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An attempt is made to clarify the ballistic nonlinear sigma model formalism re-
cently proposed for quantum chaotic systems, by looking at the spectral determi-
nantZ(s)5Det(12sU) for quantized mapsUPU(N), and studying the correlator
vU(s)5*duuZ(eius)u2. By identifying U(N) as one member of a dual pair acting
in the spinor representation of Spin(4N), the expansion ofvU(s) in powers ofs2

is shown to be a decomposition into irreducible characters of U(N). In close
analogy with the ballistic nonlinear sigma model, a coherent-state integral repre-
sentation ofvU(s) is developed. For genericU this integral has (N

2N) saddle points
and the leading-order saddle-point approximation turns out to reproducevU(s)
exactly, up to a constant factor. This miracle is explained by interpretingvU(s) as
a character of U(2N), and arguing that the leading-order saddle-point result corre-
sponds to theWeyl character formula. Unfortunately, the Weyl decomposition be-
haves nonsmoothly in the semiclassical limitN→`, and to make further progress
some additional averaging needs to be introduced. Several schemes are investi-
gated, including averaging over basis states and an ‘‘isotropic’’ average. The
saddle-point approximation applied in conjunction with these schemes is demon-
strated to give incorrect results in general, one notable exception being a semiclas-
sical averaging scheme, for which all loop corrections vanish identically. As a side
product of the dual pair decomposition with isotropic averaging, the crossover
between the Poisson and CUE limits is obtained. ©2002 American Institute of
Physics. @DOI: 10.1063/1.1462417#

I. INTRODUCTION

One of the striking characteristics of a quantized chaotic Hamiltonian system is found in the
correlations inherent in its spectrum at small energy differences. Extensive numerical work has
shown that various quantities~such as the nearest-neighbor spacing distribution and the two-level
correlation function! of a quantum chaotic system areuniversal: their behavior coincides with that
of a Wigner–Dyson random matrix ensemble of the appropriate symmetry class.1 This property,
first noticed in billiards, was found to apply to many chaotic systems, including symplecticmaps.
In contrast, if the dynamics is integrable~in the sense that the 2f -dimensional phase space foliates
into f -dimensional submanifolds invariant under the Hamiltonian flow!, the generic behavior of
the eigenvalues is expected2 to be that of independent random variables, so that their correlations
are in the Poisson universality class.

The present article will be concerned with quantum maps, i.e., with quantizations of some
canonical transformationf:M→M of a compact symplectic manifoldM . We assume that the
problem of quantization itself has been tackled, so the phase space has been prequantized into a
Hilbert spaceHN of dimensionN;\21, and the quantum map acts on it as a unitary operator.3,4

With respect to a basis ofHN this operator is represented by anN3N unitary matrixUf,N . The
latter has a semiclassical limit, in the sense that traces of its powers can be estimated in terms of
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classical periodic points.4 For a system with one degree of freedom, the Gutzwiller-Tabor trace
formula reads

Tr~Uf,N
n ! ;

N→`

(
p,Fix(fn)

Ndim(p)/2ApeiNFp, ~1!

wherep is one component of the set ofn-periodic points; for an Anosov system, it is an isolated
point @dim(p)50#, whereas if the dynamics conserves energy,p is one-dimensional.Fp andAp

are purely classical quantities related to the dynamics around the setp.
The quantum spectrum consists of theN eigenvalues~pseudo-energies! $eiu j% j 51,...,N of Uf,N .

The first analytical estimates of the two-level correlation function@which is the Fourier transform
of the form factor F(n)5uTr(Uf,N

n )u2# for such spectra were based on the above trace formula,
combined with some known ergodic properties of long periodic orbits.5 In the present article we
focus attention on another statistic, namely the autocorrelation function of the spectral determi-
nant:

VU~g!5
def

g2N/2E
0

2p df

2p
Det~12geifU !Det~12e2 ifU†!. ~2!

~The parameterg will be a complex number close to unity, with the scalingug21u;1/N.! This
correlation function has already been considered6,7 for chaotic versus integrable quantum maps,
and the same universality was observed as for the form factor or the nearest-neighbor distribution.
A semiclassical analysis of this correlation function was performed using the Gutzwiller trace
formula in Ref. 7.

The computation of correlation functions from the trace formula~1! always requires some sort
of averaging. In the semiclassical theory of the form factorF(n) one wants to use the so-called
diagonal approximation, neglecting the off-diagonal terms in the double-sum over periodic orbits.5

To justify this step one must average over energy or some family of systems: one needs slight
variations in the classical actionsFp to make the phase interferences;eiN(Fp2Fp8) average to
zero. The need for averaging was emphasized in Refs. 6 and 8, where it was pointed out that the
spectrum of an individual quantum system is too noisy to allow universality to be seen in its bare
form factor. In addition to the noise problem, there exist some quantum chaotic systems with
arithmetic symmetries, which lead to periodic orbit degeneracies and nonuniversal spectral
correlations.9,10 ~Such systems are nongeneric, however, in any decent space of smooth maps.!

Thus universal behavior is expected only in the generic case, and to make a correct math-
ematical statement about universality of the spectral correlations of a general system one ought to
define the precise meaning of the word ‘‘generic.’’~In the case of integrable systems, the spectral
correlations could sometimes be studied directly, by utilizing the explicit expressions for the
eigenvalues; two-point correlations were shown to be Poisson for a rather subtle set of
parameters.!11 We can avoid the issue of genericity by averaging the correlation function over
some set of quantum maps. That is, we specify a measure dPN(U) on the unitary group U(N), and
the function to be studied then reads

^VU~g!&5E
U(N)

dPN~U !VU~g!.

We want this measure to be very concentrated~or ‘‘local’’ ! around the quantum mapUf,N ~see
Secs. IV C and VI!. In the course of this article, we will also consider cases for which this measure
has a broader support~Sec. V!, including the case where the measure is the Haar measure on
U(N). We are then dealing with the circular unitary ensemble~CUE!, for which the determinant
correlation function has been thoroughly investigated.6,12

The Gutzwiller trace formula has the attractive feature of relating quantum to classical prop-
erties, but its use for estimating the spectral correlation functions still raises questions. The prob-
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lem is that the formula is rigorous in general only for times shorter than the Ehrenfest time:n
< logN ~andN→`!. Yet, long-time traces (n;N) are needed to obtain spectral correlation func-
tions at the scale of the mean level spacing where universality emerges. The diagonal approxima-
tion, which assumes statistical independence of the different periodic orbits, is unsatisfactory at
large times where the exponential proliferation of periodic orbits clashes with the finite (N)
number of eigenvalues: the classical information is then overcomplete, which implies some sort of
hidden correlation between the contributions from classical orbits. A recipe to overcome this
difficulty has been devised by Bogomolny and Keating,13 but so far lacks rigorous justification.

To bypass these problems, a second approach to estimate spectral correlations has recently
emerged, inspired by the study of disordered metals. It consists in expressing the correlation
function as a quantum field theory~or functional integral! of the type of a nonlinear sigma model
~NLsM!. One then tries to analyze the functional integral by standard field-theoretic methods such
as perturbation expansion, saddle-point analysis and the renormalization group. This approach was
first applied successfully to systems with disorder, where the dynamics is governed by a diffusion
operator.14 The formalism was later extended to the ‘‘ballistic case,’’15,16and quantum correlation
functions were put in relation with the spectrum of the Frobenius–Perron operator~i.e., the
evolution operator for classical densities!. Although quite elegant, this approach suffered from
several drawbacks. Among these are the appearance of unwanted zero modes around the main
saddle point, and the problem of ‘‘mode locking.’’17 Besides, the results do not exactly agree with
the correlations calculated numerically for the Riemann zeta function~the prototype of a quantum
chaotic spectral determinant!;13 nor do they explain the nongeneric spectral correlations featured
by systems with arithmetic symmetries. More recent treatments of the ballistic NLsM have also
stressed the need for averaging over a smooth disorder if one wants to avoid the above
problems.18,19

In an attempt to resolve these uncertainties, we have adapted the latter approach, which had
originally been conceived for Hamiltonian systems, to the case of quantum mapsUf,N . Our
objective was to prove the universality of the determinant correlation functionVU(g) ~Sec. II B!
upon averaging wrt a suitable measure on U(N). This correlation function is easier to treat than
the two-level correlation function, as it does not require the use of a supersymmetric
representation15,16but can be expressed as an ordinary c-number integral over a finite-dimensional
manifold MN ~Sec. II D!. We write this integral in the form

VU~g!5E
MN

dQe2S(g,U,Q), ~3!

whereS(g,U,•) is called theeffective action.
For the reasons stated, we will consider averages ofVU with respect to certain probability

measures dPN(U). The averaged correlation function, denoted by^VU(g)&, can still be obtained
by integrating the Boltzmann weight given by an effective action:

^VU~g!&5E
MN

dQe2Sav(g,Q).

To estimate these integrals, we apply the same technique that was used in Ref. 15: we expand
Sav(g,Q) up to quadratic order around its saddle-pointsQcrit , and perform the Gaussian integrals.
The result obtained in this way,

^VU~g!& us.p. exp.5(
Qcrit

$Detd2Sav~g,Qcrit!%
21/2e2Sav(g,Qcrit), ~4!

is called the leading-order saddle-point expansion of the integral.

2216 J. Math. Phys., Vol. 43, No. 5, May 2002 S. Nonnenmacher and M. R. Zirnbauer
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Owing to the absence of a large parameter in front of the actionSav, the expansion isa priori
not justified mathematically. A more careful treatment should in principle include perturbative
corrections around each critical point~we actually compute the expansion up to two loops in a
particular case, see Sec. IV D!.

We have succeeded in computing the leading-order term for a few averaging schemes. For an
individual matrixUN we can actually reproduce the exact value of the correlation function~3! in
this way~Sec. III!. In Sec. IV C we define a ‘‘semiclassical’’ averaging scheme, which we think is
a good candidate to obtain universality of correlations;20 unfortunately, in that case we can only
compute the contributions from the two standard saddle points.

