Topology of symplectomorphism groups of 3-fold blow-ups of the projective plane

Jeudi 1er décembre 2011 14:00-15:00 - Silvia Anjos - Lisbonne

Résumé : By a result of Kedra and Pinsonnault, we know that the topology of groupsof symplectomorphisms of symplectic 4-manifolds is complicated ingeneral. However, in all known (very specific) examples, the rationalcohomology rings of symplectomorphism groups are finitely generated. Inthis talk, we compute the homotopy Lie algebra of groups ofsymplectomorphisms of some 3-point blow-ups of the projective plane andshow it is infinite dimensional. Moreover, we explain how the topology isgenerated by the toric structures one can put on the manifold. This isjoint work with Martin Pinsonnault.

Lieu : bât. 425 - 121-123

Topology of symplectomorphism groups of 3-fold blow-ups of the projective plane  Version PDF
août 2020 :

Rien pour ce mois

juillet 2020 | septembre 2020