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Notation

The definition of the following notation will be reminded for their first appearance in the
thesis and will be reused without mandatory recall. In general, the random variables are
noted in capital letters, their realizations in small letters.

Variables

X unobserved variable
Y observed variable
U measurement error (white noise)

Probability distributions

N (µ,Σ) Gaussian distribution with mean µ and variance matrix Σ
IW(Λ, ν) Inverse-Wishart distribution with degrees of freedom ν and inverse scale matrix Λ
U [a, b] Uniform distribution on [a, b]
π(θ) Prior distribution of the parameter θ which is assumed to be random
π(θ | y,d) Posterior distribution of θ given observations (y,d)
π(X | θ) Density of X knowing its parameter θ

Mathematical symbols

IA Indicator function of the event A
L(θ; y,d) Log-likelihood of θ given observations (y,d)
L(θ; y,d) Likelihood of θ given observations (y,d)
∝ Be equal to up to a multiplicative constant
exp∝ Be equal to up to an additive constant
L
 Convergence in law
P−→ Convergence in probability
⊥⊥ Be statistically independent
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Parameters

θ Characterizing parameters (mean and variance term) for the Gaussian distribution
of the unobserved variable X

R Variance matrix of the white noise U

Abbreviations

MSE Mean squared error
DOE Design of experiments
MCMC Monte Carlo Markov chain
MLE Maximum likelihood estimation
EM Expectation Maximization algorithm
ECME Expectation-Conditional Maximization either algorithm
SEM Stochastic expectation maximization algorithm
MCEM Monte Carlo expectation maximization algorithm
SAEM Stochastic approximation expectation maximization algorithm
GP Gaussian process
SA Simulated Annealing algorithm
MC Monte Carlo
DAC Criterion of consistency between the prior and the data as well as the choice of DOE
KL Kullback-Leibler divergence
MMSE Maximum Mean Square Error
W-IMSE Weighted-Integrated Mean Square Error criterion
E-CD Expected-Conditional Divergence criterion
pdf Probability density function
cdf Cumulative distribution function
i.e. that is (id est)
e.g. example given, for example
c.f. bring together (confer)
i.i.d. independent and identically distributed
a.s. almost surely



General introduction

A. Context and objective of thesis

Inverse problems, as an important topic widely treated in science and engineering field, are
gaining fast development. Typically, an inverse problem is a problem of quantifying an
influential variable that cannot be observed for technical or cost reasons, but for which there
are indirect observations. The observations are assumed to be explained by a black-box type
expensive-to-compute function. This variable is “influential” in the sense that it is considered
as the major source of uncertainty affecting the behaviour of the decision variable. This thesis
focuses on providing a probabilistic solution to such inverse problems, by accounting for the
variability of the model inputs. The inverse problem studied in this thesis is part of the
methodology of uncertainty treatment which has been defined by a group involving different
industrial and academic organizations (De Rocquigny et al., 2008, (23), pp. 233).

The following example is to consider an industrial plant Σ located near a river and submitted
to flood risk. The water level at the site is denoted by Z. It can be simulated using a
hydraulic code G, with the observed input D and the unobserved input X. Input D is often
related to experimental conditions typically the flow of the river and X denotes the friction
characterizing the riverbed. This missing data X composes a set of geomorphological and
fluctuating time and space characters. which can explain the fluctuations of Z if D is known.
Assuming D is known, the fluctuations of Z can be directed accounting for the “random”
nature of X in a probability space Ω, with distribution denoted by f(X).

In the context of structural reliability, it is important to verify if the height h0 of the pro-
tecting dyke at Σ is sufficient such that the probability of flooding in the disadvantageous
environmental conditions, i.e. D is fixed to be a “unfavourable” d (e.g. a strong flow),
remains below some threshold (e.g. 1%)1. This probability can be defined as:

P (Z ≥ h0) = P (G(X, d) ≥ h0),

=

∫

Ω
1{G(x,d)≥h0}f(x) dx. (1)

The interest of simulating according to the density f(·) arises immediately: the estimation of

1The thesis work also responds to the following dual problem: determine the minimum height of the dyke
to ensure the protection duty under the threshold. The quantity of interest is no longer the probability of
exceeding but a quantile of Z.

1



CHAPTER . NOTATION

P (Z ≥ h0) can be produced by a Monte Carlo method based on M samples (x1, . . . , xM ) ∼
f(x) :

1

M

M∑

i=

1{G(xi,d)≥h0}
p.s.−−−−→

M→∞
P (Z ≥ h0). (2)

As previously presented, the code G is expensive to compute. Various methods have been
proposed to produce estimators requiring a smaller number of calls to G (Rubino et Tuffin,
2009, (97)). However, they still need to be able to handle the distribution f(x) and then
simulate according to it. Estimating the distribution f of x would be the central point of
this thesis.

Remark 1. Apart from the hydraulic context, there exist other relevant contexts where the
methodology developed in this thesis can be applied. For example, we can find similar inverse
problems in the external acoustic propagation (Leroy, 2010, (59)), the mechanical vibration
(De Rocquigny and Cambier, 2009, (22)), the structural mechanics (Perrin, 2008, (81)) and
in thermal (De Crécy, 2001, (21)).

In the framework of the industrial uncertainty analysis, as proposed by De Rocquigny et
al. (2008, (23)), inverse problems belong to a range of problems which characterize the
quantification of uncertainties. Our thesis work is motivated by the following methodology,
described in Figure 1, which is widely applied in EDF. It summarizes the three main steps
of treating uncertainties in industry.

• Step A: problem specification

• Step B: quantification of uncertainty sources

• Step B’: quantification of sources (Inverse methods, calibration, assimilation)

• Step C: propagation of uncertainty sources

• Step C’: sensitivity analysis, prioritization

This thesis is located in the step B’, requiring to quantify the uncertainty sources with the
help of some inverse methods. In other words, we aim at analyzing its probability density f ,
which plays a critical role to link the modeling step A and the propagating step C.

B. Mathematical treatment

b.1. Mathematical modeling and Bayesian framework

Statistical estimation of the density f which quantifies the main uncertainty source X is the
inverse problem addressed in this thesis. It can be described as follows. Note that to better
illustrate the problem, we give a sense to each variable as in the previous hydraulic example.
Given a set of observations of the water level Y = (Y1, . . . , Yn) obtained in dedicated stations
(not necessarily at the place of the industrial plant Σ), provided with experimental conditions

2



Figure 1: Methodologied framework for treating uncertainties in industry (23)

d1, . . . , dn which are assumed to be known, and the unobserved variables X1, . . . , Xn following
the unknown distribution f , we can precise the following relationship:

Yi = H(Xi, di) + Ui,

where Ui denotes the measurement error. Here the code H is not necessarily the same2

as G, which has been introduced in Section A. H can for example be the water level at
the observation positions while G is related to other positions to forecast the water level.
Consequently, Yi may be different from Z. The estimation algorithms take advantage of
the structure of the missing data problem by proposing iterative reconstructions of data
X1, . . . , Xn knowing Y. Within a framework of parametric statistics, the observed data
permits us to iteratively estimate the vector of parameters θ which defines the density f(x) =
f(x|θ), that is assumed to be well chosen. With the estimated θ, the set of the possible values
of X can be exhaustively described, that is why θ can be considered as a “hidden state of
nature”.

In frequentist approach of this inverse problem, several obstacles arise. The small size of
the data sample Y and the low presence of extreme values among the Ys can lead to poor
maximum likelihood estimates of θ. Moreover, if there exists some available prior information,
it would be profitable to take it into account. For example, the hydraulic literature may
provide us the estimates of some characteristics of X such as the mean value in function of
the nature of the ground.

