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We prove resolvent estimates for semiclassical operators such as −h2� + V (x) in scatter-

ing situations. Provided the set of trapped classical trajectories supports a chaotic flow

and is sufficiently filamentary, the analytic continuation of the resolvent is bounded by

h−M in a strip whose width is determined by a certain topological pressure associated

with the classical flow. This polynomial estimate has applications to local smoothing in

Schrödinger propagation and to energy decay of solutions to wave equations.

1 Statement of Results

In this short note we prove a resolvent estimate in the pole-free strip for operators whose

classical Hamiltonian flows are hyperbolic on the sets of trapped trajectories (trapped

sets), and the latter are assumed to be sufficiently filamentary—see (1.4) for the precise

condition. The proof is based on the arguments of [21] and we refer the reader to Section

3 of that article for the preliminary material and assumptions on the operator.

The polynomial estimate on the resolvent in the pole-free strip below the real axis

(1.5) provides a direct proof of the estimate on the real axis (1.6), and that estimate is

only logarithmically weaker than the similar bound in the nontrapping case (that is, the
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case where all classical trajectories escape to infinity). Through an argument going back

to Kato, and more recently to Burq, that estimate is crucial for obtaining local smoothing

and Strichartz estimates for the Schrödinger equation. These in turn are important in the

investigation of nonlinear waves in nonhomogeneous trapping media. Also, as has been

known since the work of Lax–Phillips, the estimate in the complex domain is useful for

obtaining exponential decay of solutions to wave equations (see the paragraph following

(1.6) for some references to recent literature).

An example of an operator to which our methods apply is given by the semiclas-

sical Schrödinger operator

Pu(x) = P (h)u(x) = −h2 1√
ḡ

n∑
i, j=1

∂xj (
√

ḡgij∂xi u(x)) + V (x), x ∈ R
n, (1.1)

G(x)
def= (gij(x))i, j is a symmetric positive definite matrix representing a (possibly nontriv-

ial) metric on R
n, ḡ

def= 1/ det G(x), and V (x) is a potential function. We assume that the

geometry and the potential are “trivial” outside a bounded region:

gij(x) = δi j, V (x) = −1, when |x| > R.

This operator is hence associated with a short-range scattering situation. We
refer to [21, Section 3.2] for the complete set of assumptions that allow long-range per-

turbations, at the expense of some analyticity assumptions standard for the definition

of resonances; see [25] and references therein. We note that for V ≡ −1, P (h)u = 0 is the

Helmholtz equation for a Laplace–Beltrami operator, with h = 1/λ, playing the rôle of

wavelength.

Such operators have a purely continuous spectrum near the origin, and their

truncated resolvent χ (P (h) − z)−1χ (χ ∈ C ∞
c (Rn)) can be meromorphically continued from

Im z > 0 to Im z < 0, with poles of finite multiplicity called resonances. In the semiclassi-

cal limit h � 1, the distribution of resonances depends on the properties of the classical

flow generated by the Hamiltonian

p(x, ξ ) =
n∑

i, j=1

gij(x)ξiξ j + V (x),

that is the flow (x, ξ ) �→ exp t Hp(x, ξ ) associated with the Hamiltonian vector field

Hp(x, ξ )
def=

n∑
k=1

∂ξk p∂xk − ∂xk p∂ξk .

(when V ≡ −1 the Hamiltonian flow corresponds to the geodesic flow on S∗
R

n.) More

precisely, the properties of the resolvent χ (P (h) − z)−1χ near z = 0 are influenced by
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the nature of flow on the energy shell {p(x, ξ ) = 0}. A lot of attention has been given to

nontrapping flows, that is flows for which the trapped set

K
def= {(x, ξ ) : p(x, ξ ) = 0, exp t Hp(x, ξ ) �→ ∞, t → ±∞} (1.2)

is empty. In that case, for δ > 0 small enough and any C > 0, the resolvent is pole free in

a strip [−δ, δ] − i[0, C h], and satisfies the bound [17, 18]:

‖χ (P (h) − z)−1χ‖L2→L2 = O(h−1), z ∈ [−δ, δ] − i[0, C h].

