
h%o =hao. Therefore, (26) is actually an equality for almost all x.

In a second step, we use lemma 1 to show that Schnirelman's property
implies h^ = 0 on T2. The proof proceeds ab absurdo.

Let us assume that h„ =0. Using the notation f - ( x ) = m i n ( f ( x ) , 0),
this entails JT2/!~(.v) dx= — A <0 (we recall that hx is in L1(T2),
and \j2hx(x)dx = 0 by construction). Then, the theorem of dominated
convergence implies that JT2 h^<m(x) dx < —A/2 for m large enough, hence
the open set Em _ A / 3 = {xeT 2 | h r C i m ( x ) < —A/3} has a nonzero Lebesgue
measure. Now, for any e>0, Lemma 1 implies that for all N > N ( m , i : ) ,
xe£m, _A/3 = > h N ( x ) < —A/3 + E, and therefore

(We choose e < A/3 for the sake of the proof).
On the other hand, the compact set F+ = {x'eT2 / v ^ f . v J ^ O } has

non-zero Lebesgue measure, since \F hao(x)dx = A. We want to estimate
the size of its subsets FN + = {xeF+ | h N ( x ) > 0}. The weak-* convergence
hN-> h^ entails that for N large enough (say, N > N 0 ) , A/2 < \F h N ( x ) dx,
itself less than or equal to |f hN(x)dx. Since all the potentials hN are
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uniformly bounded by M, we obtain the lower bound &(FN , +) > A/2M for
all N > N 0 . Therefore,

We now combine the Eqs. (28) and (29) and obtain

Such a sequence of Husimi densities {HN} obviously violates Schnirelman's
property, since the above ratio diverges in the limit N-> oo, instead of
converging towards HP(F+)/^f(Emi_A/3). This concludes the proof ab
absurdo.

We have proven that for any sequence {HN} weak-* converging to Of,
the only possible accumulation point (in the weak-* topology) of the corre-
sponding sequence {pN} is HP. Since this sequence stays in a compact set,
we deduce that it converges weak-* to HP.

Theorem 1. For any sequence of Husimi densities { H ^ < . w > }NCN
weak-* converging to the Lebesgue measure Sf on the torus in the semi-
classical limit, the corresponding densities of zeros {/fy<."> };VSN also equi-
distribute in the weak-* sense.

This theorem concerns Husimi densities defined on the torus, but
it can be easily generalized to sequences of Husimi densities (and the
associated constellations) living on compact Riemann surfaces of any
genus, using the formalism sketched in Section 2.1.1.(6) The theorem has
also been recently generalized(25) to holomorphic sections SN(Z) on the
powers L®N of a positive hermitian line bundle L over a compact Kahler
manifold (X,ca) of arbitrary dimension; the analog of the Husimi density
is the hermitian metric of the section HSN(Z, z) =f ||sN(z)||2; the zero set of
SN defines a (1, 1)-current on the manifold, which is shown to converge
weak-* to the Kahler form co in the limit N-> oo as long as the Husimi
densities become uniform.

In the case of the 2-sphere, the asymptotic equidistribution of chaotic
eigenconstellations had already been noticed from numerical calcula-
tions.(22,23) The data actually showed a more precise phenomenon: not
only do the zeros spread throughout the whole phase space, but they also
seem to repel each other at distances of order 1 /^/N (see Section 5 for a
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more quantitative statement of this phenomenon). Is such a repulsion
another consequence of Schnirelman's property?

4.2. Further Considerations on Schnirelman's Property

4.2.1. Fourier Coefficients. In the toral geometry, the weak-*
convergence of a sequence of positive normalized measures pN to px is
equivalent to the convergence of each Fourier coefficient (Eq. ( 2 1 ) ) ; we
have just proven that Schnirelman's property for a sequence {HN} implies

(Sk is the Kronecker symbol as in Eq. (23)). We would like to know better
the rate of decrease w.r.t. N of these Fourier coefficients, as well as their
dependence on k, for N fixed. Apparently, this kind of information is not
easy to extract from weak-* estimates. However, by formally looking at the
relation

(implied by Eqs. (22)-(23)), we expect the following:

Conjecture 1. For any sequence { H ^ w > }NeN with the Schnirelman
property, the k =£ 0 Fourier coefficients of the constellations decay as
PN,k = 0 ( N - 1 ) for N-> co.

We are presently unable to prove such an assertion, even with N-1

replaced by some other definite o( 1) function.

4.2.2. Upper Bound on the Potentials. Alternatively, we
would like to control more precisely the semi-classical properties of the
electric potentials hN. Via a Parseval-Plancherel formula, we control their
L2 norms:
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since all Fourier coefficients are normalized. Adjusting the cutoff K1 and
using the convexity property 0 < r <s => ||. ||r < ||. ||s, we prove the following:

Theorem 2. Let {tf/N(z)}N be a sequence of Bargmann functions
s.t. their densities of zeros {pN} N weak-* converge to !£. Then, for any
1 <s<2, the corresponding potentials {hN} tend to zero in the Ls norm,
as N-+ oo.

In the general case studied by Schiffman and Zelditch,(25) the above
convergence was proven for the L1 norm.

To obtain pointwise information on the potentials, we can use
Lemma 1 with the knowledge that hao(x) = 0: this yields

We then naturally tried to estimate the rate of increase of N(e), as e -> 0.
In other words, we searched for a universal increasing function f(N), such
that the functions f(N) h N ( x ) are uniformly bounded above by a constant
independent of N, as long as {HN} have the Schnirelman property. The
following example of sequences of Husimi densities shows that we cannot
do better than f ( N ) = 1 in general. At the same time, it shows that
Schnirelman's property does not preclude high degeneracies of the zeros.

4.2.3. Example of Singular Husimi Function with the
Schnirelman Property. We present below sequences of Husimi den-
sities which look quite singular as far as their smoothness is concerned,
although they weak-* converge to «2f. These Husimi functions are built by
rescaling and taking a certain power of the elementary Hx(x), so their zero
constellations will consist of square lattices, with each zero multiply
degenerate. For any couple of integers ( N 1 , N 2 ) , we consider the Husimi
function in 3FN, (N = N2

1N2) defined as

On the one hand, the 1/N1 periodicity ensures that the Fourier coefficients
HN k and pN,k vanish unless N1 divides both entries of K. Therefore, if we
consider a sequence {N = N2

1N2} s.t. N1-> oo, Schnirelman's property
holds for the functions {HN} (and at the same time, NpN , k-> 0 for all k).

On the other hand, all invariant functionals take the same values for
HN and the completely degenerate state of order N2 (cf. Fig. 2b, right).
If N2 gets large, we can use the asymptotic results from the last line of
Table I, replacing N by N2. In that case, the Husimi densities HN

asymptotically look like delta peaks concentrated on the lattices dual to
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their constellations, which explains the large deviations of the invariants
from the totally flat case (i.e., H = 1 ) .

The electric potentials of the constellations are given by h N (x ) =
(1\N2

1) h ( N 1 x ) , bounded above by M/N2
1. If N2 increases much faster that

N1 (e.g., N 2 ~e N
1 ) , then a function f(N) as defined above has to increase

slower than N2
1 (e.g., ~log2 N). There is therefore no universal strictly

increasing f(N).
At the same time, we notice that such a singular behavior of the

invariants, and of the shape of the densities, comes along with a high
degeneracy of the zeros. In that sense, the strict repulsion between the zeros
of chaotic eigenconstellations, conjectured in refs. 22 and 23, cannot be
deduced from Schnirelman's property.

4.2.4. Example of Nonergodic Husimi Functions with Equi-
distributed Zeros. We exhibit a sequence of Husimi functions showing
that the converse of Theorem 1 is false. We use constellations in the shape
of deformed lattices, defined as follows. We start from a smooth separable
density on T2, p(x) = pq(q) pp(p), with the normalizations $l

0p,(v) dv=l,
for i = q, p. Separability allows us to integrate this density, i.e., to change
coordinates x\->^V(x\ s.t. p(x) = det(D^V/Dx)(x) (we just take ,Ni(v) =
l'0p,(v')dv'foTi = q,p).

Now, we build the Husimi function Hp, N(x) with zeros at the N = M2

points x i , j = N - 1 ( i / M , j / M ) , through

We want an approximate formula for ftp<N(x), in the limit M-» oo. For
that, we transform the right-hand side by the Poisson summation formula
at fixed x, which yields two types of terms. The zero Fourier coefficient
(Weyl's term) is M2h * p (x ) , whereas the others (oscillatory terms) read

For k =0 fixed and M-* +00, the above integral is dominated by the
contribution near the singular point y = 0. Expanding N around x and
summing over all &/0, we (formally) obtain
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(H x ( T ) is defined in Eq. (17)). The convergence of the Poisson series to this
function is uniform as long as one stays away from the xi,j (notice that
their positions change with M\). Anyway, since we subsequently exponen-
tiate this function, we need not pay too much attention to problems of con-
vergence near the zeros. In the large-A/ limit, we thus obtain a "WKB-like"
expression for H p , N (x ) :

Locally, this oscillatory function vanishes on a rectangular lattice of
spacing cc 1/M, since the parameter r(x) varies slowly compared to this
spacing: the large-M constellations thus resemble deformed lattices.

We now let the smooth density p itself depend on N: we take the
sequence JfN(x] = (q + A, sm(2iiq}, p + A.p sin(2np)), which yields pN(x} =
(1 + 27d.?cos(27r<7))(l +2n/Lpcos(2np)), where the coefficients A,, depend
on N. If Xq, Ap vanish in the limit N-> cc, then pN->1 and r(x)->i
uniformly on T so that the oscillatory factor has asymptotically the local
average 1/GM[//J.

Meanwhile, the convolution under the exponential, h * p ( x ) , yields the
trigonometric polynomial PN(x) =f — 2 { _ ( n X q cos(27iq) + \)(7ilpcos(27ip) +
1) — 1]. Then, if the decrease of either A, is slower than 1 /N , the factor
e x p ( N P N ( x ) ) is singular in the semi-classical limit. For instance, if both A,-
decrease slower than 1 /N , it gives a peak (an artificial point scar) at the
point (1/2,1/2); whereas in the marginal case Ai = A i / N , with Ai non-
vanishing constants, that factor is asymptotically N-independent; H p N , N then
converges weak-* to exp(—2^/l,cos(2^) —2re/l/,cos(27r/7))/GM[//^],
a non-uniform density.