In order to test the leading-order saddle-point approximation, we selected a sequence of
statistical ensembles@i.e., a sequence of measures dPN(U)# for which the averaged correlation
function can be computed exactly, and compared the exact result with the saddle-point approxi-
mation for the corresponding effective action. All these ensembles are U(N)-rotation invariant,
that is, we first average over all bases ofHN ~Sec. V!, then possibly over the spectrum ofUN

~Secs. V C and VI A!. In most cases, the saddle-point expansion of these ensembles yields erro-
neous results. We still hope that the expansion is better behaved in the case of local averages, like
the semiclassical one.

These disappointing results seem to challenge the use of NLsM methods for the study of
quantum ballistic systems, unless our understanding and control of these methods significantly
improves. In Sec. VI, we introduce a U(N)-isotropic local averaging scheme which we treat by an
alternative method; unfortunately, this scheme does not discriminate between the different univer-
sal behaviors that are expected for chaotic versus integrable maps. Nevertheless, we use it in Sec.
VI A to compute the correlations along a crossover between the Poisson and CUE universality
classes.

II. ALGEBRAIC MANIPULATION OF VU

A. Fourier decomposition of VU

We first remind the reader of some known results concerning the correlation functionVU .6,7

The spectral determinant ofUPU(N) may be expanded as

Det~12sU!5 (
k50

N

skak~U !. ~5!

The unitarity ofU implies a ‘‘self-inversive’’ property for the secular coefficients:21

aN2k~U !5Det~2U !ak~Ū !.

Each coefficientak may be obtained from the traces$t l5TrUl% by

ak52
1

k S tk1 (
l 51

k21

altk2 l D 5
~21!k

k! U t1 t2 t3 ... tk

1 t1 t2 ... tk21

0 2 t1 � tk22

0 0 3 ]

] � ]

0 ... ... k21 t1

U .

Because this dependence is highly nonlinear, the secular coefficients inherit non-Gaussian distri-
butions in the RMT ensembles.6 However, to compute the ensemble averages ofVU(g) one only
needs to know their variances, since

2217J. Math. Phys., Vol. 43, No. 5, May 2002 Det-Det correlations for quantum maps
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VU~g!5 (
k50

N

gk2N/2 uaku25 (
k50

N/2

~gk2N/21gN/22k!uaku2. ~6!

For the Poisson and the CUE ensemble of random matrices, these variances were computed in
Ref. 6, and have the following large-N asymptotics:

^uaku2&Poisson5S N
k D , ^uaku2&CUE51, ~7!

^VU~eix/N!&Poisson;2N, ^VU~eix/N!&CUE;N
sin~x/2!

x/2
. ~8!

In Ref. 7, a semiclassical estimation of theuaku2 was given for integrable and chaotic quantum
maps. The authors used the explicit expression in terms of the tracest l , and estimated the latter by
the Gutzwiller trace formula~1!. They made a generalized diagonal approximation treating the
traces t l as statistically independent variables. To obtain the correlation function, one has to
estimate theuaku2 ~and hence thetk! up to timesk&N/2, where the Gutzwiller formula is non-
rigorous.

B. Representation-theoretic content of VU

We now introduce a more group-theoretic expression for the correlation function. Instead of
performing the expansion~5!, we will expressVU(g) as acharacter in a certain irreducible
representation of U(2N), which is best described using the physical language of fermions.

Let FN be the Fock space forN types of fermionsf i , f i
† . In mathematicsFN is known as the

spinor representation space of the group Spin(2N). Then, for anyN3N unitary matrixU,

Det~12U !5TrFN
~21!(

i
f i
†f i exp(

i , j 51

N

f i
†~ logU ! i j f j .

The exponential on the right-hand side can be shown to be well defined in spite of the multi-
valuedness of logU. To account for both determinants, we use 2N fermions, whose creation
operators are denoted byf 1 j

† and f 2 j
† , j 51,...,N. The integration overf in the integral~2!

projects on the subspaceF5
def

Ker(F12F2), whereF65( i f 6 i
† f 6 i are the number operators for

the two types of fermions. The correlation function reads

VU~g!5TrFg (F11F22N)/2 exp(
i , j 51

N

~ logU ! i j ~ f 1 i
† f 1 j2 f 2 j

† f 2 i !. ~9!

The operator under the trace belongs to an irreducible representationR of the group U(2N),
realized on the spaceF, which has dimension (N

2N). This representation may be defined through its
Lie algebra version: any skew-Hermitian 2N32N matrix X5(c

a
d
b) is represented by the operator

R~X!5 (
i , j 51

N

ai j f 1 i
† f 1 j1bi j f 1 i

† f 2 j
† 1ci j f 2 i f 1 j1di j f 2 i f 2 j

† . ~10!

By exponentiating,R(expX)5expR(X), we obtain a U(2N)-representation, which we still de-
note byR. The correlation functionVU(g) for any N3N unitary matrixU may be recast as a
character in this representation:

VU~g!5g2N/2Det~U !21 Tr R~GU! ~11!

where

2218 J. Math. Phys., Vol. 43, No. 5, May 2002 S. Nonnenmacher and M. R. Zirnbauer
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U5
defS U 0

0 U D , G5
defS g 0

0 1D PU~2N!.

As it stands, the construction assumesg5eiuPU(1). It canalso be used for other values ofg,
sinceR naturally extends to a representation of GL(2N,C). In the following, matrices in bold print
will always be of size 2N32N.

The assignmentU°U embeds U(N) into U(2N). By this embedding,R restricts to areduc-
ible representation of U(N) on F, which we simply denote byR(U). To express the correlation

function, we may also consider the U(N)-representationR21(U)5
def

det(U)21R(U).
In the next section, we decomposeR(U) @or equivalentlyR21(U)# into irreducible represen-

tations ~irreps! of U(N), thus expressing the correlation functionVU(g) as a sum of
U(N)-characters.

C. VU as a sum of U „N…-characters

The crucial mathematical tool to use is thedual pair structure.22 The subalgebra
$XN^ I2 uXNPu(N)% of u(2N) commutes with the subalgebra$IN^ x2 ux2Pu(2)%, and each is the
commutant of the other insideu(2N): they are said to form a dual pair. This means that for all
UPU(N), the operatorR(U) commutes with the set

J↑5(
i

f 1 i
† f 2 i

† ,

J↓5(
i

f 2 i f 1 i ,

J05F11F22N.

The operatorsJ0 , J↑ and J↓ generate ansu(2) algebra. The equationJ0R(U)5R(U)J0 im-
plies that R(U) conserves the total number of particles and hence acts inside the subspaces
F p5FùKer(F11F222p).

The dual pair structure provides us with a prescription22 to decomposeR(U). Inside the
reduced Fock spaceF, we consider the subspace of lowest SU~2! weights,0F5FùKerJ↓ , and

expand it according to its particle content:0F p5
def

0FùF p. Classical results of invariant theory,
due mostly to H. Weyl23 and succinctly summarized by R. Howe,22 amount to the following
statements:

~i! The operatorR(U) acts inside each space0F p, through a certain irrepr̃p(U) of U(N).
Equivalently,R21(U) acts on this space throughrp(U)5Det(U)21r̃p(U). Furthermore,
two irrepsrp andrp8 are inequivalent ifpÞp8.

~ii ! The image of0F p under (J↑)k is the spacekF p1k,F p1k which is either trivial ~if k
.N22p) or carries the irreprp ~if k<N22p!. The operatorsJ↑ , J↓ , J0 act on this tower
of spaces according to thesu(2)-irrep of dimensionN22p11.

~iii ! The direct sum of these towers exhaustsF.

We summarize these statements in the following diagram. All entries in a given row are subspaces
containing the same number of fermions; all entries in a given column~or tower! carry the same
U(N)-irrep. We only show the case whereN is an even integer~the odd-N case being very
similar!:

2219J. Math. Phys., Vol. 43, No. 5, May 2002 Det-Det correlations for quantum maps
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F N 5 NF N

↑J↑
F N21 5 N21F N21

%
N22F N21

] ↑J↑ ↑J↑ �

] ] ]

0F N/2

] ↑J↑ ↑J↑ ↑J↑
F 2 5 2F 2

%
1F 2

%
0F 2

↑J↑ ↑J↑
F 1 5 1F 1

%
0F 1

↑J↑
F 0 5 0F 0

U~N!2 irreps: r0 r1 r2 ... rN/2

~12!

The leftmost tower on the right-hand side carries the trivialu(N)-irrep, so all spacespF p

5(J↑)p 0F 0 are one-dimensional.
Each irreprp ~or r̃p! may be described by a Young diagram.rp mixes the action ofU on p

fermionsf 1 with the action ofŪ on p fermionsf 2 . Owing to antisymmetrization, it corresponds
to the diagram withp rows of length 2 followed byN22p rows of length one:

r̃p~UN!5Det~UN!rp~UN!5UN
[2p 1N22p] .

In view of the above diagram, the dimensions of the representation spaceskF k1p follow
immediately from those of the spacesF p:

dim~kF k1p!5dim~F p!2dim~F p21!5S N
p D 2

2S N
p21D 2

. ~13!

By doing the sum over eachsu(2)-multiplet we can now express the correlation function~11! in
terms of the irrepsrp :

VU~g!5 (
p50

N/2

Trrp~U !
gp2N/22gN/2112p

12g
, ~14!

or, making the substitutiong5eix/N,

VU~eix/N!5 (
p50

N/2

Trrp~U !
sin$~x/2! @12 ~2p21!/N#%

sin~x/2N!
.

For large values ofN we may replace the denominator sin(x/2N) by x/2N. A quick comparison
shows that this decomposition is actually equivalent to the pedestrian expansion~6! written down
in Sec. II A. The squared coefficientsuaku2 now acquire a representation-theoretic meaning:

;p<N/2: uap~U !u25TrF pR21~U !5 (
k50

p

Trrk~U !, ~15!

or, equivalently,

Trrp~U !5uap~U !u22uap21~U !u2.

2220 J. Math. Phys., Vol. 43, No. 5, May 2002 S. Nonnenmacher and M. R. Zirnbauer

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

132.167.222.3 On: Fri, 15 Jan 2016 23:47:54



As it stands, the decomposition into irreducibles~14! is not very informative if one takes for
U the matrix of a quantum map. We have no waya priori to estimate the character Trrp(UN) from
semiclassical information, except by using the relationship, via theuaku2, to the original traces
Tr(UN

k ), as was done in Ref. 7. This decomposition will, however, allow us to obtain rigorous
results when adopting a U(N)-isotropic averaging centered aroundUN ~see Sec. VI!.