On the opposite, there exist cases of “strong trapping” for which the trapped set has

a positive volume; resonances can then be exponentially close to the real axis, and the

norm of the resolvent be of order eC/h for z ∈ [−δ, δ] [3, 6, 28].

In this note we are considering an intermediate situation, namely, the case where

the trapped set (1.2) is a (locally maximal) hyperbolic set. This means that K is a compact,

flow-invariant set with no fixed point, such that at any point ρ ∈ K the tangent space

splits into the neutral (RHp(ρ)), stable (E−
ρ ), and unstable (E+

ρ ) directions:

Tρ p−1(0) = RHp(ρ) ⊕ E−
ρ ⊕ E+

ρ .

This decomposition is preserved through the flow. The (un)stable directions are charac-

terized by the following properties:

∃λ > 0, ‖d exp t Hp(ρ)v‖ ≤ C e−λ|t |‖v‖, ∀v ∈ E∓
ρ , ±t > 0.

Such trapped sets are easy to construct. The simplest case consists in a single unstable

periodic orbit, but we will rather consider the more general case where K is a fractal

set supporting a chaotic flow; such a set contains countably many periodic orbits, which

are dense on the set of nonwandering points NW(K) ⊂ K [15].

Our results will depend on the “thickness” of the trapped set, formulated in terms

of a certain dynamical object, the topological pressure. We refer to [21, Section 3.3] and

texts on dynamical systems [15, 29] for the general definition of the pressure, recalling

only a definition valid in the present case. Let f ∈ C 0(K). Then the pressure of f with

respect to the Hamiltonian flow on K is given by

P( f )
def= lim

T→∞
1

T
log

∑
Tγ <T

exp
∫ Tγ

0
(exp t Hp)∗ f (ργ ) dt , (1.3)

where the sum runs over all periodic orbits γ of periods Tγ ≤ T , and ργ is a point on

the orbit γ . The function f we will be using is a multiple of the (infinitesimal) unstable



S. Nonnenmacher and M. Zworski 4

Jacobian of the flow on K:

ϕ+(ρ)
def= d

dt
det(d exp t Hp � E+

ρ )|t=0, ρ ∈ K.

We can now formulate our main result:

Theorem. Suppose that P (h) satisfies (1.1) or the more general assumptions of [21,

Section 3.2]. Suppose also that the Hamiltonian flow is hyperbolic on the trapped set K,

and that the topological pressure

P(−ϕ+/2) < 0, ϕ+ the unstable Jacobian. (1.4)

Then for any χ ∈ C∞
c (Rn) and ε > 0, there exist δ(ε) > 0 and h(ε) > 0 such that the cutoff

resolvent χ (P (h) − z)−1χ , Im z > 0, continues analytically to the strip

�ε (h)
def= {z : Im z > h(P(−ϕ+/2) + ε), | Re z| < δ(ε)} , 0 < h < h(ε).

For z ∈ �ε (h) ∩ {Im z ≤ 0}, this resolvent is polynomially bounded in h:

‖χ (P (h) − z)−1χ‖L2→L2 ≤ C (ε, χ ) h−1+cE Im z/h log(1/h),

cE
def= n

2|P (−ϕ+/2) + ε/2| . (1.5)

For any s ∈ [0, 1], the pressure P(−sϕ+) measures relative strengths of the com-

plexity of the flow on K (i.e., the number of periodic orbits), and the instability of the

trajectories (through the Jacobian). For s = 0, P(0) only measures the complexity, it is

the topological entropy of the flow, which is generally positive. On the opposite, P(−ϕ+)

is negative, it represents the “classical decay rate” of the flow. The intermediate value

P(−ϕ+/2) can take either sign, depending on the “thickness” of K. In dimension n = 2 the

condition (1.4) is equivalent to the statement that the Hausdorff dimension of K ⊂ p−1(0)

is less than 2. Since the energy surface p−1(0) has dimension 3 and the minimal dimen-

sion of a nonempty K is 1, the condition means that we are less than “half-way” and K

is filamentary. Trapped sets with dimensions greater than 2 are referred to as bulky.