So, Schnirelman's property does not hold for such sequences ftpN<N,
although pN

 w ~ * > J5?. However, this counterexample is just consistent with
the converse of Conjecture 1.

In Fig. 4 we display Husimi densities of the type described above, for
various values of N and Ai, together with the corresponding invariants.

4.3. Phase of the Bargmann Eigenfunctions

From the semi-classical equidistribution of the eigenconstellations, one
can get some estimates about the phase of the Bargmann wave-function,
which appears as a complementary information to the Husimi density (see
Eq. (5)). For this purpose, we compute the derivative of log H(x) w.r.t. the
holomorphic variable z, and get the following representations:
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We will use the second and third equations to prove the following theorem.

Theorem 3. Let {\}IN(Z)}N be a sequence of Bargmann functions
s.t. their densities of zeros {pN} N weak-* converge to 5£. Then, for any
1 <s<2, the functions (l/2nN)(\j/'N/\l/N)(z) tend to the function z in the Ls

norm, as N-» oo.

To prove the theorem, our strategy is to transform the series (42) into
a finite sum, up to a small remainder, and then use the convergence of the
individual Fourier coefficients pN,k (cf. Eq. (31)), as in the proof of
Theorem 2. However, due to the stronger singularities of the logarithmic
derivatives, we now need to first regularize the functions dzh * pN by
Gaussian convolutions 5K(x) = K2e~"K2 x2 . In the limit K->co, 6K con-
verges to the identity kernel d. For finite K, the deviation from the identity
is given by the series

Using the normalization of pN and the equation above, we obtain the
following estimates, valid for any fixed 1 < s < 2:

The first inequality is just due to convexity (it is equivalent to the tri-
angular inequality for the Ls norm); the right hand-side can then be
calculated exactly, leading to (45). The divergence as s -> 2 is obviously due
to the poles of \j/'/\l/. Once we select the power s, we can adjust the cutoff
parameter K large enough to make \\pN* (dzh-dzh * SK)\\S small. On the
other hand, the smoothed term can be now estimated:
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In the last inequality, we introduced a cutoff K1, and estimated the remainder
of the series Z|*i>k1 using the uniform bound \p N , k \ < 1. For K1/K large
enough, this remainder is small; finally, the finite sum ^m^^ vanishes in
the limit N-> co due to the equidistribution of zeros.

Notice that the theorem extends to values of s in the interval (0, 1),
due to the convexity property 0 < r < s < oo => ||. ||r ^ ||. ||s.

Interpretation. In view of the formal analog ih(\l/'/\l/)(q)~p
—the momentum—in the 1-d Schrodinger representation, we can define
n(z) =r h(ij/'/{j/)(z) as the quantum local momentum of the Bargmann func-
tion (whereas z is the classical symplectic conjugate variable of z).

The Cauchy-Riemann relations link the estimates n(z) ~ z of Theorem 3
to the variations of both the modulus and the phase of the Bargmann
functions:

These two equations correspond to interpreting the zeros respectively as

• either point-like electric charges, generating a potential -log \ ^ ( z ) \ ,
balanced by a uniform charge distribution of potential nNx2/2 (the total
electric charge on the torus vanishes).

• or vortices of magnetic flux: the corresponding vector potential is
the gradient V arg i/r, so that each vortex carries a unit of flux <f> = — In.
The additional vector potential nN( ~qP) corresponds to a uniform magnetic
field B = 2nN (the total magnetic flux on the torus vanishes).

It seems difficult to assert the approximation n(z) ~ z in stronger
topologies than the Ls estimates of Theorem 3. Generically, the strict
equality n(z) = z can only hold at isolated points on the torus, due to the
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analyticity of \jf(z), or equivalently due to its phase. Indeed, the right-hand
sides of Eqs. (49) and (50) have quite different behaviors if we try to set
them equal to zero. The equation on the modulus has the obvious smooth
solution log |i/Kz)| = nNzz, which corresponds to a strictly uniform Husimi
density, i.e., the formal Schnirelman limit. By contrast, the equation on the
phase reads

which has no solution, since the corresponding magnetic field V x ( ^q] =
—2nN does not vanish. The singular behavior of the phase of \l/(z) in the
semi-classical limit can be therefore interpreted as a "struggle" to achieve
as well as possible the equality (51); such a singular behavior implies a
distribution of phase dislocations (i.e., of zeros of i/>) all over T2 in the semi-
classical limit.

At first sight, the situation looks quite different in the integrable case,
say for eigenstates of a time-independent Hamiltonian which we express in
the complex torus coordinates as 3f(z, z). Assuming that .%' is an analytic
function and that the eigenvalue E is a regular energy value, the WKB form
(1) holds for semiclassical eigenfunctions in the Bargmann representation.(21)

Then, in the h->0 limit, h ( \ o g \ l i ) ' ( z ) ~ S ' ( z ) solves 3f(z, S'(z}) = E, the

Fig. 5. (a) Illustration of the semiclassical behavior of the logarithmic derivatives n(z) =
]/(2nN)(ij/'/tl/)(z) of Bargmann eigenfunctions, using color density plots to represent complex
functions (a complex value is encoded by intensity for modulus—with zero as white—and hue
for phase). Central plot: the classical conjugate momentum : as a function of z (from which
our color encoding of complex phases can be inferred). Left plot: rc(:) for a classically
integrable example, an eigenstate of a quantum Hamiltonian (15-th state of Harper's operator
— (cos 2np + cos Inq] for N=31). The lines enclose a vicinity of the classical energy curve,
here defined to be the region where the Husimi density exceeds 1/10-th of its maximum value;
the approximation n(z)~-z is good only nearby. Right plot: n ( z ) for a classically chaotic
example, an eigenstate of the quantum baker's map (the strongly scarred eigenstate of Fig. 1b
right, with N=128); the approximation n ( z ) ~ z now holds throughout, save very close to
Bargmann zeros, or poles of n(z) (the "pimples" in both quantum plots), (b) Plots of
Bargmann eigenfunctions (l/(z), using intensity to encode the Husimi density and color to
encode the phase. Left: the 15-th eigenstate of the quantum (N = 31) Harper Hamiltonian
(same as in preceding figure), specifically with a binary coding of the modulus (threshold =
1/10-th of maximum Husimi density) letting the phases show through everywhere in the classi-
cally forbidden regions. Middle: an (odd-parity) eigenstate of the quantum S-cat map for the
same N. Right: the eigenstate of the quantum (N= 128) baker's map of preceding figure and
Fig. 1b right. A universal radial fan-like pattern for the quantum phases, having the regular
wavevector distribution (kq,kp)~nNx(p, —q) prevails almost everywhere in the case of
classically chaotic systems (barring dislocation points at the Bargmann zeros), and only about
the classical orbit in integrable cases.
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Hamilton-Jacobi equation in the z variable: hence S'(z) = y E ( z ) , where
{y = y E ( z ) } is the classical complex energy curve Z^= {jf(z, y) = E}
solved for y, the conjugate momentum of z. These asymptotic forms hold
outside the anti-Stokes lines, i.e., the curves where any two real parts of the
(multisheeted) function y E ( z ) match. All in all, the dynamical result for an
integrable eigenfunction is then

Precisely, the quantum local momentum of the Bargmann function n(z)
tends to some branch of the classical local momentum function, y E ( z ) in
the z-representation.

However, the perspective changes if we seek the asymptotic behaviors
specifically obeyed in the classically allowed part of phase space (which
is the only semiclassically meaningful region, where the Husimi density
will not become negligible). Here this region is the real energy curve
L^ = { y E ( z ) = z] (locally), on which Eq. (52) implies

We now compare with Theorem 3 for an ergodic situation: then the classi-
cally allowed region is the whole phase space, so we realize that the same
asymptotic result (53) has become generalized from integrable to chaotic
situations, in which case it moreover applies almost everywhere in phase
space—albeit in a weaker sense (Ls) than before (pointwise). The contrast
between implementations of Eq. (53) for integrable vs chaotic dynamics is
illustrated by color plots for n(z) (Fig. 5 top); we add that the same overall
appearance is universally shown by all such plots made for equidistributed
zeros (disregarding the precise distribution of the singular points them-
selves), whereas it is different and case-dependent for zeros concentrating
on curves.

Upon a purely formal integration, Eq. (53) yields

but this is as inconsistent as Eq. (51) for specifying 31ogi//(z), since the
1-form 3(z-1 dz') is not closed. Hence the phase of ij/(z) will stay undetermined
pointwise; however, Eq. (53) specifies as universal its variation pattern
when zeros are equidistributed, and this is displayed by color plots for \l/(z)
itself in Fig. 5 bottom.
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4.4. Stronger Estimates for Lattice Eigenstates

We can strengthen the above estimates for a particular class of
eigenstates of quantum cat maps,(38) namely eigenstates for which the con-
stellations form lattices on the torus (such a lattice must be invariant under
the classical cat map). The construction of these eigenstates is performed in
refs. 12 and 42. For a given classical cat map S, such states exist only for
some particular values of the inverse Planck's constant N, in which case
they are quite scarce (they generate a subspace of JfN of dimension small
compared to N). Moreover, their quasi-energies are usually degenerate. On
the other hand, the regularity of the constellations allows us to estimate
more precisely the invariant functional, as well as the phase variations.
Indeed, an alternative characterization of such a lattice state is that its
Bargmann function can be written as a single Jacobi theta function.(42) For
instance, if the eigenconstellation is the lattice on Tc generated by the two
complex numbers [ v 1 , v 2 ] ordered s.t. 3(r =f v 2 / v 1 ) >0, then the corre-
sponding Bargmann and Husimi functions read

where the elementary functions x(z | r), Hx(T) are defined in Eqs. (17) . \ji(z)
is then quasiperiodic (and H^ is periodic) w.r.t. the lattice [v1, v2], which
is a stronger property than Eq. (2) (the Husimi density of such an
eigenstate is displayed in Fig. la, top right). Precisely, for any point
v = nv1 +mv2 of the lattice, we have

A crucial property of these lattice eigenstates is that for a given cat map 5,
the values of the moduli r stay inside a compact domain of the upper half-
plane, namely a rectangle |iR(r)| < 1/2, 1/2 < 3(r) < Cs, with Cs a constant
independent of N (see Appendix B).

