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D é r i v é e s
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QUANTUM DECAY RATES IN CHAOTIC SCATTERING

STÉPHANE NONNENMACHER AND MACIEJ ZWORSKI

In this talk we consider a simplified model of chaotic scattering by studying the semi-
classical operator

P0(h) = −h2∆g + V (x) , x ∈ R
2

modified by a complex absorbing potential

P (h) = −h2∆g + V (x) − iW (x) .

Here W ≥ 0 is large outside of the interaction region. We show that, if the corresponding
classical flow is hyperbolic, and if the dimension of the trapped set is small enough, then
there is a gap between the eigenvalues of P (h) and the real axis. In other words, the
quantum decay rate is bounded from below if the classical repeller is sufficiently filamentary.
The proof and also the more natural and invariant result about quantum resonances will
be presented in [14]. The higher dimensional statement also follows from the proof but is
more complicated to present.

More precisely, we work on a Riemannian manifold (X, g) which coincides with (R2, g0),
where g0 is the Euclidean metric outside a compact set, say, B(0, R0) ⊂ R

2. We let V ∈
C∞

c (X; R) be supported in B(0, R0) The complex absorbing barrier is given by W ∈ C∞(R2),
satisfying W ≥ 0, W = 0 in B(0, R0), and W > 1 in B(0, R1), R1 > R0.

The absorbing barrier created by W is a model of infinity since it produces no reflection
in semiclassical propagation. We use the notation

Φt(ρ) = exp(tHp0
)(ρ) , ρ = (x, ξ) ∈ T ∗X ,

where Hp0
is the Hamilton vector field of p0 = |ξ|2g +V (x). The incoming and outgoing sets

are defined as

(1) Γ±
E

def
=

{

ρ ∈ T ∗
B(0,R0)X : p0(ρ) = E , Φt(ρ) 6→ ∞ , t → ∓∞

}

.

The trapped set,

(2) KE
def
= Γ+

E ∩ Γ−
E

is a compact, locally maximal invariant set, contained inside T ∗
B(0,R0)X. We say that the

flow Φt is hyperbolic near KE0
, if for any energy E near E0, Φt has no fixed point on p−1

0 (E),
and for any ρ ∈ KE, the tangent space to p−1

0 (E) at ρ splits into flow, unstable and stable
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subspaces:

i) Tρ(p
−1
0 (E)) = RHp0

(ρ) ⊕ E+
ρ ⊕ E−

ρ , dim E±
ρ = 1 ,

ii) dΦt
ρ(E

±
ρ ) = E±

Φt(ρ) , ∀t ∈ R

iii) ∃ λ > 0 , ‖dΦt
ρ(v)‖ ≤ Ce−λ|t|‖v‖ , for all v ∈ E∓

ρ , ±t ≥ 0.

(3)

The following properties are then satisfied:

iv) KE 3 ρ 7−→ E±
ρ ⊂ Tρ(p

−1
0 (E)) is Hölder-continuous,

v) ρ admits local (un)stable manifolds W±
loc(ρ) tangent to E±

ρ .
(4)

If periodic orbits are dense in KE, then the flow is said to be Axiom A on KE [3].

Classes of potentials satisfying this assumption at a range of non-zero energies are given
in [11] and [17, Appendix c]. The dimension of the trapped set appears in the fractal upper
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Figure 1. A three bump potential exhibiting hyperbolic dynamics for a
range of energies. When the intersections of the graph of V with the plane
V = E have radii a, and the centers of the bumps are at equilateral distance
R, dH in (6) is approximately log 2/ log(R/a), R � a.

bounds on the number of resonances. We recall the following result [18] (see [17] for the
first result of this type):

Theorem 1. Suppose that the flow of Hp0
is hyperbolic near KE. Then

(5) | Spec(P (h)) ∩ D(E, Ch)| = O(h−dH ) ,

where

(6) 2dH + 1 = Hausdorff dimension of KE.
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We note that using [15, Theorem 4.1], and in dimension n = 2, we strengthened the
formulation of the result in [18] by replacing upper Minkowski (or box) dimension by the
Hausdorff dimension.

In this talk we address a different question which has been present in the physics literature
at least since the seminal paper by Gaspard and Rice [5]. In the same setting of scattering
by several convex obstacles, it has also been considered around the same time by Ikawa [6]
(see also the careful analysis by Burq in [4]).

Question: What properties of the flow Φt, or of KE alone, imply the exis-
tence of a gap γ > 0 such that, for h > 0 sufficiently small,

z ∈ Spec(P (h)) , Re z ∼ E =⇒ Im z < −γh ?

In other words, what dynamical conditions guarantee a lower bound on the
quantum decay rate?