For these reasons, Bayesian parametric framework has been chosen in this thesis, which
considered θ as a random variable by providing a prior distribution π(θ) to integrate different
sources of information. The posterior distribution π(θ|Y) must be estimated. As mentioned
in Pasanisi et al. (2011, (78)), this posterior distribution provides a complete description of
the remaining uncertainty affecting θ after the collection of all available information.

2In our case study, it is worth noting that H equals G. The meta-modeling technique proposed in this
thesis permits us to estimate the parameters of interest and the probability of exceeding (2) at a lower cost.

3



CHAPTER . NOTATION

b.2. Principal tools: hybrid MCMC algorithm and meta-modeling technique

In this Bayesian framework, a multidimensional Metropolis-Hastings-within-Gibbs (hybrid
MCMC) algorithm has been proposed to compute the posterior distribution of θ using a data
augmentation scheme. In this algorithm, the simulator H is being called at each iteration.

But, this simulator H interpreting the physical input and output relationship is usually highly
time-consuming. Meta-modeling techniques are thus necessary to approximate the original
computer codes. A meta-model is an approximation of the original simulator built from its
evaluations at a certain number of input values, the so-called design of experiments (DOE). In
this thesis, we use a Gaussian Process (GP) meta-modeling (kriging) technique. The reasons
for this choice are twofold: first, it is consistent with Bayesian inference as constructing a
meta-model can be interpreted as providing some prior information to the original function
(Rasmussen and Williams, 2006, (87)); second, the related uncertainty can be expressed and
compared at every estimated point. The prediction accuracy depends on the position of the
predicted point with respect to the spatial structure of the DOE.

b.3. Utilization of the thesis results in uncertainty treatment

In uncertainty treatment, the final goal is to propose an estimate ρ̂ of the decision function
ρ(θ),

ρ(θ) = Pθ(Z ≥ h0) =

∫

Ω
1{G(x,d)≥h0}f(x|θ) dx, (3)

by minimizing a discrepancy or a cost D{ρ(θ), ρ̂}. In the Bayesian framework, this cost is
known through the posterior distribution π(θ|Y). For a given choice D, the Bayes estimator
ρ∗ of ρ(θ) is thus:

ρ̂∗ = arg min
ρ̂

∫

Θ
D{ρ(θ), ρ̂}π(θ|Y) dθ. (4)

A practical choice for D is a quadratic cost. It is worth noting that for such a choice, the
Bayes estimator ρ̂∗ is the posterior mean of ρ(θ), which can be calculated as3:

ρ̂∗ =

∫

Θ

∫

Ω
1{G(x,d)≥h0}f(x|θ)π(θ|Y) dxdθ.

With π(θ|Y) simulated through the hybrid MCMC algorithm and f(x|θ) assumed to be well
chosen, an estimate of ρ̂∗ can be produced by the following Monte Carlo algorithm:

1. simulate (θ1, . . . , θM ) ∼ π(θ|Y),

2. simulate (x1, . . . , xM ) ∼ (f(x|θ1), . . . , f(x|θM )),

3It happens to be the predictive posterior probability of a flood, which means the posterior mean of the
function 1{G(x,d)≥h0} (see Chapter II for more details).

4



3. estimate ρ̂∗ through

ρ̂∗M =
1

M

M∑

i=1

1{G(xi,d)≥h0},

which must of course be adapted if G is itself time-consuming.

b.4. Main contributions

In Bayesian approach, the estimation problem related to the inverse problem involves many
possible errors:

• Estimation error: Usually the sample size n is small with respect to the dimension of
the problem and the variance of the estimates could be expected to be large;

• Emulator error: Since H is too complex, there is the need to replace it with an emulator
Ĥ and the discrepancy between H and Ĥ could induce an important error;

• Algorithmic error: To proceed to statistical inference, there is the need to use com-
plex stochastic algorithms. In the Bayesian setting, those algorithms are Monte Carlo
Markov Chains (MCMC) algorithms which produce Markov chains converging to the
desired posterior distributions. But, controlling the convergence of the MCMC algo-
rithms towards their limit distributions is important to get reliable estimates.

• Prior error: The prior knowledge on the parameters m and C is expected to produce
regularized estimates of smaller variances than maximum likelihood estimates. But, if
the prior distributions are irrelevant, it could jeopardize the statistical analysis.

It is crucial to measure and reduce the possible impact of those errors. In this thesis, four
chapters (Chapters II-V) have been desired to answer to this essential question. Especially,
in this Bayesian framework, an original criterion has been proposed to assess the relevance
of the numerical DOE and the prior choices from the point of view of a minimum error.
To control the emulator error, as the evaluation budget of the complex function is severely
limited, the choice of DOEs play a critical role. An adaptive kriging methodology has been
constructed to improve the quality of the DOEs on a tight model evaluation budget. The
uncertainty brought by the meta-model has been reduced and a better posterior distribution
π(θ|Y) has been gained.

A real case of a complex hydrogeological computer code has been treated by applying the
statistical tools and methodologies developed in the thesis.

C. Organization of the manuscript

Addressing the issues presented in the previous section, the present manuscript is organized
as follows:

Chapter 1 provides a review of probabilistic inverse problems and presents the main statistical
tools dedicated to estimation. Some important concepts of Bayesian inference are recalled.

5



CHAPTER . NOTATION

Meta-modeling technique and MCMC algorithms are among the main points of interest in
this chapter.

Chapter 2 is devoted to the construction of the Bayesian model. A modified version of the
uncertainty model adapted to the meta-modeling is proposed by introducing an additional
type of uncertainty. The elicitation of the hyperparameters of the prior distributions is
another central point of this chapter.

Chapter 3 is concerned with the management of the hybrid MCMC algorithms we use. The
so-called Metropolis-Hastings-within-Gibbs algorithm is our principal tool to solve inverse
problems. Two versions according to the available computational budget are presented.

Chapter 4 focuses on assessing the Bayesian treatment of inverse problems combined with the
meta-modeling technique. The quality of DOEs is crucial for improving the accuracy of the
meta-model, and it can be measured with different criteria. We propose an original criterion
adapted to the Bayesian framework, which allows to check the consistency between the prior
choices, the observed data and the choices of numerical DOE. The behavior of this criterion
is illustrated on numerical experiments.

Chapter 5 deals with the problem of building the DOEs in an adaptive way, such that the
prediction accuracy of the meta-model can be improved. Two Bayesian criteria have been
proposed, one consists of reducing the global uncertainty and enhancing the exploration of
regions of interest and the other aims at controlling the divergence between the current
posterior distribution and the hypothesized posterior distribution, by sequentially enriching
the current DOE.

A real case-study of uncertainty treatment in our hydraulic engineering is treated in Chapter
6, which permits to apply the methodologies previously proposed. Two important industrial
codes used at EDF, MASCARET and TELEMAC-2D are considered. Finally, a conclusion
and perspective chapter ends this thesis.

6
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CHAPTER I. INTRODUCTION TO INVERSE PROBLEMS IN UNCERTAINTY ANALYSIS

In this chapter, we define inverse problems and the notion “uncertainty” adapted to our
case study. Algorithms such as the ECME, SEM, SAEM algorithms can be used in the
frenquentist framework to estimate the parameters of interest. In this thesis, the Bayesian
inference is favored and a Metropolis-within-Gibbs algorithm (or hybrid MCMC algorithm)
has been carried out. Moreover, as the central difficulty in inverse problems, the computer
simulator is often highly time-consuming who needs great numerical cares. Meta-models such
as kriging are considered to approximate the original expensive-to-compute simulator.

