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Présentation de la thèse

Classi�cation Non Supervisée par Modèles de Mélange. L'essentiel du travail
présenté porte sur la classi�cation non supervisée. Étant donné x1, . . . , xn dans Rd,
réalisation d'un échantillon X1, . . . , Xn i.i.d. de loi inconnue de densité f℘ par rapport
à la mesure de Lebesgue, le problème est de répartir ces observations en classes. La
particularité de la classi�cation non supervisée est qu'aucune information sur la classe
à laquelle appartient chaque observation n'est disponible a priori. Cela la distingue, par
les objectifs à atteindre et les méthodes employées, de la classi�cation supervisée qui
consiste à étudier la structure de classes à partir d'observations dont l'appartenance à
chacune des classes en question est connue. L'objectif est typiquement de comprendre
la structure des classes a�n de former une règle pour prédire la classe d'une nouvelle
observation non étiquetée. Dans un cadre non supervisé, la structure des classes n'est pas
nécessairement supposée préexister à l'étude. Elle est inhérente à la méthode employée :
dans le cadre des modèles de mélange présenté ci-après, elle dépend des modèles �
notamment de la loi des composantes des mélanges � et de la méthode d'estimation
retenue. Cette absence de solution objective et indépendante des choix de modélisation
rend délicates l'évaluation et la comparaison de méthodes. C'est certainement pour
bonne part la raison pour laquelle la théorie de la classi�cation supervisée est plus
étudiée et mieux connue d'un point de vue mathématique que celle de la classi�cation
non supervisée. De nombreuses applications appellent en e�et des solutions dans le
cadre de cette dernière, et des méthodes pratiques ont été développées qui combinent
des approches géométriques, informatiques, statistiques. La compréhension des notions
sous-jacentes à ces méthodes ainsi qu'une contribution au développement de la théorie
de certaines d'entre elles, sont des enjeux motivant en partie l'essentiel des travaux
de cette thèse. Un autre objectif � indissociable du premier � est de contribuer au
développement de telles méthodes et de solutions pour leur mise en pratique.

L'approche statistique pour la classi�cation non supervisée la plus répandue et la plus
étudiée repose sur les modèles de mélanges. On s'intéresse essentiellement aux mélanges
gaussiens. La densité gaussienne de paramètres ω = (µ,Σ) est notée φ( . ;ω). Soit K ∈
N∗. L'ensemble des lois de mélange à K composantes gaussiennes forme le modèle

MK =

{
f( . ; θ) =

K∑

k=1

πkφ( . ;ωk) : θ = (π1, . . . , πK , ω1, . . . , ωk)/

K∑

k=1

πk = 1, ∀ω1, . . . , ωK

}
·

L'approche qui semble la plus courante consiste à supposer que la loi de l'échantillon est
gaussienne � bien approchée par une loi gaussienne � conditionnellement à la classe
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de chaque variable Xi. La méthode correspondante est dans un premier temps d'estimer
au mieux la loi de l'échantillon sous la forme d'un mélange. C'est en e�et possible car,
sous des hypothèses raisonnables garantissant l'identi�abilité, estimer la loi de chaque
composante équivaut à estimer la loi du mélange. L'estimateur du maximum de vraisem-
blance θ̂MLE est un candidat naturel et intéressant. Elle consiste ensuite à s'appuyer sur
la connaissance obtenue de la loi de l'échantillon pour en déduire la structure des classes
et �nalement la classi�cation des observations. Cette dernière tâche est habituellement
accomplie par la règle du maximum a posteriori (MAP) : la probabilité conditionnelle
d'appartenance à la classe k de chaque observation xi sous la loi dé�nie par θ̂MLE est

τik =
πkφ(xi; ω̂

MLE
k )

f(xi; θ̂MLE)
.

La règle de classi�cation du MAP, en notant ẑMAP
i (θ̂MLE) le label estimé de xi, est dé�nie

par
ẑMAP
i (θ̂MLE) = argmax

k∈{1,...,K}
τik(θ̂

MLE).

Remarquons qu'une classe est alors identi�ée à chaque composante gaussienne.

Dans le chapitre 1, ces notions sont dé�nies précisément et discutées. La section 1.2.2
présente l'algorithme EM, qui a rendu possible l'estimation par maximum de vraisem-
blance dans le cadre des modèles de mélange.

Choix du nombre de classes : critères classiques et ICL. Il est même courant
en classi�cation non supervisée de ne pas connaître a priori le nombre de classes à
former et donc le nombre de composantes du modèle à ajuster. Les approches pour le
choisir font intervenir di�érentes notions de classe, composante et cluster : le point de
vue adopté pour chacune de ces notions dans cette thèse est précisé en introduction
du chapitre 2. Une méthode relativement simple et populaire de sélection de modèle
consiste à minimiser un critère de la forme vraisemblance pénalisée. Notons θ̂MLE

K le
maximum de vraisemblance dans le modèleMK et DK le nombre de paramètres libres
dans ce modèle. Les critères les plus courants sont le critère AIC :

K̂AIC = argmin
K

{
− logL(θ̂MLE

K ) +DK

}
,

connu pour être asymptotiquement e�cace1 dans certains cadres de sélection de modèle
� par exemple en régression �, et le critère BIC :

K̂BIC = argmin
K

{
− logL(θ̂MLE

K ) +
log n

2
DK

}
,

connu pour être consistant, notamment pour les modèles de mélange sous des hypo-
thèses de régularité : K̂BIC converge vers le plus petit K tel que le modèle MK mini-
mise la distance à f℘, au sens de la divergence de Kullback-Leibler. Il se trouve que
AIC sous-pénalise manifestement les modèles dans le cadre des modèles de mélange et
sélectionne souvent un nombre exagérément grand de composantes, au moins pour les

1Une procédure de sélection de modèle K̂ est dite e�cace si elle se comporte presque aussi bien que
l'oracle. Voir la section 3.1.2 pour une dé�nition précise de cette notion.
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tailles d'échantillons � raisonnables � que nous avons considérées. BIC se comporte à
la hauteur de ce que prévoit la théorie et sélectionne souvent un modèle permettant de
bien approcher la loi de l'échantillon. Cependant, cet objectif est discutable : ce faisant,
BIC donne parfois lieu à un nombre de classes plus grand que le nombre jugé pertinent.
Cette situation se présente notamment lorsque certaines des composantes gaussiennes
de θ̂MLE

KBIC sont proches ou se recouvrent sensiblement : cela peut traduire la présence de
groupes de données que l'on aurait souhaité voir identi�és comme des classes mais dont
la distribution conditionnelle n'est pas gaussienne. Plusieurs composantes gaussiennes
peuvent alors être nécessaires pour approcher correctement un tel groupe de données.
Ici intervient la notion de cluster : la notion de composante gaussienne rend rarement
compte intégralement de l'objectif de classi�cation. Une notion intuitive de classe com-
porte l'idée de classes compactes et bien séparées les unes des autres. Il est nécessaire de
préciser cette notion. Le critère ICL (Biernacki et al., 2000) semble choisir un nombre de
classes satisfaisant un compromis intéressant entre les notions de composante gaussienne
et de cluster. Il repose sur un terme dit d'entropie :

ENT(θ) = −
n∑

i=1

K∑

k=1

τik(θ) log τik(θ),

qui est une mesure de la con�ance que l'on peut accorder à la classi�cation obtenue par
MAP sous θ. ICL est alors dé�ni par

K̂ICL = argmin
K

{
− logL(θ̂MLE

K ) + ENT(θ̂MLE
K ) +

log n

2
DK

}
.

Étudier d'un point de vue théorique ce critère a été le principal objectif de cette thèse.
L'un des enjeux en est une meilleure compréhension de la notion de classe sous-jacente :
puisque les résultats obtenus avec ICL semblent rencontrer en pratique une notion in-
téressante de classe, il est intéressant de tenter de découvrir la notion � théorique �
correspondante.

Voir la première section du chapitre 2 pour des rappels plus complets sur ces trois
critères pénalisés et les raisonnements qui y ont mené.

Étude théorique d'ICL : minimisation de contraste pour la classi�cation non
supervisée. L'étude des propriétés théoriques d'ICL peut di�cilement être abordée
de façon analogue à l'étude des critères AIC ou BIC. En e�et, il n'y a pas de lien
manifeste entre le maximum de vraisemblance et la valeur du terme d'entropie. Un
indice que l'approche usuelle n'est pas satisfaisante pour étudier ICL est que ce critère
n'est pas consistant, au sens où BIC l'est : même asymptotiquement, K̂ICL n'a aucune
raison d'être égal au nombre de composantes pour lequel la distance à f℘ est minimale,
dès lors que les composantes ne sont pas bien séparées. Le cadre théorique général qui a
permis de mieux comprendre le critère ICL et d'obtenir des résultats théoriques est celui
de la minimisation de contraste. Il est rappelé en détail dans la section 3.1 et appliqué
au problème de la classi�cation non supervisée au chapitre 4. On y montre en e�et
que choisir pour contraste à minimiser (l'opposé de) la log-vraisemblance classi�ante
conditionnelle

−logLcc(θ) = − logL(θ) + ENT(θ)
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est un objectif intéressant pour la classi�cation non supervisée, correspondant à une
notion de classe combinant les notions de classe gaussienne � c'est-à-dire de forme
plus ou moins ellispoïde � et de cluster. Un nouvel estimateur peut alors être dé�ni
pour chaque modèleMK par analogie au maximum de vraisemblance : le maximum de
vraisemblance classi�ante conditionnelle (voir section 4.3)

θ̂MLccE ∈ argmax
θ

logLcc(θ).

Cet estimateur ne vise pas la vraie loi des données mais une loi intéressante pour la
classi�cation non supervisée. Dans le même esprit, les critères de sélection de modèle que
l'on peut alors dé�nir par analogie aux critères de la forme vraisemblance pénalisée visent
à sélectionner un modèle � un nombre de composantes � permettant une classi�cation
à la fois peu hésitante et raisonnable par rapport à la loi des données. La pénalité de
ces critères est étudiée et on montre que la gamme de pénalités permettant de dé�nir
des critères convergents � au sens du contraste Lcc � est analogue à celle des critères
convergents dans le cadre de la vraisemblance habituelle. Cette étude s'appuie sur des
résultats de contrôle de processus empiriques par des mesures de la complexité des
familles de fonctions en termes d'entropie à crochets. Les modèles étant considérés d'un
point de vue paramétrique, le calcul des entropies à crochets est assez direct. Mais
l'adaptation des résultats existant pour le maximum de vraisemblance au contraste
considéré nécessite des conditions qui n'ont pu être garanties qu'au prix d'hypothèses
supplémentaires, en raison des propriétés de la fonction de contraste. Il est notamment
nécessaire de garantir qu'aucune composante ne tend vers 0 et que le contraste reste
borné. ICL peut alors être expliqué comme une approximation d'un critère analogue à
BIC � et notamment, consistant � dans le cadre de ce nouveau contraste :

K̂Lcc-ICL = argmin
K

{
−logLcc(θ̂

MLccE
K ) +

log n

2
DK

}
.

La principale approximation, qui peut ne pas être mineure, est le remplacement de
l'estimateur θ̂MLccE par θ̂MLE.

La section 4.4 est consacrée à l'étude de ces critères de sélection de modèle pour la
classi�cation non supervisée. Des simulations illustrent les comportements pratiques des
critères considérés.

Nous proposons dans la première section du chapitre 5 des solutions pour le calcul
de l'estimateur θ̂MLccE, qui pose des di�cultés analogues, bien que plus di�ciles, au
calcul de θ̂MLE dans les modèles de mélange. Un algorithme adapté de l'algorithme
EM est proposé et étudié. L'étape essentielle du choix des paramètres pour initialiser
l'algorithme est également traitée : une nouvelle méthode est notamment proposée, qui
s'avère intéressante pour l'initialisation de l'algorithme EM également. Des solutions
sont aussi proposées pour choisir et imposer des bornes sur l'espace des paramètres.

Robustesse de la nouvelle procédure. Le chapitre 6 traite des propriétés de ro-
bustesse de la procédure Lcc-ICL. La notion de robustesse étudiée est celle du point d'ef-
fondrement dé�ni et étudié notamment pour le critère BIC (dans le cadre du maximum
de vraisemblance habituel) par Hennig (2004). Elle consiste à évaluer la proportion de
valeurs qu'il est nécessaire d'ajouter à un échantillon pour qu'on ne puisse plus retrouver
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de composante semblable à chacune de celles de la solution originale, parmi les com-
posantes de l'estimateur obtenu avec le nouvel échantillon. C'est-à-dire essentiellement
que les nouvelles observations su�sent à masquer la structure des composantes obtenues
avec l'échantillon d'origine. Un cas notable d'e�ondrement de la solution d'origine est
celui où la solution avec le nouvel échantillon comporte moins de composantes.

Une condition est obtenue, sous laquelle le point d'e�ondrement est minoré. Cette
condition ne peut pas être comparée directement à celle de Hennig (2004) pour BIC,
mais semble plus forte, ce qui suggère que Lcc-ICL est moins robuste. C'est cependant
faux au moins dans le cas où K̂Lcc-ICL < K̂BIC.

Alors que des résultats analogues semblent di�ciles à obtenir directement pour ICL,
à cause de l'absence de lien direct entre θ̂MLE et la valeur de l'entropie, ils peuvent l'être
pour Lcc-ICL : c'est un intérêt du travail du chapitre 4. Les résultats sont illustrés par
des exemples.

Heuristique de pente. L'heuristique de pente est une méthode pratique de calibra-
tion des critères pénalisés guidée par les données. Les fondements théoriques en sont
rappelés dans la section 3.2 : elle repose essentiellement d'une part sur l'existence d'une
forme de pénalité penshape telle que κmin penshape est une pénalité minimale, au sens où
la complexité des modèles sélectionnés avec une valeur plus faible de κ explose, mais
reste raisonnable pour cette valeur κmin. Et d'autre part sur l'observation que la pé-
nalité 2κmin penshape est e�cace. L'heuristique de pente consiste alors, connaissant la
forme de pénalité penshape, à estimer κmin sur la base des données, et à en déduire le
critère à considérer. Cette méthode permet d'extraire des données des informations sur
des facteurs a priori inconnus du problème, typiquement la variance.

Deux approches sont présentées pour sa mise en ÷uvre :

� le saut de dimension, qui consiste plus ou moins à choisir pour κmin la plus petite
valeur de κ pour laquelle le modèle sélectionné a une complexité raisonnable ;

� l'estimation directe de la pente, qui utilise le fait que κmin est aussi la pente de la
relation linéaire (pour les grands K)

penshape(K) 7→ −max
θ∈ΘK

1

n

n∑

i=1

γ(Xi; θ),

où γ est le constraste considéré.

Cette dernière approche, bien que suggérée par les auteurs de l'heuristique de pente et
du saut de dimension (voir Birgé and Massart, 2006 et Arlot and Massart, 2009), ne
semble pas avoir été véritablement considérée jusqu'à présent. Les deux approches sont
présentées en détail et comparées. Elles sont illustrées par l'application de l'heuristique
de pente au maximum de vraisemblance habituel (section 3.3) et au nouveau contraste
considéré au chapitre 4 (sections 4.4.5 et 4.4.6).

Un travail en cours avec Bertrand Michel et Cathy Maugis vise à proposer des solu-
tions pour la mise en pratique de l'heuristique de pente par l'approche de l'estimation
directe de la pente, et à développer un code Matlab pour rendre son application ai-
sée. Ce travail est expliqué dans la section 5.2. Des simulations sont proposées en 5.2.4
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pour illustrer l'usage de ce petit logiciel et une situation où le saut de dimension et
l'estimation directe de la pente ne se comportent pas de la même façon.

Mélanges de mélanges. Une autre approche permettant de concilier les points de
vue � classes gaussiennes � et � cluster � consiste à accepter de modéliser chaque classe
elle-même par un mélange gaussien. La loi de l'échantillon est alors modélisée par un
mélange de mélanges. Cette approche présente l'avantage de permettre de pro�ter des
bonnes propriétés d'approximation des mélanges gaussiens pour modéliser la loi condi-
tionnellement à chaque classe, y compris lorsque celle-ci n'est pas gaussienne, mais de
former un nombre limité et pertinent de classes. Voir la section 2.2 pour une présentation
générale de cette approche.

Un travail commun avec Adrian Raftery, Gilles Celeux, Kenneth Lo et Raphael
Gottardo consiste à proposer une procédure dans ce cadre. Il fait l'objet d'un article à
paraître. Le chapitre 7 est constitué de cet article, dont les notations ont été modi�ées.
Mais cet article est parallèle au travail présenté au chapitre 4 et le point de vue sous
lequel y est présenté ICL, notamment, correspond au point de vue � original �.

La procédure proposée consiste dans un premier temps à choisir le nombre total
de composantes gaussiennes K̂BIC par le critère BIC et à en tirer une classi�cation à
K̂BIC classes. Ensuite, ces classes sont regroupées hiérarchiquement. Les classes regrou-
pées à chaque étape sont choisies de façon à maximiser la baisse d'entropie à chaque
étape. L'ensemble de la hiérarchie peut alors être intéressante pour le scienti�que. Elle
permet non seulement d'obtenir des classi�cations correspondant à chaque nombre de
classes inférieur à K̂BIC, mais aussi de comprendre quelle est l'importance relative des
di�érents regroupements, lesquels semblent absolument nécessaires et lesquels doivent
être e�ectués prudemment. Des outils graphiques sont proposés pour aider cette lecture
des résultats. Ils peuvent éventuellement servir à choisir le nombre de classes à former,
lorsque l'utilisateur le souhaite. En e�et, toutes les solutions obtenues reposent sur la
même loi de mélange, quel que soit le nombre de classes considéré : celle du maximum
de vraisemblance pour K̂BIC composantes gaussiennes. Les critères habituels ne peuvent
donc pas être appliqués dans ce cadre et aucune méthode d'inférence statistique usuelle
ne peut permettre de sélectionner le nombre de classes à former.

L'intérêt de la procédure est illustré par des simulations dans des situations variées
et un exemple d'application à des données réelles de cytologie (sections 7.4 et 7.5).

Classi�cation éclairée par une partition externe. Le critère ICL � et à sa suite
la plupart des travaux présentés dans cette thèse (voir notamment le chapitre 4) �
repose sur l'idée qu'un critère de sélection de modèle peut être spécialement choisi en
fonction de l'objectif de l'étude, à l'opposé du choix qui consiste à fonder toute étude
statistique sur une estimation préliminaire de la densité des données. Cette idée est
appliquée dans un travail en cours avec Gilles Celeux et Ana Sousa Ferreira rapporté
au chapitre 8, au problème suivant.

Supposons qu'au-delà des observations à classer, nous disposons d'une classi�cation
� dite � externe � � de ces données qui n'est pas le produit de l'étude de celles-ci,
mais provient par exemple d'une variable supplémentaire. Une question intéressante est
de savoir si la classi�cation que l'on obtient par l'approche fondée sur les modèles de
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mélange, sans tenir compte de la classi�cation externe2, peut être reliée à celle-ci. Nous
proposons un critère de sélection de modèle, produit d'une heuristique analogue à celle
menant à ICL, qui permet de choisir le nombre de classes en tenant compte du lien
entre la classi�cation obtenue pour chaque modèle considéré, et la classi�cation externe.
Ce lien est mesuré par un terme reposant sur la table de contingence entre les deux
classi�cations.

Des simulations illustrent le comportement de ce critère dans des situations connues,
et son intérêt est mis en évidence par l'étude d'un jeu de données réelles portant sur les
motivations et possibilités d'évolution et de formation professionnelles des enseignants
au Portugal.

2Il ne s'agit donc pas de classi�cation supervisée.
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In this chapter are introduced basics of the model-based clustering. Clustering � or
unsupervised classi�cation � consists of splitting data among several classes, when no
label is known. Many approaches are available for clustering. Model-based clustering is
a statistical fruitful approach which relies on the �tting of mixture models to the data.
The estimated distribution is then used to design classes. Assume a sample consists
of observations arising from several classes, but the classes are unobserved. The usual
underlying idea is that each observation arises from a class, and that recovering the
distribution of the whole sample (which is the mixture distribution) should enable one
to recover the distribution of each class (which is a component of the mixture) and
then to recover the classes themselves. In this chapter, it is assumed that the number
of classes to design from the data is known. The following chapters deal with the
choice of the number of classes to design when it is unknown. Model-based clustering
is particularly helpful to this aim.

The most common approach to this end is the classical maximum likelihood ap-
proach, with Gaussian mixture components. This is a natural model in this framework,
since it means roughly assuming the classes to have ellipsoid shapes. Gaussian mix-
ture models, their interpretation in this framework, and the particular di�culty of their
identi�ability are introduced in Section 1.1. It is also explained there how they are in-
terpreted as missing data models. In Section 1.2, after a short historical presentation of
the estimation methods which were once employed in this context, the now widespread
maximum likelihood estimation is discussed. The EM algorithm, which made the com-
putation of the maximum likelihood estimator tractable with the rise of computers, is
introduced, and some solutions to perform it and overcome its di�culties are discussed.

Once an estimator is computed, there still remains to design the classes. This is
typically done through the Maximum A Posteriori rule, which is recalled in Section 1.3.

Finally, an alternative approach to the usual likelihood maximization is recalled in
Section 1.4: the classi�cation likelihood maximization. It is not based on the usual
statistical point of view, in that it does not handle separately the estimation of the
data distribution and the �nal aim, which is clustering. This is done by considering
the �classi�cation likelihood�, which is de�ned there, and can be maximized through an
iterative algorithm analogous to EM and called Classi�cation EM (CEM). Moreover,
the link between the usual and classi�cation likelihoods and the �entropy�, are derived
in this section. Both this link and this quantity will be essential in the following.

Let us stress that only Gaussian mixture models are considered in this thesis. Other
mixture distributions may be considered, notably Student mixtures to cope with outliers,
or mixtures of Gaussian and uniform components (see for example McLachlan and Peel,
2000 or Hennig, 2004). Most methods presented in this thesis may presumably be
adapted to such models.

References for this chapter are McLachlan and Peel (2000) and Fraley and Raftery
(2002).
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1.1 Gaussian Mixtures

1.1.1 De�nition

Of concern here are the Gaussian mixture models. The Gaussian density function with
respect to the Lebesgue measure λ on Rd is denoted by φ:

∀x ∈ Rd,∀µ ∈ Rd,∀Σ ∈ Sd+,

φ(x;µ,Σ) =
1

(2π)
d
2

√
det Σ

e−
1
2

(x−µ)′Σ−1(x−µ),

where Sd+ is the set of symmetric positive de�nite matrices on Rd. Let us denote ω =
(µ,Σ).

The distribution of a random variable on Rd is a Gaussian mixture if and only if its
density function with respect to Lebesgue measure is expressible as

f(x) =

∫
φ(x;ω)dν(ω) dλ− a.s.,

where ν is a probability distribution on the parameters space: the mixture distribution.

We restrict attention to �nite mixtures, i.e. mixtures such that the mixture distri-
bution support is �nite. Let us then denote ν =

∑K
k=1 πkδωk , where {ω1, . . . , ωK} is the

support of ν, δω is the Dirac measure at ω, and πk ∈ [0, 1] are such that
∑K

k=1 πk = 1
(the set of all K-tuples (π1, . . . , πK) for which this condition is ful�lled is denoted by
ΠK).

The Gaussian distributions φ(.;ωk) are the components of the mixture and the πk's
the mixing proportions.

Generally, the set of all parameters of a �nite Gaussian mixture is denoted θ (that is,
θ contains all mixing proportions and all component parameters). The mixture density
function is then denoted f( . ; θ) (the dependency on K is often omitted in the notation):

∀K ∈ N∗,∀θ ∈
(
ΠK × (Rd)

K × (Sd+)
K)
, f( . ; θ) =

K∑

k=1

πkφ( . ;ωk).

Let us �x the number K of components and de�ne a Gaussian mixture model as
generally done (see for example McLachlan and Peel, 2000). It is the set of distributions
which density functions belong to1

MK =

{
K∑

k=1

πkφ( . ;ωk)
∣∣∣ (π1, . . . , πK , ω1, . . . , ωK) ∈ ΘK

}
, (1.1)

with ΘK ⊂ ΠK ×
(
Rd × Sd+

)K
.

Those models will have to be restricted for technical reasons, which will be discussed
later. But they may also be restricted for modeling necessities. Ban�eld and Raftery

1As usual, we shall identify the model (the set of distributions) and the set of corresponding densities.
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(1993), and then Celeux and Govaert (1995) in an analogous way, suggested the following
decomposition of the covariance matrix ΣK of each mixture component:

Σk = λkDkAkD
′
k, (1.2)

with λk the greatest eigenvalue of Σk in Ban�eld and Raftery (1993) and λk = det Σk

1
d

in Celeux and Govaert (1995). We will follow this last convention. λk is the volume
of Σk. λkAk is the diagonal matrix with the eigenvalues of Σk on its diagonal (ranked
in decreasing order): it de�nes the component form (its iso-densities being ellipsoids
which can be more or less elongated along each eigenvector direction, according to
the corresponding eigenvalue). Dk is the matrix of eigenvectors of Σk and de�nes the
orientation of the component. Celeux and Govaert (1995) de�ne and study this way 28
di�erent models. Indeed, di�erent models are obtained by imposing � or not � the
mixing proportions, volumes, shapes and/or orientations to be equal from a component
to another. Other possible restrictions are Ak = Id (in which case the components
� and the corresponding models � are said to be spherical) or to impose each Dk to
be a permutation matrix (the components and the corresponding models de�ned this
way are called diagonal : the components are parallel to the axes). Those constraints
are interesting in the model-based clustering framework since they enable to model
geometrical assumptions about the shape of the classes to be designed.

Some of the functions we shall consider in the study of mixture models (see Chap-
ter 4 and the de�nition of ICL Section 2.1.4 notably), require the knowledge of each
component density. Therefore, they cannot be de�ned over the modelMK as is. They
are rather de�ned over the set

M̃K =

{(
π1φ( . ;ω1), . . . , πKφ( . ;ωK)

) ∣∣∣ (π1, . . . , πK) ∈ ΠK ,

(ω1, . . . , ωK) ∈
(
Rd ∗ Sd+

)K
}
.

This set provides more information than a model as usually de�ned. Not only de�nes
an element of this set a mixture density (the same as the corresponding element inMK

would), it also provides each component density and the corresponding proportion (just
remark that πk =

∫
πkφ(x;ωk)dx). However, we shall consider the mixture models as

parametric models and work with the parameters. Since there is actually a one-to-one
correspondence between M̃K and the parameters space, there will be no di�culty in
the de�nition of those functions. But rigorously, they are not really de�ned over the
modelMK , but in the particular case of an identi�able parametrization.

1.1.2 Identi�ability

It is well-known that mixture models, as parametrized in (1.1), encounter identi�ability
problems.

Every estimation situation will be set in a �xed K framework: the identi�ability
di�culties we are interested in are then those which are met in this situation. Let us
�x K and cite two remarkable reasons why theMK mixture model is not identi�able:
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� Up to K! di�erent parameters may result in the same mixture density because of
the so-called �label switching� phenomenon. It refers to the fact that a mixture
density stays the same if its components are permuted:

f
(
. ; (π1, . . . , πK , µ1, . . . , µK ,Σ1, . . . ,ΣK)

)

= f
(
. ; (πα(1), . . . , πα(K), µα(1), . . . , µα(K),Σα(1), . . . ,Σα(K))

)

for any permutation α of the set {1, . . . , K}.

� Whenever K ≥ 2 and at least two components of the mixture are identical, an
in�nite number of parameters result in the same mixture distribution. If, for
example, K = 2 and θ = (1, 0, µ, µ,Σ,Σ), then f( . ; θ) = f

(
. ; (π, 1−π, µ, µ,Σ,Σ)

)

for any π ∈ [0, 1].

The �rst one of those di�culties can be �xed by restricting the parameters space.
McLachlan and Peel (2000) suggest for example to de�ne an order on the parameters,
and to keep only the smallest parameter corresponding to each distribution. The second
one (Aitkin and Rubin, 1985) can be �xed by imposing that each component must be
di�erent from the others (∀k, k′, ωk 6= ωk′). A K-component mixture should actually
be considered as a (K − 1)-component mixture, whenever two of its components are
identical. Moreover, in the same spirit, null mixing proportions should not be allowed.

Yakowitz and Spragins (1968) de�ne a weak notion of identi�ability. According
to this notion, a parametrization is identi�able if the components parameter may be
recovered from the density, up to the order. It simply accepts label switching. It is
su�cient for the needs of the applications in this thesis, since the quantities of interest
never depend on the order of the components. This property has been reformulated in
Keribin (2000) as:

K∑

k=1

πkφ( . ;ωk) =
K∑

k=1

π′kφ( . ;ω′k)⇐⇒
K∑

k=1

πkδωk =
K∑

k=1

π′kδω′k .

This property have been proved to hold for multivariate �nite Gaussian mixtures (and
even for a union of the modelsMK for several values of K) by Yakowitz and Spragins
(1968) under the assumptions that πk > 0 and that the ωk's (and the ω′k's) are distinct
from each other, as stated above. We shall assume those conditions to hold here and
hereafter. Those are quite weak restrictions on the models. However, they entail dif-
�culties to choose the involved constants as the parameter space have to be assumed
compact. For instance, to avoid null proportions under the compactness assumption, a
bound πmin has to be chosen so as to impose πk ≥ πmin.

Another equivalent point of view (Redner, 1981) consists of considering the quotient
topological parameter space obtained by the equivalence relation θ1 ≡ θ2 ⇔ f( . ; θ1) =
f( . ; θ2).

Finally, let us notice that to tackle the non-identi�ability of mixture models and
to be able to construct a likelihood test, Dacunha-Castelle and Gassiat (1999) de�ne
a parametrization called �locally conic parametrization�, which allows to separate the
identi�able part of the parameters from the non-identi�able one. Keribin (2000), who
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notably derived the consistency of the BIC criterion in particular mixture models situa-
tions (see Section 2.1.3), rely on this parametrization. Those methods are not presented
here.

But, notably in Chapter 4, where we make use of the Gaussian mixture models, the
identi�ability assumption will be seen not to be needed, since the natural model of our
study is rather M̃K : see Section 4.1.1.

1.1.3 Interpretation and Properties of the Gaussian Mixture
Model

Mixture models typically model mixtures of populations. They are relevant to model
populations which are supposed to be composed of several distinct subpopulations, each
one of them having its own particularities (biological, physical, sociological,...). And
those particularities are assumed to be re�ected through the observations. Each sub-
population is modeled by one of the mixture components, which parameters are linked
to its characteristics. The distribution of the whole population is then the mixture
of those components, weighted by the proportions corresponding to the proportion of
individuals in each subpopulation.

An interpretation of a mixture distribution is that several causes (which may typ-
ically be subpopulations) contribute to the observations according to their respective
weights and properties, which are modeled by the components parameters.

The simulation of a mixture model may be interpreted in the following way � and it
provides a straightforward algorithm to implement it. For each observation, a component
k is �rst chosen among {1, . . . , K} according to the probabilities (π1, . . . , πK), and the
observationX itself is then simulated according to the distribution of the kth component.

Let us now introduce the notion of size of a component: it refers to the number
of observations among the n-sample, which have arisen from this component. This is
expected to be about πk × n.

Mixture models then provide a natural tool in classi�cation or clustering frameworks.

They also can be very useful in the density estimation framework: when the number
of components is allowed to be great enough, mixture models enjoy good approximation
properties (See Titterington et al., 1985, Section 3.3.3, for references). McLachlan and
Peel (2000) illustrate this through some examples of (univariate) distributions shapes
(skewed, multimodal or not, etc.) that could obviously not be well approached by a
Gaussian density (nor would it be by any classical density family) but that Gaussian
mixtures enable to.

1.1.4 Mixture Models as Missing Data Models

Let us highlight that mixture models may then be naturally interpreted as missing data
models (typically in a clustering framework). From this point of view, the missing data is
the �label�, i.e. the component k from which the observation X arose (see Section 1.1.3).
Let us denote by a vector Z ∈ Rd this label. All its values are null, but the kth which
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value is 12. This variable is often a part of the quantities of interest, if not the quantity of
interest itself. But it is not observed in the clustering framework and has to be guessed
through the observations Xi.

The complete data is then the pair (X,Z). If the density function of this pair is
de�ned by

f(x, z; θ) =
K∏

k=1

(
πkφ(x;ωk)

)zk
, (1.3)

it can easily be checked that X is marginally distributed according to the Gaussian
mixture model with corresponding parameters.

When considering the (i.i.d.) sampleX1, . . . , Xn, the corresponding labels Z1, . . . , Zn
constitute an i.i.d. sample which marginal distribution is the distribution over
{1, . . . , K} with probabilities π1, . . . , πK .

This �missing data model� point of view is the key to the de�nition of the EM
algorithm (Section 1.2.2), to the de�nition of the ICL criterion (Section 2.1.4) and to
the new contrast that is proposed in Chapter 4.

Remark that mixture models also can be natural and precious tools as some or all of
the labels are available (semi-supervised or supervised classi�cation). Those frameworks
are not discussed here: see for example Chapelle et al. (2006) for further material upon
this topic.

1.2 Estimation in Gaussian Mixture Models

It is now assumed that a sample X1, . . . , Xn in Rd, from an unknown distribution f℘,
has been observed. We shall model it through a Gaussian mixture to be chosen in model
MK . K is �xed in this section.

The usual point of view of statistical estimation in a model is that the �true� dis-
tribution of the sample is assumed to belong to the model. But we do not wish here
to assume generally that f℘ ∈ MK . This would be in contradiction with the approxi-
mation point of view, and we will introduce in following chapters situations where it is
clearly wrong (typically, as the number of components is too small). Remark that such
an assumption would imply that K is exactly the true number of components of f℘ (it
cannot be smaller of course, but neither can it be greater because we exclude πk = 0 and
mixtures with two identical components so as to guarantee the identi�ability). However
some theoretical results cited in the following assume f℘ ∈MK . When this assumption
is not necessary, the target distribution is the one in model MK which approximates
�at best� f℘. In the maximum likelihood framework (Section 1.2.1), �at best� means the
distribution which Kullback-Leibler divergence (see below) to the true distribution f℘

is the smallest and the maximum likelihood estimator is actually a candidate estimator
to this distribution (Huber, 1967; White, 1982; Leroux, 1992).

Recall the de�nition of the Kullback-Leibler divergence between F and G, when F
and G are two distributions absolutely continuous with respect to the same measure λ

2By a slight abuse of the notation, Z will often be identi�ed with the corresponding component
index k.
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(taken here as the Lebesgue measure) with densities f and g:

dKL(F,G) =

∫
log

f

g
fdλ.

Recall this is a non-negative quantity, which is null if and only if F = G (i.e. f = g
except perhaps on a λ-zero measure set), and which measures the �distance� between
F and G, although it does not verify the properties of a mathematical distance (it is
notably not symmetric). It will often be written dKL(f, g).

Lots of methods to �t a mixture model to data have been proposed. Redner and
Walker (1984) and Titterington (1990) establish a long review upon this topic. The
quantity of e�orts that have been made to design and to perfect methods to �t mixture
models in various situations illustrates the interest they have been generating to for a
long time.

The �rst fruitful reported trials in this direction seem to go back to Pearson (Pear-
son, 1894), who computed some estimators of the parameters of a univariate Gaussian
mixture through the moments method. It consists of resolving equations obtained by
identifying moments linked to the distribution to be estimated (and then depending on
its parameters) with the empirical moments computed from the observations. Pearson
(1894) obtains this way for each estimator of this problem, expressions which depend on
a well-chosen root of a ninth-degree polynomial. As Redner and Walker (1984) show,
the methods which were developed until the rise of the computers in the 1960's were
mainly inspired from this approach... It is actually a�ordable, at least in numerous
particular cases, with low computation capabilities. It should nevertheless be thought
of how di�cult it might be to solve (by hand!) the equations as the dimension of the
data is greater than one, for example: it is then necessary to restrict drastically the
model.

The rise and progresses of computers from the 1960's and the possibility to achieve
more and more complex computations allowed another method to appear and to become
the most studied and employed one (Redner and Walker, 1984). The computing and
the optimization of the likelihood became actually possible and they took the place of
the moments method. This holds all the more since the use of the EM algorithm, which
makes those computations easier (Dempster et al., 1977, and others: see Section 1.2.2).
From then, mixture models became even more popular and employed. From now on,
this section is to deal with maximum likelihood estimation and the EM algorithm.

However, estimating the parameters of a mixture model is still a di�cult task, prac-
tically and theoretically. First of all, the usual approach of likelihood maximizing, which
consists of trying to optimize the likelihood equations obtained by identifying the log
likelihood �rst derivative with 0, does not enable to obtain explicit expressions of the
estimators. Their expressions are nonlinear with respect to the parameters and much
too complex to this end... Those equations then typically have to be solved by iterative
algorithms. The EM algorithm presented below is an example of iterative algorithm
which directly aims at maximizing the likelihood. But anyway, as Redner and Walker
(1984) highlight, we should be aware of the potentially poor behavior of maximum like-
lihood estimators in mixture models. This is all the more true when the components of
the mixture are not well separated. This is not surprising: actually, when the compo-
nents are clearly separated, the problem is almost the same as �tting each component of
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the mixture to the corresponding observations, independently from the others. Anyway,
there is, at this time and to our knowledge, no other approach which would outperform
likelihood maximization in this framework. The maximum classi�cation likelihood esti-
mator will be considered (see Section 1.4) but it will be seen that it answers an other
objective.

1.2.1 De�nition and Consistence Properties of the Maximum
Likelihood Estimator

Gaussian mixture models are now usually �tted through maximum likelihood estima-
tion. Maximum likelihood estimation, apart from heuristics and intuition, is essentially
justi�ed through asymptotic results. We shall see what particular di�culties this ap-
proach encounters in the framework of mixture models. First of all, we have to tackle the
unboundedness of the likelihood at the parameter space boundary. Theoretical asymp-
totic results then apply, but there still remains the special case of spurious maxima to
handle, as the available sample is actually �nite.

The likelihood of the distributions in modelMK is

∀θ ∈ ΘK ,L(θ;x1, . . . , xn) =
n∏

i=1

K∑

k=1

πkφ(xi;ωk)

(x1, . . . , xn) will often be omitted in the notation and it will then be written L(θ).

The maximum likelihood estimator in modelMK for the sample (X1, . . . , Xn) would
then at �rst sight be de�ned as

θ̂K ∈ argmax
θ∈ΘK

L(θ;X1, . . . , Xn).

But a major di�culty of Gaussian mixture models is encountered there: this maxi-
mum does not generally exist. The likelihood is actually not even always bounded, as
illustrated by the

Lemma 1
∀x1, . . . , xn ∈ Rd,∀K ≥ 2,∀(π1, . . . , πK) ∈ ΠK such that π1 = 10−10137

,
∀µ2, . . . , µK ∈ Rd, ∀Σ2, . . . ,ΣK ∈ Sd+,∀i ∈ {1, . . . , n},

L
(
(π1, . . . , πK , xi, µ2, . . . , µK , σ

2Idd,Σ2, . . . ,ΣK);x
)
−−−→
σ2→0

+∞

The value of π1 has been suggested in Le Cam (1991)!

Proof Let (π1, . . . , πK) ∈ ΠK such that π1 > 0, µ2, . . . , µK ∈ Rd,Σ2, . . . ,ΣK ∈ Sd+
and i0 be �xed. Let us denote for any σ > 0,
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θ(σ) = (π1, . . . , πK , xi0 , µ2, . . . , µK , σ
2Idd,Σ2, . . . ,ΣK).

logL(θ;X) =
∑

i 6=i0

log
K∑

k=1

πkφ(xi;ωk) + log
(
π1φ(xi0 ;xi0 , σ

2Idd) +
K∑

k=2

πkφ(xi0 ;ωk)
)

≥
∑

i 6=i0

log
K∑

k=2

πkφ(xi;ωk) + log
(
π1φ(xi0 ;xi0 , σ

2Idd)
)

The �rst term in this sum does not depend on σ and the second one tends to in�nity as
σ2 tends to zero. �

This unboundedness of the likelihood at the boundary of the parameter space is a real
di�culty, which has been widely discussed (Redner and Walker, 1984; McLachlan and
Peel, 2000, ...). It seems that two main approaches were proposed to tackle it.

But before discussing them, let us �rst recall why the maximum likelihood estimation
is used and what properties it is expected to ful�ll. Wald (1949) has proved in a general
setting, under a few assumptions that we do not discuss now, but which notably include
identi�ability of the model (its assumption 4), and that f℘ belongs to the considered
model (i.e. f℘ = f( . ;ω0) for a certain ω0), that:

Theorem 1 (Theorem 1 in Wald, 1949)
Let Ω̃ be any closed subset of the parameter space Ω which does not contain the true
parameter ω0. Then

P
[

lim
n→∞

supω∈Ω̃ f(X1;ω)f(X2;ω) . . . f(Xn;ω)

f(X1;ω0)f(X2;ω0) . . . f(Xn;ω0)
= 0

]
= 1.

(Although we employ here the notation we elsewhere reserve for Gaussian densities,
Wald (1949) proved this theorem for much more general models and densities f).

This theorem shows that, under the assumptions of Wald (1949), as soon as an
estimator ω̂ is de�ned such that its likelihood is greater than a constant times the
likelihood of the true distribution, this estimator is consistent (this is Wald's Theorem
2), in the sense that ω̂ −→ ω0 with probability 1. Maximizing the likelihood is an obvious
� but often di�cult � way to guarantee this property. This justi�es the attempts to
obtain consistent estimators through maximum likelihood.

Redner (1981) extended those results to non-identi�able models, and in particular
to mixture families. His results lie on the same assumptions as Wald (1949) but the
identi�ability. This is why, by analogy with the mixtures situation, we denote back
parameters as θ instead of ω in the identi�able case. Just think of θ as a mixture
parameter, but remember those of Redner (1981) are more general. To overcome the
non-identi�ability, Redner (1981) de�nes Θ0 as the set of parameters which distribution
is the same as θ0 (Θ0 = {θ : f( . ; θ) = f( . ; θ0)}), and obtains a result identical to
Theorem 1, with Θ̃ any closed subset of Θ not intersecting Θ0. Actually, he proves this
way the consistency of the maximum likelihood estimator in the quotient topological
space already de�ned to tackle the lack of identi�ability (Section 1.1.2). He applies this
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to mixture families when the existence of a maximum likelihood estimator is guaranteed
by the assumption that the parameter space is compact (and contains θ0).

Now, let us remark that those results suggest that exactly maximizing the likelihood
might not be necessary to �nd a consistent estimator. This is what allows to use
likelihood methods in the mixture framework, even when the likelihood is not bounded
over the parameter space. It suggests that other solutions should be a�ordable than
assuming the parameter space to be compact. But anyway, there is still the di�culty to
�nd a good estimate in the parameter space. Practically, likelihood maximization is not
used to design a sequence of estimators converging to the true parameter: n is given by
the data, and one has to choose one estimator. Maximum likelihood theoretical results
give heartening tracks to build it. Let us now go back to the approaches to overcome
the unboundedness of mixture models.

The one consists of restricting the model so that a global maximizer of the likeli-
hood exists. An obvious way of doing so is to choose a compact parameter space, in
which situation the results of Redner (1981) directly apply. It actually su�ces to have
the parameter space closed. This implies notably a di�culty concerning the mixing
proportions if one chooses to exclude zero proportions and for the covariance matrices:
the bound must be chosen such that the condition is true for the true corresponding
parameters. Remark that it is not necessary to impose bounds on the mean parameters,
since L → −∞ as µk → ∞ (this is proved for example for the univariate case in Red-
ner's proof of Theorem 2.1). Hathaway (1985), in the univariate case, de�nes another
constraint of this kind which is less restrictive: he imposes that

min
k,k′

( σk
σk′

)
≥ c > 0,

with c a constant to be chosen. This has the advantage that the corresponding de�ned
model is scale-invariant. This choice of c is in fact the �rst main di�culty with this
approach since it is needed that this constraint be veri�ed by the true distribution
(Redner (1981) assumes that it belongs to the model) � which is of course unknown!
The second di�culty is that it is not easy to compute the maximum likelihood estimator
under this constraint (see Hathaway (1986), who proposed a constrained EM algorithm
adapted to this situation). But under this condition, Hathaway (1985) shows that a
global maximizer of the likelihood exists and that it provides a converging estimator of
the true parameter (assuming the observations arise from a Gaussian mixture). This idea
may be generalized in the multivariate case. McLachlan and Peel (2000) highlights for
example that a global maximum likelihood estimator exists (and is strongly consistent) if
the covariance matrices of the components are imposed to be equal (this is an analogous
situation as the one-dimensional case with c = 1): the situation encountered in Lemma
1 may actually not occur under this restriction. This constraint could even be relaxed
slightly thanks to the decomposition exposed in Section 1.1.1: it su�ces for example
that the components covariance matrices determinants λk be imposed to be equal (∀k 6=
k′, λk = λk′) (Biernacki et al., 2003).

Let us cite the nice approach of Lindsay (1983). He states the problem of the
existence and the uniqueness (among others) of the maximum likelihood estimator in
the mixtures framework, from a geometrical point of view. He does not suppose the
number of components to be known and lets it to be free. By considering the convex
hull of the likelihood set (i.e. {(f(x1; θ), . . . , f(xn; θ)); θ ∈ ∪∞K=1ΘK}), he transforms
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the problem in a convex optimization problem. And so he proves the existence of
the maximum likelihood estimator as a mixture with less components than ñ, if ñ
is the number of distinct observations in (x1, . . . , xn), under the assumption that the
likelihood set is compact (which essentially means for us assuming det Σk ≥ σ0 > 0
and the parameter space is closed). Working in the convex hull of the likelihood set
is an interesting choice, in that it enables the resolution of some di�cult aspects of
the mixtures (notably the non-identi�ability of the simple parametrization). It means
working with densities instead of parameters.

Another approach could be based on the results of Peters and Walker (1978). They
assume the same regularity conditions about the mixture densities with respect to the
parameters as Chanda (1954) de�ned in a more general maximum likelihood framework,
and assume that the Fisher information matrix at the true parameter is positive-de�nite.
They are then able to prove (see their Appendix A) that a neighborhood of the true
parameter can be chosen such that, with probability one, as N −→ ∞, there exists a
unique solution of the likelihood equations in that neighborhood, and that this solution
is a maximum likelihood estimator, and then the unique strongly consistent maximum
likelihood estimator. One should then de�ne the maximum likelihood estimator in a
di�erent way than before so as to take into account the unboundedness of the likelihood,
hoping to catch this unique strongly consistent estimator:

De�nition 1 In model MK, the maximum likelihood estimator θ̂MLE

K for the sample
X1, . . . , Xn is de�ned as

θ̂MLE

K ∈ argmax

{
L(θ̃;X)

∣∣∣ θ̃ : θ̃ ∈ O ⊂ ΘK open and θ̃ = argmax
θ∈O

L(θ;X)

}
.

θ̂MLE

K then reaches the largest local maximum of the likelihood over ΘK.

If the true distribution lies in the interior of ΘK , then the conditions of Peters and
Walker (1978) apply (assuming the Fisher information matrix is positive-de�nite).

But there still remains in any case a practical di�culty. When maximizing the like-
lihood for a given sample, it may occur that the obtained solution corresponds to a
spurious local maximum . Suppose there are in the sample X1, . . . , Xn a few observa-
tions � say n1 � very close from each other, or which almost lie in a same subspace
which dimension is smaller than d. They constitute a little cluster that could be �tted
through one of the mixture components with a little covariance determinant. Then the
corresponding mixture distribution might win against the local maximum near the true
distribution, and the likelihood maximization be misleading... Let us highlight that
observations may occur such that this is possible, in any situation (notably even when
the parameter space is compact). This is a di�culty di�erent than the �rst-mentioned
unboundedness of the likelihood at the parameter space boundary: if the covariance
matrix is �decreased�, the likelihood is, too. Theoretical asymptotic results guarantee
that when the number of observations increases, this spurious estimator will not be able
to win against another estimator closer to the true distribution any more. As a matter
of fact such clusters have small probability to occur as n −→ ∞. But in practice, only
�nite samples are available!

From a practical point of view, it will be seen that the optimization of likelihood
through the EM algorithm often leads to solutions near a likelihood local maximum,
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in the interior of the parameter space. And one then aims at �nding the one which
likelihood is the greatest. Maxima linked to the unboundedness of the likelihood may
be avoided by imposing constraints on the parameters, or by verifying that the obtained
solution does not contain a component with very small covariance matrix determinant.
This last veri�cation seems to be adapted also to avoid spurious maxima. But no easy
systematic solution seems to be available, which would not imply the human judgment...
In practice however, this is not too di�cult as long as K is not exaggerated as compared
with the true number of components and as n is not tiny.

1.2.2 EM

According to McLachlan and Peel (2000), a huge majority of papers dealing with mixture
modeling published after 1978 use the EM algorithm. Another evidence of the impact
of the EM algorithm might be the fact that Dempster et al. (1977) was, in June 2009
and according to Google Scholar, cited over 19000 times... even if such �gures must
obviously be handled with care. Its advent really made the �tting of mixtures tractable.
It is an iterative algorithm to maximize the likelihood. Several authors (see the overview
of Redner and Walker (1984) upon this topic) proposed as soon as in the 1960's iterative
algorithms to compute the maximum likelihood estimator with mixtures, lot of which
have been shown later to be particular applications of the EM algorithm (See for example
Shlezinger, 1968). Peters andWalker (1978) for example consider an iterative generalized
de�ected gradient algorithm to solve the likelihood equations and obtain a particular
case of the EM algorithm, and a generalized version of it. But it was �rst formulated
and studied in a general setting � which is incomplete data setting � in Dempster
et al. (1977). We will follow their derivation of the EM algorithm, which arose from the
missing data interpretation of mixture models, on the contrary to most of the preceding
derivations of particular cases of this algorithm, which were deduced from attempts to
set the log likelihood derivative to 0 by iterative algorithms. The approach suggested by
Dempster et al. (1977) is more general, and moreover provides an interesting theoretical
framework. It enables to study the EM algorithm from a theoretical point of view and
obtain results quite naturally. The fundamental property of the EM algorithm (Theorem
2 below: this is the property of monotonicity of the likelihood along the iterations of
the algorithm) notably, was expected to be true but not proved (Peters and Walker,
1978 suggest it from their experience as a �conjecture� but �have been unable to prove
[it]�). The application of the EM algorithm to mixture models is also widely discussed
in Redner and Walker (1984). The EM algorithm is based on the observation that,
considering the missing data interpretation of mixture models (see Section 1.1.4), it is
much easier to maximize the likelihood of the complete data than that of the observed
data. According to the density expression in (1.3), the complete log likelihood is

logLc

(
θ; (x1, z1), . . . , (xn, zn)

)
=

n∑

i=1

K∑

k=1

zik log πkφ(xi;ωk). (1.4)

Actually, maximizing this complete log likelihood amounts to maximizing each compo-
nent independently from the others, with respect to the observations Xi assigned to
it (i.e. such that Zik = 1). In the situation we consider, where the components are
Gaussian distributed, this is an easy task.
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Of course, the labels Zi are unobserved. So that one has to maximize actually
Eθ̃ [logLc(θ;X,Z)|X], with θ̃ to be precised. This will involve the conditional probabili-
ties of each component k:

∀k,∀x,∀θ ∈ ΘK , τk(x; θ) =
πkφ(x;ωk)∑K

k′=1 πk′φ(x;ωk′)
. (1.5)

τk(Xi; θ) is the probability that the observation arose from the kth component, condi-
tionally to Xi, under the distribution de�ned by θ. It will also be written τik(θ).

Since one has to choose a parameter θ̃ under which to compute the conditional
expectations, Dempster et al. (1977) proposed an iterative procedure, in which θ̃ is the
current parameter. They named it EM from the respective names of each one of its two
steps.

Let us describe the two steps of the algorithm when θj is the current parameter.
θj+1 is to be computed.

E step Compute for any θ ∈ ΘK , Q(θ, θj) = Eθj [logLc(θ;X,Z)|X]. According to (1.4),
this amounts to computing each τ jik = τk(Xi; θ

j).

M step Maximize Q(θ, θj) with respect to θ ∈ ΘK to get θj+1.

There is no di�culty about the E step. The M step is much more tractable than the
maximization of logL(θ) since Q(θ, θj) is a weighted sum of Gaussian log-densities. In
many cases (it depends on the chosen model and the constraints), a closed-form expres-
sion of the solution for the M step can be obtained: exactly as when maximizing the
complete likelihood, the M step consists of maximizing each component independently,
but each observation contributes to each component according to its corresponding pos-
terior probability. The M step may be more di�cult typically when the model at hand
introduces dependencies between the di�erent components parameters (for instance as
the covariance matrices are imposed to be equal). See for example Biernacki et al.
(2006), where the M step is detailed for all the 28 models de�ned by Celeux and Go-
vaert (1995). Most of those M steps are closed-form. In case they are not, iterative
procedures to approximate them are proposed.

Some theoretical as well as numerical results about the convergence properties of the
solutions obtained by the EM algorithm justify the appeal for the EM algorithm. See
Redner and Walker (1984) for an extensive synthesis of those results. We shall only cite
(see for example the Theorem 1 in Dempster et al. (1977)) the

Theorem 2 (Fundamental Property of the EM Algorithm)
∀θ, θ′ ∈ ΘK

Q(θ′, θ) ≥ Q(θ, θ) =⇒ L(θ′) ≥ L(θ),

with equality if and only if Q(θ′, θ) = Q(θ, θ) and τk(x; θ) = τk(x; θ′) for any k and
almost every x.

The condition in Theorem 2 is even weaker than the one imposed in the M step (in
which Q(θj+1, θj) ≥ Q(θ, θj) for any θ ∈ ΘK). It then applies and guarantees the
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monotonicity of the likelihood along the iterations of the EM algorithm, which is an
appealing property.

Redner and Walker (1984) even prove a linear convergence of the sequence of es-
timators obtained through the EM algorithm, to the consistent maximum likelihood
estimator (Theorem 4.3 in Redner and Walker (1984) in a general missing data frame-
work and Theorem 5.2 for an application to mixtures). It mainly assumes the Fisher
information matrix at the true parameter to be positive de�nite, and that the initial-
ization parameter of the algorithm, say θ0, is su�ciently near the maximum likelihood
estimator θ̂MLE

K .

This last assumption is actually very important: the monotonicity of the likelihood
is appealing, but the log likelihood is not convex. A consequence is that the algorithm
can at best approach a local maximum which lies near the initialization parameter:
whenever this initialization parameter is near a spurious maximum, there is no hope
that the algorithm leaves its attraction to approach the greatest local maximum... This
highlights the importance and the di�culty of the initialization step, i.e. of the choice
of the �rst parameter θ0. It is necessary to provide to the EM algorithm a good initial
parameter. Several strategies were proposed to this end. The most classical and simple
one consists of choosing K observations at random and to initialize the algorithm with
their coordinates as means, the estimated variance (along each dimension) of the whole
sample as (diagonal) covariance matrix and the proportions being equal. The EM algo-
rithm is then run for a while, and this whole procedure is repeated several times. The
parameter among those obtained which has the highest likelihood is chosen as an initial
parameter. Actually, this strategy can be improved by choosing the initial means at
random according to a normal distribution (for example) centered at the sample mean
and with covariance matrix the empirical covariance. This introduces a greater variabil-
ity of the candidate initial parameters. More elaborated strategies have been proposed
(see Biernacki et al., 2003), notably:

Small_EM Called short runs of EM in Biernacki et al. (2003). Choose several random
starts and run a very little number of iterations of EM each time. Choose the one of
those solutions maximizing the likelihood to initialize a long run of EM. Repeat all
of this procedure several times, and choose the solution maximizing the likelihood.