D. VU as a coherent-state integral

Instead of decomposing the character TrR21(U) into irreducibles, we can rewrite it as an
integral over the symmetric spaceMN5U(2N)/U(N)3U(N). This integral can be interpreted as
a variant of the nonlinear sigma model used in Ref. 15 to study the spectral statistics of quantum
chaotic Hamiltonians on infinite-dimensional Hilbert spaces. In our case the integral representation
is exact, and is well defined mathematically.

To write the characterVU(g) as an integral, one uses the coherent statesR(g)u0&, whereu0&
is the vacuum ofF andg is any matrix in U(2N).24 These coherent states provide a resolution of
unity on F, i.e., they can be combined to build the orthogonal projector onF, as

PF5
defE

U(2N)
dg R~g!u0&^0uR~g!21,

where the Haar measuredg has to be suitably normalized. LetHN be the block-diagonal subgroup
U(N)3U(N) of U(2N). Then for allhPHN , the statesR(g)u0& andR(gh)u0& only differ by a
phase factor. Therefore, it suffices to integrate over the equivalence classes in U(2N) moduloHN :

PF5E
U(2N)/HN

d@g#HR~g!u0&^0uR~g!21.

It is convenient to represent theHN-equivalence classes~i.e., the points onMN! by 2N32N
matrices. To eachgPU(2N) one associatesQg5gS3g21, whereS35IN^ s3 . The set of all these
matricesQ is isomorphic toMN . It is the set of all Hermitian matrices with two eigenvalues,11
and 21, each with multiplicityN. This nonlinear set of matrices is naturally equipped with
U(2N)-invariant symplectic structure and metric~and therefore an invariant measuredQ).

The matrix elementsQi j are not all independent, and for practical calculations we need to
introduce a bona fide coordinate system onMN . If we denote byQ12, Q22 the twoN3N blocks
in the right half of the matrixQ, the entries of the complex matrixZ5Q12(Q2221)21 are good
coordinates on the open subset ofMN where (Q2221) is invertible. Geometrically, theseN3N
complex coordinates represent a certain stereographic mapping ofMN ontoCN3N. The matrixZ
corresponding to a pointQg can be extracted from the Gaussian decomposition ofg:

g5S 1 Z

0 1D S A 0

C DD . ~16!

These complex coordinates also provide a simple definition of the coherent states. Indeed,
R(g)u0& is co-linear with

uZ&5
def

expH (
i , j 51

N

f 1 i
† Zi j f 2 j

† J u0&5expH RS 0 Z

0 0D J u0&5RS 1 Z

0 1D u0&. ~17!

As it stands,uZ& is not normalized, but has the following properties:

~i! The overlap between two coherent states reads^ZuZ8&5Det(11Z†Z8). In particular, the
norm of uZ& is Det(11Z†Z)1/2.
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~ii ! The resolution of unity takes the form

PF5E
CN3N

dmN~Z,Z†!
uZ&^Zu

Det~11Z†Z!
, ~18!

where the measuredmN(Z,Z†)5CN3Det(11Z†Z)22N) i , j 51
N d2Zi j /p is the expression

for dQ in the coordinatesZi j . The value of the normalization factorCN is given at the end
of Appendix B.

~iii ! The group U(2N) acts on these coherent states as follows:

RS A B

C DD uZ&5Det~CZ1D !u~AZ1B!~CZ1D !21&. ~19!

The resolution of unity allows us to write the character~11! as

VU~g!5g2N/2Det~U !21E
MN

d@g#H ^0uR~g!21RS gU 0

0 U DR~g!u0&

5g2N/2E
CN3N

dmN~Z,Z†!
Det~11gZ†UZU21!

Det~11Z†Z!

5E
MN

dQ e2S(g,U,Q). ~20!

This expression is the central result of the current section. It is an exact formula, which parallels
the ‘‘ballistic’’ nonlinear sigma model derived in Ref. 15 for Hamiltonian systems with an infinite-
dimensional Hilbert space. In our finite-dimensional framework, the non local fieldQ(q8,q) of
434 supermatrices on configuration space is replaced by a ‘‘lattice field’’Qia, j b of 232 matrices
~with elements indexed bya,b! depending on two discrete positionsi , j . The ‘‘effective action’’ of
the present model,

S~g,U,Q!52Tr$ log~11gZ†UZU21!2 log~11ZZ†!%1
N

2
logg, ~21!

can be presented17 in the form

S~eix/N,U,Q!52Tr log@cosh~Hx,U!2sinh~Hx,U!Q#,

with

Hx,U5
def ix

4N
S31

1

2
logU.

In Ref. 17, this action was further transformed, using the Wigner representation of wave functions,
to obtain the same ballistic non-linear sigma model as in Ref. 15. We will not perform these steps,
which require some further approximations, but rather try to estimate the integral with the above
~purely quantum! effective action.

III. SADDLE-POINT ANALYSIS OF THE ACTION S„g,U,Q…

To estimate the field integral of their nonlinear sigma model, the authors in Ref. 15 expand the
effective action around two critical points~usually referred to as saddle points in this context!.
Since there is no large parameter in front of this action, a leading-order saddle-point expansion—
see Eq.~4!—is not justified mathematicallya priori. In the present section we explicitly compute
this expansion for the action~21! and compare it to the results of Ref. 15 and the exact correlation
function.
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The saddle points are determined by requiring the variation of the action to be zero. In the
absence of a large parameter, one first needs to understand exactly which action to vary. This point
is not entirely obvious: one might be tempted to lift~part of! the denominator Det(11ZZ†)22N of
the measuredmN(Z,Z†) into the exponent; this modification of the effective action would yield a
different saddle-point expansion. However, the requirement of coordinate invariance tells us to
keep the U(2N)-invariant measuredQ as it is, forbidding such manipulations. With this conven-
tion the saddle-point expansion ofS(g,U,Q) will turn out to yield the exactg-dependencefor
VU(g). In particular, the problem of ‘‘unphysical zero modes’’ occurring in Refs. 15 and 17 is
resolved.

We now describe the saddle-point analysis ofS(g,U,Q) in some detail. We first use the fact
that the action is invariant under simultaneous rotations of bothU andQ:

S~g,U,Q!5S~g,VUV21,VQVÀ1!, ~22!

where we used the shorthand notationV5V^ I2 , for VPU(N). Such aV-rotation of Q is an
isometry of the Riemannian manifoldMN and leaves the measuredQ invariant. It therefore
suffices to study the simpler situation whereU is diagonal: U[D5diag(eiu j).

One sees from formula~21! that the pointZ50 ~or equivalently,Q5S3! is a saddle point,
and the quadratic approximation toS for small Z reads

S~g,D,Z!'
1

2
N logg2Tr~gZ†DZD212Z†Z!'

1

2
N logg1 (

i , j 51

N

uZi j u2~12gei(u i2u j )!.

This saddle point is the only one onMN which is located at a finiteZ. It is sometimes called
the ‘‘perturbative’’ saddle point in the physics literature. For a generic matrixU, there areN
directionsZj j that have a coefficient (12g);2 ix/N; these directions are called ‘‘zero modes,’’15

because their coefficient vanishes asx→0. Doing the integral in this quadratic approximation
aroundZ50 yields

VU~g! uS3
5CN

g2N/2

~12g!N) iÞ j~12gei(u i2u j )!
. ~23!

We chose to separate the zero mode contributions from the others.
The existence of a second saddle point was pointed out~in the context of the diffusive non-

linear sigma model! in Ref. 25. It may be exhibited through the change of variableZ851/Z, which
amounts to switching to the stereographic projection ofMN from the antipodal point. In terms of
the new variableZ8, the integrand reads

gN/2
Det~11g21Z8†UZ8U21!

Det~11Z8†Z8!
,

so it has the same structure as the original integrand, but for the replacementg→g21. Quadratic
expansion aroundZ850 ~or, equivalently, aroundQ52S3! yields

VU~g! u2S3
5CN

gN/2

~12g21!N) iÞ j~12g21ei(u i2u j )!
. ~24!

These two saddle pointsQ56S3 ~we call them ‘‘standard’’! are the only ones taken into account
in the treatment of the ballistic nonlinear sigma model in Refs. 15 and 17. The problem with this
approximation is that, in the limitg→1, the sum of the two contributions Eq.~23! and ~24!
diverges at least as strongly as 1/(12g)N21, whereas the exact correlation function is bounded.
This phenomenon was attributed to theN21 ‘‘unphysical’’ zero modes appearing at each saddle
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point ~as opposed to the single ‘‘ergodic’’ zero mode( jZj j !. More generally, these contributions
become singular each timeU andgU happen to have common eigenvalues.

We will argue below that this problem with zero modes is actually resolved by taking into
accountfurther saddle points of the effective action.

A. Weyl character formula

To identify all saddle points, we return to the expression~20! of the integrand. We still study
the case whereU5D is diagonal, and we writeGD[diag(gD,D).

Let z be a complexN3N matrix. The pointQg of MN is a saddle point of the integrand iff
the Taylor expansion of̂zuR(g21GDg)uz& aroundz50 contains no term linear inz andz†. ~Note
that this statement is independent of the choice of representativeg for Qg .! Moreover, we do not
want the integrand to vanish atz50. If we decompose the unitary matrix asg21GDg5(c

a
d
b), these

conditions read

b5c50, Det~d!Þ0. ~25!

This means that the matrixg21GDg @for g5eix/NPU(1)# belongs to the subgroupHN of U(2N),
which in turn allowsg to be written as the product of apermutation matrixgs with some element
hPHN . By gs we mean the unitary matrix (gs) i j 5d i ,s( j ) , where s is a permutation of
$1,...,2N%. To each permutations there corresponds a single pointQs5gsS3gs

21. Moreover,
two permutationss, s8 lead to the same point ifs5s8t wheret permutes indices separately
inside$1,...,N% and$N11,...,2N%; this property defines a partition of the symmetric groupS2N

into (N
2N) equivalence classes, each one corresponding to a saddle point of the integrand.