The norms and related functionals introduced in Section 3.2 are
invariant through a rescaling of the variable z, so they take the same values
for H^,(x) of Eq. (55) and H x ( T ) (x) . Since these functionals are smooth func-
tions of i (cf. Appendix A), they are bounded uniformly w.r.t. N for all
lattice eigenstates \l> of the quantum operators Us associated to a given cat
map S (the bounds depend on S).
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Similarly, for such lattice states we get fine estimates of the logarithmic
derivative of \l/(z), using the quasiperiodicity (57). We obtain from
Eq. (55),

As T stays inside a compact domain, the integral of |9Z log HxM\s on TT is
bounded. On the other hand, we show in Appendix B that |v1|

-1 =
O(N/JV), so we may strengthen Theorem 3:

On the Fourier side, to a given cat map S is associated a constant Ks

s.t. for any lattice eigenstate \j/N, the Fourier coefficients of the constellation
(which are supported by the dual lattice) have the following property:(42)

Notice that the above equation trivially implies that Conjecture 1 holds for
a sequence of lattice eigenstates, since pN,k = 0 for N large enough.

5. STATISTICAL MODEL

In Section 3.3, we observed that the values of the different functionals
for eigenstates of quantum chaotic maps were surprisingly close to their
average values over a certain ensemble of random vectors of J^N, which
indicates that a chaotic eigenstate "looks like" a random state, at least in
a certain sense. This remark is linked to the various random matrix conjec-
tures in quantum chaos,(32) since the eigenstate of a random matrix is a
random state. We will not try to justify these conjectures in the following,
but rather describe further the relevant random states and their properties,
especially in the Bargmann-Husimi-stellar framework, in order to compare
to them the corresponding quantities computed for eigenstates of quantum
chaotic maps.

Such statistical models were already studied in alternative phase
spaces, namely the 2-sphere and the plane,(23,26-29) where the Bargmann
functions are respectively polynomials or entire functions in z of controlled
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growth. The main observations concerning the statistical constellations
were the following:

• first, the zeros are on average equidistributed over the phase space,
or the classically allowed part thereof. This property matches the equi-
distribution we proved for the eigenstates with the Schnirelman property
(Theorem 1).

• second, zeros at short distance (approximately V/A) tend to repel
each other.(23,26,28) Note that this typical distance coupled with the finite
phase space volume imply a certain rigidity of the constellation. This
phenomenon seems present also for eigenstates of quantum chaotic maps;
nonetheless, we already argued that such a repulsion cannot be explained
by Schnirelman's property (cf. Section 4.2.3). To characterize precisely the
rigidity of the random constellations, one could study the statistics of their
Voronoi tessellations (such tessellations are shown in Figs, la and 1b,
bottom rows, for chaotic eigenstates). This approach was used for instance
to characterize eigenvalues of large complex random matrices.(33) We did
not investigate in this direction in the present article.

Symmetries. The several models we will introduce correspond to
vectors with different symmetry properties; symmetries play a fundamental
role in the spectral properties of random matrices,(32) and their relevance in
the description of random states has already been noticed.(26,28)

The classical maps we study are all invariant under parity (q, p) (—>
(— q, —p), and the quantizations we consider then yield either even or odd
eigenstates; by linearity, the Bargmann functions of these eigenstates will
also be even or odd functions of :. As a consequence, we will consider
models of even random states (the treatment of odd states is very similar,
and we skip it).

Besides, the classical maps can also have anti-canonical symmetries.
The baker's map is invariant under the reflection (q, p)H-> (p, q), and the
simplest "cat" map usually considered (i.e., the matrix S = ( 2

3
1

2 ) ) has the
time-reversal symmetry (q, p)\—> (q, — p). On the quantum side, these sym-
metries manifest themselves on the coefficients of eigenvectors. For
instance, the time-reversal symmetry corresponds to eigenvectors with real
Schrodinger coefficients, giving real Bargmann functions (i.e., \jj(:} = \jj(z)).
Such a property has to be incorporated in the statistical model as
well.(26,28)

It is possible to build chaotic maps on the torus with no anti-canonical
symmetries (some generalized baker's maps, or for instance the cat map S'
of Eq. (13 ) ) . However, these systems are in practice much more hyperbolic
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than the simpler ones cited above, so that their semiclassical properties
(e.g., scars) may appear only for very large values of N, which is incon-
venient numerically. We nevertheless start our study by considering an
ensemble of random vectors with no symmetry whatsoever; this model
yields tractable analytical results, not all of which can be generalized to
more complicated ensembles.

5.1. Model with No Symmetry

We define a random state in JVNi0 (<P = 0 without loss of generality),
as:

where the Schrodinger coefficients aj are random independent Gaussian
complex variables with <aj>N = 0, <aJak>N = SJk/N. The states |qj>N,0

j = 0,..., N — 1, form the orthonormal basis of position eigenstates of #f N,0

(ref. 42) (but the statistical ensemble is invariant through any unitary
change of basis).

The vectors i/^{aj are not normalized a priori, but their square norm
n2= \\${a}\\2 has the distribution law

increasingly peaked around n2= 1 in the limit N-> oo. With this fact in
mind, we can still calculate the typical values of the different functionals
introduced in Section 3.2.

The distribution law of the Bargmann function at a given point zo is
the Gaussian (1/WZp) e

-1^W2^, with width

This width is actually a particular case of the correlation function
((/'(zj) i/'(z2)>Af which happens to be the crucial quantity of the statistical
model. We give its value for N an even integer (the formula for N odd is
slightly more complicated, but has the same large-N behavior):
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The above formula for overlaps of coherent states on the torus is com-
patible with the corresponding estimates derived in ref. 14, Section 8.2 and
ref. 15, Section 1.4.2. We deduce from this that the distribution law of the
Husimi function at a given point x = (q, p) is the exponential

and the limit dx~ 1 holds exponentially uniformly on T2 as N-» oo. Notice
that ax is also the square-norm of the torus coherent state |z>N,0 up to the
factor Ne2*N". From this pointwise distribution, we can derive the follow-
ing averages, leading to the typical values of several invariants as given in
Table I,
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( 2 F 1 ( a , b; c; z) is the hypergeometric function (see ref. 2, Vol. 1, Chap. 2);
the function q(i) is Dedekind's modular form defined in Appendix A; y is
Euler's constant). The second identity allows to derive the typical devia-
tions from average values for the L2-norm, the geometric mean and the
entropy.

The average sup-norm of a random state cannot be calculated by the
same techniques as the other invariants. We can nevertheless obtain an
upper bound for it (see Appendix C), as given in Table I:

This result (which is the phase-space counterpart of similar estimates for
sup-norms in the Schrodinger representation(34)) actually concerns a con-
strained ensemble of random vectors, namely the set of complex vectors on
the unit sphere £fN of J f N , 0 , equipped with its standard measure:

According to Eq. (62), in the semiclassical regime this (microcanonical)
ensemble must yield the same average values as the (canonical) Gaussian
ensemble studied so far, so we expect the above upper bound to hold for
the Gaussian case as well.

5.1.1. Statistics of the Constellations. Alternatively, it is
possible to extract statistical properties for the constellations of the random
Bargmann (or Husimi) functions, as was done in refs. 26 and 27 for
a spherical phase space. The methods used therein can be transposed to
the torus. Indeed, Hannay(27) shows that any joint probability function
p k ( z 1 , z 2 , . . . , z k ) d2z1 . . .d2zk of the zeros of random Bargmann functions
can be computed from a unique 2k x 2k correlation matrix, whose entries
are the functions <iA(z,-) iA(z / )> N and their derivatives w.r.to z, or zj. Notice
that both the Gaussian and microcanonical ensembles of random vectors
exactly yield the same statistics for the zeros, which are independent of the
normalization.

1-Point Function. The first relevant quantity is the average density
of zeros on the torus, defined as p 1 ( Z ) = <N-1 Zj1V ^ ( - — Zj)y N, where
the Zj are the zeros (ordered arbitrarily) of a sample i/>{a!(z). The S func-
tions are two-dimensional, and periodicized w.r. to Tc. These notations
will apply as well to the pair correlation function defined below. Hannay's
formula reads
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Therefore, in the semiclassical limit, the zeros of random Bargmann func-
tions are equidistributed over Tc. The deviations from perfect equidistribu-
tion ( p 1 ( x ) = 1) are uniformly exponentially small, and periodic w.r. to the
square lattice of side 1 / N : this seems related to the sum rule (7), which
prevents the distribution of the constellations from being completely trans-
lation-invariant.

Derivative of if/ at the Zeros. The Husimi density is very oscillatory
in the semiclassical limit, due to the dense distribution of its zeros. In the
vicinity of a zero zi, it can be approximated by H^,(z, z)« \(z — zi) i^'(z i)|2 x
e-2*Arz,z(> Therefore, the quantity f(z i) =f |i/>'(z i)|2 e-2"Nzizi seems a reliable
scalar to measure the local strength of H^ around zi as built by all the
other zeros, and it fluctuates much less than H^,(z, z).

In our statistical framework, using the joint probability 2(\l/l,\l/\) of
the Bargmann function and its derivative at a point z1, we can derive the
distribution law of N-1 £?li f(z i) for {zi} the zeros of i/>: in the semi-
classical limit, this law happens to be the so-called "1/2-Poisson law"

2-Point Function. The exact pair correlation function p 2 ( z 1 , z 2 ) =
( _ N - 2 Y 1 i ^ j ^ ( z i — Zj)S(z2 — Z j )> N would already be too lengthy to write
down, even in this model without symmetry. However, the formulae get
much simpler in the semiclassical limit, i.e., by neglecting exponentially
small corrections: we then recover an expression very similar to the one
applying to the spherical phase space. Actually, we use the fact that the
fundamental correlation function (i/Kz,) &(z2)yN is given semiclassically
by the kernel e?*Nz\\ uniformly when the separation Sz = z1 — z2 stays
inside a compact square \ S q \ < 1 / 2 — e, \8p\ < 1/2 — e (in such a square, the
theta functions in Eq. (64) converge uniformly to 1). In this regime, the
simplicity of this kernel yields for p2 a formula both translation-invariant
and isotropic, identical to the one found for the sphere: (27,26)
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The function g(r) is displayed on Fig. 6 (left). It starts quadratically near
the origin, and converges to 1 ~ P 1 ( X 1 ) P 1 ( x 2 ) as soon as |x1— x2|»
\I^/N. The zeros (interpreted as interacting particles), repel each other at
short distance^ and become uncorrelated at distances larger than the mean
spacing 1 / ^ /N.