CEM The CEM algorithm will be introduced in Section 1.4.1. The corresponding ini-
tialization strategy consists of a few runs of CEM from random positions followed
by a long run of EM initialized at the solution maximizing the complete likelihood
among those obtained by CEM.

SEM The SEM algorithm, which is a Stochastic EM (Celeux and Diebolt, 1985), pro-
vides a Markov chain expected to spend much time near local maxima, and par-
ticularly near the greatest local maximum. Biernacki et al. (2003) then suggest
two initialization steps involving SEM: �rst, a run of SEM may be followed by a
run of EM initialized at the parameter obtained by computing the mean of the
parameters obtained along the sequence provided by SEM. Second, a run of SEM
may be followed by a run of EM initialized at the solution of the sequence provided
by SEM which reaches the highest likelihood value.

The idea underlying those initialization steps is to explore the parameter space at best



34 The MAP Classification Rule

and to expect �nding a sensible solution to initialize EM at nearest from the optimal
maximum. According to the authors, those three procedures often beat the simple
random starts procedure, but none can be declared to be better than the others inde-
pendently of the data and the model.

Other procedures have been proposed. Ueda and Nakano (1998) for example, pro-
posed an annealing algorithm called DAEM (Deterministic Annealing EM). It consists
of choosing a temperature 1

β
, and maximizing through EM an energy, which is a quan-

tity linked to the likelihood, and is even smoother that β is close to 0. This provides
a new initialization value for the next E step, to be used to maximize once more the
energy through a new M step, but at a greater temperature, and so on until the reached
temperature is 1 (in which case the maximized energy is the quantity which is involved
in the classical EM algorithm). The hope of such a procedure is that, smoothing the
quantity to be maximized, the EM algorithm has the possibility to leave the attraction
of a spurious cluster, and to pass through the likelihood valley that would exist between
it and a better solution. McLachlan and Peel (2000, Chapter 2) and Biernacki et al.
(2003) do not recommend the use of this algorithm since it is quite long to perform and
may be bene�t only in some particular situations.

Finally, the main di�culty concerning the EM algorithm consists of being able to
provide it a sensible initialization parameter. This is particularly a di�cult task when
the number of components to be �tted is greater than the true number of components,
and situations are introduced subsequently where such a case is of interest. This notably
happens as the slope heuristics is applied: see Section 3.3 for example. As we mainly
used the mixmod software (Biernacki et al., 2006) to run the EM algorithm when
computing maximum likelihood estimators, we mainly used the initialization strategies
proposed by Biernacki et al. (2003), and which the mixmod software provides. Among
those strategies, the small_EM was used at most, but in a little di�erent way than the
software does: we inserted the mixmod runs in a loop to strengthen its results and
chose the best solution obtained.

1.3 The MAP Classi�cation Rule

Recall we want to interpret the �tted components as classes: in view of the clustering
task, we hope the Gaussian components shall re�ect the subpopulations. This is an
assumption on the shape of the classes, which are expected to look like Gaussian densities
(i.e. classes should have ellipsoid shapes). The choice of the model is then an assumption
on the expected shape of the classes: choosing for instance a spherical model (say
[pk_L_I] in the notation of Celeux and Govaert, 1995) means to be looking for spherical
classes with equal volumes, but perhaps di�erent sizes, etc. From this point of view, the
constraints imposed on the model are also assumptions about the classes. It is expected
that the obtained mixture will be informative, perhaps bring informations about the
structure of the subpopulations, and help decide which observation should be assigned
to which class. This is why we introduced Gaussian mixture models. Suppose a number
K of components has been chosen, and an estimator θ̂K (typically θ̂MLE

K ) in modelMK is
available. There still remains to de�ne a classi�cation rule, so as to split the observations
among K classes.
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1.3.1 De�nition

We de�ne to this aim the usual MAP (forMaximum A Posteriori) rule. We have already
de�ned in (1.5) the conditional probability of component k, which is conditional to the
observation of X:

τk(x; θ) =
πkφ(x;ωk)∑K

k′=1 πk′φ(x;ωk′)
·

This rule has a Bayesian �avor and τk(x; θ) is sometimes called the a posteriori proba-
bility of component k. Remark that

τk(x; θ) =
f(x, k; θ)

f(x; θ)
·

τk(X; θ̂MLE) is the maximum likelihood estimator of the probability that X arose from
component k, conditionally to X. It is then natural to assign to x the label ẑMAP (which
dependency on θ̂MLE

K is omitted in the notation when not ambiguous) maximizing this
probability:

ẑMAP(θ̂MLE) = argmax
k=1,...,K

τk(x; θ̂MLE)

(This maximum exists and is unique except perhaps on a set of measure zero).

The same can be done with any estimator θ̂:

ẑMAP(θ̂) = argmax
k=1,...,K

τk(x; θ̂).

From a decision-theoretic point of view, this rule may be justi�ed as the maximum
likelihood estimation of the Bayes rule: see McLachlan and Peel (2000, Section 1.15.2).

1.4 Classi�cation Likelihood

An alternative point of view about mixture models arises from the missing data ap-
proach. The likelihood as de�ned in Section 1.2 is linked to the modelMK , as de�ned
in (1.1). This likelihood will be named observed likelihood when necessary. Considering
mixture models as missing data models, as exposed in Section 1.1.4, we saw that an
other density function is associated with the model, and then the corresponding likeli-
hood is to be di�erent, too. This leads to the so-called classi�cation likelihood approach,
which is also called complete data likelihood for obvious reasons.

1.4.1 De�nition and Maximization through the CEM Algorithm

Denoting (X,Z) = ((X1, Z1), . . . , (Xn, Zn)) a complete data sample, the corresponding
likelihood is :

∀θ ∈ ΘK , Lc(θ; (x1, z1), . . . , (xn, zn)) =
n∏

i=1

K∏

k=1

(
πkφ(xi;ωk)

)zik . ((1.4) recalled)



36 Classification Likelihood

Some authors tried to take advantage of the obvious link of this likelihood with the
clustering purpose (Scott and Symons, 1971; Celeux and Govaert, 1995). The labels
Z being unobserved, the classi�cation likelihood then has to be maximized both with
respect to the parameter θ and to the labels, which are so considered themselves as
parameters of the problem. This means optimizing the partitioning of the data and
the parameters of each �tted component at the same time (since the assignments are
deterministic here). This approach is then somewhat intermediate between model-based
clustering and non-model-based approaches. As Celeux and Govaert (1992) have shown,
maximizing the classi�cation likelihood when the models at hand are spherical (the
covariance matrices are Id) and the components are imposed to have equal volumes, is
equivalent to the k-means approach. They have also shown (Celeux and Govaert, 1995)
the equivalence of this method with several other more or less well-known inertia type
criteria, according to the chosen model (among those de�ned in Section 1.1.1). This is
interesting �rst since it provides a generalization of those criteria and the possibility to
both unify them and extend them to di�erent models. And it also allows to study those
geometrical criteria from a statistical point of view.

Celeux and Govaert (1992) also proposed an algorithm derived from EM, which they
called Classi�cation Expectation Maximization (CEM), to compute the maximum clas-
si�cation likelihood estimator. It su�ers from the same kind of initialization di�culties
as EM, but in a perhaps less di�cult fashion. Actually, it is seemingly like the k-means
algorithm from this point of view: when the partition of the data (or equivalently, the la-
bels) is chosen, the maximization is quite easy since it reduces to K Gaussian likelihood
maximizations, a Gaussian component being �tted to the data assigned to it, indepen-
dently from the other observations. Then it would �su�ce� to try all possible partitions
of the data to be sure to �nd the maximum classi�cation likelihood. Obviously such an
exhaustive search is de�nitely intractable as soon as n is not tiny.

Let us describe this CEM algorithm. Let θj be the current parameter. Here is how
θj+1 is updated:

E step Compute all τ jik = τk(xi; θ
j).

C step �C� stands for Classi�cation step. Assign to each observation its most probable
label, derived from the τ jik's. With the notation already de�ned, this is ẑMAP

ik (θj).

M step Maximize Lc(θ;x, ẑ
MAP(θj)) with respect to θ ∈ ΘK to get θj+1. This is equiv-

alent to

πj+1
k =

card({i : ẑMAP
ik (θj) = 1})
n

;

ωj+1
k = argmax

ω

∑

{i:ẑMAP
ik (θj)=1}

log φ(xi;ω).

The di�erence with the EM algorithm then lies in the �C� step, which imposes a de-
terministic assignment of the labels, instead of weighting each one according to the
conditional probability of each component. Remark that whatever the initialization,
the algorithm converges to a stationary state within a �nite number of iterations. This
makes it easier to try a great number of initialization parameters.
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1.4.2 From L to Lc

We shall stress an important algebraic relation between the observed and classi�cation
likelihoods, �rst presented in Hathaway (1986):

∀θ ∈ ΘK , logLc(θ) =
n∑

i=1

K∑

k=1

zik log πkφ(xi;ωk)

=
n∑

i=1

K∑

k=1

zik log
πkφ(xi;ωk)∑K
j=1 πjφ(xi;ωj)︸ ︷︷ ︸

τk(xi;θ)

+
n∑

i=1

1︷ ︸︸ ︷
K∑

k=1

zik log
K∑

j=1

πjφ(xi;ωj)

︸ ︷︷ ︸
logL(θ)

= logL(θ) +
n∑

i=1

K∑

k=1

zik log τk(xi; θ).

(1.6)

1.4.3 Entropy

The di�erence between logL and logLc shall often be considered, when the labels Z are
replaced by their conditional probabilities τ . It can be expressed through the entropy
function:

∀θ ∈ ΘK ,∀x ∈ Rd, ENT(θ;x) = −
K∑

k=1

τk(x; θ) log τk(x; θ). (1.7)

Then (1.6), with the labels Z replaced by their conditional probabilities τ , becomes

logLc(θ;x, τ (θ)) = logL(θ;x)− ENT(θ;x),

where ENT(θ;x) =
∑n

i=1 ENT(θ;xi).

The de�nition of the criterion ICL (see Section 2.1.4) and the new contrast involved in
Chapter 4 are based on this quantity. Its properties are further discussed in Section 4.2.2.

1.5 Example

Let us consider a simple simulation study to illustrate the preceding de�nitions, prop-
erties and discussions. The treated example shall be continued in Chapter 3.3.3 and
Chapter 4.4.6.

Example 1 Consider a sample from a four-component Gaussian mixture in R2. The
covariance matrices are imposed to be diagonal, which corresponds to the [pk_Lk_Bk]
model of Celeux and Govaert (1995). The sample has size n = 200. The true complete
data (which is known from the method of simulation) is represented in Figure 1.1. This
example then takes place in a situation with four subpopulations which have Gaussian
shape each. The �observed� data is then what appears in Figure 1.2: we have to �forget�
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Figure 1.2: The observed data
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the labels to obtain it. We suppose here that we know we want to design four classes
from this data.

The usual model-based clustering approach consists then, as described in this chapter,
in �tting a mixture model through maximum likelihood estimation to the data, and then
designing classes according to the MAP rule.

Let us �t the modelM4 with form [pk_Lk_Bk], by the EM algorithm. We did so by
the use of the mixmod software with a small_EM initialization step (see Section 1.2.2).
The obtained Gaussian mixture and the corresponding MAP classi�cation are reported
in Figure 1.3.
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Figure 1.3: Classi�cation through MAP under θ̂MLE
4

Ellipses represent isodensity curves corresponding to each component of the mixture under θ̂MLE
4

The obtained classi�cation looks like the true one (Figure 1.1). But there are a
few errors (see Figure 1.4), all of which obviously lie in the region of the intersection
of the two oblate components: in this region, it is never clear to which component an
observation should be assigned. The component probabilities conditionally to those ob-
servations have value about one half for each one of the two oblate �tted components
and the label assigned by MAP is then quite doubtful. The inspection of the conditional
probabilities should warn the statistician against this situation. He shall be con�dent in
the classi�cation of all observations assigned to the upper left class, since their condi-
tional probabilities are about 1 for this class, and 0 for the others. But he will be careful
with the classi�cation of the observations at the intersection of the �cross�, since their
posterior probabilities never have value close to 1...

Let us �nally remark that the maximum likelihood estimates well the true parameter.
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Figure 1.4: In black diamonds, the observations misclassi�ed through MAP under θ̂MLE
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Ellipses represent isodensity curves corresponding to each component of the mixture under θ̂MLE
4
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Model-based clustering basics have been introduced in Chapter 1. The number of
classes to be designed was assumed to be known there. Now, as clustering consists
of designing classes when no label has been observed, it may de�nitely be � and it
currently occurs in practice � that the number of classes to be designed is unknown.
This chapter introduces the main matter of this thesis, which is the choice of the number
of classes. The main reference for all which is concerned in this chapter, with a lot of
further material and discussions, is McLachlan and Peel (2000).

Gaussian mixture models can be used in a clustering purpose. The usual model-
based clustering approach consists of �tting the modelMK for each one of the possible
number of classes K ∈ {Kmin, . . . , Kmax} through maximum likelihood estimation, as
explained in Section 1.2, to select a number of classes on the basis of the results of this
estimation step, and to assign classes to the observations according to the MAP rule
(see Section 1.3). Remark that this point of view is tightly related to the implicit choice
that each class has to be identi�ed with one of the mixture Gaussian component, as
already discussed in the introduction of Section 1.3. One possible number of compo-
nents corresponds to each model. Therefore selecting the number of components can be
thought of as a model selection question. We shall see in Section 2.1 how the number
of classes is usually chosen in this framework through the so-called penalized likelihood
criteria. The classical criteria AIC and BIC are introduced respectively in Section 2.1.2
and Section 2.1.3. The ICL criterion has been derived especially in a clustering purpose.
Its study is the �rst motivation of this thesis, and it is introduced in Section 2.1.4.

Now, the choice of identifying one class with each component might be questionable.
Actually, in many situations, the classes' shapes have no reason to be �Gaussian�. In
this case, other component densities might be employed, but it may also be wanted to
take advantage of the nice approximation properties of Gaussian mixtures. That is, one
may want to model each class itself through a Gaussian mixture. The distribution of
the entire data would then be a mixture of those mixtures. We will show in the second
section of this chapter how it can be done by identifying as �clusters� (see the discussion
about components, clusters and classes below) the Gaussian components to be merged.
Classes are then assigned according to those clusters, and not to Gaussian components
anymore, and their number is smaller than the number of components.

Classes: Components, Clusters?

Let us stress the di�erences between what is meant here by those three di�erent notions
of component, cluster and class.

The aim of clustering � as well as classi�cation, by the way � is to design classes.
A class is a group of data. The observations gathered in a same class are expected
to come from a same subpopulation with speci�c features. A class can be designed
from di�erent points of view. The two main approaches are to design classes either
by identifying one to each component of a �tted mixture (model-based clustering: see
Section 2.1 and Chapter 4), or from a more intuitive and informal notion of cluster.
Hybrid approaches may also be considered (see Section 2.2 and Chapter 7).

The notion of (mixture) component is a probability notion, and it has been rigorously
de�ned in Section 1.1.1: it is one of the Gaussian (e.g.) densities which is involved in a
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mixture.

We have not met the notion of cluster yet: it is rather linked to the geometrical
idea of a group of observations which are close to each other and that we intuitively
would not separate. This notion is not well de�ned: all authors do not agree, for
example, about the question whether two much overlapping Gaussian components with
very di�erent shapes should be considered as one cluster or two, and how to decide it
(see for example Hennig, 2009). Non-model-based clustering approaches such as the
k-means types clustering methods, are based on this notion.

We would then rather defend the name of �unsupervised classi�cation� for the pur-
pose of designing classes from data when no label is available. The usual term of
�clustering� is however employed in this thesis, as it is the usual dedicated term, in spite
of the fact that it rather suggests a classi�cation from the �cluster� point of view.

2.1 Penalized Criteria

Penalized criteria are introduced by considering one model for each considered number
of components, notably for the sake of simplicity of the notation. However, the same
criteria may be useful to select between several kinds of models for each considered
number of components (homoscedastic or not, Gaussian components or not, etc.). It
might for example be of interest to know whether the classes have equal volumes or not,
etc. See for example Biernacki and Govaert (1999) upon this. It might even be necessary
to use such criteria to select at the same time the variables which are interesting to design
the clustering: see Maugis and Michel (2009), Maugis et al. (2009).

It should be cautioned that the AIC (Section 2.1.2) and the BIC (Section 2.1.3)
criteria we are to describe were not designed in a clustering purpose. They were rather
designed in a density estimation purpose. The philosophy of model-based clustering
when using those criteria is then to look for the best estimation and approximation of
the observations' distribution, and to trust this distribution to recover classes. One of
the aims of this work is to show that the point of view which allows to understand the
ICL criterion (Section 2.1.4), which has been derived in a clustering purpose, is radically
di�erent. This does not seem to be commonly accepted and is defended in Chapter 4.
But we shall �rst explain how those criteria were elaborated.

Other approaches have been proposed and studied to evaluate the number of com-
ponents of a mixture. Let us quickly introduce them. One consists of evaluating the
number of modes of the distribution to assess the number of components. But a mixture
of two normals might be unimodal. Moreover, this approach does not have the �exibil-
ity of mixture models (for example, in terms of shape of the �tted models), and does
not provide as much interpretation possibilities. Titterington et al. (1985) explain and
discuss this approach and how to apply it, particularly about the problem of assessing
bimodality against unimodality. Another interesting method is based on likelihood ratio
tests. This is probably the most natural statistical approach, but it does not allow to
compare all the models at once as the penalized likelihood criteria do, and it is even
only valid in nested models situations. Moreover it su�ers from the non-identi�ability
of mixture models as the number of components is too great. The general asymptotic
distribution of the likelihood ratio statistic had been long unknown, and was only known
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in particular cases, or conjectured through simulations. McLachlan and Peel (2000) dis-
cuss those results, but also suggest to work around this di�culty by bootstrapping the
likelihood ratio test statistic. Finally, Dacunha-Castelle and Gassiat (1999) introduced
a �locally conic parametrization� of mixture models and succeeded in computing this
asymptotic distribution, under quite strong regularity assumptions which are ful�lled
by Gaussian mixture models, at least in the spherical case (covariance matrices propor-
tional to the identity), all components having the same covariance matrix, when the
parameter space is compact and πk > 0 (Keribin, 2000). This partly solves the problem
since the asymptotic distribution, although explicit, is di�cult to evaluate. The authors
suggest it could be itself bootstrapped.

2.1.1 De�nition

The general idea of penalized likelihood criteria is the following. There is no reason to
choose among the available models according to the maximum likelihood value reached
in each one of them (L(θ̂MLE

M )). As a matter of fact, the likelihood is expected to mostly
increase with the model complexity, notably as the models are nested. A relevant crite-
rion can be based on the likelihood values, but the model selection paradigm suggests
that it should be penalized. The criterion typically looks like

crit(K) = logL(θ̂MLE
K )− pen(K)

where pen(K) > 0 may depend on n and even on the data (in which case the penalty is
said to be data-driven).

The selected number of components is then

K̂ = argmax
K∈{Kmin,...,Kmax}

crit(K).

Note that K may be replaced by any model index if several models were to be compared
for each K.

Let us now see how such classical penalties have been de�ned. They come from
various considerations, but have in common to be fully justi�ed only under identi�ability
conditions which may break down for mixture models. Let us then assume what is
necessary, so that their derivation is justi�ed. We already discussed those conditions
when considering the identi�ability of the Gaussian mixture models and the de�nition
of maximum likelihood estimators.

It is interesting to consider what can be said from a general point of view, about
the procedure. As already mentioned, we do not wish to assume that f℘ is a mixture
distribution from anyMK∗ . White (1982) proved consistency and asymptotic normality
of the maximum likelihood estimator in a general model (under regularity conditions),
as the true distribution does not lie in the considered model (misspeci�ed model). In
this case, he proved the target distribution f 0

M to be the distribution in this model
which minimizes the Kullback-Leibler divergence to the true distribution. Nishii (1988)
continued on those works by studying, in the misspeci�ed model case (which means here
that none of the considered models contains the true distribution f℘), which penalties
de�ne a strongly (resp. weakly) consistent procedure, in the sense that K̂ converges
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almost surely (resp. in probability) to K0, which is the less complex model among those
considered minimizing dKL(f℘,MK):

dKL(f℘,MK) = min
f∈MK

dKL(f℘, f) = dKL(f℘, f 0
K);

Let θ0
K ∈ ΘK s.t. f 0

K = f( . ; θ0
K);

K0 = min argmin
K∈{Kmin,...,Kmax}

dKL(f℘,MK).

In case f℘ ∈ MK∗ , K0 is the smallest K such that f℘ belongs to MK (and then
K0 ≤ K∗).

The results of Nishii (1988) we are to discuss were extended in the mixture frame-
work under quite strong regularity conditions by Leroux (1992) for the underestimation.
Keribin (2000) dealt both with the under- and the overestimation, basing her results on
the locally conic parametrization of Dacunha-Castelle and Gassiat (1999). She proved
her assumptions to be ful�lled in particular by �nite Gaussian mixtures, under the same
identi�ability conditions we assume, with means parameters lying in a compact space,
and covariance matrices spherical and lower-bounded (σ2Id, with σ2 ≥ σ2

0 > 0).

Nishii (1988) considers penalties of the form pen(K) = cnDK , with DK the di-
mension of the model (the number of free parameters needed to parametrize it) and
where cn does not depend on the data. This kind of penalties include AIC and BIC.
He computes the order of convergence of the involved maximum likelihood estima-
tors. And so, he proves that, as soon as cn = o(n), the penalized criterion cannot
asymptotically underestimate K0. Actually,

(
logL(θ̂MLE

K ) − logL(θ̂MLE
K′ )

)
must be of

order n
(
dKL(f℘, f 0

K) − dKL(f℘, f 0
K′)
)
, as soon as

(
dKL(f℘, f 0

K) − dKL(f℘, f 0
K′)
)
6= 0.

Suppose K < K0. Then, asymptotically, crit(K0) − crit(K) is of the same order as
n
(
dKL(f℘, f 0

K0
)− dKL(f℘, f 0

K)
)
which converges to −∞ as n does.

Now, the overestimation case (K > K0) is more di�cult to handle since it requires
to have a control over the �uctuations of the di�erence between 1

n
logL(θ̂MLE

K0
) and

1
n

logL(θ̂MLE
K ) which now converges to zero. Nishii (1988) proves a penalty such that

cn
log logn

→∞ su�ces to guarantee the strong convergence, and that the weak convergence
is guaranteed as soon as cn →∞.

Of course, those results once more only allow to justify the criteria asymptotically.
But they o�er a theoretical framework in which to compare the expected behavior of
those criteria. The results of Nishii (1988) illustrate how much work it remains to (de�ne
and) design �optimal� penalties: they restrict the possible penalties to a still quite large
family (between log log n and o(n)). Penalties verifying those conditions can be very
di�erent and obviously have quite di�erent behaviors for �nite n. Notably, Nishii (1988)
assumed the penalty to be proportional to the dimension. Keribin (2000) does not
assume such a shape of the penalty, and the results she obtains does not provide any
insight about this. Nonasymptotic oracle results (Massart, 2007, for example) allow to
de�ne more precisely the necessary shape of the penalty, (typically, up to a constant:
see Section 3.1.2 and Section 3.2.1).

We are now to consider classical particular penalties.
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2.1.2 AIC

Akaike (1973) de�ned the �rst one of those criteria, by considering 1
n

logL(θ̂MLE
K ) as an

estimator of
∫
f℘ log f( . ; θ̂MLE

K )dλ = −dKL(f℘, f( . ; θ̂MLE
K )) +

∫
f℘ log f℘dλ,

which he aims at maximizing (the
∫
f℘ log f℘dλ term does not depend on K and can be

forgotten). But since the same data are used to design the maximum likelihood estimator
θ̂MLE and to estimate its divergence to f℘, a bias is induced. The empirical distribution
Fn of the data is indeed typically closer to f( . ; θ̂MLE) than the true distribution f℘.
The intuition about this may be shaped through the (very!) particular case with n = 1:
if the sample is X1, then Fn = δX1 and

∫
Fn log f( . ; θ̂MLE

K ) = log f(X1; θ̂MLE
K )

= M

>

∫
f℘(x) log f(x; θ̂MLE

K )dx,

where M = maxθ∈ΘK log f(x; θ) does not depend on x, except perhaps if there are
constraints about the means in ΘK : we assumed here there are not.

It is then necessary to estimate the bias

B(K) = Ef℘
[

1

n
logL(θ̂MLE

K )−
∫
f℘ log f( . ; θ̂MLE

K )

]
,

where the expectation Ef℘ concerns both L and θ̂MLE
K .

By the way, this suggests a quite natural cross-validation procedure (Smyth, 2000),
since there would be no bias if independent samples were employed to compute θ̂MLE

K on

the one hand and to estimate the expectation Ef℘
[
log f(X; θ̂MLE

K )
]
by the law of large

numbers, with θ̂MLE
K considered as deterministic, on the other hand.

Akaike's fashion was to show that B(K) is asymptotically (approximately) equal to
DK , which is the number of free parameters necessary to describe the model ΘK . This
justi�es the de�nition of An Information Criterion (AIC, now called Akaike's Information
Criterion):

critAIC(K) = logL(θ̂MLE
K )−DK .

A rigorous derivation of this criterion under mild regularity condition can be found
in Ripley (1995, Section 2.2). This yields a criterion which has been proved to be
asymptotically e�cient (see for example Yang, 2005 for de�nitions of those notions and
further references).

However, even when the distribution of the data is available at least in one of the
models at hand, it has often been observed that the AIC criterion tends to overestimate
the true number of components. Indeed, this criterion (asymptotically) aims at mini-
mizing the Kullback-Leibler divergence to the true distribution. And it should do so:
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the Nishii's condition penAIC(K) = o(n) is ful�lled, and it should then not underesti-
mate the true number of components. But the penalty is not heavy enough to ful�ll
the other Nishii's condition, and there is no guarantee that it does not overestimate the
true model. This is not an �identi�cation� criterion (Yang, 2005), and it is thus not
adapted to recover the true number of components, even when available. Actually, the
simulations clearly show that it is not interesting for the purpose of selecting a relevant
number of classes in clustering.

2.1.3 BIC

Schwarz (1978) derived a penalized criterion from Bayesian considerations.

He considers the integrated likelihood in modelM:

p(X) =

∫
p(θ,X)dθ

=

∫
L(θ)︸︷︷︸
p(X|θ)

p(θ)dθ,

where p(θ) is the prior distribution of θ. This is an interesting choice: instead of only
taking into account the likelihood of what a model can do at best, the �mean� behavior
of the whole model, with respect to the data, is integrated this way into the study. A
wide, complex model of course has greater chances to include distributions very close
to the empirical distribution related to the data, but it also includes more poor-�tting
distributions than a more parsimonious model: considering the integrated likelihood
is then in some sense an approach to deal with the complexity of the models. But
its computation is obviously mostly intractable, particularly with as complex models
as mixtures. Let us see how Schwarz (1978) derived a penalized criterion from this
approach. Writing θ̃ for the mode of p(θ, x),

log p(θ,X) ≈ log p(θ̃,X)− 1

2
(θ − θ̃)′H(θ̃)(θ − θ̃)

and (assuming that the posterior is well concentrated around its mode)

p(X) ≈ p(θ̃,X)

∫
e−

1
2

(θ−θ̃)′H(θ̃)(θ−θ̃)

≈ p(θ̃,X)
(2π)

D
2√

detH(θ̃)
·

Which provides the Laplace's approximation

log p(X) ≈ logL(θ̃) + log p(θ̃) +
D

2
log 2π − 1

2
log detH(θ̃).

Now, replace θ̃ by θ̂MLE and H(θ̃) = ∂2

∂θ2 (log p(θ,X))|θ̃ by I(θ̂MLE) = ∂2

∂θ2 (logL(θ))|θ̂MLE ,
since it is assumed that the prior distribution p(θ) is very di�use and non-informative
and then, as a consequence, that the maximum likelihood is a good approximation of
the mode θ̃. This yields

log p(X) ≈ logL(θ̂MLE) + log p(θ̂MLE) +
D

2
log 2π − 1

2
log det I(θ̂MLE).
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As

det I(θ̂MLE) = O(nD),

it follows the Bayesian Information Criteria (BIC) by considering the terms of main
order (and assigning the same prior probability to each model):

critBIC(K) = logL(θ̂MLE
K )− D

2
log n.

Schwarz (1978) obtained this criterion in the particular case of exponential families,
and under assumptions related to the introduced Bayesian framework. The necessary
regularity conditions break down when considering mixture models, but many authors
advocate even though the use of the BIC in this framework, arguing theoretical and
experimental reasons: Leroux (1992) proves that the BIC does not underestimate the
number of components (under regularity conditions for mixtures); Roeder and Wasser-
man (1995) justify the use of the BIC approximation in a Bayesian framework with mix-
ture models by the theoretical results of Kass and Wasserman (1995) (which strengthen
Schwarz's results but also break down for mixtures) and their own simulation results;
see also Fraley and Raftery (1998)... However, Biernacki et al. (2000) show by simula-
tions that the BIC may overestimate the number of components in misspeci�ed models
situations (the true mixture distribution is available in none of the considered models).
This may be understood as the tendency in this situation of the BIC to select a model
which minimizes the Kullback-Leibler divergence to the true distribution (with, say, K∗

components): if this is not available in the K∗-components considered mixture model,
then the BIC tends to select a model with more components to get a better approxima-
tion of the true distribution. This is very well illustrated by the simulations of Biernacki
et al. (2000) where the true distribution is a mixture of a Gaussian component and a
uniform component. BIC tends to overestimate the number of classes (2) since it �ts
several Gaussian components to approximate the uniform one.

Finally, remark that both conditions of Nishii (1988) are ful�lled for the BIC: it is
then expected to be consistent in the sense that it should converge to the true number of
components and model shape, as the true distribution is available. This is what Keribin
(2000) proved for Gaussian mixtures in the particular �rst-mentioned situation, under
regularity conditions, with the locally conic parametrization.

BIC is a good �identi�cation� criterion.

2.1.4 ICL

Biernacki et al. (2000) attempt to tackle the di�culty encountered by the BIC to select
a relevant number of classes under the misspeci�ed situation. Their idea is to mimic
the BIC approach but replacing the observed likelihood by the complete data likelihood
(also called the classi�cation likelihood, see Section 1.1.4). They expect this way to
�nd a criterion which would take into account the clustering quality and to avoid the
overestimation phenomenon from which the BIC might su�er.

Consider the integrated complete data log likelihood to which the same approxima-
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tion as the one leading to the BIC is applied:

log p(X,Z) = log

∫
f(X,Z; θ)p(θ)dθ

≈ max
θ

log f(X,Z; θ)− DK

2
log n+O(1).

But the label Z is unobserved and Biernacki et al. (2000) choose to replace it with
ẐMAP(θ̂MLE). Moreover, they replace maxθ log f(X,Z; θ) with log f(X,Z; θ̂MLE), argu-
ing that θ̂MLE ≈ argmaxθ log f(X,Z; θ) as n is large enough. We think this is highly
questionable: see Chapter 4. But following those choices, and keeping the relation
between the complete data likelihood and the observed likelihood (1.6) in mind, we get

critICL1(K) = log f(X, ẐMAP; θ̂MLE
K )− DK

2
log n

= L(θ̂MLE
K ) +

n∑

i=1

K∑

k=1

ẐMAP
i,k log τik(θ̂

MLE
K )− DK

2
log n.

McLachlan and Peel (2000) propose to rather replace Zi by τi(θ̂MLE). This yields

critICL2(K) = log f(X, τ (θ̂MLE
K ); θ̂MLE

K )− DK

2
log n

= L(θ̂MLE
K )− ENT(θ̂MLE

K )− DK

2
log n

from (1.4.3). The entropy term, �rst de�ned in Section 1.4.3, is further studied in
Section 4.2.2: it is a measure of the assignment con�dence.

McLachlan and Peel (2000) rather follow the lines of the derivation of the criterion
in Biernacki et al. (1998) (a �rst version of Biernacki et al., 2000), which is slightly
di�erent and more precise, but is essentially based on the same assumptions and choices
as ICL1. Remark however that Biernacki et al. (1998) do not plug in the maximum
likelihood estimate everywhere:

critICL3(K) = argmax
θ

log f(X, ẐMAP; θ)− DK

2
log n.

This seems to be a more reliable point of view, which is intermediate between ICL1 and
the criterion we propose in Chapter 4. In this version, the BIC-like approximation is
further justi�ed. However, ẐMAP is still based on the maximum likelihood estimator
(or any other estimator). Moreover, the authors seemingly chose to use the maximum
likelihood estimator as an approximation of argmaxθ log f(X, ẐMAP; θ) in the practice,
and notably in the simulations, and �nally exposed the ICL1 version in the �nal paper.

The two versions ICL1 and ICL2 di�er in that the �rst one is based on a �hard�
assignment of the labels, whereas the second one is based on a �soft� assignment, where
each component is weighted by its probability conditionally to the observation at hand.
They only di�er for mixtures for which there are observations which are assigned with
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uncertainty, i.e. for which several conditional probabilities are di�erent from zero. Now,
since

∀θ, ∀x ∈ Rd, −ENT(θ;x) =
K∑

k=1

τk(x; θ) log τk(x; θ)

≤
K∑

k=1

τk(x; θ) log max
j∈{1,...,K}

τj(x; θ)

=
K∑

k=1

ẑMAP
k (x; θ) log τk(x; θ),

critICL1 ≥ critICL2 : ICL1 penalizes more the models giving rise to uncertain clustering
than ICL2. However, they are expected to behave analogously and we will from now on
refer to second version under the general name of ICL.

The ICL uses to be presented as a log likelihood penalized criterion, which penal-
ization includes an entropy term (penICL(K) = ENT(θ̂MLE

K ) + DK
2
). This term penalizes

the models giving rise to uncertain classi�cations and the complexity of the models is
penalized the same way as by the BIC.

There are no further theoretical results about the ICL criterion up to now. Chap-
ter 4 is an attempt to set a convenient theoretical framework to better understand the
behavior of the ICL and to justify it.

Biernacki et al. (2000) claim that the ICL is more robust to model misspeci�cations
than the BIC, when selecting the number of classes. This is obviously a nice feature for
such a criterion when the purpose is clustering. Biernacki et al. (2000) and McLachlan
and Peel (2000) illustrated this through simulated and real data examples. McNicholas
and Murphy (2008) found that ICL reached analogous performances as BIC, as applied
to some data with the parsimonious Gaussian mixture models they propose.

Actually, the key here is that ICL is not �consistent� in the sense that BIC is. First,
it does not even avoid underestimation of the true number of components, as AIC does:
it should �rst be cautioned that the ICL does not ful�ll the �rst Nishii's condition:
penICL 6= o(n) (from the law of large numbers, 1

n
ENT(X; θ) −→ Ef℘ [ENT(X; θ)] and

ENT(X; θ̂MLE) is then rather expected to be of the same order as n and should not be
considered as a part of the penalty). This has to be linked with the BIC's tendency to
overestimate the true number of components under the model misspeci�cation. The BIC
selects a model which correctly approximates the true distribution. On the contrary,
ICL is so designed that it shall not select an optimal model from the approximation
(Kullback-Leibler) viewpoint but that it selects a model which the corresponding ob-
tained classi�cation is relevant. We have here to clearly distinguish the notions of com-
ponents and clusters: whereas the BIC should (asymptotically) select the true number
of (Gaussian) components, ICL selects a relevant number of classes, based on a certain
notion of cluster taking the �t and the assignment con�dence into account. This point
of view is further developed in Chapter 4. As we chose to identify the number of classes
with the number of Gaussian components, this means selectingMK with K a relevant
number of classes, even if MK does not have the best approximation properties with
respect to the observations. BIC and ICL have the same behavior (and actually almost
the same values) for models which provide well-separated components, but ICL penal-
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izes models which do not, on the contrary to BIC which only penalizes the complexity
of the models.

This will be illustrated through simulations and further discussed in Chapter 4.

Conclusion

Many other criteria to select the number of classes (mostly not of the penalized-likelihood
form) were de�ned but we are mainly interested in those presented above since, on
the one hand, the AIC and the BIC are very popular and widely used. But they
were not elaborated in a particular clustering purpose, and we saw that their use in
such a framework might be questionable. ICL, on the other hand, was designed for a
clustering purpose. But no theoretical studies or results were available up to now, to help
understanding what aim it targets. Its practical results are however appreciated, at least
in some situations, because they meet what people need and what they �intuitively� like
to obtain. See Section 4.1.2 for examples of applications where ICL met the objective
of the users. We then propose an attempt to set a theoretical framework in which the
behavior of ICL can be described (Chapter 4). This is then an attempt to de�ne a
theoretical counterpart to this intuition. We will see that it will give rise to a criterion
which is closely linked to ICL, but might be calibrated in a data-driven fashion. Such
kind of criteria including a criterion in the usual likelihood framework, and which rather
behaves like BIC, are derived from the slope heuristics of Birgé and Massart (2006).
They will be �rst introduced in Section 3.3 where the contrast minimization framework
is introduced, and then further studied in chapter Chapter 4.

2.2 Components Are Not Always Classes!

Model-based clustering, specially when based on Gaussian mixtures, obviously su�ers
from situations where clusters do not have Gaussian-like (namely ellipsoid) shape. In
this situation, when embracing the �one component = one class� rule, two points of view
have been presented: the density approximation point of view of BIC, which su�ers from
overestimation of the number of classes, and the component/cluster point of view of ICL,
which might su�er from quite poor approximation results, which could be a drawback
when the distribution of the data is of interest, too. A radically di�erent point of view
is clustering through non model-based clustering. An intermediate solution consists of
�tting a Gaussian mixture to the data, typically by the BIC solution, to get a nice �t
to the data and then to possibly merge some of the �tted Gaussian components which
are considered together as a single cluster. Finally classes are formed according to those
clusters' conditional probabilities.

The idea of merging Gaussian components to get a better �t had already being
applied in the classi�cation framework for a while (see Hastie and Tibshirani, 1996).
Then, it was applied in a clustering framework by, for instance, Tantrum et al. (2003)
and Li (2005). Hennig (2009) proposes an overview of the existing methods based on this
idea and some improvements on them, as well as some new ones and a new visualization
method. We also proposed a solution to this approach (Baudry et al., 2008b): this is
essentially Chapter 7. Those di�erent methods di�er by the way they choose which
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components to merge. Some give solutions or at least tracks to choose the number of
classes to be designed (typically, the number of components is chosen � with good
reason � through the BIC).

Let us explain how some Gaussian components of a mixture may be merged to
design mixture classes, and give insight into how our method enables to choose which
components to merge. Our method is notably partly compared to the related methods
presented in Hennig (2009).

2.2.1 Mixtures as Classes

The starting point is a good estimation of the data distribution. The Gaussian mixture
models MK have nice approximation properties, provided that a relevant number of
components has been chosen. For example, the BIC criterion, based on the maximum
likelihood estimations is expected to select a number of components corresponding to
the best model from the approximation point of view, at least asymptotically (see Sec-
tion 2.1.3). Let us consider the solution it yields (with K̂ the number of components it
selects and θ̂ = θ̂MLE

K̂
):

f( . ; θ̂) =
K̂∑

k=1

π̂k φ( . ; ω̂k)︸ ︷︷ ︸
φ̂k(·)

.

As already mentioned, there is no reason that this solution should be relevant from a
clustering point of view. Of course, it depends on the application at hand, but when
some of the components overlap, the classi�cation obtained through the MAP rule with
respect to the Gaussian components may not provide a relevant clustering. This is a
strictly component-based notion of classes, whereas the user may often want to involve a
cluster notion in the study. But it is however an interesting approach to base a clustering
study of the data on what statistics can o�er at best to estimate its distribution. It can
be done by merging some of the obtained Gaussian components. That is, to consider
several components have to be handled as a single class. For any number K ≤ K̂ of
classes to design, the estimated distribution may be rewritten as

f( . ; θ̂) =
K∑

k=1

π̂JKk

∑

j∈JKk

π̂j
π̂JKk

φ̂j

︸ ︷︷ ︸
f̂Kk

,

with {JK1 , . . . , JKK } a partition of {1, . . . , K̂} and π̂JKk =
∑

j∈JKk
π̂j for any k ∈

{1, . . . , K}. This is exactly the same density (and �t to the data) as before, but this
writing as a �mixture of Gaussian mixtures� emphasizes that the components which la-
bels belong to the same set JKk are considered together. The only consequence concerns
the conditional probabilities, and then the entropy value (see below) and the MAP rule
classi�cation: for any observation xi, the conditional probabilities are computed with
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respect to the obtained classes. We denote1 them by τ̂K :

∀k ∈ {1, . . . , K}, τ̂Kk (xi) =
π̂JKk f̂

K
k (xi)

∑K
k′=1 π̂JKk′

f̂Kk′ (xi)

and the estimated labels are assigned according to those conditional probabilities:

ẑKi = argmax
k∈{1,...,K}

τ̂Kk (xi).

The merging process is performed hierarchically.

Two observations which were assigned, under θ̂, labels corresponding to components
which have been merged are then mostly assigned the same label, corresponding to the
new class. The reverse is not always true since it may happen that, by merging some
components, the obtained class is assigned to an observation which did not �belong�
to any of the merged components (think of the example an observation has around one
third conditional probability of belonging to any of three components and those to which
it was not assigned are merged...). This is a sensible behavior: this is a consequence of
the fact that the classi�cation is designed according to the merged classes and not to
the original components.

2.2.2 Merging Criterion

Now, it has to be chosen which components have to be merged. Hennig (2009) establishes
an overview of methods proposed to this aim. According to his classi�cation, two main
groups of methods emerge, depending on the general cluster notion embraced. The ones
are based on a notion of unimodal clusters, and the others are based on estimations
of the misclassi�cation probabilities, which means a notion of cluster related to the
quality of the yielded classi�cation. All of those methods are performed hierarchically:
starting from the initial mixture, two components are chosen according to the embraced
criterion and possibly merged. A mixture of components is obtained, to which the same
is performed, and so on until a stopping rule � which is speci�ed in each case � is
reached.

In a joint work with G. Celeux, A.E. Raftery, R. Gottardo and K. Lo, we actu-
ally proposed such a merging method in Baudry et al. (2008b). It is based on the
entropy measurement of the assignment con�dence (please refer to Section 1.4.3 and
Section 4.2.2), and then rather belongs to the second family of methods. This work is
the subject of Chapter 7. Let us quickly introduce the embraced criterion. At any step
K, the solution at hand can be de�ned by {JK1 , . . . , JKK } (see the subsequent remark
about the de�nition of the entropy). We propose to choose the two classes JKa and JKb

1The dependency of τ̂K on {JK1 , . . . , JKK } is omitted in the notation.
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to be merged by maximizing the entropy decrease:

{a, b} = argmax
α,β∈{1,...,K}

−
n∑

i=1

(
K∑

k=1

τ̂Kik log τ̂Kik

−
∑

k∈{1,...,K}\{α,β}

τ̂Kik log τ̂Kik

− (τ̂Kiα + τ̂Kiβ ) log(τ̂Kiα + τ̂Kiβ )

)

= argmax
α,β∈{1,...,K}

−
n∑

i=1

(
τ̂Kiα log τ̂Kiα + τ̂Kiβ log τ̂Kiβ − (τ̂Kiα + τ̂Kiβ ) log(τ̂Kiα + τ̂Kiβ )

)
.

And then,

{JK−1
1 , . . . , JK−1

K−1} = {JK1 , . . . , JKK }\{JKa , JKb }
⋃
{JKa ∪ JKb }.

We do not advocate any de�nitive stopping rule for the merging process. Actually, the
whole hierarchy may often be of interest in applications. A careful analysis of which
classes are merged at each step, and notably the order in which they are, is of interest,
and brings much more informations than any single solution with a given K. The plot
of the resulting entropy with respect to the number of classes, possibly rescaled by the
number of observations involved in the corresponding merging step, is a helpful tool to
point out at which steps something particularly interesting occurs. In case a method to
choose the �nal number of classes is really needed, we suggest an approach based on a
piecewise linear regression �t to the (possibly rescaled) entropy plot.

Remark that the entropy could only be rigorously de�ned here over a set similar to
M̃K for any K (see Section 1.1.1), with the �components� being themselves mixtures.
Only an element of such a set brings enough information � notably, the de�nition of
each class � so as to compute the entropy: with f̂ only, only the usual entropy, with
respect to each component may be computed.

This approach then relies on a combination of the notions of components (to �t the
data) and cluster (�rst merge components such that the resulting classes are assigned
with greatest con�dence). The involved notion of cluster relies on the entropy point of
view: i.e. an assignment con�dence notion. See Section 4.2.2 for further discussion on
this cluster notion.This is interesting for applications where the user wants to be able
to design classes with great con�dence, which is not always the case of course: Hennig
(2009) proposes several approaches, which correspond to di�erent cluster notions, and
then which �t di�erent applications needs. Ours is seemingly quite linked to his so-
called �ordered posterior plot� method. This visualization method relies on the plots
of the conditional probabilities values, for each initial component, of the observations
with nonnegligible conditional probability (see Hennig, 2009, Section 5). Actually, this
method seems to enable to make visual the notion which roughly corresponds to what
the entropy measures: which components are assigned with great con�dence or not, and
when not, which are those which overlap the most.

Our method is also obviously linked to the �Bhattacharyya Distance� and the �Di-
rect Estimated Misclassi�cation Probabilities� (DEMP) methods presented in Hennig
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(2009). The �rst one merges components according to the Bhattacharyya distance be-
tween them, which has the property to be (the logarithm of) a lower-bound of their
overall Bayes misclassi�cation probability. As mentioned by the author, it is not nec-
essarily a sharp bound, however. Moreover, to avoid computing the Bhattacharyya
distance between mixtures, each class is represented by a Gaussian density. This may
be an important di�erence with our method when some obtained mixtures have very
non-Gaussian shape: think of the �Cross� experiment example (see for example Sec-
tion 7.4.4, which could presumably be modi�ed to highlight the di�erent behavior of
the two methods). On the contrary to this method, ours does take into account the
mixing proportions (indirectly, through the number of observations assigned to each
class, which is tightly linked to it) when choosing which classes to merge: two classes
which overlap much, one of them being a small-size class, may be merged later in the
hierarchy than two classes which overlap less (in mean) but with great sizes. This is
also the case of the DEMP method. Its name is quite explicit: it consists of estimating
the probability that an observation arising from a mixture corresponding to a class, be
assigned the label of another class. The maximum for any pair of classes is considered.
And the pair maximizing this quantity is merged. This approach presumably mostly
behaves similarly to ours.
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In this chapter is �rst recalled the framework of contrast minimization. This very
general framework covers the study of well-known and popular estimation and model
selection methods, as shown in Massart (2007). Several goals are distinguished and the
di�erence between identi�cation and e�ciency is highlighted.

It is also reported how some penalized criteria can be known up to a multiplying
constant. This motivates the slope heuristics of Birgé and Massart (2006), which is
recalled: the notions of oracle, optimal and minimal penalties are discussed. Two data-
driven approaches to practically take advantage of this heuristics are introduced: the
dimension jump and the so-called data-driven slope estimation. Their introduction is
done so as to make as obvious as possible their links and di�erences.

An application of those concepts and methods for the choice of the number of com-
ponents in the clustering with Gaussian mixture models framework is �nally proposed.
Considering (minus) the usual likelihood as a contrast, criteria are derived which are
tightly linked to AIC and BIC. Chapter 4 will be devoted to the study of ICL by an
application of those ideas to a contrast which is directly linked to clustering.

3.1 Contrast Minimization

3.1.1 General Setting

Let us give notation for the very general contrast minimization framework, as introduced
for example in Massart (2007), which should be the reader's handbook for the topic of
this section.

Recall the i.i.d. sample X1, . . . , Xn ∈ Rd arises from an (unknown!) distribution
with density f℘. To avoid ambiguities, we will denote EX1,...,Xn the expectation taken
with respect to the sample, and EX the expectation taken with respect to X ∼ f℘.

The quantity of interest, which lies in a set U (�U � stands for �universe�), is not
necessarily this distribution, and we shall denote it by s: it is somehow related to f℘.
The method is based on the existence of a contrast function1 γ : Rd×U −→ R ful�lling
the fundamental property that

s = argmin
t∈U

EX [γ(X; t)] (3.1)

(in good settings, s is expected to be unique). This settles γ as the track to s. The
associated loss function is used to evaluate each element of U in this light:

∀t ∈ U , l(s, t) = EX [γ(t)]− EX [γ(s)] .

This function is nonnegative and is zero if and only if t = s. LetM be a model (i.e. a
subset of U). (One of) the best approximations of s inM is

sM ∈ argmin
t∈M

EX [γ(t)] .

1X will often be implicit in the notation: γ(t) = γ(X; t). We might then write EX [γ(t)] even if X
does not appear in the notation.
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A natural estimator of sM in modelM is then

ŝM ∈ argmin
t∈M

γn(t),

where

∀t ∈ U , γn(t) =
1

n

n∑

i=1

γ(Xi; t)

is the empirical contrast drawn from the sample. It is expected that, γn being close
to EX [γ(X; . )], ŝM will be a good estimator of sM. The quality of an estimator is
measured by its risk

R(ŝm) = EX1,...,Xn [l(s, ŝm)] ,

or even, as we shall see, by its ability to minimize the loss function for a particular
sample, with great probability (rather than in expectation).

Typical and classical examples of contrast minimization situations are maximum
likelihood or least squares estimations. Numerous applications may be found in Mas-
sart (2007). We consider in this thesis two particular applications of it in the frame-
work of mixture models: the maximum likelihood method which is �rst considered in
Section 3.1.2 and a new contrast, which purpose is clustering, de�ned and studied in
Chapter 4.

3.1.2 Model Selection

Suppose now a family of models (Mm){m∈M} is considered. The notion of complexity of
the models shall be referred to subsequently: The suitable measure of the complexity
of the models depends on the particular situation and has to be guessed through the
theoretical study. It is typically the dimension of the model in a �nite-dimensional
siuation.

The question is how to choose among the corresponding family of estimators
(ŝm){m∈M}? Let m̂ be a model selection procedure. The �nal estimator is then ŝm̂,
where both ŝm (for any m) and m̂ are build from the same sample X1, . . . , Xn. Such
a procedure may be evaluated from either an asymptotic or a non-asymptotic point of
view (see for example Yang, 2005 or Arlot, 2007).

A �best� ideal modelMm∗ for a given n and a given dataset is such that

m∗ ∈ argmin
m∈M

l(s, ŝm).

Since it depends on the distribution f℘, the corresponding estimator ŝm∗ is called the
oracle. It is a benchmark for a selection model procedure.

Let us �rst give examples of asymptotic points of view. An asymptotic optimality
with respect to the loss function l and to the oracle can be de�ned by

l(s, ŝm̂)

infm∈M l(s, ŝm)

p.s.−−−→
n→∞

1.

A procedure ful�lls this property if it reaches as good results � as measured by the loss
function � as the oracle up to a multiplying factor going to 1 as n goes to in�nity. This
is an e�ciency goal.
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Another important asymptotic property is the �consistency�. This is an identi�-
cation goal, in that it consists of being able to recover the best model from the loss
(approximation) point of view, rather than being able to mimic the oracle:

m̂
p.s.−−−→
n→∞

argmin
m∈M

l(s, sm).

This point of view only makes sense if it is assumed that a model minimizes the loss func-
tion. This is a �true� model assumption, but this does not mean that the corresponding
sm is the distribution f℘ (see remark below) neither that it is s. But for instance, in
the situation where s = f℘ (this is the case typically as the considered contrast is the
usual log likelihood) and ∃m0 ∈M/ s ∈Mm0 , a model selection procedure is consistent
if it recovers the model containing f℘. When several models contain it, the procedure
is expected to recover the less complex one. This is the most considered point of view
in this thesis: this is a natural goal when trying to recover the �good� (if not true)
number of classes, from the loss function point of view (notably when it is identi�ed to
the number of components of a mixture model).

See McQuarrie and Tsai (1998, Chapter 1) for a discussion about the di�erent points
of view underlying consistent criteria on the one hand and e�cient criteria on the other
hand.

The de�nition of the minimax property is beyond the scope of this work. Roughly
speaking, an estimator is minimax if it is uniformly e�cient over a given class of values
of s. Let us however notice that is has been proved in the regression framework (with
least-squares loss) that a model selection procedure cannot be simultaneously consistent
and minimax. The interested reader shall refer to Yang (2005).

Now, from a non-asymptotic and e�ciency point of view, a �good� procedure m̂ is
expected to ful�ll an oracle inequality :

l(s, ŝm̂) ≤ C inf
m∈M

l(s, ŝm) + ηn,

with C a constant as close to 1 as possible, and ηn a remainder term negligible with
respect to l(s, ŝm). No �true� model has to be assumed. This inequality is expected to
hold either with great probability or in expected value, or even, when such results are
too di�cult to achieve, as a weaker result2:

EX1,...,Xn [l(s, ŝm̂)] ≤ C inf
m∈M

EX1,...,Xn [l(s, ŝm)] + ηn. (3.2)

Such a procedure achieves non-asymptotic results in that the constant C does not depend
on n.

Such a non-asymptotic viewpoint provides better understanding and evaluation of
the true situation, mainly as a great number of models are considered, or as the complex-
ity of those models is high. Reciprocally, this point of view is interesting for small-size
samples: this is indeed a question of scale between the sample size n and the number
and/or complexity of the considered models which is involved. Think for example of the
case where models with dimension greater than the number of observations are consid-
ered. Or of the case where a huge number of models is considered for a given dimension:

2Indeed EX1,...,Xn [infm∈M l(s, ŝm)] ≤ infm∈M EX1,...,Xn [l(s, ŝm)].
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the behavior of the best estimator among those obtained for each one of those models
is to be quite di�erent from the behavior of each single estimator. This is the role of
the concentration inequalities for maximum of empirical processes derived in Massart
(2007) to control such situations.

Let us stress how di�erent this paradigm is from the usual �consistency� point of view.
Once more, a �rst particularity is that the objective is not always the true distribution
f℘, but s. This holds both for the identi�cation and the e�ciency points of view. It will
be seen for example with the clustering contrast introduced in Chapter 4 that this target,
if related to f℘, might be quite di�erent from it. And above all, from the e�ciency point
of view, even if there exists m0 such that s ∈ Mm0 , there is no reason that m∗ = m0.
Indeed, m∗ has to take into account the complexity of the models: the decomposition
of the loss into an approximation and an estimation parts

l(s, ŝm) = l(s, sm) + EX [γ(sm)− γ(ŝm)] ,

illustrates that a bias/variance compromise has to be reached. The more complex the
model, the larger the (expected value of the) second term in this decomposition. Even
ifMm0 exists, it might be too complex: the estimator in this model might then have a
too great variance and shall not be preferred to an estimator in a smaller model, with
greater bias but in which sm is to be better estimated since the variance is smaller. It
is not helpful (and might be worse) that a model contains a very good approximation
of s if the available data do not enable to recover it!