The first part of the theorem is the main result of [21], see Theorem 3 there. Here

we use the techniques developed in that article to prove (1.5). For the Laplacian outside

several convex obstacles on R
n (satisfying a condition guaranteeing strict hyperbolicity

of the flow) with Dirichlet or Neumann boundary condition, the theorem was proved by

Ikawa [14], with the pressure being only implicit in the statement that gave an explicit

condition on distances and sizes of the obstacles. For more recent developments in that

setting, see [2, 19, 22].



5 Semiclassical Resolvent Estimates

In particular, for z on the real axis, the bound (1.5) gives

‖χ (P (h) − z)−1χ‖L2→L2 ≤ C
log (1/h)

h
, z ∈ [−δ(ε), δ(ε)], 0 < h < h(ε). (1.6)

This result was already given in [21, Theorem 5] with a less direct proof. It has been

generalized to a larger class of manifolds in [9] and (1.5) provides no new insight in that

setting.

One of the applications of (1.6) in the case of the Laplacian is a local smoothing

with a minimal loss [7] in the Schrödinger evolution (see [4] for the original application

in the setting of obstacle scattering):

∀ T > 0, ∀ ε > 0, ∃ C = C (T , ε),
∫ T

0
‖χe(−it�g)u‖2

H1/2−ε dt ≤ C ‖u‖2
L2 .

One can also deduce from (1.6) a Strichartz estimate [5, 7] useful to prove the existence

of solutions for some related semilinear Schrödinger equations.

In the case of the Laplacian (V ≡ −1), the estimate in a strip (1.5) has important

consequences regarding the energy decay for the wave equation—see [4, 8, 12] and ref-

erences given therein. In the odd dimension n ≥ 3, it implies that the local energy of

the waves decays exponentially in time. The same type of energy decay (also involving a

pressure condition) has been recently obtained by Schenck in the setting of the damped

wave equation on a compact manifold of negative curvature [24].

To prove (1.5) we use several methods and intermediate results from [21]. Using

estimates from [21, Section 7], we show in Section 3 how to obtain a good parametrix

for the complex-scaled operator, which leads to an estimate for the resolvent. As was

pointed out to us by Burq, the construction of the parametrix for the outgoing resolvent

was the, somewhat implicit, key step in the work of Ikawa [14] on the resonance gap for

several convex obstacle. That insight led us to reexamine the consequences of [21].

We follow the notation of [21] with precise references given as we go along. For

the needed aspects of semiclassical microlocal analysis [21, Section 3] and the references

to [10] and [11] should be consulted.

2 Review of the Hyperbolic Dispersion Estimate

The central “dynamical ingredient” of the proof is a certain dispersion estimate relative

to a modification of P (h), which we will now describe.

The first modification of P (h) comes from the method of complex scaling reviewed

in [21, Section 3.4]. For any fixed, sufficiently large R0 > 0, it results in the operator Pθ (h),
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with the following properties. To formulate them, put

�θ
def= [−δ, δ] + i[−θ/C , C ], θ = M1h log(1/h). (2.1)

Then

Pθ (h) − z : H2
h (Rn) −→ L2(Rn) is a Fredholm operator for z ∈ �θ , (2.2)

∀χ ∈ C∞
c (B(0, R0)), χ R(z, h)χ = χ Rθ (z, h)χ. (2.3)

Here and below we set the following notation for the resolvents:

R•(z, h)
def= (P•(h) − z)−1, Im z > 0,

and (2.3) shows the meromorphic continuation of χ R(z, h)χ to �θ , guaranteed by the

Fredholm property of Pθ (h) − z.

The operator Pθ (h) is further modified by an exponential weight, Gw = Gw(x, hD),

G ∈ C∞
c (T∗

R
n), supp G ⊂ p−1((−2δ, 2δ)), ∂αG = O(h log(1/h)),

where δ > 0 is a fixed small number. The modified operator is obtained by conjugation:

Pθ ,ε (h)
def= e−εGw/h Pθ (h)eεGw/h, ε = M2θ , θ = M1h log(1/h). (2.4)

This operator has the same spectrum as Pθ (h) and has the following properties:

if ψ0 ∈ S(T∗
R

n), supp ψ0 ⊂ p−1((−3δ/2, 3δ/2)), (2.5)

then Im ψw
0 (x, hD) Pθ ,ε (h) ψw

0 (x, hD) ≤ C h. (2.6)

The main reason for introducing the weight G is to ensure the bound (2.6). The specific

choice of G is explained in [21, Section 6.1]. In particular, G vanishes in some neighbor-

hood of the trapped set K, and the operator exp(εGw(x, hD)) is an h-pseudodifferential

operator Bw(x, hD), with symbol satisfying

B ∈ h−N Sδ(T
∗
R

n), B �� supp G= 1 + OSδ
(h∞).