I.1 Probabilistic inverse problems

I.1.1 General definition of inverse problems

Inverse problems are the problems where an unobserved variable x ∈ X is estimated from
an observed variable y ∈ Y related through a physical model, which is usually complex
and expensive to compute, the so-called “black-box” function. Mathematically, an inverse
problem can be defined as follows.

Definition 1. Let y ∈ Y and H : X → Y a deterministic function, an inverse problem is
to find x∗ ∈ X such that

y = H(x∗). (I.1)

Equivalently, it is to find a solution x∗ ∈ H−1({y}), where H−1({y}) = {x ∈ X | y = H(x)}.

I.1.2 Adapted model of probabilistic inverse problems

In our case study, the problem is somewhat different. Introducing the notion of “uncertainty”,
we aim at calibrating the distribution of the model input by taking into account its variability.
More precisely, the distribution of the input x is to be explored instead of a possible “unique”
solution x∗. Moreover, the observed output y is also considered uncertain by adding a random
measurement error U . The probabilistic framework is as follows. For the i-th observation
sample,

yi = yR(xi) + Ui

= H(xi) +
(
yR(xi)−H(xi)

)
︸ ︷︷ ︸
negligible model error

+ Ui︸︷︷︸
measurement error

= H(xi) + Ui (I.2)

where yR(·) denotes the real physical observation and H denotes the computer simulator
which is supposed to almost perfectly represent the physical reality. In other words, the
model error is assumed to be negligible. Thus, as presented in (I.2), we summarize two types
of uncertainty considered in the present work: one comes from the random variable xi and
the other is offered by the measurement error Ui.

Given a vector of n observed outputs y = (yT1 , . . . , y
T
n )T corresponding to the vector of n

unobserved inputs x = (xT1 , . . . , x
T
n )T , both xi and yi are assumed to be the realizations of

the real-valued random vectors Xi ∈ X ⊆ Rq and Yi ∈ Y ⊆ Rp. Moreover, another vector of
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observed inputs d = (dT1 , . . . , d
T
n )T , with di ∈ D, is introduced to take different experimental

conditions into account. Our specific probabilistic inverse problem can now be defined.

Definition 2. Given the following complex physical model H

H : X ×D −→ Y
(xi, di) 7−→ yi = H(xi, di),

(I.3)

the probabilistic inverse problem is to calibrate the distribution of the unobserved variable
Xi ∈ X from the observations (yi, di), with the following relationship

Yi = H(Xi, di) + Ui, i ∈ {1, . . . , n}. (I.4)

Here Yi denotes the random vector related to the observation yi, di denotes an observed input
related to the experimental conditions and Ui denotes the measurement error.

In this thesis, it is assumed that, in the model (I.4) the probability distribution of the unob-
served random data (Xi) ∈ Rq is the product of n independent Gaussian distributions:

Xi |m,C ∼ Nq(m,C), (1 ≤ i ≤ n), (I.5)

where the parameters m and C are to be estimated. It is worth noting that (I.5) explains the
most important source of the uncertainty introduced in the inverse problem model. More-
over, the measurement errors (Ui) ∈ Rp, as another source of uncertainty, are assumed to
independently follow a centered Gaussian distribution:

Ui ∼ Np(0, R), (1 ≤ i ≤ n), (I.6)

with a known diagonal matrix R. The error Ui and Xi are assumed to be independent
for i = 1, . . . , n, and the observations (Yi, i = 1, . . . , n) with Yi ∈ Rp are assumed to be
independent between them. Under the limited evaluation budget of the complex function H,
the purpose of our work is to calibrate the distribution of Xi. In other words, it is to provide
an estimate of the parameters θ = (m,C) ∈ Θ, from the observed data y and d.

I.1.3 A motivating example

An example in hydraulic engineering fields concerning the modeling of river inflows can be
found in Parent et al. (1991, (76)). It consists of predicting the risk of dyke overflow during
a flood which generally applies at a given river section.

As shown in Figure I.1, the observation yi is a two-dimensional vector composed with the
water level Zc at the dyke position and the speed of the river V and the observed input di
measures the observed flow of river Q. The two-dimensional missing data Xi is assumed to
be made up with the value of Strickler coefficient Ks and the river bed level Zv at the dyke.
Moreover, the river bed level beyond upstream Zm, the section length L as well as its width
B are assumed to be fixed.

Assuming the following relationships

Zc = Zv +

( √
L

B
√
Zm − Zv

× Q

Ks

)3/5

, and V =
Q

B(Zc − Zv)
,

with the help of the following notation
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CHAPTER I. INTRODUCTION TO INVERSE PROBLEMS IN UNCERTAINTY ANALYSIS

Figure I.1: Simplified hydraulic model of a section of the river

• the observed output Y = (Y1, Y2)T = (Zc, V )T ∈ R2;

• the unobserved input X = (X1, X2)T = (Ks, Zv)
T ∈ R2;

• the observed input d = Q ∈ R1,

we recognize the standard form of the probabilistic inverse problems described in (I.4), where
the expensive-to-compute function H can be derived as:

H(X, d) =


X2 +

( √
L

B
√
Zm −X2

× d

X1

)0.6

,
d 0.4X0.6

1 (Zm −X2)0.3

B0.4 × L0.3


 . (I.7)

I.2 Frequentist inference

The non-measurability of the Xis is usually caused by technical or cost reasons. In frequen-
tist inference, the maximum-likelihood estimation (MLE) method aims at computing the
maximizer

θ̂ = arg max
θ∈Θ

L(θ; y,d), (I.8)

where L(·) denotes the log-likelihood for the purpose of simplicity, and (y,d) = (yi, di, i =
1, . . . , n) denotes the observations. In the present missing data context, the likelihood max-
imization is based on a mechanism of data augmentation (Tanner and Wong, 1987, (107)),
which leads to the following calculation:

L(θ; y,d) = log

∫
L(θ; X,y,d) dX, (I.9)

where L denotes the standard likelihood of θ based on the completed sample (X,y,d), which
can be described as

L(θ; X,y,d) = exp
[

log π [X,y,d | θ ]
]

= exp
[

log π [y |X,d, R] + log π [X | θ ]
]
. (I.10)
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In this formula, π denotes the corresponding probability density function (pdf) and the two
log-densities in (I.10) are derived from the distribution assumptions (I.5) and (I.6):

log π [y |X,d, R] ∝ −n log |R| −
n∑

i=1

[
(yi −H(Xi, di))

TR−1(yi −H(Xi, di))
]

(I.11)

log π [X | θ ] ∝ −n log |C| −
n∑

i=1

[
(Xi −m)TC−1(Xi −m)

]
. (I.12)

Remark 2. In (I.10), the term log π [d | θ ] is omitted as it equals zero.

Obviously, the cost of the likelihood expressed in (I.10) causes difficulty to find the maximizer
θ̂, due to the time-consuming function H (see (I.11)). Especially, it can even be non-integrable
if H is not linear. This prevents to use the standard EM algorithm (Dempster et al., 1977,
(26)), which approaches a local maximizer θ∗ by maximizing the conditional expectation of
the completed L(θ; X,y,d) at each iteration.