The main approaches to design such model selection procedures are hold-out and
cross-validation procedures (see Arlot, 2007), or penalized criteria. We consider in this
thesis such criteria, which are of the form

m̂ ∈ argmin
m∈M

{
γn(ŝm) + pen(m)︸ ︷︷ ︸

crit(m)

}
, (3.3)

with pen : M −→ R+. The reasons of the necessity of this penalty have been discussed
in Section 2.1. It will be further explained in this framework in Section 3.2.

How to choose pen? Some penalized criteria we already introduced were designed
from essentially asymptotic considerations (see Section 2.1). We shall come back to ICL
later. AIC and BIC are such criteria in the likelihood contrast framework with penalties
proportional to the dimension of the model, which is the measure of the complexity
in the mixtures framework. AIC has been proved to be asymptotically e�cient and
minimax from an e�ciency point of view in some frameworks (see for example Yang,
2005 and Section 2.1.2), while BIC is known to be consistent (see Nishii, 1988; Keribin,
2000 and Section 2.1.3). Now, concentration results can be used to design penalties
which perform from a non-asymptotic point of view almost as well as the oracle in
a wide range of situations (see Massart, 2007). But such penalties might be known
from theory up to a multiplying factor κ. Consider as an example the Mallows' Cp
criteria (Mallows, 1973), in a histogram regression framework, which is proportional to
the variance σ2. It is typically unknown. Another case example of such a situation is
Theorem 7.11 in Massart (2007) (recalled in Section A.1) which provides a penalty up
to an unknown multiplying constant, in a general maximum likelihood framework. This
theorem is general and guarantees the existence of a constant κopt and a penalty shape
penshape (following the notation of Arlot and Massart, 2009) such that the procedure
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based on penopt = κopt penshape follows an oracle inequality (if the oracle risk can be
linked to the minimal Kullback-Leibler divergence to the true distribution among the
models: see Section A.1). This result is applied and discussed to the problem of choosing
the number of components in the Gaussian mixture framework, in Section 3.3. But the
optimal constant κopt in each particular situation is unknown. Actually, a value may be
deduced from the theory, but this would be far from being optimal in any application,
since it has to be pessimistic enough to be general: the theorems should rather be used
as guidelines to choose the penalty shape, but the �good� constant κ depends on the
application at hand.

Birgé and Massart (2001) introduced the idea of trying to estimate the best constant
in each particular case by a study which is based on the data. This is why those
procedures are said to be data-driven. A possible approach is to design resampling
penalties (Arlot, 2007). Another approach is the data-driven slope heuristics of Birgé
and Massart (2006), that we present now.

3.2 Slope Heuristics

3.2.1 Minimal Penalty, Optimal Penalty

Let us here recall the heuristics of Birgé and Massart (2006), which is also discussed in
Arlot and Massart (2009).

From Section 3.1, the ideal penalty, which we call the oracle penalty since it would
select the oracle is pen∗(m) = l(s, ŝm) − γn(ŝm). This penalty is equivalent to pen∗ as
de�ned below since EX [γ(s)] = l(s, ŝm) − EX [γ(ŝm)] does not depend on m. Remark
that it also depends on f℘ and hence is unavailable, too.

pen∗(m) = EX [γ(ŝm)]− γn(ŝm)

= EX [γ(ŝm)− γ(sm)]︸ ︷︷ ︸
vm

+EX [γ(sm)]− γn(sm)︸ ︷︷ ︸
−δn(sm)

+ γn(sm)− γn(ŝm)︸ ︷︷ ︸
v̂m

, (3.4)

where vm, v̂m and δn are de�ned by the braces. Note that the AIC has been built
(Akaike, 1973: see Section 2.1.2) by choosing as a penalty penAIC an approximation of
the expectation (with respect to the sample) of this pen∗ so as to obtain an unbiased
estimator of the risk. Here our goal is to estimate this ideal penalty from the data
to build a penalty which would perform almost as well as pen∗: an optimal penalty is
a penalty which corresponding model selection procedure is optimal, from one of the
viewpoints introduced in Section 3.1.2. Actually, if m̂ is such as de�ned in (3.3), since
for all m (those lines follow exactly those of Arlot and Massart, 2009)

l(s, ŝm) = EX [γ(ŝm)− γ(s)]

= γn(ŝm) + EX [γ(ŝm)− γ(sm)]︸ ︷︷ ︸
vm

+EX [γ(sm)]− γn(sm)︸ ︷︷ ︸
−δn(sm)

+ γn(sm)− γn(ŝm)︸ ︷︷ ︸
v̂m

−EX [γ(s)]

= γn(ŝm) + pen∗(m)− EX [γ(s)] ,
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and from (3.3)
γn(ŝm̂) + pen(m̂) ≤ γn(ŝm) + pen(m),

we get

l(s, ŝm̂) +
(
pen(m̂)− pen∗(m̂)

)
≤ inf

m∈M

{
l(s, ŝm) +

(
pen(m)− pen∗(m)

)}
, (3.5)

so that it su�ces to have pen(m) close to pen∗(m) for any m to derive an oracle inequal-
ity. Note that, if the penalty is too heavy (pen(m) > pen∗(m)), an oracle inequality
can still be derived from (3.5), since the risk of ŝm̂ can still be upper-bounded by the
minimal risk up to an additive constant. Refer to Arlot and Massart (2009) for much
more details.

Minimal Penalty If the chosen penalty were penmin(m) = v̂m,

critmin(m) = γn(ŝm) + v̂m

= γn(sm),

which should concentrate around its expectation EX [γ(sm)]. Hence, this procedure
would select a model minimizing the bias. The variance is not taken into account:
such a criterion has great probability to select a too complex model. If the penalty is
chosen such that pen(m) = κv̂m with κ < 1, the situation becomes disastrous since then
crit(m) = (1 − κ)γn(ŝm) + κγn(sm). The second term of this sum is about the bias,
which is expected to be at its minimum value for the most complex models; the �rst one
decreases as the complexity increases. This criterion is then decreasing: the selected
model is for sure one of the most complex ones. But if pen(m) = κv̂m with κ > 1,
for those most complex models for which the bias is (almost) the same, the criterion is
expected to increase with the complexity (since crit(m) = (1 − κ)γn(ŝm) + κγn(sm) as
well...) and the most complex models are ruled out. This suggests that v̂m is a minimal
penalty, namely that lighter penalties give rise to a selection of the most complex models,
whereas higher penalties should select models with �reasonable� complexity.

Oracle Penalty: Twice Minimal Penalty The heuristics then relies on the as-
sumption that

vm ≈ v̂m.

One reason to believe in such an assumption is that v̂m is the empirical counterpart
of vm: the one is obtained from the other when the respective roles of f℘ and of the
empirical measure probability 1

n

∑n
i=1 δXi are reversed.

Then, since it is expected that the �uctuations of δn(sm) around its zero expectation
can be controlled through concentration results3:

pen∗(m) ≈ vm + v̂m

≈ 2v̂m.

The oracle penalty is then about twice the minimal penalty, which is a fundamental
point of the present heuristics.

3vm and v̂m are also expected to be concentrated close to their expectation, but it is not zero, and
this involves a much more di�cult analysis, at least concerning v̂m.
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Oracle Penalty, Optimal Penalty As already mentioned this heuristics is useful
when an optimal penalty penopt = κopt penshape is known up to a multiplying factor: we
stress that an optimal penalty is not necessarily the oracle penalty. This is a penalty
which corresponding selected estimator ful�lls an oracle inequality.

Some results of Massart (2007) have already been mentioned, which provide such
penalties. They do not directly provide an estimation of the oracle penalty as de�ned in
(3.4). They rather provide a penalty shape and prove that there exists a constant κopt
such that the procedure based on κopt penshape(m) almost ful�lls an oracle inequality.

Arlot (2007, Chapter 6) suggests another approach which consists of directly esti-
mating the penalty shape by resampling methods. His approach also provides a penalty
shape penshape which yields optimal criteria (i.e. which ful�lls an oracle inequality)
κopt penshape up to a multiplying factor κopt. He suggests this constant to be chosen
by applying the slope heuristics (Arlot, 2007, Chapter 6, page 165).

Finally, in the �xed design and homoscedastic regression framework, Mallows' Cp is
known to be asymptotically optimal. Its penalty 2σ2Dm

n
(with Dm the dimension of the

modelMm) is the expectation of the oracle penalty. It is then an optimal penalty from
the asymptotic point of view. But it is known up to the variance σ2. This last one can
either directly be estimated from the data, or be considered as a constant to be chosen
in front of the penalty shape 2Dm

n
.

In the previous three examples, an optimal penalty shape penshape is known and it
is also known that an optimal (or almost optimal) criterion κopt penshape can be derived
from it up to the multiplying constant κopt. The slope heuristics is to be applied to
estimate this constant. Remark that the slope heuristics is derived by considering the
oracle penalty, whereas it is applied to an optimal penalty shape. It is not necessarily
guaranteed that the oracle penalty itself is of the shape κ∗ penshape. This is a further
assumption that a given optimal penalty ful�lls the same property as the oracle penalty,
i.e. that half this optimal penalty is a minimal penalty. Of course, the hope is that the
results are �ne enough so that the derived optimal penalty is very close to the oracle
penalty. It can then be expected that κopt

2
penshape(m) is a good estimate of v̂m and

therefore that it is a minimal penalty, which is a keystone of the slope heuristics.

Conclusion Let us restate the two main points of the slope heuristics of Birgé and
Massart (2006) we derived:

SH1 there exists a minimal penalty penmin such that any lighter penalty selects models
with clearly too high complexities and such that heavier penalties select models
with reasonable complexity;

SH2 twice the minimal penalty is an optimal penalty.

Actually, those assumptions which derive from heuristics also receive the support of
theoretical results: Birgé and Massart (2006) proved such results in a homoscedastic
Gaussian regression framework. They also proved that the risk of estimators obtained
with lighter penalties than the minimal one explodes. The penalty shape they derive
is proportional to the dimension of the model when the considered family of models
is not too large, but involves a logarithmic term when the family of models is huge.
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Arlot and Massart (2009) extended those results to the heteroscedastic regression with
random design framework, without assuming that the data are Gaussian. They had
to restrict the considered models to histograms, but conjecture that this is only due
to technical reasons and that the heuristics remains valid for the general least squares
regression framework at least. They consider the case of reasonably rich families of
models (namely the number of models grows as a power of n) and derive penalties pro-
portional to the dimension. In a density estimation framework, Lerasle (2009) validates
the slope heuristics (with the dimension jump approach: see below) and proves oracle
inequalities for both independent (Lerasle, 2009, Chapter 2) and mixing (Lerasle, 2009,
Chapter 4) data. He derives penalties proportional to the �dimension�, too. Moreover
the conjecture that the slope heuristics may be valid in a wider range of frameworks
is supported by some partial further theoretical results and by the results of some en-
couraging simulations studies. Indeed, the slope heuristics was successfully applied in
various model selection situations:

� estimation of oil reserves (Lepez, 2002);

� change-points detection in a Gaussian least squares framework (Lebarbier, 2005);

� selection of the number of non-zero mean components in a Gaussian framework
with application to genomics (Villers, 2007);

� simultaneous variable selection and clustering in a Gaussian mixture models set-
ting with applications to the study of oil production through curve clustering and
to genomics (Maugis and Michel, 2008);

� selection of the suitable neighborhood in a Gaussian Markov random �eld frame-
work (Verzelen, 2009);

� estimation of the number of interior knots in a B-spline regression model (Denis
and Molinari, 2009);

� choice of a simplicial complex in the computational geometry �eld in Caillerie and
Michel (2009);

� and the simulations we are to present in this thesis in both the frameworks of
Gaussian mixture models likelihood (Section 3.3) and clustering (Section 4.4.5),
some of which were already introduced in Baudry et al. (2008a).

This (probably not thorough) enumeration illustrates that the slope heuristics brings
solution to real needs and the good results reported in those simulated and real data
experiments contribute to con�rm its usefulness. This is an enthusiastic evidence on
how fruitful the e�orts of Birgé, Massart and Arlot to �ll in the gap between the theory
of non-asymptotic model selection and the practical applications are.

Sections 3.2.2 and 3.2.3 introduce two practical approaches to apply the slope heuris-
tics. Recall that an optimal penalty is assumed to be known up to a multiplying factor:
penopt = κopt penshape(m). The slope heuristics' second point SH2 guarantees that this
constant might be recovered as twice that of the minimal penalty, which existence is
stated in point SH1. The two presented approaches di�er by the way they estimate the
minimal penalty.
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The �rst one, which is the most studied and applied, is the so-called dimension jump
method introduced in Birgé and Massart (2001), further studied in Birgé and Massart
(2006) and Arlot and Massart (2009), and notably applied in Lebarbier (2005). The
second one, suggested for example as a possibility in Arlot (2007), consists of directly
estimating the �slope� κopt in a data-driven fashion: up to our knowledge, it was up to
now applied by Baudry et al. (2008a), Maugis and Michel (2008), and more recently by
Denis and Molinari (2009). We introduce it in Section 3.2.3, and discuss the di�culties
encountered when applying it and the solutions we propose in a joint work with C.
Maugis and B. Michel in Section 5.2. We notably propose a Matlab package for the
practical use of the slope heuristics in which those solutions are embedded. Hopefully
will this package contribute to a wider use of the slope heuristics!

Let us sum up what is assumed for both those methods before presenting them in
Sections 3.2.2 and 3.2.3. First, the penalty of a penalized model selection criterion as
described in Section 3.1.2 is known up to a constant:

∃κopt > 0 s.t. penopt(m) = κopt penshape(m).

We further assume both point SH1 and point SH2 of the slope heuristics speci�ed above.
The goal is to get from the data an estimate κ̂ of κopt to design a criterion which performs
almost as well as penopt (i.e. reaches an oracle inequality).

3.2.2 Dimension Jump

We describe the so-called dimension jump introduced by Birgé and Massart (2001) and
further discussed in Arlot and Massart (2009). This is a practical method to take
advantage of the slope heuristics derived in the previous section 3.2.1 when the purpose
is to calibrate a penalty.

It has been quite successfully applied in the already mentioned practical works of
Lepez (2002), Lebarbier (2005), Arlot (2007), Villers (2007), Verzelen (2009).

Let us denote Dm a measure of the complexity of each model m. Dm is typically the
model dimension when it is a �nite dimensional linear subspace. Remark that although
mostly penshape(m) = penshape(Dm) only depends on the complexity of the model, there
is no need to assume it here. This is interesting since this does not hold in any cases:
for example, the resampling penalties of Arlot (2007, Chapter 6) are not de�ned as
functions of the models complexity.

Note that several models may have the same complexity. Then only the one min-
imizing γn(ŝm) amongst them is of interest. The concentration arguments needed to
derive the slope heuristics require the family of models to remain controlled.

Then, when considering the sequence of selected models as κ grows from zero to
in�nity, it is expected that:

� the complexity of the selected model with respect to κ is a non-increasing and
piecewise constant function;

� models amongst the most complex are selected as κ is close to 0;
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� models with �reasonable� complexities are selected as κ reaches quite great values;

so that a quite abrupt fall of the complexity of the selected model is expected as κ grows,
around a value which is then chosen as κ̂

2
(see Figure 3.1 for an illustration). This is

expected to be close to κopt
2

and then, from SH2 of the slope heuristics:

pen(m) = κ̂ penshape(m)

and select
m̂ ∈ argmin

m∈M

{
γn(ŝm) + κ̂ penshape(m)

}
.

0    0.5  1     Kappa_chap/2 2    2.5 Kappa_chap 4 4.5  5    

M1

M2

M3

M4

M5

κ

S
el
ec
te
d
M
o
d
el

 

 

Largest Dimension Jump

Figure 3.1: Illustration of the Dimension Jump

Arlot and Massart (2009) deduce the following algorithm from this (see Figure 3.1):

1. compute m̂(κ) with respect to κ > 0:

∀κ > 0, m̂(κ) ∈ argmin
m∈M

{
γn(ŝm) + κ penshape(m)

}
;

2. �nd κ̂ such that m̂(κ) is among the most complex models for κ < κ̂
2
and m̂(κ)

have reasonable complexity for κ > κ̂
2
;

3. select m̂ = m̂(κ̂).

Arlot and Massart (2009) propose an algorithm which makes the �rst step computation-
ally tractable since it only requires at most (card(M)− 1) steps, and actually probably
much less.

Of course, the de�nition of κ̂ has to be further speci�ed. Arlot and Massart (2009)
propose two possibilities:
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� Choose for κ̂
2

dj
(�dj� stands for �dimension jump�) the value of κ corresponding to

the greatest jump of dimension (recall that Dm̂(κ) is a piecewise constant function
with respect to κ)4:

κ̂

2

dj

∈ argmax
κ>0

{
Dm̂(κ−) −Dm̂(κ+)

}
.

If several values of κ reach the maximum value, Lebarbier (2005) suggests to choose
the smallest one.

� De�ne a complexity Dthresh (for �threshold�) such as smaller complexities are con-
sidered as reasonable but not larger ones (Arlot and Massart (2009) suggest for
example, in the regression framework they consider, to choose Dthresh of order n

logn

or n
log2 n

) and choose κ̂
2
as the smallest value of κ which corresponding penalty

selects a smaller complexity than Dthresh:

κ̂

2

thresh

= min{κ > 0 : Dm̂(κ) ≤ Dthresh}.

Those two de�nitions are not equivalent. Arlot and Massart (2009) show that they
should yield the same selection as the dimension jump is clear or as there are several
dimension jumps close to each other, but might not otherwise. They report simulations
according to which it could happen quite seldom. When the selected model is the same
for both de�nitions � it does not really matter whether κ̂thresh = κ̂dj or not �, the
method can be con�dently automatically applied. When the selected models di�er �
which seldom occurred �, Arlot and Massart (2009) recommend that the user looks at
the graphic himself.

3.2.3 Data-driven Slope Estimation

Let us now introduce another method to take advantage of the slope heuristics so as to
calibrate the penalty. This method consists of directly estimating the constant κopt by
the �slope� of the expected linear relation of −γn(ŝm) with respect to the penalty shape
(see below). This method is being rather less employed than the �dimension jump� up
to now. This might be due to some di�culties related to its application: Lebarbier
(2005) partly presents this method and discusses it, but chooses the dimension jump
approach notably because of the lack of stability she encountered when trying to estimate
the slope. The solutions we propose to address these and so as to make possible and
reliable the application of the slope heuristics through this approach are presented and
discussed in Section 5.2. They arise from a joint work with C. Maugis and B. Michel:
we attempted to overcome the practical di�culties to implement a Matlab package.
Our aim is to provide an easy-to-use solution to anyone who would like to apply the
slope heuristics. This method has already been presented and studied by Baudry et al.
(2008a) and Maugis and Michel (2008).

Note that with this approach, it is not required that penshape(m) = penshape(Dm) nei-
ther. And it is actually even not required to exhibit an explicit measure of the complexity

4With m(κ−) = limκ̃→κ
κ̃<κ

m(κ̃) and m(κ+) = limκ̃→κ
κ̃>κ

m(κ̃).
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of the models (but the penalty itself, which might be considered as such a measure...),
on the contrary to the previous method, since the identi�cation of the dimension jump
is based on such a measure (which might actually be the penalty itself...).

It is based on the following two equalities that we recall before identifying them:

penopt(m) = κopt penshape(m)

on the one hand, and

penopt(m) ≈ 2v̂m

= 2(γn(sm)− γn(ŝm)),

on the other hand. But we already mentioned that the bias is expected to be constant
for the most complex models. And so does its estimator γn(sm), up to its �uctuations
around its mean. Therefore,

−γn(ŝm) ≈ −γn(sm) +
κopt

2
penshape(m)

is expected to behave linearly with respect to penshape(m) (see Figure 3.2), with slope κ̂
2

around κopt
2
. κ̂

2
penshape is then an estimator of the minimal penalty, to be doubled from

the heuristics to get an estimate of the optimal penalty.
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Figure 3.2: Illustration for the Data-driven Slope Estimation

The �rst step of the method is a validation step: it consists of verifying that the
relation between −γn(ŝm) and penshape(m) is linear for the most complex models. An
obviously di�erent behavior should warn the user that the assumptions are not ful�lled
and that the slope heuristics should probably not be applied. We elaborate further
about this in Section 5.2: in such a situation it should �rst be veri�ed that complex
enough models have been involved in the study. Then, the shape of the oracle penalty
should be questioned.

As this validation step con�rms that the method can be applied, the method then
simply amounts to choosing κ̂ as twice the slope of this linear relation.
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There remains a di�culty to be tackled: there may be several models reaching the
same value of the penalty. In this case, de�ne:

∀p ∈ {penshape(m) : m ∈M}, m(p) ∈ argmin
{
γn(ŝm)

∣∣∣m ∈M : penshape(m) = p
}

(this is the only model(s) reaching this penalty value which might be selected...). Then
the function

p ∈ {penshape(m) : m ∈M} 7−→ −γn(ŝm(p))

is expected to be linear for the largest values of p, with slope κ̂
2
. Remark that since

γn(ŝm(p)) = min{m∈M :penshape(m)=p} γn(ŝm), further concentration arguments are neces-

sary to guarantee that this function is actually linear: this requires the models family
not to be too rich (at least, that not too many models reach the same penalty value).

We are now in position to state the algorithm corresponding to the approach intro-
duced in this section:

1. choose plin ∈ {penshape(m) : m ∈ M} such that p ≥ plin 7−→ −γn(ŝm(p)) can be
considered as linear;

2. estimate the slope κ̂
2
of this linear relation;

3. select m̂ = argminm∈M
{
γn(ŝm) + κ̂ penshape(m)

}
.

Section 5.2 will be devoted to a study on how to put this algorithm into practice.
The main di�culties are related to step 1: the choice on how to identify the models for
which the linear relation holds will be crucial. The results of the procedure may highly
depend on a sensitive choice at this critical step.

3.2.4 Comparison Between Both Approaches

We have presented two practical approaches to take advantage of the slope heuristics
of Birgé and Massart (2006) in order to calibrate at best a penalized criterion from the
data. Let us sum up some points which seem relevant to compare both of them.

First of all, both procedures are data-driven: this is of course the reason to involve
the slope heuristics in the choice of the penalty. This is quite di�erent from a plug-in
method, where for example an unknown variance term would be �rst estimated, and
then plugged into a criterion which would depend on its value. This is also obviously
di�erent from a �xed penalty procedure such as AIC. The underlying idea is that the
data contains information about the model minimizing the loss. When considering a
�xed penalty, the �uctuations of γn(ŝm) are handled as a di�culty and have to be
controlled uniformly, to design the penalty, whatever their actual values. With a data-
driven penalty, they are taken into account to help evaluating the best penalty in the
particular case at hand. And this might improve the results. Lebarbier (2005) for
example reports experiments in which the data-driven procedure applied without using
the knowledge of the variance reaches smaller risks than when using an estimator of the
variance or even its true value: Data-driven penalties tend to compensate the possible
imperfections of the chosen penalty shape (for example, the choice of constants c1 and
c2 in Lebarbier, 2005), which could not occur with a �xed penalty.
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Both procedures allow to calibrate penalties which reach non-asymptotic results.
They have been proposed in this framework since some of the available theoretical results
provide a penalty shape, but not a good choice of the constant κ. The motivations of
the non-asymptotic paradigm have already been discussed.

Both procedures depend on the choice of a parameter. The dimension jump, applied
with the choice of the greatest jump, is sensitive to the choice of the most complex model
(Dmax) included in the study (see Lebarbier, 2005). The other dimension jump approach
obviously depends on the choice of Dthresh. The estimation of the slope depends on the
way the �most complex� models, for which the relation between γn(ŝm) and penshape(m)
is considered to be linear, are identi�ed. When applying the method we propose in
Section 5.2, this amounts to the choice of the minimal number of dimensions de�ning a
�plateau�. So that a more or less arbitrary choice has to be made for each method. This
choice has to be handled with care, with respect to the particular situation at hand,
since it can be crucial in some cases. Let us however stress that both the parameters
(Dmax and Dthresh) needed in the methods based on the dimension jump rely on a choice
which seems to be tightly linked to the particular situation at hand, whereas the choice
of the size of a �plateau� (in terms of percentage of the total number of considered
models for example) seems to be possibly more generally de�ned, even if it needs some
care in certain cases.

Both methods encounter di�culties in some cases. This is not surprising that such
data-driven procedures may hesitate. The dimension jump may face several jumps of
same order, and perhaps not close enough to each other to give rise to the same selected
model. The estimation of the slope sometimes faces situations where it is really hard to
identify which part of the graph of γn(ŝm(p)) is linear. And this may lead to di�erent
selected models, too.

The estimation of the slope enjoys an interesting feature, which should however be
applied even when using the dimension jump: it should be veri�ed that a linear part
exists. This would reinforce the choice of the penalty shape... Now, once the slope is
estimated, it su�ces to add a few points corresponding to highly complex models to
check they are on the same line as the previous most complex models (see Section 5.2).
This would con�rm� or not � that the complexity of models needed to obtain the linear
behavior has been reached. This veri�cation does not seem to be so straightforward with
the dimension jump approach.

Finally, both procedures are obviously linked. Assume the linear part of the graph of
γn(ŝm(p)) is actually quite linear. Then, the slope of this linear part (times the penalty
shape...) is exactly the amount of penalty necessary to avoid the most complex mod-
els...and is exactly the slope which should correspond to the largest jump of dimension
in the dimension jump approach in this case. Actually, the ideal situation is as both (or
rather the three) procedures provide the same selected model. This model may in such
a case be selected con�dently. We are not able for now to provide a de�nite opinion
about which method to prefer in general: more experiments would notably be necessary
to go further in this direction.
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3.3 Application to the Maximum Likelihood

We present in this section the application of the methods introduced in the previous
section to the particular framework of Gaussian mixture models. The main motivation
of this attempt has been to better understand the behavior of the penalized maximum
likelihood criteria we introduced in Section 2.1 and particularly of the BIC and the ICL.
The chosen contrast is then (minus) the log likelihood. Please refer to Section 1.2.1 for
the notation about the maximum likelihood framework if needed. This section illustrates
both the theoretical and the practical interests of the contrast minimization framework.

3.3.1 Contrast: Likelihood

We consider the models MK , for K ∈ {Kmin, . . . , Kmax}, as de�ned in (1.1) (namely
Gaussian mixture models). Once more, to keep the notation simple, it is assumed that
only one model is available for each dimension K, even if the results of this section could
be applied with a much more complex family of models (weights may then have to be
de�ned, according to the results of Massart (2007), and the optimal penalty may be
di�erent). Several model types could be compared for each K, and Corollary 1 notably
would still hold as is, if the number of models is �nite. The contrast function is imposed
here by the object of our study: it is minus the log likelihood5:

∀x ∈ Rd,∀K, ∀θ ∈ ΘK , γ(x; f( . ; θ)) = − log f(x; θ).

The universe should be de�ned according to the objective: in a density estimation
framework, U should be the set of every densities. The target is then

s = argmin
t∈U

{
−EX [log t(X)]

}

= argmin
t∈U

dKL(f℘, t)

= f℘.

The loss function is the Kullback-Leibler divergence, and the best approximation of f℘

in modelMK is
θK = argmin

θ∈ΘK

dKL(f℘, f( . ; θ)),

which is estimated by the maximum likelihood estimator

θ̂K = argmin
θ∈ΘK

{
− logL(θ)

}

= θ̂MLE
K .

Finally, the risk of an estimator is its mean Kullback-Leibler divergence to f℘.

Let us highlight that it may quite be that f℘ belongs to none of the models MK

at hand. The Gaussian mixture models are however appreciated for their nice ap-
proximation properties, with many true distribution f℘ forms, as already discussed in
Section 1.1.

5In this parametric setting, it will often be written γ(x; θ) for γ(x; f( . ; θ)) and the parameter will
generally be identi�ed with the corresponding density in the notation.
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Introducing the Kullback-Leibler loss, it is clear that we have set a density estimation
framework. Let us consider what kind of model selection criterion can be derived in this
setting.

We shall consider penalized criteria as de�ned in (3.3). The question is how to choose
the penalty. As a matter of fact, it is easy to conclude from the derivation of AIC (see
Section 2.1.2) that it was derived by an approximation to reduce to zero the bias of
logL(θ̂MLE) as an estimator of the risk.

We attempted to de�ne penalized criteria in this framework which would reach
oracle-type inequalities. We �rst simply conjectured that such a criterion should have
a penalty of the form6

pen(K) = αDK , (3.6)

i.e. we conjectured an optimal penalty shape should be proportional to the dimension
of the model. This is quite natural since this is often the case, particularly in such cases
as here, where the number of models for each dimension is low. This conjecture was
also supported by the shape of the asymptotic criteria: AIC and BIC. The conjecture
was also about the implicit assumption that the good measure of complexity in this
framework actually is the dimension of the model so de�ned (namely the number of free
parameters needed to describe the model). Our �rst experiments tended to con�rm this
conjecture since γn(ŝK) appeared to be linear with respect to the dimension DK for high
dimensional models, for simulated experiments. See Section 3.3.3 for examples of such
simulations.

Actually, since then, results of Maugis and Michel (2009) enable to derive further
theoretical justi�cation of this penalty shape. They notably computed the bracketing
entropy of Gaussian mixture models (in both the cases of general and diagonal Gaussian
mixture models, restricting the means µk in [−µmax;µmax], the covariance matrices to
have eigenvalues between λmin > 0 and λmax, and πk > 0). This is the key to the
application of Theorem 7.117 in Massart (2007) we already mentioned, which is the
tool to de�ne penalized criteria reaching almost oracle inequalities in the maximum
likelihood framework. It introduces the bracketing entropy of the model with respect to
the Hellinger distance to be the good measurement of the complexity in this situation8.
The results of Maugis and Michel (2009) show that this this can be linked to the model
dimension when considering Gaussian mixture models. They hold in a more general
situation than ours since they consider both clustering and variable selection. We shall
employ them to derive the penalty shape we need. Since the following result is a direct
application of Theorem 7.11 of Massart (2007) and actually a particular case of the
results of Maugis and Michel (2009), we shall call it a corollary. We propose a proof of
it in Section 3.3.2 since it is easier to prove than in the more general situation of Maugis
and Michel (2009).

Those results involve the Hellinger distance between two probability densities f and
g with respect to the measure µ:

dhel(f, g) =
1√
2

∥∥∥
√
f −√g

∥∥∥
2
.

6Recall DK is the �dimension� ofMK : see Section 2.1.
7Recalled in Section A.1
8The de�nition of those notions as well as the results employed are recalled in Section 3.3.2
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Let us state this result for a general or diagonal (i.e. whose components have diagonal
covariance matrices) Gaussian mixture model family (MK)K∈{1,...,KM}.

Corollary 1 Let (MK)K∈{1,...,KM} be some collection of Gaussian mixture models over
Rd such that

∀f =
K∑

k=1

πkφ( . ;µk,Σk) ∈MK ,

{
∀k, ∀j ∈ {1, . . . , d},−µmax ≤ µjk ≤ µmax

∀k, any eigenvalue of ΣK belongs to [λmin;λmax]

and let
(
f̂K

)
{1,...,KM}

be the corresponding family of maximum likelihood estimators.

Let pen : {1, . . . , KM} −→ R+ such that

∀K ∈ {1, . . . , KM}, pen(K) ≥ α
DK

n

(
1 + log

1

1 ∧
√

DK
n

)
,

where α > 0 is an unknown constant depending on d, µmax, λmin and λmax, and de�ne
the penalized log likelihood criterion crit as

crit(m) = − logL(f̂K) + pen(K).

Then some random variable K̂ minimizing crit over {1, . . . , KM} exists and

Ef℘
[
d2
hel

(f℘, f̂K̂)
]
≤ C

(
inf

K∈{1,...,KM}

(
dKL(f℘,MK) + pen(K)

)
+
KM

n

)
, (3.7)

with C > 0 an absolute constant.

A few remarks:

1. This result would still hold with ρ-maximum likelihood estimators, i.e. estimators
such that

L(ŝm) ≤ L(sm) + ρ,

with ρ > 0, at the price of a supplementary Cρ term in the oracle inequality. This
latitude is quite comforting in view of the di�culties of the de�nition and the
computation of maximum likelihood estimators in the mixture models framework:
see Section 1.2.1.

2. The main interest of this result for us is the shape of the penalty. It is almost
proportional to the dimension DK , which con�rms the conjecture (3.6) about this,
and strengthen the justi�cation of the application of the slope heuristics. Only the

log
√

DK
n

term is disappointing. We could not avoid it, exactly for the same reasons

as Maugis and Michel (2009), who also get such a term. This is a consequence
of the global evaluation of the bracketing entropy of the models: probably a local
control, which would bound the entropy of {f ∈ MK : dhel(f̃ , f) ≤ ε} for any
ε and a given f̃ , may enable to avoid this term. The same techniques as in
Chapter 4 may be applied. It would consists of taking advantage of the parametric
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situation, and the regularity of the involved functions to derive (more easily) local
bracketing entropy bounds. Corollary 4, for example, as well as most reasonings in
Section 4.4, would still hold for the contrast considered here (the log likelihood).
As the results reported there suggest, this logDK term would then be expected
not to appear. No oracle inequality is derived there, however: the link to Theorem
7.11 of Massart (2007) is not completed yet. This would require to assume the
densities to be bounded (but we shall see in the following remark that such an
assumption is necessary here, too). But it would above all yield a result with
�constants� depending on quantities which dependency on the dimension of the
models and the bounds on the parameters should be further studied. Maugis and
Michel (2009) really counted the entropies, which is more complicated, but thus
get a control of those dependencies. Anyway, ignoring this term is not a bad
approximation, and it should be hardly detected in practice.

3. Actually, inequality (3.7) would be even more relevant if it linked only quantities
involving Hellinger distances, instead of comparing the Hellinger distance on the
one hand, to Kullback-Leibler divergences, on the other hand. As noticed in
Maugis and Michel (2009), Lemma 7.23 in Massart (2007) allows a uniform control
of the Kullback-Leibler divergence by the Hellinger distance, provided that ln ‖ t

u
‖∞

is bounded uniformly with respect to t, u ∈ MK for any K. This is actually a
strong assumption. First, this quantity is generally de�ned only if the densities are
restricted to a compact subset of Rd. Secondly, it might only be bounded uniformly
over each model if the parameters are restricted to lie in compact spaces, too (this
notably concerns the variances). This is an equivalent assumption (namely that
the contrast is bounded) as the one which is necessary in Chapter 4.

4. Even then, (3.7) would not be an oracle inequality such as for example (3.2), since
it would be necessary to control the right-hand side of the inequality by the risks
of the estimators

(
f̂K
)
K∈{1,...,KM}

.

5. Finally, this corollary provides a penalty which enables to derive an (almost)
optimal procedure, in that it ful�lls an (almost) oracle inequality. This is not
su�cient to assess that no smaller penalty exists, which would also yield optimal
procedures...

The main point to recall about this is that a penalty proportional to the dimension
of the models should be (almost) optimal, but that the involved multiplying factor is
unknown: (3.6) is further justi�ed. This is then a typical situation in which the slope
heuristics is needed. Let us consider simulations which illustrate how it works and to
compare its results with that of the classical criteria AIC and BIC in Section 3.3.3.

3.3.2 Proof of Corollary 1

Proof (Corollary 1) Let us denote H
(
ε,
√MK

)
= E[ ]

(
ε,
√MK , ‖ ·‖2

)
the bracketing

entropy of the family of functions
{√

f : f ∈MK

}
with respect to the L2(λ)-norm (see

Section 4.3.2 below for the de�nition of the bracketing entropy). Proposition 2 and
Corollary 1 in Maugis and Michel (2009) (applied in the case there is no irrelevant
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variable: α = Q with their notation) yield (since they de�ne the Hellinger-distance
without

√
2 factor, on the contrary to Massart, 2007):

∀ε ∈]0, 1], E[ ](ε,MK , dhel) ≤ αDK +DK log
1

ε
,

with α = α(λmin, λmax, µmax, d), for any (diagonal or general) Gaussian mixture model
such that

∀f =
K∑

k=1

πkφ( . ;µk,Σk) ∈MK ,

{
∀k, ∀j ∈ {1, . . . , d},−µmax ≤ µjk ≤ µmax

∀k, any eigenvalue of ΣK belongs to [λmin;λmax].

Remark that this implies that

∀ε > 1, E[ ](ε,MK , dhel) ≤ αDK .

Then,
∫ σ

0

√
H
(
u,
√
MK

)
du =

∫ 1∧σ

0

√
H
(
u,
√
MK

)
du+

∫ σ

1∧σ

√
H
(
u,
√
MK

)
du

≤
(√

ασ +

∫ 1∧σ

0

√
log

1

u
du

)√
DK

≤
(
√
ασ +

√
1 ∧ σ

√∫ 1∧σ

0

log
1

u
du

)
√
DK (Cauchy-Schwarz)

≤
(√

α +

√
log

e

1 ∧ σ

)√
DKσ

︸ ︷︷ ︸
ψK(σ)

,

The function ψK ful�lls the properties required for the application of Theorem 7.11 of
Massart (2007) (see Section A.1): it is nondecreasing and σ 7→ ψK(σ)

σ
is nonincreasing.

Theorem 7.11 of Massart (2007) is based on the existence, for any K, of σK > 0
such that

ψK(σK) =
√
nσ2

K ⇐⇒ σK =

√
DK

n

(√
α +

√
log

e

1 ∧ σK
)
.

Let us check this existence. Remark that√
DK

n

√
α ≤

√
DK

n

(
√
α +

√√√√log
e

1 ∧
(√

DK
n

√
α
)

)

always holds. And then, since the right-hand side of the equation decreases as σ in-

creases, this implies that ∃!σK ≥
√
α
√

DK
n

such that ψK(σK) =
√
nσ2

K such that

σ2
K <

DK

n

(
2α + 2 log

e

1 ∧
(√

DK
n

√
α
)
)
.

Theorem 7.11 then applies with pen(K) ≥ α′DK
n

(
1 + log 1

1∧
(√

DK
n

)
)
. Let us stress that

uniform weights are suitable in our setting, since there are few models per dimension.
Moreover, the result is sharp (with respect to the entropy evaluation) up to the logarithm

term, since σK >
√

DK
n

√
α. �
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3.3.3 Simulations

The presented simulations all take place in the clustering framework with Gaussian
mixtures, with one model for each considered dimension. The aim is the choice of the
number of components. The contrast is here minus the log likelihood and it is mini-
mized by the use of the EM algorithm, which is implemented in the mixmod software
(Biernacki et al., 2006). Both the Small_EM and the Km1 initialization methods have
been involved (see Sections 1.2.2 and 5.1.3)9.

The �Cross� Experiment

We simulated data in Rd such as illustrated in Figure 3.3(a). The sample size is n = 200.
The true distribution f℘ is a four-component diagonal Gaussian mixture: all covariance
matrices are diagonal. This is an interesting example since it is quite simple and enables
to highlight the di�erences of behavior between the di�erent criteria we consider (see
also Section 4.4.6).

We �tted to this data diagonal Gaussian mixture models, with one to twenty com-
ponents.
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Figure 3.3: �Cross� Experiment.

An example of dataset (a) and a few examples of the graphs of DK 7→ logL(θ̂MLE
K ) (b).

Such samples were simulated a hundred times.

It is interesting to have a look at some of the graphs DK 7−→ logL(θ̂K) to check
whether a linear part actually appears: this is Figure 3.3(b). Their seemingly appears a
clear linear part. This con�rms what was expected from the theoretical results (Corollary
1) and allows to make use of the slope heuristics with con�dence.

In Table 3.1 are reported the results of 100 experiments with such datasets. Table 3.1
sums up the number of times each criterion selected each number of components (which
is here to be chosen as the number of classes).

9Details on the simulation settings and the applied algorithms may be found in Section A.2.
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Selected Number of Components 2 3 4 5 6 7 8 9 10�20

AIC 0 0 1 1 2 2 3 3 88
BIC 0 4 91 5 0 0 0 0 0
Slope Heuristics 0 2 84 10 3 0 0 0 1

Table 3.1: �Cross� Experiment Results.

According to those results, BIC behaves very well in such a situation: it mostly
recovers the true model. This is a well-known behavior of BIC. The interesting fact is
that the slope heuristics-based criterion behaves analogously as BIC, with a tendency
to rather overestimate the number of components. The e�ciency results (Table 3.2)
con�rm that AIC does not provide a heavy enough penalty in this mixture framework: it
would be expected to be a good criterion from an e�ciency point of view, but it appears
that it is much worse than the slope heuristics, or even than BIC in this context.

Risk of the criterion ×103 Risk of the criterion
Risk of the oracle

Oracle 59 1
AIC 506 8.03
BIC 65 1.10
Slope Heuristics 69 1.17

Table 3.2: �Cross� Experiment Results.

Risk of each criterion in terms of Kullback-Leibler divergence to the true distribution,
estimated by Monte Carlo simulations. The oracle results reported in the table correspond to

the trajectory oracle

Koracle = argmin
1≤K≤20

dKL(f℘, f( . ; θ̂MLE
K ))

for each dataset. The expected oracle number of components

Koracle = argmin
1≤K≤20

Ef℘
[
dKL(f℘, f( . ; θ̂MLE

K ))
]

is four (see Figure 3.4). The true number of components is four.

The Misspeci�ed Models Experiment

This experiment has been designed to highlight the behavior of the considered model
selection criteria in a misspeci�ed models situation, namely none of the considered mod-
els contains the true distribution. Indeed f℘ is a general Gaussian mixture with two
non-diagonal components: see Figure 3.5 (a). The data size is n = 200.

But the �tted models are still diagonal Gaussian mixture models. So that the bias
is zero in none of the considered models, and it must be quite far from zero.

Once more, we wish to check that a linear part appears in the graph of DK 7→
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Convergence of the Monte Carlo Simulations for the Computation of
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Figure 3.5: Misspeci�ed Models Experiment.

A dataset example (a) and a few examples of the graphs of DK 7→ logL(θ̂MLE
K ) (b).
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logL(θ̂K): Figure 3.5 (b) shows it seems to be the case.

Results are reported in Table 3.3.

Selected number of components 4 5 6 7 8 9�16 17 18 19 20

Oracle 4 10 30 43 12 1 0 0 0 0
AIC 0 0 0 0 0 20 14 12 26 28
BIC 3 43 38 13 3 0 0 0 0 0
Slope Heuristics 2 19 26 32 11 10 0 0 0 0

Table 3.3: Misspeci�ed Models Experiment Results.

This experiment con�rms that BIC must recover the �true� number of components:
since f℘ is not a diagonal mixture, more than four diagonal components are needed to
correctly approximate it and BIC rather selects �ve or six components (see Table 3.3).

From Table 3.3, the slope heuristics based criterion behaves like the oracle: it mostly
selects a great number of components, which are necessary to get the best possible
approximation of the data distribution. However, it achieves risk results a little worse
than BIC (see Table 3.4): both are good, as compared to the oracle.

Figure 3.6 illustrates the di�culty of the problem in this setting: it is not clear what
value of K should be chosen as the oracle, even as Monte Carlo simulations are available.

Risk of the criterion ×103 Risk of the criterion
Risk of the oracle

Oracle 206 1
AIC 712 3.45
BIC 240 1.16
Slope Heuristics 249 1.21

Table 3.4: Misspeci�ed Models Experiment Results.

Risk of each criterion in terms of Kullback-Leibler divergence to the true distribution,
estimated by Monte Carlo simulations. The oracle results reported in the table correspond to

the trajectory oracle:

Koracle = argmin
1≤K≤20

dKL(f℘, f( . ; θ̂MLE
K ))

for each dataset. The expected oracle number of components:

Koracle = argmin
1≤K≤20

Ef℘
[
dKL(f℘, f( . ; θ̂MLE

K ))
]

is six or seven (see Figure 3.6). The �true� number of components is four, but the model is
misspeci�ed.
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Convergence of the Monte Carlo simulations for the computation of
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1≤K≤20

Ef℘
[
dKL(f℘, f( . ; θ̂MLE

K ))
]
.

Conclusion

We introduced in this chapter the contrast minimization framework, and how it is con-
venient to study model selection procedures: the application to the likelihood contrast
in the Gaussian mixture model is interesting for our main purpose, which is choosing
the number of components. It enabled to derive some optimal model selection proce-
dures, but which may depend on unknown constants. The slope heuristics of Birgé and
Massart (2006) seems to be a powerful practical tool to recover those constants.

We shall recast the problem of choosing the number of classes with a clustering pur-
pose in the contrast minimization framework, with a convenient constrast, in Chapter 4.
This shall yield a new criterion and shed new light on the ICL criterion. Moreover, the
slope heuristics may then be applied in this framework, and the �rst results reported in
Chapter 4 suggest a rather relevant behavior of the corresponding criterion.

Finally, we noticed the practical di�culties encountered when practically applying
the slope heuristics. Jointly with C. Maugis and B. Michel, we propose solutions to
overcome those di�culties with the �estimation of the slope� approach. This work is
reported in Section 5.2. It was mainly motivated by the design of a software � actually
a Matlab package � that we wish to make available to enable a wider use of the slope
heuristics.
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What does ICL do? This chapter is dedicated to an attempt to answer the question
which has motivated this thesis: better understanding the ICL criterion.

The ICL criterion has been proposed by Biernacki et al. (2000) as a criterion to
select the number of classes with Gaussian mixture models for a clustering purpose.
Better than other classical criteria, ICL seems to yield a relevant number of classes for a
clustering purpose. Since it �penalizes� the solutions with large overlap, it does not tend
to overestimate the number of classes, on the contrary to BIC, for example. This nice
feature, �rst mainly studied through simulations, has met the interest of statisticians in
various applications.

However, almost no theoretical results about ICL were available. It was rather
criticized for not being �consistent�, in the sense that BIC is: it does not recover the
true number of components of a mixture, even if the true distribution is available in one
of the considered models, and even asymptotically, if the true components overlap.

There seemed to be a gap between the practical interest of ICL and the available
theoretical analysis, which was rather negative. It is then interesting to try to understand
what people like, in a intuitive manner, with the hope that it matches a notion of what
a class should be.

Actually, we embraced several approaches to try to better understand the behavior
of ICL. The contrast minimization framework proved to be the most fruitful. It enabled
to fully understand that ICL was not a penalized likelihood criterion, as opposed to the
usual point of view. It is rather linked to another contrast: the conditional classi�cation
likelihood. Involving this quantity in a clustering purpose is de�nitely not a new idea:
Biernacki and Govaert (1997) for example, considered it as a model selection criterion
for its own, and it is actually a part of the ICL itself. But it had never been considered
as a contrast, i.e. a concurrent to the likelihood itself: mostly, the maximum likelihood
estimator is plugged-in. Doing so much improves the understanding of ICL, which is a
penalized conditional classi�cation likelihood criterion.

Considering this contrast enables to derive theoretical results about a new penalized
criterion which is almost ICL. Indeed, it is the same function, with the same penalty,
but evaluated at a di�erent estimator. This estimator, to be consistent with the ICL
point of view, is the maximum conditional classi�cation likelihood estimator. So that
both a new criterion and a new estimator, which purpose is clustering, are introduced.
The estimator is proved to be consistent under usual regularity conditions, and a result
on su�cient conditions about the penalty which guarantee the consistency of the corre-
sponding model selection procedure is provided. ICL is a consistent criterion, from this
point of view. The embraced approach for doing so is mimicked from the techniques of
Massart (2007) in a non-asymptotic general likelihood framework. Although no oracle
inequality is derived here, this gives a hint about the optimal penalties shapes. This
partly justi�es the application of the slope heuristics to derive another criterion.

An interest of this approach, is that it enables to further study the notion of class
underlying ICL. This is nor a simple notion of cluster � as for example for the k-means
procedure � neither a pure notion of �component� � as underlying the MLE/BIC
approach in this framework � but a compromise between both. Remark that in this
chapter, the �one component=one class� rule is followed.

This notion of class underlying ICL seems to match a widespread intuitive notion of
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what it should be. Simulations strengthen those considerations.

In this chapter, sketches of proofs are mostly given to help understand how to bring
results together to get the �nal result, but for the sake of readability the most technical
parts of the proofs are given in sections apart.

4.1 Introduction

The notions presented in this section have mainly been introduced in the three �rst
chapters already. They are quickly recalled so that the reader may simply refer to the
corresponding sections, which are speci�ed each time it is necessary.

Let an i.i.d. sample X1, . . . , Xn from an unknown distribution f℘.

4.1.1 Gaussian Mixture Models

MK is the Gaussian mixture model with K components:

MK =

{
K∑

k=1

πkφ( . ;ωk)
∣∣∣ (π1, . . . , πK) ∈ ΠK , (ω1, . . . , ωK) ∈ ΘK

}
, (4.1)

which entire parameter space is ΘK = ΠK×
(
Rd × Sd+

)K
(see Section 1.1.1). Recall that

ΠK = {(π1, . . . , πK) ∈ [0, 1]K :
∑K

k=1 πk = 1}. Constraints on the model may be imposed
by restricting ΘK . The type of constraints which are typically considered here follow
the decomposition suggested by Celeux and Govaert (1995): the covariance matrices
are written1 Σk = λkDkAkD

′
k, and each one of the three factors of the decomposition

(corresponding respectively to the component volume, direction and shape), may be
constrained to be equal or not for all components, as well as the mixing proportions may
be constrained to be equal or not. See Section 1.1.1, where other kinds of constraints
are suggested, based on this decomposition.

Those are studied here as parametric models. It is then assumed the existence of a
parametrization ϕ : ΘK ⊂ RDK →MK . It is assumed that ΘK and ϕ are �optimal�, in
the sense that DK is minimal. DK is then the number of free parameters in modelMK

and is called the dimension ofMK. For example, only (K−1) mixing proportions have
to be parametrized, since the Kth proportion can be deduced from them.

It shall not be needed to assume the parametrization to be identi�able, i.e. that
ϕ is injective. Our purpose in the following is twofold: identifying a relevant number
of classes to be designed; and actually design those classes. Theorem 7 below justi�es
that the �rst task can be achieved under a weak identi�ability assumption, namely
that the loss function is minimized at a single value of the conditional classi�cation
likelihood, as a function of x. This single value could be represented by several values of
the parameter. Then, the estimation theorem (Theorem 4) guarantees that the de�ned

1See Section 1.1.1 for the Σk = λkDkAkD
′
k decomposition: λk =

(
det Σk

) 1
d , Ak is the diagonal

matrix with the eigenvalues of Σk (divided by λk) on the diagonal and Dk is the (orthogonal) matrix
of eigenvectors of Σk.
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estimator converges to one of the best parameters from the embraced point of view. The
classes can �nally be de�ned through the MAP rule (which is recalled a few lines below),
from the estimated parameter. The injectivity of ϕ is never involved. Identi�ability of
the mixture models is not the good notion here: two parameters de�ning the same
mixture distribution may even be di�erent from the conditional classi�cation point of
view (think of the example: φ( . ;ω) = πφ( . ;ω)+(1−π)φ( . ;ω), where the �rst parameter
yields one class, whereas the second yields two classes). There is therefore no reason to
identify them. Label switching may be prevented without damage, but it is not needed
to do so neither. Writing that this chapter takes place in the Gaussian mixture model
framework is then � conveniently � abusing a little the de�nitions. The conditional
classi�cation likelihood � as the ICL criterion besides � is not even de�ned over the
modelsMK if they are not assumed to be identi�able (the knowledge of each component
distribution is needed to de�ne the entropy: see the remark about M̃K in Section 1.1.1).
Recall (from Section 1.1.2) that the identi�ability ofMK may be guaranteed under the
conditions of Yakowitz and Spragins (1968) that πk > 0 and ωk 6= ωk′ as soon as
k 6= k′ (see Section 1.1.2). Since we shall assume the parameter spaces to be compact,
those conditions are quite unpleasant: lower bounds on the πk's and on ‖ωk − ωk′‖
have to be speci�ed. But we need not such identi�ability assumption and the ωk 6= ωk′
condition is avoided. Mixture distributions which do not ful�ll this condition are never
of interest anyway, because of the considered contrast. But the technical condition on
the proportions seems di�cult to be avoided. The reason shall be apparent from the
study of the entropy term in Section 4.2.2 and be further discussed in Section 4.3.2.

Let us introduce two examples of usual Gaussian mixture models, which will be of
concern subsequently. Since compactness assumption will be needed, it is described
what conditions are su�cient to guarantee this assumption to hold.

Example 2 (General Gaussian Mixture Model)
No constraint is imposed on the Gaussian mixtures. Mixing proportions are allowed to
be di�erent, and each covariance matrix may be any positive de�nite symmetric matrix.
ΘK is a subset of ΠK×

(
Rd × Sd+

)K
and may be imposed for example to be compact with

constraints like:
∀k ∈ {1, . . . , K},

πk ≥ πmin

∀j ∈ {1, . . . , d}, µmin ≤ µjk ≤ µmax

λmin ≤ λk ≤ λmax

∀j ∈ {1, . . . , d}, amin ≤ Ajk ≤ amax,

where Ak is the diagonal matrix with diagonal (A1
k, . . . , A

d
k). This model has dimension

(d− 1) +Kd+K d(d+1)
2

= K d(d+3)
2

+ d− 1 and a corresponding parametrization is given
in Section 4.3.3.

Example 3 (Diagonal Gaussian Mixture Model)
The covariance matrices are imposed to be diagonal. This corresponds to Gaussian
components which are parallel to the axis. ΘK is a subset of ΠK×

(
Rd × Rd

)K
, and may
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be imposed to be compact with: ∀k ∈ {1, . . . , K},

πk ≥ πmin

∀j ∈ {1, . . . , d}, µmin ≤ µjk ≤ µmax

∀j ∈ {1, . . . , d}, amin ≤ Ajk ≤ amax.

where λkAk is the diagonal matrix with diagonal (A1
k, . . . , A

d
k) (those eigenvalues here are

then not normalized by the determinant). This model has dimension (d−1)+Kd+Kd =
2Kd+ d− 1 and a corresponding parametrization is given in Section 4.3.3.

This chapter is uniquely devoted to the question of clustering through Gaussian
mixture models. Though all results could be extended to other mixture models of
exponential families.

The adopted process is the usual one (Chapter 2):

� �t each considered mixture model;

� select a model and a number of components on the basis of the �rst step;

� classify the observations through the MAP rule (recalled below) with respect to
the mixture distribution �tted in the selected model.

Notably, the usual choice is made in this chapter, to identify a class with each �tted
Gaussian component. The number of classes to be designed is then chosen at the second
step. See also Chapter 2 for a discussion upon this choice.

Let us recall the MAP classi�cation rule (see Section 1.3). It involves the conditional
probabilities of the components

∀θ ∈ ΘK ,∀k, ∀x, τk(x; θ) =
πkφ(x;ωk)∑K

k′=1 πk′φ(x;ωk′)
· ((1.5) recalled)

τk(X; θ) is the probability that the observation X arose from the kth component, con-
ditionally to X, under the distribution de�ned by θ (i.e. τk(x; θ) is the conditional
probability of component k under θ as x has been observed)2. The MAP classi�cation
rule is then de�ned by

ẑMAP(θ) = argmax
k=1,...,K

τk(x; θ).

The usual maximum likelihood estimator (with respect to the sample x) in model
MK is written θ̂MLE

K .