As a result, if the spatial cutoff χ is supported away from π supp G, the calculus of the

semiclassical pseudodifferential operators ensures that

χ R(z, h)χ = χ Rθ ,ε (z, h)χ + OL2→L2 (h∞)‖Rθ ,ε (z, h)‖. (2.7)

From now on, our objective will be to estimate the norm ‖Rθ ,ε (z, h)‖L2→L2 .
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We consider a final modification of Pθ ,ε (h) near the zero energy surface. Let ψ0 ∈
S(T∗

R
n) be supported in p−1((−3δ/2, 3δ/2) and equal to 1 in p−1(−δ, δ). Define

P̃θ ,ε (h)
def= ψw

0 (x, hD) Pθ ,ε ψw
0 (x, hD) (2.8)

and the associated propagator

U (t )
def= exp{−it P̃θ ,ε (h)/h}. (2.9)

The crucial ingredients in proving (1.5) are good upper bounds for the norms

‖U (t )ψw(x, hD)‖L2→L2 , on time scales 0 ≤ t ≤ M log(1/h),

where M > 0 is fixed but large, and

ψ ∈ S(T∗
R

n), supp ψ ⊂ p−1((−δ/2, δ/2)), ψ = 1 on p−1((−δ/4, δ/4)). (2.10)

From the bound (2.6) on the imaginary part of P̃θ ,ε (h), we obviously get an exponential

control on the propagator:

‖U (t )‖L2→L2 ≤ exp(C t ), t ≥ 0. (2.11)

The reason to conjugate Pθ with the weight Gw was indeed to ensure this exponential

bound. Together with the hyperbolic dispersion bound (2.13), this exponential bound

would suffice to get a polynomial bound O(h−L ) in (1.5), for some (unknown) L > 0. To

obtain the explicit value,

−1 + cE Im z

h
,

for the exponent, we need to improve (2.11) into the following uniform bound.

Lemma 2.1. Let ψ satisfy the conditions (2.10). Then, there exist h0, C0 > 0 such that,

‖U (t )ψw(x, hD)‖L2→L2 ≤ C0, 0 ≤ t ≤ M log(1/h), h < h0. (2.12)

Before proving this lemma, we state the major consequence of our dynamical

assumptions for the classical flow on K, namely, its hyperbolicity and the “filamentary”

nature of K (expressed through (1.4)). It is a hyperbolic dispersion estimate, which was

explicitly written only in a model case [21, Proposition 9.1], but can be easily drawn from

[21, Proposition 6.3], in the spirit of [21, Section 6.4] As above, we take ψ as in (2.10). For
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any ε > 0 we set λ
def= −P(ϕ+/2) + ε/2. For any 0 < h < h(ε), we then have

‖U (t )ψw(x, hD)‖L2→L2 ≤ C h−n/2 exp(−λt ) + O(hM3 ),

uniformly in the time range 0 < t < M log(1/h). (2.13)

The constant M is arbitrarily large, and M3 can be taken as large as we wish, provided

we choose M1 in (2.1) large enough depending on M. If the pressure P(ϕ+/2) is negative,

one can take ε small enough to ensure λ > ε/2 > 0. The above estimate is then sharper

than (2.12) for times beyond the Ehrenfest time

tE
def= cE log(1/h), cE

def= n

2λ
. (2.14)

The large constant M will always be chosen (much) larger than cE .

Proof of Lemma 2.12. To motivate the proof, we start with a heuristic argument for the

bound (2.12). As mentioned above, the exponential bound (2.11) is due to the fact that

the imaginary part of P̃θ ,ε (h) can take positive values of order O(h) (2.6). However, the

construction of the weight G shows that outside a bounded region of phase space of the

form

Vpos = p−1((−2δ, 2δ)) ∩ T∗
{R1<|x|<R2}R

n,

the imaginary part of P̃θ ,ε (h) is negative up to O(h∞) errors.