In the case where \6q\ or \6p\ is near 1/2, we cannot use the kernel
Q2"Nz\li any more, but a direct estimation of the different terms contributing
to p2 leads to the large-N uniform value p 2 ( x 1 , x 2 ) ~ 1, as was expected
from the shape of g(r). The periodicity of p2 w.r. to T2 then yields a
uniform semiclassical approximation for it valid everywhere.

Fourier Coefficients. In a series of articles,(23,24,26) formula (72) was
compared with numerical computations using eigenstates of quantum
chaotic maps on the sphere or on the torus, and an excellent agreement
was found. However, averaging over many eigenstates was necessary to
recover the shape of the statistical result. Moreover, such a direct com-
parison yields information about the short-distance correlations between
the zeros, whereas we are also interested in the global properties of the
constellations. In fact, the semiclassical properties of eigenfunctions are
certainly not given by the precise position of a given zero, but rather by
interferences between a large number of them. Consequently, as we already
explained in Section 3.5, we think that some relevant semiclassical informa-
tion may lie in the Fourier coefficients of the density of zeros rather than
in their individual positions (see Section 6 below). We can actually estimate
these Fourier coefficients in our statistical framework.

The formula for the average density P 1 ( X ) shows that <pk> N = °k up
to exponentially small corrections.

More information is contained in the second moments of the coef-
ficients. We are thus led to the form factor of the random constellations,
defined for any ke Z2 by

where p2 is the pair correlation function corresponding to random states
in Jf?tff0. Using the asymptotic formula (72) for p2 and integrating over the
angular variable, then integrating by parts, we obtain the following integral
and series representations, valid as N -» oo up to exponentially small
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corrections. To this order, the isotropy of p2 in (72) implies the isotropy of
the form factor:

where J2 is the Bessel function and £(«) = £/>o j " the Riemann zeta func-
tion. Rigorously, ( \ p k \ 2 > N is only defined for integer k, but the limit
N-> oo involves the values of F2(K) for KB R + . We were not able to find
a simpler expression for the rescaled function F2, which is shown on Fig. 6
(right). The curve F2(k) looks vaguely similar to the curve g(r) of Fig. 6
(left), but the two functions have different behaviors near the origin.
Whereas g(r) ~r2 for small r, the series (77) shows that for fixed k =0,

Therefore, the decay property stated in Conjecture 1 is amply fulfilled on
average for sequences of random states.

Notice that we also obtained here the typical dependence of |pk| as a
function of k for fixed N, of which we had no idea from our deterministic
point of view of Section 4.

The linear relation (23) in Fourier space between the density of zeros
and the logarithm of the Husimi density provides us with some statistical
information about the latter:

This scaling function is also plotted on Fig. 6 right (dot-dashed curve). In
particular, if one fixes 0=kel 2 , then

5.2. Even-Parity Model

The statistical model we have just studied had the advantage of trans-
lation invariance and isotropy, up to exponentially small terms in the semi-
classical limit. However, the chaotic maps on the torus that we studied
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numerically have the parity symmetry, and their eigenstates are either even
or odd, in both the Schrodinger and Bargmann representations. This
property then has to be incorporated in the statistical model. We will only
write down the statistical properties of random even states, and to simplify
the formulas we restrict ourselves to the case N even.

The correct ensemble is built in the following way: we take a random
Bargmann function iA{a}(z) from the ensemble with no symmetry (61), and
consider the symmetrized function

so the new random independent Gaussian complex variables bj have the
variances <\b0\

2yN= <.\bN/2\
2yN = 2/N, <\bj\2yN = \/N forj=\,...,N/2-l.

For this ensemble too, all interesting quantities can be evaluated by use of
the correlation function

Therefore, we have the uniform semiclassical approximation
<iA(z,) i / ' (z2)> e v e n~2cosh(27r7Vz,z2) as long as both ( x 1 - x 2 ) and
(x1 + x2) stay inside a square of side 1 — e centered on the origin (in this
square, this formula holds up to exponentially small corrections).

The distribution laws of the Bargmann and Husimi functions are
slightly changed from the case with no symmetry. The modification con-
cerns the widths of the Gaussian (resp. exponential) distributions:

The second term implies that the random even Husimi function has a
"bump" of height 2 and width ~1/^/N at the four P-invariant points
(0, 0), (1/2, 0), (0, 1/2), (1/2, 1/2) (i.e., the points where x = ~x modulo T2);
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at a distance » 1 /^/N from these special points, this term is small, and
ffe*en ~ 1. A consequence of these "bumps" is that the average square-norm
of i/> is now N-dependent: < | | i A I I 2 > e v e n = 1 +2/N. The average values of the
other functionals similarly differ by terms of order 1/N from their values
without parity.

1-Point Function. The average density of zeros is modified by parity
in a manner dual to the "bumps" of the Husimi density, i.e., it decreases in
the vicinity of the symmetry points. Indeed, when \q\ < 1/4 — e, \ p \ < 1 / 4 — s
and N is large, the approximation < |i/r(z)|2>A,~2cosh(27r7V |z|2) in
Eq. (69) yields:

(we show p1
even(x) for small x in Fig. 7 left, solid curve). The form of

p 1
e v e n ( x ) in the remaining part of T2 can be obtained through its peri-

odicity: p1
even(q, p) = p1

even(q + 1/2, P) = p 1
e v e n ( q , P + 1/2). The decrease of

the density near the symmetry points can be explained as the repulsion
between the zeros z and — z which come close to each other when they
approach the symmetry points.

2-Point Function. The pair correlation function, now defined as
p 2

e v e n ( z 1 , z2) = < N -2 -£Zt¥. ±z. <5(z1 - Zi) S(z2 - Zj) > N, can be calculated by
the same techniques as in ref. 27, using the asymptotic correlation function
( ^ ( z 1 ) i/j(z2)y

exen~2cos\i(2nNzlz2). The exact asymptotic result cannot
be written down in a concise way (it depends explicitly on both z1 and z2).
However, if x1 ,x2 are not in the vicinity of the same symmetry point xsym

(i.e., we do not have simultaneously |x1, xsym| = O ( 1 / ^ / N ) and ^2-^syml
= O(1/v/]v)), the pair correlation function is approximatively

where p2 is the 2-point function for random states with no parity.

Fourier Coefficients. Due to the inhomogeneity p1, the averages
of the Fourier coefficients are no longer exponentially small in N, as
was the case with no symmetry. The periodicity of p1

even entails that
<pk>N

even = 0 unless kq and kp are both even. In that case, we have
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This provides us with the following asymptotic behaviors of <pk>N
even (see

Fig. 8, dashed curve):

The form factor is now given by

A simple Riemann-Lebesgue argument for the second and last terms in this
formula implies that that (|pk|

2>N
even converges to 1/N for large (k/^/N),

as was the case in the former section. On the other hand, using the
approximation (87) away from the symmetry points, we obtain the follow-
ing expression in terms of k/^/N:

where F 2 (k) is the function given in Eq. (77). Fcorr is not known analyti-
cally; it is bounded and its Taylor series starts by a term of the form a.k2/N
with a ^ 0, but we do not know if higher terms are isotropic.

Nevertheless, Eq. (92) shows that the dominant shape of the form
factor as a function of k/^/N is unchanged from the model with no parity:
we can therefore compare this analytical expression to the data for the cat
map S' (see Section 6 and Fig. 9a). Besides, for this model we see that
(<Pk>N

even)2 is of higher order in N-1 than < |pk|
2>N

even, as functions of K,
so that <pk>N

even might be difficult to detect (88) in the numerical data for
large N.

On the other hand, if one fixes k and studies the N-dependence of the
coefficient pk (resp. hk), the large-N asymptotics are slightly different from
the asymmetric model (Eq. (78) and (80)):
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We therefore recover the N - 3 / 2 behavior, but with different prefactors
(unless a vanishes, of course).

5.3. Real Even-Parity Model

In order to fit the numerical data for the simple cat map S = (2
3

 1
2) or

the baker's map, we study a statistical ensemble of real even states (once
more, we restrict ourselves to even values of N). This ensemble is still
defined by the formula (82), but the bj are now random Gaussian inde-
pendent real variables, with the same variances as in the complex case.
Models of random real polynomials (without parity symmetry) were
studied in detail in the literature. (29,26,28,30)

Due to reality, the distribution laws of the Bargmann function or its
derivative do not only depend on the modulus \\j/\, but also on its phase.
However, these distributions are still Gaussian in the variables 9?i/>, 3i/^,
%/f', 3i/f'.(28) On the other hand, the distributions of the Husimi function
and the averages of its invariant functionals are unchanged from the
ensemble of complex even random states (former section).

By contrast, the reality of the bj modifies drastically the statistics of the
zeros. Since \j/(z) is real and even, its zeros come either in quadruplets of
complex numbers {z, —z, z, — z } , or in couples {zr, — zr} situated on one
of the four symmetry axes {3z = 0}, {3z= 1/2^/2}, {9?z = 0}, {<Rz =
1/2 ^/2}. The statistics of these two types of zeros are quite different, but
both are still obtained from the correlation functions <i/ ' (z1) i ^ ( z 2 ) y N and
<t/ f (z 1 ) iA(z2)>Ar= (i/K^i) iA(z2)>AT. Since the bj have the same variances as
in the complex case, these functions are still given by Eqs. (83) and (64).

We use the formalism of ref. 28 to derive the average density pcmPlx of
complex zeros: for \q\ ̂  1/4 —e, \p\ ^ 1/4 —e, we obtain semiclassically

Figure 7 (right) shows a contour plot of G1(Q, P) near the origin, in the
first quadrant. Away from the symmetry points, this formula yields back
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the expression GRP corresponding to complex zeros of real random poly-
nomials: for instance, near the real axis but for q far from 1/2Z, we have

(the function GRP is shown in Fig. 7 left, dashed curve). Away from the
symmetry axes (i.e., at a distance » 1 / ^ / N ) , we recover a uniform density
p1

cmplx(x) ~ 1. We get the density on the whole torus using the same peri-
odicity properties as in the complex even case.

A separate treatment has to be made for zeros on the symmetry
axes.(26,29,30) It yields a singular density on these axes:

(see Fig. 7 left, dotted curve). Among the jV zeros of \l/(z), the proportion
situated on the symmetry axes is asymptotically 4/^/nN, which corre-
sponds exactly to the difference 1 — JTip1mplx(x)rfx.