4.1.2 ICL

The motivation of the works reported in this chapter was to better understand,
mainly from a theoretical point of view, the ICL model selection criterion. Let us

2It will also be written τik(θ) as x = xi.
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�rst recall how it was originally derived (see Section 2.1.4). Attempting to mimic
the derivation of the BIC criterion (Section 2.1.3) in a clustering framework, Bier-
nacki et al. (2000) approximate the integrated classi�cation likelihood (Section 1.4:
Lc(θ; (x, z)) =

∏n
i=1

∏K
k=1 (πkφ(xi;ωk))

zik , where z are the unobserved labels, specifying
the component from which the corresponding observations arose, when f℘ is actually
a mixture distribution) through a Laplace's approximation. Further, they replace the
unobserved zik's by their MAP estimate under θ̂MLE

K (namely3 ẑi
MAP(θ̂MLE

K )), and assume
that the mode of the classi�cation likelihood can be identi�ed with the maximum (ob-
served) likelihood estimator as n is large enough, which is a questionable choice which
shall be discussed in this chapter. They obtain the ICL criterion:

critICL(K) = log f(X, ẐMAP; θ̂MLE
K )− log n

2
DK

= L(θ̂MLE
K ) +

n∑

i=1

K∑

k=1

ẐMAP
i,k (θ̂MLE

K ) log τik(θ̂
MLE
K )− log n

2
DK .

As mentioned in Section 2.1.4, McLachlan and Peel (2000) rather replace the unobserved
zik's by their posterior respective probabilities with respect to the maximum likelihood
estimator τik(θ̂MLE

K ):

critICL(K) = L(θ̂MLE
K ) +

n∑

i=1

K∑

k=1

τik(θ̂
MLE
K ) log τik(θ̂

MLE
K )− log n

2
DK . (4.2)

Both those versions of the criterion appear to behave analogously, and the latter is now
considered.

The ICL di�ers from the classical and widely used BIC criterion of Schwarz (1978)
through the entropy term (see Section 1.4.3 and Section 4.2.2 below):

∀θ ∈ ΘK , ENT(θ;x) = −
n∑

i=1

K∑

k=1

τik(θ) log τik(θ). ((1.7) recalled)

The BIC criterion is known to be consistent for the number of components, at least
when the true distribution is actually a (Gaussian, here) mixture distribution and lies
in one of the considered models (Keribin (2000) or Nishii (1988): see Section 2.1.3).
This nice property may however not be adapted for a clustering purpose. In many ap-
plications, there is no reason to assume that the classes to be designed have a Gaussian
shape. The BIC in this case tends to overestimate the number of components since
several Gaussian components may be needed to approximate each non-Gaussian com-
ponent of the true mixture distribution f℘. And the user may rather be interested in
a cluster notion � as opposed to this strictly �component� approach � which also in-
cludes a separation notion and which be quite robust to non-Gaussian components. Of
course, it depends on the application needs, and on the idea that the user has of a class
(see Hennig, 2009 for a discussion about the notion of cluster). It may be of interest
to discriminate into two di�erent classes a group of observations which the best �t is
reached with a mixture of two Gaussian components having quite di�erent parameters

3By abusing the notation, we identify the 0 − 1 label vector with the index of the corresponding
component: ′′z = k′′0 ⇔ zk = 1 if k = k0 and zk = 0 else.
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(we particularly think of the covariance matrices parameters). BIC tends to do so. But
it may also be more relevant, at least for many applications, and it may conform to a
current intuitive notion of cluster, which should however be speci�ed, to identify two
very close � or largely overlapping � Gaussian components as a single non-Gaussian
shaped cluster (see for example Figure 4.3)...

The ICL has been derived with this viewpoint, to overcome this limitation of the
BIC. It is widely understood and explained (for instance in Biernacki et al., 2000) as the
BIC criterion with a further penalization term, which is the entropy. Since this entropy
term penalizes models which maximum likelihood estimator yields an uncertain MAP
classi�cation (see Section 4.2.2 below), the ICL is expected to be more robust than BIC
to non-Gaussian components. Though, we do not think that the entropy should be
considered as a penalty term and an other point of view about ICL will be developed
in this chapter.

This nice feature of the ICL criterion has been studied and con�rmed through sim-
ulations and real data studies by Biernacki et al. (2000), McLachlan and Peel (2000,
Section 6.11), and in several simulation studies that we have performed, some of which
are reported in Section 4.4 below. Besides, it has met the needs of some applications
and several authors successfully chose to use it for the mentioned reasons in various
applications area: among others,

� Goutte et al. (2001) use it in a study of fMRI images;

� Hamelryck et al. (2006) for the problem of predicting a protein structure from its
sequence;

� Pigeau and Gelgon (2005) introduce ICL for a method which aims at building an
hierarchical structure on an image collection;

� De Granville et al. (2006) introduce ICL in an approach which purpose is the
learning by robots of the possible grasps they can apply to an object, based on
the sight of a human manipulating it;

� etc.

This practical interest for the ICL lets us think that it meets an interesting notion
of cluster, corresponding to what � at least � some users expect. But almost no the-
oretical studies nor results are available about ICL. This has been the main motivation
of the work reported in this chapter � and actually of the whole thesis � to go further
in this direction. It will notably be seen in the following how it led to considering a new
contrast in the contrast minimization framework, and hence to a new procedure to �t
a mixture model and to a new model selection criterion for clustering, similar to ICL
but for which the development of the underlying logic is driven to its conclusion, from
the estimation step to the model selection step, instead of introducing the maximum
likelihood estimator like Biernacki et al. (2000) did. Moreover, the presented point of
view will enable to derive theoretical results about ICL, which the maximum likelihood
framework did not enable. Typically, ICL is sometimes criticized for not being �consis-
tent� (for the number of components), on the contrary to BIC, in �good� situations. It
will be shown that, as a matter of fact, it is, in a sense to be speci�ed.
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4.2 A New Contrast: Conditional Classi�cation Like-

lihood

4.2.1 De�nition, Origin

We already introduced the classi�cation likelihood (see (1.4) in Section 1.4.1):

∀θ ∈ ΘK , Lc

(
θ; (x1, z1), . . . , (xn, zn)

)
=

n∏

i=1

K∏

k=1

(
πkφ(xi;ωk)

)zik . ((1.4) recalled)

This is the likelihood of the complete data (x, z). It has been seen in Section 2.1.4 that
it was involved in the initial derivation of the ICL, possibly (in the version of McLachlan
and Peel, 2000) giving rise to a term logL(θ̂MLE

K )−ENT(θ̂MLE
K ). We shall here derive it

from a slightly di�erent point of view. This will shed new light on its link with clustering
and be a starting point for the subsequent theoretical study.

Of course, in our clustering context, neither the labels z are observed, nor we as-
sume that they even exist (think of the case several models with di�erent number of
components are �tted: then at most one can correspond to the true number of classes,
when it exists). A possibility to involve the classi�cation likelihood even though is to
consider its conditional expectation with respect to the observations x. In the case there
exists a true classi�cation and a model with the true number of classes is considered,
this conditional expectation may actually be interpreted as the quantity the closest to
the classi�cation likelihood, which can be obtained given the available information.

Recall the fundamental equality (1.6) (Section 1.4.2)

∀θ ∈ ΘK , logLc(θ) = logL(θ) +
n∑

i=1

K∑

k=1

zki log τk(xi; θ). ((1.6) recalled)

Denoting the conditional expectation of the classi�cation log likelihood logLcc(θ) =
logLcc(θ;x) (for Conditional Classi�cation log Likelihood)4,

logLcc(θ) = Eθ [logLc(θ)|X = x]

=
n∑

i=1

K∑

k=1

τik(θ) log πkφ(xi;ωk)

= logL(θ) +
n∑

i=1

K∑

k=1

τik(θ) log τik(θ)

︸ ︷︷ ︸
−ENT(θ;x)

.

This quantity, deriving from the classi�cation likelihood, is obviously linked to our
clustering objective, and it is tempting to involve it in our study. Let us however high-
light that it is not completely justi�ed by the previous heuristics. Notably, it would
be more relevant to consider the conditional expectation with respect to f℘ instead of
θ...of course, it is unknown, and a �rst attempt may be to plug the maximum likelihood

4Of course, in the following, Eθ stands for Ef( . ;θ)
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estimator. The presented derivation of the conditional classi�cation likelihood is never-
theless interesting since it highlights its link with the clustering. And the reason why
we introduce this quantity is that it is related to ICL. We will derive a model selection
criterion directly by considering the conditional classi�cation likelihood as a contrast
(following the contrast minimization approach introduced in Chapter 3). We will then
be able to derive some theoretical properties of this new criterion and of the related
estimator, which will have been de�ned �rst. Yet, we will link this criterion to ICL and
then deduce a better understanding of the ICL criterion, which is our main purpose.

4.2.2 Entropy

The conditional classi�cation log likelihood di�ers from the usual log likelihood through
the entropy term. It is then necessary to further study the entropy.

∀θ ∈ ΘK , ENT(θ;x) = −
n∑

i=1

K∑

k=1

τik(θ) log τik(θ). ((1.7) recalled)

The behavior of the entropy is based on the properties of the function

h : t ∈ [0, 1] 7−→
{
−t log t if t > 0
0 if t = 0.

This nonnegative function (see Figure 4.1) takes zero value if and only if t = 0 or t = 1.
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Figure 4.1: The function h : t 7→ −t log t

It is continuous but not di�erentiable at 0 (h′(t) −−−→
t→0+

+∞), and in particular it is not
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Lipschitz over [0, 1], which will be a cause of analysis di�culties. Let us also introduce
the function

hK : (t1, . . . , tK) ∈ ΠK 7−→
K∑

k=1

h(tk).

This nonnegative function (see Figure 4.2) then takes zero value if and only if there

Figure 4.2: The function hK : (t1, . . . , tK) 7→ ∑K
k=1 h(tk) when K = 3 (in Π3, t3 =

1− t1 − t2)

exists k0 ∈ {1, . . . , K} such that tk0 = 1 and tk = 0 for k 6= k0. It reaches its maximum
value logK at (t1, . . . , tK) = ( 1

K
, . . . , 1

K
).

Proof If hK reaches a maximum value at (t01, . . . , t
0
K) under the constraint

∑K
k=1 t

0
k = 1,

then, with S : (t1, . . . , tK) 7→∑K
k=1 tk, the following must hold:

∃λ ∈ R/dhK(t01, . . . , t
0
K) = λdS(t01, . . . , t

0
K).

This is equivalent to
∀k, log t0k + 1 = λ.

Then, ∀k, ∀k′, t0k = t0k′ and since
∑K

k=1 t
0
k = 1, this yields t0k = 1

K
. �



4.2.2 - Entropy 93

Now, the contribution ENT(θ;xi) of a single observation (let us call it its individual
entropy) to the total entropy ENT(θ;x) is considered. Figure 4.3 illustrates the following
remarks: two observations xi1 and xi2 are successively considered. They correspond to
opposite situations. The dataset arises from a four-component Gaussian mixture model
which each component isodensity is colored together with the observations arising from
it. At this stage and for this illustration in Figure 4.3, the entropy with respect to the
true parameter θ℘ is considered, since it is available. From the remarks about h and
hK , the following two remarks can be stated.

� The individual entropy of xi is about zero if there exists k0 such that τik0 ≈ 1 and
τik ≈ 0 whenever k 6= k0. Remark that there is no di�culty to classify xi through
MAP in such a case: it will con�dently be assigned the class corresponding to
component k0. In Figure 4.3, this is the situation of the observation xi1 and the
component kgreen.

� The individual entropy of xi is all the greater that (τi1, . . . , τiK) is closer to the
uniform repartition ( 1

K
, . . . , 1

K
), i.e. that the classi�cation through the MAP rule

is uncertain. The worst case is reached as the posterior probabilities are uniformly
distributed among the classes 1, . . . , K. The individual entropy would then take
the value logK and there would be no available information about to which class
it should be assigned or not. The observation xi2 in the example Figure 4.3 has
about the same posterior probability 1

2
to arise from each one of the components

kcyan and kblue. Its individual entropy is about log 2.
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Figure 4.3: An example dataset

In conclusion the individual entropy is a measure of the assignment con�dence of the con-
sidered observation through the MAP classi�cation rule under the distribution f( . ; θ).
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The total entropy ENT(θ;x) of a sample x is the empirical mean entropy (times
the sample size) and is an estimator of the expected entropy Ef℘ [ENT(θ;X)] (up to
the factor n). Remark that the de�nition of Ef℘ [ENT(θ;X)] is not a di�culty since
0 ≤ ENT(θ;x) ≤ logK for all x. ENT(θ;x) is the empirical mean assignment con�dence,
and then measures the quality of the classi�cation obtained through the MAP rule over
the whole sample.

Involving this quantity in a clustering study means that the chosen cluster notion
involves that one expects the classi�cation to be quite con�dent. This is obviously linked
to the notion of well-separated clusters. The conditional classi�cation likelihood shall be
used as a contrast from Section 4.2.3. The notion of class underlying this choice is then
a compromise between the �t (and then the idea of a Gaussian shape in the Gaussian
mixtures framework) because of the log likelihood term on the one hand (�component�
point of view), and the assignment con�dence because of the entropy term on the other
hand (which is rather a �cluster� point of view).

These remarks about the entropy then con�rm the link of the −logLcc contrast to
the clustering and allow to better understand the notion of class which is implied by
this choice.

4.2.3 logLcc as a Contrast

Choosing −logLcc as a contrast when the study is set in the contrast minimization
framework (Section 3.1), is then choosing a clustering point of view, with the notion
of class as explained in Section 4.2.2. It can be further illustrated by considering the
corresponding best distribution from this point of view in a modelMm = {f( . ; θ) : θ ∈
Θm}, namely the distribution minimizing the corresponding loss function

θm ∈ argmin
θ∈Θm

{
dKL
(
f℘, f( . ; θ)

)
+ Ef℘ [ENT(θ;X)]

}

︸ ︷︷ ︸
=argmin

θ∈Θm

Ef℘ [−logLcc(θ)]

︸ ︷︷ ︸
this set is denoted by Θ0

m

.

The de�nition of Ef℘ [−logLcc(θ)] is no problem as soon as the distribution f℘ does not
have huge tails. If f℘ is absolutely continuous with respect to the Lebesgue measure,
it su�ces that its density be negligible with respect to 1

‖x‖3 . See the discussion after
Theorem 7 for further justi�cation. Other reasonable assumptions would be that the
support of f℘ is compact or that the contrast is bounded from above (consider −logLcc∧
M for a constant M > 0 well chosen and large enough: see also the discussion after
Theorem 7). Those assumptions will be considered in Section 4.4: one or the other
will have to be imposed there. The nonemptiness of Θ0

m � the set of parameters
minimizing the risk over Θm � may be guaranteed for example by assuming Θm to be
compact (θ 7−→ Ef℘ [−logLcc(θ)] is then continue over the compact set Θm according
to the dominated convergence theorem, and then reaches its in�mum over this set).
We are interested in applying this contrast to a Gaussian mixture model. Let K be
�xed and consider the modelMK as de�ned in Section 4.1.1. First of all, remark that
logLcc = logL if K = 1: Θ0

K is then the set of parameters of the distributions which
minimize the Kullback-Leibler divergence to the data distribution f℘ (let us denote



4.2.3 - logLcc as a Contrast 95

this last parameters set ΘKL
K ). Now, if K > 1, θ0

K ∈ Θ0
K may be close to minimizing

the Kullback-Leibler divergence if the corresponding components do not overlap since
then, the entropy is about zero. But as those components overlap, this is not the case
anymore. Example 4 illustrates this.

In order to really de�ne the loss function, and to fully understand this framework,
it is necessary to consider the �best element of the universe� U (see Section 3.1.1):

argmin
θ∈U

Ef℘ [−logLcc(θ)] .

The universe U must be chosen with care. There is no natural relevant choice, as for ex-
ample in the density estimation framework where the set of every densities of the world
may be chosen. First, as already mentioned, the considered contrast is well-de�ned in a
parametric mixture setup, and not necessarily over any mixtures densities set because of
the de�nition of the entropy term involving the de�nition of each component. However,
this would still enable to consider mixtures much more general than mixtures of Gaus-
sian components. The ideas developed in Chapter 7 may for example suggest to involve
in the universe mixtures which components are themselves Gaussian mixtures. The
contrast may be well-de�ned over such sets of mixtures, if the parameterization is well
chosen. But this would not make sense. The mixture with one component which con-
sists of a mixture of K Gaussian components, and which then yields a single class which
has a non-Gaussian shape, always has a smaller contrast value than the corresponding
Gaussian mixture, yielding K classes: the likelihood is exactly the same since the mix-
ture distribution is the same, but the entropy is null when the mixture is considered as
one non-Gaussian component while it is never null when the mixture is considered as
K Gaussian components. This illustrates how carefully the components involved in the
study must be chosen: involving for example any mixture of Gaussian mixtures means
considering that a class may be almost anything, and it may notably contain for example
two Gaussian shaped clusters of observations very far from each other! The components
should in any case be chosen with respect to the corresponding cluster shape. The most
natural is then to involve in the universe only Gaussian mixtures: U may be chosen as
∪1≤K≤KMMK (i.e. the union of all the models involved in the study: see Section 4.4).

Example 4 f℘ is the normal density N (0, 1) (d = 1).
The model M = {1

2
φ( . ;−µ, σ2) + 1

2
φ( . ;µ, σ2);µ ∈ R, σ2 > 0} is considered. There is

no reason to impose any further condition on the model here.

It is interesting to consider Θ0
2 in this (probably) most simple situation. Actually,

we were not even able to calculate it by hand and to get an expression of it, even with
σ �xed! It illustrates the analysis di�culty of the problem and of the contrast logLcc.
Therefore, there will be no hope to calculate it in a more general case, particularly as
the dimension and/or the number of components of the model are greater.

But it can be computed by numerical evaluations. We then obtain that Θ0
K =

{(−µ0, σ
2
0), (µ0, σ

2
0)}, so that, up to a label switch, there exists a unique minimizer of

Ef℘ [−logLcc(µ, σ2)] in ΘK in this case (see Figure 4.4). By the way, there is no need
to impose any condition on the model to get this result here. We numerically found that
µ0 ≈ 0.83 and σ2

0 ≈ 0.31. This solution is obviously not the same as the one minimizing
the Kullback-Leibler divergence, which is µKL = 0 and σ2

KL
= 1: f( . ; θKLK ) = f℘ (see

Figure 4.5).
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This illustrates that the objective that we choose by introducing the −logLcc contrast
is not to recover the true distribution, even when it is available in the considered model.
In this example, the distribution corresponding to θKLK does not enable to de�ne a rule to
design two relevant classes from a �typical� dataset that would arise from f℘, in that they
would exactly and completely overlap each other, and the class assignment through MAP
would be completely arbitrary...instead, θ0

K reaches a compromise between the divergence
to the true distribution and the assignment con�dence, as illustrated in Figure 4.5.

The necessity of choosing a relevant model is striking in this example: this two-
component model should obviously not be used for a clustering purpose, at least for
datasets with size great enough so that the true distribution is well estimated by the
empirical distribution.
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Figure 4.4: Ef℘ [logLcc(µ, σ
2)] w.r.t. µ and σ, and Θ0

K , for Example 4

The estimator which results from this −logLcc contrast is considered in the following
section.

4.3 Estimation: MLccE

−logLcc is then a contrast tightly linked to a clustering purpose, and to a particular
notion of class. This last notion presumably conforms a widespread notion of cluster.
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4

Therefore, it is worth extending the reasoning and trying to apply this contrast from
the estimation step. Let us �x the number of components K and the modelMK in this
section, and study the new estimator de�ned this way. The subscript K is omitted in
the notation of this section.

A new estimator is then de�ned as the minimum contrast estimator corresponding
to −logLcc. General conditions ensuring its consistency are given in Theorem 3. They
notably involve the Glivenko-Cantelli property of the class of functions {γ(θ) : θ ∈
Θ}. This property is recalled in Section 4.3.2 and the bracketing entropy of this class
of functions is studied in the same section, since it enables to assess the Glivenko-
Cantelli property. Several situations are considered, since these results will be useful in
Section 4.4, too. These results brought together provide the consistency of the estimator
in Gaussian mixture models: this is Theorem 4 in Section 4.3.1. The proofs are given
in Section 4.3.3 and a few illustrative simulations in Section 4.3.4.

We aim at deriving results adapted to the considered Gaussian mixture models frame-
work, and to the −logLcc contrast. Most results will be stated in a general parametric
model setting with a general contrast γ. The generic model is denoted by M and is
assumed to have parameter set Θ ⊂ RD, with D the �dimension� of the model, namely
the number of free parameters as de�ned in Section 4.1.1. The assumptions involved in
those general results will be discussed in the particular framework we are interested in,
as well as the supplementary conditions we may have to impose to our model setting to
guarantee they hold, when they are stated.

Some notation is introduced for this section and the following one. All expecta-
tions E and probabilities P are taken with respect to the distribution f℘dλ. X is a
random variable in Rd with distribution f℘dλ and X1, . . . , Xn an i.i.d. sample from
the same distribution. For a general contrast γ, we write γn its empirical version:
γn(θ) = 1

n

∑n
i=1 γ(θ;Xi). RD is equipped with the in�nite norm: ∀θ ∈ RD, ‖θ‖∞ =
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max1≤i≤D |θi|, where θi is the ith coordinate of the decomposition of θ over the canonical
basis of RD. Consequently, for any r ∈ N∗ ∪ {∞} and for any function g : Rd → R,
‖g‖r is the Lr-norm of g with respect to the f℘dλ distribution: ‖g‖r = Ef℘ [|g(X)|r] 1

r

if r < ∞ and5 ‖g‖∞ = ess supX∼f℘ |g(X)|; for any linear form l : RD → R, ‖l‖∞
is the usual norm of a linear map over a �nite-dimensional normed vector space:
‖l‖∞ = maxθ∈RD

l(θ)
‖θ‖∞ = maxθ∈RD:‖θ‖∞=1 l(θ).

4.3.1 De�nition, Consistency

The minimum contrast estimator, called MLccE (Maximum conditional classi�cation
log Likelihood Estimator) by direct analogy with the maximum likelihood estimator, is
written θ̂MLccE:

θ̂MLccE ∈ argmin
θ∈Θ

γn(θ).

To ensure its existence, we impose that Θ is compact. This is a heavy assumption, but
it will be natural and necessary for the following results to hold. Assuming that the
covariance matrices are bounded from below is a reasonable and necessary assumption
in the Gaussian mixture framework: without this assumption, neither the log likelihood,
nor the conditional classi�cation likelihood would be bounded. Insights to choose the
lower bounds on the proportions and the covariance matrices are suggested in Section 5.1
below. The upper bound on the covariance matrices and the condition on the means,
although not necessary in the usual likelihood framework, do not seem to be avoidable in
this framework (see Section 4.3.2). This is a consequence of the behavior of the entropy
term in the contrast function as a component goes to zero. Remark that the results of
this chapter still hold if the estimator only maximizes −logLcc up to oP(1).

The following theorem, which is directly adapted from van der Vaart (1998, Section
5.2), gives su�cient conditions for the consistency of the estimator θ̂MLccE. We write
∀θ ∈ Θ,∀Θ̃ ⊂ Θ, d(θ, Θ̃) = inf

θ̃∈Θ̃
‖θ − θ̃‖∞.

Theorem 3
Let Θ ⊂ RD and γ : Θ× Rd −→ R.
Assume ∃θ0 ∈ Θ such that

Ef℘
[
γ(θ0)

]
= min

θ∈Θ
Ef℘ [γ(θ)] (A1)

(i.e. Θ0 is not empty).
Assume

∀ε > 0, inf
{θ;d(θ,Θ0)>ε}

Ef℘ [γ(θ)] > Ef℘
[
γ(θ0)

]
. (A2)

Assume
sup
θ∈Θ

∣∣∣γn(θ)− Ef℘ [γ(θ)]
∣∣∣ P−−→ 0. (A3)

De�ne ∀n,
θ̂ = θ̂(X1, . . . , Xn) ∈ Θ such that γn(θ̂) ≤ γn(θ0) + oP(1).

5Recall that ess supZ∼P Z = inf{z : P[Z ≤ z] = 1}. We then notably have ess supX∼f℘ |g(X)| ≤
supx∈supp f℘ |g(x)|.
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Then
d(θ̂,Θ0)

P−−−→
n→∞

0.

Under the assumptions (A1), (A2), (A3), which will be of concern in the three fol-
lowing paragraphs, the minimum contrast estimator is then consistent (in probability).

Remark that the strong consistency of this theorem holds if (A3) is replaced by a
convergence almost sure (this is the case under the conditions we are to de�ne), and if
the inequality in the de�nition of θ̂ holds almost surely instead of in probability.

Sketch of Proof There is no di�culty with this theorem. The assumptions guarantee
a convenient situation. With great probability as n grows, from (A3), γn(θ) is uniformly
close to Ef℘ [γ(θ)]. This particularly holds for θ̂MLccE and θ0. Then, from the de�nition

of θ̂MLccE, Ef℘
[
γ(θ̂MLccE)

]
cannot be very larger than Ef℘ [γ(θ0)], which reaches the

minimal value...Yet (A2) makes it impossible to have almost minimal Ef℘ [γ(θ)] value
while lying far from Θ0

K. �

Let us subsequently discuss this result and the corresponding assumptions in the
Gaussian mixture model context, with γ = −logLcc and Θ = ΘK . This will yield the

Theorem 4 (Weak Consistency of MLccE, compact case)
Let M be a Gaussian mixture model, as de�ned in Section 4.1.1, with parameter space
Θ ⊂ RD.
Assume that Θ is compact.
Let Θ0 = argmin

θ∈Θ
Ef℘ [−logLcc(θ;X)].

Let ΘO be an open subset of RD over which logLcc is well-de�ned, such that Θ ⊂ ΘO

and assume

L′(x) = sup
θ∈ΘO

∥∥∥∥∥

(
∂logLcc
∂θ

)

(θ;x)

∥∥∥∥∥
∞

<∞ f℘dµ− a.s.

‖L′‖1 <∞.

For any θ0 ∈ Θ0, let, for any n, θ̂MLccE be an estimator (almost) maximizing the condi-
tional classi�cation likelihood: θ̂MLccE = θ̂MLccE(X1, . . . , Xn) ∈ Θ such that

−logLcc(θ̂
MLccE;X) ≤ −logLcc(θ

0;X) + oP(n).

Then
d(θ̂MLccE,Θ0)

P−−−−→
n−→∞

0.

The assumption about L′ is a consequence of lemma 3 (see below) and shall be discussed
in Section 4.3.2.
Under the compactness assumption, θ̂MLccE is then consistent (in probability). It is even
strongly consistent if it minimizes the empirical contrast almost surely (instead of up
to a oP(1)). Let us highlight that it then converges to the set of parameters minimizing
the loss function (i.e. the expected contrast), which has no reason to contain the true
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distribution � but in the particular case K = 1 � even if the last lies in the modelMK .
Only in cases where the data arise from a true Gaussian mixture which components are
well separated, and K is the true number of components, f℘ can be expected to lie close
to {γ(θ) : θ ∈ Θ0}.

Let us discuss the assumptions of Theorem 3 in this framework so as to derive this
last result.

Assumption (A1) is the least that can be expected! It is guaranteed if the parameter
space is assumed to be compact. Indeed, θ ∈ Θ 7→ Ef℘ [γ(θ)] is then continue from the
dominated convergence theorem, since then x ∈ Rd 7→ supθ∈Θ γ(θ;x) behaves for the
largest values of x roughly as γ(θ;x) for any θ, and is then integrable with respect to
f℘dλ as soon as this distribution does not have heavy tails: remark that, for �xed θ
and for large values of x, −logLcc(θ;x) increases roughly as − log f(x; θ) (ENT(θ;x) is
bounded), and then, f℘(x) = o( 1

x3 ) should su�ce. It would be quite technical to write
this completely.

Assumption (A2) holds, too, under this compactness assumption: since θ ∈ ΘK 7→
Ef℘ [γ(θ)] reaches its minimum value on the compact set ΘK\{θ ∈ ΘK : d(θ,Θ0

K) > ε}
(closed and bounded if ΘK is), this minimum value is necessarily strictly greater than
Ef℘ [γ(θ0)].

Remark that assumption (A3) is strong and could be appreciably relaxed (see for
instance van der Vaart (1998): it su�ces that the variances var(γ(θ)) be bounded from
above uniformly in θ, which guarantees a control of (γn(θ)−Ef℘ [γ(θ)])). However, there
is no reason to do so here since it can be guaranteed under the compactness assumption
which has been already stated. This will be proved (in the stronger a.s. version) in
Section 4.3.2 through bracketing entropy arguments. Actually, it could be proved with
more direct reasoning, but we are interested in this approach since it will be helpful in
the theoretical study of the model selection step (Section 4.4).

In conclusion, Theorem 3 easily applies when ΘK is assumed to be compact. Deriv-
ing theoretical results under this assumption helps understanding the behavior of the
estimator (and next, of the model selection procedure).

Let us now prove assumption (A3).

4.3.2 Bracketing Entropy and Glivenko-Cantelli Property

The notions of Glivenko-Cantelli classes of functions and of entropy with bracketing of
a class of functions with respect to a distribution P over Rd are �rst recalled.

De�nition 2
A class G of measurable functions g : Rd → R is P-Glivenko-Cantelli i�:

∥∥∥∥∥
1

n

n∑

i=1

g(Xi)− E [g(X)]

∥∥∥∥∥
G

:= sup
g∈G

∣∣∣∣∣
1

n

n∑

i=1

g(Xi)− E [g(X)]

∣∣∣∣∣
a.s.−→ 0, (4.3)

where X1, . . . , Xn is a sample from the distribution P and the expectation over X is
taken with respect to the distribution P.
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A class G of functions is then P-Glivenko-Cantelli if it ful�lls a uniform law of large
numbers for the distribution P.

A su�cient condition for a family G to be P-Glivenko-Cantelli if that it is not too
complex, in a sense that can be measured through the entropy with bracketing :

De�nition 3
Let r ∈ N∗ and l, u ∈ Lr(P).
The bracket [l, u] is the set of all functions g ∈ G with l ≤ g ≤ u (i.e. ∀x ∈ Rd, l(x) ≤
g(x) ≤ u(x)).

[l, u] is an ε-bracket if ‖l − u‖r = E [|l − u|r] 1
r ≤ ε.

The bracketing number N[ ](ε,G, Lr(P)) is the minimum number of ε-brackets needed to
cover G.
The entropy with bracketing E[ ](ε,G, Lr(P)) of G with respect to P is the logarithm of the
bracketing number.

The bracketing entropy is a Lr-measure of the complexity of the class G. It is quite
natural that the behavior of all functions lying inside an ε-bracket can be controlled by
the behavior of the extrema of the bracket (remark that those extrema are not assumed
to belong to G themselves). If those endpoints belong to L1(P), they ful�ll a law of large
numbers, and if the number of them needed to cover G is �nite, then this is no surprise
that G can be proved to ful�ll a uniform law of large numbers:

Theorem 5 Every class G of measurable functions such that E[ ](ε,G, L1(P)) < ∞ for
every ε > 0 is P-Glivenko-Cantelli.

See van der Vaart (1998, Chapter 19) for a proof of this result. This is a generalization
of the usual Glivenko-Cantelli theorem, which states the a.s. uniform convergence of
the empirical distribution function to the distribution function.

We shall then prove that the class of functions {γ( . ; θ) : θ ∈ ΘK} has �nite ε-
bracketing entropy for any ε > 0 and the assumption (A3) will be ensured.

Recall RD is equipped with the in�nite norm ‖θ‖∞ = maxi∈{1,...,D} |θi|, which turns
out to be convenient for the bracketing entropy calculations. From now on, it is assumed
that Θ ⊂ ΘO, with ΘO an open subset of RD over which γ is well-de�ned and C1

for f℘dλ-almost all x ∈ Rd. This is a natural assumption: recall Θ will typically be
assumed to be compact. It must be ensured that it is included in an open set so that
the di�erential of γ, which will be involved next, is well-de�ned. This assumption is no
problem in the Gaussian mixture model framework with the conditional classi�cation
likelihood (or the usual likelihood by the way), for example with the general model with
no constraint on the covariance matrices, or with the model with diagonal covariance
matrices. But it requires (with the conditional classi�cation likelihood as contrast) the
proportions to be positive. Actually, this could be avoided from this point of view, but
this assumption is to be necessary anyway because of the de�nition of L′ (see Lemma 2).
We already mentioned that, because of the behavior of the di�erential of the function
h (see Section 4.2.2) at zero, components going to zero must be avoided. Moreover, for
the same technical reason, we have to assume the mean parameters to be bounded. This
may perhaps be avoided, but probably not with our approach, which relies on the mean
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value theorem, and then requires the di�erential of the contrast to be controlled. This
can be done only if the component densities are kept away from zero.

The following lemma guarantees that the bracketing entropy of {γ( . ; θ) : θ ∈ ΘK} is
�nite for any ε, if ΘK is convex and bounded. The assumption about the di�erential of
the contrast is not a di�culty in our framework, provided that non-zero lower bounds
over Θ on the proportions and the covariance matrices are imposed. The lemma is
written for any Θ̃ bounded and included in ΘK (which would not necessarily be bounded
in this case) since it will be applied locally around θ0 in Section 4.4.

For any Θ̃ bounded ⊂ RD, diam Θ̃ = sup
θ1,θ2∈Θ̃

‖θ1 − θ2‖∞.

Lemma 2 (Bracketing Entropy, Convex Case)
Let r ∈ N∗.
Let D ∈ N∗ and Θ ⊂ RD assumed to be convex.
Let ΘO be an open subset of RD such that Θ ⊂ ΘO and γ : ΘO × Rd −→ R.
θ ∈ ΘO 7−→ γ(θ;x) is assumed to be C1 over ΘO for f℘dλ-almost all x ∈ Rd.
Assume6

L′(x) = sup
θ∈Θ

∥∥∥∥∥

(
∂γ

∂θ

)

(θ;x)

∥∥∥∥∥
∞

<∞ f℘dµ-a.s.

‖L′‖r = Ef℘ [L′(X)r]
1
r <∞.

Then,

∀Θ̃ bounded ⊂ Θ,∀ε > 0, N[ ](ε, {γ(θ) : θ ∈ Θ̃}, ‖ · ‖r) ≤
(
‖L′‖r diam Θ̃

ε

)D

∨ 1.

Remark that Θ does not have to be compact. It is however a su�cient condition
for L′(x) < ∞ to hold a.s. The proof of this result is a calculation. It relies on the
mean value theorem, hence the convexity assumption. The natural parameter space
corresponding to the Gaussian mixture model with diagonal covariance matrices (each
covariance matrix is parametrized by its diagonal values...), for instance, is convex.
The parameter space corresponding to the natural parametrization of the model with
diagonal covariance matrices and equal volumes between components is convex, too (if
d > 1...). The mixture model with general covariance matrices has a convex natural
parameter space, too, since the set of de�nite positive matrices is convex. See the proofs
section below (Section 4.3.3) for further justi�cation. However, in the Gaussian mixture
framework there is no reason in general that the model parameter space Θ should be
convex. It is then useful to generalize Lemma 2.

It can be done at the price of assuming Θ to be compact, and included in an open
set over which the property about the supremum of the contrast di�erential still holds.
This is no di�culty for the mixture models we consider, under the same lower bounds
constraints as before (since ΘO itself can be chosen to be included in a compact subset
of the set of possible parameters...). The entropy is then increased by a multiplying

6Let us stress that the � ' � symbol is not a di�erentiation symbol here.
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constant factor Q, which only depends on Θ and roughly measures its �nonconvexity�.
Since only the exponential behavior of the entropy with respect to ε is of concern, this
does not make the result worse. On the one hand, it is still �nite for any ε, from which
the family {γ(θ) : θ ∈ Θ} is Glivenko-Cantelli and assumption (A3) is guaranteed. On
the other hand, the integrated square root of the entropy in a neighbourhood of 0 is
�nite too, and the family {γ(θ) : θ ∈ Θ} is f℘-Donsker7, which will be essential in
Section 4.4, together with the form of the entropy of the family {γ(θ) : θ ∈ Θ̃} with
respect to ε and to diam Θ̃ for any Θ̃ ⊂ Θ.

Lemma 3 (Bracketing Entropy, Compact Case)
Let r ∈ N∗.
Let D ∈ N∗ and Θ ⊂ RD assumed to be compact.
Let ΘO be an open subset of RD such that Θ ⊂ ΘO and γ : ΘO × Rd −→ R.
θ ∈ ΘO 7−→ γ(θ;x) is assumed to be C1 over ΘO for f℘dλ-almost all x ∈ Rd.
Assume

L′(x) = sup
θ∈ΘO

∥∥∥∥∥

(
∂γ

∂θ

)

(θ;x)

∥∥∥∥∥
∞

<∞ f℘dµ-a.s.

‖L′‖r = Ef℘ [L′(X)r]
1
r <∞.

Then,

∃Q ∈ N∗,∀Θ̃ ⊂ Θ,∀ε > 0, N[ ](ε, {γ(θ) : θ ∈ Θ̃}, ‖ · ‖r) ≤ Q

(
‖L′‖r diam Θ̃

ε

)D

∨ 1.

Q is a constant which depends on the geometry of Θ (Q = 1 if Θ is convex).

The proof of this lemma is done by applying Lemma 2 since Θ is still locally convex.
Since it is compact, it can be covered with a �nite number Q of open balls, which are
convex... Lemma 2 then applies to the convex hull of the intersection of Θ with each one
of them. The supremum of L′ is taken over ΘO � instead of Θ � to be sure that the
assumptions of Lemma 2 are ful�lled over those entire balls, which may not be included
in Θ...

Actually, the result we need for Section 4.4 is slightly di�erent, and is obtained
from Lemma 2 by a little modi�cation. Since it is applied locally there, the convexity
assumption is no problem. A supplementary and strong assumption is made: ‖L‖∞ <
∞. This assumption is not ful�lled in general in the Gaussian mixture model framework:
a su�cient condition for this to hold is that the support of f℘ is bounded. This is false
of course for most usual distributions we may have in mind. But this is a reasonable
modelling assumption: it may even mostly be rather the only reasonable modelling
assumption since most modelled phenomena are bounded (as mentioned for example in
Bickel and Doksum, 2001, Chapter 1, page 4). Another su�cient condition to guarantee
this assumption is that the contrast is bounded from above. This is actually not the

7Recall that a family G of functions is P-Donsker if it ful�lls a �uniform� Central Limit Theorem,
namely if the process

(√
n( 1

n

∑n
i=1 g(Xi)− E [g(X)])

)
g∈G converges in distribution. A su�cient condi-

tion is that
√
E[ ](ε,G, L2(P)) is integrable at zero. See van der Vaart (1998, Chapter 19).
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case of the contrast −logLcc as we de�ned it (�x θ and let x −→ ∞), but this can
be imposed: simply replace −logLcc by (−logLcc ∧M) and, provided that M is large
enough, this new contrast shall behave like logLcc, since we are interested in the regions
where the contrast is minimized. Of course, this is a supplementary di�culty in practice
to choose a relevant M value.

Lemma 4 (Bracketing Entropy, Convex Case)
Let r ≥ 2.
Let D ∈ N∗ and Θ ⊂ RD assumed to be convex.
Let ΘO be an open subset of RD such that Θ ⊂ ΘO and γ : RD ×ΘO −→ R.
θ ∈ ΘO 7−→ γ(θ;x) is assumed to be C1 over ΘO for f℘dλ-almost all x ∈ Rd.
Assume

L(x) = sup
θ∈Θ
|γ(θ;x)| <∞ f℘dµ-a.s.

‖L‖∞ = ess sup
X∼f℘

L(X) <∞.

and

L′(x) = sup
θ∈Θ

∥∥∥∥∥

(
∂γ

∂θ

)

(θ;x)

∥∥∥∥∥
∞

<∞ f℘dµ-a.s.

‖L′‖2 = Ef℘
[
L′(X)2

] 1
2 <∞.

Then,

∀Θ̃ ⊂ Θ, ∀ε > 0, N[ ](ε, {γ(θ) : θ ∈ Θ̃}, ‖ · ‖r) ≤
(

2r−2 ‖L‖
r−2

2∞ ‖L′‖2 diam Θ̃

ε
r
2

)D

∨ 1.

Finally, let us remark that those results apply with various contrasts. We are in-
terested in this chapter in the application to the conditional classi�cation likelihood,
but they hold even more in the usual likelihood framework. Maugis and Michel (2009)
already provide bracketing entropy results in this framework. Our results cannot be di-
rectly compared to theirs since the distance they consider is the Hellinger distance. Let
us however notice that their results are more precise in the sense that their dependency
on the bounds imposed on the parameter space and the dimension of the variable space
d is explicit. This is helpful when deriving an oracle inequality: it su�ces to impose the
same bounds on all models, whatever their dimension, so that the penalty shape can be
justi�ed. This is an explicit condition. But it was not possible to derive a local control
of the entropy in this Hellinger distance situation, hence an unpleasant logarithm term
in the expression of the optimal penalty in Maugis and Michel (2009) (see Section 3.3).
Finally, they derive controls of the bracketing entropy without assuming the contrast to
be bounded but their results however �nally lead to this assumption, as mentioned in
the discussion following the statement of Theorem 7 (page 113). The results presented
above achieve the same rate with respect to ε. They depend on more opaque quantities
(‖L‖∞ and ‖L′‖2). This notably implies, from this �rst step already, the assumption
that the contrast is bounded � over the true distribution support. However, it could be
expected to control those quantities with respect to the bounds on the parameter space.
Moreover, beside their simplicity, they have the advantage that it is straightforward to
derive a local control of the entropy.



4.3.3 - Proofs 105

4.3.3 Proofs

Proof (Theorem 3: Minimum Contrast Estimator Convergency) The
assumptions ensure a convenient situation. Let ε > 0 and let

η = inf
d(θ,Θ0)>ε

Ef℘ [γ(θ)]− Ef℘
[
γ(θ0)

]
> 0,

from assumption (A2). For n large enough and with large probability, from assumption
(A3) and the de�nition of θ̂,

supθ∈Θ|γn(θ)− Ef℘ [γ(θ)] | < η

3

γn(θ̂) ≤ γn(θ0) +
η

3
.

Then

Ef℘
[
γ(θ̂)

]
− Ef℘

[
γ(θ0)

]
≤ Ef℘

[
γ(θ̂)

]
− γn(θ̂)

+ γn(θ̂)− γn(θ0)

+ γn(θ0)− Ef℘
[
γ(θ0)

]

< η.

And then d(θ̂,Θ0) < ε with great probability, as n is large enough. �

Proof (Lemma 2: Bracketing Entropy, Convex Case) Let ε > 0, and Θ̃ ⊂ Θ,
with Θ̃ bounded. Let Θ̃ε be a grid in Θ which �ε-covers� Θ̃ in any dimension with step
ε. Θ̃ε is for example Θ̃1

ε × · · · × Θ̃D
ε with

∀i ∈ {1, . . . , D}, Θ̃i
ε =

{
θ̃imin, θ̃

i
min + ε, . . . , θ̃imax

}
,

where
∀i ∈ {1, . . . , D},

{
θi : θ ∈ Θ̃

}
⊂
[
θ̃imin −

ε

2
, θ̃imax +

ε

2

]
.

This is always possible since Θ is convex. For the sake of simplicity, it is assumed
without loss of generality, that Θ̃ε ⊂ Θ̃. The interest of the ‖ · ‖∞ norm is that the step
of the grid Θ̃ε is the same as the step over each dimension, ε. Indeed,

∀θ̃ ∈ Θ̃,∃θ̃ε ∈ Θ̃ε/‖θ̃ − θ̃ε‖∞ ≤
ε

2
.

Yet the cardinal of Θ̃ε is at most

D∏

i=1

(supθ∈Θ̃θ
i − infθ∈Θ̃θ

i)

ε
∨ 1 ≤

(
diam Θ̃

ε

)D

∨ 1.

Now, let θ1 and θ2 in ΘK and x ∈ Rd.

∣∣γ(θ1;x)− γ(θ2;x)
∣∣ ≤ sup

θ∈[θ1;θ2]

∥∥∥∥∥

(
∂γ

∂θ

)

(θ;x)

∥∥∥∥∥
∞

‖θ1 − θ2‖∞,
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since ΘK is convex. Moreover, L′(x) = sup
θ∈ΘK

∥∥∥
(
∂γ
∂θ

)
(θ;x)

∥∥∥
∞
<∞ for any x ∈ Rd and

∣∣γ(θ1;x)− γ(θ2;x)
∣∣ ≤ sup

θ∈ΘK

∥∥∥∥∥

(
∂γ

∂θ

)

(θ;x)

∥∥∥∥∥
∞

‖θ1 − θ2‖∞.

Let θ̃ ∈ Θ̃ and choose θ̃ε ∈ Θ̃ε such that ‖θ̃ − θ̃ε‖∞ ≤ ε
2
. Then,

∀x ∈ Rd,
∣∣γ(θ̃ε;x)− γ(θ̃;x)

∣∣ ≤ L′(x)
ε

2

and
γ(θ̃ε;x)− ε

2
L′(x) ≤ γ(θ̃;x) ≤ γ(θ̃ε;x) +

ε

2
L′(x).

The set of ε‖L′‖r-brackets (with

respect to the ‖ · ‖r-norm)
{

[γ(θ̃ε)− ε
2
L′; γ(θ̃ε) + ε

2
L′] : θ̃ε ∈ Θ̃ε

}
then has cardinal at

most
(
diam Θ̃

ε

)D
∨ 1 and covers

{
γ(θ̃) : θ̃ ∈ Θ̃

}
, which yields the result. �

Example 5 (Diagonal Gaussian Mixture Model Parameter Space is Convex)
Following the notation of Celeux and Govaert (1995), we write [pλkBk] for the general
diagonal model: the model of Gaussian mixtures which components have diagonal co-
variance matrices. The mixing proportions are assumed to be equal. No other constraint
is imposed. To keep simple notation, let us consider the case d = 2 and K = 2 (d = 1 or
K = 1 are obviously particular cases!). A natural parametrization of this model (which
dimension is 8) consists of

θ ∈ R4 × R+∗4 ϕ7−→ 1

2
φ

(
. ;

(
θ1

θ2

)
,

(
θ5 0
0 θ6

))
+

1

2
φ

(
. ;

(
θ3

θ4

)
,

(
θ7 0
0 θ8

))

With d = 2 and K = 2, [pλkBk] = ϕ(R4×R+∗4), and the parameter space R4×R+∗4 is
convex.

Example 6 (The Same Model with Equal Volumes is Convex, too...) [pλBk]
is the same model as in the previous example, but with the supplementary constraint
that the covariance matrices volumes (namely, their respective determinant) have to be
equal between components. With d = 2 and K = 2, a natural parametrization of this
model with dimension 7 is

θ ∈ R4 × R+∗3 ϕ7−→ 1

2
φ

(
. ;

(
θ1

θ2

)
,
√
θ7

(
θ5 0
0 1

θ5

))
+

1

2
φ

(
. ;

(
θ3

θ4

)
,
√
θ7

(
θ6 0
0 1

θ6

))

With d = 2 and K = 2, [pλBk] = ϕ(R4 × R+∗3), and the parameter space R4 × R+∗3 is
convex.

Proof (Lemma 3: Bracketing Entropy, Compact Case) Let O1, . . . , OQ be a �-
nite covering of Θ consisting of open balls such that ∪Qq=1Oq ⊂ ΘO. Such a covering
always exists since Θ is assumed to be compact. Remark that

Θ = ∪Qq=1(Oq ∩Θ) ⊂ ∪Qq=1conv(Oq ∩Θ).
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Now, for any q, conv(Oq ∩ Θ) is convex and supθ∈conv(Oq∩Θ)

∥∥∥
(
∂γ
∂θ

)
(θ;x)

∥∥∥
∞
≤ L′(x)

since conv(Oq ∩Θ) ⊂ Oq ⊂ ΘO. Therefore, Lemma 2 applies to Oq ∩ Θ̃ ⊂ conv(Oq ∩Θ):

N[ ](ε, {γ(θ) : θ ∈ Θ̃ ∩Oq}, ‖ · ‖r) ≤
(
‖L‖r diam Θ̃

ε

)D

∨ 1,

Yet, N[ ](ε, {γ(θ) : θ ∈ Θ̃}, ‖ · ‖r) ≤ N[ ](ε,∪Qq=1{γ(θ) : θ ∈ Θ̃ ∩ Oq}, ‖ · ‖r) and the
result follows. �

Proof (Lemma 4: Bracketing Entropy, Compact Case) Lemma 2 has to be
adapted. Simply replace the last lines of its proof by the following: Assume the same
grid Θ̃ε has been built.

Now, let θ1 and θ2 in Θ and x ∈ Rd.

∣∣∣γ(θ1;x)− γ(θ2;x)
∣∣∣
r

≤ sup
θ∈[θ1;θ2]

∥∥∥∥∥

(
∂γ

∂θ

)

(θ;x)

∥∥∥∥∥

2

∞

‖θ1 − θ2‖2
∞
(
2 sup
θ∈{θ1,θ2}

|γ(θ;x)|
)r−2

,

since Θ is convex. From the de�nitions of L and L′:
∣∣∣γ(θ1;x)− γ(θ2;x)

∣∣∣
r

≤ L′(x)2‖θ1 − θ2‖2
∞(2‖L‖∞)r−2.

Let θ̃ ∈ Θ̃ and choose θ̃ε ∈ Θ̃ε such that ‖θ̃ − θ̃ε‖∞ ≤ ε
2
. Then,

∀x ∈ Rd,
∣∣∣γ(θ̃ε;x)− γ(θ̃;x)

∣∣∣ ≤ L′(x)
2
r

(ε
2

) 2
r

(2‖L‖∞)
r−2
r

and

γ(θ̃ε;x)− ε 2
rL′(x)

2
r ‖L‖

r−2
r∞ 21− 4

r ≤ γ(θ̃;x) ≤ γ(θ̃ε;x) + ε
2
rL′(x)

2
r ‖L‖

r−2
r∞ 21− 4

r .

The set of brackets
{[
γ(θ̃ε;x)− ε 2

rL′(x)
2
r ‖L‖

r−2
r∞ 21− 4

r ; γ(θ̃ε;x) + ε
2
rL′(x)

2
r ‖L‖

r−2
r∞ 21− 4

r

]
: θ̃ ∈ Θ̃ε

}

(of ‖ · ‖r-norm length (22− 4
r )‖L‖

r−2
r∞ ‖L′‖

2
r
2 ε

2
r ) has cardinal at most

(
diam Θ̃

ε

)D
∨ 1 and

covers
{
γ(θ̃) : θ̃ ∈ Θ̃

}
, which yields Lemma 4.

�

4.3.4 Simulations

A typical di�culty with Gaussian mixtures is that the minimum value of γn(θ) could
be reached at a boundary value of ΘK . It happens typically, as one of the Gaussian
components is centered at one observation (µk = Xĩ) or at a very little (and accidental)
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cluster of observations and the variance determinant reaches its minimum value. This
θ̂MLccE could have a very low γn value (perhaps much lower than γn(θ0)), even if it is

far from Θ0
K and if Ef∗

[
γ(θ̂MLccE;X)

]
is much greater than Ef∗ [γ(θ0

K ;X)]. Theorem

3 guarantees that this is not a problem from an asymptotic point of view. Actually,
because of the lower bound on the covariance matrices, γ(θ;Xĩ) cannot get small enough
to compensate the improvement of contrast reached on the other observations with a
�good� solution (i.e. close to Θ0) when the total number of observations, and then of
�γ(θ;Xi)� factors in the likelihood expression, grows to in�nity...but we have n �xed!
We practically tackle this di�culty by choosing a lower bound on det(Σk) great enough
such that a solution with a single-observation component cannot compete with a �good�
solution (Section 5.1). This requires to know the order of the contrast at its minimum
value. Note that if the variances could go to zero, the contrast γn(θ) would not even
be bounded, if K > 1: if a component mean is Xĩ for any ĩ, and if the corresponding
variance goes to zero, then the contrast goes to minus in�nity. Hence the lower bound
on the covariance matrices is, once more, a minimal condition.

Example 7 [Example 4 continued]

We can practically check the convergence foreseen with Theorem 3 for the simple Ex-
ample 4. Figure 4.6 illustrates the convergence (in probability) of θ̂MLccE in this setting.

10 50 100 150 200 500 1000 2000

0

0.5

1

1.5

2

2.5

‖θ̂
M

L
cc
E
−
θ0
‖ 2

n

Figure 4.6: ‖θ̂MLccE − θ0‖2 boxplots for 100 experiences for di�erent values of n, with
the Example 4 settings

4.4 Model Selection

As illustrated by Example 4, model selection is a crucial step in this framework. Actually,
the number of classes (and then the number of components in the current setting) may
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even be the quantity of interest of the study. Anyhow, a relevant number of classes must
obviously be chosen so as to design a good unsupervised classi�cation. Moreover, we
are especially interested in this step since our main interest in this chapter is the ICL
criterion.

Model selection procedures of concern here are the penalized conditional classi�cation
likelihood criteria. They are of the form considered in the general contrast minimization
framework introduced in Section 3.1.2, applied to the contrast at hand in this chapter:

crit(K) = −logLcc(θ̂
MLccE
K ) + pen(K).

The collection of models at hand is {MK}1≤K≤KM . EachMK is a parametric mix-
ture model with K components and the corresponding parameter space is ΘK . It is
assumed to be optimal, like in the previous section: its dimension DK is the number
of free parameters of the model. The same notation is used as in the previous section.
Likewise, the application we have in view is the −logLcc contrast in the Gaussian mix-
ture model framework. However, most results are stated for a general contrast γ in a
general parametric models collection. Then the general assumptions of those results are
discussed in the particular framework we consider to derive su�cient conditions which
guarantee they hold.

In Section 4.4.1, the �consistency� of such a model selection procedure for the number
of components minimizing the loss function (�identi�cation�) is proved for a class of
penalties, which, not surprisingly, are not di�erent from those de�ned by Nishii (1988)
or Keribin (2000) in a maximum usual likelihood context. Su�cient conditions are given
in Theorem 6. The heaviest condition (B4) may be guaranteed under regularity and
(weak) identi�ability assumptions in our framework. This involves a study relying on
results of Massart (2007) and will be discussed and proved in Section 4.4.2. Remark
that this approach has the advantage that it is the �rst step of the work to do to reach
a non-asymptotic result, which we however have not proved yet. Assumptions about
Gaussian mixture models ensuring the consistency of the model selection procedure are
given in Theorem 7, Section 4.4.1. Proofs are given in Section 4.4.3.

4.4.1 Consistent Penalized Criteria

Assume that K0 exists such that

and
∀K < K0, inf

θ∈ΘK0

Ef℘ [−logLcc(θ)] < inf
θ∈ΘK

Ef℘ [−logLcc(θ)]

∀K ≥ K0, inf
θ∈ΘK0

Ef℘ [−logLcc(θ)] ≤ inf
θ∈ΘK

Ef℘ [−logLcc(θ)]

which means that the bias of the models is stationary from the model MK0 . There
exists a �best� model from the approximation point of view, and the models which are
more complex than it reach at best as good approximation results as it. Remark that
the last property should hold mostly: if the models were not constrained � or if the
constraints are chosen consequently � it would be expected that the approximation
properties improve as the complexity of the model grows. Under this assumption, a
model selection procedure is expected to recover asymptotically K0, i.e. to be consistent.
This is an identi�cation goal. Indeed, it would obviously be disastrous for a model
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selection criterion to select a model which does not minimize (or almost minimize...)
the bias. But, from this identi�cation point of view, it is besides assumed that the
modelMK0 contains all the interesting information about the distribution of the data
(typically, the structure of classes in our framework), and that choosing a more complex
model only increases the variance, without providing any further information: this is
why exactly K0, and not any larger K, should be recovered. The e�ciency point of view
would be di�erent (see Section 3.1.2).