These classes are in one-to-one correspondence with the setsS5s($1,...,N%), so we can
write Qs5QS . QS is then the diagonal matrix with entries11 at the positionsj PS, and21 at
the positions j PS̄ ~the complement ofS in $1,...,2N%). We partition the setS into S1

5Sù$1,...,N% and S̃25Sù$N11,...,2N%. In the following we will also use the setS25$ j

2Nu j PS̃2%, and the setsS̄1 andS̄2 which are the complements in$1,...,N% of S1, resp.S2 . The
point QS corresponds to the following~coherent! state inF:

uS&5
def

R~gs!u0&56 )
i PS̄1

f 1 i
† )

j PS2

f 2 j
† u0&. ~26!

The matrix gs admits a Gaussian decomposition~16! iff s is in the trivial class, i.e.,S
5$1,...,N%, which explains why only the perturbative saddle pointQ5S3 could be exhibited
from theZ-coordinates.

We now compute the leading-order contribution from each saddle pointQS . In the vicinity of
QS the integrand in~20! takes the values

^zuR~gs
21GDgs!uz&/^zuz&,

where the entries of the matrixz are ‘‘small’’ ~z defines a local coordinate system nearQS!. We
partition the diagonal matrixgs

21GDgs into two halves:gs
21GDgs5diag(D1,D2). The above inte-

grand then reads

Det~D !3
Det~11z†D1zD2

21!

Det~11z†z!
.

Expanding to quadratic order and integrating overz,z†, we obtain from the saddle pointQS a
contribution similar to~23!:
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VD~g! uQS
5CNg2N/2 )

i PS̄1
j PS2

gei(u i2u j ) )
i PS1

j PS̄2

~12gei(u i2u j )!21 )
i PS̄1
j PS2

~12g21e2 i(u i2u j )!21

3 )
i PS1

j PS̄1

~12ei(u i2u j )!21 )
i PS̄2
j PS2

~12e2 i(u i2u j )!21. ~27!

Note that the product contains a factor, (12g)2N12r , with r 5](S1ùS2). The most singular case
r 50 arises forS25S̄1 , i.e., saddle points of the type) i PS̄1

f 1 i
† f 2 i

† u0&.
In the general caseU5VDV21, the saddle points are the pointsQV,S5VQSVÀ1, and they

lead to the same contributions~cf. the covariance of the action and the measuredQ!. The two
standard saddle pointsQ56S3 are the only ones unaffected by theseV-rotations.

It is illuminating to present the result of the approximation~27! in an alternative fashion. For
that purpose, we denote the nonzero elements of the diagonal matrixGD by eifn (n51,...,2N).
The sum of contributions~27! can then be rewritten in the form

VD~g!5CNg2N/2(
S

)mPS̄1
)nPS̃2

ei(fm2fn)

)mPS)nPS̄~12ei(fm2fn)!
. ~28!

Save for the prefactorCN , the expression~28! agrees with the result that follows from theWeyl
character formula26 for the trace ofR(GD) over F. In general, this formula expresses the char-
acter of an element of U(2N) @more generally, GL(2N,C)# in some representationR as a sum over
all permutationssPS2N @this being the so-called Weyl group of U(2N)#. In our case, the terms
from the (2N)! elements ofS2N may be grouped into (N

2N) classes, according to the equivalence
relation described above. Since Weyl’s formula is an exact result, the expression~28! remains
finite in the limit g→1, which means that the singularities 1/(12g)N22r of the various terms
cancel each other. The complete sum over saddle-point contributions thus solves the problem of
‘‘unphysical zero modes,’’ i.e., the divergence problem of the two standard saddle points.

The mathematical reason behind the ‘‘almost exactness’’ of the leading-order saddle-point
expansion is as follows. The action ofR(g) on coherent statesuZ& may be interpreted as the
equivariant action ofg on the space of holomorphic sections of a certain complex line bundleLR

overMN .27 This equivariant action can be extended to the~infinite-dimensional! space of square-
integrable differential forms of degree (0,p) on the bundle. On the enlarged space, the character
becomes a~super!trace, which can still be written as an integral overMN . Owing to anN52
supersymmetry, the integrand may be continuously deformed without changing the value of the
integral. In one limit of the deformation, one gets TrR(g); in the other, the integrandlocalizesat
the fixed points ofg on MN , yielding Gaussian integrals around these points.

It turns out that these fixed points coincide with ourQV,S , and their~Gaussian! contributions
are equal to~27!, save for the prefactorCN . As a result, the leading-order saddle-point approxi-
mation ~for our nonlocalized integrand! delivers the correct answer~omitting the prefactor!. In
Sec. IV D, we investigate the higher-order terms of the expansion atQ5S3 up to two loops: we
find that these terms only renormalize the prefactorCN , without affecting the U- or
g-dependence. We speculate that the~adequately resummed! full series yields the exact answer,
including the correct normalization.

To achieve agreement with the Weyl character formula, it was crucial to regard the denomi-
nator Det(11Z†Z)22N as part of the measure~as opposed to lifting it into the action!. Indeed, in
order for the mechanism of equivariant localization to take effect, the integration measure must be
U(2N)-invariant—a property not enjoyed by the flat measure) i , jd

2Zi j without the factor
Det(11Z†Z)22N.
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IV. WHY DO WE NEED AVERAGING?

While the Weyl character formula forVU(g) constitutes an exact result, it is of no use—at
least not as it stands—towards our goal of proving universality of the correlation function. This
formula relies on the knowledge of the eigenphases eiu i of U, which are not givena priori. It does
not exhibit the semiclassical features of the quantum map at all. On the contrary, it is a ‘‘purely
quantum’’ decomposition of the correlation function, a complicated reordering of the Fourier
decomposition~6!.

As was explained in the Introduction, it is not conceivable in general that a universal result for
VU can be obtained without doing some kind of averaging over the matrixU. Given the results of
the previous section, one might try to perform the averaging term by term in the Weyl decompo-
sition, hoping that most of the terms might average to zero. Such a hope is quickly discouraged by
a look at the expression~23!: aside from having anNth-order singularity atg51, whose degree
increases each time somegei(u i2u j ) crosses unity, this contribution toVU(g) is strictly positivefor
real g,1. We know that the singularities are artifacts of the Weyl decomposition, as the correla-
tion function VU(g) itself is uniformly bounded wrtU and g. Unfortunately, because of the
positivity of ~23! the singularities can only be removed by reorganizing the entire sum of contri-
butions, not by averaging individual terms.

For this reason, we will adopt a different strategy: we first perform the dPN(U) average on the
integrandof the coherent-state integral, obtaining a new effective action

e2Sav(g,Q)5
def

^e2S(g,U,Q)&PN
. ~29!

We then estimate the resultingQ-integral by performing a saddle-point approximation on the
actionSav(Q).20

A priori, this approximation is no more justified than the one in the previous section, asSav is
preceded by no large parameter either. The absence of a large parameter also implies that averag-
ing and making the saddle-point approximation are noncommuting operations. Therefore, the
saddle-point expansion ofSav will yield qualitatively different results from the direct expansion for
S(g,U,Q). We explained above that averaging the Weyl character formula is hopeless for our
aims. The other way around~i.e., performing the expansion after averaging the action! will prove
more interesting.

A. Where are the critical points of Sav?

For any averaging measure dPN , the two pointsQ56S3 remain saddle points ofSav(g,Q).
In the vicinity of S3 , the integrand expands as

K Det~11gZ†UZU21!

Det~11Z†Z! L ' exp Tr~^gZ†AdU•Z&2Z†Z!5e2Tr Z†(I2g^AdU&)Z,

where AdU•Z5
def

UZU21 is the adjoint action ofU on Z. The approximation is valid forZ small.
For larger values ofZ, one should add higher cumulants to the right-hand side. However, for the
time being we stick to the purely quadratic approximation, and carry out the Gaussian integral to
obtain

^VU~g!& uS3
5CNg2N/2Det~I2g^AdU&!21. ~30!

When the averaging is absent~that is, dPN is a Diracd-measure atU!, we recover the contribution
~23!. The saddle pointQ52S3 yields the same result, withg→g21. On settingg5eix/N, the
sum of contributions becomes

^VU~eix/N!& uS3ø2S3
52CNRS e2 ix/2

Det~I2eix/N^AdU&! D . ~31!
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In the next section, we examine the possible occurrence of further saddle points ofSav.

1. Searching for other saddle points

In Sec. III A we located the saddle points of the functionQ°^Z(Q)uR(GU)uZ(Q)&, using the
action of the group U(2N) on the coherent statesuZ&. This function may be interpreted as the
Husimi function ~or Q-symbol! of the operatorR(GU) acting on F, and we denote it by
HR(GU)(Q). By the same procedure we can obtain the saddle points ofHR(g)(Q) for any nonde-
generate matrixgPU(2N); in that case, the saddle pointsQcrit are given in general by finite
matricesZcrit andZcrit

† , which are solutions of the saddle-point equations

]

]Zi j
HR(g)~Z,Z†!505

]

]Z̄i j

HR(g)~Z,Z†! ~ i , j 51,...,N!. ~32!

It is useful to extendHR(g) to a function of two independent complex matricesZ,Z* ~that makes
2N2 complex variables!. The saddle-point equations pose 2N2 constraints on the degrees of
freedomZ and Z* , which yields isolated solutions (Zi ,Zi* ), provided that the constraints are
independent of each other.