The description of the pair correlation function is too involved to be
presented here. Far from the symmetry points, it reproduces the results of
ref. 28, where it was shown that the function p2

cmplx(x1, x2) takes the
isotropic form (72) when x1 and x2 are far from the symmetry axes,
whereas the repulsion takes a different shape near the axes. As for the zeros
on the symmetry axes, they repel each other as in the case of real random
polynomials (see ref. 31, Eq. (5.35)), as long as they stay away from xsym.

We did not compute explicitly the form factor for this ensemble, but
we noticed qualitative modifications for the averages of the Fourier coef-
ficients, due to the strong anisotropy of p1, and its singular part. Writing
<Pk> N as a function of K = k/^/N, the dominant contribution is not
isotropic; in case both kq and kp are even, we get the formula:

where FRP is the Fourier transform of GR P(Q)+ < 5 ( Q ) ; Fpoint is unknown
analytically, it gives the corrections due to the symmetry points. The term
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Fig. 8. Solid curve: rescaled plot of the dominant (oc N -1/2) term in the expansion of the
average Fourier coefficients along the symmetry axes for the model of even-parity real random
states (Eq. (98)). This dominant term is of the same order as the quadratic average (101) , so
it should be visible on the numerical data. Dashed curve: rescaled average Fourier coefficients
for the model of even-parity complex random states (86). This average is of order N-1,
whereas the quadratic average (92) is of order N-1/2.

in l/^/N is clearly anisotropic. We could not obtain a closed formula for
FRP, but only the following limits (see Fig. 8, solid curve):

Notice that the dominant term of (<pk>N
rea1)2 is of the same order 1/N as

the form factor derived for the complex model (92): although we did not
compute the form factor in the real model, we nonetheless expect the
anisotropy to be visible in numerical data, especially for K > 1. More
precisely, it seems reasonable to conjecture that the variance dpl =
< l / JArl2>/5" l~K/ ?A:)/v a ' )2 is not very different from its value in the complex
model, in particular it should be almost isotropic. This assumption
provides the following tentative formula for the form factor:
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In the next section, we will use this approximate formula (see Fig. 6 right,
dashed curve) to probe the anisotropy of the averaged Fourier coefficients
of eigenstates for the cat map S and the baker's map. The fixed-k
asymptotics for \pk\ given by (101) is still oc N~3/2:

using the asymptotics FRP(k)~B7k2 as k->0. (The corresponding equation
for hk is easy to derive).

6. RESULTS AND QUESTIONS ABOUT THE FOURIER
COEFFICIENTS

We now return in greater detail to the Fourier coefficients of chaotic
eigenconstellations.

The Fourier transform of a density of N points on the torus was
defined in Eq. (21) as

p0 = 1 entirely corresponds to the normalization, but in all other respects
it must be understood that the restriction k = 0 expressly applies. The
Fourier coefficients pk have already appeared several times above:

(1) the equidistribution of zeros in the phase space was most simply
expressed as the property that each pk individually tends to zero as
N-> +co; we further argued that the Schnirelman property could amount
to a stronger statement about their rate of decrease, as being o ( N - 1 ) (our
Conjecture 1).

(2) The simple toy constellation of Section 4.2.4 carried a modulation
essentially produced by the lowest Fourier coefficients ( \ k \ = 1); this largest
possible wavelength was nevertheless able to excite an extremely localized
"artificial scar;" this illustrates the idea that semiclassical features of Husimi
densities are likely to be strongly coupled with collective (rather than
individual) degrees of freedom of the zeros, of which Fourier coefficients
are an example.
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(3) Statistical ensembles of zeros make predictions about the
moments of the Fourier coefficients; especially, the model without sym-
metry predicts the quadratic average < \pk\

2yN to be an isotropic function,
universal up to the axis scales, explicitly describable for small or large k;
the large-W behavior [< \pk\

2}N~\1'2~n ^03) \k\2 N~3/2 followed.

(4) Equation (12), relating the logarithm of the Husimi function to
the density of zeros p(x), was made diagonal in the Fourier space by
Eq. (23), as

We will now try to build a (still partial) Fourier picture of chaotic
eigenconstellations incorporating the previous remarks. We have just listed
several arguments supporting this Fourier approach, but difficulties also
arise which can however be worded as interesting problems.

(a) lack of physical cogency: any (semi)classical meaning of the
Fourier space and of the action of classical maps upon it are presently
quite unclear—save for linear (cat) maps—, and so are the quantum and
semiclassical dynamics in this Fourier picture;

(b) besides Eq. (105), another piece of the link from p ( x ) to the
Husimi density is the formula H(x) = ceNh(x) (with c=1/GM[H]), and
now this relation is local in the phase space, and also nonlinear; its Fourier
space translation is then quite intractable, meaning that we cannot easily
transform the Fourier coefficients of log H (the primary objects of interest,
in our approach) into those of the Husimi density itself (which would also
relate simply to the Fourier coefficients of the Wigner function);

(c) a basic well known difficulty with Fourier transformation is
that it obliterates the very special nature (positivity and finite parametriza-
tion) of this density p. The zeros being noteworthy for their 1-1 corre-
spondence with pure states, it is specially desirable to fight the redundancy
now reinstated by going to a countable set of Fourier coefficients, and this
point is discussed next.

6.1. Essential Fourier Coefficients

Problems: can one identify a minimal finite set (of size O(N)) of
Fourier coefficients pk that will optimally encode, and robustly restore, the
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coordinates of the N zeros in any configuration? Such Fourier coefficients
(dubbed "essential"), which are in finite number, will then determine all the
others, in a way which can also be asked.

In one dimension this is a classic problem: the Fourier transformation
(104) on a 1-d torus, setting Zj = e~2nixJ, becomes {zj} i-> {pk = '£?1=i z*}.
the celebrated mapping from sets of N points to their symmetric functions.
This mapping is known to be algebraically invertible using the first N sym-
metric functions as data; the solution relies on certain cumulant expan-
sions, which also happen to play a role in the semiclassical analysis of
determinants of quantum eigenvalues. It is thus interesting to encounter a
2-d analog of this problem in connection with the corresponding analysis
for eigenfunctions.

This problem seems much harder than its 1-d progenitor, and we do
not know if it has been answered. This difficulty is seen from elementary
geometry (area estimates). The issue is to preserve and recover an amount
of information consisting of 2N independent real numbers (initially: the
coordinates of the zeros, essentially arbitrary). To optimize isotropy and
robustness, we will seek this information only in radially truncated Fourier
transforms: { p k } k e D f : , DK = the disk {|/: |^A^}; the symmetry relation
p-k = Pk^k (expressing the reality of p(x)) then makes each complex
Fourier coefficient in the set count as real, while their total number can be
estimated by the disk area nK2. All in all, lossless encoding then requires
an area of at least 2N. It is also hard to conceive how the lowest 2N
Fourier coefficients could generically have "hidden" dependence relations,
besides any obvious symmetries. So we expect the Fourier data to be suf-
ficient starting from the disk radius K< = v/7V/c< with K<

 d= ^/2/n
= 0.7979.

But let us now examine the special family of all square lattices of zeros
(possibly rotated) for any N. The Fourier transform of such a lattice is a
Dirac delta distribution on the dual square k-lattice which has generators
of length ^/N, so that all its Fourier coefficients vanish identically within
any disk of area <nN, although this area is n/2 times the heuristic estimate
above. The same reasoning using the optimizing lattice geometries in the
sense of Section 3.3 (lattices becoming equilateral triangular in the limit
N -» oo) further dilates this disk of indetermination up to the area 2nN/^/3.
Within any lesser radius, then, some patterns will be totally undetectable
and hence undeterminable (e.g., almost equilateral-triangular lattices will
be undistinguishable from any of their translated or rotated images).
Intuitively we also believe this is the worst possible case for the present
argument. We thus expect the Fourier data to be unambiguous only from

the disk radius K> =^/N K> with K>
 d= ̂ 2/^/3 % 1.0746.
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So, contrary to the 1-d case where the two radii are reached simulta-

neously at N, here there is a gap of a factor ^/n/^/3x 1.3468 from an inner
radius K< from which we naively expect the information about the zeros
to be generically preserved, to an outer radius K> needed for the actual
recovery of the zeros in some cases, and hence for their robust reconstruc-
tion in all cases. In-between there seems to lie a blurred zone in which one
could perhaps invert more and more robustly by adding redundancy
gradually. This suggests that there may not exist a unique "best" Fourier
inversion algorithm feeding on finite Fourier data, in contrast to the 1-d
case.

It is also interesting to consider this restoration issue for random data
(complex-valued and without any symmetry, for simplicity). The relevant
object is then the form factor F2(K) with K = \k\/^/N shown on Fig. 6
right. For K^K> this form factor is virtually undistinguishable from being
Poissonian; a gradual transition sets in around the annulus {k < <k<k > } ,
and below K < there lies a basin of increasingly damped expectation values
as K -»0: this feature makes any individual fluctuations much more signifi-
cant against the statistical noise in this region. But precisely, the essential
Fourier coefficients all lie within this basin, hence they are the ones statisti-
cally enhanced (especially far inside). By contrast, the outer Fourier coef-
ficients, which look completely like noise (Poissonian) and also dominate
in average size, are devoid of primary meaning since they ought to be
(complicated) functions of the lower ones. Moreover, the Husimi density
itself is controlled, via A(x), by the coefficients hk of Eq. (105) which have
the form factor n~2F2(K)/K4 of Eq. (79), also shown on Fig. 6 right. This
form factor now enhances the coefficients in the essential region numeri-
cally, meaning that a resummation truncated within this region must give
a fairly accurate picture of the function h(x) on a scale where individual
zeros cannot be separated (as will be validated numerically below).

6.2. Fourier Coefficients for Fixed N

6.2.1. Averaged Behavior. We have computed the behavior as a
function of k of Fourier coefficients pk quadratically averaged over the
whole basis of eigenfunctions at fixed N, for a few classically chaotic

Fig. 9b. Same as Fig. 9a, but for the even-parity eigenstates of the S-cat map (top) and
baker map (bottom) and also including the data along the direction (2, 1) (marked with o).
Form factors of the real random state model are given both for a generic direction (dot-
dashed curves) and along a symmetry axis (long-dashed line) (Eq. 101). Due to the large
deviations from the statistical curves in the baker's case, we use varying ordinate scales.
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models. (All of these have the parity symmetry, which makes the pk purely
real.)