Let us stress at this stage that the �true� number of components of f℘ is not directly
of concern in the statement of this problem: it is in particular not assumed that it equals
K0, and is not even assumed to be de�ned (f℘ does not have to be a Gaussian mixture).
We shall derive su�cient conditions for a penalized model selection procedure to be
consistent.

Most of the ideas and techniques employed in this section are from the books of
Massart (2007) and van der Vaart (1998), and most of the presented results either
directly come from those books (it is then speci�ed) or are inspired from theirs.

Theorem 6
{ΘK}1≤K≤KM a collection of parametric models. For any K, ΘK ⊂ RDK . Assume the
models are ranked by increasing complexity: D1 ≤ · · · ≤ DKM .
For any K, Θ0

K = argmin
θ∈ΘK

Ef℘ [γ(θ)]. Let θ0
K ∈ Θ0

K.

Assume that:
K0 = min argmin

1≤K≤KM
Ef℘

[
γ(Θ0

K)
]
. (B1)

∀K, θ̂K ∈ΘK, de�ned such that γn(θ̂K) ≤ γn(θ0
K) + oP(1),

ful�lls γn(θ̂K)
P−→ Ef℘

[
γ(θ0

K)
]
.

(B2)

∀K,





pen(K) > 0 and pen(K) = oP(1) when n→ +∞
n
(
pen(K)− pen(K ′)

) P−−−−→
n→+∞

∞ when K > K ′
(B3)

n
(
γn(θ̂K0)− γn(θ̂K)

)
= OP(1) for any K ∈ argmin

1≤K≤KM
Ef℘

[
γ(Θ0

K)
]
. (B4)

De�ne K̂ such that

K̂ = argmin
1≤K≤KM

{
γn(θ̂K) + pen(K)︸ ︷︷ ︸

crit(K)

}
.

Then
P[K̂ 6= K0] −−−−→

n−→∞
0.

Sketch of Proof
It is �rst proved that K̂ cannot asymptotically �underestimate� K0. Suppose
Ef℘ [γ(θ0

K)] > Ef℘
[
γ(θ0

K0
)
]
. Then, from (B2),

(
γn(θ̂K) − γn(θ̂K0)

)
is asymptoti-

cally of order Ef℘ [γ(θ0
K)] − Ef℘

[
γ(θ0

K0
)
]
> 0. Since the penalty is oP(1) from (B3),

crit(K0) < crit(K) asymptotically and K̂ > K.
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The proof that K̂ does not asymptotically �overestimate� K0 involves the heaviest
assumption (B4). It is more involved since then

(
Ef℘ [γ(θ0

K)] − Ef℘
[
γ(θ0

K0
)
])

is zero.
The �uctuations of

(
γn(θ̂K) − γn(θ̂K0)

)
then have to be evaluated to calibrate a penalty

which be large enough to cancel them. According to (B4), a penalty larger than 1
n
should

be enough. (B3) guarantees this condition. �

Assumption (B1) is necessary so that this identi�cation point of view makes sense.

Assumption (B3) de�nes the range of possible penalties.

Assumption (B2) is guaranteed under assumption (A3) of Theorem 3 and from the
de�nition of θ̂K :

Lemma 5
Θ ⊂ RD and γ : Θ× Rd → R. θ0 ∈ Θ0 = argmin

θ∈Θ
Ef℘ [γ(θ)]. Assume

γn(θ̂) ≤ γn(θ0) + oP(1)

and
sup
θ∈Θ

∣∣∣γn(θ)− Ef℘ [γ(θ)]
∣∣∣ P−−→ 0

(this is assumption (A3) of Theorem 3).

Then (B2) holds:

γn(θ̂)
P−→ Ef℘

[
γ(θ0)

]
.

The proof of this Lemma is a uniform convergence argument which relies on assumption
(A3): asymptoticaly, minimizing θ 7→ γn(θ) must not be very di�erent from minimizing
θ 7→ Ef℘ [γ(θ)] since they are uniformly close to each other.

Assumption (B4) is the heaviest assumption. Section 4.4.2 is devoted to deriving
su�cient conditions so that it holds. It will justify the following result:

Theorem 7
Let

(
MK

)
1≤K≤KM

be the collection of Gaussian mixture models introduced in Sec-

tion 4.1.1, with corresponding parameter spaces
(
ΘK

)
K∈{1,...,KM}

. ΘK is assumed to
be compact for any K.
Let for any K

Θ0
K = argmin

θ∈ΘK

Ef℘ [−logLcc(θ)] .

De�ne
K0 = min argmin

1≤K≤KM
Ef℘

[
−logLcc(Θ

0
K)
]
.

Assume, ∀K, ∀θ ∈ ΘK ,∀θ0
K0
∈ Θ0

K0
,

Ef℘ [−logLcc(θ)] = Ef℘
[
−logLcc(Θ

0
K0

)
]
⇐⇒ −logLcc(θ;x) = −logLcc(θ

0
K0

;x)

f℘dλ− a.s.
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Let for any K, ΘOK be an open subset of RDK over which logLcc is well-de�ned, such
that ΘK ⊂ ΘOK and assume

∀K ∈ {1, . . . , KM},




LK(x) = sup

θ∈ΘOK

∣∣logLcc(θ;x)
∣∣ <∞ f℘dµ− a.s.

‖LK‖∞ <∞.
and

∀K ∈ {1, . . . , KM},




L′K(x) = sup

θ∈ΘOK

∥∥∥
(
∂logLcc
∂θ

)
(θ;x)

∥∥∥
∞
<∞ f℘dµ− a.s.

‖L′K‖2 <∞.

Assume that ∀K, ∀θ0
K ∈ Θ0

K ,

Iθ0
K

=
∂2

∂θ2

(
Ef℘ [−logLcc(θ)]

)
|θ0
K

is nonsingular.

Let for any K and n, θ̂MLccE

K = θ̂MLccE

K (X1, . . . , Xn) ∈ ΘK such that

−logLcc(θ̂
MLccE

K ;X) ≤ −logLcc(θ
0
K ;X) + oP(n).

Let pen : {1, . . . , KM} −→ R+ (which depends on n, ΘK, and may depend on the data)
such that

∀K ∈ {1, . . . , KM},





pen(K) > 0 and pen(K) = oP(n) when n→ +∞(
pen(K)− pen(K ′)

) P−−−−→
n→+∞

∞ for any K ′ < K.

Select K̂ such that

K̂ = argmin
1≤K≤KM

{
−logLcc(θ̂

MLccE

K ) + pen(K)
}
.

Then
P[K̂ 6= K0] −−−−→

n−→∞
0.

It is implicitely assumed that Ef℘
[∣∣logLcc(θ)

∣∣
]
<∞ for any θ in any ΘK . This is a

very mild assumption.

Remark that, if ΘK is convex, L and L′ can be de�ned as suprema over ΘK instead
of ΘOK and there is no need to involve the sets ΘOK . This follows from the proofs of
Corollaries 2 and 3 below.

A new identi�ability assumption is introduced:

∀K, ∀θ ∈ ΘK ,∀θ0
K0
∈ Θ0

K0
,

Ef℘ [−logLcc(θ)] = Ef℘
[
−logLcc(Θ

0
K0

)
]
⇐⇒ −logLcc(θ;x) = −logLcc(θ

0
K0

;x)

f℘dλ− a.s.
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It is a reasonable assumption: as expected, no further identi�ability assumption is
imposed on the parameter directly, and notably, the label switching phenomenon is no
problem here. But it is necessary for this identi�cation point of view to make sense,
that a single value of the contrast function x 7−→ γ(θ;x) minimizes the loss function.
Remark that in the maximum likelihood framework, such an assumption is guaranteed
to hold at least if any model contains the true distribution of the data, since then the
loss function � the Kullback-Leibler divergence � is uniquely minimized at the density
corresponding to the true distribution. Obviously, several values of the parameter,
perhaps in di�erent models, may give rise to this density, besides the label switching.
We do not know any such result with the −logLcc contrast, and simply hypothesize that
the assumption holds.

The assumption about the nonsingularity of Iθ0 is unpleasant, since it is hard to
be guaranteed. Hopefully, it could be weakened. The result of Massart (2007) which
inspires this, and is available in a general maximum (usual) likelihood context, does not
require such an assumption. This is Theorem 7.11 (recalled in Section A.1), which is a
much stronger result since it provides a non-asymptotic oracle inequality if the oracle
risk can be linked to the minimal Kullback-Leibler divergence to the true distribution
among the models. It relies on a clever choice of the involved distances (Hellinger dis-
tances between the density functions instead of the parametric point of view embraced
here), and on particular properties of the log function. However, this is an usual as-
sumption and the works of Nishii (1988) and Keribin (2000), which are discussed below,
for example, rely on similar assumptions.

This result of Massart (2007) moreover does not require the contrast (i.e. the like-
lihood) to be bounded, as we have to. Remark however that this result involves both
Hellinger distances and Kullback-Leibler divergence. To make it homogeneous from this
point of view, it seems that an assumption similar to the boundedness of the contrast
is necessary: Lemma 7.23 in Massart (2007) then enables to conclude and obtain an
oracle inequality from the �rst-mentioned Theorem 7.11, which only involves Hellinger
distances. Maugis and Michel (2009), who apply this result in a framework combining
clustering and variable selection in a Gaussian mixture model selection framework, point
this di�culty out, too. So that it seems reasonable that the assumptions about L and
L′ (the last is much milder than the former) be necessary. They are typically ensured if
either the contrast is bounded (replace −logLcc by (−logLcc)∧M forM > 0 well-chosen
and large enough) or if the support of f℘ is bounded.

Remark that the conditions about the penalty form we derive are analogous to that
of Nishii (1988) or Keribin (2000), which are both derived in the maximum likelihood
framework. As those of Keribin (2000), they can be regarded as generalizing those of
Nishii (1988) when the considered models are Gaussian mixture models. Indeed, Nishii
(1988) considers penalties of the form cnDK and proves the model selection procedure
to be weakly consistent if cn

n
→ 0 and cn → ∞. Those results are given in a general

maximum likelihood framework, with perhaps misspeci�ed models. Note that Nishii
(1988) assumes the parameter space to be convex. He moreover notably assumes the
uniqueness of the quasi true parameter (this is assuming Θ0

K = {θ0
K}) and that Iθ0

K
is

nonsingular (with the usual likelihood contrast), together with other regularity assump-
tions. Those results are not particularly designed for mixture models. Instead, as we
do, Keribin (2000) considers general penalty forms and proves the procedure to be con-
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sistent if pen(K)
n
−−−→
n→∞

0, pen(K) −−−→
n→∞

∞ and lim infn→∞
pen(K)
pen(K′)

> 1 if K > K ′. These

conditions are equivalent to Nishii's if pen(K) = cnDK . In a general mixture model
framework, she assumes the model family to be well-speci�ed, the same notion of identi-
�ability as we do, and a condition which does not seem to be directly comparable to ours
about Iθ0

K
but which tastes roughly the same. It might be milder. Those assumptions

are proved to hold with the usual likelihood contrast in the Gaussian mixture model
framework if the covariance matrices are proportional to the identity and are the same
for all components, and if the parameter space is compact. Our conditions about the
penalty are a little weaker than Keribin's, but they still are quite analogous. Moreover,
as compared to those results, we notably have to keep the proportions away from zero.
This is necessary because of the entropy term in the −logLcc contrast.

The strong version of Theorem 7, which would state the almost sure consistency of
K̂ to K0, would then probably involve penalties a little heavier, as Nishii (1988) and
Keribin (2000) proved in their respective frameworks. Both had to assume besides that
pen(K)
log logn

→∞.

Theorem 7 is a direct consequence of Theorem 6, Lemma 5, Theorem 4, which can
be applied under those assumptions, and of Corollary 3 below and the discussion about
its assumptions along the lines of Section 4.4.2.

4.4.2 Su�cient Conditions to Ensure Assumption (B4)

Let us introduce the notation Snγ(θ) = nγn(θ)− nEf℘ [γ(θ;X)].

The main result of this section is Lemma 6. Some intermediate results which enable
to link Lemma 6 to Theorem 6 via Assumption (B4) are stated as corollaries and proved
subsequently. Lemma 6 povides a control of

sup
θ∈Θ

Sn
(
γ(θ0)− γ(θ)

)

‖θ0 − θ‖2
∞ + β2

(with respect to β) and then of

Sn
(
γ(θ0)− γ(θ̂)

)

‖θ0 − θ̂‖2
∞ + β2

·

With a good choice of β, and if Sn
(
γ(θ0)−γ(θ̂)

)
can be linked to ‖θ0− θ̂‖2

∞, it is proved
in Corollary 2 that it may then be assessed that

n‖θ̂ − θ0‖2
∞ = OP(1).

Plugging this last property back into the result of Lemma 6 yields (Corollary 3)

n
(
γn(θ0

K)− γn(θ̂K)
)

= OP(1)

for any model K ∈ argmin
1≤K≤KM

Ef℘ [γ(θ0
K)] and then, under mild identi�ability condition,

n
(
γn(θ0

K0
)− γn(θ̂K)

)
= OP(1),

which is Assumption (B4).

We shall prove the
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Lemma 6
Let D ∈ N∗ and Θ ⊂ RD assumed to be convex.
Let ΘO be an open subset of RD such that Θ ⊂ ΘO and γ : ΘO × Rd −→ R.
θ ∈ ΘO 7−→ γ(θ;x) is assumed to be C1 over ΘO for f℘dλ-almost all x ∈ Rd.
Let θ0 ∈ Θ such that Ef℘ [γ(θ0)] = inf

θ∈Θ
Ef℘ [γ(θ)].

Assume

L(x) = sup
θ∈Θ
|γ(θ;x)| <∞ f℘dµ− a.s.

‖L‖∞ = ess sup
X∼f℘

L(X) <∞.

and

L′(x) = sup
θ∈Θ

∥∥∥∥∥

(
∂γ

∂θ

)

(θ;x)

∥∥∥∥∥
∞

<∞ f℘dµ− a.s.

‖L′‖2 = Ef℘
[
L′(X)2

] 1
2 <∞.

Then ∃α > 0/∀n,∀β > 0,∀η > 0,

sup
θ∈Θ

Sn(γ(θ0)− γ(θ))

‖θ0 − θ‖2
∞ + β2

≤ α

β2

(
‖L′‖2β

√
nD

+
(
‖L‖∞ + ‖L′‖2β

)
D

+ ‖L′‖2
√
nηβ

+ ‖L‖∞η
)

holds with probability greater than (1− e−η).

Note that α is an absolute constant which notably does not depend on θ0.

Sketch of Proof The proof of Lemma 6 relies on the results of Massart (2007) pre-
sented below and on the evaluation of the bracketing entropy of the class of functions
at hand we derived in Section 4.3.3. Lemma 4 provides a local control of the en-
tropy and hence, through Theorem 8, a control of the supremum of Sn(γ(θ0) − γ(θ))
as ‖θ−θ0‖2

∞ < σ, with respect to σ. The �peeling� Lemma 9 then enables to take advan-
tage of this local control to derive a �ne global control of supθ∈Θ

Sn(γ(θ0)−γ(θ))
‖θ−θ0‖2+β2 , for any

β2. This control in expectation, which can be derived conditionaly to any event A, yields
a control in probability thanks to Lemma 8, which can be thought of as an application of
Markov's inequality. �

The proof of Lemma 6 can be re�ned a little along the lines of the proof of Theo-
rem 7.11 of Massart (2007) to get the
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Lemma 7
Under the same assumptions as Lemma 6, de�ne σ0 =

√
D
n
. Then,

∃α > 0/∀n,∀η > 0, ∀β > σ0,

sup
θ∈Θ

Sn(γ(θ0)− γ(θ))

‖θ0 − θ‖2
∞ + β2

≤ α

β2

((
‖L′‖2 + ‖L‖∞

)
β
√
nD

+ ‖L′‖2
√
ηnβ

+ ‖L‖∞η
)

holds with probability larger than 1− e−η.

α is an absolute constant.

This lemma is a re�nement of Lemma 6 which is not necessary for the following results.
However, by analogy with the results of Massart (2007), it is interesting since, together
with further calculations, it provides clues that the optimal penalty to choose to obtain
an oracle result would probably be proportional to D. The feature we are interested in,
beside the form of the upper bound, is that it does not involve D terms, but only

√
Dn.

We did not derive such an oracle inequality up to now, though. This shall be further
discussed in Section 4.4.4. The proof of this version of the lemma is given apart from
the previous one, for the sake of readability of the proofs.

Corollary 2
Let D ∈ N∗ and Θ ⊂ RD.
Let ΘO be an open subset of RD such that Θ ⊂ ΘO and γ : ΘO × Rd −→ R.
θ ∈ ΘO 7−→ γ(θ;x) is assumed to be C1 over ΘO for f℘dλ-almost all x ∈ Rd.
Let θ0 ∈ Θ such that Ef℘ [γ(θ0)] = inf

θ∈Θ
Ef℘ [γ(θ)].

Assume

L(x) = sup
θ∈ΘO

|γ(θ;x)| <∞ f℘dµ− a.s.

‖L‖∞ <∞.

and

L′(x) = sup
θ∈ΘO

∥∥∥∥∥

(
∂γ

∂θ

)

(θ;x)

∥∥∥∥∥
∞

<∞ f℘dµ− a.s.

‖L′‖2 <∞.

Assume moreover that Iθ0 = ∂2

∂θ2 (Ef℘ [γ(θ)])|θ0 is nonsingular.

Let (θ̂n)n≥1 such that θ̂n ∈ Θ,

γn(θ̂n) ≤ γn(θ0) +OP(
1

n
)

and
θ̂n

P−−−→
n→∞

θ0.
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Then,

n‖θ̂n − θ0‖2
∞ = OP(1).

The constant involved in OP(1) depends on D, ‖L‖∞, ‖L′‖2 and Iθ0.

This is a direct consequence of Lemma 6: it su�ces to choose β well (see Sec-
tion 4.4.3). The dependency of OP(1) in D, ‖L‖∞, ‖L′‖2 and Iθ0 is not a problem since
we aim at deriving an asymptotic result: the order of ‖θ− θ0‖2

∞ with respect to n when
the model is �xed is of concern.

The assumption that Iθ0 is nonsingular plays an analogous role as Assumption (A2)
in Theorem 3: it ensures that Ef℘ [γ(θ)] cannot be close to Ef℘ [γ(θ0)] if θ is not close
to θ0. But this stronger assumption is necessary to strengthen the conclusion: the rate
of the relation between Ef℘ [γ(θ)]− Ef℘ [γ(θ0)] and ‖θ − θ0‖ can then be controlled...

Remark that, should this assumption fail, ∃θ̃ ∈ Θ/θ̃′Iθ0 θ̃ = 0⇒ Ef℘
[
γ(θ0 + λθ̃)

]
=

Ef℘ [θ0] + o(λ2) and then there is no hope to have α > 0 such that Ef℘ [γ(θ)] −
Ef℘ [γ(θ0)] > α‖θ − θ0‖2... The result cannot be derived in this case. This means
that this approach cannot be applied without this � admittedly unpleasant � assump-
tion. It might perhaps be an other approach (with di�erent distances, not involving the
parameters but rather directly the contrast values) which would enable to avoid it, as
Massart (2007) did in the likelihood framework.

Corollary 3
{ΘK}1≤K≤KM a collection of parametric models. For any K, ΘK ⊂ RDK . Assume the
models are ranked by increasing complexity: D1 ≤ · · · ≤ DKM .
For any K, assume there exists an open set ΘOK ⊂ RDK such that ΘK ⊂ ΘOK and such
that with ΘO = ΘO1 ∪ · · · ∪ΘOKM , γ : ΘO ×Rd −→ R is well-de�ned and C1 over ΘO for
f℘dλ-almost all x ∈ Rd.
Assume

L(x) = sup
θ∈ΘO

|γ(θ;x)| <∞ f℘dµ− a.s.

‖L‖∞ <∞.

and

L′(x) = sup
θ∈ΘO

∥∥∥∥∥

(
∂γ

∂θ

)

(θ;x)

∥∥∥∥∥
∞

<∞ f℘dµ− a.s.

‖L′‖2 <∞.

For any K, Θ0
K = argminθ∈ΘK

Ef℘ [γ(θ)]. Let θ0
K ∈ Θ0

K.
Let K0 = min argmin1≤K≤KM Ef℘ [γ(Θ0

K)].
Assume ∀K, ∀θ ∈ ΘK ,

Ef℘ [γ(θ)] = Ef℘
[
γ(θ0

K0
)
]
⇐⇒ γ(θ) = γ(θ0

K) f℘dλ− a.s.
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Let K =
{
K ∈ {1, . . . , KM} : Ef℘ [γ(θ0

K)] = Ef℘
[
γ(θ0

K0
)
]}

.

For any K ∈ K, let θ̂K = θ̂K(X1, . . . , Xn) ∈ ΘK such that

γn(θ̂K) ≤ γn(θ0
K) +OP(

1

n
)

θ̂K
P−−−→

n→∞
θ0
K .

Moreover, assume that

Iθ0
K

=
∂2

∂θ2

(
Ef℘ [γ(θ)]

)
|θ0
K

is nonsingular for any K ∈ K.
Then

∀K ∈ K, n
(
γn(θ̂K0)− γn(θ̂K)

)
= OP(1).

This last corollary states conditions under which assumption (B4) of Theorem 6 is
ensured.

Let us go back to the proof of Lemma 6. It is inspired from the proof of Theorem
7.11 in Massart (2007). It relies on three results from the same book, which are recalled
now. They are not proved in the proofs section: the reader is referred to Massart (2007).

Lemma 8 (Lemma 2.4 in Massart, 2007)
Let Z ∈ L1(R). Let ϕ : R+ 7−→ R increasing such that for all measurable set A with
P[A] > 0,

EA[Z] ≤ ϕ

(
log

1

P[A]

)
,

where EA[Z] = E[Z1A]
P[A]

. Then:

∀x > 0,P [Z ≥ ϕ(x)] ≤ e−x.

This is a simple but clever application of Markov's inequality, which will be helpful to
derive results with large probability from techniques which yield results in expectation.

The next lemma, which is an essential ingredient of the result, is the

Lemma 9 (�Pealing Lemma�, 4.23 in Massart, 2007)
Let S be a countable set, u ∈ S, a : S −→ R+ such that a(u) = inft∈S a(t). Z a
process indexed by S. Assume ∀σ > 0,E

[
supt∈B(σ) Z(t)− Z(u)

]
< ∞, with B(σ) =

{t ∈ S; a(t) ≤ σ}. Then, for any function ψ on R+ such that ψ(x)
x

is nonincreasing on
R+ and ful�lls

∀σ ≥ σ0, E

[
sup
t∈B(σ)

Z(t)− Z(u)

]
≤ ψ(σ),

one has for any x > σ0:

E
[
sup
t∈S

Z(t)− Z(u)

a2(t) + x2

]
≤ 4x−2ψ(x).
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This lemma enables to derive a �ner control of the global increments of a process from
a control of its local increments. Actually, it allows to link the increments of the process
from a point to another with respect to the distance between those two points, when the
increments at any given distance from the �rst point are controlled. It will be applied
to the (centered) di�erence of the empirical contrast between θ0 and an estimator of it.
This di�erence is expected to go to zero at a rate at least 1√

n
because of the Central

Limit Theorem. Actually, it will be proved thanks to this lemma that this convergence
is accelerated because of the convergence of the estimator to θ0 and that its rate is of
order 1

n
.

Finally, the following Theorem is a keystone of the proof. Let us denote after Massart
(2007):

∀A measurable with P
[
A
]
> 0,∀ϕ : Rd → R measurable, EA

[
ϕ(X)

]
=

E
[
ϕ(X)1A(X)

]

P
[
A
] .

Theorem 8 (Theorem 6.8 in Massart, 2007) Let F be a countable class of real val-
ued and measurable functions. Assume

∃σ > 0, ∃b > 0/∀f ∈ F ,∀k ≥ 2,E
[
|f(Xi)|k

]
≤ k!

2
σ2bk−2,

and

∀δ > 0,∃Cδ a set of brackets covering F/

∀[gl, gu] ∈ Cδ,∀k ∈ N∗\{1},E[(gu − gl)k(Xi)] ≤
k!

2
δ2bk−2.

Let eH(δ) be the minimal cardinality of such a covering. Then:

∃κ absolute constant /∀ε ∈]0, 1],∀A measurable with P
[
A
]
> 0,

EA
[
sup
f∈F

Sn(f)

]
≤ E + (1 + 6ε)σ

√
2n log

1

P[A]
+ 2b log

1

P[A]
,

where E =
κ

ε

√
n

∫ εσ

0

√
H(u) ∧ n du+ 2(b+ σ)H(σ).

This theorem gives a control of the supremum of the empirical process over a class of
functions with respect to upper bounds on the moments of the functions in F and of a
set of brackets covering F , and with respect to the minimal number of brackets of such
a covering. This theorem links the behavior of the supremum of the empirical process
and the complexity of the class of functions considered.

Lemmas 8, 9, and Theorem 8, together with the calculation of the entropy with
bracketing of the class of functions obtained for −logLcc over the considered parameter
space (Lemma 4) are the ingredients of the proof of Lemma 6.

4.4.3 Proofs

Proof (Theorem 6) Let K = argminK∈{1,...,DK} Ef℘ [γ(θ0
K)]. By assumption, K0 =

minK.
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It is �rst proved that K̂ does not asymptotically �underestimate� K0. Let K /∈ K.
Let ε = 1

2

(
Ef℘ [γ(θ0

K)] − Ef℘
[
γ(θ0

K0
)
])

> 0. From (B2) and (B3) (pen(K) = oP(1)),
with great probability and for n large enough:

∣∣∣γn(θ̂K)− Ef℘
[
γ(θ0

K)
]∣∣∣ ≤ ε

3∣∣∣γn(θ̂K0)− Ef℘
[
γ(θ0

K0
)
]∣∣∣ ≤ ε

3

pen(K0) ≤ ε

3
.

Then

crit(K) = γn(θ̂K) + pen(K)

≥ Ef℘
[
γ(θ0

K)
]
− ε

3
+ 0

= Ef℘
[
γ(θ0

K0
)
]

+
5ε

3

≥ γn(θ̂K0) + pen(K0)︸ ︷︷ ︸
crit(K0)

+ε.

Then, with large probability and for n large enough, K̂ 6= K.

Let now K ∈ K, with K > K0. This part of the result is more involved than the
�rst one but at this stage, it is not more di�cult to derive: all the job is hidden in the
assumption (B4)...Indeed, it implies that ∃V > 0, such that for n large enough and with
large probability,

n
(
γn(θ̂K0)− γn(θ̂K)

)
≤ V.

Increase n enough so that n
(
pen(K) − pen(K0)

)
> V with great probability (which is

possible from assumption (B4)). Then, for n large enough and with large probability,

crit(K) = γn(θ̂K) + pen(K)

≥ γn(θ̂K0)− V

n
+ pen(K)

> crit(K0).

And then, with large probability and for n large enough, K̂ 6= K.

Finally, since P[K̂ 6= K0] =
∑

K/∈K P[K̂ = K] +
∑

K∈K, K 6=K0
P[K̂ = K], the result

follows. �

Proof (Lemma 5) For any ε > 0, with large probability and for n large enough:

γn(θ̂)− Ef℘
[
γ(θ0)

]
= γn(θ̂)− γn(θ0)︸ ︷︷ ︸

≤ε

+ γn(θ0)− Ef℘
[
γ(θ0)

]
︸ ︷︷ ︸

≤ε

,

on the one hand. And

γn(θ̂)− Ef℘
[
γ(θ0)

]
= γn(θ̂)− Ef℘

[
γ(θ̂)

]

︸ ︷︷ ︸
≥−ε

+Ef℘
[
γ(θ̂)

]
− Ef℘

[
γ(θ0)

]
︸ ︷︷ ︸

≥0

,

on the other hand. �
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Proof (Lemma 6) Actually, the proof as it is written below holds for an at most
countable model (because this assumption is necessary for Lemma 9 and Theorem 8 to
hold). But it can be checked that both those results may be applied to a dense subset
of {γ(θ) : θ ∈ Θ} containing θ0 and their respective conclusions generalized to the
entire set: choose Θcount a countable dense subset of Θ. Then, for any θ ∈ Θ, let
θn ∈ Θcount −−−→

n→∞
θ. Then, γ(θn;X)

a.s.−−−→
n→∞

γ(θ;X). Yet, whatever g : RD ×
(
Rd
)n → R

such that θ ∈ RD 7→ g(θ,X) continue a.s., supθ∈Θ g(θ;X) = supθ∈Θcount g(θ;X) a.s.
Hence, Ef℘ [supθ∈Θ g(θ;X)] = Ef℘ [supθ∈Θcount g(θ;X)]. Remark however that this is
quite arti�cial to do so: the models which are actually considered are discrete, because
of the computation limitations.

Let us introduce the centered empirical process

Snγ(θ) = nγn(θ)− nEf℘ [γ(θ;X)]

=
n∑

i=1

(
γ(θ;Xi)− Ef℘ [γ(θ;X)]

)
.

Here and hereafter, α stands for a generic absolute constant, which may di�er from
a line to an other; All E and P symbols are understood under f℘dµ.

Let θ0 ∈ Θ such that Ef℘ [γ(θ0)] = inf
θ∈Θ

Ef℘ [γ(θ)]. Let us de�ne

∀σ > 0,Θ(σ) = {θ ∈ Θ : ‖θ − θ0‖∞ ≤ σ}.

On the one hand,

∀r ∈ N∗\{1},∀θ ∈ Θ(σ),∣∣γ(θ0;x)− γ(θ;x)
∣∣r ≤ L′(x)2‖θ0 − θ‖2

∞(2L(x))r−2 f℘dµ-a.s.,

since Θ(σ) ⊂ Θ is convex (this is a consequence of its de�nition because Θ is). Thus,

∀r ∈ N∗\{1},∀θ ∈ Θ(σ),Ef℘
[
|γ(θ0)− γ(θ)|r

]
≤ ‖L′‖2

2 ‖θ0 − θ‖2
∞(2‖L‖∞)r−2

≤ r!

2
(‖L′‖2σ)2

( 62‖L‖∞
62

)r−2

.
(4.4)

And on the other hand, from Lemma 4 which applies here, for any r ∈ N∗\{1}, for any
δ > 0, there exists Cδ a set of brackets which covers {(γ(θ0)−γ(θ)) : θ ∈ Θ(σ)} (deduced
from a set of brackets which covers {γ(θ) : θ ∈ Θ(σ)}...) such that:

∀r ∈ N∗\{1},∀[gl, gu] ∈ Cδ, ‖gu − gl‖r ≤
(
r!

2

) 1
r

δ
2
r

(
4‖L‖∞

3

) r−2
r

and such that, writing eH(δ,Θ(σ)) the minimal cardinal of such a Cδ,

eH(δ,Θ(σ)) ≤




≤2σ︷ ︸︸ ︷
diamΘ(σ) ‖L′‖2

δ




D

∨ 1. (4.5)
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Then, according to Theorem 8,
∃α, ∀ε ∈]0, 1],∀A measurable such that P[A] > 0,

EA
[

sup
θ∈Θ(σ)

Sn
(
γ(θ0)− γ(θ)

)
]
≤ α

ε

√
n

∫ ε‖L′‖2σ

0

√
H
(
u,Θ(σ)

)
du

+ 2
(4

3
‖L‖∞ + ‖L′‖2σ

)
H
(
‖L′‖2σ,Θ(σ)

)

+ (1 + 6ε)‖L′‖2σ

√
2n log

1

P[A]

+
8

3
‖L‖∞ log

1

P[A]
.

(4.6)

Now, we have

∀t ∈ R+,

∫ t

0

√
log

1

u
∨ 0 du =

∫ t∧1

0

√
log

1

u
du

≤
√
t ∧ 1

√∫ t∧1

0

log
1

u
du from Cauchy-Schwarz inequality

= (t ∧ 1)

√
log

e

t ∧ 1
.

From which, together with (4.5),

∀t ∈ R+,

∫ t

0

√
H(u,Θ(σ))du ≤

√
D

∫ t

0

√
log

2‖L′‖2σ

u
∨ 0 du

≤
√
D
(
t ∧ 2‖L′‖2σ

)√
log

e
t

2‖L′‖2σ ∧ 1
,

(4.7)

after a simple change of variable.

Next, let us apply Lemma 9: From (4.5), (4.6) and (4.7),

∀σ > 0,Ef℘
[

sup
θ∈Θ(σ)

Sn
(
γ(θ0)− γ(θ)

)
]
≤ ϕ(σ),

with

ϕ(t) =
α

6ε
√
n
√
D 6ε ‖L′‖2t

√
log

2e

ε
+ 2
(4

3
‖L‖∞ + ‖L′‖2t

)
D log 2

+ (1 + 6ε)‖L′‖2t

√
2n log

1

P[A]
+

8

3
‖L‖∞ log

1

P[A]
.

As required for Lemma 9 to hold, ϕ(t)
t

is nonincreasing. It follows

∀β > 0,EA
[

sup
θ∈Θ

Sn
(
γ(θ0)− γ(θ)

)

‖θ0 − θ‖∞ + β2

]
≤ 4β−2ϕ(β).
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We then choose ε = 1 and apply Lemma 8: for any η > 0 and any β > 0, with
probability larger than 1− e−η,

sup
θ∈Θ

Sn
(
γ(θ0)− γ(θ)

)

‖θ0 − θ‖2
∞ + β2

≤ α

β2

(√
nD‖L′‖2β

√
log 2e

+
(
‖L‖∞ + ‖L′‖2β

)
D log 2

+ ‖L′‖2β
√
nη

+ ‖L‖∞η
)
.

�

Proof (Lemma 7) (4.4) may be rewritten as

∀r ∈ N∗\{1}, ∀θ ∈ Θ(σ),

Ef℘
[
|γ(θ0)− γ(θ)|r

]
≤ r!

2

(
‖L′‖2σ ∧ 4‖L‖∞︸ ︷︷ ︸

σ′

)2
(‖L‖∞)r−2 .

This follows from |γ(θ0)−γ(θ)| ≤ 2‖L‖∞, which always holds, and is required to have σ′
bounded from above, which will be useful in the following. It does not damage the result
since the upper bound with respect to σ is interesting locally, i.e. when σ is small.

Then, from (4.7),

∫ ‖L′‖2σ

0

√
H
(
u,Θ(σ)

)
du ≤

√
log 2e

√
D‖L′‖2σ︸ ︷︷ ︸

ψ(σ)

.

Let σ0 =
√

D
n
. Then,

H
(
‖L′‖2σ,Θ(σ)

)
≤ D log 2 from (4.5)

=
D log 2

σ
σ ∀σ > 0

≤ log 2
√
Dnσ ∀σ > σ0.

Moreover, H
(
σ′,Θ(σ)

)
≤ H

(
‖L′‖2σ,Θ(σ)

)
. Indeed,

� If ‖L′‖2σ ≤ 4‖L‖∞, this holds.

� If ‖L′‖2σ ≥ 4‖L‖∞, remark that, since ∀θ ∈ Θ(σ), |γ(θ0) − γ(θ)| ≤ 2‖L‖∞ for
f℘dλ−almost all x,

∀θ ∈ Θ(σ), γ(θ0)− 2‖L‖∞ ≤ γ(θ) ≤ γ(θ0) + 2‖L‖∞ f℘dλ− a.s.,

and then, H
(
4‖L‖∞,Θ(σ)

)
= 0 and H

(
σ′,Θ(σ)

)
= 0 in this case.
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Now, it follows, from Theorem 8,

∃α, ∀ε ∈]0, 1], ∀A measurable such that P[A] > 0,

EA
[

sup
θ∈Θ(σ)

Sn
(
γ(θ0)− γ(θ)

)
]
≤ α

ε

√
n

∫ εσ′

0

√
H
(
u,Θ(σ)

)
du

+ 2
(4

3
‖L‖∞ + σ′

)
H
(
σ′,Θ(σ)

)

+ (1 + 6ε)σ′

√
2n log

1

P[A]

+
8

3
‖L‖∞ log

1

P[A]
.

And then, for any σ > σ0, since σ′ ≤ ‖L′‖2σ, for ε = 1,

EA
[

sup
θ∈Θ(σ)

Sn
(
γ(θ0)− γ(θ)

)
]
≤ α
√
n
√

log 2e‖L′‖2

√
Dσ

+ 2

(
4

3
‖L‖∞ + 4‖L‖∞

)√
n log 2

√
Dσ

+ (1 + 6ε)‖L′‖2σ

√
2n log

1

P[A]

+
8

3
‖L‖∞ log

1

P[A]
.

This function of σ divided by σ is nonincreasing. Then, the conclusion follows from
Lemma 9 and Lemma 8 exactly as for Lemma 6, but under the condition that β > σ0:

∃α > 0, ∀β > σ0,∀η > 0,

sup
θ∈Θ

Sn
(
γ(θ0)− γ(θ)

)

‖θ0 − θ‖2
∞ + β2

≤ α

β2

[((
‖L′‖2 + ‖L‖∞

)√
D + ‖L′‖2

√
η

)√
nβ

+ ‖L‖∞η
]

holds with probability larger than 1− e−η.

�

Proof (Corollary 2) Let ε > 0 such that B(θ0, ε) ⊂ ΘO. Then, since θ̂n
P−→ θ0, there

exists n0 ∈ N∗ such that, with large probability, for n ≥ n0, θ̂n ∈ B(θ0, ε).

Now, B(θ0, ε) is convex and the assumptions of the corollary guarantee that Lemma
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6 applies. Let us apply it to θ̂n: ∀n ≥ n0,∀β > 0, with great probability as η is great,

Sn
(
γ(θ0)− γ(θ̂n)

)

‖θ0 − θ̂n‖2
∞ + β2

≤ α

β2

(√
nD‖L′‖2β

+
(
‖L‖∞ + ‖L′‖2β

)
D

+ ‖L′‖2β
√
nη

+ ‖L‖∞η
)
.

(4.8)

But since Iθ0 is supposed to be nonsingular, it can be written that

∀θ ∈ B(θ0, ε),Ef℘ [θ]− Ef℘
[
θ0
]

= (θ − θ0)′Iθ0(θ − θ0) + r(‖θ − θ0‖2
∞)‖θ − θ0‖2

∞

≥
(
2α′ + r(‖θ − θ0‖2

∞)
)
‖θ − θ0‖2

∞,

where α′ > 0 depends on Iθ0 and r : R+ −→ R ful�lls r(x) −−→
x→0

0 (we do not introduce

the o notation at this stage to avoid ambiguities with oP to appear below...). Then, for
‖θ − θ0‖∞ small enough (ε may be decreased...),

∀θ ∈ B(θ0, ε),Ef℘ [θ]− Ef℘
[
θ0
]
≥ α′‖θ − θ0‖2

∞. (4.9)

Since

Sn
(
γ(θ0)− γ(θ̂n)

)
= n

(
γn(θ0)− γn(θ̂n)

)
+ nEf℘

[
γ(θ̂n)− γ(θ0)

]

≥ OP(1) + nEf℘
[
γ(θ̂n)− γ(θ0)

]
,

(4.8) together with (4.9) leads (with great probability) to

n‖θ̂n − θ0‖2
∞ ≤

‖L′‖2(
√
nD +

√
ηn+D)β + ‖L‖∞(D + η) +OP(1)

α′

α
− 1

nβ2

(
‖L′‖2(

√
nD +

√
ηn+D)β + ‖L‖∞(D + η)

) ,

as soon as the denominator of the right-hand side is positive.

It then su�ces to choose β such that this condition is ful�lled and such that the
right-hand side is upper-bounded by a quantity which does not depend on n to get the
result. Let us try β = β0√

n
with β0 independent of n:

n‖θ̂n − θ0‖2
∞ ≤

‖L′‖2(
√
D +

√
η + D√

n
)β0 + ‖L‖∞(D + η) +OP(1)

α′

α
− 1

β2
0

(
‖L′‖2(

√
D +

√
η + D√

n
)β0 + ‖L‖∞(D + η)

)

≤ ‖L′‖2(
√
D +

√
η +D)β0 + ‖L‖∞(D + η) +OP(1)

α′

α
− 1

β2
0

(
‖L′‖2(

√
D +

√
η +D)β0 + ‖L‖∞(D + η)

)

This only holds if the denominator is positive. Choose β0 large enough so as to guarantee
this, which is always possible. The result follows: with large probability and for n larger
than n0,

n‖θ̂n − θ0‖2
∞ = COP(1),

with C depending on D, ‖L‖∞, ‖L′‖2, Iθ0 and η. �
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Proof (Corollary 3) This is a direct application of Corollary 2. Let K ∈ K:
Ef℘ [γ(θ0

K)] = Ef℘
[
γ(θ0

K0
)
]
. ΘK can be assumed to be convex: if it is not, θ̂K lies

in B(θ0
K0
, ε) with large probability for large n. Choose ε small enough to guarantee

B(θ0
K0
, ε) ⊂ ΘO. Then, ΘK may be replaced by B(θ0

K0
, ε). According to Lemma 6 and

under the assumptions we made, with probability larger than (1-e−η) for n large enough,
∀β > 0,

Sn
(
γ(θ0

K)− γ(θ̂K)
)

≤ α
‖θ0

K − θ̂K‖2
∞ + β2

β2

(
‖L′‖2

(√
nDK +

√
ηn+DK

)
β + ‖L‖∞(DK + η)

)
,

which yields with β = β0√
n
for any β0 > 0:

Sn
(
γ(θ0

K)− γ(θ̂K)
)

≤ α
n‖θ0

K − θ̂K‖2
∞ + β2

0

β2
0

(
‖L′‖2

(√
DK +

√
η +

≤DK︷︸︸︷
DK√
n

)
β0 + ‖L‖∞(DK + η)

)
.

But, according to Corollary 2, and because we imposed the corresponding assumptions,
n‖θ0

K − θ̂K‖2
∞ = OP(1). Moreover, by de�nition,

Sn
(
γ(θ0

K)− γ(θ̂K)
)

= n
(
γn(θ0

K)− γn(θ̂K)
)

+ n
(
Ef℘

[
γ(θ̂K)

]
− Ef℘

[
γ(θ0

K)
]

︸ ︷︷ ︸
≥0

)

≥ n
(
γn(θ0

K)− γn(θ̂K)
)
.

Thus,
n
(
γn(θ0

K)− γn(θ̂K)
)

= OP(1).

This holds for any K ∈ K and then in particular for K0 and K. Besides, γn(θ0
K) =

γn(θ0
K0

) since, by assumption, γ(θ0
K ;x) = γ(θ0

K0
;x) for f℘dλ-almost all x. Hence

n
(
γn(θ̂K0)− γn(θ̂K)

)
= OP(1).

�

4.4.4 A New Light on ICL

The previous section suggests links between model selection penalized criteria with the
usual likelihood on the one hand and with the conditional classi�cation likelihood we
de�ned on the other hand. Indeed penalties with the same form as those given by
Nishii (1988) or Keribin (2000) with the usual likelihood are proved to be �consistent�
in our framework. Moreover, the form of the results obtained (notably, Lemma 7) and
some further calculations suggest that the reasoning of Massart (2007) when deriving
an almost oracle inequality in the likelihood framework might be further mimicked and
that an oracle inequality might be derived with quite comparable forms of penalties:
they are notably expected to be proportional to the dimension of the models. But our
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current results would at best enable to derive an oracle-like inequality with a multiplying
factor depending on the parameters of the problem (typically, ‖L‖∞ and ‖L′‖2), instead
of an absolute constant.

Therefore, from those results and by analogy with the usual likelihood framework,
it is expected that penalties proportional to DK are optimal from the e�ciency point
of view (think of AIC), and that penalties proportional to DK log n are optimal for
an identi�cation purpose (think of BIC). This possibility to derive an identi�cation
procedure from an e�cient procedure by a log n factor is noti�ed for example by Arlot
(2007).

Let us then consider by analogy with BIC the penalized criterion

crit(K) = logLcc(θ̂
MLccE
K )− log n

2
DK

= logL(θ̂MLccE
K )− ENT(θ̂MLccE

K ;X)− log n

2
DK .

The point is that we almost recover ICL (see (4.2)). This is actually ICL evaluated at
θ̂MLccE
K instead of θ̂MLE

K and we shall call it Lcc-ICL. We already criticized the approxi-
mation of the mode of the integrated classi�cation likelihood by θ̂MLE

K in the derivation
of ICL (Section 4.1.2). There is no reason that this approximation should be good but
perhaps in cases the components of θ̂MLE

K are well separated. Such a derivation of ICL
is then hardly interpretable: only the resulting criterion itself can be interpreted, by the
study of the entropy term, and by a comparison with known criteria, such as the BIC.
But ICL may be regarded as an approximation of Lcc-ICL. The corresponding penalty
is logn

2
DK , and the derivation of Lcc-ICL in Section 4.4.1 illustrates that the entropy

term should not be considered as a part of the penalty. This notably justi�es why ICL
does not select the same number of components as BIC or any consistent criterion in
the usual likelihood framework, even asymptotically. Actually, it is not expected to do
so.

As mentioned in Section 4.3.4, θ̂MLccE
K may be quite di�erent from θ̂MLE

K . This par-
ticularly holds when the components of θ̂MLE

K overlap. In such a case, θ̂MLccE
K provides

more separated clusters, because of the entropy term. The compromise between the
Gaussian component and the cluster viewpoints achieved by ICL in the model selection
step is already embraced with θ̂MLccE

K in the estimation step. This means the user is
provided a solution which aims at reaching this compromise for each number of classes
K. Obviously, the number of classes selected through Lcc-ICL may then di�er from the
one selected by ICL. It may for example be that for a given K which is not selected
by ICL because of the entropy term, θ̂MLccE

K reaches smaller enough entropy than θ̂MLE
K

that Lcc-ICL selects this solution. However the likelihood is worsened in such a case,
too, and this situation occurred seldom in simulations (see Section 4.4.6).

Finally, Lcc-ICL is quite close to ICL and enables to better understand the concepts
underlying ICL. Section 4.4.6 illustrates that ICL remains attractive, notably because of
its ease to be computed as compared to the practical di�culties involved when evaluating
θ̂MLccE
K .
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4.4.5 Slope Heuristics

The slope heuristics �rst introduced by Birgé and Massart (2006), has been presented
and discussed in Section 3.2. It has been applied to the choice of the number of compo-
nents in the Gaussian mixture models framework and the usual likelihood in Section 3.3.

We shall consider this heuristics to calibrate penalties of the form suggested in Sec-
tion 4.4.1, with the −logLcc contrast. As mentioned in the Section 4.4.4 above, we
have no de�nitive theoretical justi�cation that the penalty should be chosen propor-
tional to the dimension of the model, but serious hints in that direction. Simulations
(Section 4.4.6) con�rm this choice. Criteria of the following from are then considered
and expected to have an oracle-like behavior:

crit(K) = −logLcc(θ̂
MLccE
K ) + κDK ,

where κ is unknown. The slope heuristics, which would by the way require even more
than an oracle inequality to be theoretically justi�ed in this framework (see Section 3.2),
provides a practical approach to choose κ. Remark that it comes with a convenient
method to verify that it can be reasonably assumed to be justi�ed. It is recalled below.
Further explanation, justi�cation, and discussion (in a general framework) are given in
Section 3.2. The data-driven slope estimation approach (Section 3.2.3) is applied in this
section.

The slope heuristics relies on the assumption that the bias of the models decreases as
the complexity of the models increases and is stationary for the most complex models. In
our framework, this requires the family of models to be roughly embedded. With general
or diagonal models for example, this requires the lower-bound on the covariance matrices
and/or on the proportions, to be small enough. The models are always embedded if the
proportions can be equal to zero, but this situation should be avoided. This heuristics
should be handled with care in a framework with models such as the equal-volumes
covariance matrices: models with di�erent number of components are then de�nitely
not embedded if the proportions are kept away from zero, and there is no reason why
the minimum value of the contrast should even decrease as the model's complexity
increases.

The procedure is the following. It is illustrated in the simulations section (Sec-
tion 4.4.6). First compute θ̂MLccE

K for each K ∈ {1, . . . , KM} (cf. for example Fig-
ure 4.12). This is not an easy step actually: it is discussed in Section 5.1. Next, plot the
value of −logLcc(θ̂

MLccE
K ) with respect to DK (cf. Figure 4.7). There should appear a

linear part in this graph, for the greatest dimensional models. In case not, eitherKM has
been chosen too small and more complex models should be involved in the study to be
able to apply the slope heuristics, or the slope heuristics does not apply. Actually, when
the optimization of the contrast for each model � i.e. the computation of θ̂MLccE

K � was
not too hard, we almost always observed such a linear part. Then, compute the slope
κ̂
2
of this linear part and choose κ̂ as a constant in the criterion presented just above

(κ = κ̂). Finally, select K̂ according to

K̂ = min argmax
K∈{1,...,KM}

{
logLcc(θ̂

MLccE
K )− κ̂DK

}
.

The main practical challenge is the choice of the points of the graph of DK 7→
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−logLcc(θ̂
MLccE
K ) which should be considered to belong to the linear part, and thus

involved in the computation of the slope. The procedure result might depend quite
largely on this choice in some situations. We applied in a �rst time a quite simple rule:

� check that a linear part occurs �by eye�;

� for each Km ∈ {1, . . . , KM − 1}, compute the slope κ̂Km
2

of the linear regression of

the points
(
DK ,−logLcc(θ̂

MLccE
K )

)
K∈{Km,...,KM}

and the corresponding variation of
(twice the) slope

δKm−1 = κ̂Km − κ̂Km−1

(for Km > 1);

� choose K0
m as the smallest Km such that δKm ≤ qminKm∈{1,...,KM−2} δKm :

K0
m = min

{
Km ∈ {1, . . . , KM − 2} : δKm ≤ q min

Km∈{1,...,KM−2}
δKm

}
,

for a given q > 1;

� Finally, κ̂ = κ̂K0
m
.

The choice of q is obviously problematic. But there is, up to our knowledge, no method
in this context which would not depend on a tuning parameter to be chosen. Some are
more problematic than others, and in the simulations we performed, this one seemed
to o�er the advantage that the �nal solution reasonably depends on the choice of q.
The underlying idea it that the slope should be quite �stable� once the linear part has
been reached. What �stable� in a general setting means, is quite di�cult to quantify.
This method enables to quantify it while taking account of the data at hand, with
respect to the minimal reached �stability�, which seems much more reliable than trying
to assess a general value of what �stable� would be, independently of the particular
situation. Other measures could have been involved, such as the variance or the R2 of
the regression...Remark that this method with q encounters troubles when some of the
successive slopes are almost the same...

A more involved and presumably more reliable method is proposed in Section 5.2.
It has been implemented in a Matlab package, which is available for the practice of the
slope heuristics. It yields roughly the same results as those reported below, but warns
the user as the heuristics should not be applied � or be applied with care �, where
our �rst procedure rather returned a bad solution in such a case...

4.4.6 Simulations

In this section, several simulated experiments8 are reported, which illustrate and com-
plete the preceding considerations. For each simulation setting, at least 100 datasets
have been simulated. As a matter of fact, the estimation softwares sometimes encounter
di�culties and stop before yielding a result. Those cases have been removed from the

8Details on the simulation settings and the applied algorithms may be found in Section A.2.
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Figure 4.7: The �Slope� graph

study, so that the considered criteria can be compared on the basis of interesting ex-
amples. θ̂MLE

K and θ̂MLccE
K have been computed for each K ∈ {1, . . . , KM}, and the

percentage of selection of each possible number of class is reported for each one of the
following criteria:

� AIC: critAIC(K) = logL(θ̂MLE
K )−DK ;

� BIC: critBIC(K) = logL(θ̂MLE
K )− logn

2
DK ;

� Slope Heuristics applied to
(
DK , logL(θ̂MLE

K )
)
K∈{1,...,KM}

: critSHL(K) =

logL(θ̂MLE
K )− 2× ŝlope×DK (see Section 3.3);

� ICL: critICL(K) = logLcc(θ̂
MLE
K )− logn

2
DK ;

� Lcc-ICL: critLcc−ICL(K) = logLcc(θ̂
MLccE
K )− logn

2
DK ;

� Slope Heuristics applied to
(
DK , logLcc(θ̂

MLccE
K )

)
K∈{1,...,KM}

: critSHLcc(K) =

logLcc(θ̂
MLccE
K )− 2× ŝlope×DK (see Section 4.4.5).

Besides, for each criterion and each dataset type, typical examples of the obtained
classi�cations are given. A few graphsDK 7→ − logL(θ̂MLE

K ) and DK 7→ −logLcc(θ̂
MLccE
K )

are given for each setting, to testify a linear part occurs.

The �Cross� Experiment

In this experiment, f℘ is a four-component Gaussian mixture in R2: see Figure 4.8.
The top-left and the bottom-left components are spherical: their covariance matrices
are proportional to the identity matrix. The two components which together form the
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�cross� on the right are �diagonal�: their covariance matrices are diagonal matrices.
Diagonal Gaussian mixture models are �tted: the true distribution is then available in
the model with four components.

This experiment is particularly illustrative for our purpose. The point is that the
�cross� is clearly made of two di�erent components, but that it may be considered
that it has to be split into two di�erent classes or not, depending on the embraced
classi�cation point of view. The point of view adopted when using BIC is that every
group of observations which requires a Gaussian component to be �tted deserves to be
considered as a class for itself. There are in this dataset clearly four classes from this
point of view. And the results of this experiment (Table 4.1) con�rm that BIC performs
well in this task.

But presumably a widespread notion of �cluster� would make most people unthink-
ingly design three classes in this dataset. This notion is at least partly based on the idea
that observations which cannot be con�dently discriminated from each other, should ac-
tually belong to the same class. ICL does well �t this notion, thanks to the entropy
term: the results are striking with this experiment, too. Of course, ICL also takes some-
how into account the Gaussian shape of the designed classes, since it relies on Gaussian
mixture models. This corresponds to the notion that clusters should be more or less
ellipsoid-shaped.

Remark that a strictly cluster-based approach, as the k-means or the hierarchical
Ward's approach, for example, would never split the cross into its two Gaussian com-
ponents, even when applied to design four classes.

Lcc-ICL behaves exactly as ICL in this experiment. Moreover, for the number of
components both of them select (K̂ICL = K̂Lcc−ICL = 3), θ̂MLE

K and θ̂MLccE
K give rise to

very close estimations (actually, because of the precision of the machine, they cannot be
distinguished from each other), and to exactly the same classes. See Figure 4.9 (K=3)
and Figure 4.12 (K=3).

Now, both slope heuristics methods are interesting. The �rst one (SHL) behaves like
BIC. They are based on the same contrast, and this is no surprise. Remark that AIC
seems clearly not to penalize enough in this experiment, although it might be expected,
as an �e�cient� criterion (in other areas), to behave rather like SHL than like BIC.
This holds also from an e�ciency point of view (see Table 4.2). The slope heuristics
based on −logLcc (denoted by SHLcc) behaves roughly like ICL. It is however more
scattered. This might be partly due to optimization di�culties, which currently occur
while maximizing Lcc. Remark however that they reach almost the same results, from an
e�ciency point of view, as compared to the oracle (see Table 4.3): it may be surprising
that the slope heuristics does not behaves better than ICL, but both reach very good
results.