The reality of these solutions~i.e., Zi* 5(Zi)
†! is due to a symmetry of the operatorR(g),

which is not conserved if we replaceR(g) by any operatorR on F. For instance, if the represen-
tation R is extended to matricesGPGL(2N,C), one can show that the saddle points of
HR(G)(Z,Z* ) are real iff G is a normal matrix~i.e., GG†5G†G). We are presently unable to
determine the conditions for the saddle points to be real for the most generalR. In any case, the
saddle points will be real ifR is a Hermitian operator. The Husimi function is then real, and Morse
theory applies to it. By Morse’s theorem,28 the number of saddle points~which we assume to be
isolated! is at least the sum of all Betti numbers ofMN , which is (N

2N).29 This is exactly the
number of saddle points we found forHR(X)(Q) whenX is a 2N32N Hermitian matrix, so this
function is called aperfect Morse functionfor MN . X can be joined togPU(2N) by a continuous
path inside the set of nondegenerate normal matrices: this explains whyHR(GU) , although a
complex function, still has (N

2N) real saddle points.
Unlike reality, the property that the solutions of~32! are isolated points is robust; (Zi ,Zi* ) are

the common zeros of 2N2 polynomials inZ andZ* , so they arestablewrt perturbations of the
coefficients, as long as the equations do not become degenerate. In Sec. III A the saddle points of
HR(GU)(Q) were calledQV,S . We now switch to such complex coordinatesz that a saddle point
QV,S is situated atz505z†, and perturbR(GU) in GL(F) to R5R(GU)1e dR. Then for e
small,HR(z,z†) will have an isolated saddle point at (ze ,ze* ), where bothze andze* are of order
e. Even if it is not real, this saddle point will contribute to the integral overMN : starting from real
coordinatesRz i j ,Iz i j , we can locally deform the contour so as to reach the point

~Rz i j !
crit5~ze,i j 1ze, j i* !/2, ~Iz i j !

crit5~ze,i j 2ze, j i* !/2i,

and we can compute the saddle-point expansion of*HR(Rz,Iz) around it.
The averaged integrands we want to consider are all of the typeHR(Q), where

R5E
U(N)

dPN~V!
1

DetV
R~GV!,

and dPN(V) is a normalized measure on U(N). If this measure is very strongly peaked near a
matrix UN , the resulting operator will be a perturbation ofR(GUN)/DetUN , so the above stability
arguments apply: the saddle points are then isolated points near the unperturbed ones, and they are
‘‘almost real’’ and hence will lie on the integration contour after a slight contour deformation.

For less concentrated measures dPN(V), the structure of the saddle points can change. In Sec.
V we exhibit an averaging scheme for which the saddle points are real but not isolated: they form
submanifolds ofMN ; this is also the case forHR(g) if g is degenerate. We do not have a good
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estimate of the typical ‘‘width’’ of the measure dPN(V) above which saddle points can coalesce,
spread over higher-dimensional sets, or cease to contribute to the integral~for instance, when they
depart too far away from reality!.

In general, we are unable to explicitly locate these extra saddle points, even for the relatively
narrow averages described in Secs. IV C and IV F; consequently, we cannot do better than stick to
the approximation~31! to describe the correlation function. The remaining task then is to inves-
tigate the spectrum of the operator^AdU&, which depends onU and on dPN .

B. Common spectral features of ŠAdU‹

The spectrum of̂ AdU& has a few features that are independent of the averaging scheme.
Before averaging, the eigenvalue unity occurs in AdU with multiplicity N, corresponding to the
N-dimensional space spanned by theU-eigenstate projectorsuc j&^c j u ( j 51,...,N), and the re-
maining N22N eigenvalues lie on the unit circle. After averaging, only the uniform modeIN

5( j uc j&^c j u is left with eigenvalue at unity, while all other eigenvalues have moved inside the
unit disk. As a result, the sum of the contributions~31! stays finite in the limitg→1. Averaging
thus removes the ‘‘unphysical zero mode’’ problem associated with the two standard saddle points
in Sec. III.

More precisely, the large-N behavior of^VU(eix/N)& u6S3
for finite x mostly depends on the

positions of the eigenvalues of^AdU& closest to unity. Within the approximation~31!, these
eigenvalues arethe relevant dynamical dataof the correlation function.

C. Semiclassical averaging

In Ref. 20, a semiclassical averaging scheme around a quantized mapUf,N was proposed as
a promising candidate to obtain universal spectral statistics, differentiating between integrability
versus chaotic behavior of the classical mapf. One chooses a finite set of Hamiltonian functions
H j , corresponding to Hamiltonian vector fieldsJH j

( j 51,...,r ), on the classical phase space.
These Hamiltonians are quantized on each of the quantum Hilbert spacesHN , yielding operators

$Ĥ j%, which are represented by HermitianN3N matrices wrt an orthonormal basis ofHN . An
ensemble average is then introduced by

~1! composingUf,N with the operator exp(2i( j t j Ĥ j /\), where the ‘‘times’’t j are real numbers;
~2! averaging over the parameterst j in a window around the origin of widthe using, for instance,

the Gaussian weight (e2p)2r /2e2( j t j
2/e2

.

The widthe is taken to be\-dependent:e;\a;N2a for some 1.a.0, so that the probability
measure for the classical maps exp((jtjJHj

)+f shrinks to a single point,f, in the classical limit
N→`. The set of Hamiltonians$H j% is chosen once and for all, and is independent ofN and
the mapf. The only constraint on this set is that the second-order differential operator2D
5( jJH j

2 must beelliptic.20

As explained in the Introduction, this averaging procedure is introduced in order to suppress
the nongeneric spectral statistics of quantum chaotic systems with arithmetic symmetries. In this
respect we must mention the results obtained in Ref. 10, where the authors show how nonlinear
perturbations of quantum cat maps exhibit generic spectral statistics, as long as one perturbs in
both directions of the two-dimensional phase space; in contradistinction, perturbation in a single
direction may leave one arithmetric symmetry intact, leading to nongeneric quantum spectral
statistics. This need for ‘‘phase-space-isotropy’’ of the perturbations is very similar to our ellip-
ticity requirement:D is elliptic only if the vector fieldsJH j

span the whole tangent space at every
point of phase space.

Some recent articles30,31 have dealt with the spectral analysis of the operator^AdU&semiclas,
and obtained interesting results concerning its largest eigenvalues. For a classically chaotic map,
these were shown to converge~asN→`! to theRuelle–Pollicott resonancesof the corresponding
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Frobenius-Perron operator.32 These resonances are inside the unit circle, which means that
^AdUN&semiclas has afinite gap between unity and the rest of the spectrum, forN→`. The
huge majority of eigenvalues tend to accumulate on the origin~see the discussion at the end of
Sec. V A!.

These properties allow us to estimate the contribution from the two standard saddle points for
the case of a quantum chaotic map. To lowest order in 1/N,

^VUN
~g5eix/N!&semiclasu6S3

'
N→` NCN

Det'~I2^AdU&semiclas!

sin~x/2!

x/2
, ~33!

where Det' means that the determinant is computed after restriction to the traceless matrices, i.e.,
to the subspace orthogonal to the uniform modeIN . Apart from the non-universal prefactor, the
x-dependence agrees with the CUE result~8! in the limit of large matrices.

In the case of an integrable map, the eigenvalues of^AdUN&semiclasbehave differently: some of
them populate more and more densely a few curves which connect the origin to some point on the
unit circle ~including unity!. For this reason, one cannot separate unity in Det(I
2eix/N^AdU&semiclas) from the rest of the spectrum. All we can say is that the approximation~31!
does not yield the CUE formula in that case~in general it does not yield the Poisson answer
either!.

1. Warning

One might be tempted to present formula~33! as a ‘‘physicist’s proof’’ of a weak universality
conjecture for quantum chaotic maps. The reason why it is not a proof is clear:

~i! As was explained in Sec. IV A 1, there certainly exist other saddle points of~29!. The
calculation of their contributions is a difficult task, which we have not yet performed. It is
far from obvious why these saddle points should be less important thanQ56S3 in the
semiclassical averaging scheme.

~ii ! As was emphasized before, there is no large parameter in front of the effective action.
Without such a parameter, the correction terms of the asymptotic expansion around each
saddle point are not small, and their neglect in the formula~33! seems to be unjustified.

The second worry is addressed in the next subsection.

D. Loop expansion

We are now going to investigate those corrections to the formula~33! that result from sys-
tematically expanding around the saddle pointQ5S3 . The computations will be done up to what
is called two-loop order in field-theoretic language.

As a first step, we approximate the integrand by taking the ensemble average inside the
determinant:

^Det~11gZ†AdU•Z!&semiclas'Det~11gZ†^AdU&semiclas•Z!. ~34!

Although e, the ‘‘width’’ of the perturbation, decreases like\a, its effect is strong enough to
completely modify the spectrum of AdU, even in the semiclassical limit. This shows that the
above approximation is not necessarily valid if we just suppose that the matricesZ are bounded
~uniformly wrt N! in the operator norm onHN . Using the expansion

Det~11A!511TrA1(
j 52

N

Tr~` jA!,
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Eq. ~34! will hold as long as the terms forj >2 are small compared to TrA. A sufficient condition

for that is Tr(uAu)!1, whereuAu5
def

AA†A. Upon the replacementA5gZ†AdU•Z, this condition
will be met if

Tr~Z†Z!5 (
i , j 51

N

uZi j u2!1, ~35!

uniformly wrt N. It would be desirable to better control the error in~34! for the larger set of
matricesZ satisfying~N-uniformly! iZiL(HN)<const.

Taking ~34! for granted, we proceed to the computation of higher loops. To simplify the

notation we abbreviateT5
def

g^AdU&semiclas. Next we formally introduce a parameterM ~which will
be reset to unity at the end of the calculation! by making in the integrand the replacement

Det~11Z†TZ!

Det~11Z†Z!
→S Det~11Z†TZ!

Det~11Z†Z! D M

.

A contribution to the perturbative saddle-point expansion is said to be ofn-loop order if it varies
asM 2n relative to the leading-order term. On rescaling the integration variables toz5ZAM and
z†5Z†AM , the 1/M expansion of the integrand looks as follows:

dmN~Z,Z†!
DetM~11Z†TZ!

DetM~11Z†Z!
5CN )

i , j 51

N
d2z i j

pM
e2Trz†(12T)z~11M 21f 11M 22f 21¯ !

where f 1 and f 2 are the one- and two-loop terms, respectively, and are given by

f 15
1

2
Tr~z†z!22

1

2
Tr~z†Tz!222NTrz†z,

f 252
1

3
Tr~z†z!31

1

3
Tr~z†Tz!31

1

8
@Tr~z†z!22Tr~z†Tz!2#2

12N2~Trz†z!21NTr~z†z!22NTr~z†z!~Tr~z†z!22Tr~z†Tz!2!.

The Gaussian integral at leading order just yields the result~30!. Using standard diagrammatic
techniques to do the one-loop integral we find the following expression:

1

2
CNM 2N3NDet~12T!21H 24N(

i j
S 1

12TD
i j ,i j

1(
i jkl

S 1

12TD
i j ,k j

S 1

12TD
kl,i l

2(
i jkl

S T

12TD
i j ,k j

S T

12TD
kl,i l

1(
i jkl

S 1

12TD
i j ,i l

S 1

12TD
kl,k j

2(
i jkl

S T

12TD
i j ,i l

S T

12TD
kl,k j

J .