For this concern, Celeux et al. (2010, (15)) proposed a linearized version of the simulator
H, where the linearization point x0 is chosen based on prior knowledge. The approximated
model is as follows:

Yi = H(x0, di) + JH(x0, di)(Xi − x0) + Ui, 1 ≤ i ≤ n, (I.13)

with JH(x0, di) ∈ Mp×q denoting the Jacobian matrix of the function H at point x0. (I.13)
can be written in the following simplified form:

Yi = HiXi + Vi + Ui, 1 ≤ i ≤ n, (I.14)

where Hi is the known Jacobian matrix and Vi gathers all the remaining terms. By composing
the matrix H ∈Mnp×q by {Hi, i = 1, . . . , n}:

H =




H1
...
Hn


 , (I.15)

Celeux et al. (2010, (15)) have proved the following proposition to ensure the identifiability
of the linearized model (I.14). The identifiability implies that the estimation problem of θ is
well defined, namely the uniqueness of the estimated θ.

Proposition 1. (Celeux et al., 2010, (15)) Assuming q ≤ np, Model (I.14) is identifiable if
and only if rank(H) = q, i.e. H is injective.

Remark 3. (Empirical Identifiability) In practice, the condition q ≤ np mentioned in Propo-
sion 1 is not sufficient to ensure that enough data is available for estimation. Consider
q = p = 1, at least np = 2 observations are necessary to estimate m and C. With np = 1
observation, only the mean can be estimated. Hence, in the Gaussian case, a supplementary
condition should be added to ensure that the estimation is feasible. For instance, n0q ≤ np,
with n0 greater than 2.
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CHAPTER I. INTRODUCTION TO INVERSE PROBLEMS IN UNCERTAINTY ANALYSIS

I.2.1 Method based on linearization: the ECME algorithm (Circe)

An extension of the EM algorithm, the so-called ECME (Expectation-Conditional Maxi-
mization Either) algorithm, is presented by Liu and Rubin (1994, (61)). For the linearized
model (I.13), the ECME algorithm was independently proposed by De Crecy (1996, (20)), un-
der the name of the “Circe” method. Typically, ECME is maximizing the observed likelihood
of some parameters and the expectation of the completed likelihood for the other parameters.
Thus, it accelerates the convergence ensured by the standard EM algorithm. The (k + 1)-th
iteration of the adapted ECME method is described as follows (see De Crecy, 1996, (20)):

• E step: Compute the conditional expectation of the complete log-likelihood

Eθ(k) [L(θ; y,X) | y,d] =

∫
L(θ; y,X)π(X | y,d, θ = θ(k))dX, (I.16)

where X denotes the set of n variables (Xi, i = 1, . . . , n) and Eθ(k) [f(X)|y,d] indicates
the conditional expectation of f(X) knowing the current parameter θ = θ(k) and the
observations (y,d), with respect to the probability density:

π(X | y,d, θ(k)) =
π(X,y | d, θ(k))

π(y | d, θ(k))
. (I.17)

• CME steps: Update the parameters by

1. estimating C with m fixed to m(k) (same as the M step of the EM algorithm)

C(k+1) = arg max
C

Eθ(k) [L(m(k), C; y,X)|y,d]; (I.18)

2. estimating m with C fixed to C(k+1), based on the incomplete-data

log-likelihood

m(k+1) = arg max
m

L(m,C(k+1); y). (I.19)

When the function H is not highly non linear, the ECME algorithm works well in practice
as shown in Celeux et al. 2010, (15), while the choice of the linearization point x0 remains
essential for good performance of this algorithm. A simple solution so-called the iterative
linearization (applied to ECME) is described as follows:

• Initial step: Start from a linearization point xlin = x0 and compute H(x0, di)
and JH(x0, di). Initiated on the point θinit = (x0, C0), the ECME algorithm

leads to the estimate θ(1).

• Step k+1: Let the linearization point be xlin = m(k) and compute H(xlin, di)
and JH(xlin, di). A new estimate θ(k+1) is given by the ECME algorithm initiated

at θinit = θ(k) = (m(k), C(k)).

The algorithm is repeated until some stopping criterion, e.g.

max
j

(
|θ(r+1)
j − θ(r)

j |
|θ(r)
j |

)
≤ ε (I.20)

with ε a positive small value to be specified, is satisfied.
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Remark 4. Each linearization step k requires n calls of H for H(xlin, di) plus n × q × a
additional calls of H for the computation of the Jacobian matrix JH(xlin, di), with a varying
from 1 to say 5 according to the roughness of H through finite differences, e.g. a = 1 for the
first order finite difference; a = 2 for the second order finite difference. Thus, this iterate
linearization can be quite time-consuming.

Moreover, if H is highly non linear, the algorithm does not perform well as the linear ap-
proximation of H is not satisfactory. The sequence (θ(k)) does not converge or converge to a
misleading estimate. For these reasons, other types of methods have been introduced to avoid
the linearization step, e.g. the SEM algorithm (Celeux and Diebolt, 1985, (13)), the MCEM
algorithm (Wei and Tanner, 1990, (118)) and the SAEM algorithm (Delyon et al., 1999,
(25), see also Kuhn, 2003, (56)). In what follows, the SEM algorithm is presented.

I.2.2 Method avoiding linearization : the SEM Algorithm

The SEM algorithm is regarded as the stochastic version of the EM algorithm, proposed by
Celeux and Diebolt in 1985 and applied in the present framework by Barbillon (2010, (3)) to
a problem similar to ours. On the (k+ 1)-th iteration, the algorithm consists of the following
three steps:

• E step: Calculate the conditional distribution π(· |y,d; θ(k)) of X(k), with

θ(k) the current estimates of the parameters θ;

• S step: Simulate X(k) ∼ π(· |y,d; θ(k)) and complete the sample Z(k) = (y,X(k));

• M step: Update the parameters

θ(k+1) = arg max
θ∈Θ

L(θ; Z(k),d). (I.21)

That is to say,

C(k+1) = arg max
C

L(m(k), C; Z(k),d); (I.22)

m(k+1) = arg max
m

L(m,C(k+1); Z(k),d). (I.23)

Usually, the conditional density π(· | y,d; θ(k)) does not belong to any known family, therefore
a numerical method is needed for the simulation step, typically the Metropolis-Hastings (MH)
algorithm (Metropolis et al., 1953, (70)). Each S step consists of m iterations of the MH
algorithm, described as follows:

For each sample i = 1, . . . , n,

• Initialize Xi,0 = X
(k)
i .

• For s = 1, . . . ,m,

1. Simulate X̃i,s, using an instrumental distribution q(· | Xi,s−1; θ(k)).
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2. Let Xi,s = X̃i,s with probability

α(Xi,s−1, X̃i,s) = min

(
1,

π(X̃i,s | Yi, di; θ(k)) q(Xi,s−1 | X̃i,s; θ
(k))

π(Xi,s−1 | Yi, di; θ(k)) q(X̃i,s | Xi,s−1; θ(k))

)
;

on the contrary, Xi,s = Xi,s−1 with probability 1− α(Xi,s−1, X̃i,s).

• Take X
(k+1)
i = Xi,m.

After a sufficiently long burn-in period, the convergence of the chain (Xi,j)j towards the
target distribution π(· | Yi, di; θ(k)) (for the i-th sample) can be checked with the Brooks-
Gelman (BG) statistics (Brooks and Gelman, 1998, (11)). Note that there exists a variety of
convergence diagnostics apart from the BG statistic. A comparison of such criteria can be
found in Cowles and Carlin (1996, (19)).

However, each iteration the MH mechanism involves high number of calls to H, which is
highly CPU time consuming. Cheaper versions of H can be considered to replace the original
model. Various approximation methods are described in Section I.4.