A few graphs (chosen at random) DK 7→ logL(θ̂MLE
K ) and DK 7→ logLcc(θ̂

MLccE
K ) are

represented on Figure 4.10 and Figure 4.13. Those graphics are important: the slope
heuristics should only be applied as a linear part appears for the highest dimensional
models. The Linear Regression is plotted, too. Mostly, the number of components K
from which no bias is to be decreased anymore can almost be identi�ed �by eye� in this
experiment. The penalty values obtained through slope heuristics for both contrasts are
represented in Figure 4.11 and Figure 4.14. They illustrate that those procedures are
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data-driven: the value of the penalty they yield vary markedly in this experiment.

All solutions θ̂MLE
K and θ̂MLccE

K for every K have been represented, for an example
dataset (Figure 4.9 and Figure 4.12). One of the most illustrative datasets has been
chosen. Remark that, even for the true number of Gaussian components (K = 4 here),
θ̂MLccE
K does not match the true distribution (which belongs toM4, yet), on the contrary
to θ̂MLE

K . It clearly avoids solutions with overlapping components. Of course, according
to the particular repartition of the data, it may happen that the non-gaussianity of one
cluster is worse than the overlapping of the two components and that θ̂MLccE

K chooses a
solution close to θ̂MLE

K , even in this experiment. It is however seldom. Anyone classifying
by hand would probably do the same. The point, of course, is where the limit lies.

Tables 4.2 and 4.3 report comparisons of the risk of each criterion with the corre-
sponding oracle. Remark that ICL should rather be compared to the Lcc oracle. The
most interesting information in those results is that the oracle (expected) number of
components is four for L and three for Lcc, with quite large di�erence to the other
numbers of components in each case (see Figure 4.15 (a) and (b)).
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Figure 4.8: �Cross� Experiment.

Simulated observations example with isodensity contours of the true distribution. n = 200

An Experiment with Misspeci�ed Models

In this experiment, f℘ is a four-component Gaussian mixture in R2: See Figure 4.16.
All components are very well separated. The two left components are diagonal, but
the two right components are not. The bottom-right component is rotated through
angle −π

6
from horizontal, and the top-right component is rotated through angle π

3
from

horizontal. Since �tted models are still diagonal mixture models, this experiment takes
place in a misspeci�ed models situation.

It enables to easily study the behavior of the criteria we are interested in in this
misspeci�ed situation.
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Selected Number of Components 2 3 4 5 6 7 8 9 10�20

AIC 0 0 1 1 2 2 3 3 88
BIC 0 4 91 5 0 0 0 0 0
SHL (ddes) 0 2 84 10 3 0 0 0 1
SHL (dj) 0 3 85 10 2 0 0 0 0
ICL 0 96 3 1 0 0 0 0 0
Lcc-ICL 0 99 1 0 0 0 0
SHLcc 2 79 8 8 3 0 0

Table 4.1: �Cross� Experiment Results.

�ddes� indicates the data-driven slope estimation approach for the slope heuristics application
and �dj� the dimension jump approach. Some boxes are left blank to recall the criteria related

to Lcc have been computed with K ∈ {1, . . . , 8} only.
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Figure 4.9: �Cross� Experiment.

θ̂MLE
K and the corresponding MAP classi�cation for various values of K.
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Figure 4.10: �Cross� Experiment.

A few examples of DK 7→ logL(θ̂MLE
K )

plots and of the linear regression (red).
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Figure 4.11: �Cross� Experiment.

Values of the penalties for SHL compared
to the value of the BIC penalty.
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Figure 4.12: �Cross� Experiment.

θ̂MLccE
K and the corresponding MAP classi�cation for various values of K.
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Figure 4.13: �Cross� Experiment.

A few examples of DK 7→ logLcc(θ̂
MLccE
K )

plots and of the linear regression (red).
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Figure 4.14: �Cross� Experiment.

Values of the penalties for SHLcc
compared to the value of the ICL penalty.

Risk of the criterion ×103 Risk of the criterion
Risk of the oracle

Oracle 59 1
AIC 506 8.03
BIC 65 1.10
(ICL) 156 2.62
SHL (estimation of the slope) 69 1.17
SHL (dimension jump) 68 1.14

Table 4.2: �Cross� Experiment Results.

Risk of each criterion in terms of Kullback-Leibler divergence to the true distribution,
estimated by Monte Carlo simulations. The oracle results reported in the table correspond to

the trajectory oracle

Koracle = argmin
1≤K≤20

dKL
(
f℘, f( . ; θ̂MLE

K )
)

for each dataset. The expected oracle number of components

Koracle = argmin
1≤K≤20

Ef℘
[
dKL

(
f℘, f( . ; θ̂MLE

K )
)]

is four. The true number of components is four.
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�Risk� of the criterion ×103

Oracle 3618
ICL 3622
Lcc-ICL 3623
SHLcc (estimation of the slope) 3632

Table 4.3: �Cross� Experiment Results.

�Risk� of each criterion for the Lcc contrast, estimated by Monte Carlo simulations. The
oracle results reported in the table correspond to the trajectory oracle:

Koracle = argmin
1≤K≤8

EX
[
−logLcc(θ̂

MLccE
K ;X)

]

for each dataset. The expected oracle number of components

Koracle = argmin
1≤K≤8

EXEX1,...,Xn

[
−logLcc(θ̂

MLccE
K ;X)

]

is three.
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Figure 4.15: �Cross� Experiment.

Convergence of the Monte Carlo simulations for the computation of

Koracle = argmin
1≤K≤20

EX1,...,Xn

[
dKL

(
f℘, f( . ; θ̂MLE

K )
)]

(a)

Koracle = argmin
1≤K≤8

EXEX1,...,Xn

[
−logLcc(θ̂

MLccE
K ;X)

]
(b).
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From Table 4.4:

AIC really has troubles in this situation, which is not surprising since we already
noticed its tendency to select a number of components much higher than expected in
the previous experiment. It is not adapted to this aim.

BIC tends to select a quite high number of components, in this experiment, too,
which is not a problem from the point of view to which it corresponds. Indeed, the
number of diagonal components needed to approximate f℘ is greater than four, because
of the two non-diagonal components. See Figure 4.17 (a) for an example.

SHL, both applied with the data-driven slope estimation or with the dimension jump
approach, yields the selections of K̂ the closest to the oracle's (Table 4.4). However,
it does not yield better risk results than BIC in this experiment (Table 4.5): the three
criteria achieve good results. Giving a precise penalty value for the slope heuristics
is delicate (see for example Section 5.2: our package yields a penalties interval rather
than a single penalty value). However, remark that the comparison of Figure 4.19 and
Figure 4.14 suggests the data-driven feature of the criterion: the slope heuristics yields
lower penalties than BIC in both cases, but the values of the penalties are greater in
the misspeci�ed experiment.

ICL and Lcc-ICL select the expected four classes half of the time. The number of
observations (200, and the bottom-right component has proportion 0.2, the top-right,
0.3) does not always enable them to notice that some �tted components of the �ve- or
six-component solution overlap. Remark that Lcc-ICL, if it recovers four classes a little
more often than ICL, also selects six components more often than ICL.

SHLcc reaches the �best� results (from the clustering point of view) in this experiment,
in the sense that it recovers the expected four classes most often. It yields heavier
penalties than ICL (see Figure 4.21) in this experiment. It is more robust than ICL to
a misspeci�ed model and is less troubled by a non-asymptotic situation.

The e�ciency point of view (Tables 4.5 and 4.6) con�rms the di�culty of this setting
for the criteria linked to logL: the oracle risk is quite large (it is for example much larger
than in the �cross� experiment: compare with Table 4.2). Moreover, Figure 4.22(a)
illustrates how di�cult it is to select a number of components, even with Monte Carlo
simulations. Things are easier for the Lcc: see Figure 4.22(b).

Experiment with a Distorted Component

In this experiment, f℘ is a four-component Gaussian mixture in R2: see Figure 4.23.
Three of the components are well separated but the fourth is smaller than the others
(in size: π = 0.1 against 0.3 for the others, and in volume: det Σ4 = 0.01 against 1
or 0.5 for the others). Diagonal mixture models are �tted: this is a not a misspeci�ed
situation.

From Table 4.7:

BIC and SHL mostly recover the four Gaussian components. This is what they are
expected to do, and SHL behaves a little better than BIC in this experiment. This is
con�rmed in an e�ciency perspective: see Table 4.8.
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Figure 4.16: Misspeci�ed Models Experiment.

Simulated observations example with isodensity contours of the true distribution. n = 200

Selected number of components 4 5 6 7 8 9�16 17 18 19 20

Oracle 4 10 30 43 12 1 0 0 0 0
AIC 0 0 0 0 0 20 14 12 26 28
BIC 3 43 38 13 3 0 0 0 0 0
SHL (ddes) 2 19 26 32 11 10 0 0 0 0
SHL (dj) 2 25 33 20 11 9 0 0 0 0
ICL 49 35 9 5 2 0 0 0 0 0
Lcc-ICL 54 29 13 4 0
SHLcc 81 17 2 0 0

Table 4.4: Misspeci�ed Models Experiment Results.

�ddes� indicates the data-driven slope estimation approach for the slope heuristics application
and �dj� the dimension jump approach. Some boxes are left blank to recall the criteria related

to Lcc have been computed with K ∈ {1, . . . , 8} only.
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Figure 4.17: Misspeci�ed Models Experiment.

Typical MLE solution selected by BIC (a) and MLccE solution selected by ICL (b).
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Figure 4.18: Misspeci�ed Models Ex-
periment.

A few examples of DK 7→ logL(θ̂MLE
K )

plots and of the linear regression (red)
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Figure 4.19: Misspeci�ed Models Ex-
periment.

Values of the penalties for SHL compared
to the value of the BIC penalty
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Figure 4.20: Misspeci�ed Models Ex-
periment.

A few examples of DK 7→ logLcc(θ̂
MLccE
K )

plots and of the linear regression (red)
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Figure 4.21: Misspeci�ed Models Ex-
periment.

Values of the penalties for SHLcc
compared to the value of the ICL penalty

Risk of the criterion ×103 Risk of the criterion
Risk of the oracle

Oracle 206 1
AIC 712 3.45
BIC 240 1.16
(ICL) 272 1.32
SHL (estimation of the slope) 249 1.21
SHL (dimension jump) 243 1.18

Table 4.5: Misspeci�ed Models Experiment Results.

Risk of each criterion in terms of Kullback-Leibler divergence to the true distribution,
estimated by Monte Carlo simulations. The oracle results reported in the table correspond to

the trajectory oracle:

Koracle = argmin
1≤K≤20

dKL
(
f℘, f( . ; θ̂MLE

K )
)

for each dataset. The expected oracle number of components:

Koracle = argmin
1≤K≤20

Ef℘
[
dKL

(
f℘, f( . ; θ̂MLE

K )
)]

is six or seven (see Figure 4.22). The �true� number of components is four, but the model is
misspeci�ed.
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�Risk� of the criterion ×103

Oracle 3910
ICL 3926
Lcc-ICL 3928
SHLcc (estimation of the slope) 3915

Table 4.6: Misspeci�ed Models Experiment Results.

�Risk� of each criterion for the Lcc contrast, estimated by Monte Carlo simulations. The
oracle results reported in the table correspond to the trajectory oracle:

Koracle = argmin
1≤K≤8

EX
[
−logLcc(θ̂

MLccE
K ;X)

]

for each dataset. The expected oracle number of components:

Koracle = argmin
1≤K≤8

EXEX1,...,Xn

[
−logLcc(θ̂

MLccE
K ;X)

]

is four.
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Figure 4.22: Misspeci�ed Models Experiment.

Convergence of the Monte Carlo simulations for the computation of

Koracle = argmin
1≤K≤20

EX1,...,Xn

[
dKL

(
f℘, f( . ; θ̂MLE

K )
)]

(a)

Koracle = argmin
1≤K≤8

EXEX1,...,Xn

[
−logLcc(θ̂

MLccE
K ;X)

]
(b).
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ICL, Lcc-ICL and SHLcc mostly select three classes, in what they conform to the
notion of cluster they derive. Both ICL criteria behave even better from this point of
view than SHLcc: the optimization di�culties might be the cause.
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Figure 4.23: Distorted Component Experiment.

Simulated observations example with isodensity contours of the true distribution. n = 200

Selected number of components 3 4 5 6 7 8

AIC 0 24 30 23 3 20
BIC 42 57 0 0 0 1
SHL 22 67 10 1 0 0
ICL 93 7 0 0 0 0
Lcc-ICL 98 2 0 0 0 0
SHLcc 78 17 4 1 0 0

Table 4.7: Distorted Component Experiment Results.

Conclusion

In conclusion, these experiments illustrate the di�erent points of view of BIC on the
one hand and ICL on the other hand. Beyond the choice of the penalty, they illustrate
through the tabulated results that the most decisive � and then the �rst choice to be
made � is the contrast to be involved. From this point of view, BIC and SHL belong
to the same family and behave analogously, on the one hand. ICL, Lcc-ICL and SHLcc,
on the other hand, behave di�erently from them and conform a clustering point of view.
The choice of the penalty, and the comparison of the criteria based on the same contrast,
comes after, and from this point of view, BIC and ICL in their respective families of
criteria, perform pretty well, while being quite easy to perform, as compared notably to
the slope heuristics methods. But those last methods enjoy their data-driven property,
at least in some experiments.
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Figure 4.24: Distorted Component Experiment.

Typical MLE solution selected by BIC (a) and MLccE solution selected by ICL (b).
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Figure 4.25: Distorted Component Ex-
periment.

A few examples of DK 7→ logL(θ̂MLE
K )

plots and of the linear regression (red).
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Figure 4.26: Distorted Component Ex-
periment.

Values of the penalties for SHL compared
to the value of the BIC penalty.
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Figure 4.27: Distorted Component Ex-
periment.

A few examples of DK 7→ logLcc(θ̂
MLccE
K )

plots and of the linear regression (red).
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Figure 4.28: Distorted Component Ex-
periment.

Values of the penalties for SHLcc
compared to the value of the ICL penalty.

Risk of the criterion ×103 Risk of the criterion
Risk of the oracle

Oracle 58.3 1
AIC 108.5 1.9
BIC 73.7 1.3
(ICL) 99.9 1.7
SHL (estimation of the slope) 68.0 1.2

Table 4.8: Distorted Component Experiment Results.

Risk of each criterion in terms of Kullback-Leibler divergence to the true distribution,
estimated by Monte Carlo simulations. The oracle results reported in the table correspond to

the trajectory oracle:

Koracle = argmin
1≤K≤8

dKL
(
f℘, f( . ; θ̂MLE

K )
)

for each dataset. The expected oracle number of components:

Koracle = argmin
1≤K≤8

Ef℘
[
dKL

(
f℘, f( . ; θ̂MLE

K )
)]

is four. The �true� number of components is four.
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�Risk� of the criterion ×103

Oracle 3857
ICL 3859
Lcc-ICL 3857
SHLcc (estimation of the slope) 3863

Table 4.9: Distorted Component Experiment Results.

�Risk� of each criterion for the Lcc contrast, estimated by Monte Carlo simulations. The
oracle results reported in the table correspond to the trajectory oracle:

Koracle = argmin
1≤K≤8

EX
[
−logLcc(θ̂

MLccE
K ;X)

]

for each dataset. The expected oracle number of components:

Koracle = argmin
1≤K≤8

EXEX1,...,Xn

[
−logLcc(θ̂

MLccE
K ;X)

]

is three.
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Figure 4.29: Distorted Component Experiment.

Convergence of the Monte Carlo simulations for the computation of

Koracle = argmin
1≤K≤8

Ef℘
[
dKL

(
f℘, f( . ; θ̂MLE

K )
)]

(a)

Koracle = argmin
1≤K≤8

EXEX1,...,Xn

[
−logLcc(θ̂

MLccE
K ;X)

]
(b).
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4.5 Discussion

Two families of criteria, in the clustering framework, are distinguished in this chapter: it
is shown that ICL's purpose is of di�erent nature than that of BIC or AIC. What theory
enables to understand, is con�rmed by the simulations. The identi�cation theory for
the contrasts based on the conditional classi�cation likelihood is � not surprisingly �
very similar to the classical one for the usual likelihood.

The main interest of the newly introduced estimator and criteria is to better un-
derstand the ICL criterion. The computing di�culties are rather a limit up to now,
particularly for applying the slope heuristics to the new contrast: estimation in very
complex mixture models is even tougher than in the usual likelihood framework (see
Chapter 5). The new criterion Lcc-ICL yields choices of the number of classes quite
similar to ICL.

ICL leads to discover classes matching a subtle combination of the notions of well
separated, compact, clusters, and (Gaussian) mixture components. It then enjoys the
�exibility and modeling possibilities of the model-based clustering approach, but does
not break the expected notion of cluster.

The choice of the involved mixture components must be handled with care in this
framework since it leads the cluster shape underlying the study. Several forms of Gaus-
sian mixtures may be involved: for example, spherical (i.e. with covariance matrices
proportional to the identity matrix) and general models may be compared, or models
with free proportions may be compared with models with equal proportions. This de�-
nitely makes sense from a clustering point of view and depends on the application. But
some settings do not enable the use of the slope heuristics: it is at least required that
the bias be stationary for the most complex models, which means that there should not
be a subfamily of models with lower bias than the other, when DK is great. Moreover,
it should be justi�ed that the variance of both subfamilies behaves analogously for large
values of DK , which is not obvious. In this case, only criteria such as ICL or Lcc-ICL
may be applied.

Besides it should be further studied how the complexity of the models should be
measured when several model kinds are compared. The dimension of the model as a
parametric space works for the reported theoretical results. But we are not completely
convinced that it is the �nest measure of the complexity of Gaussian mixture models.
As a matter of fact this simple parametric point of view amounts to considering that
all parameters play an analogous role, at least when measuring the complexity of the
model. This is not really natural. Think for example about how di�erent are the
respective roles of a mean parameter on the one hand, and a non-diagonal covariance
matrix coe�cient on the other hand. Remark that a model with diagonal covariance
matrices and equal proportions has dimension 2Kd. A model with spherical covariance
matrices with equal volumes has dimension (Kd+1). But it does not seem really natural
that a spherical model with 2K components is about as �complex� as a diagonal model
with K components...

Further results would be necessary to fully justify that penalties proportional to the
dimension are optimal. The situation in this mixture framework is known to be a little
di�erent, as compared to other frameworks as the regression, since the AIC penalty is
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not heavy enough to yield e�cient procedures.

The optimization algorithms need be improved to be more reliable, and above all to
run much faster, which would obviously be a condition for a spread practical use of the
new contrast, and then for a further understanding of its features.

A possibility to make this contrast more �exible would be to assign di�erent weights
to the log likelihood and the entropy:

logLccα = α logL + (1− α) ENT,

with α ∈ [0; 1]. This would enable to tune how important the assignment con�dence is
with respect to the Gaussian �t...the practical interest of such a procedure is obvious,
but the di�culty coming with it is also: how to choose α? The derivation of Lcc as
the conditional classi�cation likelihood would not hold anymore. A �rst insight which
comes in mind is to choose α from simulations of situations in which the user knows
what solution he expects.
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Presentation In this chapter are introduced and discussed practical solutions for the
application of methods introduced in the preceding chapters. In Chapter 4 a new esti-
mator has been proposed as a concurrent choice to the MLE in the clustering framework:
MLccE. The MLE in the Gaussian mixture model framework is known to be di�cult to
be computed (see Section 1.2.2). The EM algorithm makes this computation tractable.
The MLccE is seemingly even tougher to be computed: fortunately an algorithm can
be derived, which makes this possible. This is an adapted EM algorithm and we shall
see that it inherits its fundamental property � namely the monotonicity of the con-
trast along the iterations. Moreover, as for the MLE, the initialization step is crucial
and must be sensible so as to get good results. Several initialization methods are dis-
cussed and a new one is introduced to overcome the limitations of the known ones. This
method may be applied to the EM initialization and improve sensibly the results in this
framework, too. Finally, it is introduced and discussed how to choose and practically
impose bounds on the parameter space. Section 5.2 is about the slope heuristics, which
has been introduced in Section 3.2, and applied in simulation studies in Sections 3.3
and 4.4.6. Its practical use involves di�culties, notably while applying the data-driven
slope estimation approach (as compared to the dimension jump approach: see Sections
3.2.2 and 3.2.3). Yet the slope heuristics is a promising model selection approach and
some �rst simulations show the data-driven slope estimation to be competitive with the
dimension jump, and even to be more relevant than it in some cases at least. Hence
the necessity of proposing practical solutions for its application. Jointly with C. Maugis
and B. Michel a Matlab package is being developed to make those solutions available
and easy to use for any interested user. The introduction of the embraced solutions and
of the package, and a simulation study which highlights both the good behavior of the
slope heuristics and the di�erences between the dimension jump and the data-driven
slope estimation constitute the second section of this chapter.

5.1 Computing MLccE: Lcc-EM and Practical Consid-

erations

A new contrast, −logLcc, has been de�ned in Section 4.21, and applied to the de�nition
of a new estimator. Computing this estimator requires to develop adapted tools. For a
given Gaussian mixture modelMK with parameter space ΘK , θ̂MLccE

K is

θ̂MLccE
K = argmax

θ∈ΘK

logLcc(θ).

Recall, with the notation of Chapter 4, that

logLcc(θ) =
n∑

i=1

K∑

k=1

τik(θ) log πkφ(xi;ωk)

= logL(θ) +
n∑

i=1

K∑

k=1

τik(θ) log τik(θ)

︸ ︷︷ ︸
−ENT(θ;x)

.

1Please refer to the introduction sections of Chapter 4 for the notation.
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θ ∈ ΘK 7→ logLcc(θ) is obviously not an easy function to optimize. The dimension of
ΘK may be quite high (for a general mixture model, this is (K − 1) + d(d+3)

2
×K, which

is for example with d = 2 and K = 5: DK = 29); the function is not convex and it may
even have lots of local maxima. The usual likelihood is known in the mixture framework
to be tough to optimize. The conditional classi�cation likelihood analytic expression is
even harder to handle, because of the entropy term. It is for example hopeless to try
to solve the likelihood equations, even in the simplest situations. Actually, we did not
achieve such a calculation by hand exactly in any situation, up to now.

Because the functions are nonconvex, and the dimension is high, it is hard to reach
the likelihood or the conditional classi�cation likelihood maximum by an usual, simple
algorithm as a gradient or Newton method, too.

Fortunately, the EM algorithm has been developed, which enables to reasonably
optimize the likelihood of mixtures within reasonable computation time. Dempster
et al. (1977) proposed this now widespread algorithm (see Section 1.2.2). It was actually
employed to maximize the likelihood for the computation of the criteria relying on it in
the simulations section (Section 4.4.6). We did not have to implement it since several
softwares are available, which run the EM algorithm in the Gaussian mixture framework.
We employed the mixmod software of Biernacki et al. (2006). But the EM algorithm
cannot directly be applied to our purpose with logLcc. It may however be adapted to
make this task tractable.

The EM algorithm has been presented in Section 1.2.2 already. Let us merely �rst
recall the EM algorithm steps. Recall Lc(θ; (x, z)) =

∏n
i=1

∏K
k=1 (πkφ(xi;ωk))

zik . The
steps to compute θj+1, the current parameter estimation being θj, are

E step Compute for any θ ∈ ΘK , Q(θ, θj) = Eθj [logLc(θ;X,Z)|X]. This amounts to
computing each τ jik = τk(Xi; θ

j).

M step Maximize Q(θ, θj) with respect to θ ∈ ΘK to get θj+1.

Recall the fundamental property of EM (see Theorem 2, Chapter 1, page 32): logL(θj)
is increased at each iteration of the algorithm. This property still holds if Q is increased
� and not necessarily maximized � at the M step.

This algorithm has been adapted to several di�erent situations. Our adaptation was
notably inspired by the so-called BEM algorithm (Bayesian Expectation Maximization):
see for example Lange (1999) for this algorithm which is an adapted-EM for the case
the likelihood has to be maximized while tacking into account a prior on the parameter.

The solutions to practical problems suggested in this section have been applied to
perform the simulations of the simulations sections (Section 4.3.4 and Section 4.4.6).

5.1.1 De�nition and Fundamental Property of Lcc-EM

Let us call Lcc-EM the adapted algorithm. The steps of the jth algorithm iteration
(θj−1 → θj) are:
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E step Compute for any θ ∈ ΘK ,

Q(θ, θj−1) = Eθj−1 [logLc(θ)|X]

=
n∑

i=1

K∑

k=1

τik(θ
j−1) log πkφ(Xi; θk).

M step Maximize Q(θ, θj−1)− ENT(θ;X) with respect to θ ∈ ΘK :

θj ∈ argmax
θ∈ΘK

{
Eθj−1 [logLc(θ)|X]− ENT(θ;X)︸ ︷︷ ︸

logL(θ)+
∑n
i=1

∑K
k=1(τik(θj−1)+τik(θ)) log τik(θ)

}

The maximization in the M-step may be replaced by an increase of Q(θ, θj)−ENT(θ;X):
the following still holds. The convergence of the algorithm is nevertheless expected to
be even better that this increase is large.

Remark that the Lcc-EM algorithm di�ers from the EM algorithm through the M
step. Unfortunately, Lcc-EM does not enjoy the nice property of EM that, in many situa-
tions, can be run with a closed-form M step (see for example Celeux and Govaert (1995)
for many examples of models with closed-form M steps). M step in the Lcc-EM therefore
has to be performed through a maximization algorithm, and we employed in practice
a Matlab function (fminsearch, which uses derivative-free method since caclulating the
di�erential in this situation is particularly unpleasant).

The Lcc-EM algorithm inherits the fundamental property of the EM algorithm:

Proposition 1 (Fundamental Property of the Lcc-EM algorithm)

∀θ, θ′ ∈ ΘK ,

Q(θ′, θ)− ENT(θ′;X) > Q(θ, θ)− ENT(θ;X) =⇒ logLcc(θ
′) > logLcc(θ).

The proof is straightforward.

Proof If

logL(θ′)+
n∑

i=1

K∑

k=1

(
τik(θ)+τik(θ

′)
)

log τik(θ
′) > logL(θ)+

n∑

i=1

K∑

k=1

(
τik(θ)+τik(θ)

)
log τik(θ),

then

logL(θ′)− ENT(θ′;X) > logL(θ)− ENT(θ;X) +
n∑

i=1

K∑

k=1

τik(θ) log
τik(θ)

τik(θ′)
.

But
∑K

k=1 τik(θ) log τik(θ)
τik(θ′)

is the Kullback-Leibler divergence from the distribution
over {1, . . . , K} with probabilities {τi1(θ), . . . , τiK(θ)} to that with probabilities
{τi1(θ′), . . . , τiK(θ′)} and hence is a nonnegative quantity. �
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This property suggests that the algorithm should help optimizing logLcc(θ). Of
course, neither does it guarantee that θj converges to θ̂MLccE, nor does it give any insight
into the rate of the increase of logLcc(θ

j) at each iteration...The interesting behavior of
this algorithm is mainly assessed from simulations results.

A rule to stop the algorithm has to be speci�ed. Two, at least, seem to be relevant:

� choose ε > 0 and stop the algorithm as soon as
∣∣∣ logLcc(θj+1)−logLcc(θj)

logLcc(θj)

∣∣∣ < ε;

� choose Nbrun ∈ N and run at most Nbrun iterations of the algorithm.

Both rules can be combined: stop the algorithm as soon as one of those conditions
holds. Limiting the number of iterations enables to limit the computation time. The
choice of ε is more tricky since logLcc(θ

j) might be almost constant for a while, before
rising again. But it enables to stop the algorithm when the increase is so small that it
seems hopeless that a real change could occur within a reasonable number of iterations.
Remark that a good solution to get an idea about the convergence of the algorithm, is
to plot j 7→ logLcc(θ

j): see Figure 5.1. In the experiments we performed, it seems that
the most reliable rule is the one based on Nbrun ∈ N: involving ε is interesting to limit
the computation time, but may be misleading, probably because of the phenomenon
illustrated in Figure 5.1(b).
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Figure 5.1: Two Typical Examples of the j 7→ logLcc(θ
j) Graph Behavior

The involved constants have to be carefully chosen. We are not able to provide
universal choices, which would provide reasonable results in reasonable computation
time whatever the particular situation at hand, up to now. A compromise has to be
found between the computation time spent for each M step and the number of iterations.
Our experience is that it is worth it to have a good optimization � and thus to spend
time � at each M step. Typical settings, when the M step is performed carefully,
are Nrun = 15 or Nrun = 25. It may be necessary to choose Nrun smaller because of
the computation time, notably while applying the �small_Lcc _EM� initialization (see
Section 5.1.3).

Exactly as the EM algorithm does, the sensibility of the solution of the Lcc-EM is
tightly linked to the initial parameter θ0: if it is initialized near the attraction of a local
maximum, there is little chance that it can leave it, since it would have to cross the
valley which separates it from the relevant maximum to do so. Yet it can only cross the
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valley in one single step since the logLcc value cannot decrease, from the fundamental
property...Hence the importance of the initialization step.

5.1.2 Initialization: Generalities and Known Methods

The choice of θ0 is decisive for the Lcc-EM, as for the EM algorithm. Besides, all the
approaches which use to be employed with the EM algorithm cannot be easily mimicked
for the Lcc-EM because an iteration of the Lcc-EM may cost much more computation
time than an iteration of the EM, particularly as the M step is closed-form for EM (see
Section 5.1.1 above).

The main idea we advocate is, as Biernacki et al. (2003) claim in the EM context:
�For a good solution, do not skimp on the number of iterations�. The idea is that
several � and actually numerous � initial values of the parameter should be tried.
Generate several initial parameters θ0,1, . . . , θ0,N and run the Lcc-EM from each one of
those parameters, until a �small� stop rule is reached (ε or Nbrun: see Section 5.1.1).
Get θj1,1, . . . , θjN ,N (for example, if the stop rule is Nbrun, j1 = · · · = jN = Nbrun). The
aim is to explore lots of potentially sensible solutions and to bring the algorithm as
close as possible to the highest relevant peak: it then just has to �nish the climb. Keep
θ0 = argmaxθ∈{θj1,1,...,θjN ,N} logLcc(θ) (which is called from now on the �best� solution)
and run the Lcc-EM from this parameter until a �ner stop rule is reached. This whole
procedure may be repeated several times to strengthen the stability of the estimation.
We would however moderate what �do not skimp� means. Of course, this is limited by
the available computation time, but it should beside be taken care that the chance of
starting the algorithm from a spurious solution seemingly increases as the number of
initial parameters does. We would then restate the advice of Biernacki et al. (2003) as
the trickier �For a good solution, �nd the right compromise on the number of iterations�.
This holds both for the EM and the Lcc-EM.

There still remains to de�ne procedures to design an initialization parameter. Several
are employed at the same time, since none has shown to be always the best. Moreover,
it is recommended to involve several starts from each procedure. Here are some known
initialization procedures we tried and which have sometimes been helpful. They are
more or less ranked by decreasing usefulness, according to our experience.

CEM The solution generated by the CEM algorithm (see Section 1.4.1) from random
starts initialization, as generated by the mixmod software, often provided a sen-
sible initialization parameter. This particularly holds as the number K of classes
to be designed is reasonably high. This is no surprise, since CEM was designed to
maximize the classi�cation likelihood with respect both to the parameter and the
labels. However, in the simulations we performed, this approach seldom yields sen-
sible enough initialization parameter for large numbers of components (typically,
as K is quite larger than the relevant number of classes).

EM The solutions provided by short runs of EM from random starts (or small-EM
starts: run EM from the best solution among those obtained by random starts
followed each by short runs of EM, see Biernacki et al., 2003) often yield sensible
initialization parameters, too.
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K-means Presumably the k-means algorithm should be able to provide interesting
results in some situations, since its aim is not that di�erent from the one of logLcc.
But we quite seldom observed it to be competitive with the other procedures.

The �CEM� and �EM� initialization procedures can be easily applied, with quite
low computation time, notably thanks to the e�ciency of the EM algorithm and its
implementation in the mixmod software. Those initialization procedures however do
not su�ce for our purpose, mainly as the aim is slope heuristics. This method comes
with the drawback that the contrast has to be optimized for much higher dimensional
models than the one which is �nally selected. This means that sensible estimators have
to be computed in situations where the number of components to be �tted is much higher
than the sensible number of classes � and this is obviously the most di�cult situation
for the estimation. The procedures presented above may not reach good enough results
to apply this method: the obtained values of logLcc are not close enough to the actual
maximum value. The obtained values are not even always increasing with K.

5.1.3 Initialization: Adapted and New Methods

Moreover, it is expected to design procedures which do not depend on EM when initializ-
ing Lcc-EM. Let us introduce two such initialization procedures. The �rst one is adapted
from the Small_EM procedure (see Biernacki et al., 2003). Its usual version in the EM
framework provides sensible results. The second one is new, up to our knowledge, and
is particularly interesting when successive values of K are considered.

Small_Lcc _EM It might be interesting for this method to consider a subsample in
case the original sample has a great size: this would make it faster to run. Let
us call it x in any case. We need to de�ne what shall be called �initializing a
component at random� in the following: let k be a component label within a K-
component mixture. The proportions parameter πk are always initialized at the
uniform distribution: p0

k = 1
K
. Then the mean parameter µk is chosen at random

among the observations: µk = xĩ for ĩ random. But, to increase the variability
of the initialization parameters and since it seemingly enables to �nd sensible
solutions, µk is chosen with small probability � say 10% � at random uniformly
in the range of the observations (with respect to the sup norm). Now, let us de�ne
xs as the set of the ns observations the closest to µk. ns must obviously be chosen
with respect to the sample size and to the number of components K. Choose Σk

as the empirical covariance matrix of xs. Each time a component of a mixture is
chosen at random this way, an iteration of Lcc-EM is applied to the whole obtained
parameter (and to the whole dataset) to get a parameter which has the wanted
form (according to the model form, etc.).

Now, let us describe the initialization procedure. For any N ∈ {1, . . . , Nsmall}, ini-
tialize all components of θ0,N

random at random, according to the procedure described
above. Compute the value of logLcc. Choose at random a component label and
replace the corresponding component by a component initialized at random. Com-
pute the value of logLcc. Repeat this procedure several times. Choose as θ0,N

random

the mixture which maximizes logLcc among those obtained. Apply a few itera-
tions of Lcc-EM to it and get θ1,N

random. Now, choose among {θ1,1
random, . . . , θ

1,Nrandom

random }
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the parameter which maximizes logLcc. Apply Lcc-EM and choose θ0
random as the

obtained parameter.

This method is adapted from the Small_EM method of Biernacki et al. (2003).
The di�erences, beside the replacement of EM by Lcc-EM, lie in the way compo-
nents are chosen at random: Biernacki et al. (2003) choose the mean parameters
among the observations and do not enable them to lie anywhere in the range of
the data; they initialize the covariance matrices as the covariance of the whole
data. We believe this can provide less sensible initialization than the procedure
we propose, particularly when the data consists of several subgroups of data well
separated from each other. Finally, they choose all components at random at each
step, whereas we replace only one component chosen at random. It is expected
that this procedure should better explore the parameter space. But the idea of
the procedure is the same.

Km1 �Km1� stands for �K minus 1�. Figure 5.2 illustrates this strategy. Suppose
K ≥ 2 and θ̂MLccE

K−1 is available. Then, choose one of the classes designed (through
MAP) from θ̂MLccE

K−1 (say, k0) and divide it into two classes. This can be done
by applying to the corresponding observations the Lcc-EM algorithm with a two-
component Gaussian mixture model of the same kind as the K-component model
being �tted. The result of this Lcc-EM should not depend on the initialization
procedure employed since a two-component model should mostly not be tough to
�t. Now, build θ0k0

Km1 by keeping the parameters of components with label di�erent
from k0 as in θ̂MLccE

K−1 , and use the parameters obtained for the two components
corresponding to the two classes into which k0 has been divided for the parameters
of the kth0 component and theKth. Apply a few iteration of Lcc-EM to the obtained
parameter and get θ1k0

Km1. Apply the same procedure with any k0. Then, apply Lcc-

1, ..., k0, ...,K − 1

1, ..., k0, ...,K − 1,K

Split into two components

Figure 5.2: The Km1 Strategy

EM to the parameter which maximizes logLcc among {θ11
Km1, . . . , θ

1K−1
Km1 } and get

θ0
Km1.

This method works quite well, particularly as the number of components is larger
than the sensible number of classes. When it is smaller, a relevant solution with
K components may be quite di�erent from the solution with K − 1 components
and a good initialization algorithm has to be able to discover classes which have
di�erent shape and structure than those of the K−1 solution, and perhaps merge
some of them while splitting others, etc. But when the number of classes is �over-
estimated�, it is rather expected that all the structure of the classes has been
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discovered, and that supplementary classes may be designed by �arti�cially� di-
viding some. Remark that it is even expected that this situation favors maxima at
the boundary of the parameter space and that small-size classes (i.e. correspond-
ing to components with small proportions) are then presumably to be designed.
Besides, it may then make little di�erence to divide one class or an other. Re-
call from the slope heuristics, for example, that it is expected that nothing is left
to gain from the �bias� point of view and that the only rise of contrast that is
observed follows an increased variance.

Initializing Lcc-EM from the best solution among θ0
small and θ

0
Km1 provides sensible

enough results for the application of the slope heuristics. As expected, θ0
small is often

more sensible than θ0
Km1 for small values of K and the situation is reversed for large

values of K. This is a satisfying result to have procedures which do not depend on EM.
But those are quite time consuming, and require a sensible choice of the allocation of
the computation time among the steps of the algorithms .

To conclude, let us remark that both initialization procedures may be applied for
the EM algorithm. When applying the Small_EM procedure in the simulations of
this thesis, the procedure of Biernacki et al. (2003) is applied, which is not exactly
the one implemented in mixmod. Km1 does not seem to correspond to any known
procedure. We found that it helps improving the results notably when performing the
slope heuristics, since models with high number of components with respect to the
�sensible� number are involved. Km1 is much longer to run than Small_EM. Figure 5.3
illustrates the di�erence between the results obtained with the Small_EM procedure
only on the one hand, and with both procedures, on the other hand. Remark that
the results of the Small_EM procedures may probably be improved by better choosing
the number of iterations of each step. But we already involved for this example quite
a stronger setting than the one implemented in mixmod. Figure 5.3(a) highlights two
di�culties: the �rst one is that the contrast is not really maximized (compare the values
with Figure 5.3(b)) and some solutions may be far from being optimal (see the two
�crevasses� between K = 20 and K = 25, which unfortunately occur in a critical area).
The second one is � as a consequence � that the slope is seemingly under-estimated.
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Figure 5.3: �Bubbles� Experiment (see Section 5.2.4): Optimization of the Contrast for
Each Model. (a) Initialization Without Km1. (b) Initialization With Km1.



158 Computing MLccE: Lcc-EM and Practical Considerations

5.1.4 Imposing Parameter Bounds in Practice

How to Impose Parameter Bounds While Applying Lcc-EM

The di�culty is to take the chosen bounds on the parameter space into account at the
M step. As already mentioned in Chapter 4, it is mainly necessary to guarantee lower
bounds on the covariance matrices (and in practice, it su�ces to impose a lower bound
on their determinant: this is discussed below) and on the proportions.

This can be done by adding terms to the quantity Q to be maximized at the M step
(see Section 5.1.1). Those terms should go quickly to minus in�nity as the conditions on
the parameters are broken. The determinant of the covariance matrix may be imposed
to be greater than (around) detmin by adding to the Q quantity of each M step an
exponential term

−exp
(
−10

minK det ΣK − detmin

detmin

)
·

This works well in practice. Remark however that this does not provide a bound inde-
pendent from the data, as it should. As a matter of fact, this term has an e�ect which
is relative to the values of the likelihood. But it grows fast enough that it should always
practically provide almost the same bound in reasonable settings.

How to Choose Parameter Bounds

Although most theoretical results have been derived under the compactness assumption
on all parameters, it has been mentioned already that this assumption is not necessary
in practice for the means parameters. The practice con�rms this since we almost never
observed any estimated mean larger than the most extremal observation. Moreover,
the same reasoning holds for the covariance matrices upper bounds, and the practice
con�rms it as well.

Things are a little more involved for the proportions and the lower bound on the
covariance matrices.

Of course, the theoretical results assume a compact has been �xed, independently
from the data. But there is a convenient practical rule on the proportions, which,
although it depends on the data, seems to be the least that can be expected: the user
probably does not want a class with proportion smaller than 1

n
. This rule can be adopted

to bound the proportions.

The bound on the covariance matrices we use is a lower bound on the determinant.
It is not a complete lower bound on the covariance matrices since a matrix of any given
determinant can be extremely thin in one direction, as soon as it is very large in an
other direction � but this rule on the determinant works pretty well in practice. It
may actually be a su�cient condition for the theoretical results: it is su�cient for the
contrast −logLcc to be bounded from above (with x �xed) and situations where such
a very long and thin covariance matrix would be estimated should occur very seldom
with f℘ having reasonably low tails. There still remains to choose a lower bound on the
determinant.

In the most favorable cases, a bound can be �xed by the user, according to the
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application. Otherwise, a bound can be �xed automatically. The method introduced
here provides sensible bounds but can only give a rough order of the constant.

The order logLcctyp of the logLcc(θ̂
MLccE
K ) values and the order of the di�erences

between successive values δtyp (logLcc(θ̂
MLccE
K ) − logLcc(θ̂

MLccE
K−1 )) have to be roughly

known. The idea is to avoid covariance matrices which would enable to win against a
sensible solution by simply replacing a sensible component by a component centered at
any observation, with a very small covariance matrix. Hence δtyp should be chosen by
considering numbers of components smaller than the number to be selected: as already
mentioned, it is not a problem that the estimates for high values of K involve such
components at the boundary, and this is even expected to occur. Since the optimization
of the contrast is often easier for the small values of K (the sensible solutions are quite
obvious in this situation and must be quite attractive for the algorithm), the procedure
might be to �rst compute θ̂MLccE

K for a few small values of K, choose δtyp and logLcctyp

based on those estimations, deduce a value for detmin as explained below, and use it to
compute θ̂MLccE

K for larger values of K. It may be veri�ed �rst that the found value of
detmin is consistent with the values of det Σk for the �rst computed θ̂MLccE

K .

Remark that only the log likelihood term in logLcc = logL− ENT has to be taken
care of since the entropy is bounded. By the way, this method could then be applied
as well when the contrast at hand is the usual likelihood. Now, assume the solution
with K − 1 components is

∑K−1
k=1 πkφ( . ;ωk), and the K-component solution is obtained

from it by adding a component which is centered at an observation xi0 and with the
smallest covariance matrix determinant as possible, the other components being almost
the same as in the K − 1-component solution. This is the situation we want to avoid.
Assuming that πK ≈ 1

n
, φ(xi;ωK) ≈ 0 as soon as i 6= i0, and log

∑K−1
k=1 πkφ(xi0 ;ωk) ≈

1
n
logLcctyp (xi0 is a �mean� point in the K − 1-component solution...), and with crude

approximations:

n∑

i=1

log
K∑

k=1

πkφ(xi;ωk)−
n∑

i=1

log
K−1∑

k=1

πkφ(xi;ωk)

=
∑

i 6=i0

log

(
1 +

πKφ(xi;ωK)∑K−1
k=1 πkφ(xi;ωk)

)

︸ ︷︷ ︸
≈0

+ log

(
1 +

πKφ(xi0 ;ωK)∑K−1
k=1 πkφ(xi0 ;ωk)

)

≈ log

(
1 +

(det ΣK)−
1
2

n(2π)
d
2 e

1
n

logLcctyp

)
.

Now, to avoid such a situation, guarantee that

log

(
1 +

(det ΣK)−
1
2

n(2π)
d
2 e

1
n

logLcctyp

)
<< δtyp ⇐⇒

(det ΣK)−
1
2

n(2π)
d
2Lcctyp

1
n

<< eδtyp

⇐⇒ det ΣK >>
Lcctyp

− 2
n

e2δtyp(2π)dn2
·

This should help the user to choose the order of the lower bound on the covariance
matrices determinants.
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5.2 A Matlab Package for the Slope Heuristics

A work in progress jointly with C. Maugis and B. Michel aims at developing an easy-to-
use software for the application of the slope heuristics. Presumably, the data-driven and
non-asymptotic properties of the slope heuristics may be valuable for some applications.
This is a new method, which is theoretically validated in the regression with histograms
framework (homoscedastic, �xed design and Gaussian framework, with possibly huge
families of models in Birgé and Massart (2006) and heteroscedastic, random design and
not necessarily Gaussian framework, but with polynomial complexity (with respect to
n) of the family of models in Arlot and Massart, 2009). However, the authors of those
articles expect the heuristics to hold in a much wider range of applications. This con-
jecture is supported by some practical applications, already (see Section 3.2). However,
beside possible further theoretical results to come, much more examples of practical
applications would be needed to better understand its practical behavior.

But, as mentioned in Section 3.2, its practical use involves some technical di�culties,
which may prevent many statisticians to try it for the sake of curiosity. This Matlab
package should make it easy to give the slope heuristics a try, and perhaps then elab-
orate further on it if it seems to yield interesting results in the considered framework.
Therefore is this a graphical package: the user mainly has to click with the mouse and
see...

Hopefully shall this package contribute to a widespread use of the slope heuristics!

5.2.1 Slope Heuristics Recalled

Recall from Section 3.2: in a contrast minimization framework with the contrast γ
and with a models family

(
Mm

)
m∈M , the penalty penopt of an optimal model selection

criterion critopt is assumed to be known from theory up to a multiplying factor:

∃κopt such that penopt(m) = κopt penshape(m).

penshape(m) is denoted f(m) from now on, to be consistent with the package notation.
Moreover, the assumptions (SH1) and (SH2) underlying the slope heuristics are assumed
and recalled:

SH1 there exists a minimal penalty penmin such that any lighter penalty selects models
with clearly too high complexities and such that heavier penalties select models
with reasonable complexity;

SH2 twice the minimal penalty is an optimal penalty.

penmin is assumed to be of the form κmin penshape, too. It is to be estimated: the optimal
penalty is then chosen as twice the minimal penalty.

Let us introduce the Matlab package we propose to perform both the data-driven
slope estimation (see Section 3.2.3) and the dimension jump (see Section 3.2.2) to take
advantage of the slope heuristics to estimate κopt, and the solutions we embraced to
overcome the practical di�culties when applying it.

Figure 5.4 is an example of the main window of the Matlab package.
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Figure 5.4: The Main Window

The user provides the package a simple �le �le.txt which contains the needed infor-
mations for each model m:

� the model name m;

� the model �dimension� Dm;

� the value of the penalty shape f(m);

� the maximum value of the empirical contrast in the model γn(ŝm).

Recall a �dimension� (a measure of the complexity of the model) is needed to apply the
dimension jump method, but not necessarily to apply the data-driven slope estimation.
In case the user is not interested in the dimension jump solution, any value can be
provided for the dimension of the model. However, a penalty shape value is needed
in any case, and could be actually regarded as a complexity measure itself. It is not
required that f(m) be a function of Dm in any case.

Remark that, in the current version of the package, models are gathered according to
the �dimension� column. This is not consistent with the following presentation, where
models are gathered according to their respective penalty shape value. Both approaches
match when f(m) is a function of Dm, but may not otherwise. Obviously, the user may
then use the package by replacing the dimension values by the corresponding penalty
shape values in the input �le. But this requires to use two di�erent �les to perform
the data-driven slope estimation and the dimension jump � for which the dimension
column in the �le must actually consist of the dimensions values.
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5.2.2 Data-Driven Slope Estimation.

First, the models are gathered according to their penalty shape f(m) value: for a given
value of the penalty, only the model reaching the lowest value of the contrast is of
interest.

∀p ∈ {f(m) : m ∈M}, m(p) ∈ argmin
{
γn(ŝm)

∣∣∣m ∈M : f(m) = p
}
.

Then, from the slope heuristics (see Section 3.2.3), the function2

p ∈ {f(m) : m ∈M} 7−→ −γn(ŝm(p))

is expected to be linear for the largest values of p, with slope κmin. The algorithm is
then:

1. choose plin ∈ {f(m) : m ∈M} such that p ≥ plin 7−→ −γn(ŝm(p)) can be considered
as linear;

2. estimate the slope κ̂
2
of this linear relation;

3. select m̂ = argminm∈M {γn(ŝm) + κ̂f(m)}.

Those tasks are summed up in Figure 5.4: p ∈ {f(m) : m ∈ M} 7→ −γn(ŝm(p))
is plotted, together with the regressed linear part (in red) in the left (large) graph.
For a given value of plin, the regression of p ≥ plin 7→ −γn(ŝm(p)) is performed through
robust linear regression3 . Robust regression yields more stable results than simple linear
regression. This is notably interesting so as to get a method as robust as possible with
respect to poor estimations of the values γn(ŝm). A button is available to compare the
results of the simple and robust regressions: see Figure 5.5. The plots corresponding to
the values used for the regression:

{(
plin,−γn(ŝm(plin))

)
, . . . ,

(
pmax,−γn(ŝm(pmax))

)}
are

colored in black, the others in violet.

The choice of the plin value is a crucial and quite hard step. The most reliable
approach we tried consists in considering a stability criterion with respect to the selected
model, which is actually the quantity of interest.

� Compute the estimated slope κ̂p0
2

for the values
{(
p,−γn(ŝm(p))

)
: p ∈ {f(m) :

m ∈ M} and p ≥ p0

}
. p0 may take any value in {f(m) : m ∈ M}, but the two

largest ones since at least three points are needed to perform robust regression.
Let us denote P0 this set of possible values of p0. The number of values of p ∈
{f(m) : m ∈ M} such that p ≥ p0 (namely the number of values from which
κ̂p0
2

is estimated) is the �number of dimension points for the regression� in the
main window Figure 5.4. The values of the corresponding estimated slopes are
represented, in the top-right corner.

2We consider from now on −γ instead of γ for the sake of consistence with the graphical represen-
tations.

3Iteratively reweighted least squares regression is applied, with a bisquare weighting function: (1−
r2)2I|r|<1 (where r is a function of the residuals which has to be tuned according to the expected
robustness of the procedure), through the Matlab Robust�t function.



5.2.2 - Data-Driven Slope Estimation. 163

Figure 5.5: Compare the Robust and the Simple Regression

� For each value of p0, compute the corresponding selected model m̂(p0) =
argminm∈M {γn(ŝm) + κ̂p0f(m)}. This is represented in the main window Fig-
ure 5.4, too, in the bottom-right corner.

� Find the most to the right �plateau�. A plateau is a continuous sequence of values
of p0 for which m̂(p0) is the same: see below for a more rigorous de�nition. Any
value of p0 corresponding to this plateau may be chosen as plin. We actually
report the interesting result: the corresponding selected model. Moreover, the
percentage of values of p0 belonging to the selected plateau among all possible
values and the range of the corresponding estimated slope values, are reported,
too (�Corresponding slope interval�): there extent is a clue of the stability of the
selection of the model.

The user may try an other value of plin by simply changing the value in the box
�Number of dimension points used for the regression�.

Now, of course, this method may be sensitive to the de�nition of what a plateau
is. According to the de�nition above, it still remains to specify how large the sequence
of values of p0 yielding the same m̂(p0) has to be to be considered a plateau. Two
possibilities are left to the user:

� a plateau must be larger than pct percent of the total number of possible values
of p0;

� a plateau must contain a least Nbr di�erent values of p0.
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By default, the �rst method is set, with pct = 15. This is rather an arbitrary choice,
which should be reconsidered with respect to the application at hand. However, this
choice may make sense rather generally, even in cases the user has no idea what to
choose, and this is an appealing feature of this approach. Remark that whatever the
choice at this step, and provided that it enables the method to be applied, the reported
actual percent of values p0 yielding the same model m̂(p0) is a helpful clue about the
stability of the method.

A formal writing of the selection of the model is: choose m̂ as the least complex
model in

argmax

{
f(m)

∣∣∣m ∈M : card
({
p0 ∈ P0|m̂(p0) = m

})
≥ N

}
,

where N is either Nbr or pct
100
× card(P0), according to the chosen plateau de�nition.

5.2.3 Options

Validation step. As already mentioned in Section 3.2.3, an important feature of the
data-driven slope estimation method is that it comes with a natural and seemingly e�-
cient method to check the validity of the assumptions underlying the slope heuristics. It
consists of making use of one or several points

(
pv,−γn(ŝm(pv))

)
with pv large (according

to the possibilities of the framework, it/they should be much larger than pmax), and to
check that it/they belong to the previously regressed line. This veri�cation may be done
with the package: the user merely has to specify the number of such values the provided
�le contains and the �Validation Step� button enables to check both by eye and by the
mean of a test, whether the assessed selection may be validated or not: see Figure 5.6.
If several validation points are available, a Bonferroni procedure is applied to build the
test.

In case the validation step fails, two possibilities should be considered:

� It might be that not complex enough models have been involved in the study. More
complex models should be added and the method applied again. See Example 8
for an illustration of such a situation.

� The values of −γn(ŝm) might not be precise enough: they should perhaps be
computed again.

� If this does not help, it might be that the slope heuristics is not justi�ed in the
considered framework, or that the penalty shape is not suitable.

Dimension Jump An option enables to compare the result of the data-driven slope
estimation selection with the dimension jump method: see Figure 5.7. If both methods
agree, the selection can be considered more con�dently.

The dimension jump method is applied with the κdj de�nition of the estimated
constant (see Section 3.2.2). Indeed, applying the κthresh de�nition would require to ask
the user for a supplementary tuning parameter (the threshold dimension has to be chosen
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Figure 5.6: The Validation Step

Figure 5.7: The Dimension Jump Method
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with respect to the application at hand). The user should however be cautioned that
the result of the dimension jump as is depends on the values of the models dimensions
which have been involved in the study.

Draw your own slope! An option is o�ered to the user: a button enables to draw
one's own linear part and to get the corresponding selected model. The interest of this
option is that the user may not be con�dent in the regressed linear part. It may also be
used as a tool to check the stability of the selection. But it should obviously be handled
with care! See Figure 5.8.

Figure 5.8: User-drawn Slope!

5.2.4 Example

Example 8 (�Bubbles�) A 21-component Gaussian mixture in R3 is simulated4. See
Figure 5.9. The sample size is 1000. The data consists of three large �bubbles�, quite far
from each other. Each bubble consists of a mixture of a large component (with mixing
proportion 1

3
× 0.4) and six little bubbles around it (with mixing proportion 1

3
× 0.1 each,

and small covariance matrices). The model used for the simulation is spherical (the
covariance matrices are proportional to the identity matrix).

The �tted models
(
MK

)
K∈{1,...,50} have the same form (i.e. spherical Gaussian mix-

ture models). The problem is then quite easy and has been mainly chosen for the sake of

4Details on the simulation settings and the applied algorithms may be found in Section A.2.
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Figure 5.9: �Bubbles� Experiment Dataset Example. (a) 3D View. (b) View From
Above.

illustration. Remark however that the dimension of the largest models is not negligible
with respect to the sample size (this is (2+d)K−1, namely 249 for K = 50). Each model
is �tted through the mixmod software of Biernacki et al. (2006) and with initializations
as described in Sections 1.2.2 and 5.1.3 (Small_EM and Km1 are involved).