By the relation (12T)21511T(12T)21 these terms combine to yield the simple answer

CNE
CN3N )

i , j 51

N
d2z i j

pM
e2Trz†(12T)z f 1~z,z†!5CNM 2N3NDet~12T!21~2N3!.

We see that the dependence of the one-loop contribution onT cancels completely, leaving only a
constant,2N3. This cancellation is not accidental but continues to higher loop order. By a lengthy
but straightforward calculation, the complete perturbative result up to two-loop order can be
shown to be
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E
CN3N

dmN~Z,Z†!
DetM~11Z†TZ!

DetM~11Z†Z!

5CNM 2N3NDet~12T!21S 12M 21N31M 22S 1

2
N61

7

12
N42

1

12
N2D1O~M 23! D .

Again, all theT-dependence has disappeared from the loop correction terms. This is true for allM
including the case of interest,M51.

The cancellation does not come as a total surprise. The above perturbation expansion, whose
low-order terms we have computed, is formally identical to the same expansionbeforeaveraging.
The latter is obtained from the former by simply substitutinggAdU for T5g^AdU&semiclas. In the
case before averaging we know from Ref. 27 that an index-theoretic mechanism~sometime called
localization! causes the perturbation expansion to be deformable~by an underlyingN52 super-
symmetry! to a harmonic oscillator problem~or, equivalently, a Gaussian integral! at Z50. The
process of deformation to the Gaussian limit explains why the dependence ongAdU is exhausted
by the leading-order term. It leads to the Weyl character formula, which implies that the contri-
bution to the character fromZ50 ~or Q5S3! is exactlygiven by

E
CN3N

dmN~Z,Z†!
Det~11Z†gAdU•Z!

Det~11Z†Z!
uZ50,all orders5Det~I2gAdU !21,

where the normalization constantCN has now been replaced by unity. The last fact provides the
raison d’être for theN-dependent terms produced by the loop expansion: their role is to cancel,
after proper resummation, the prefactorCN . This property does not depend on the unitarity of
gAdU, so it holds as well after replacing it by its average. Thus, after summing all orders of the
perturbation expansion, we expect that the saddle pointZ50 contributes to the correlation func-
tion as

^VU~g!& uS3 ,all orders5g2N/2 Det~I2g^AdU&!21.

This perturbative result should be used with some care. Although the functionf (Z,Z†;T)
5Det(11Z†TZ)/Det(11Z†Z) is locally well defined, it does not extend to a global smooth
function on the manifoldMN ~in particular, this function is NOT the Husimi function of an
operator onF!. Indeed, settingZ5zG with any invertible matrixG and sendingz→` always
leads to the same pointQ52S3 on MN , regardless of which matrixG we choose, whereas the
limit of f (zG,z̄G†;T) asz→` does depend on the choice ofG. Thus, the functionf (Z,Z†;T) is
not smooth atQ52S3 .

This singularity reflects the fact that the cumulants neglected by our basic approximation~34!
are small~compared to the terms kept! only for small matricesZ @cf. the discussion following Eq.
~34!#. If Z,Z† ~or some matrix elements thereof! are allowed to go to infinity, the approximation
clearly loses its validity. To control the error incurred near the saddle pointQ52S3 , one needs
to switch to another scheme, by first changing coordinatesZ→1/Z andZ†→1/Z† and only after-
wards repeating the above steps. The contribution fromQ52S3 can then be calculated in the
same way as the one forQ5S3 . The treatment of further saddle points remains an open problem.

What makes this procedure unsatisfactory is that we are simultaneously working with several
approximation schemes, each of which is only locally controlled. To localize the integral at the
saddle points in a mathematically rigorous manner, we would need an approximation that is
globally well definedand well controlled. It is not clear whether such an approximation exists,
given the stringent requirement that the integrand should also have the index-theoretic features
that allow localization techniques to be used.
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V. AVERAGING U OVER EIGENBASES

By its definition ~2! as a correlation function of spectral determinants,VU(g) is invariant
under any change of basisU°VUV21, with V an arbitary unitary matrix. In theQ-matrix
formulation, this invariance is reflected by the relationS(g,U,Q)5S(g,VUV21,VQV21). Since
the transformationQ°VQV21 has unit Jacobian, we may absorbV into the integration variable
Q and computeVU(g) by first averaging e2S(g,U,Q) over all rotationsU°VUV21:

e2SVav(g,U,Q)5
def 1

Vol U~N!
E

U(N)
dV exp$2S~g,VUV21,Q!%, ~36!

and then integrating e2SVav overQ. We saw in Sec. III A that if the matrixD5V21UV is diagonal,
then the saddle points ofS(g,U,Q) are situated on the pointsQV,S5VQSV21. Because the
locations of these points explicitlydependon V, we expect that a smoothing mechanism takes
place and the divergences of the individual terms in the Weyl character formula disappear on
averaging overV. In fact, as we will see, the expansion obtained by saddle-point analysis of the
effective actionSVav(g,U,Q) is qualitatively quite different from Weyl’s formula.

A. Analysis around ÁS3

We first describeSVav(g,U,Q) near the two saddle pointsQ56S3 ~cf. Sec. IV A!. The
V-averaged adjoint operator^Ad&V has a rather simple spectrum: unity is a simple eigenvalue
~associated withIN!, and on the remaining (N221)-dimensional space the operator is proportional
to the identity:

^AdU&V5PI1~12PI!
uTrUu221

N221
. ~37!

~PI is the orthogonal projector onIN .! We see that̂AdU&V has a large gap between unity and the
second eigenvalue, and this gap has the maximal degeneracy. Assuming that this degenerate
eigenvalue is small (uTrUu!N), we get the following leading-order contribution:

^VU~eix/N!&VuS3ø2S3
;

2NCN

~12a/N!N2

sin$x~1/22a!%

x
, ~38!

with a5
def

~ uTrUu221!/N. ~39!

Within this approximation, the correlation function depends onU5Uf,N only through the simple
quantity uTrUu2, which can be estimated semiclassically by the Gutzwiller–Tabor trace formula
~1!: typically, a is of orderO(1/N) for a chaotic map, and of orderO(1) for an integrable one.

Notice that, due to the high degeneracy of the second eigenvalue, we do not get in general the
CUE result~8!, although this eigenvalue is far inside the unit circle. This shows that, to obtain the
CUE result ~33!, we not only need a finite gap in the spectrum of^AdU&, but also a fast
accumulation of the eigenvalues to the origin. The precise condition on the eigenvalues is

( j 52
N2

@l j /(12l j )# !N. In the present averaging scheme, this meansa!1.

B. Critical submanifolds

We need to investigate the possible influence of other saddle points ofSVav(g,U,Q); for the
present averaging scheme, we will explicitly describe a critical set, which we believe to be
exhaustive. The effective action possesses the symmetrySVav(Q)5SVav(WQW21) for all W
PU(N). Therefore, the saddle points are grouped into stationarysubmanifolds, each of them
invariant under U(N).
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1. Description of the manifolds

In Appendix A we prove the following statement: for any initial matrixU and anyg, the
action ~36! is stationary at the pointsQ5WQsW21, for all rotationsWPU(N) and any permu-
tation s ~see Sec. III A for the notationss, S5S1øS2 , etc!. Since U(N) is connected, the points

MS5
def

$WQSW21 uWPU(N)% form a connected submanifold ofMN .
Let t be any permutation amongN indices. The setS85(t(S1),t(S2)) is in general different

from S, and we haveQSÞQS8 ; however, QS8PMS , or equivalentlyMS5MS8 . Putting
p5]S2 and r 5](S1ùS2), we find thatMS contains (p

N)( r
p)( r

N2p) different pointsQS8 . The
manifoldsMS are in one-to-one correspondence with the integers (p,r ), and their total number is
(N/211)2 for N even, and (N11)(N13)/4 for N odd ~including the isolated points6S3 in the
count!.

For genericU andgÞ1 @genericity means here that the matrix diag(gU,U) is not degener-
ate#, we conjecture that the submanifoldsM(p,r ) exhaust all the critical points of the action
SVav(g,U,Q).

2. Contributions of the manifolds

The leading-order contribution of each submanifoldMS to the Q-integral is calculated by
separating the tangent space atQS into two parts, one parallel and one transverse toMS . The
integrand in the vicinity ofQS then reads~to quadratic order!

e2SVav(QS)e2HessT(XT)1O(uXTu3),

where HessT is the Hessian ofSVav aroundMS , viewed as a nondegenerate quadratic form on the
transverse part of tangent space~coordinatized byXT!. The exact integral overMS and the
Gaussian integral over the transverse directions yield the contribution

^VU~g!& uMS
5CNg2N/21p

VolMS

ADet~HessT!
e2SVav(g,QS). ~40!

In Appendix B, we explicitly compute the volumes of the submanifoldsMS5M(p,r ) :

VolM(p,r )5
~G~1!¯G~r !!2G~1!¯G~p2r !G~1!¯G~N2p2r !

G~1!¯G~N!
.

For all submanifoldsMSÞ$6S3% ~i.e., 0,p,N), these volumes areN-exponentially small. The
quantities HessT and SVav(QS) depend onU and g; we are unable to compute them in general.
What we know for sure is thatue2SVavu<1, since e2S(g,U,Q) has this property.

For a nondegenerateU andg5eix/N, the Hessian aroundMS will possess a single eigenvalue
that vanishes withx, while all other eigenvalues stay at least of orderO(1). This means that the
contribution fromMS goes like 1/x as x→0. However, the ‘‘particle-hole duality’’ between the
submanifoldsM(p,r ) andM(N2p,r ) cancels this divergence in the sum of their two contributions
~as it does for6S3!.

As a result, we conjecture that each contribution^VU(g)& uMSøMS̄
is x-uniformly,

N-exponentially small compared to that from6S3 for large N, owing to the small volumes of
M(p,r ) . Since the number of critical submanifolds grows likeN2, we deduce that the leading-
order saddle-point expansion for the actionSVav(U,g,Q) can be truncated to~38! for largeN.

C. Averaging over random matrix ensembles

We may go further and average e2S not only over the conjugates of a fixed matrixU, but also
over the spectrum$eiu j%. For instance, we can averageU over all matrices in U(N), with a weight
corresponding to one of the standard random matrix ensembles~Poisson, CUE!. The averaged
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action will be U(N)-rotation invariant, and its saddle points will still lie on the submanifoldsMS .
As a result, the leading-order saddle-point~l.o.s.p.! expansion for such ensemble-averaged actions
can again be truncated to the contribution~38!, upon replacing the coefficienta by its average
^a&ensembleover the ensemble considered.