The radius R1 above is large enough, so that Vpos lies at finite distance from

the trapped set. As a result, any trajectory crossing the region Vpos will only spend a

bounded time in that region. For this reason, the propagator U (t ) on a large time t � 1

will “accumulate” exponential growth only during a uniformly bounded time.

We now provide a rigorous proof, using ideas and results from [21, Section 6.3].

The phase space T∗
R

n is split using a smooth partition of unity:

1 =
∑

b=0,1,2,∞
πb, πb ∈ C ∞(T∗

R
n, [0, 1]).

These four functions have specific localization properties:

• supp πb ⊂ p−1((−δ, δ)) for b = 0, 1, 2;

• π∞ is localized outside p−1((−3δ/4, 3δ/4));

• π1 is supported near K, in particular, its support does not intersect Vpos;

• π2 is supported away from K but inside {|x| < R2 + 1};
• π0 is supported near spatial infinity, that is on {|x| > R2 − 1} where the oper-

ator P̃θ ,ε (h) is absorbing (the imaginary part of its symbol is negative).
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Employing a positive (Wick) quantization scheme (see, for instance, [16], and

for the semiclassical setting, [23, Section 3.3]), �b = Op+
h (πb), we produce a quantum

partition of unity:

Id =
∑

b=0,1,2,∞
�b, ‖�b‖ ≤ 1.

The evolution U (t ) is then split between time intervals of length t0, where t0 > 0 is large

but independent of h. Using the partition of unity, we decompose the propagator at time

t = Nt0 into

U (Nt0) ψw(x, hD) =
( ∑

b=0,1,2,∞
Ub

)N

ψw(x, hD), where Ub
def= U (t0) �b.

Expanding the power, we obtain a sum of terms UbN · · ·Ub1ψ
w; to understand each of

such term semiclassically, we investigate whether there exist true classical trajectories

following that “symbolic history,” namely, sitting in supp πb1 at time 0, in supp πb2 at time

t0, etc. up to time Nt0.

Since the energy cutoffs ψ and π∞ have disjoint support, no classical trajectory

can spend time in both supports. As a result, any sequence containing at least one index

bi = ∞ is irrelevant (meaning that the corresponding term is OL2→L2 (h∞)) [21, Lemma 6.5].

Since any classical trajectory can travel in supp π2 at most for a finite time ≤ N0t0

before escaping, Lemma 6.6 of [21] shows that the relevant sequences b1 · · · bN are of the

form

bi = 1 for N0 < i < N − N0.

They correspond to trajectories spending most of the time near K. One then has

U (Nt0) ψw(x, hD) = U (N0t0) (U1)N−2N0 U (N0t0) ψw(x, hD) + OL2→L2 (hM5 ),

uniformly for any 2N0 ≤ N < M log(1/h), where M5 > 0 is large if the previous M, Mi are.

Finally, using the fact that the weight G vanishes on supp π1, [21, Lemma 6.3]

shows that

U1 = U (t0)�1 = U0(t0)�1 + OL2→L2 (h∞),

where U0(t0) = exp(−it0 P (h)/h) is unitary. Hence, ‖U1‖ ≤ 1 + O(h∞), while ‖U (N0t0)‖ is

estimated using (2.11). �



S. Nonnenmacher and M. Zworski 10

3 Resolvent Estimates

We can now prove the resolvent estimate (1.5) by constructing a parametrix for Pθ ,ε (h) − z,

z ∈ �ε (h) defined in the statement of the theorem. We will use the notation

ζ
def= z/h

to shorten some of the formulas. We want to find an approximate solution to

(Pθ ,ε (h) − z)u = f , f ∈ L2(Rn), z ∈ �ε (h).

First, the ellipticity away from the energy surface p−1(0) shows that, for ψ as in (2.10),

there exists an operator, T0 = O(1) : L2(Rn) → H2
h (Rn), such that

(Pθ ,ε (h) − z)T0 f = (1 − ψw(x, hD)) f + R0 f , R0 = OL2→L2 (h∞).