We first consider a dynamical model without anti-unitary symmetry:
the cat map S', because the corresponding statistical form factor is a well
controllable isotropic function in Fourier space. (This actually holds for the
statistical form factor without parity symmetry, the only one we can fully
compute, but parity-induced deviations must be small for large N and are
indeed not visible on our plots.) Figure 9a shows the mean values of \pk\

2

and \hk \
2 along selected directions in Fourier space for this map quantized

with N = 149, restricting to even-parity eigenfunctions for defmiteness. We
did not compute a theoretical dispersion curve (involving 4-point correlation
functions), but we note that the dispersions stay practically uniformly within
25 % of the theoretical mean value curve, however low the latter becomes. We
conclude that qualitatively speaking, the distribution of averages very closely
follows a random-like behavior, in a perfectly isotropic fashion.

The results of the same calculations are now shown (Fig. 9b) for the cat
map Sand the baker's map, which both possess antiunitary symmetries. Ran-
dom theory predicts a violation of isotropy already for <pk> N at large k
along the directions dual to the symmetry lines, i.e., the two axes for the cat
map vs the bisecting diagonals for the baker's map. Indeed, the averages
( | P k | 2>N are selectively larger in the specified singular directions. Isotropy
improves as k —> 0, but the behavior stays systematically above the curve
without symmetry. As was the case with the invariants, dispersions

Fig. 10. Two-dimensional plots of the Fourier coefficients pk ( 0 = A - e Z 2 ) ( top row) and
hk = — pk/7ik2 (bottom row) for three constellations. Being real-valued, each discrete coef-
ficient is plotted by a black rectangular patch of orientation showing the sign ( + = vertical;
— = horizontal), and thickness representing the modulus (on an absolute scale differing from
plot to plot, hence we will indicate the largest value "Max" appearing in each plot). The two

circles mark the inner and outer radii, K< = ^/2N/n and K-, =^/2N/^/3 respectively (see
main text).

Left column: the most ergodic N= 107 S-cat eigenstate of Fig. la, top left; middle column:
the most scarred N=107 S-cat eigenstate of Fig. la, bottom left; right column: the N = 64
deformed lattice state of Fig. 4, middle.

Top row: the two leftmost pk-plots (Max = 0.357) exemplify two generic features of chaotic
eigenstates: the strong squeeze of the coefficient values in the central basin, and their noisy
appearance outside; the rightmost pk-plot (Max = 0.956) is an example where the essential
Fourier coefficients begin to rise only beyond the inner disk.

Bottom row. the Fourier coefficients hk of h(x) = N-1 log H(x) show distributions of widths
*X/A?. The leftmost hk-plot (Max = 0.00134) corresponds to a Husimi density with a very
moderate value at x = 0 ( H ( 0 ) = 1.397), and exhibits a fair balance between positive and
negative values of hk . Both middle (Max = 0.00161) and right (Max = 0.00837) hk-plots
correspond to Husimi densities very peaked at .x = 0 ( H ( 0 ) = 12.25 and 7.961 respectively),
and also display a marked overall dominance of positive values of hk.
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are noticeably larger for the baker than for the cat map. Still, the gross
features remain qualitatively random-like as before.

6.2.2. Individual Behavior. Firstly, anticipating Section 6.3
(Fig. 13), we note that within the set of individual eigenstates of a fixed-N
quantum map, each given Fourier coefficient viewed in isolation will have
large relative fluctuations, like the invariants we studied before (Fig. 3).

We now consider the collective behavior of Fourier coefficients within
individual eigenconstellations, by looking at fully 2-d Fourier plots of some
characteristic states, earlier portrayed by Husimi plots (Figs. 1 and 4).
Although pk and hk are interchangeable as Fourier representations, their
plots stress quite disjoint features of the solutions.

The striking fact about the pk-plots (Fig. 10 top) is that, notwith-
standing the large individual coefficient fluctuations, these plots neatly dis-
play a central region where most Fourier coefficients are heavily depressed,
very much like the basin of the random model. This region appears for
every single chaotic eigenstate we have examined in this manner, and its
radius remains comparable to ^/N. The presence of this basin reflects, in
the Fourier space, both the repulsion between the zeros and their equi-
distribution. We stress that this is now a random-like feature generically
embodied in individual chaotic eigenconstellations (still on empirical
grounds), and not in integrable ones.

As regards the hk-plots (Fig. 10 bottom), we argue that they can
reveal localized peaks of the Husimi densities such as scars. A measure for
the presence of a point scar (taken at the origin, up to a trivial translation)
can be given by an averaged value of h(q, p) about that point: a relatively
large and positive value will signal a scar. On the other hand, a convenient
average over the correct width O ( N - 1 / 2 ) is supplied by the partial Fourier
sum hK =f Y.\k\^Knk (truncated in the disk DK) precisely when Kx^/N:
i.e., this average is basically controlled by the essential Fourier coefficients.
We can see indeed (Fig. 11) that as a function of the cutoff radius K, hK

gradually drifts towards its limiting value = h ( 0 , 0 ) while K grows within
the basin, and basically stabilizes further out (unless a zero happens to
accidentally lie very near the origin: then h(0, 0) is very large and negative,
but at the same time it is not a good estimator for the desired average).
Moreover, the correct order of magnitude is often approached well inside
the basin, i.e., the lower Fourier coefficients dominate the sum (as predicted
by the shape of the form factor (79) in the random model). In conclusion,
a scar or high density peak, taken at (or as) the origin, is betrayed by
essential Fourier coefficients hk which, on a global trend, fluctuate away
from their averages <hk>N in the positive direction, especially for low k.
(The argument holds for yi(hk) when the coefficients are complex.)
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Fig. 11. Partial sums N x £l/t| ^ K hk as functions of (integer) K for the six N = 107 S-cat map
eigenstates of Fig. la (each curve is labeled by the value of the corresponding eigenangle in
units of 2n marked at the limiting value log H(0) on the right edge, except for one state having
log H(0)= -9.3). The inner and outer radii K< and K> are marked by the dotted vertical
lines. The limiting behaviors are seen to set in gradually before K reaches K< (the oscillations
are a Gibbs phenomenon, which would diminish under smoother truncation schemes).

Figure 12 illustrates, now over the whole phase space, three stages of
the radially truncated Fourier resummation for the scarred N= 128 baker
eigendensity of Fig. 1b (center), using the respective cutoff values K = 2,
K = 9 (xK,-), K=12 ( = K > ) . The main scar already begins to emerge for
K = 2 (=0.18.\%^/N) which, upon desymmetrization, leaves only 4 (real)
nonzero Fourier coefficients! At the other end we may consider the Husimi
density as recovered (in the sense of measures), reasonably well for K = K <

and quite well for K = 1 2 = K > . By contrast, the individual zeros and the
associated factorized structure of the Husimi density are washed away by
the truncations, since the Fourier picture is dual (complementary) to the
stellar representation. The next challenge is then to find some effective
procedure to achieve the eigenvector reconstruction itself from these data,
i.e., to unravel the zeros which will generate this function h(x) already
recovered on some coarse scale O (1 / ^ /N) . The shape of the form factor
and the example of the lattice states suggest that Fourier coefficients in the
transition annulus {K< < \k\ <A^>} may become critical for this purpose,
all the more so when the zeros' repulsion is stronger and their pattern more
rigid, but this example is special in that its duality is explicitly implementable
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(by the Poisson summation formula); for more disordered cases, no similar
analytical handle is available and the restoration of the individual zeros
remains an open problem.

One conclusion of this discussion is that Fourier coefficients of con-
stellations can provide an imperfect but still effective way of reducing the
number of parameters involved in the description of chaotic eigendensities:
the number of essential Fourier coefficients is roughly comparable to the
number of degrees of freedom of the zeros, but in practice their contribution
to the Husimi density often decreases gradually with k to become negligible
when or before the basin boundary is reached.

6.3. Fixed Fourier Coefficients for Variable N

We may now return to the issue of semiclassical ergodicity as
expressed by the decay rates of fixed-k coefficients, say hk= — pk/(n \ k \ 2 ) ,
as N-> co. We present numerical data concerning the lower such coef-
ficients h1,0 and h1,1 in graphic displays similar to the earlier plots of
invariants (Fig. 3). Figure 13a shows the values of those coefficients for
even-parity eigenconstellations of the cat map 5, in both log-linear and
log-log plots, while Fig. 13b shows h1, 0 only for the baker's map. (Other
low Fourier coefficients, not shown, behave likewise, whereas high
(A:»^/7V) Fourier coefficients confirm the behavior oc N - 1 / 2 predicted by
Eqs. (101) and Fig. 8.)

The general comments made about the invariants in Section 3.4 carry
over to these scalar quantities. Here, however, the conjectures linked with
semiclassical ergodicity can be probed more sensitively through the decay
rates of \hk\ for each fixed k and N-> <x>: one random model predicted
L<l^l2>;v]1 / 2~yC03) N~3/2, whereas we conjectured the Schnirelman
property to hold as long as hk = o ( N - 1 ) . We can now fit various subsets
of the above data more or less reliably with behaviors of the form cNp for
\hk\ and estimate the resulting values of ft (the slopes on the log-log plots).

Cat map S: we find that ft ranges between -1.4 and -1.5 for the
(quadratically) averaged coefficients; as for the uppermost coefficients at
each N, they decrease with slopes reasonably steeper than —1.1 .

Baker's map: / ? « — 1 . 1 (resp. < —1.33) for the (quadratically) averaged
coefficients of states whose parity is even (resp. odd, not shown); the upper-
most coefficients at each N give overall slopes a — 1. (resp. < —1.2) for
even- (resp. odd-) parity states: the even case seems to be on the borderline
of conceivable exceptions to the Schnirelman property.