D. Conclusion: No l.o.s.p. expansion for the V-averaged actions

The contribution~38! depends in a very simple manner on the matrixU, namely only on its
first trace. This is in contradiction with the fact thata priori, all traces up to Tr(UN/2) enter into
VU(g) @cf. Eq. ~14!#. By selecting some particular cases, it becomes obvious that the l.o.s.p.
expansion~38! deviates strongly from the exact correlation function. The most immediate coun-
terexample is the Poisson ensemble, whose correlation function is given in Eq.~8!. For this
ensemble,̂ a&Poisson51, which yields the CUE result~!! when inserted into the formula~38!. We
are hence forced to abandon the l.o.s.p. expansion for theV-averaged actions.

Nevertheless, we hope that this expansion is still meaningful when the averaging overU is
local in U(N), which is the case for the semiclassical average in Sec. IV C~but not for the
V-average!. Hopefully, a local average will still conserve some memory of the ‘‘localization’’
property, which entailed the ‘‘almost exactness’’ of the l.o.s.p. expansion forS(g,U,Q).

In the next section, we will consider a local averaging scheme different from the semi-
classical one. It possesses group-theoretic properties, which will allow us to analyze it from the
character decomposition~14! instead of the coherent-state integral.

VI. ISOTROPIC AVERAGING

Starting from a fixed matrixU, one may define anisotropic averaging aroundU, by com-
posingU with theN3N unitary matrices e2 iH, weighted by exp(2TrH2/4e)dH with small e ~so
that the weight is concentrated at the identity!. Isotropy here means that the measuredH is
U(N)-invariant. Note that this in sharp contrast with the semiclassical averaging of Sec. IV C,
whereH was a linear combination ofr matricesĤ j , with r independent ofN. In the semiclassical
case, the perturbation spanned only ar -dimensional submanifold, whereas in the present case the
perturbation completely fills theN2-dimensionale-ball centered atH50.

One can replace the Gaussian weight by any positive normalized U(N)-invariant function of
H. For our purposes, it is convenient to use theheat kernelon U(N), i.e., the kernel of the
regularizing operator exp~2eD!, whereD is the ~positive! Laplace–Beltrami operator on U(N).
The heat kernel centered onU is defined as follows:

;e.0:2DVKe~V,U !5
]

]e
Ke~V,U !

lim
e→10

Ke~V,U !5dU~V!.

Owing to the compactness of U(N), the densityKe(•,U) for any matrix U converges to the
uniform density on U(N) ase→`. Switchinge from 0 to` therefore realizes a crossover from the
Dirac delta measuredU(•) to the Haar~or CUE! measure. For small values ofe, the kernel
Ke(V,U)5ke(VU21) is concentrated around e2 iH5VU21'1 and is approximately given by the
Gaussian weight introduced above:ke(e

2 iH);exp(2TrH2/4e).
Schur’s lemma ensures thatD is proportional to the identity on each U(N)-irreducible sub-

space ofL2(U(N)). As a consequence, its action on each representation matrixrp(U) of Eq. ~14!
is simply a multiplication by a positive factor, called the quadratic Casimir invariant, which we
denote byrp(D). In formulas,

E
U(N)

dVrp~V!Ke~V,U !5
def

e2eDUrp~U !5e2erp(D)rp~U !.
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The factorrp(D) may be computed from the Young diagram ofrp ; a more direct way is to
expressD in terms of fermionic operators acting on the Fock spaceF:

DuF5 (
i , j 51

N

~ f 1 i
† f 1 j2 f 2 j

† f 2 i !~ f 1 j
† f 1 i2 f 2 i

† f 2 j !5~N11!~F11F2!2~F1
2 1F2

2 !22J↑J↓ .

Applying this to any element of the subspace0F p ~which carriesrp) we find

rp~D!52p~N112p!. ~41!

On employing the decomposition~14!, the heat-kernel averaged correlation function for
g5eix/N takes the form

^VU~g!&e5
def

e2eDUVU~g!5 (
p50

N/2

e22ep(N112p)Trrp~U !
sin@x/2~12 ~2p21!/N!#

sin~x/2N!
. ~42!

The effect of the averaging procedure is to damp the large-p traces, which are difficult to estimate
from the Gutzwiller trace formula. In the above equation thee→` behavior is obvious: all traces
except the trivial one Trr0(U)51 are killed by the exponential, no matter what the matrixU is.
It is actually not necessary to sete to ` to get the CUE correlation. Since the irrepsrp are unitary,
their traces are bounded by

uTrrp~U !u<dimrp5Trrp~I!.

The dimensions of therp’s are given in Eq.~13!; for finite p, they are bounded by dimrp

<N2p. In the limit N,p→` with y5p/N fixed, Stirling’s formula yields

dim~rp5Ny!;~pN!21
f 8~y!

y~12y!
e2N f(y),

where the functionf (y)52y logy2(12y)log(12y) increases monotonically fromf (0)50 to
f (1/2)5 log 2.

For any sequence$UN%NPN , if we tunee ~possibly varying withN! such that

«5
def

Ne@1,

all the terms making a significant contribution to~42! satisfyp!N. Thex-dependence of all these
terms is the same@being given by the CUE correlationx21 sin(x/2)], so the averaged correlation
will also have this dependence. Only the prefactor will depend on the matricesUN explicitly. If e
is increased further to«@ logN, the prefactor itself becomes universal.

These statements hold even in the most general case, when the sequence$UN% is completely
arbitrary. Therefore, to be able to differentiate between integrable and chaotic quantum maps, one
must tune the ‘‘disorder strength’’« to smaller values, so that contributions from the ‘‘high’’ traces
Trrp(UN) start to contribute. To recover the Poisson behavior for integrable maps, one actually
needs contributions to~42! coming from the whole regionp&N/2.

This puts us in a no-win situation. On the one hand, we should tune« to small enough values
so that the high tracesp;Ny (y.0) survive and Poisson behavior stands a chance to emerge. On
the other hand, for a chaotic map we have no control over these high traces~we don’t for an
integrable map either!.

For our purposes, the present averaging scheme is probably ‘‘too algebraic,’’ as opposed to the
semiclassical average presented in Sec. IV C. To motivate this statement in the spirit of Sec. IV C,
let us compare the spectra of the operators^AdU& for the two schemes:
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~i! The spectrum of̂AdU&semiclasqualitativelydepends on the nature of the classical dynamics
~see Sec. IV C!. It has a finite gap for a chaotic map, whereas eigenvalues accumulate near
the unit circle for an integrable one.

~ii ! In the isotropic scheme,^AdU&e is decomposed into the irrepsr0(U) % r1(U). Therefore,
apart from the single eigenvalue unity,^AdU&« has the eigenvalues$e22«ei(u i2u j )%, where
$eiu j% are the eigenvalues ofU; the eigenvalue e22« is (N21)-fold degenerate. This spec-
trum is qualitatively the same for chaotic versus integrable systems.

A. Crossover Poisson-CUE

We now present an application of the above scheme in the area of random matrices. More
precisely, we use the isotropic averaging to build a crossover between the Poisson and CUE
ensembles, and we derive the transitional determinant correlation function that interpolates be-
tween the formulas~8!. This crossover, as well as the method used to compute^VU&, can be
compared to the GOE→GUE crossover studied in Ref. 7.

Our crossover is defined as follows. We start from the Poisson ensemble, then convolute it
with the isotropic~heat kernel! measure of widthe:

^VU~g!&Poisson,e5
defE

U(N)
dPPoisson~U !E

U(N)
dV Ke~V,U !VV~g!.

For e50, this is the Poisson ensemble. In the large-e limit, the second integral converges
U-uniformly to the CUE correlation function, so the output^VU(g)&Poisson,e does, too.

To calculate the correlation function along the crossover, we will use the decomposition~42!
as in the previous section: averaging being a linear operation, we only need to replace the char-
acters Trrp(U) by their Poisson averages@see Eqs.~7! and ~15!#:

^Trrp~U !&Poisson5S N
p D2S N

p21D .

The asymptotics of these traces in the regimep,N→` with y5p/N fixed, again follows easily
from Stirling’s formula:

^Trrp~U !&Poisson;~2pN!21/2
f 8~y!

Ay~12y!
eN f(y). ~43!

The sum over characters therefore approaches the following integral~asN→`):

^VU~eix/N!&Poisson,e;
2N2

A2pN
E

0

1/2

dy
f 8~y!

Ay~12y!

sin~ 1
2 x2yx!

x
eN( f (y)22«y(12y)). ~44!

In the limit N→`, this integral is determined by the saddle points~rather, the maximum! of

f «(y)5
def

f (y)22«y(12y) on @0,1
2 #. Three cases have to be distinguished:

~i!If «,1, the boundary pointy5 1
2 is a maximum off « and is the only critical point on@0,1

2#.
Because of the vanishing of the integrand aty5 1

2, the saddle-point analysis requires some care.
For x of orderO(N0) the result turns out to be independent ofx:

^VU~eix/N!&Poisson,«;2Ne2N«/2~12«!23/2,

which shows that the Poisson result 2N is retrieved in the limit«→0. The correlation functions
starts depending onx on scales of orderx;O(N1/2).
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~ii ! If «.1, the maximum off « is situated at the pointy«P(0,1
2) which solves the transcen-

dental equationf «8(y)50. The correlation function depends onx;O(N0) as

^VU~eix/N!&Poisson,« }
sin@x~ 1

22y«!#

x
. ~45!

The flat correlation function has been replaced by an oscillatory function, with the period of
oscillation being controlled by the ‘‘frequency shift’’y« . When« becomes large, the shift vanishes
asy«;e22«, so the CUE correlation function is retrieved.

~iii ! If «51, the correlation function is ‘‘critical’’~in the sense of a phase transition!, as the two
pointsy5 1

2 andy« coalesce for«→1 to form a degenerate critical point. In this case the correla-
tion function varies on scalesx;O(N1/4).