I.3 Bayesian inference

In the present work, a Bayesian viewpoint has been chosen. Bayesian inference allows to take
into account the available expert knowledge by choosing an informative prior, which is favor-
able especially in a small sample setting. In frequentist inference, not enough observations
can be quite burdensome, as the MLE may not perform well in such cases. Apart from that,
choosing an informative prior may solve some identifiability problems (Paulino and Pereira,
1994, (80)), in particular when θ is of high dimension.

In Bayesian framework, the parameter θ is as random variables. The available knowledge
of the model, the prior information (assembled in the chosen prior distribution π(θ)) and
the observations (y,d) are incorporated in the posterior distribution π(θ|y,d), calculated
according to the Bayes’ rule,

π(θ|y,d) ∝ L(θ; y,d) · π(θ), (I.24)

where L(θ; y,d) denotes the likelihood of θ based on the observations (y,d).

I.3.1 Prior choices

The chosen prior distributions of the parameters θ = (m,C) in model (I.4) are contributed
conjugate prior distributions:

• m |C ∼ Nq(µ,C/a);

• C ∼ IWq(Λ, ν) ∈Mq×q,
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IWq(Λ, ν) being the Inverse-Wishart distribution, with ν > q−1 the degrees of freedom and
Λ ∈ Mq×q the positive definite inverse scale matrix. Hyperparameters µ, a,Λ and ν are to
be specified. The density of C is:

π(C) =
|Λ|ν/2

2
νq
2 Γq(

ν
2 )
|C|− ν+q+1

2 exp
[
− 1

2
Tr(Λ · C−1)

]
, (I.25)

where Γq(a) denotes the multivariate Gamma function:

Γq(a) = π
q(q−1)

4

q∏

j=1

Γ(a+
1− j

2
) (I.26)

with Γ(a) the Gamma function . The restriction that ν > q − 1 is necessary to give sense to
the function Γ(ν+1−q

2 ).

Moreover, the mean of C exists if ν > q + 1, and the variance of C exists if ν > q + 3, since:

E(C) =
Λ

ν − q − 1
, (I.27)

Var(Ci,j) =
(ν − q + 1)Λ2

i,j + (ν − q − 1)Λi,iΛj,j

(ν − q)(ν − q − 1)2(ν − q − 3)
, ∀i, j = 1, . . . , q. (I.28)

Remark 5. When q = 1, the uni-variate Inverse-Wishart is the Inverse-Gamma distribution
specified by:

IW1(Λ, ν) = IG
(

Λ

2
,
ν

2

)
. (I.29)

In the next chapter, we will discuss the calibration of the hyperparameters µ, a,Λ and ν
in detail. As it will be shown, the elicitation of hyperparameters can benefit from either
conditional conjugation properties of the concept of a virtual sample, which simplify the in-
ferential computational work. For the purpose of simplicity, the hyperparameters are grouped
in ρ = (µ, a,Λ, ν). Remark that the variance matrix R of error Ui is not included in ρ as it
is assumed to be known.

The final aim is to estimate the posterior distribution π(θ |Y = y,d). However, as calculated
in (I.24), this distribution is not available in closed form, as the calculation of the log-
likelihood L involves complex integration when the function H is not linear (see the discussion
in Section I.2). Dedicated numerical methods, e.g. Gibbs sampling, should be carried out to
approximate the posterior distribution.

I.3.2 Introduction to hybrid MCMC algorithms

The Gibbs algorithm, named after the physicist J. W. Gibbs, was first presented by Geman
& Geman (1984 (35)). The main idea (adapted to our current case) is to draw alternatively
each unknown quantity (the parameters m, C and the missing data X) from its full condi-
tional posterior distribution knowing the current simulated values of the other parameters
as well as the observations (y,d) and the hyperparameters ρ. With the initialized value
(m(0), C(0),X(0)) = (m0, C0,X0), the (k + 1)-th iteration consists of two steps:
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• Given (θ(k),X(k)), generate the parameter θ(k+1) following

C(k+1) ∼ π(· |m(k),X(k),Y = y,d, ρ); (I.30)

m(k+1) ∼ π(· |C(k+1),X(k),Y = y,d, ρ). (I.31)

• Simulate the missing data X(k+1) given the current parameter θ(k+1) and the

observations (y,d) (Data Augmentation Step)

X(k+1) ∼ π(· |m(k+1), C(k+1),Y = y,d, ρ). (I.32)

Usually, the full conditional distribution of X does not belong to any known family of distribu-
tions because of the involved complex code H. A numerical method, such as the Metropolis-
Hastings (MH) algorithm, is thus necessary. The so-called Metropolis-Hastings-within-Gibbs
(Hybrid MCMC) algorithm (see for instance Tierney, 1995, (110)) is applied in this thesis,
which is to be presented in Chapter III.

Under some regularity conditions (cf. Section III.2), the simulated Markov chain
(
m(k), C(k),X(k)

)

is proved to converge towards its stationary distribution that is the joint posterior distribu-
tion π(m,C,X |Y = y,d, ρ). Therefore, each marginal simulated quantity converges to its
marginal posterior distribution, i.e. π(m |Y = y,d), π(C |Y = y,d) and π(X |Y = y,d).

I.4 Black-box function and Gaussian Process meta-modeling (Krig-
ing method)

In model (I.4), the function H is usually highly time-consuming. A surrogate is thus con-
structed to replace the original model, which is required to carry out the iterative methods,
such as the stochastic SEM, MCEM, SAEM and Gibbs algorithms. More precisely, the pre-
dictor Ĥ is to be built from the observations gathered in a dataset. Various approximation
methods can be carried out: linear models fit by least squares, local methods (such as the
arithmetic mean method, k-nearest-neighbor method, distance weighted method), polynomial
interpolation, spline, kernel methods (kriging meta-modeling techniques) and so on.

The kriging meta-modeling technique has been chosen in this work. Introduced by the French
mathematician Georges Matheron and developed by Sacks et al. (1989b, (99)), Koehler
and Owen (1996, (55)), Santner et al. (2003, (100)) and Fang et al. (2006, (29)), this
approximation method consists of deriving a predictor Ĥ(z) at any z = (x, d) ∈ Ω, from the
training set HDN evaluated from a design of experiments (DOE)

DN =
(
zT(1), . . . , z

T
(N)

)T
, (I.33)

with each z(j) = (x(j), d(j)). It is known as a meta-model, which signifies a simplified represen-
tation or approximation of a simulator built on a training set of simulator runs. According
to this approach, the function H is considered as the realization of a stationary Gaussian
Process (GP) H, described as follows:

∀z ∈ Ω, H(z) =
k∑

i=1

βifi(z) + Z(z) = F(z)Tβ + Z(z) (I.34)

where:
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i) the first term is a linear regression model based on the given basis functions F(z) =
[f1(z), . . . , fk(z)]

T , which correspond to weight coefficients β = [β1, . . . , βk]
T , with k ≤

N for the purpose of identifiability;

ii) the second term Z is a Gaussian Process with zero mean

E [Z(z)] = 0, ∀z ∈ Ω, (I.35)

and stationary autocovariance

Cov
[
Z(z),Z(z′)

]
= σ2Kψ(z − z′), ∀(z, z′) ∈ Ω2, (I.36)

where Kψ is a symmetric positive definite kernel, the so-called autocorrelation function. It
only depends on the distance between z and z′, with ψ the regularization parameter in the
structure of Kψ, such that

Kψ(0) = 1. (I.37)

Remark 6. In particular, in (I.36), the assumption of homogeneity in different directions can
be imposed by assuming that Kψ depends on the norm

∥∥z−z′
∥∥ instead of the difference vector

z − z′, called isotropy. Let us note that both stationarity and isotropy remain reasonable in
our case study.

