Résumé : This is joint work with Michal Wrochna. The spectral action principle of Connes is one of the cornerstones of the noncommutative geometry approach to the standard model, yet it is limited to the setting of compact Riemannian manifolds, which is incompatible with General Relativity. Generalizing the principle to the Lorentz signature has been a longstanding open problem. In the present work, we give a global definition of complex Feynman powers $(\square+m^2+i0)^-s$ on Lorentzian scattering spaces, and show that the restriction of their Schwartz kernel to the diagonal has a meromorphic continuation. When $d=4$, we show the pole at $s=1$ equals a generalized Wodzicki residue and is proportional to the Einstein-Hilbert action density, proving a spectral action principle in Lorentz signature.
![]()
Département de Mathématiques
Bâtiment 307
Faculté des Sciences d'Orsay Université Paris-Saclay F-91405 Orsay Cedex Tél. : +33 (0) 1-69-15-79-56
Département
Fermeture du département
Actualités
Les membres
Diffusion des mathématiques
Comité Parité du LMO
Offres d’emploi
Présentation en images des maths à Orsay
Les Maths à Orsay de 1958 à nos jours
Contacts
Fermeture du département
Laboratoire
|