VII. CONCLUSIONS

In this article we have adapted the NLsM approach introduced in Refs. 15 and 16 to the
framework of quantized maps on a Hilbert space of dimensionN;\21. We focused on the
spectral determinant correlation functionVU(g) instead of the pair correlation function, thereby
obviating the need to introduce supersymmetry; we obtained anexactexpression for the correla-
tion function as an ordinary integral over aN2-dimensional complex manifold. Because the mani-
fold is compact and the integrand uniformly bounded, no regularization needs to be introduced
~unlike in Ref. 15!.

To estimate this integral we expand the integrand around its saddle points, first restricting
ourselves to the leading-order perturbative expansion around each point. Owing to the absence of
a large parameter in front of the effective action, this approximation is uncontrolled, and the
connection between its output and the exact value of the integral seems fortuitous at best.

Yet, for any matrixUPU(N), we find that the result from lowest-order saddle-point expan-
sion of the effective actionS(g,U,Q) coincides with the exact correlation function, up to a global
prefactor:

VU~g! u l.o.s.p. exp.5CN VU~g!exact. ~46!

This remarkable coincidence is linked to a cancellation property of the higher-order terms of the
perturbation expansion, which modify only the prefactor, and is explained by the group-theoretic
structure of the integrand and the Weyl character formula. Unfortunately, the expansion is of no
use for estimating the correlation function of quantized maps in the semiclassical limit.

We argue that a decent semiclassical estimate of the correlation functionVU(g) can only be
reached if one takes an average over a set of unitary matrices in the vicinity ofU. To estimate this
averaged correlation, we first average the integrand e2S(g,U,Q) over U, and then perform the
saddle-point expansion of the output. Because averaging and saddle-point expansion are opera-
tions that do not commute, this procedure yields an expansion different from that of the ‘‘indi-
vidual’’ action. At the same time, averaginga priori breaks the group-theoretic structure, and with
it the exactness~modulo prefactor! of the leading-order saddle-point expansion. Moreover, the
explicit computation of saddle points and their contributions is, in general, a nontrivial task for a
general averaging scheme.

We have been able to locate the complete set of critical points only for a certain type of
average, namely averaging over all bases of Hilbert space. This produces a U(N)-invariant effec-
tive action, the critical points of which are grouped into submanifolds, and are independent of the
matrix U we started from~as long as its spectrum is nondegenerate!. Two of these submanifolds
are isolated points; we conjectured that the contributions from these two ‘‘standard’’ saddle points,
which can be computed explicitly, always dominate the leading-order saddle-point expansion.

The contributions from these two points are unfortunately ‘‘too simple’’ to constitute a good
approximation of the correlation function, except in some exceptional cases, which we do not truly
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understand. If we average overUPU(N) with the Poisson measure, the saddle-point result
strongly differs from the exact one. We are thus led to conclude that the leading-order saddle-point
expansion of rotation-averaged effective actions does not yield a good estimate of the full integral.

What happens in the case of alocal average, i.e., when the weight of the probability measure
is concentrated near the quantized mapUN , is unclear. For one thing, we are only able to exhibit
the two standard saddle points of the averaged action, but there surely exist many more.

In the case of the ‘‘semiclassical’’ averaging scheme, expansion around these saddle points
yields results similar to those obtained in Ref. 15, except that the ‘‘resonances’’ we identify are
eigenvalues of a quantum operator. Yet, these resonances for largeN seem related to the~classical!
Ruelle–Pollicott resonances,30,31 in particular they indicate whether the classical dynamics is
chaotic or integrable.

To connect these resonances with the determinant correlation function on a rigorous footing,
we need two nontrivial assumptions to be fulfilled. First, we must assume that the leading-order
saddle-point expansion of the~local average! Ssemiclas(g,UN ,Q) makes sense, i.e., gives a good
approximation of the exact result; the two-loop calculation around6S3 in Sec. IV D seems to
support this assumption. Second, hindered by our inability to compute the contributions from
further saddle points, we are forced to assume that the full expansion can be truncated to the two
standard saddle points, or at least that this truncation provides a reasonable approximation. We
presently see no way to prove these assumptions.

APPENDIX A: PROOF OF CRITICALITY OF THE SUBMANIFOLDS MS

To prove that theV-averaged integrand e2SVav(g,U,Q) is stationary on the submanifolds
MS,MN , we employ the coherent-state formulation of theQ-integral. The pointQS corresponds
to the stateuS&5R(gs)u0&, and the points in a neighborhood ofQS may be parametrized as
R(gs)uz&, wherez runs through theN3N matrices~with small coefficients! and uz& is the corre-
sponding coherent state. The permutationsPS2N is chosen in such a way as to interchange the

setsS̄1 and S̃25S21N, and to keepS1 and S̃̄25S̄21N fixed.
We write the 2N32N matrix gs

21GUgs in the block form (C
A

D
B), and first compute the value

of the integrand in the vicinity ofQS before averaging:

^zuR~gs
21GUgs!uz&

^zuz&
5Det~D !~11Tr~D21Cz1BD21z†!1O~ uzu2!!.

Then we perform theV-average onU ~recall thatVPU(N) acts onUPU(N) by conjugation:
U°VUV21!, and study its output on the right-hand side of the above equation. To first order in
z andz†, we need the averages^Det(D)&V , ^D21C Det(D)&V and^BD21Det(D)&V . By decom-

posing the sets$1,...,N%5S1øS̄1 and$N11,...,2N%5S̃2ø S̄̃2 , theN3N matricesB,C,D may be
written in block form:

B5S gUS1S̄1 0

0 US2S̄2

D , C5S gUS̄1S1 0

0 US̄2S2

D , D5S gUS̄1S̄1 0

0 US̄2S̄2

D ,

where each entryUss8 is a matrix of size]s3]s8, whose indices take values in the setss,s8.
Thus theV-averaged coefficients of the term linear inz are the following matrix elements:

^Det~US̄1S̄1
!Det~US̄2S̄2

!~U
S̄1S̄1

21
US̄1S1

! ik&V , ^Det~US̄1S̄1
!Det~US̄2S̄2

!~U
S̄2S̄2

21
US̄2S2

! lm&V ,

where we have displayed only the dependence onU ~and omitted theg-dependence!. We now use
the invariance of the Haar measuredV under~left! multiplication by any unitary matrix and any
diagonal unitary matrixd5diag(d1,...,dN) in particular. Under such a left translation, the above
matrix elements acquire extra factorsd i /dk ~resp.d l /dm!. Hence
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^Det~D !~D21C! ik&V5^Det~D !~D21C! ik&Vd i /dk for any d i ,dk .

Sincei PS̄1 andkPS1 ~resp.l PS̄2 andmPS2! are never equal and the ratiod i /dk may take any
value in U(1), weconclude

^Det~D !~D21C! ik&V50.

By the same reasoning, the terms linear inz† vanish afterV-averaging.
We have thus shown that the pointQS on MN is a critical point of theV-averaged action

SVav, Eq. ~36!. By the U(N)-invariance ofSVav, it follows that the whole submanifoldMS is
critical for theV-averaged action, no matter whatU is.

APPENDIX B: VOLUMES OF THE CRITICAL SUBMANIFOLDS

We treat the general case with]S15]S̄25N2p, ]S̄15]S25p, ](S1ùS2)5](S̄1ùS̄2)
5r , and to buildQS we use the same permutations as in the previous appendix.

The manifoldMS is given by the set of states$R(Vgs)u0&uVPU(N)%. These states may be
written ~up to normalization! in the formR(gs)uzV& where the coherent stateuzV& is determined by
the matrix

zV5S VS1S̄1
V

S̄1S̄1

21
0

0 VS2S̄2
V

S̄2S̄2

21 D 5
defS z (1) 0

0 z (2)D ~B1!

according to Eqs.~16! and~17!. The block structure of this matrix derives from the sets (S1 ,S2)
vertically, and (S̄1 ,S̄2) horizontally.

WhenV runs through U(N), the upper-left matrixz (1) takes all possible values inC(N2p)3p.
The matrixz (2) is not independent ofz (1). For a fixedz (1), we need to identify the remaining
degrees of freedom inz (2), which is quite easy to do ifz (1)50, i.e., if V has the structureV
5diag(VS1S1

,VS̄1S̄1
!. The matricesVS2S̄2

andVS̄2S̄2
in this case block decompose as

VS2S̄2
5S V12,12̄ 0

0 V1̄2,1̄2̄
D , VS̄2S̄2

5S V12̄,12̄ 0

0 V1̄2̄,1̄2̄
D

where the index 12 refers to the setS1ùS2 , etc. The degrees of freedom of the lower-right part of

zV are thus two matrices,z (11)5
def

V12,12̄V12̄,12̄

21
PCr 3(N2p2r ), and z (1̄1̄)5

def

V1̄2,1̄2̄V
1̄2̄,1̄2̄

21
PC(p2r )3r .

They are independent of each other, and take all possible values in their respective vector spaces.
Since the subgroup U(N2p)3U(p) of U(N) acts transitively on the submanifoldz (1)50 of
MS , there exists a natural choice of invariant measure on that submanifold. It has the factorized
form

Det~11z (11)†z (11)!N2p)
i , j

d2z i j
(11)/p3Det~11z (1̄1̄)†z (1̄1̄)!p)

i , j
d2z i j

(1̄1̄)/p.

The matrixz (1) parametrizes a coset space U(N)/U(N2p)3U(p), with the corresponding in-
variant measure being Det(11z (1)†z (1))N) i , jd

2z i j
(1)/p. By group invariance arguments, the vol-

ume element ofMS ~normalized so that it agrees with the Riemannian measure inherited from the

Riemannian manifoldMN! is the product of the measures forz (1), z (11), andz (1̄1̄) above. Using
this fact and the result33

I ~m,n!5
defE

Cm3n)i 51

m

)
j 51

n
d2Zi j

p
Det~11Z†Z!2n2m5

G~1!¯G~n! G~1!¯G~m!

G~1!¯G~n1m!
,
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we obtain the volume ofMS :

VolMS5I ~p,N2p!I ~r ,p2r !I ~r ,N2p2r !.

A similar integral yields the normalization factorCN of the measuredmN(Z,Z†) on the full
manifold MN :

1

CN
5E

CN3N )
i , j 51

N
d2Zi j

p
Det~11Z†Z!22N215

G~2!¯G~N11!

G~N12!¯G~2N11!
.
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