Remark 7. If F(z) is assumed to be zero, (I.34) is called the simple kriging model; if F(z)
is assumed to be unit, the model is called the ordinary kriging; otherwise, it is called the
universal kriging, namely that F(z) takes any general form. We apply the universal kriging
model in the present work.

The reasons for choosing the kriging method are triple.

1. The kriging modeling takes into account the spatial structure of DOE in terms of
correlation between the design points, by adjusting the parameters (β, σ2, ψ). Thus it
outperforms other methods like local methods, polynomial interpolation and so on.

2. The GP meta-modeling can be interpreted as providing H with some prior information
(Rasmussen and Williams, 2006, (87)), which is related to the choice of the training
set HDN , the linear regression basis F(z) and the autocorrelation function Kψ. It is
coherent with the Bayesian perspective.

3. Kriging provides the prediction variance at every estimated point z, which can be
regarded as an indicator of the accuracy of the approximation and a measure of the
uncertainty introduced by the meta-model (see the definition of MSE(z) in Proposition
2).

For the choice of Kψ, several types of autocorrelation are introduced here:

• the nugget autocorrelation function:

Kψ(z − z′) = δ(z − z′) =

{
1, if z = z′;
0, otherwise.

(I.38)
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It is used to model the absence of any correlation between points z and z′, which means
that all the realizations of the GP Z(·) are assumed to be independent and identically
distributed (i.i.d.). Z(·) is then known as a white noise and the trajectory of the process
is discontinuous.

• the exponential autocorrelation function:

Kψ(z − z′) = exp

(
−
q+q2∑

i=1

ψi |zi − z′i|νi
)

; (I.39)

where {ψi > 0, i = 1, . . . , q + q2} are the scale parameters and the degrees νi ∈ [0, 2].

If all νis equal 1, it is called the Exponential kernel and the Gaussian kernel if they are
equal to 2. Otherwise, we call it the Generalized kernel.

If for ∀i, 0 < νi < 2, the sample paths of the GP H(·) with such an exponential kernel
are almost surely (a.s.) continuous but not differentiable for any 0 < νi < 2. However,
if all νis equal 2, the sample paths of the GP H(·) with a Gaussian correlation are
a.s. continuous and a.s. infinitely differentiable, which will give rise to a very smooth
process.

Remark 8. If all νis equal 1 and all the ψis are equal, this exponential autocorrelation
function corresponds to a specific GP known as the Ornstein-Uhlenbeck process.

• the Matérn autocorrelation function:

Kψ(z − z′) =

q+q2∏

i=1

1

2ν−1Γ(ν)

(
ψi |zi − z′i|

)ν Kν
(
ψi |zi − z′i|

)
, (I.40)

where {ψi > 0, i = 1, . . . , q + q2} are the scale parameters, ν > 0 is the regularization
parameter of the associated GP, Γ denotes the Gamma function and Kν denotes the
modified Bessel function of the second kind and order ν. It is worth noting that with
such a Matérn kernel, if ν > m, the GP Z is m times a.s. derivable.

Remark 9. The Gaussian autocorrelation function is the limit case of a Matérn autocorre-
lation function, derived from the following convergence:

1

2ν−1Γ(ν)

(
2
√
ψν |z − z′|

)ν
Kν
(

2
√
ψν |z − z′|

)
−→
ν→∞

exp
(
−ψ|z − z′|2

)
. (I.41)

Concerning the choice of the autocorrelation function, it is sometimes suggested to use the
Matérn function which is more flexible thanks to the regularization parameter ν adjusting
the power of the distance between z and z′. However, the computation is more expensive as
we have more parameters to be estimated. In this thesis, we choose the smooth Gaussian
autocorrelation function which is a.s. continuous and a.s. infinitely differentiable. Note
that the choice of the autocorrelation function is not the central point of our work. We are
more concerned on validating and improving the choice of DOEs, which will be presented in
Chapter IV and V.

18



Remark 10. As shown in Ababou et al. (1994, (1)) and in Marrel (2008, (65)), a Gaussian
autocorrelation (νi = 2) might imply an ill-conditioned variance matrix, which may lead
to great numerical problems. Introducing an independent white noise V (z) into the kriging
model (I.34) to add a discontinuity property, the so-called nugget effet, may improve the
autocorrelation condition and the robustness of the kriging approximation.

From the Bayesian viewpoint, Santner et al. (2003, (100)) remarked that under the Gaussian
assumption defined by (I.34)-(I.37), the vector gathering the processH(·) at any point z /∈ DN

and at the design DN is normally distributed:

{
H(z)
HDN

}
∼ N1+N

({
F(z)Tβ
FDβ

}
, σ2

[
1 ΣT

zD

ΣzD ΣDD

])
, (I.42)

where

− F(z) = [f1(z), . . . , fk(z)]
T is a k × 1 vector of basis functions evaluated at z. For

example, the complete polynomial basis up to order k

F(z) = [1, z, z2, . . . , zk]T ; (I.43)

− FD = [F(z(1)), . . . ,F(z(N))]
T is a N × k regression matrix evaluated at the design DN ,

defined as

FD =



f1(z(1)) f2(z(1)) . . . fk(z(1))

...
...

...
...

f1(z(N)) f2(z(N)) . . . fk(z(N))


 . (I.44)

Following the choice (I.43) of the regressors, the matrix FD is indeed the Vandermonde
matrix:

FD =




1 z(1) z2
(1) . . . zk(1)

...
...

...
...

...
1 z(N) z2

(N) . . . zk(N)


 ; (I.45)

− ΣzD = [Kψ(z, z(1)), . . . ,Kψ(z, z(N))]
T is a N×1 vector of correlations between the point

of interest z and each point of the design DN ;

− ΣDD = [Kψ(z(i), z(j))]1≤i,j≤N is a N×N correlation matrix evaluated within the design
of experiments.

Remark 11. The GP Z(·) is assumed to be regular, which means that regardless of the choice
of the training sample DN , the variance matrix ΣDD is invertible. Under the assumption of
stationarity, this is equivalent to assume that K(·) to be positive definite.

Following (I.42), the posterior distribution of the GP H(z) given the evaluations HDN can
be proved to be normally distributed,

H(z) |HDN = HDN ∼ N
[
µH(z), σ2

H(z)
]
. (I.46)
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Proposition 2. Assuming β is unknown and the autocovariance σ2Kψ(·) is known, the con-
ditional mean µH(z) is the best linear unbiased predictor (BLUP) of the unobserved function
value H(z) under the Gaussian assumptions (I.34)-(I.37), renamed Ĥ(z) described as:

Ĥ(z) = E
[
H(z) |HDN = HDN

]
= F(z)T β̂ + ΣT

zDΣ−1
DD(HDN − FDβ̂). (I.47)

The conditional variance σ2
H(z) is the minimal variance, the so-called MSE (mean squared

error), computed by:

MSE(z) = E
[(
H(z)− Ĥ(z)

)2
|HDN = HDN

]
= σ2

(
1 + γ(z)T (FT

DΣ−1
DDFD)−1γ(z)−ΣT

zDΣ−1
DDΣzD

)
,

(I.48)

where
β̂ = (FT

DΣ−1
DDFD)−1FT

DΣ−1
DDHDN (I.49)

is the generalized least-square estimate of β, and

γ(z) = F(z)− FT
DΣ−1

DDΣzD. (I.50)