To illustrate the interest of the validation step, let us �rst assume models with num-
bers of components smaller or equal than 20 only are �tted. The obtained main window
with the package is Figure 5.10. The estimated slope values do not seem stable, but the
selected model is.

Now, assume three models with much larger complexities are �tted and the obtained
values used for validation: the package yields Figure 5.6. There is obviously a problem.
Those values may be poorly estimated, but �tting all models with 21 ≤ K ≤ 50 actually
con�rms that the linear behavior for the most complex models was not reached yet with
K = 20: see Figure 5.4. According to this �gure, when KM = 50, the slope heuris-
tics applied with the data-driven slope estimation approach recovers the true number of
components: 21.

The slope heuristics applied with the dimension jump approach yields K̂ = 21, too
(see Figure 5.7).

We conducted an experiment with 100 such datasets. The results are summed up in
Table 5.1 for comparison with classical criteria: AIC and BIC (see Section 2.1) and
with the oracle. The risks of the criteria are compared in Table 5.2.

The oracle is close to the true distribution, which is a consequence that the sample size
is quite large. As a consequence, the identi�cation and e�ciency purposes almost match
in this experiment. As usual in a mixture framework, AIC obviously underpenalizes the
complexity of the models. BIC does a good job and mostly recovers the true number of
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Figure 5.10: The Main Window for K ≤ 20
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Risk of the criterion ×103 Risk of the criterion
Risk of the oracle

Oracle 64 1
AIC 166 2.59
BIC 75 1.17
SLH (estimation of the slope, KM = 50) 68 1.06
SLH (estimation of the slope, KM = 40) 70 1.09
SLH (dimension jump, KM = 50) 96 1.49
SLH (dimension jump, KM = 40) 210 3.27

Table 5.2: �Bubbles� Experiment Results. Risk of Each Criterion in Terms of Kullback-
Leibler Divergence to the True Distribution, Estimated by Monte-Carlo Simulations.
The oracle results reported in the table correspond to the trajectory oracle (Koracle =

argmin1≤K≤50 dKL(f℘, f̂MLE
K ) for each dataset). The expected oracle number of compo-

nents (Koracle = argmin1≤K≤50 Ef℘
[
dKL(f℘, f̂MLE

K )
]
) is 21. The true number of compo-

nents is 21.

components.

The best risk results (though close to the results of BIC), as compared to the oracle,
are achieved by the slope heuristics, applied with the data-driven slope estimation ap-
proach. Those results are quite good, since the ratio of this method's risk to the oracle's
is very close to 1. The �plateaus� have been de�ned by the default method and value: a
plateau must involve at least 15% of the total number of models involved.

The dimension jump approach, applied with KM = 50, yields the same selection as
the data-driven slope estimation approach, but in 6% of the datasets (Table 5.1). This is
seldom but su�ces to worsen sensibly its risk results because the result of those few cases
are very poor (with K̂ = 3 or 4, dKL(f℘, f̂MLE

K̂
) is much worse than dKL(f℘, f̂MLE

Koracle
)).

The results achieved with this same approach when KM = 40 are provided, too, since
they illustrate a di�culty which can be encountered while applying the dimension jump.
This approach leads to select K̂ = 3 for about 30% of the considered datasets, which is
a poor result. The reason of this di�culty is illustrated in Figure 5.12: there seemingly
occurs a dimension jump for the most complex models, but it occurs in several steps.
Therefore the largest of those �sub-jumps� is still smaller than the jump leading to K̂ = 3,
which is quite large because of the structure of the data. This illustrates the sensibility of
the dimension jump approach to the choice of the most complex models involved in the
study: with KM = 50, this seldom occurs, but this is quite a huge number of components
as compared to the interesting number of components.

The data-driven slope estimation results are only worsened a little if KM = 40 instead
of KM = 50 (see Table 5.1 and Table 5.2).

Conclusion

Some improvements are in progress, notably about the validation step tests. But the
package is from now on functional.
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Figure 5.12: The Dimension Jump Method. An Example Where it Fails With KM = 40.
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It shall make the slope heuristics application easier and faster.

A matter that it might help to deal with is the comparison of the dimension jump
and data-driven slope estimation approaches. A �rst step in this direction may be an
extensive simulation study.
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174 Definitions, Reminder from Hennig (2004)

In this chapter are studied the robustness properties of the procedure de�ned in
Chapter 4, based on the MLccE estimator and the Lcc-ICL model selection criterion.
This notably illustrates that considering the usual ICL criterion (see for example Sec-
tion 4.1.2) as an approximation of this procedure (as suggested in Section 4.4.4) helps
studying its theoretical properties.

The considered robustness point of view is the breakdown point notion de�ned and
studied in Hennig (2004) for a model-based clustering framework. It is a measure of how
many supplementary observations have to be added to a dataset to break the solution
down, in the sense that the original components cannot be recovered in the updated
solution. This notion is adapted to a situation where the number of components is
unknown and has to be chosen. Notably, there is not breakdown if some supplementary
components are estimated but the original components can still be recovered. It is
considered as a good behavior that a procedure isolates outliers by �tting supplementary
components speci�cally to them. Hennig (2004) derives results for the usual procedure
based on the MLE estimator and the BIC criterion. We derive results for the procedure
based on the MLccE estimator and the Lcc-ICL criterion and compare those results.

The breakdown point notion is �rst recalled and adapted to the framework of our
procedure, which is straightforward. The results of Hennig (2004) are also recalled. The
results for our procedure are stated and proved in Section 6.2 and Section 6.3. They
are compared to the usual procedure with examples in Section 6.4 and discussed in
Section 6.5.

In this chapter, data in R only are considered.

6.1 De�nitions, Reminder from Hennig (2004)

The subsequent breakdown de�nition is exactly the one proposed by Hennig (2004). We
shall apply it to the estimator and model selection criterion we de�ned in Chapter 4.

Results are derived for the same mixture models as Hennig (2004), without having
to restrict the study to Gaussian mixtures. The component densities, denoted by φ, are
not necessarily Gaussian densities, but the same notation as introduced in Chapter 1 is
used since we mainly have Gaussian mixtures in view. The following assumptions about
φ are typically ful�lled by Gaussian densities:

ω = (µ, σ) and φ(x;ω) =
1

σ
φ
(x− µ

σ

)
,

with φ : R→ R+∗ such that

φ symmetrical about zero;

φ decreasing on [0,∞];

φ continuous.

Recall (from Section 1.1.1 for example) a mixture density is then written as f( . ; θ),
with θ = (π1, . . . , πK , ω1, . . . , ωk) (

∑K
k=1 πk = 1) and MK = {f( . ; θ) : θ ∈ ΘK}. As

already mentioned, there is no di�culty to de�ne the conditional classi�cation likelihood
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if those models are considered from the parametric point of view: let xn = (x1, . . . , xn)
be observations in R (which will be omitted in notation when not ambiguous or suggested
by the superscript n otherwise) and de�ne as in Chapter 4:

∀θ ∈ ΘK , logLcc(θ;xn) = logL(θ;xn)− ENT(θ;xn),

with

logL(θ;xn) =
n∑

i=1

log
K∑

k=1

πkφ(xi;ωk)

︸ ︷︷ ︸
f(xi;θ)

and

ENT(θ;xn) =
n∑

i=1

K∑

k=1

τik(θ) log τik(θ),

where

τik(θ) =
πkφ(xi;ωk)∑K

k′=1 πk′φ(xi;ωk′)
·

See Section 4.2 for discussion about those quantities and the choice of the conditional
classi�cation likelihood in the clustering framework.

Recall (we write θ̂ instead of θ̂MLccE since only the MLccE will be involved in this
chapter)

θ̂nK ∈ argmax
θ∈ΘK

logLcc(θ;xn).

This is well de�ned if the parameter space is assumed to be compact (this is discussed
in Section 4.3). The only parameter bound which will be involved in the subsequent
results, though, is the same as the one involved in Hennig (2004) in a usual likelihood
framework:

∀K, ∀θ ∈ ΘK ,∀k ∈ {1, . . . , K}, σk ≥ σ0 > 0.

Moreover, let us assume the set of considered models to have a bounded maximum
number of components: K ∈ {1, . . . , KM}. Then, recall the Lcc-ICL criterion (see
Section 4.4.4)

critn(K) = logLcc(θ̂
n
K)− log n

2
DK ,

where DK is the number of free parameters necessary to describe ΘK . If the models are
not constrained, this is 3K − 1. Finally, write

K̂n = min argmax
K∈{1,...,KM}

critn(K),

θ̂n = θ̂n
K̂n
,

and

critn = logLcc(θ̂
n)− log n

2
DK̂n

.

Now, like Hennig (2004), let us de�ne the parameter breakdown point of the procedure
(see Hennig, 2004, De�nition 3.2):
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De�nition 4 (Adapted from De�nition 3.2 in Hennig, 2004)
Let xn = (x1 . . . , xn) be a dataset. Let K̂n be de�ned as above. Then the parameter
breakdown point of the procedure is de�ned as

Bn(xn) = min
g

{
g

n+ g
: ∀C ⊂ ΘK̂n

compact, ∃xn+1, . . . , xn+g such that θ̂n+g ful�lls:

pairwise distinct j1, . . . , jK̂n do not exist such that
(
ω̂n+g
j1

, . . . , ω̂n+g
j
K̂n

)
∈ C

}

This breakdown notion is relevant when the number of components has to be chosen
at the same time as the estimator. There is breakdown of the solution if g new obser-
vations can be added to the original dataset, such that, for at least one of the original
components, none of the obtained components in the new solution �looks like� it. In
particular, there is breakdown if K̂n+g < K̂n. But in case K̂n+g > K̂n, if K̂n of the θ̂n+g

solution stay close to the original components in θ̂n, the supplementary components may
be anything without the original solution being �broken down�. This allows the proce-
dure to handle outliers by supplementary components designed for them speci�cally.
The main situation of breakdown is then in this setting the addition of observations
between the original ones, which would compel the procedure to select a single compo-
nent where there were several in the original solution. As a matter of fact, this is the
reason why considering breakdown with a compact parameter space makes sense. The
breakdown point is the minimal proportion of supplementary observations necessary so
that breakdown occurs. Remark that the situation where a mixing proportion goes to
0 is not considered as breakdown with this de�nition. Indeed this situation is not of
concern since � like Hennig (2004) notices in the usual likelihood framework � our
procedure shall not prefer a solution with K components, one of which has proportion
very close to zero, to the corresponding K − 1-component solution. Further discussion
on this breakdown notion and several others, notably for situations where the number
of components is �xed, can be found in Hennig (2004).

Let us recall the breakdown result obtained in Hennig (2004) for the usual maximum
likelihood, when the number of components is selected with the BIC criterion (see
Section 2.1.3 for the BIC criterion, and Section 1.2.1 for θ̂MLE

K ):

Theorem 9 (Theorem 4.13 in Hennig, 2004)
In this theorem,

θ̂nK = θ̂MLE

K (xn)

and

K̂n = min argmax
K∈N∗

critBICn (K)

= min argmax
K∈N∗

{
logL(θ̂nK)− log n

2
DK

}
.

If

min
K<K̂n

[
logL(θ̂n

K̂n
) − logL(θ̂nK) − 1

2
(5g + 3K̂n − 3K + 2n) log(n + g) + n log n

]
> 0,
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then
Bn(xn) >

g

n+ g
.

Remark that in this usual likelihood framework, it is not necessary to guarantee that
K ≥ KM since it can be proved (Lindsay, 1983) that the maximum of the likelihood
itself � and a fortiori of the BIC criterion � is achieved for K ≤ n + 1. The num-
ber of components is however often expected to be quite smaller than the number of
observations and should then be bounded anyway.

A su�cient condition to derive an upper bound on the parameter breakdown point
in this usual framework can be found in Hennig (2004).

Let us now consider what can be derived in the Lcc framework.

6.2 Breakdown Point for Maximum Conditional Clas-

si�cation Likelihood

We shall prove the following theorem. The function h is de�ned in Lemma 10 below.

Theorem 10
xn = (x1, . . . , xn). In the Lcc framework, with the number of components selected through
Lcc-ICL (see Section 6.1), if

min
K<K̂n

[
logLcc(θ̂

n
K̂n

)− logLcc(θ̂
n
K)− 1

2
(5g + 3K̂n − 3K + 2n) log(n+ g)

+ n log n− g log(K̂n + g)− nh(g)
]
> 0,

then
Bn(xn) >

g

n+ g
.

This theorem provides a condition under which it is guaranteed that at least g + 1
additional observations are necessary so that the solution of MLccE with the number
of components selected through Lcc-ICL is broken down. The condition is seemingly
stronger than the one involved in the result of Hennig (2004) for the usual likelihood with
the number of components selected through BIC (Theorem 9). This is apparent from
the form of the condition, and shall be highlighted through an example in Section 6.4.
As a matter of fact (

logLcc(θ̂
MLccE

K̂Lcc-ICL
n

)− logLcc(θ̂
MLccE
K )

)

should mostly be of the same order as

(
logL(θ̂MLE

K̂BIC
n

)− logL(θ̂MLE
K )

)
,

but perhaps if K̂BIC
n 6= K̂Lcc-ICL

n . This suggests that the solution in our framework may
be less robust, from this breakdown point of view, than the usual MLE solution, but
perhaps in case both procedures do not select the same number of components. This
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particular situation is illustrated in Section 6.4, too. However, this result only gives
insight into this since it only provides a necessary condition for breakdown, and may be
pessimistic.

The following lemma will be useful to derive controls of the entropy terms along
the proof of Theorem 10. There is de�ned the function h involved in the statement of
Theorem 10.

Lemma 10
If w1, · · · , wg > 0 are such that

∑g
l=1wl ≤ 1, then:

g∑

l=1

wl logwl ≥ −h(g) (6.1)

with h : g ∈ N∗ 7−→
{
g
e

if g ∈ {1, 2}
log g if g ≥ 3

Lemma 11 will be necessary to guarantee uniform continuity properties. The obser-
vations being �xed, it states that the density of a mixture evaluated at any of those
observations is bounded away from zero, provided that it is guaranteed it is bounded
away from zero for at least one observation. The important feature is that the constant
does not depend on the mixture parameters.

Lemma 11
∀x1, . . . , xn ∈ R, ∀ε > 0, ∃η > 0/∀K ≤ KM ,∀θ ∈ ΘK such that σk ≥ σ0 for all k,

sup
i∈{1,...,n}

K∑

j=1

πjφ(xi;ωj) > ε =⇒ inf
i∈{1,...,n}

K∑

j=1

πjφ(xi;ωj) > η.

η depends on σ0 and KM , but not on θ such that σk ≥ σ0 for all k.

The proofs of those lemmas are technical. Let us give the main ideas leading the
proof of Theorem 10 before proving those results.

Sketch of Proof (Theorem 10)

As Hennig (2004), let us suppose there is breakdown with g supplementary obser-
vations (see De�nition 4), and try to get a contradiction with the condition stated in
Theorem 10. This can be done by comparing an upper and a lower bound on critn+g.

critn+g upper bound.

There is no di�culty, but technical ones. To upper-bound logLcc(θ̂n+g), the contribu-
tion of the g supplementary observations can only be roughly upper-bounded by the den-
sity function maximum value. No better bound can be derived since they may be chosen
such that they attract some components to them. Now, the contribution of (x1, . . . , xn)
might not be really larger than the Lcc value achieved with the mixture made of the K
components we are not sure whether they break down or not. The main di�culty is that
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we need uniform continuity properties. To guarantee them, we have to make sure that
the K �rst components of the mixture do not explode as the (K̂n+g −K) last ones break
down. As a matter of fact, this may happen, but we show that the result still holds in
this case. Otherwise, Lemma 11 is the main tool in this task.

critn+g lower bound.

The lower bound is easier. It is obtained by the construction of a solution with K̂n+g
components which Lcc value can be lower-bounded: starting from θ̂n+g, g components are
added, each one being centered at one of the supplementary observations and having the
smallest possible variance. This is one of the two typical expected breakdown situations.
The case where K̂n+g < K̂n would be more di�cult to control.

�

Let us now write this proof.

6.3 Proofs

Proof (Theorem 10)
An upper bound and a lower bound on critn+g are derived and compared to yield the
conclusion.

critn+g upper bound.

Suppose there is breakdown for g, in the sense of De�nition 4 (i.e. Bn(xn) ≤ g
n+g

).
Then up to an index switching:

∀C ⊂ R× [σ0;∞[ compact,

∃(xn+1, . . . , xn+g), ∃K ∈
{

1, . . . , (K̂n − 1)
}
s.t.

ω̂n+g
j /∈ C for K̂n+g ≥ j > K.

This occurs in the particular case where K̂n+g < K̂n.

Let

a = 1 ∧ 1

2

(
einf

K<K̂n
logLcc(θ̂nK)

) 1
n
,

and ã such that

inf
i=1,...,n

K∑

j=1

πjφ(xi;ωj) > ã as soon as sup
i=1,...,n

K∑

j=1

πjφ(xi;ωj) > a,

whatever θ with σk ≥ σ0 and K ≤ KM , which is possible from Lemma 11, with ã which
only depends on a, σ0, x1, . . . , xn and KM and not on θ, nor on K. Let ε > 0 and b > 0
such that

∀x ≤ b,





log(ã+ x) ≤ log ã+ ε,

1

1 + x
ã

≥ 1− ε.
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Let a = a ∧ b. Choose Ca compact such that φ(xi;ω) < a for any 1 ≤ i ≤ n, as soon as
ω /∈ Ca. Let xn+1, . . . , xn+g and K ∈ {1, . . . , (K̂n−1)} such that ω̂n+g

j /∈ Ca for K̂n+g ≥
j > K. Remark that this is only possible since ã � and then Ca � does not depend on
xn+1, . . . , xn+g.

We have to bound critn+g from above:

critn+g =
n∑

i=1

log
[ K∑

j=1

π̂n+g
j φ(xi; ω̂

n+g
j ) +

K̂n+g∑

j=K+1

π̂n+g
j φ(xi; ω̂

n+g
j )

]
(6.2a)

+

n+g∑

i=n+1

log

K̂n+g∑

j=1

π̂n+g
j φ(xi; ω̂

n+g
j ) (6.2b)

+

n+g∑

i=1

K̂n+g∑

j=1

τ̂n+g
ij log τ̂n+g

ij (6.2c)

− (3K̂n+g − 1)
log(n+ g)

2
, (6.2d)

with τ̂n+g
ij = τij(θ̂

n+g).

There is no di�culty with (6.2b):

(6.2b) ≤ g log fmax

(
fmax =

f(0)

σ0

)
. (6.3)

We cannot expect to derive a lower upper bound on (6.2b) since it may de�nitely be that
the θ̂n+g solution involves g component, each one of which handles one of the supple-
mentary observations xn+1, . . . , xn+g by being centered at this observation and with the
smallest possible variance.

Now, consider both situations, depending on whether supi=1,...,n

∑K
j=1 π̂

n+g
j φ(xi; ω̂

n+g
j )

is smaller or larger than a, to bound (6.2a) and (6.2c). We distinguish between both
situations, so that we can use arguments relying on the uniform continuity of log(1 +x)
and 1

1+x
, in the latter case. The �rst case is the easiest.

• sup
i=1,...,n

∑K
j=1 π̂

n+g
j φ(xi; ω̂

n+g
j ) < a.

Then:

(
(6.2a) + (6.2c)

)
=

n∑

i=1

log

[ K∑

j=1

π̂n+g
j φ(xi; ω̂

n+g
j )

+

K̂n+g∑

j=K+1

π̂n+g
j φ(xi; ω̂

n+g
j )

]
+

n+g∑

i=1

K̂n+g∑

j=1

τ̂n+g
ij log τ̂n+g

ij

≤
n∑

i=1

log

[ K∑

j=1

π̂n+g
j φ(xi; ω̂

n+g
j ) +

K̂n+g∑

j=K+1

π̂n+g
j φ(xi; ω̂

n+g
j )

]

< n log(2a) (since ω̂n+g
j /∈ Ca for j > K)

≤ logLcc(θ̂
n
K) (by de�nition of a).

(6.4)
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• sup
i=1,...,n

∑K
j=1 π̂

n+g
j φ(xi; ω̂

n+g
j ) ≥ a.

We then have, by de�nition of ã:

inf
i=1,...,n

K∑

j=1

π̂n+g
j φ(xi; ω̂

n+g
j ) > ã.

Let us de�ne θ∗ as the K-component mixture whose components are the K �rst ones
of θ̂n+g (those we are not sure whether they are or not in Ca):

∀j ∈ {1, . . . , K}, ω∗j = ω̂n+g
j

π∗j =
π̂n+g
j∑K

k=1 π̂
n+g
k

.

Then:

(6.2a) ≤
n∑

i=1

log
K∑

j=1

π̂n+g
j φ(xi; ω̂

n+g
j ) + nε

≤
n∑

i=1

log
K∑

j=1

π∗jφ(xi;ω
∗
j ) + nε

= logL(θ∗;xn) + nε.

(6.5)

(6.2c) =
n∑

i=1

K∑

j=1

τ̂n+g
ij log τ̂n+g

ij (6.2c.1)

+
n∑

i=1

K̂n+g∑

j=K+1

τ̂n+g
ij log τ̂n+g

ij (6.2c.2)

+

n+g∑

i=n+1

K̂n+g∑

j=1

τ̂n+g
ij log τ̂n+g

ij . (6.2c.3)

For 1 ≤ i ≤ n and 1 ≤ j ≤ K:

τ̂n+g
ij =

π̂n+g
j φ(xi; ω̂

n+g
j )

∑K
l=1 π̂

n+g
l φ(xi; ω̂

n+g
l ) +

∑K̂n+g

l=K+1 π̂
n+g
l φ(xi; ω̂

n+g
l )

≤
π̂n+g
j∑K

m=1 π̂
n+g
m

φ(xi; ω̂
n+g
j )

∑K
l=1

π̂n+g
l∑K

m=1 π̂
n+g
m

φ(xi; ω̂
n+g
l )

= τ ∗ij

τ̂n+g
ij =

π̂n+g
j φ(xi; ω̂

n+g
j )

∑K
l=1 π̂

n+g
l φ(xi; ω̂

n+g
l )

× 1

1 +
∑K̂n+g
l=K+1 π̂

n+g
l φ(xi;ω̂

n+g
l )∑K

l=1 π̂
n+g
l φ(xi;ω̂

n+g
l )

≥
π̂n+g
j φ(xi; ω̂

n+g
j )

∑K
l=1 π̂

n+g
l φ(xi; ω̂

n+g
l )

× 1

1 + b
ã

≥ τ ∗ij × (1− ε)
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Then
τ̂n+g
ij log τ̂n+g

ij ≤ τ̂n+g
ij log τ ∗ij

≤ τ ∗ij log τ ∗ij − ετ ∗ij log τ ∗ij

And, since −∑K
j=1 τ

∗
ij log τ ∗ij ≤ logK for any i:

(6.2c.1) ≤
n∑

i=1

K∑

j=1

τ ∗ij log τ ∗ij + ε n logK

Moreover, (6.2c.2) ≤ 0 and (6.2c.3) ≤ 0.

Then, together with (6.5):

(6.2a) + (6.2c) ≤ logL(θ∗;xn) +
n∑

i=1

K∑

j=1

τ ∗ij log τ ∗ij

︸ ︷︷ ︸
logLcc(θ∗;xn)

+(n+ n logK)ε

≤ logLcc(θ̂
n
K) + n

(
1 + logKM

)
ε.

(6.7)

And �nally, from (6.2), (6.3), (6.4) and (6.7):

critn+g ≤ logLcc(θ̂
n
K) + g log fmax − (3K̂n+g − 1)

log(n+ g)

2
+ κε (6.8)

holds in any case, with κ > 0 depending only on n and KM .

critn+g lower bound.

De�ne now θ̃ as the following K̃-component (K̃ = K̂n + g) mixture:

∀j ∈ {1, . . . , K̂n}, π̃j =
n

n+ g
π̂nj

θ̃j = θ̂nj

∀j ∈ {K̂n + 1, . . . , K̂n + g}, π̃j =
1

n+ g

θ̃j = (xn+j−K̂n , σ0).

critn+g ≥ critn+g(K̂n + g)

≥ logL(θ̃;xn+g) (6.9a)

− ENT(θ̃;xn+g) (6.9b)

−
(
3(K̂n + g)− 1

) log(n+ g)

2
. (6.9c)

(6.9a) =
n∑

i=1

log

K̂n+g∑

j=1

π̃jφ(xi; ω̃j) (6.10a)

+

n+g∑

i=n+1

log

K̂n+g∑

j=1

π̃jφ(xi; ω̃j) (6.10b)
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(6.9b) =
n∑

i=1

K̂n∑

j=1

τ̃ij log τ̃ij (6.11a)

+
n∑

i=1

K̂n+g∑

j=K̂n+1

τ̃ij log τ̃ij (6.11b)

+

n+g∑

i=n+1

K̂n+g∑

j=1

τ̃ij log τ̃ij. (6.11c)

For 1 ≤ i ≤ n and 1 ≤ j ≤ K̂n:

τ̃ij =

n
n+g

π̂nj φ(xi; ω̂
n
j )

n
n+g

∑K̂n
l=1 π̂

n
l φ(xi; ω̂nl ) + 1

n+g

∑n+g
l=n+1 φ

(
xi; (xl, σ0)

)

= τ̂nij

∑K̂n
l=1 π̂

n
l φ(xi; ω̂

n
l )

∑K̂n
l=1 π̂

n
l φ(xi; ω̂nl ) + 1

n

∑n+g
l=n+1 φ

(
xi; (xl, σ0)

)

≤ τ̂nij.

For 1 ≤ i ≤ n and K̂n + 1 ≤ j ≤ K̂n + g:

τ̃ij =
1
n
φ
(
xi; (xn+j−K̂n , σ0)

)
∑K̂n+g

l=1 π̃lφ(xi; ω̃l)
.

For n+ 1 ≤ i ≤ n+ g and 1 ≤ j ≤ K̂n + g:

τ̃ij =
π̃jφ(xi; ω̃j)

∑K̂n+g
l=1 π̃lφ(xi; ω̃l)

.

And then:

(6.11a) ≥
n∑

i=1

K̂n∑

j=1

τ̂nij log τ̂nij +
n∑

i=1

≤1︷ ︸︸ ︷
K̂n∑

j=1

τ̂nij log

≤1︷ ︸︸ ︷∑K̂n
l=1 π̂

n
l φ(xi; ω̂

n
l )

n+g
n

∑K̂n+g
l=1 π̃lφ(xi; ω̃l)

≥ −ENT(θ̂n) +
n∑

i=1

log

∑K̂n
l=1 π̂

n
l φ(xi; ω̂

n
l )

n+g
n

∑K̂n+g
l=1 π̃lφ(xi; ω̃l)

·

From lemma 10:
(6.11b) ≥ −nh(g)

Now,

(6.10a) + (6.11a) ≥ −ENT(θ̂n) + logL(θ̂n)− n log
n+ g

n
·
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And

(6.10b) + (6.11c) ≥ g log
fmax
n+ g

+ g log
1

K̂n + g
·

Finally:

critn+g ≥ logLcc(θ̂
n) + n log

n

n+ g
+ g log

1

K̂n + g
+ g log

fmax
n+ g

− nh(g)

− 1

2

(
3(K̂n + g)− 1

)
log(n+ g). (6.12)

Conclusion.

From (6.8) and (6.12):

logLcc(θ̂
n)− logLcc(θ̂

n
K)−

(
n+

5

2
g +

3

2
K̂n −

3

2
K̂n+g

)
log(n+ g)

+ n log n− g log(K̂n + g)− nh(g)− κε < 0,

and

logLcc(θ̂
n)− logLcc(θ̂

n
K)− 1

2

(
5g + 3K̂n − 3K + 2n

)
log(n+ g)

+ n log n− g log(K̂n + g)− nh(g)− κε < 0.

Since this holds for every ε > 0 for a good choice of xn+1, · · · , xn+g, we get a contra-
diction with the condition of the theorem and there cannot be breakdown with g additional
observations. �

Proof (Lemma 10) Let, for every l ∈ {1, · · · , g}, w̃l = wl∑g
j=1 wj

. Then

g∑

l=1

w̃l = 1⇒
g∑

l=1

w̃l log w̃l ≥ − log g (see for example Section 4.2.2)

⇒
g∑

l=1

wl logwl −
g∑

l=1

wl log

g∑

j=1

wj ≥ −
g∑

l=1

wl log g

⇒
g∑

l=1

wl logwl ≥
g∑

l=1

wl log

∑g
l=1 wl
g

Now, if x ≤ 1 and g ≥ 3,
x

g
log

x

g
≥ 1

g
log

1

g
,

since x
g
≤ 1

g
≤ 1

e
and x 7→ x log x is decreasing on ]0; 1

e
]. Applied to x =

∑g
l=1 ωl and

if g ≥ 3, this yields
∑g

l=1wl logwl ≥ − log g. This inequality is tight (the equality is
achieved in the case wl = 1

g
for all l).

If g ∈ {1, 2}, let us write: ∀x ∈ [0, 1], x log x ≥ −1
e
and then,

∑g
l=1wl logwl ≥ −g

e
,

which is the best inequality we can get in those cases, since the equality can be achieved,
with wl = 1

e
for all l (which is only possible if g ≤ 2). �
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Proof (Lemma 11) Let ε > 0. Let K, θ be such that the corresponding mixture veri-
�es the lemma condition. Then

ε < sup
i

K∑

j=1

πjφ(xi;ωj)

=
K∑

j=1

πjφ(xiM ;ωj)

≤ K sup
j
πjφ(xiM ;ωj)

= KπjMφ(xiM ;ωjM ).

Write inf
i

∑K
j=1 πjφ(xi;ωj) =

∑K
j=1 πjφ(xim ;ωj). We have

∀j, φ(xim ;ωj)

φ(xiM ;ωj)
= e

− 1

σ2
j

(
x2
im−x

2
iM
−2aj(xim−xiM )

)

≥ e
− 1

σ2
j

(d2+2ajd)

,

(6.13)

with d = maxi xi −mini xi and d2 = maxi,j(x
2
i − x2

j).

Moreover,

φ(xiM ;ωjM ) ≥ πjMφ(xiM ;ωjM ) >
ε

K
=⇒ 1√

2πσ2
jM

e
−

(x
iM
−a
jM

)2

σ2
jM >

ε

K
,

from which on the one hand σ2
jM < K2

2πε2
, and then on the other hand, since moreover,

σ2
jM > σ2

0,

1√
2πσ2

0

e−
2π
K2 ε

2(x
iM
−a

jM
)2

>
ε

K
.

This implies that ∃A(x1 . . . , xn, ε, σ0, KM)/|ajM | ≤ A.

And then, from (6.13),

K∑

j=1

πjφ(xim ;ωj) ≥ πjMφ(xim ;ωjM )

≥ πjMφ(xiM ;ωjM )e
− 1

σ2
0

(d2+2a
jM

d)

>
ε

K
e
− 1

σ2
0

(d2+2a
jM

d)

≥ ε

KM

e
− 1

σ2
0

(d2+2Ad)
= η(x1, . . . , xn, ε, σ0, KM)

which is the expected conclusion. �
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6.4 Examples

Let us consider the same type of datasets as Hennig (2004). The base of those datasets
is not random so that it can be repeated in order to compare several procedures. Hennig
(2004) denote by (µ, σ2)-Normal standard dataset (NSD) the set of quantiles of respec-
tive levels 1

n+1
, . . . , n

n+1
of a Gaussian distribution with parameters (µ, σ2). Then, the

considered dataset is of size 50 and consists of the combination of a (0, 1)-NSD with 25
points and a (µ∗, 1)-NSD with 25 points. In Hennig (2004) µ∗ = 5. See Figure 6.1(a)
for an example of such a dataset.

In Hennig (2004, Example 4.14), such a dataset with µ∗ = 5 is considered: for
the MLE and when the number of components is chosen through BIC (K̂BIC

n = 2),
the breakdown point is proved to be larger than 1

51
since the condition of Theorem 9

is ful�lled for g = 1. But it is not ful�lled for g = 2. However, Hennig (2004) found
empirically that thirteen points are necessary to actually break the solution down, which
suggests that the condition is too conservative.

In our framework, when �tting models by MLccE and selecting the number of com-
ponents through Lcc-ICL, the condition in Theorem 10 is not ful�lled even for g = 1. As
expected, K̂Lcc−ICL = 2 with reasonable σ0 (see for example Section 5.1.4 for the choice
of σ0). The typical value of σ0 we involved is smaller than the one chosen by Hennig
(2004) so that those results still hold for this value. The minimal value of µ∗ for which
the condition is ful�lled for g = 1 is around 7.5 (see Figure 6.1(b)). For such a value, the
condition in Theorem 9 is ful�lled up to g = 3. See Figure 6.2 for the common solution
of BIC and Lcc-ICL.

This experiment illustrates that the condition in Theorem 10 is actually quite
stronger than the condition in Theorem 9. This suggests, as already mentioned, that the
procedure relying on the MLccE and on Lcc-ICL might be less robust than the procedure
based on the MLE and BIC. However, it has been mentioned also that this might fail
to be true in case K̂BIC 6= K̂Lcc−ICL. Let us consider such a situation.

If the components are made closer to each other, Lcc-ICL is the �rst of both criteria to
select a single component instead of two, because it favors well separated components.
To make the example richer, let us consider a situation where three components are
selected by BIC: this is the dataset (c) in Figure 6.1. BIC based on the MLE selects
three components (see Figure 6.3(a)) and the condition of Theorem 9 fails for K = 2.
But Lcc-ICL based on MLccE selects only two components (see Figure 6.3(b)) and the
condition of Theorem 10 is ful�lled. Actually, no theorem is necessary in this case to
guess that the solution of Lcc-ICL is more robust than that of BIC. This is apparent from
the solutions (see Figures 6.3(a) and 6.3(b)): it is necessary to roughly ��ll in� � in the
sense of MLccE � the space between the left (centered at −1.75) and the right (centered
at 9) classes (Figure 6.3(b)) to break the solution of Lcc-ICL down, while it su�ces to
��ll in� � in the sense of MLE � the space between the two left components (namely
respectively centered at −3.5 and 0: see Figure 6.3(a)) to break the solution of BIC
down, which presumably requires less supplementary observations. This is con�rmed by
Figure 6.4: recall that the conditions in Theorems 9 and 10 essentially depend on the
di�erence of the values of each contrast between the selected model and models with
lower numbers of components. From this point of view, Figure 6.4 illustrates that the
Lcc-ICL solution is expected to be more robust than that of BIC in this setting.
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Figure 6.1: NSD-based datasets.

(a) (0, 1)-NSD (n = 25) + (5, 1)-NSD (n = 25),
(b) (0, 1)-NSD (n = 25) + (7.5, 1)-NSD (n = 25),

(c) (−3.5, 1)-NSD (n = 25) + (0, 1)-NSD (n = 25) + (9, 1)-NSD (n = 25).
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Figure 6.2: Common solution of BIC and Lcc-ICL for the (0, 1)-NSD (n = 25) + (7.5, 1)-
NSD (n = 25) Dataset.
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Figure 6.3: Solutions for the (−3.5, 1)-NSD (n = 25) + (0, 1)-NSD (n = 25) + (9, 1)-
NSD (n = 25) Dataset.

(a) MLE solution selected through BIC,
(b) MLccE solution selected through Lcc-ICL.
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Figure 6.4: Maximum Contrast Values vs K for the (−3.5, 1)-NSD (n = 25) + (0, 1)-
NSD (n = 25) + (9, 1)-NSD (n = 25) Dataset.

(a) K 7→ logL(θ̂MLE
K ) graph,

(b) K 7→ logLcc(θ̂
MLccE
K ) graph.
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6.5 Discussion

The theoretical results reported in Hennig (2004) for BIC and the analogous results
reported here for Lcc-ICL seem to be quite conservative, in the sense that the conditions
they respectively impose seemingly su�ce to guarantee more robustness than they claim.
This might be a consequence of the di�culty to take into account in the calculations
the most realistic situation of breakdown when the number of components is unknown,
i.e. that where components vanish because of observations added between the original
ones.

However, those results provide an interesting basis to compare the robustness prop-
erties of both procedures in di�erent situations. They notably enable to expect that the
BIC procedure is presumably more robust than the Lcc-ICL procedure in case both pro-
cedures select the same number of components. A dataset modelled by two components
through Lcc-ICL and BIC can be made to be modelled by a single component through
Lcc-ICL easier than through BIC because MLccE and Lcc-ICL favor well separated com-
ponents. There is however a situation where Lcc-ICL may be more robust than BIC:
when this is not clear with the original dataset whether one or two components should
be selected, BIC might choose two while Lcc-ICL chooses one. This is a situation where
breaking the BIC solution down is quite easy and where the Lcc-ICL solution is much
more robust.

The theoretical results do not seem to be of direct practical interest but, as in Hennig
(2004) for the comparison of several solutions to make the mixture model estimation
more robust, they enable to improve the study and understanding of the procedures'
respective and relative behaviors. Moreover they involve theoretical studies which are
interesting for their own, such as Lemma 11.
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192 Introduction

Presentation. Chapter 4 largely illustrates to what extent the density estimation
and clustering purposes are di�erent, and may be contradictory. Therefore, performing
model-based clustering (Chapter 1) involves a severe dilemma, notably about the choice
of the number of components: should the study be based on a mixture which provides
a precise estimation of the data distribution? The use of Gaussian mixture models is
justi�ed by their nice approximation properties. The BIC criterion (Section 2.1.3) is
helpful to this aim. Or should the number of classes be considered as the main relevant
quantity, hence the number of components be chosen with regards to this purpose? This
is the point of view underlying ICL (Section 2.1.4), which is a good criterion for this
purpose. This dilemma may be overcome by breaking the �one component=one class�
rule. See Section 2.2 for a �rst introduction of this idea and further discussion and
references. A methodology to do so is introduced in this chapter, which consists of an
article (to appear) corresponding to a joint work with A. Raftery, G. Celeux, K. Lo and
R. Gottardo Baudry et al., 2008b. The notation has been changed to be consistent with
the preceding chapters, and a little more material has been included. But notably the
presentation of ICL has not been changed so that a comparison of this chapter with the
preceding ones � particularly with Chapter 4 � illustrates the two di�erent points of
view about ICL. In this work, we propose to �rst estimate the data density with the BIC
solution and to hierarchically merge some of the obtained components to design classes
which match a notion of cluster related to the entropy. Presumably the user may mostly
be interested in the whole obtained hierarchy, or at least in several solutions, which may
be compared on substantive ground. Graphical tools are provided to help analyzing
this hierarchy and identifying the interesting numbers of classes. An automatic way of
selecting the number of classes when it is necessary is derived from these tools.

7.1 Introduction

Model-based clustering is based on a �nite mixture of distributions, in which each mix-
ture component is taken to correspond to a di�erent group, cluster or subpopulation. For
continuous data, the most common component distribution is a multivariate Gaussian
(or normal) distribution. A standard methodology for model-based clustering consists
of using the EM algorithm to estimate the �nite mixture models corresponding to each
number of clusters considered and using BIC to select the number of mixture compo-
nents, taken to be equal to the number of clusters (Fraley and Raftery, 1998). The
clustering is then done by assigning each observation to the cluster to which it is most
likely to belong a posteriori, conditionally on the selected model and its estimated pa-
rameters. For reviews of model-based clustering, see McLachlan and Peel (2000) and
Fraley and Raftery (2002).

Biernacki et al. (2000) argued that the goal of clustering is not the same as that of
estimating the best approximating mixture model, and so BIC may not be the best way
of determining the number of clusters, even though it does perform well in selecting the
number of components in a mixture model. Instead they proposed the ICL criterion,
whose purpose is to assess the number of mixture components that leads to the best
clustering. This turns out to be equivalent to BIC penalized by the entropy of the
corresponding clustering.

We argue here that the goal of selecting the number of mixture components for
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estimating the underlying probability density is well met by BIC, but that the goal of
selecting the number of clustersmay not be. Even when a multivariate Gaussian mixture
model is used for clustering, the number of mixture components is not necessarily the
same as the number of clusters. This is because a cluster may be better represented by
a mixture of normals than by a single normal distribution.

We propose a method for combining the points of view underlying BIC and ICL to
achieve the best of both worlds. BIC is used to select the number of components in
the mixture model. We then propose a sequence of possible solutions by hierarchical
combination of the components identi�ed by BIC. The decision about which components
to combine is based on the same entropy criterion that ICL implicitly uses. In this way,
we propose a way of interpreting the mixture model in terms of clustering by identifying
a subset of the mixture components with each cluster. We suggest assessing all the
resulting clusterings substantively. We also describe an automatic method for choosing
the number of clusters based on a piecewise linear regression �t to the rescaled entropy
plot. The number of clusters selected, either substantively or automatically, can be
di�erent from the number of components chosen with BIC.

Often the number of clusters identi�ed by ICL is smaller than the number of com-
ponents selected by BIC, raising the question of whether BIC tends to overestimate the
number of groups. On the other hand, in almost all simulations based on assumed true
mixture models, the number of components selected by BIC does not overestimate the
true number of components (Biernacki et al., 2000; McLachlan and Peel, 2000; Steele,
2002). Our approach resolves this apparent paradox.

In Section 7.2 we provide background on model-based clustering, BIC and ICL, and
in Section 7.3 we describe our proposed methodology. In Section 7.4 we give results for
simulated data, and in Section 7.5 we give results from the analysis of a �ow cytometry
dataset. There, one of the sequence of solutions from our method is clearly indicated
substantively, and seems better than either the original BIC or ICL solutions. In Section
7.6 we discuss issues relevant to our method and other methods that have been proposed.

7.2 Model Selection in Model-Based Clustering

Model-based clustering assumes that observations x = (x1, . . . ,xn) in Rnd are a sample
from a �nite mixture density

p(xi | K, θK) =
K∑

k=1

πkφ(xi | ωk), (7.1)

where the πk's are the mixing proportions (0 < πk < 1 for all k = 1, . . . , K and
∑

k πk =
1), φ(. | ωk) denotes a parameterized density, and θK = (π1, . . . , πK−1, ω1, . . . , ωK).
When the data are multivariate continuous observations, the component density is usu-
ally the d-dimensional Gaussian density with parameter ωk = (µk,Σk), µk being the
mean and Σk the variance matrix of component k.

For estimation purposes, the mixture model is often expressed in terms of complete
data, including the groups to which the data points belong. The complete data are

y = (y1, . . . ,yn) = ((x1, z1), . . . , (xn, zn)),
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where the missing data are z = (z1, . . . , zn), with zi = (zi1, . . . , ziK) being binary vectors
such that zik = 1 if xi arises from group k. The zi's de�ne a partition P = (P1, . . . , PK)
of the observed data x with Pk = {xi such that zik = 1}.

From a Bayesian perspective, the selection of a mixture model can be based on the
integrated likelihood of the mixture model with K components Kass and Raftery (1995),
namely

p(x|K) =

∫
p(x|K, θK)π(θK)dθK , (7.2)

where π(θK) is the prior distribution of the parameter θK . Here we use the BIC approx-
imation of Schwarz (1978) to the log integrated likelihood, namely

BIC(K) = log p(x|K, θ̂K)− DK

2
log n, (7.3)

where θ̂K is the maximum likelihood estimate of θK and DK is the number of free
parameters of the model with K components. This was �rst applied to model-based
clustering by Dasgupta and Raftery (1998). Keribin (2000) has shown that under certain
regularity conditions the BIC consistently estimates the number of mixture components,
and numerical experiments show that the BIC works well at a practical level (Fraley
and Raftery, 1998; Biernacki et al., 2000; Steele, 2002). See Section 2.1.3 for further
discussion and references about BIC.

There is one problem with using this solution directly for clustering. Doing so is
reasonable if each mixture component corresponds to a separate cluster, but this may
not be the case. In particular, a cluster may be both cohesive and well separated from
the other data (the usual intuitive notion of a cluster), without its distribution being
Gaussian. This cluster may be represented by two or more mixture components, if its
distribution is better approximated by a mixture of Gaussians than by a single Gaussian
component. Thus the number of clusters in the data may be di�erent from the number
of components in the best approximating Gaussian mixture model.

To overcome this problem, Biernacki et al. (2000) proposed estimating the number of
clusters (as distinct from the number of mixture components) in model-based clustering
using the integrated complete likelihood (ICL), de�ned as the integrated likelihood of
the complete data (x, z). ICL is de�ned as

p(x, z | K) =

∫

ΘK

p(x, z | K, θ)π(θ | K)dθ, (7.4)

where

p(x, z | K, θ) =
n∏

i=1

p(xi, zi | K, θ)

with

p(xi, zi | K, θ) =
K∏

k=1

πzikk [φ(xi | ωk)]zik .

To approximate this integrated complete likelihood, Biernacki et al. (2000) proposed
using a BIC-like approximation, leading to the criterion

ICL(K) = logp(x, ẑ | K, θ̂K)− DK

2
log n, (7.5)
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where the missing data have been replaced by their most probable values, given the
parameter estimate θ̂K .

Roughly speaking, ICL is equal to BIC penalized by the mean entropy

Ent(K) = −
K∑

k=1

n∑

i=1

τik(θ̂K) log τik(θ̂K) ≥ 0, (7.6)

where τik denotes the conditional probability that xi arises from the kth mixture com-
ponent (1 ≤ i ≤ n and 1 ≤ k ≤ K), namely

τik(θ̂K) =
π̂kφ(xi|ω̂k)∑K
j=1 π̂jφ(xi|ω̂j)

·

Thus the number of clusters, K ′, favored by ICL tends to be smaller than the number
K favored by BIC because of the additional entropy term. ICL aims to �nd the number
of clusters rather than the number of mixture components. However, if it is used to
estimate the number of mixture components it can underestimate it, particularly in
data arising from mixtures with poorly separated components. In that case, the �t is
worsened.

See Chapter 4 for a di�erent point of view about ICL.

Thus the user of model-based clustering faces a dilemma: do the mixture components
really all represent clusters, or do some subsets of them represent clusters with non-
Gaussian distributions? In the next section, we propose a methodology to help resolve
this dilemma.

7.3 Methodology

The idea is to build a sequence of clusterings, starting from a mixture model that �ts
the data well. Its number of components is chosen using BIC. We design a sequence of
candidate soft clusterings with K̂BIC, K̂BIC − 1,. . . ,1 clusters by successively merging
the components in the BIC solution.

At each stage, we choose the two mixture components to be merged so as to minimize
the entropy of the resulting clustering. Let us denote by τKi1 , . . . , τ

K
iK the conditional

probabilities that xi arises from cluster 1, . . . , K with respect to the K-cluster solution.
If clusters k and k′ from the K-cluster solution are combined, the τij's remain the same
for every j except for k and k′. The new cluster k∪k′ then has the following conditional
probability:

τKik∪k′ = τKik + τKik′ .

Then the resulting entropy is:

−
n∑

i=1

(∑

j 6=k,k′
τKij log τKij + (τKik + τKik′) log (τKik + τKik′)

)
. (7.7)

Thus, the two clusters k and k′ to be combined are those that maximize the criterion

−
n∑

i=1

{τKik log(τKik ) + τKik′ log(τKik′)}+
n∑

i=1

τKik∪k′ log τKik∪k′
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among all possible pairs of clusters (k, k′). Then τK−1
ik , i = 1, . . . , n, k = 1, . . . , K − 1

can be updated.

At the �rst step of the combining procedure, K = K̂BIC and τKik is the conditional
probability that xi arises from the kth mixture component (1 ≤ i ≤ n and 1 ≤ k ≤ K).
But as soon as at least two components are combined in a cluster k (hence K < K̂BIC),
τKik is the conditional probability that observation xi belongs to one of the combined
components in cluster k.

Our method is a soft clustering one that yields probabilities of cluster membership
rather than cluster assignments. However, it can be used as the basis for a hard cluster-
ing method, simply by assigning the maximum a posteriori cluster memberships. Note
that this will not necessarily be a strictly hierarchical clustering method. For example,
an observation that was not assigned to either cluster k or k′ by the K-cluster solution
might be assigned to cluster k ∪ k′ by the (K − 1)-cluster solution.

Any combined solution �ts the data as well as the BIC solution, since it is based
on the same Gaussian mixture; the likelihood does not change. Only the number and
de�nition of clusters are di�erent. Our method yields just one suggested set of clusters
for each K, and the user can choose between them on substantive grounds. Our �ow
cytometry data example in Section 7.5 provides one instance of this.

If a more automated procedure is desired for choosing a single solution, one possibility
is to select, among the possible solutions, the solution providing the same number of
clusters as ICL. An alternative is to use an elbow rule on the graphic displaying the
entropy variation against the number of clusters. Both these strategies are illustrated
in our examples.

The algorithm implementing the suggested procedure is given in Section 7.7.

7.4 Simulated Examples

We �rst present some simulations to highlight the possibilities of our methodology. They
have been chosen to illustrate cases where BIC and ICL do not select the same number
of components1.

7.4.1 Simulated Example with Overlapping Components

The data, shown in Figure 7.1(a), were simulated from a two-dimensional Gaussian
mixture. There are six components, four of which are axis-aligned with diagonal variance
matrices (the four components of the two �crosses�), and two of which are not axis-
aligned, and so do not have diagonal variance matrices. There were 600 points, with
mixing proportions 1/5 for each non axis-aligned component, 1/5 for each of the upper
left cross components, and 1/10 for each of the lower right cross components.

We �tted Gaussian mixture models to this simulated dataset. This experiment was
repeated with 100 di�erent such datasets, but we �rst present a single one of them to

1Details on the simulation settings may be found in Section A.2.
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Figure 7.1: Simulated Example 1. (a) Simulated data from a six-component two-
dimensional Gaussian mixture. (b) BIC solution with six components. (c) ICL solution
with four clusters. (d) Combined solution with �ve clusters. (e) Combined solution with
four clusters. (f) The true labels for a four-cluster solution. In (b) and (c) the entropy,
ENT, is de�ned by equation (7.6) with respect to the the maximum likelihood solution,
and in (d) and (e) ENT is de�ned by equation (7.7).



198 Simulated Examples

illustrate the method. Although all the features of our approach cannot be tabulated,
results illustrating the stability of the method are reported and discussed at the end of
this subsection.

For the dataset at hand, the BIC selected a six-component mixture model, which
was the correct model; this is shown in Figure 7.1(b). ICL selected a four-cluster model,
as shown in Figure 7.1(c). The four clusters found by ICL are well separated.

Starting from the BIC six-component solution, we combined two components to get
the �ve-cluster solution shown in Figure 7.1(d). To decide which two components to
merge, each pair of components was considered, and the entropy after combining these
components into one cluster was computed. The two components for which the resulting
entropy was the smallest were combined.

The same thing was done again to �nd a four-cluster solution, shown in Figure 7.1(e).
This is the number of clusters identi�ed by ICL. Note that there is no conventional
formal statistical inferential basis for choosing between di�erent numbers of clusters, as
the likelihood and the distribution of the observations are the same for all the numbers
of clusters considered.

However, the decrease of the entropy at each step of the procedure may help guide
the choice of the number of clusters, or of a small number of solutions to be considered.
The entropies of the combined solutions are shown in Figure 7.2, together with the
di�erences between successive entropy values. There seems to be an elbow in the plot
at K = 4, and together with the choice of ICL, this leads us to focus on this solution.

A �ner examination of those graphics gives more information about the merging
process. The �rst merging (from six to �ve clusters) is clearly necessary, since the
decrease in entropy is large (with respect for example to the minimal decreases, when
merging from two to one clusters, say). The second merging (from �ve to four clusters)
also seems to be necessary for the same reason, although it results in a smaller decrease
of the entropy (about half of the �rst one). This is far from zero, but indicates either that
the components involved in this merging overlap less than the �rst two to be merged,
or that this merging involves only about half as many observations as the �rst merging.

To further analyze the situation, we suggest changing the scale of the �rst of those
graphics so that the di�erence between the abscissas of two successive points is propor-
tional to the number of observations involved in the corresponding merging step: see
Figure 7.3(a). This plot leads to the conclusion that the reason why the second merging
step gives rise to a smaller entropy decrease than the �rst one is that it involves fewer
observations. The mean decrease in entropy for each observation involved in the corre-
sponding merging step is about the same in both cases, since the last three points of
this graphic are almost collinear. The same result can be seen in a slightly di�erent way
by plotting the di�erences of entropies divided by the number of observations involved
at each step, as shown in Figure 7.3(b). These new graphical representations accentuate
the elbow at K = 4.

In the four-cluster solution, the clusters are no longer all Gaussian; now two of them
are modeled as mixtures of two Gaussian components each. Note that this four-cluster
solution is not the same as the four-cluster solution identi�ed by ICL: ICL identi�es a
mixture of four Gaussians, while our method identi�es four clusters of which two are
not Gaussian. Figure 7.1(f) shows the true classi�cation. Only three of the 600 points
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Figure 7.2: (a) Entropy values for the K-cluster Combined Solution, as de�ned by
equation (7.7), for Simulated Example 1. The dashed line shows the best piecewise
linear �t, with a breakpoint at K = 4 clusters. (b) Di�erences between successive
entropy values.
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Figure 7.3: Simulated Example 1: (a) Entropy values for the K-cluster Combined So-
lution, as de�ned by equation (7.7), plotted against the cumulative sum of the number
of observations merged at each step. The dashed line shows the best piecewise linear
�t, with a breakpoint at K = 4 clusters. (b) Rescaled di�erences between successive
entropy values: ENT(K+1)−ENT(K)

Number of merged obs.
.
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were misclassi�ed.

It will often be scienti�cally useful to examine the full sequence of clusterings our
method yields and assess them on substantive grounds, as well as by inspection of the
entropy plots. However, an automatic way of choosing the number of clusters may
be desired. A simple approach to this was proposed by Byers and Raftery (1998), in a
di�erent context. Consider successively each possible breakpoint for a two-part piecewise
linear regression in the entropy plot; �t a linear regression model to the values to the
left (resp. to the right) of this breakpoint (included); �nally, use the breakpoint leading
to the smallest total least-square value as the selected number of clusters.

For simulated example 1, this is shown as the dashed line in Figure 7.2(a) for the
raw entropy plot and in Figure 7.5(a) for the rescaled entropy plot. The method chooses
K = 4 using both the raw and rescaled entropy plots, but the �t of the piecewise linear
regression model is better for the rescaled entropy plot, as expected.

We repeated this experiment 100 times to assess the stability of the method, simu-
lating new data from the same model each time. The piecewise linear regression model
�t to the rescaled entropy plot selected K = 4, 95 times out of 100.

We carried out an analogous experiment in dimension 6. The �crosses� involved two
components each, with four discriminant directions between them and two noisy direc-
tions. The proportions of the components were equal. Our piecewise linear regression
model method almost always selected 4 clusters.

7.4.2 Simulated Example with Overlapping Components and
Restrictive Models

We now consider the same data again, but this time with more restrictive models.
Only Gaussian mixture models with diagonal variance matrices are considered. This
illustrates what happens when the mixture model generating the data is not in the set
of models considered.