Numerical investigations in different settings of semiclassical three bump potentials [8, 9]
three disc scattering [5, 10, 20], Cantor-like Julia sets for z 7→ z2 + c, c < −2 [19], and
quantum maps [13, 16], all indicate that a trapped set KE of low dimension (a “filamentary”
fractal set) guarantees the existence of a resonance gap γ > 0.
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Figure 2. A sample of numerical results of [8]: the plot shows resonances
for the potential of Fig. 1 (h = 0.017). For the energies inside the box, the
fractal dimension is approximately dH ' 0.288 < 0.5 (see [8, Table 2]), and
resonances are separated from the real axis in agreement with Theorem 2.
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We remark that some of these works also confirm the fractal Weyl law of Theorem
1 which, unlike Theorem 2 below, was first conjectured in the mathematical works on
counting resonances.

Here we provide the following

Theorem 2. Suppose that the dimension dH defined in (6) satisfies

(7) dH <
1

2
.

Then there exists δ, γ > 0, and hδ,γ > 0 such that

(8) 0 < h < hδ,γ =⇒ Spec(P (h)) ∩ ([E0 − δ, E0 + δ] − i[0, hγ]) = ∅ .

The statement of the theorem can be made more precise using a more sophisticated
dynamical object, namely the topological pressure of the flow on KE. By taking δ small
enough in (8), we can take any γ satisfying

(9) 0 < γ < min
|E0−E|≤δ

(−PE(1/2)) , PE(s) = pressure of the flow on KE .

The a priori existence of a resonance gap depends on the sign of PE(1/2). For n = 2,
one has the equivalence dH < 1/2 ⇐⇒ PE(1/2) < 0, which explains the statement of
our theorem in terms of the Hausdorff dimension. The connection between PE(1/2) and
a resonance gap also holds in dimension n ≥ 3; however, for n ≥ 3 there is generally no
simple link between PE(1/2) and the value of dH (except when the flow is “conformal” in
the unstable, resp. stable directions [15]).

Since the topological pressure will play a crucial rôle, we recall its definition in our context
(see [7, Definition 20.2.1] or [15, Appendix A]). If d is a Riemannian distance function on
p−1

0 (E), we say that a set E ⊂ KE is (ε, t)-separated if for ρ1, ρ2 ∈ E , ρ1 6= ρ2, we have
d(Φt′(ρ1), Φ

t′(ρ2)) > ε for some 0 ≤ t′ ≤ t. Obviously, such a set must be finite.

We first define the unstable Jacobian:

(10) exp λ+
t (ρ)

def
= det

(

dΦt(ρ)|E+
ρ

)

,

and then define, for any s ∈ R,

(11) Zt(ε, s)
def
= sup

E

∑

ρ∈E

exp
(

−s λ+
t (ρ)

)

,

where the supremum is taken over all (ε, t)-separated sets. From there the pressure of the
flow Φt on KE is defined as

(12) ∀s ∈ R, PE(s)
def
= lim

ε→0
lim sup

t→∞

1

t
log Zt(ε, s) .

The proof of Theorem 2 is based on the ideas developed in the recent work of Anan-
tharaman and the first author [1, 2] on semiclassical defect measures for eigenfuctions of the
Laplacian on manifolds with Anosov geodesic flows. Although we do not use semiclassical
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defect measures in the proof of Theorem 2, the following simple result provides a general
connection:

Theorem 3. Consider a sequence of values (hk → 0) and corresponding eigenstates

P (hk)u(hk) = z(hk)u(hk) , ‖u(hk)‖L2 = 1 ,

satisfying Re z(hk) = E + o(1) and Im z(h) ≥ −Ch. Suppose that a semiclassical defect

measure dµ on T ∗X is associated to the sequence (u(hk)):

〈aw(x, hkD)u(hk), u(hk)〉 −→

∫

T ∗X

a(ρ) dµ(ρ) , k → ∞ .

Then

(13) supp µ ∩ T ∗
B(0,R0)X ⊂ Γ+

E ,

and there exists λ > 0 such that

(14) lim
k→∞

Im z(hk)/hk = −λ/2 , and LHp0
µ = λµ in T ∗

B(0,R0)X .

Connecting this theorem with Theorem 2, the semiclassical defect measures associated
with sequences of resonant states have decay rates λ bounded from below by 2γ if the
dimension of the trapped set is small enough.

Finally, we comment on the optimality of Theorem 2. Except in some very special cases
(for instance when KE consists of one hyperbolic orbit) we do not expect the estimate on
the size of the resonance free region in terms of the pressure to be optimal. In fact, in
the analogous case of scattering on convex co-compact hyperbolic surfaces the results of
Naud (see [12] and references given there) show that the resonance free strip is larger at
high energies than the strip predicted by the pressure. That relies on delicate zeta function
analysis following the work of Dolgopyat: at zero energy there exists a Patterson-Sullivan
resonance with the imaginary part (width) given by the pressure but all other resonances
have more negative imaginary parts.
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[17] J. Sjöstrand, Geometric bounds on the density of resonances for semiclassical problems, Duke Math.

J., 60(1990), 1–57
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