Sketch of the proof. By definition, the best linear unbiased predictor Ĥ(z) of the unknown
value H(z) has the following properties:

• linearity, which can be defined as a linear combination of the evaluations HDN , with
help of a weight vector a0 ∈ RN :

Ĥ(z) = aT0 HDN , (I.51)

• unbiasedness:

E
[
Ĥ(z)−H(z)

]
= 0, (I.52)

• minimum mean squared error:

Ĥ(z) = arg min
Ĥ linear unbiased

E
[(
Ĥ(z)−H(z)

)2
]
. (I.53)

The problem consists of finding the optimal weight vector a∗0 in the following sense:

a∗0 = arg min
a0∈RN

E
[
(aT0 HDN −H(z))2

]
such that E

[
aT0 HDN −H(z)

]
= 0. (I.54)

The detailed proof can be found in the thesis of Dubourg, V. (2011, (27)). In Proposition 2,
the BLUP Ĥ can also be called the best MSPE (mean squared prediction error) predictor of
H. The minimal variance MSE provides a measure of the prediction accuracy. �

Given the observations HDN , the outputs H(z) andH(z′) at the points z and z′ are correlated
because of the autocorrelation function Kψ, which depends on the distance between these
points, where the covariance can be calculated by

Cov
[
H(z),H(z′) |HDN = HDN

]
= σ2

(
Kψ(z − z′) + γ(z)T (FT

DΣ−1
DDFD)−1γ(z′)−ΣT

zDΣ−1
DDΣz′D

)
.

(I.55)
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Remark 12. Assuming that β is known in model (I.34), the BLUP Ĥ can be written as

Ĥ(z) = F(z)Tβ + ΣT
zDΣ−1

DD(HDN − FDβ), (I.56)

with the minimal variance described as

MSE(z) = σ2
(

1−ΣT
zDΣ−1

DDΣzD

)
, (I.57)

which is smaller than the MSE(z) defined in (I.48).

An interesting geometric interpretation (Vazquez, E., 2005, (113)) Given a Hilbert
space G provided with the inner product

< h, k > = E [hk] , (I.58)

the best linear predictor (BLP) Ĥ(z) is in fact the orthogonal projection of the GP H(z) on
the subspace Gs generated by the evaluations HDN , i.e. the unique vector h ∈ Gs verifying:

< H(z)− h, H(z(i)) > = 0, ∀i ∈ {1, . . . , N}. (I.59)

The prediction variance MSE(z) corresponds to the distance between H(z) and Ĥ(z) which
is orthogonal to the observations HDN , as illustrated in Figure I.2. It is worth noting that
the Hilbert space G is usually the space of random variables of finite variance L2 (Ω,A,P).

H(z)

Ĥ(z)

MSE(z)

HDN
= HDN

Figure I.2: A geometric interpretation of the kriging approximation

Furthermore, under the assumption that the covariance parameters (σ2, ψ) are unknown,
Ĥ(z) is called the empirical best linear unbiased predictor (EBLUP) of H(z), computed by

Ĥ(z) = F(z)T β̂ + Σ̂T
zDΣ̂−1

DD(HDN − FDβ̂), (I.60)

where

β̂ = (FT
DΣ̂−1

DDFD)−1FT
DΣ̂−1

DDHDN , (I.61)

and Σ̂DD, Σ̂zD are the estimators of ΣDD and ΣzD, with help of the kernel K
ψ̂

. The minimal

variance MSE(z) is then given by

MSE(z) = σ̂2
(

1 + γ̂(z)T (FT
DΣ̂−1

DDFD)−1γ̂(z)− Σ̂T
zDΣ̂−1

DDΣ̂zD

)
, (I.62)

with σ2 replaced by its maximum likelihood estimator

σ̂2 =
1

N
(HD − FDβ̂)T Σ̂−1

DD(HD − FDβ̂). (I.63)
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Remark 13. The name EBLUP is misleading, as it is often non-linear or even biased because
of the non-linear estimator Σ̂DD and Σ̂zD.

Note that at each point z(i) ∈ D, we have the following interpolation property:

Ĥ(z(i)) = H(z(i)), (I.64)

MSE(z(i)) = 0. (I.65)

Finding BLUP consists of solving a linear system of order of magnitude O(N2), with N the
number of points in the design DN . It will be impractical and harmful for large data sets
(N large). That is why various fast approximation algorithms are considered to compute the
discrete Gauss transform to replace the Gaussian autocorrelation function. The Improved
fast Gauss transform (IFGT) algorithm is proposed by Memarsadeghi et al. (2008, (69)),
which reduces the computational cost from the quadratic O(N2) to O(N). Another method
called Gauss transform with nearest neighbors (GTANN) was implemented by Raykar (2007,
(88)), which is more efficient when the Gaussian models have small ranges. It is worth noting
that in our case study, the budget of the time-consuming function H is always dominant.

I.4.1 Properties of the best linear unbiased predictor

• Interpolation

Figure I.3 illustrates the property of the meta-model Ĥ interpolating the function
H(x) = x sin(x) , based on the dataset HD5 = {x(1), . . . , x(5)}:





Ĥ(x(i)) = H(x(i));

MSE(x(i)) = 0, i = 1, . . . , 5.

(I.66)

This property can be easily proved from the construction of the predictor Ĥ.

• Asymptotic consistency

Vazquez (2005, (113)) proved in his thesis that the universal kriging predictor Ĥ is
asymptotically consistent if the autocorrelation function Kψ(·) of the GP Z is contin-
uous on the diagonal, in the sense that

E
[(
H(z)− Ĥ(z)

)2
|HDN = HDN

]
P−→ 0. (I.67)

The property of the kriging technique is illustrated in Figure I.4, which shows that the
prediction variance MSE remains zero at the design points and converges to zero at any
points x ∈ Ω when the number N of points increase. The convergence of the integrated
MSE, the so-called IMSE, has been discussed in Le Gratiet et al. (2012, (58)). This
converging property is equivalent to say the predictor Ĥ is asymptotically consistent
when the DOE becomes dense in the domain Ω.
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Ĥ(x)
HD

Figure I.3: Illustration of the interpolation property by the one-dimensional function H(x) = x sin(x),
with squared exponential autocovariance meta-model
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Figure I.4: Illustration of the asymptotic consistency property by the one-dimensional function
H(x) = x sin(x), with squared exponential autocovariance meta-model

• Gaussianity

The Gaussian assumption of the process H knowing the evaluations HDN :

H(z) |HDN ∼ N
[
Ĥ(z),MSE(z)

]
, (I.68)

is equivalent to

(
MSE(z)

)−1/2 (
H(z)− Ĥ(z)

)
|HDN ∼ N

[
0p, Ip

]
. (I.69)

The formula (I.69) is convenient to compute the confidence intervals, which can be
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described as

H(z) |HDN ∈
[
Ĥ(z)−

(
MSE(z)

)−1/2
Φ−1

(
1− α

2

)
, Ĥ(z) +

(
MSE(z)

)−1/2
Φ−1

(
1− α

2

) ]
,

(I.70)

for a confidence interval of probability 1 − α. Φ−1 denotes the inverse cumulative
distribution function (cdf) of the standard normal distribution. For instance, with
the level α fixed to 10%, Φ−1

(
1− α

2

)
being 1.64 and the 90%-confidence interval is

illustrated in Figure I.5.
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Figure I.5: Illustration of the Gaussianity property by the one-dimensional function H(x) = x sin(x), with
squared exponential autocovariance meta-model