BIC selects more components than before, namely 10 (Figure 7.4(a)). This is be-
cause the true generating model is not considered, and so more components are needed
to approximate the true distribution. For example, the top right non-axis-aligned com-
ponent cannot be represented correctly by a single Gaussian with a diagonal variance
matrix, and BIC selects three diagonal Gaussians to represent it. ICL still selects four
clusters (Figure 7.4(b)).

In the hierarchical merging process, the two components of one of the �crosses� were
combined �rst (Figure 7.4(c)), followed by the components of the other cross (Fig-
ure 7.4(d)). The nondiagonal cluster on the lower left was optimally represented by
three diagonal mixture components in the BIC solution. In the next step, two of these
three components were combined (Figure 7.4(e)). Next, two of the three mixture com-
ponents representing the upper right cluster were combined (Figure 7.4(f)). After the
next step there were �ve clusters, and all three mixture components representing the
lower left cluster had been combined (Figure 7.4(g)).

The next step got us to four clusters, the number identi�ed by ICL (Figure 7.4(h)).
After this last combination, all three mixture components representing the upper right
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Figure 7.4: Simulated Example 2. The data are the same as in Simulated Example 1,
but the model space is more restrictive, as only Gaussian mixture models with diagonal
covariance matrices are considered. See Fig.7.1 legends for explanations about ENT.
(a) BIC solution with ten mixture components. (b) ICL solution with four clusters.
(c) Combined solution with nine clusters. (d) Combined solution with eight clusters.
(e) Combined solution with seven clusters. (f) Combined solution with six clusters. (g)
Combined solution with �ve clusters. (h) Combined solution with four clusters. (i) True
labels with four clusters.
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cluster had been combined. Note that this four-cluster solution is not the same as the
four-cluster solution got by optimizing ICL directly. Strikingly, this solution is almost
identical to that obtained with the less restrictive set of models considered in Section
7.4.1.

The plot of the combined solution entropies against the number of components in
Figure 7.5 suggests an elbow at K = 8, with a possible second, less apparent one at
K = 4. In the K = 8 solution the two crosses have been merged, and in the K = 4
solution all four visually apparent clusters have been merged. Recall that the choice of
the number of clusters is not based on formal statistical inference, unlike the choice of the
number of mixture components. Our method generates a small set of possible solutions
that can be compared on substantive grounds. The entropy plot is an exploratory device
that can help to assess separation between clusters, rather than a formal inference tool.

In this example, the elbow graphics (Figures 7.5(a) and 7.5(c)) exhibit three di�erent
stages in the merging process (a two-change-point piecewise line is necessary to �t to �t
them well):

� The two �rst merging steps (from ten to eight clusters) correspond to a large
decrease in entropy (Figure 7.5(a)). They are clearly necessary. The mean entropy
is equivalent in each one of those two steps (Figure 7.5(c)). Indeed, Figure 7.4
shows that they correspond to the formation of the two crosses.

� The four following merging steps (from eight to four clusters) correspond to smaller
decreases in entropy (Figure 7.5(a)). They have a comparable common mean
decrease of entropy, but it is smaller than that of the �rst stage: a piece of the
line would be �tted for them only (as appears in Figure 7.5(c)). They correspond
to the merging of components which overlap in a di�erent way than those merged
at the �rst stage (Figure 7.4).

� The four last merging steps should not be applied.

In this case the user can consider the solutions with four and eight clusters, and take
a �nal decision according to the needs of the application. The automatic rule in Section
7.4.1 (see Figure 7.5(d)) selects K = 6 clusters, which splits the di�erence between the
two solutions we identi�ed by inspection of the plot. This seems reasonable if a single
automatic choice is desired, but either four or eight clusters might be better in speci�c
contexts.

7.4.3 Circle/Square Example

This example was presented by Biernacki et al. (2000). The data shown in Figure 7.6(a)
were simulated from a mixture of a uniform distribution on a square and a spherical
Gaussian distribution. Here, for illustrative purposes, we restricted the models consid-
ered to Gaussian mixtures with spherical variance matrices with the same determinant.
Note that the true generating model does not belong to this model class.

In the simulation results of Biernacki et al. (2000), BIC chose two components in
only 60% of the simulated cases. Here we show one simulated dataset in which BIC
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Figure 7.5: (a) Entropy values for the K-cluster Combined Solution, as de�ned by equa-
tion (7.7), for Simulated Example 2. (b) Di�erences between successive entropy values.
(c) Entropy values with respect to the cumulative sum of the number of observations
merged at each step K+1→ K. Two change-points piecewise linear regression. (d) En-
tropy values with respect to the cumulative sum of the number of observations merged
at each step K+ 1→ K. Single change-point piecewise linear regression with minimum
least-squares choice of the change-point.
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Figure 7.6: Circle-Square Example. See Figure 7.1 legends for explanations about ENT.
(a) Observed data simulated from a mixture of a uniform distribution on a square and
a spherical Gaussian distribution. (b) The BIC solution, with �ve components. (c)
The ICL solution with two clusters. (d) The combined solution with four clusters. (e)
The combined solution with three clusters. (f) The �nal combined solution, with two
clusters. (g) The true labels.
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Figure 7.7: (a) Entropy values for the K-cluster Combined Solution, as de�ned by equa-
tion (7.7), for the Circle-Square Example. (b) Di�erences between successive entropy
values.

approximated the underlying non-Gaussian density using a mixture of �ve normals (Fig-
ure 7.6(b)). ICL always selected two clusters (Figure 7.6(c)).

The progress of the combining algorithm is shown in Figure 7.6(d-f). The �nal two-
cluster solution, obtained by hierarchical merging starting from the BIC solution, is
slightly di�erent from the clustering obtained by optimizing ICL directly. It also seems
slightly better: ICL classi�es seven observations into the uniform cluster that clearly do
not belong to it, while the solution shown misclassi�es only three observations in the
same way. The true labels are shown in Figure 7.6(g). The entropy plot in Figure 7.7
does not have a clear elbow.

7.4.4 Comparison With Li's Method

In this section, our methodology is compared with the related method of Li (2005).
Similarly to our approach, Li proposed modeling clusters as Gaussian mixtures, starting
with the BIC solution, and then merging mixture components. However, unlike us, Li
assumed that the true number of clusters is known in advance. The author also used
k-means clustering to merge components; this works well when the mixture components
are spherical but may have problems when they are not.

In the framework of the so-called multilayer mixture model, Li (2005) proposed
two methods for partitioning the components of a mixture model into a �xed number
of clusters. They are both initialized with the same double-layer k-means procedure.
Then the �rst method consists of computing the maximum likelihood estimator of a
Gaussian mixture model with a greater number of components than the desired number
of clusters. The components are then merged by minimizing a within-cluster inertia
criterion (sum of squares) on the mean vectors of the mixture components. The second
method consists of �tting the Gaussian mixture model through a CEM-like algorithm
(Celeux and Govaert, 1992), to maximize the classi�cation likelihood, where the clusters
are taken as mixtures of components. The total number of components (for each method)
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Figure 7.8: Comparison with Li's method. (a) A simulated data set to compare Li's
method with ours (b) The three cluster solution with our method (c) The three cluster
solution with most of Li's methods (d) The typical three cluster solution with Li's �k-
means on the means + ICL� method

and the number of components per cluster (for the CEM method) are selected either
through BIC or ICL.

First Experiment: Gaussian Mixture

We simulated 100 samples of size n = 800 of a four component Gaussian mixture in R2.
An example of such a sample is shown in Figure 7.8(a).

Since Li's method imposes a �xed number of clusters, we �xed it to three and stopped
our algorithm as soon as it yielded three clusters. For each simulated sample we always
obtained the same kind of result for both methods. They are depicted in Figure 7.8(b)
for our method, which always gave the same result. Figure 7.8(c) shows the results for
the four variants of Li's method. Li's method with the CEM-like algorithm always gave
rise to the solution in Figure 7.8(c). Li's method with the k-means on the means and
the selection through BIC found the same solution in 93 of the 100 cases. The method
with the k-means on the means and the selection through ICL found such a solution
in 27 cases, but in most other cases found a di�erent solution whose �t was poorer
(Figure 7.8(d)).



7.4.4 - Comparison With Li's Method 207

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

3D View View from above

Figure 7.9: Simulated Example 2: There are two clusters, the 3D cross (red) and the
uniform pillar (black). The true cluster memberships are shown here.

Second Experiment: 3D Uniform Cross

We simulated data in R3 from a mixture of two uniform components: see Figure 7.9.
One is a horizontal thick cross (red in Figure 7.9) and has proportion 0.75 in the mixture,
while the other is a vertical pillar (black in Figure 7.9) and has proportion 0.25. We
simulated 100 datasets of size 300, and we applied Li's procedures, Ward's sum of squares
method, and ours. We �xed the number of clusters to be designed at its true value (two),
and we then �tted general Gaussian mixture models.

BIC selected 4 components for 69 of the 100 datasets, and 3 components for 18 of
them. ICL selected 4 components for 60 of the datasets, and 3 components for 29 of
them.

As in the preceding example, Li's approach did not recover the true clusters. Li's
CEM-like methods always yielded a bad solution: sometimes one of the arms of the cross
merged to the pillar, and sometimes two, as in Figure 7.10. Li's BIC + k-means method
recovered the true clusters in 19 cases out of 100, and Li's ICL + k-means method did
so in 33 cases out of 100. This occurred almost every time the number of Gaussian
components was 3 (two for the cross, which then have almost the same mean, and one
for the pillar). When the number of �tted components is higher, the distance between
the means of the components is no longer a relevant criterion, and those methods yielded
clusterings such as Figure 7.10.

Our merging procedure almost always (95 times out of 100) recovered the true clus-
ters.

The same experiment performed with 50 datasets of size 1000 (instead of size 300)
strengthened those conclusions in favor of our method in this setting.
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Figure 7.10: Example Solution with Li's Procedures

Conclusions on the Comparisons with Other Methods

Here are some comments on the comparison between Li's methods and ours based on
these simulations. Our method takes into account the overlap between components to
choose which ones to merge, whereas Li's method is based on the distances between the
component means, through the initialization step in each method, and also through the
merging procedure in the �rst method. This sometimes leads to mergings that are not
relevant from a clustering point of view.

Our method is appreciably faster since only one EM estimation has to be run for
each considered number of components, whereas numerous runs are needed with Li's
method. Our procedure can also be applied when the number of clusters is unknown,
unlike Li's method.

We also compared our results with those of a non-model-based clustering method:
Ward's hierarchical method (Ward, 1963). We used Matlab's datacluster function to
apply this procedure in each of the experiments described in this section. Ward's method
always found irrelevant solutions, close to Li's ones, for each of the 200(= 2 × 100)
datasets.

7.5 Flow Cytometry Example

We now apply our method to the GvHD data of Brinkman et al. (2007, page 4201).
Two samples of this �ow cytometry data have been used, one from a patient with the
graft-versus-host disease (GvHD), and the other from a control patient. GvHD occurs
in allogeneic hematopoietic stem cell transplant recipients when donor-immune cells in
the graft attack the skin, gut, liver, and other tissues of the recipient. GvHD is one
of the most signi�cant clinical problems in the �eld of allogeneic blood and marrow
transplantation.

The GvHD positive and control samples consist of 9,083 and 6,809 observations
respectively. Both samples include four biomarker variables, namely, CD4, CD8β, CD3
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and CD8. The objective of the analysis is to identify CD3+ CD4+ CD8β+ cell sub-
populations present in the GvHD positive sample. In order to identify all cell sub-
populations in the data, we use a Gaussian mixture model with unrestricted covariance
matrix. Adopting a similar strategy to that described by Lo et al. (2008, page 4577),
for a given number of components, we locate the CD3+ sub-populations by labeling
components with means in the CD3 dimension above 280 CD3+. This threshold was
based on a comparison with a negative control sample, as explained by Brinkman et al.
(2007, page 4201).

We analyze the positive sample �rst. A previous manual analysis of the positive sam-
ple suggested that the CD3+ cells could be divided into six CD3+ cell sub-populations
Brinkman et al. (2007, page 4201). ICL selected nine clusters, �ve of which correspond
to the CD3+ population (Figure 7.11(b)). Compared with the result shown in Lo et al.
(2008, page 4577), the CD4+ CD8β− region located at the bottom right of the graph is
missing.

BIC selected 12 components to provide a good �t to the positive sample, six of which
are labeled CD3+ (Figure 7.11(a)). The CD4+ CD8β+ region seems to be encapsulated
by the cyan, green, and red components. Starting from this BIC solution, we repeatedly
combined two components causing maximal reduction in the entropy. The �rst three
combinations all occurred within those components originally labeled CD3−, and the
CD4 vs CD8β projection of the CD3+ sub-populations remains unchanged.

The combined solution with nine clusters, in which six are labeled CD3+, provides
the most parsimonious view of the positive sample while retaining the six important
CD3+ cell sub-populations. However, when the number of clusters is reduced to eight,
the magenta cluster representing the CD3+ CD4+ CD8β− population is combined with
the big CD3− cluster, resulting in an incomplete representation of the CD3+ population
(Figure 7.11 (c)). Note that the entropy of the combined solution with nine clusters
(1474) was smaller (i.e. better) than that of the ICL solution (3231). The entropy plot
along with the piecewise regression analysis (Figure 7.12) suggests an elbow at K = 9
clusters, agreeing with the number of clusters returned by the ICL as well as our more
substantively-based conclusion.

Next we analyze the control sample. A satisfactory analysis would show an absence
of the CD3+ CD4+ CD8β+ cell sub-populations. ICL chose seven clusters, three of
which correspond to the CD3+ population (Figure 7.13 (b)). The red cluster on the left
of the graph represents the CD4− region. The blue cluster at the bottom right of the
graph represents the CD4+CD8β− region. It seems that it misses a part of this cluster
near the red cluster. In addition, contrary to previous �ndings in which CD4+ CD8β+

cell sub-populations were found only in positive samples but not in control samples, a
cyan cluster is used to represent the observations in the CD4+ CD8β+ region. These
suggest that the ICL solution could be improved.

BIC selected 10 components, four of which are labeled CD3+ (Figure 7.13(a)). A
green component is found next to the blue component, �lling in the missing part in
the ICL solution and resulting in a more complete representation of the CD4+CD8β−

region. Meanwhile, similarly to the ICL solution, a cyan component is used to represent
the observations scattered within the CD4+ CD8β+ region.

When we combined the components in the BIC solution, the �rst few combinations
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Combined solution. K=9. ENT=1474
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Figure 7.11: GvHD positive sample. Only components labeled CD3+ are shown. (a)
BIC Solution (K = 12). The combined solutions for K = 11 and K = 10 are almost
identical for these CD3+ components. (b) ICL Solution (K = 9). (c) Combined Solution
(K = 9).
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Figure 7.12: (a) Entropy values for the GvHD positive sample. The piecewise regression
analysis suggests that K = 9 is the optimal number of clusters. (b) Di�erences between
successive entropy values.

took place within those components initially labeled CD3−, similarly to the result for
the positive sample. Going from K = 5 to K = 4, the blue and green components in
Figure 7.13(a) were combined, leaving the CD3+ sub-populations to be represented by
three clusters.

After one more combination (K = 3), the cyan component merged with a big CD3−

cluster. Finally we had a �clean� representation of the CD3+ population with no obser-
vations from the CD3+ CD4+ CD8β+ region, consistent with the results of Brinkman
et al. (2007, page 4201) and Lo et al. (2008, page 4577). This solution results in the
most parsimonious view of the control sample with only three clusters but showing all
the relevant features (Figure 7.13(d)). Once again, the entropy of the combined solution
(58) was much smaller than that of the ICL solution (1895). Note that in this case we
ended up with a combined solution that has fewer clusters than the ICL solution. The
entropy plot along with the piecewise regression analysis (Figure 7.14) suggests an elbow
at K = 6, but substantive considerations suggest that we can continue merging past
this number.

7.6 Discussion

We have proposed a way of addressing the dilemma of model-based clustering based on
Gaussian mixture models, namely that the number of mixture components selected is
not necessarily equal to the number of clusters. This arises when one or more of the
clusters has a non-Gaussian distribution, which is approximated by a mixture of several
Gaussians.

Our strategy is as follows. We �rst �t a Gaussian mixture model to the data by max-
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ICL solution. K=7. ENT=1895
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Combined solution. K=6. ENT=365
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Combined solution. K=3. ENT=58
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Figure 7.13: GvHD control sample. Only components labeled CD3+ are shown. (a)
BIC Solution (K = 10). (b) ICL Solution (K = 7). (c) Combined Solution (K = 6).
(d) Combined Solution (K = 3).
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Figure 7.14: (a) Entropy values for the K-cluster Combined Solution for the GvHD
Control Sample. The piecewise regression analysis suggests that K = 6 is the optimal
number of clusters. (b) Di�erences between successive entropy values.

imum likelihood estimation, using BIC to select the number of Gaussian components.
Then we successively combine mixture components, using the entropy of the condi-
tional membership distribution to decide which components to merge at each stage.
This yields a sequence of possible solutions, one for each number of clusters, and in
general we expect that users would consider these solutions from a substantive point of
view.

The underlying statistical model is the same for each member of this sequence of
solutions, in the sense that the likelihood and the modeled probability distribution of
the data remain unchanged. What changes is the interpretation of this model. Thus
standard statistical testing or model selection methods cannot be used to choose the
preferred solution.

If a data-driven choice is required, however, we also describe two automatic ways of
selecting the number of clusters, one based on a piecewise linear regression �t to the
rescaled entropy plot, the other choosing the number of clusters selected by ICL. An
inferential choice could be made, for example using the gap statistic (Tibshirani et al.,
2001). However, the null distribution underlying the resulting test does not belong to
the class of models being tested, so that it does not have a conventional statistical
interpretation in the present context. It could still possibly be used in a less formal
sense to help guide the choice of number of clusters.

Our method preserves the advantages of Gaussian model-based clustering, notably a
good �t to the data, but it allows us to avoid the overestimation of the number of clusters
that can occur when some clusters are non-Gaussian. The mixture distribution selected
by BIC allows us to start the hierarchical procedure from a good summary of the data
set. The resulting hierarchy is easily interpreted in relation to the mixture components.
We stress that the whole hierarchy from K to 1 clusters might be informative.
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Our merging procedure generally improves the entropy over the ICL solution. This
highlights the better �t of the clusters that result from the merging procedure. Note
that our method can also be used when the number of clusters K∗ is known, provided
that the number of mixture components in the BIC solution is at least as large as K∗.

One attractive feature of our method is that it is computationally e�cient, as it uses
only the conditional membership probabilities. Thus it could be applied to any mixture
model, and not just to a Gaussian mixture model, e�ectively without modi�cation. This
includes latent class analysis Lazarsfeld (1950); Hagenaars and McCutcheon (2002),
which is essentially model-based clustering for discrete data.

Several other methods for joining Gaussian mixture components to form clusters have
been proposed. Walther (2002) considered the problem of deciding whether a univariate
distribution is better modeled by a mixture of normals or by a single, possibly non-
Gaussian and asymmetric distribution. To our knowledge, this idea has not yet been
extended to more than one dimension, and it seems di�cult to do so. Our method seems
to provide a simple alternative approach to the problem addressed by Walther (2002),
in arbitrary dimensions.

Wang and Raftery (2002, Section 4.5) considered the estimation of elongated features
in a spatial point pattern with noise, motivated by a mine�eld detection problem. They
suggested �rst clustering the points using Gaussian model-based clustering with equal
spherical covariance matrices for the components. This leads to the feature being covered
by a set of �balls� (spherical components), and these are then merged if their centers
are close enough that the components are likely to overlap. This works well for joining
spherical components, but may not work well if the components are not spherical, as it
takes account of the component means but not their shapes.

Tantrum et al. (2003) proposed a di�erent method based on the hierarchical model-
based clustering method of Ban�eld and Raftery (1993). Hierarchical model-based clus-
tering is a �hard� clustering method, in which each data point is assigned to one group.
At each stage, two clusters are merged, with the likelihood used as the criterion for
deciding which clusters to merge. Tantrum et al. (2003) proposed using the dip test
of Hartigan and Hartigan (1985) to decide on the number of clusters. This method
di�ers from ours in two main ways. Ours is a probabilistic (�soft�) clustering method
that merges mixture components (distributions), while that of Tantrum et al. (2003)
is a hard clustering method that merges groups of data points. Secondly, the merging
criterion is di�erent.

As discussed earlier, Li (2005) assumed that the number of clusters K is known in
advance, used BIC to estimate the number of mixture components, and joined them
using k-means clustering applied to their means. This works well if the clusters are
spherical, but may not work as well if they are elongated, as the method is based on
the means of the clusters but does not take account of their shape. The underlying
assumption that the number of clusters is known may also be questionable in some
applications. Jörnsten and Kele³ (2008) extended Li's method so as to apply it to
multifactor gene expression data, allowing clusters to share mixture components, and
relating the levels of the mixture to the experimental factors.
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7.7 Merging Algorithm

Choose a family of mixture models: {MKmin
, . . . ,MKmax}. General Gaussian mixture

models are recommended, since the purpose is to take advantage of the nice approxima-
tion properties of the Gaussian mixture models to get a good estimate of the distribution
of the data, through the BIC criterion.

Recall the method consists of �rst estimating the data distribution through BIC, and
then merging hierarchically some of the obtained classes to get mixtures of Gaussian
mixtures. The criterion to choose which classes to merge at each step is the decrease of
entropy, which is to be maximized.

1. Compute MLE(K) for each model using the EM algorithm:

∀K ∈ {Kmin, . . . , Kmax}, θ̂K ∈ arg max
θK∈ΘK

log p(x | K, θK)

2. Compute the BIC solution:

K̂BIC = argmin
K∈{Kmin,...,Kmax}

{
− log p(x | K, θ̂K) +

DK

2
log n

}

3. Compute the density fKk of each combined cluster k for each K from K̂BIC to
Kmin:

∀k ∈ {1, . . . , K̂BIC}, f K̂
BIC

k (·) = π̂K̂
BIC

k φ

(
· | ω̂K̂BICk

)
.

For K = K̂BIC, . . . , (Kmin + 1):

� Choose the clusters l and l′ to be combined at step K → K − 1 :

(l, l′) = argmax
(k,k′)∈{1,...,K}2, k 6=k′

{
−∑n

i=1

{
τKik log(τKik ) + τKik′ log(τKik′)

}

+
∑n

i=1(τKik + τKik′) log(τKik + τKik′)

}
,

where τKik =
fKk (xi)∑K
j=1 f

K
j (xi)

is the conditional probability of component k given

the K-cluster combined solution.

� De�ne the densities of the combined clusters for the (K-1) cluster solution by
combining l and l′:

fK−1
k = fKk for k = 1, . . . , (l ∧ l′ − 1), (l ∧ l′ + 1), . . . , (l ∨ l′ − 1);

fK−1
l∧l′ = fKl + fKl′ ;

fK−1
k = fKk+1 for k = l ∨ l′, . . . , (K − 1).
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4. To select the number of clusters through ICL:

K̂ICL = argmin
K∈{Kmin,...,Kmax}

{
− log p(x | K, θ̂K)−

n∑

i=1

K∑

k=1

τik(θ̂K) log τik(θ̂K) +
DK

2
log n

}
,

where τik(θ̂K) =
π̂Kk φ(xi|ω̂Kk )∑K
j=1 π̂

K
j φ(xi|ω̂Kj )

is the conditional probability of component k given

the MLE for the model with K Gaussian components.
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218 Introduction

Presentation. This chapter deals with a work in progress. This is a collaboration
with Gilles Celeux and Ana Sousa Ferreira. The notations have been updated to be
consistent with the thesis. Thus the reader who already read the chapters introducing
mixture models, model-based clustering and the BIC and ICL penalized likelihood cri-
teria, may skip Section 8.2. It has been left in the chapter to make it self-contained.
This work takes advantage of the idea that a model selection criterion should take into
account the user's purpose. This is the idea underlying the derivation of ICL (see Sec-
tion 2.1.4 and Chapter 4), when the purpose is clustering. Now, assume that beside the
observations, an external classi�cation is available, which is expected to help enlighten
the classi�cation derived from the observations. The idea is that a class structure in
the data distribution may be revealed by the model-based approach and that the cor-
responding classi�cation may be � or not � related to the external classi�cation. A
penalized criterion is derived, based on a heuristics analogous to that which originally
led to ICL, which purpose is to select a number of classes to this aim. It involves
the study of contingency tables between the considered external classi�cation and the
classi�cation derived from the model-based study. This is notably illustrated by a real
dataset, for which several external classi�cations are available but only one in�uences
the selection of the number of components.

8.1 Introduction

In model selection, assuming that the data arose from one of the models in competi-
tion is often somewhat unrealistic and could be misleading. However this assumption is
implicitly present in standard model selection criteria such as AIC or BIC. This �true
model� assumption could lead to overestimate the model complexity in practical situ-
ations. On the other hand, a common feature of standard penalized likelihood criteria
such as AIC and BIC is that they do not take into account the modeling purpose. Our
opinion is that taking account of the modeling purpose when selecting a model would
lead to more �exible penalties favoring useful and parsimonious models. This point of
view could be exploited in many statistical learning situations. Here, it is developed
in a model-based clustering context to choose a sensible partition of the data favoring
eventually partitions leading to a relevant interpretation with respect to external qual-
itative variables. The chapter is organized as follows. In Section 8.2, the framework of
model-based clustering is described. Our new penalized likelihood criterion is presented
in Section 8.3. Numerical experiments on simulated and real datasets are presented in
Section 8.4 to illustrate the behavior of this criterion and highlight its possible interest.
A short discussion section ends the chapter.

8.2 Model-Based Clustering

Model-based clustering consists of assuming that the dataset to be classi�ed arises from a
mixture model and to associate each class with one of the mixture components. Embed-
ding cluster analysis in this precise framework is useful in many aspects. In particular,
it allows to choose the number K of classes in a proper way: Choosing K is choosing
the number of mixture components.
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8.2.1 Finite Mixture Model

Data to be classi�ed x in Rnd are assumed to arise from a mixture

f(xi; θK) =
K∑

k=1

πkφ(xi;ωk)

where the πk's are the mixing proportions and φ( . ;ωk) denotes density (as the d-
dimensional Gaussian density) with parameter ωk, and θK = (π1, . . . , πK−1, ω1, . . . , ωK).
A mixture model is a latent structure model involving unknown label data z =
(z1, . . . , zn) which are binary vectors with zik = 1 if and only if xi arises from com-
ponent k. Those indicator vectors de�ne a partition P = (P1, . . . , PK) of data x with
Pk = {xi : zik = 1}. The maximum likelihood estimator θ̂K is generally derived with the
EM algorithm (see Section 1.2; Dempster et al., 1977; McLachlan and Krishnan, 1997).
From a density estimation perspective, a classical way for choosing a mixture model is
to select the model maximizing the integrated likelihood,

f(x;K) =

∫
f(x; θK)η(θK)dθK ,

f(x; θK) =
n∏

i=1

f(xi; θK),

η(θK) being a weakly informative prior distribution on θK . It can be approximated with
the BIC criterion (see Section 2.1.3)

log f(x;K) ≈ log f(x; θ̂K)− DK

2
log n,

with θ̂K the maximum likelihood estimator and DK the number of free parameters in
the mixture model with K components. Numerical experiments (see for instance Roeder
and Wasserman, 1995) show that BIC works well at a practical level for mixture models.

8.2.2 Choosing K From the Clustering Viewpoint

In the model-based clustering context, an alternative to the BIC criterion is the ICL cri-
terion (see Section 2.1.4; Biernacki et al., 2000) which aims at maximizing the integrated
likelihood of the complete data (x, z)

f(x, z;K) =

∫

ΘK

f(x, z; θK)η(θK)dθK ,

It can be approximated with a BIC-like approximation:

log f(x, z;K) ≈ log f(x, z; θ̂∗K)− DK

2
log n

θ̂∗K = arg max
θK

f(x, z; θK).
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But z and θ̂∗K are unknown. Arguing that θ̂K ≈ θ̂∗K if the mixture components are well
separated for n large enough, Biernacki et al. (2000) replace θ̂∗K by θ̂K and the missing
data z with ẑ = MAP(θ̂K) de�ned by

ẑik =

{
1 if argmax` τi`(θ̂K) = k
0 otherwise,

τik(θ̂K) denoting the conditional probability that xi arises from the kth mixture compo-
nent (1 ≤ i ≤ n and 1 ≤ k ≤ K):

τik =
πkφ(xi;ωk)∑K
`=1 π`φ(xi;ω`)

.

Finally the ICL criterion is

ICL(K) = log f(x, ẑ; θ̂K)− DK

2
log n.

Roughly speaking ICL is the criterion BIC penalized by the estimated mean entropy

ENT(K) = −
K∑

k=1

n∑

i=1

τik(θ̂K) log τik(θ̂K) ≥ 0.

Because of this additional entropy term, ICL favors values of K giving rise to parti-
tioning the data with the greatest evidence. The derivation and approximations leading
to ICL are questioned in Chapter 4. However, in practice, ICL appears to provide
a stable and reliable estimate of K for real datasets and also for simulated datasets
arising from mixtures with well separated components. ICL, which is not aiming at
discovering the true number of mixture components, can underestimate the number of
components for simulated data arising from mixture with poorly separated components
(see Biernacki et al., 2000).

Remark that, for a given number of components K and a parameter θK , the class of
each observation xi is assigned according to the MAP rule de�ned above.

8.3 A Particular Clustering Selection Criterion

Suppose that the problem is to classify observations described with vectors x's. But, in
addition, a known classi�cation u, associated to a qualitative variable not directly related
to the variables de�ning the vectors x's, is de�ned on the population. Relating the
classi�cation z and the classi�cation u could be of interest to get a suggestive and simple
interpretation of the classi�cation z. With this purpose in mind, it is possible to de�ne
a penalized likelihood criterion which selects a model providing a good compromise
between the mixture model �t and its ability to lead to a clear classi�cation of the
observations well related to the external classi�cation u. Ideally, it is wished that x and
u are conditionally independent knowing z, as holds if u can be written as a function
of z. Let us consider the following heuristics. The problem is to �nd the mixture model
m maximizing the integrated completed likelihood

f(x,u, z;m) =

∫
f(x,u, z; θm)η(θm)dθm.
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Using a BIC-like approximation as in Biernacki et al. (2000),

log f(x,u, z;m) ≈ log f(x,u, z; θ̂∗m)− νm
2

log n,

with
θ̂∗m = arg max

θm
f(x,u, z; θm).

An approximation analogous to that leading to ICL is done: θ̂∗m is replaced by θ̂m,
the maximum likelihood estimator. z is then deduced from the MAP rule under this
estimator. Assuming moreover that x and u are conditionally independent knowing z,
which should hold at least for mixtures with enough components, this yields

log f(x,u, z;m) ≈ log f(x, z; θ̂m) + log f(u | z; θ̂m)− Dm

2
log n,

and the estimation of log f(u | z; θ̂m) is derived from the contingency table (nk`) relating
the qualitative variables u and z: for any k ∈ {1, . . . , K} and ` ∈ {1, . . . , Umax}, Umax
being the number of levels of the variable u,

nk` = card
{
i : zik = 1 and ui = `

}
.

Finally, this leads to the Supervised Integrated Completed Likelihood (SICL) criterion

SICL(m) = ICL(m) +
Umax∑

`=1

K∑

k=1

nk` log
nk`
nk·

,

where nk. =
∑K

`=1 nk`. The last additional term
∑Umax

`=1

∑K
k=1 nk` log nk`

nk·
is all the smaller

that the link between the qualitative variables u and z is stronger.

8.4 Numerical Experiments

We �rst present simple applications to show that the SICL criterion is doing the job
it is expected to do1. The �rst example is an application to the Iris dataset (Fisher,
1936) which consists of 150 observations of four measurements (x) for three species of
Iris (u). Those data are depicted in Figure 8.1(a) and the variations of criteria BIC, ICL
and SICL in function of K are provided in Figure 8.1(b). While BIC and ICL choose
two classes, SICL selects the three-component mixture solution which is closely related
to the species of Iris, as attested by the contingency table between the two partitions
(Table 8.1).

For the second experiment, we simulated 200 observations from a Gaussian mixture
in R2 depicted in Figure 8.2(a) and the variable u corresponds exactly to the mixture
component from which each observation arises. Diagonal mixture models (i.e. with
diagonal variance matrices) are �tted. The variations of the criteria BIC, ICL and
SICL in function of K are provided in Figure 8.2(b). We repeated this experiment
with 100 di�erent simulated datasets. BIC almost always recovers the four Gaussian
components, while ICL almost always selects three because of the two very overlapping

1Details on the simulation settings and the applied algorithms may be found in Section A.2.
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Figure 8.1: Comparison of AIC, BIC, ICL and SICL to choose K for the Iris dataset

PPPPPPPPPSpecies
k

1 2 3

Setosa 0 50 0
Versicolor 45 0 5
Virginica 0 0 50

Table 8.1: Iris data. Contingency table between the �species� variable and the classes
derived from the three-component mixture.

ones (the �cross�). Since the solution obtained through MLE with the four-component
mixture model yields classes nicely related to the considered u classes, SICL favors the
four-component solution more than ICL does. But since it also takes the overlapping
into account, it still selects the three-component model about half of the times (56 times
out of 100 in our experiments), and selects the four-component model in almost all the
remaining cases (40 out of 100). Figure 8.2(b) illustrates that the choice of SICL is not
clear.
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Figure 8.2: Comparison of BIC, ICL and SICL to choose K for the �Cross� dataset

In the two next experiments, we illustrate that SICL is not harmful when u cannot
be related with any classi�cation yielded by one of the mixture distributions. At �rst,
we consider a situation where u is a two-class partition which has no link at all with a
four-component mixture data. In Figure 8.3(a) the classes of u are in red and in blue.
As is apparent from Figure 8.3(b), SICL does not change the solution K = 4 provided
by BIC and ICL.

Then we consider a two-component mixture and a two-class u partition �orthogonal�
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Figure 8.3: Comparison of BIC, ICL and SICL to choose K for this simulated dataset

to this mixture. In Figure 8.4(a) the classes of u are in red and in blue. As is apparent
from Figure 8.4(b), SICL does not change the solution K = 2 provided by BIC and ICL
despite this solution has no link at all with the u classes.
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Figure 8.4: Comparison of BIC, ICL and SICL to choose K for this Simulated dataset

8.4.1 Real Dataset: Teachers Professional Development

The data arise from an international survey about teachers' views on the opportunities
for their learning and professional development at workplace in Finland, Portugal and
Serbia. Only data for teachers in Portugal are considered.

The dataset consists of discrete data background informations about the teachers and
their working conditions on the one hand, and quantitative data which are their answers
to a questionnaire. The original dataset involves 252 teachers, but some data are missing.
Missing data among the background information variables do not cause any trouble, as
there are not too many. But we handle missing data among the quantitative variables by
removing the corresponding individuals from the study. To keep an interesting sample
size, we �rst removed some variables with many missing data, and then the individuals
with at least one missing value among the remaining quantitative variables. A Principal
Component Analysis highlights that one of the individuals is an outlier: it has been
removed from the study. The actual dataset is then composed of 190 individuals for
which are available:

� Nine background discrete variables, with some missing data:
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� gender;

� age (by classes);

� academic quali�cation;

� years of experience (by classes);

� years of experience at current school (by classes);

� level of teaching;

� discipline of teaching;

� school type (rural, suburban, urban);

� number of inhabitants in the municipality (by classes).

� Twelve quantitative data corresponding to the questionnaire answers, with no
missing data:

� two variables about �opportunities for learning�;

� �ve variables about �professional development�;

� �ve variables about �motives�.

The quantitative variables are scales with common range and spherical Gaussian
mixture models (i.e. with variance matrices proportional to the identity matrix) with
equal variance matrices2 have been �tted through the EM algorithm with the Mixmod
software (Biernacki et al., 2006) to the obtained data for numbers of components K
between one and ten.
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Figure 8.5: BIC, ICL, SICL (for the �school type� quantitative variable) in function of
K.

AIC selects ten components; BIC and ICL select four components. Let us however
remark that the selection of the two last criteria is not very clear: from Figure 8.5, the
three and four-component solutions have values very close from each other.

SICL does not select the same number of components, depending on the involved
qualitative variable. It selects four components, as BIC or ICL, for all qualitative vari-
ables but the eighth: �school type�, in which case it selects three components. This is an

2Those models are denoted by [pk_L_I] in Celeux and Govaert (1995).
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interesting result: this illustrates that the classes yielded by the Gaussian components
of the three-component solution must be related to the �school type� classes. This is
no surprise that this is a relevant variable. The study of the contingency tables (see
Table 8.2, Table 8.3 and Table 8.4) con�rms that the three-component classes are better
related than the four-component classes to the three classes deduced from the �school
type� variable. One of the Gaussian components can be regarded as re�ecting the ur-
ban school type, whereas an other can be regarded as a �suburban� component. The
proportion of rural schools, not surprisingly, is almost the same in any component (see
Table 8.4).

XXXXXXXXXXXXSchool Type
k

1 2 3

Rural 14 9 18
Suburban 32 20 16
Urban 25 17 38

Table 8.2: Teachers dataset. Contingency table between the �school type� external
variable and the classes derived from the three-component mixture.

XXXXXXXXXXXXSchool Type
k

1 2 3 4

Rural 10 9 10 12
Suburban 22 18 15 13
Urban 19 16 18 27

Table 8.3: Teachers dataset. Contingency table for the education data between the
�school type� external variable and the classes derived from the four-component mixture.

Interestingly, SICL helps choosing between the three and four-component solutions
by relating the corresponding classi�cations to the external variable as it is relevant.

8.5 Discussion

The criterion SICL has been conceived in the model-based clustering context to choose
a sensible number of classes possibly well related to a qualitative variable of interest
which is not entering into the variables used to design the classi�cation. This criterion
can be useful to draw attention to a well-grounded classi�cation related to this external
qualitative variable. It is an example of model selection criterion taking account of
the modeler purpose to choose a useful and stable model. We think that this SICL
criterion could have many fruitful applications as illustrated in the real data example
for an education dataset.
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In conclusion, let us stress that clustering is a challenging problem which de�nitely
deserves the interest it generates among the statistical � and others � community:
it answers a real need of many applications in various areas and is quite a stimulating
research �eld. Probably the main unanswered question is that of a precise de�nition
� in statistical terms � of what is expected to be done: as a matter of fact there is
no clear consensus yet about the objective, even in the case where the data distribution
would be known.

The theoretical study of ICL is an interesting and promising task from this point of
view: since it seems to meet a notion of what people expect to be a class, the idea is that
understanding what it does is a �rst step to understand what a class should be and to
de�ne an explicit aim for clustering. The usual model-based clustering approach, based
on the maximum likelihood estimator and criteria such as BIC, provides an interesting
methodology but the statistical aim is not easy to identify. This is illustrated by the
discussion about BIC, ICL (with MLE), and mixtures of mixtures: it is di�cult to
choose between a good �t, which seems necessary to get a solid ground for the study,
and a relevant number of classes. De�ning the new Lcc contrast enables to recast the
clustering question in a fully de�ned statistical framework. This is driving the logic
underlying ICL to its conclusion. The choice of the contrast may still be discussed,
but it provides an objective to get components both reasonable with respect to the
data distribution and which yield an interesting, �rm classi�cation. Then the statistical
study may be driven with usual tools: Chapter 4 illustrates how the study of this
contrast is analogous to the study of the usual likelihood. The same ideas employed
fruitfully with the usual likelihood contrast for density estimation may be applied to the
new contrast: for example, we saw in Chapter 4 that the consistent penalized criteria
correspond to the same range of penalties than in the likelihood framework, and that the
slope heuristics may be straightforwardly adapted � though not theoretically validated
with this new contrast yet. Another possibility which should probably be considered is
cross-validation, as Smyth (2000) does with the observed likelihood. We learnt about
the works of Perry (2009) about cross-validation for unsupervised learning, and notably
for choosing the number of axes to keep when driving a Principal Component Analysis,
while writing this conclusion. Actually cross-validation, instead of penalized criteria,
may straightforwardly be adapted to the problem of choosing the number of components
for clustering with the Lcc contrast considered. This would probably be worth further
studying this possibility. Finally ICL is better understood as an approximation of Lcc-
ICL. But the link and di�erences between both criteria should be further studied, at
least practically. It has been mentioned that ICL o�ers the advantage of being more
easily computed. This may be decisive in some settings, but the price of this needs be
better understood. The provided simulations show that the MLE and MLccE estimators
may be quite di�erent at times, but do not really highlight situations where both model
selection criteria would sensibly di�er. Such situations should be studied.

This raises the question of the computation of the MLccE estimator. Solutions are
provided, which enable to compute it in the considered situations. Let us highlight that
the Km1 initialization method (Section 5.1.3) highly improves the solutions, and that
we also advocate its use for the usual MLE computation. But those practical methods
are quite greedy: the computation time for the reported simulations is counted in hours,
and even in days for an experiment with a hundred datasets, run on a modern computer.
This computation cost may get prohibitive for some applications, notably as the number
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of considered classes is high. New and more e�cient algorithms may be to appear in
the forthcoming years, and perhaps the solutions considered in this thesis may still be
markedly improved. Anyhow improvements of the possibilities of such methods follow
mechanically from the progress of computers capabilities.

The question of how to impose bounds on the parameter space seems to be satisfy-
ingly answered from a practical point of view (Section 5.1.4). Let us however highlight
that the choice of the variances lower bound (typically σ2

0 = detmin in a multivari-
ate setting) is not merely a technical assumption. This is essential in a mixture model
framework: we mentioned that the contrast (the observed likelihood and the conditional
classi�cation likelihood as well) is not upper-bounded if the component variances are
not lower-bounded. A sensible choice of the variance bound is then essential for a rele-
vant clustering analysis. This choice may be decisive: a small value may favor spurious
solutions and prevent relevant solutions while a too large value may hide the structure
of interesting classes. Let us illustrate to what extent it may a�ect the study by the
following informal remarks about the slope heuristics applied to the Lcc contrast. They
apply likewise to the usual likelihood contrast. First remark that, for a small enough
lower-bound on the variances and a great number of components K − 1, it may be that
any supplementary component is �tted such that its mean equals an observation value
xi0 , and its covariance matrix has minimal determinant value σ2

0. Let us write (recall
de�nitions from Chapter 4.2.1)

logLcc(θ̂K) =
∑

i 6=i0

K∑

k=1

τ̂ik log π̂kφ̂k(xi) +
K∑

k=1

τ̂i0k log π̂kφ̂k(xi0)

≈
∑

i 6=i0

K−1∑

k=1

τ̂ik log π̂kφ̂k(xi) + τ̂i0K log π̂K φ̂K(xi0)︸ ︷︷ ︸
≈log 1

n
( 1

2π
)
d
2 1
σ0

.

Should this occur each time a supplementary component is added, then the relation
between L(θ̂K) and K is mechanically roughly linear, with a slope depending on σ0. We
do not know yet whether this may be the basis of a validation of the slope heuristics
in this framework, which would then be quite simple, or whether on the contrary, this
reveals a phenomenon which may mask the slope heuristics, what we are afraid of.
Remark that the method deduced from the slope heuristics should anyway provide a
relevant number of components in such a situation with a sensible value of σ0 since the
phenomenon is only expected to occur for values K larger than the relevant number of
classes. This should be further studied, with assumptions being precisely speci�ed and
approximations made rigorous. But anyhow, this illustrates how decisive the choice of
σ2

0 can be. Insights for this choice are given in Section 5.1.4 and could presumably be
improved.

The results of Chapter 4 could be extended to get an oracle inequality. This might
notably help to better understand what the �good� measure of the complexity of a
mixture model is. As a matter of fact this would involve a �ner control of the bracketing
entropies, from which might emerge a complexity measure which we are not convinced
it would be the number of free parameters of the model, as already discussed in the
conclusion of Chapter 4 (see page 146).

The slope heuristics provides a promising method to calibrate the penalties of e�-
cient criteria, based on the data, whatever the contrast (L or Lcc). We presented two



230

approaches for its application: the dimension jump and the data-driven slope estima-
tion. Hopefully the Matlab package introduced in Chapter 5 shall contribute to its use.
This would notably enable to get more material to compare both practical approaches.
As a matter of fact, the reported simulations show that the data-driven slope estimation
may be more reliable and less computationally expensive than the dimension jump � at
least in some situations.

Finally, the methodology reported in Chapter 7 seems to be an interesting approach
for model-based clustering. As we advocate in this chapter, users of such a method
should consider the whole hierarchy rather than a single solution. However it would
presumably be an interesting further work to link this work with those dedicated to the
choice of the number of classes.
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A.1 Theorem 7.11 in Massart (2007)

The following Theorem of Massart (2007) is referred to several time in this thesis. Please
refer to Massart (2007) for discussion and proofs. Only the notation is changed slightly.

Recall the de�nition of the Hellinger distance between two densities t and u:

dhel(u, t) =
1√
2
‖
√
t−√u‖2.

Recall the de�nition of the L2 bracketing entropy of
√
S ⊂ L2 from Section 4.3.2,

denoted by H(ε,
√
S) = E[ ](ε,

√
S, ‖ · ‖2).

Let (Sm)m∈M be a given collection of models.

Now, a function φm on R+ is considered such that φm is nondecreasing, x 7→ φm(x)
x

is nonincreasing on ]0,+∞[ and for every σ ∈ R+ and every u ∈ Sm
∫ σ

0

√
H
(
x,
√
Sm(u, σ)

)
dx ≤ φm(x),

where Sm(u, σ) = {t ∈ Sm : ‖
√
t−√u‖2 ≤ σ}.

The following separability assumption is made: There exists some countable subset
S ′m of Sm and a set Ω ⊂ Rd with λ(Rd\Ω) = 0 such that for every t ∈ Sm, there exists
some sequence (tk)k≥1 of elements of S ′m such that for every x ∈ Ω, log tk(x) tends to
log t(x) as k tends to in�nity.

Then, the following Theorem holds.

Theorem 11 (Theorem 7.11 in Massart, 2007)
Let X1, . . . , Xn be i.i.d. random variables with unknown density s with respect to some
positive measure λ. Let {Sm}m∈M be some at most countable collection of models, where
for each m ∈M, the elements of Sm are assumed to be probability densities with respect
to λ and Sm ful�lls the separability assumption above. We consider a corresponding
collection of ρ-MLEs (ŝm)m∈M which means that for every m ∈M1

Pn
[
− log ŝm

]
≤ inf

t∈Sm
Pn
[
− log t

]
+ ρ.

Let {xm}m∈M be some family of nonnegative numbers such that
∑

m∈M

e−xm = Σ <∞,

and for every m ∈M considering φm which ful�lls the property stated above, de�ne σm
as the unique solution of the equation

φm(σ) =
√
nσ2.

Let pen :M→ R+ and consider the penalized log likelihood criterion

crit(m) = Pn
[
− log ŝm

]
+ pen(m).

1With: ∀g measurable,Png = 1
n

∑n
i=1 g(Xi).
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Then there exists some absolute constants κ and C such that whenever

pen(m) ≥ κ
(
σ2
m +

xm
n

)
for every m ∈M,

some random variable m̂ minimizing crit overM does exist and moreover, whatever the
density s

Es
[
d2
hel

(
s, ŝm̂

)]
≤ C

(
inf
m∈M

(
dKL(s, Sm) + pen(m)

)
+ ρ+

Σ

n

)
,

where, for every m ∈M, dKL(s, Sm) = inf
t∈Sm

dKL(s, t).

A.2 Simulation Settings

Let us give in this section the precise settings of the simulation studies reported in the
thesis: in Section A.2.1 are given the parameters of the simulated datasets and the
interested reader shall �nd the precise methodologies and tuning constants employed to
run the algorithms in Section A.3.

A.2.1 Simulated Datasets Settings

All simulated datasets are mixtures, and mostly Gaussian mixtures, which parameters
are given now. A Gaussian distribution with parameters µ and Σ is denoted by N (µ,Σ),
while a uniform distribution over the set C ⊂ Rd is denoted by U(C). The rotation
matrix with angle θ is denoted by Rθ : Rθ =

( cos(θ) − sin(θ)
sin(θ) cos(θ)

)
.
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by [pk λk Ck] in Celeux and Govaert, 1995).
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�Bubbles� Dataset (Section 5.2.4) For the sake of readability, let us �rst de�ne
the �bubble� distribution , de�ned as a spherical Gaussian mixture distribution in R3

and denoted by B:
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�Bubble� Distribution, denoted by B n = 1000. This is a �spherical�
seven-component Gaussian mixture (i.e. in the family denoted by [pk λk I] in Celeux

and Govaert, 1995).
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Now, the �bubbles� dataset is a mixture of three B distributions:
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�Cross� Dataset (Section 8.4)
n = 200. This is a �diagonal� four-component Gaussian mixture (i.e. in the family

denoted by [pk λk Bk] in Celeux and Govaert, 1995).
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Simulated Dataset of Section 8.4
n = 200. This is a �diagonal� four-component Gaussian mixture (i.e. in the family

denoted by [pk λk Bk] in Celeux and Govaert, 1995).
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Simulated Dataset of Section 8.4
n = 200. This is a �diagonal� two-component Gaussian mixture (i.e. in the family

denoted by [pk λk Bk] in Celeux and Govaert, 1995).
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A.3 Algorithms Settings

A.3.1 EM

The EM algorithm has been applied in this thesis mainly with Matlab and the mixmod
software (Biernacki et al., 2006). The initialization procedures we involved di�ered �
both by the involved methods and by the choice of the tuning constants � from those
implemented in mixmod and have been introduced in Section 1.2.2 (Small_EM) and
Section 5.1.3 (Km1). Let us give typical tuning constants that may be involved for
these. They may di�er a little from a simulation study to another, though.

Small_EM

� Number of random starts before each �short run� of EM : 25.

� Length of each short run of EM (for each of the 25 tries): 50 iterations.

� Length of the �nal long run of EM : 1000 iterations.

Km1

� Length of each short run of EM (for each one of the K − 1 tries): 50 iterations.

� Length of the �nal long run of EM : 1000 iterations.

A.3.2 Lcc-EM

The notation below refers to the corresponding sections. This algorithm has been im-
plemented and run with Matlab.

Let us �rst describe how each M step of the Lcc-EM algorithm (Section 5.1.1) is per-
formed. Since the quantity Q(θ, θj)− ENT(θ;X) has to be numerically optimized, the
Matlab fminsearch2 function is applied. This function must be provided an initialization
parameter and the number of iterations of the function algorithm can be speci�ed. It
is denoted by iter_fmin in the sequel. Our Lcc-EM algorithm is then parameterized by
the number of iterations iter_Lcc_EM, the number of iterations iter_fmin and the ini-
tialization parameter. Moreover, minimum accepted values for the covariance matrices
determinants and the proportions may be speci�ed and are imposed in this case through
the method introduced in Section 5.1.43.

Let us now give typical tuning constants for the Lcc-EM algorithm initialization steps,
which have been introduced in Section 5.1.2 (CEM) and Section 5.1.3 (Small_Lcc_EM,
Km1). This may have to be adapted according to each particular situation.

2According to the Matlab Software documentation, �fminsearch uses the simplex search method of
Lagarias et al. (1998). This is a direct search method that does not use numerical or analytic gradients.�
This is interesting since the gradient here is tough to be computed.

3In practice, it did not seem necessary to impose bounds on the proportions, and a typical value for
the minimum accepted covariance determinant is 10−4 for the considered datasets when the dimension
is 2.
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CEM

� A 10-times run of CEM through mixmod (with 100 iterations of the algorithm
and a standard Small_EM initialization) is performed.

� This �rst step is repeated 50 times, and the best solution (according to the Lcc

values) is chosen.

� A long run of Lcc-EM with iter_fmin=100 is performed until one of the following
stopping criteria is reached: either 100 iterations, or the increase of Lcc along an
algorithm iteration is less than 10−2.

Small_Lcc_EM

� When initializing a component at random, the probability to choose the mean
uniformly at random in the range of the observations (instead of choosing it at
random among the observations values) is set to be 10%.

� ns has been chosen as max(floor(nr
K

), 5) (�oor is a Matlab function which rounds
its argument to the nearest integer less than or equal to it). nr is the size of the
sample, or of the subsample in case a subsample is considered at this step.

� Number of random updates of a component chosen at random (followed by a single
shot of Lcc-EM, with iter_fmin=100 each), before each �short run� of Lcc-EM (5
iterations with iter_fmin=1000) : 5.

� All this procedure is repeated 25 times and followed by a long run of Lcc-EM (10
iterations with iter_fmin=1000) .

Km1

� Length of each short run of Lcc-EM (for each one of the K−1 tries): 25 iterations,
with iter_fmin=50.

� Length of the �nal long run of Lcc-EM : 10 iterations, with iter_fmin=1000.

Final Lcc-EM run Finally, a long run of 15 iterations (with iter_fmin=1000) initial-
ized at the best solution obtained along the initialization steps, is performed.
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Sélection de modèle pour la classi�cation non supervisée.
Choix du nombre de classes.

Résumé. Le cadre principal de cette thèse est la classi�cation non supervisée, traitée
par une approche statistique dans le cadre des modèles de mélange. Plus particulière-
ment, nous nous intéressons au choix du nombre de classes et au critère de sélection
de modèle ICL. Une approche fructueuse de son étude théorique consiste à considérer
un contraste adapté à la classi�cation non supervisée : ce faisant, un nouvel estima-
teur ainsi que de nouveaux critères de sélection de modèle sont proposés et étudiés.
Des solutions pratiques pour leur calcul s'accompagnent de retombées positives pour
le calcul du maximum de vraisemblance dans les modèles de mélange. La méthode de
l'heuristique de pente est appliquée pour la calibration des critères pénalisés considérés.
Aussi les bases théoriques en sont-elles rappelées en détails, et deux approches pour son
application sont étudiées.
Une autre approche de la classi�cation non supervisée est considérée : chaque classe peut
être modélisée elle-même par un mélange. Une méthode est proposée pour répondre
notamment à la question du choix des composantes à regrouper.
En�n, un critère est proposé pour permettre de lier le choix du nombre de composantes,
lorsqu'il est identi�é au nombre de classes, à une éventuelle classi�cation externe connue
a priori.

Mots-clés : Classi�cation non supervisée, Sélection de modèle, Modèles de mélange,

Vraisemblance classi�ante, Critères pénalisés, BIC, ICL, Minimisation de contraste, Sélection
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Model Selection for Clustering.
Choosing the Number of Classes.

Abstract. The reported works take place in the statistical framework of model-based
clustering. We particularly focus on choosing the number of classes and on the ICL
model selection criterion. A fruitful approach for theoretically studying it consists of
considering a contrast related to the clustering purpose. This entails the de�nition
and study of a new estimator and new model selection criteria. Practical solutions are
provided to compute them, which can also be applied to the computation of the usual
maximum likelihood estimator within mixture models. The slope heuristics is applied
to the calibration of the considered penalized criteria. Thus its theoretical bases are
recalled in details and two approaches for its application are studied.
Another approach for model-based clustering is considered: each class itself may be
modeled by a Gaussian mixture. A methodology is proposed, notably to tackle the
question of which components have to be merged.
Finally a criterion is proposed, which enables to choose a number of components � when
identi�ed to the number of classes � related to a known external classi�cation.

Keywords: Model-based clustering, Model selection, Mixture models, Classi�cation likeli-

hood, Penalized criteria, BIC, ICL, Contrast minimization, Data-driven model selection, Slope

heuristics, EM, Breakdown point, Mixtures of mixtures, SICL.