To treat the vicinity of p−1(0), we put

T1 f = (i/h)
∫ tM

0
dt eiζ t U (t ) ψw(x, hD) f , tM = M log(1/h),

which satisfies

( P̃θ ,ε (h) − z) T1 f = ψw(x, hD) f + R1 f , R1
def= −eiζ tM U (tM) ψw(x, hD). (3.1)

The estimate (2.13) shows that, if λ + Im ζ > ε/2, and for arbitrary M4 > 0, one can choose

M and M3 large enough such that R1 = OL2→L2 (hM4 ). We can estimate the norm of T1 by

the triangle inequality,

‖T1‖L2→L2 ≤ h−1
∫ tM

0
e− Im ζ t ‖U (t ) ψw(x, hD)‖L2→L2 dt , (3.2)

and then use the bounds (2.12) for times 0 ≤ t ≤ tE and (2.13) for times tE < t ≤ tM.

When Im ζ = 0, the above integral can be estimated by the integral over the

interval t ∈ [0, tE ]:

Im ζ = 0 =⇒ ‖T1‖L2→L2 ≤ h−1

(
C0 tE + 1

λ

)
≤ C h−1 log h−1.

In the case 0 > Im ζ > −λ + ε/2, the dominant part of the integral comes from t = tE :

0 > Im ζ > −λ + ε/2 =⇒ ‖T1‖L2→L2 ≤ Cεh
−1 e− Im ζ tE = Cε h−1+cE Im ζ .

We rewrite (3.1) as

ψw
0 (x, hD)(Pθ ,ε (h) − z)ψw

0 (x, hD)T1 f = ψw(x, hD) f + R1 f.
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From ψ0|supp ψ ≡ 1, one can show (as in [21, Lemma 6.5]) that

ψw
0 (x, hD)(Pθ ,ε (h) − z)ψw

0 (x, hD)T1 = (Pθ ,ε (h) − z) T1 + R2, R2 = OL2→L2 (h∞),

and also that

‖T1‖H2
h

≤ C ‖T1‖L2 .

Putting T = T0 + T1 and R = R0 + R1 + R2, we obtain

(Pθ ,ε (h) − z)T = Id +R, R = OL2→L2 (hM4 ).

This means that (Pθ ,ε (h) − z) can be inverted, with

‖(Pθ ,ε (h) − z)−1‖L2→H2
h

= (1 + O(hM4 ))‖T‖L2→H2
h
.

The above estimates on the norms of T0 and T1 can be summarized by

0 ≥ Im ζ ≥ ε + P(−ϕ+/2) =⇒ ‖T‖L2→H2
h

≤ Cε h−1+cE Im ζ log h−1. (3.3)

Using (2.7), this proves the bound (1.5). �

Remark. By using a sharper energy cutoff ψh belonging to an exotic symbol class (see

[27, Section 4]) and supported in the energy layer p−1((−h1−δ, h1−δ)) (as in [1]), the bound

(2.13) is likely to be improved to

‖U (t )ψw
h (x, hD)‖L2→L2 ≤ C h−(n−1+δ)/2 exp(−λt ) + O(hM3 ). (3.4)

This bound becomes sharper than (2.12) around the time t ′
E = c′

E log(1/h), where

c′
E

def= n − 1 + δ

2λ
< cE .

As a result, the bounds on the norm of the corresponding operator T ′
1 are modified

accordingly. At the same time, as shown in [1, Proposition 5.4], the ellipticity away from

the energy surface provides an operator T ′
0 satisfying

(Pθ ,ε (h) − z)T ′
0 = (

1 − ψw
h (x, hD)

) + OL2→L2 (h∞),

and of norm ‖T ′
0‖L2→L2 = O(h−1+δ). The norm of T ′ = T ′

0 + T ′
1 is still dominated by that of

T ′
1, so that we eventually get

‖χ (P (h) − z)−1χ‖L2→H2
h

≤ Cε h−1+c′
E Im z/h log(1/h), z ∈ �ε (h) ∩ {Im z ≤ 0}.

Since it is not clear that even this bound is optimal, and that proving (3.4) would require

some effort, we have limited ourselves to using the established bound (2.13).



S. Nonnenmacher and M. Zworski 12

One advantage of the approach presented in this note (compared with the method

of [21, Section 9]) is that, to obtain the bound (1.6), we did not have to use the complex

interpolation arguments of [4] and [28].
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