The plots also highlight the values corresponding to the eigenstates
maximizing H(0, 0) for each N (i.e., those with the strongest scars at the
origin). Then the left-hand-side plots confirm the globally upward deviation
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Fig. 13a. The low Fourier coefficients h1, 0 (top row) and h1,1 (bottom row) of the even-
parity eigenstates for the quantization of the S-cat map. In left column: log-linear scale plots
of N3/2hk, in the same general conventions as Fig. 3a. In right column: log-log plots of \hk\;
the solid curve is the quadratic average at fixed N, against the dot-dashed straight line of the
random model (without symmetry) which shows the slope —3/2. As in Fig. 3a, the values
corresponding to the most scarred state above the fixed point (0, 0) for each N are marked by
bullets connected by the dashed curve.
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Fig. 13b. Same as Fig. 13a, but for the even-parity eigenstates of the quantum baker's map,
and only for the lowest Fourier coefficient h1, 0. As in Fig. 3b (left column), the bullets mark
the values corresponding to the must scarred state above the fixed point (0, 0) for each /V, and
the dashed curve connects these values above the special subsequence N = 2k.

of each Fourier coefficient of such a state from the linear average. The
N-dependences are erratic except, remarkably, for the baker's map restricted
to powers of 2 where they become extremely regular, giving slopes = — 1.4.
The Fourier coefficients for this, or other suitable, subset(s) of N are
dynamical quantities which could then perhaps be described asymptotically.

7. CONCLUSIONS

The results of this article are mainly geometrical and statistical.
Indeed, the only role played by the ergodic nature of classical dynamics
was to assert, through Schnirelman's theorem, the weak-* convergence (in
the semiclassical limit) of the Husimi eigendensities towards the Liouville
measure. Although such a measure-theoretic property seems a priori rather
weak, combining it with the analytical properties of the Husimi densities
provided direct information on both the Bargmann eigenfunctions (linearly
related to the wavefunctions), and their eigenconstellations (which param-
etrize the eigenstates optimally in phase space). These analytical properties
actually yielded results about the phase and the zeros of the Bargmann
function, which seem totally immaterial quantities in the framework of
Husimi measure theory. In the study of eigenstates, the relevant quantity
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seems to be the (scaled) logarithm h(x) = N - 1 l o g H(x) of the Husimi func-
tion, linearly related to the density of zeros. For an integrable system, the
strategy of WKB theory is also to build semiclassical approximations for
the logarithms of eigenfunctions (see Eq. (1)). In the chaotic case, we ended
up with a WKB-like "symbolic" description for the Bargmann eigenfunc-
tions (Section 4.3):

Unlike its integrable counterpart (1), this formula is meaningless as a com-
putational tool (the integral in the exponent is ill-defined), but it represents
concisely two characteristic properties of chaotic eigenstates.

First, as we pointed out in Section 4.3, the above formal z-dependence
of the analytic function log i]/(z) embodies the necessary asymptotic dense-
ness of its singularities, or Bargmann zeros (the dislocation points of the
phase of \l/(z)). This phase then forms a fan-like pattern (see Fig. 5b) which
seems quite universal, in the sense that one cannot easily decipher the par-
ticular features of an individual eigenstate (e.g., a scar, or in the opposite
a lattice eigenconstellation) by just looking at its phase pattern. Similarly,
a peak in the Husimi function cannot be detected through the local density
of zeros, but rather in global parameters of the whole density (Fourier coef-
ficients, for instance). At the local level, zeros and amplitudes of the Husimi
function seem almost totally uncorrelated.

The second idea carried by the above formula is indeed universality.
Unlike the WKB formula (1), where the classical action in the exponent
takes the dynamics explicitly into account, equation (106) does not depend
on the particular dynamical system we are studying, as long as it is fully
ergodic.

The idea of universality (partly) underlies the models of random vectors
introduced in Section 5, to which the numerical data of chaotic eigenstates
are compared. As we recalled, such models are eigenstate counterparts of
the random matrix models often used to mimic eigenspectra of classically
chaotic systems. Until recently, they generated a statistical description of
eigenstates in configuration space. We rather developed their analysis in the
Bargmann-Husimi-stellar representations on the torus phase space, and
found a generally good agreement with data from chaotic eigenstates, the
comparison being made at different levels.

We first studied the Husimi functions themselves, using norms and
related functionals meant to probe the uniformity of these functions in finer
topologies than the original weak-* involved in Schnirelman's theorem.
When averaged over all eigenstates, these functionals agree very well with
their statistical values. Individual fluctuations away from these average
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values demonstrate the existence of very ergodic or, on the contrary, more
localized (e.g., scarred) eigenstates.

We then explored the properties of eigenconstellations. As was already
noted in refs. 23 and 26, the 1-point and 2-point correlation functions of
the constellations fit perfectly with the random models, when averaged over
all eigenstates. This corresponds to a universal local interaction between
the Husimi zeros, which (to this extent) resemble particles of a gas. We also
obtained statistical predictions for the Fourier coefficients pk of the con-
stellations (and, by linearity, for the coefficients hk of h(x)), which contain
relevant gloval information. The overall shape of the form factor (i.e.,
a basin of small Fourier coefficients near the origin, surrounded by a white-
noise-like sea for \k\ >V/W) is clearly reflected at the level of individual
eigenstates. We get a neater agreement with the statistical curves when
averaging over all eigenstates (of a given parity). On the other hand, the
main features of the Husimi density of a given eigenstate can be obtained
by truncating the Fourier series of its logarithm around \k\< ^/N; we
therefore believe that the presence of a scar on an individual state, or more
generally, dynamical information, is linked to the deviations of some low-k
(dubbed essential) Fourier coefficients from the statistical averages. In
other words, to go beyond the unprecise universal equation (106), we can
hope to "see a scar" directly on a finite set of coefficients hk. So far, this
observation is not supported by any dynamical explanation for the
occurrence of a scar above a periodic orbit on a particular eigenstate (some
heuristic arguments for this topic are given in ref. 43). The trouble here is
that the translation of the dynamics onto the Fourier coefficients of h(x) is
totally unclear. Otherwise, this analysis resembles the semiclassical theory
for the spectral form factor K(r):(37) this (now 1-d) form factor also exhibits
high Fourier coefficients displaying dominantly statistical universal
behavior, vs low Fourier coefficients concentrating the specific dynamical
information (imprints of short periodic orbits through trace formulae).

In spite of the aforementioned lack of a direct link between classical
dynamics and the observed quantum phenomena, we believe some techni-
ques and concepts presented here might prove fruitful to the further study
of chaotic eigenstates. As explained above, the main new tool we used was
the multiplicative properties of the Bargmann function induced by its
holomorphy; this directly leads to the stellar representation as well as to
the occurrence of logarithmic quantities (h(x) and the geometric mean
GM[H]). Further progress was made by Fourier-transforming these
logarithmic quantities: for instance, their connections to semiclassical
features proved more robust in Fourier space. The formula which
epitomizes best these methods may be Eq. (32). Similar tools were already
used to study, on the one hand eigenfunctions of integrable systems (cf. the
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remark above), on the other hand spectral determinants, whose logarithms
can be expanded (a la Fourier) in terms of classical periodic orbits. In these
cases, the important features (the large values of the Husimi function, the
zeros of the Bargmann eigenfunctions or spectral determinants) live on
1-dimensional curves. Here, we used the same tools to describe quantities
(functions, constellations) living genuinely in 2 dimensions. The problem of
recovery of the full constellation from a finite number of Fourier coef-
ficients shows that the dimensional jump is not trivial, except maybe in
very non-generic cases (for instance, the separable constellations considered
in Section 4.2.4, or lattice constellations).

At all levels, the agreement between statistical predictions and exact
eigenfunction data was much closer for the cat maps than for the baker's
map, for which large deviations were repeatedly encountered. In particular,
the baker's data did not exclude sequences of exceptional eigenstates, for
which Schnirelman's property would not hold (by contrast, it is proven to
hold for all cat eigenstates we considered). We believe that such discrepan-
cies might be due to the discontinuity of the classical map, whose role had
been noticed (see for instance refs. 40 and 41) when studying spectral
properties of the quantum map. On the other hand, cat maps have
arithmetical properties, which make their spectra very non-generic. It
would be interesting to find out if the pseudo-random nature of their
eigenstates persists if we perturb the map continuously to make it
"generic."

APPENDIX A. OPTIMIZATION OF INVARIANTS FOR LATTICE
STATES

In this appendix we derive explicitly the geometric mean and the L2

norm for the Husimi functions of lattice states, defined in Sections 3.3
and 4.4. The scale invariance of these functionals means that we just need
to derive them for the basic functions Hx(T), defined in Eq. (17). We will
then prove that both these functionals take absolute extremal values for the
triangular lattice r = em/3 (we are indebted to M. Bauer for this proof).

By using Eq. (17) and standard formulas on theta functions (see refs. 1
and 2, Vol. 2, Chap. 13), one obtains the following formulae:
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In the formula above, ?/(T) is Dedekind's modular form (see ref. 52,
p. 129) ^(T) = ei7rT/12n,,»i (1-e2i*"r). Curiously, these quantities are
closely related to the determinants of the Laplacians Ar on TT. Indeed, we
have(50,51)

so ||Hx(r)||22 = tr(e'^)l,-3,,,/4,.
The quantities (107, 108) are obviously modular invariant, so we only

need to study them for r in a fundamental domain of PSL(2, Z) (see
Fig. 14). We will show in the following that the only extrema for both
invariants on this domain are situated at the symmetry points T = i (B on
the figure) and r = e"I/3 (A on Fig. 14).

Fig. 14. Poincare's upper-half-plane {3(r )>0}. The fundamental domain of PSL(2 , / ) is
bounded by the 3 pieces of hyperbolic geodesies drawn as thick curves. The horizontal dashed
line corresponds to 3(r) = (,,: above this line, 9i(^'///) has the sign of sin(2n*J{(r)), as marked.
The modular transformation J maps the semi-circle (a, B", A ' , / i ) onto the vertical axis
(a', B', A, /I'). Large arrows indicate directions of increasing values of GM[Hx ( t ) ] along the
semi-circles and the vertical axes 9i(r) = 0, ±1/2. The maxima of GM[Hx ( T )] are the points
A, A1 and their modular images.
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A.1. Optimization of the Geometric Mean

The equation for an extremal point of GM[H x ( T ) ] reads (^'/rj)(r) =
i/43(t), which implies that 9l((t)'/tf)(T)) = 0. If one denotes e2i*T = reie, this
equation reads

so it holds trivially for 0 = 0 mod n. For small r, the first term of the sum
dominates the remainder, unless sin(0) is very small. We actually show that
for r smaller than ro = 0.134, the only solutions of (111) are the two points
{sin(#) = 0}. Indeed, if we isolate the first term in (111) , we obtain the
inequality:

If sin(#)/0, a few simplifications yield the inequality r(1 — r ) 5 < 4 r 2 —
3r3 + r4, which does not hold for re[0, ro], or equivalently for 3(r)^
to=0.32 (on the figure, this corresponds to the dashed horizontal line).
Thus, the only extremal points with 3(r) > t0 must be on one of the axes
{«T = 0}, {9Jr=l/2}.

It remains to study the variations of G M [ H x ( T ) ] along these two axes
in the fundamental domain. On the imaginary axis, we have

which is a strictly decreasing function for re lR ' J . . On the other hand, this
derivative vanishes for t = 1, since the modular transformation J = (0

1
 -1

0)
maps {?€ ]oo, 1]} onto {te ]0, 1]}, t = 1 is an extremal point; it is there-
fore the only one along this axis.

To deal with the second axis {3(r) = 1/2}, we use the following rela-
tion, also due to the transformation /:

When t describes R* , T = - 1/( 1/2 + it) is on the semi-circle (a, B", A', ft).
Fortunately, we know the sign of M((^'/ '/)(T)) in the domain 3(r)^r0 ,
since this quantity only vanishes along the symmetry axes, and in the
limit 3(i)^oo we have ^((A/ ' /T/XT)) ~27ie-27l3(r) sin(27i«R(T)). Therefore,
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*R((ti'/rj)(T)) takes the sign of sin(27t$R(T)) as long as 3(z) ^ to, as indicated
on the figure. This provides the variations of GM[Hx(T)] along the line
{T = 1/2 + it} between the points a' = j(a) and ft' = J((3): it increases from
/?' to A, then decreases down to B', where it takes the same value as at the
conjugate point B; the variations from B' to a' are symmetric. A direct
estimation of the series (d/dt) log GM[//1/2+it] shows that its sign does not
change above /?''.

We thus conclude that the invariant G M [ H x ( T ) ] has only two
extremal points in the fundamental domain of PSL(2, Z):

— it has a global maximum at T = e"t/3, corresponding to the equi-
lateral triangular lattice, i.e., the closest packing of points on the plane.
There, it takes the value GM[Hei,/3] = (J3/4n2) T(l/3)3.

— it has a saddle-point at r = i, i.e., the square lattice. There, we have
GM[//i] =GM[//J = r(l/4)2/(2n)3/2.

— it vanishes in the limit 3(r) -» oo.

A.2. Optimization of the L2 Norm

The variations of the second invariant ||H/(.(T)||2 are studied similarly.
Indeed, the real part of the equation (d/dt) \\Hx(T)\\

2
2 = 0 reads:

which yields sin(27r9i(T)) = 0 as long as 3(r) ^ t1 = 0.3067, so the extremal
points in the fundamental domain must also be situated on the two
symmetry axes {9?(r) = 0}, {9J(r)=1/2}. The variations along the line
9?(r) = 1/2 are obtained as above, i.e., through a modular transformation
to the half-circle (a, B', A', /?): we obtain variations of opposite signs as in
the former case (on this axis, ||Hx(T) ||

2
2 has a minimum at the point A). The

analysis on the axis 9?(r) = 0 can be performed directly on the series.
Precisely, from the formula

and the fact that the function xi-»e *(1 — 4x) is strictly increasing for all
x > 5/4, we deduce that the whole derivative increases for t > 1. Besides,
this derivative vanishes by symmetry at the point t= 1. Therefore, \\Hit\\2

has a single extremum on the imaginary axis, at t = 1.
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This second invariant is thus quite similar to the geometric mean:

— it has an absolute minimum for the equilateral lattice ||Hei»/3||2 =
3r(l/3)3/27/V.

— it has a saddle-point for the square lattice ||Hi||
2

2 = II#,||2 =
r(i/4)2/27r3/2.

— it diverges as 3(r) -> oo.

APPENDIX B. INVARIANT LATTICES OF CAT MAPS

In this appendix we derive a few properties of the invariant lattices of
cat maps; these properties are used for the estimations made in Section 4.4.
A classical "cat" map is given by a hyperbolic matrix S = (a

c
 b

d) in SL(2, Z)
(i.e., ad-bc = 1, |a + d | > 2 ) .

When studying the quantized map Us on 3*i?N in Bargmann's represen-
tation(42) one is led to search for sublattices A of Z2

N invariant under S.
More precisely, A must be a free principal submodule of Z2

N, i.e., generated
by a unique integer vector V: A = {aK mod N,OL = 0,..., N— 1}, and these
N points must be different.

A can also be considered as a lattice in Z2: it then admits the basis
[V, (0

N)]. Our main task here is to estimate the minimal basis [V1, V2]
for A, i.e., the basis composed of the two successive shortest (for the
euclidean norm) non collinear vectors: 0 < | v1| < |V2| < • • • (one can show
that [ V1 ,V2] is indeed a basis for A (see ref. 53, p. 83).

A general theorem ensures that the shortest non-vanishing vector V1

has its norm |V1| </2N (see ref. 53, p. 137). In the following, we will
prove that for invariant lattices, this norm also admits a lower bound of the
type C^/N. This property will then imply the same estimates for the
second basis vector V2, and a control over the size of the Dirichlet-
Voronoi cell (in the present context, this cell can be defined as the set of
all points in R2 closer to the origin than to any other point of A).

We will study such invariant lattices in the case where they admit a
generator V of the form V=(1

k) (this is possible if b and N are coprime).
The resulting sublattice A modulo N is invariant though S iff

To estimate the minimal vector V1, we search for the shortest vector Vx

congruent to ocK modulo N, for a= 1,..., N (we can restrict a to values in
0,..., N/2 by parity). Its square norm is FJ2 = a2 + (/? = min \ctk\ mod N)2.

In all our calculations occurs an important quantity related to S, its
discriminant D = ((a + d ) / 2 ) 2 — 1 , whose square-root is irrational because
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\a + d\>2. Equation (115) leads to the following constraint between a
and/5:

Since D is not the square of a rational, this equation cannot hold in Z. For
a < ^/N/D, it then yields the inequality

We then study the variations of/(a), which depend upon the sign of the
product bc.

If bc>0, f admits a minimum at a1 = \(a — d)/2\^/N/bcD, where it
takes a value /(<x,) = C1 /TV. Therefore, the square norms \Va\2>
N min(C1, 1/D).

If bc<0, f(a) decreases monotonically from a = 0, and vanishes at
the point a.2 = ^/N/\bc\. However, we can still bound the norms as
|Fa ^C^/N, with C a positive constant: if a < min(a2/2, ^/N/D), then
I^J2>/(«)2>/(a2/2)2; otherwise, |V| 2>min(a*/4, N/D).

From the bounds of the shortest vector C^/N^ V 1 \ ^ ^ / 2 N , let us
now study V2. On the one hand, it defines a parallelogram with V1, of
area N, that we choose to orient as V1 A V2= — N (this is a choice
between ±V2). On the other hand, since V2 + nV1 is also in A, we
must have | V1 • V2| < 1/2 | V1|

2. Both constraints yield | V1 |
2 < | V2|2 <

N/2( \V 1 \ 2 /2N + 2N/|V1 |2) . This inequality actually improves the upper
bound on the minimal vector: | V1 |

2 < NN/4/3; besides, the lower bound on
|V1| implies | V 2 | 2 < N ( C 2 / 4 + 1/C2).

We can now estimate the radius of the Dirichlet-Voronoi cell centered
at the origin, which is a hexagon except in the case V1 • V2 = 0 (a rec-
tangle). The radius is then the distance of the farthest vertex from the
origin. We find the uniform bound

The invariant lattice A is mapped to the constellation of an eigenstate
\l/ in 3CN through a rescaling and a complex conjugation; the constellation
is the sublattice of Tc generated by [ v 1 , v 2 ] , with v1= V i / ( N y / 2 ) . The
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above estimates then yield |vi| ~O(^/N), and the modulus T = v 2 /v 1 is
bounded in a compact set:

APPENDIX C. SUP-NORM ESTIMATES FOR THE STATISTICAL
MODEL

We present the derivation of the typical sup-norm of the Husimi
density of a random complex vector, which yields the estimate listed in
Table I, 3rd line. Such a quantity cannot be deduced from the same
methods as the other invariants, but requires a completely different
analysis.

The proof proceeds geometrically. Instead of considering an ensemble
of Gaussian random states (61), we constrain the statistical states to be on
the unit (complex) sphere £fN, with the probability density given by the
canonical volume form. In Euclidean coordinates, the volume of this sphere
reads

where D(0, 1) is the unit disk, and a0 is the overlap between the normalized
state li/'jo}) and the first vector of the basis, |q0>N,0; this overlap is related
to the Fubini-Study (or Hermitian) distance dFS between the representa-
tives of these two vectors in the complex projective plane CPN, which we
note [>{a)] and [q0]:

From this, we obtain the normalized volume of the ball B N ( [ q 0 ] , d ) of
radius d in CPN:

In our statistical framework, this quantity is the probability for a random
normalized state |iA{a}> to have an overlap KiA{a} | <j>*)\ ^cos d with a fixed
(normalized) state |^>.
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Now, Eq. (64) shows that the square-norms of the torus coherent
states |z>N,0 (see Eq. (3)) are given by Ne2nN" in the classical limit. There-
fore, in this limit the Husimi density HJ(z, z) can be written as

where [z] is the representative of the normalized torus coherent state
|z>norm. Therefore, the maximum of H^(z,z) is given by the distance
between [\j/] and the set of coherent states in the projective plane
CPN: {[z],zerc}. To estimate this distance, we first select M points zi

on Tc, which are well-distributed: for instance, we consider the square sub-
lattice of Tc of side 1/,/M, with M~N2fl, for a certain power /?> 1/2 to
be selected later. Thus, any ze Tc will be close to one of the z,:

For a given distance d, we can estimate the proportion of states |i^>
s.t. max,- KI/' |z,->| ^cos d, i.e., 3i, dFS([ij/~\, [z i]) <d:

Using this inequality, we give a lower bound on the distance d = dN s.t. the
proportion of such states in CPN is equal to a fixed number pe(0, 1) (we
use the scaling law M = N2f):

Now, if a state [i/^] is not in Ufii ^jv([Zi], dN), i.e., if its distance from any
zi is greater than dN, the triangular inequality implies
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If we fix pe(0, 1) and take /?= 1, this uniform bound on H^ behaves as
2 log N in the limit N-> oo. This bound is valid for a proportion (1 — p) of
states in CPN. From there we easily deduce the inequality stated in Table I
for the average sup-norm.
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