An application proposed in Jones et al. (1990, (48)) is to validate the meta-model by
providing a confidence interval based on the Cross-Validation Leave-One-Out. More
precisely, it consists of verifying if for the majority of design points, say 99.7%, we have

(
MSE−i(z(i))

)−1/2 (
H(z(i))− Ĥ−i(z(i))

)
|HD−i ∈

[
− 3, 3

]
, (I.71)

where Ĥ−i(z(i) and MSE−i(z(i)) denote the predictor and the prediction variance at the
point z(i) evaluated from the design of experiments

D−i = {z(1), . . . , z(i−1), z(i+1), . . . , z(N)}. (I.72)

I.4.2 Estimation of parameters (β, σ2, ψ) for EBLUP

• Maximum likelihood estimation (MLE)

The MLE method consists of estimating the parameters as the maximizers of the likeli-
hood function, or equivalently the log-likelihood function. Up to an additive constant,
the log-likelihood L with respect to the observations HDN is

L
(
β, σ2, ψ |HDN

)
= −1

2

[
N log σ2 + log

(
|ΣDD(ψ)|

)
+

(HDN − FDβ)TΣ−1
DD(ψ)(HDN − FDβ)

σ2

]
.

(I.73)
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The maximum likelihood estimates of β and σ2 depend on ψ:

β̂(ψ) = (FT
DΣ−1

DD(ψ)FD)−1FT
DΣ−1

DD(ψ)HDN , (I.74)

σ̂2(ψ) =
1

N
(HDN − FDβ̂)TΣ−1

DD(ψ)(HDN − FDβ̂). (I.75)

Plugging the two estimators in (I.73) leads to a new expression of the log-likelihood
which depends only on ψ, up to an additive constant:

L
(
β̂, σ̂2, ψ |HDN

)
= −1

2

[
N log σ̂2(ψ) + log

(
|ΣDD(ψ)|

)
+N

]
. (I.76)

Thus the maximum likelihood estimate ψ̂ of ψ verifies:

ψ̂ = arg min
ψ

[
N log σ̂2(ψ) + log

(
|ΣDD(ψ)|

)]
. (I.77)

By injecting the estimates (β̂, σ̂2, ψ̂) in (I.60), we obtain then the EBLUP. It is worth
noting that a calculation of order O(N3) is necessary to evaluate the log-likelihood
(I.73), which will be very expensive if N is large. Another remark is that the global
optimization problem in (I.77) cannot be analytically solved and numerical global op-
timization techniques are usually required. For instance, the DACE Matlab toolbox
(Lophaven et al., 2002, (64)) uses the BOXMIN algorithm which is a multivariate
dichotomy algorithm, while the DiceKriging R package (Roustant et al., 2010, (96))
resorts to a gradient-based genetic algorithm (Sekhon and Mebane, 2011, (106)). The
MLE algorithm applied in this thesis is already implemented in the DACE toolbox by
Lophaven et al (2002, (64)).

• Restricted maximum likelihood estimation (RMLE)

This RMLE (Patterson and Thompson, 1971, (79)) method aims to construct a less
biased estimator of the parameters (β, σ2, ψ) than the maximum likelihood estimator.
The estimator of σ2 is written as a function of ψ, given by

σ̃2(ψ) =
1

N − k (HDN − FDβ̂)TΣ−1
DD(ψ)(HDN − FDβ̂), (I.78)

where β̂ is the maximum likelihood estimator of β given by (I.74).

Remark 14. We have σ̃2 = N
N−k σ̂

2, with σ̂2 the maximum likelihood estimate of σ2.

Plugging the estimator σ̃2(ψ) into the “restricted” log-likelihood which depends only
on ψ, up to an additive constant, gives the following result:

L
(
σ̃2, ψ |HDN

)
= −1

2

[
(N − k) log σ̃2(ψ) + log

(
|ΣDD(ψ)|

)
+ log

(
|FT
DΣ−1

DD(ψ)FD|
)

+N − k
]
,

(I.79)

we obtain the estimator of ψ as follows:

ψ̃ = arg min
ψ

[
(N − k) log σ̃2(ψ) + log

(
|ΣDD(ψ)|

)
+ log

(
|FT
DΣ−1

DD(ψ)FD|
)]
.(I.80)
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Knowing ψ̃, the RML estimator of β can be then calculated as β̃ = β̂
(
ψ̃
)

. Note that

the RMLE can be applied for the intrinsic kriging while the MLE is not applicable in
this case.

Moreover, Li and Sudjianto (2005, (60)) proposed another approach to reduce the
variance of estimation by penalizing the MLE. Fang et al. (2006, (29)) showed the
advantage of this penalized method in the case where DOE contains only few points.

• Cross-Validation (Leave-One-Out Prediction) (CV)

The cross-validation technique is a popular tool for model selection (see Allen, 1971, (2)
and Stone, 1974, (106)), which consists of regrouping the data set DN in K mutually
exclusive and collectively exhaustive subsets Dk with k = 1, . . . ,K, such that

Di ∩Dj = ∅, ∀i, j = 1, . . . ,K and

K⋃

k=1

Dk = DN . (I.81)

The k-th cross-validated prediction is obtained by predicting the function value on the
k-th fold using all the K − 1 subsets DN\Dk. The parameters φ := (β, σ2, ψ) can be
estimated by minimizing the squared cross-validated error:

φ̂K = arg min
φ

1

K

K∑

k=1

(
ĤDN\Dk(φ)−HDk

)2
. (I.82)

If K = N , the K-fold cross-validation method is called the leave-one-out procedure and
each subset Dk = {z(k)} is the k-th point of the design. (I.82) becomes then

φ̂N = arg min
φ

1

N

N∑

i=1

(
Ĥ−i(z(i))(φ)−H(z(i))

)2
, (I.83)

where Ĥ−i(z(i))(φ) is the predictor of H(z(i)) obtained from the evaluations of H at all
the design points DN except the i-th point z(i), by using (I.60).

The choice of K could be sensitive: if K = N , φ̂K is an asymptotically unbiased
estimator, but may have a large variance; if K takes smaller values, φ̂K has a smaller
variance but can be biased. In practice, we often use K = 5 or K = 10 which seems to
be a good compromise for the available sample size we are facing.

However, in the case of meta-model, the cross-validation technique does not estimate
the variance parameter σ2 as it is not involved in the predictor formula (I.60) and
therefore not in Eq (I.83). One way to proceed is to find σ2 such that the following
ratio

1

N

N∑

i=1

(
Ĥ−i(z(i))(φ)−H(z(i))

)2

MSE−i(z(i))(φ)
, (I.84)

is close to 1, i.e. the mean squared error should be equal to the empirical squared
error (the numerator), where MSE−i(z(i))(φ) is the variance obtained from all training
data except z(i), using the formula (I.48). The coefficient of predictability Q2 can be
construct following the same technique to measure the quality of a design (cf. Chapter
IV).
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• Bayesian Predictors (BP)

An alternative Bayesian inference consists of computing the posterior distribution of the
unknown parameters φ = (β, σ2, ψ), knowing the observations HDN and under some
prior assumpions on φ.

A practical choice of the prior distribution (Santner et al. 2003, (100)) is as follows:

π(φ) = π(β|σ2)π(σ2)π(ψ), (I.85)

as it is reasonable to assume that the autocorrelation parameter ψ is a priori indepen-
dent from (β, σ2). The posterior distribution of the parameters can be derived with the
help of Bayes’ formula:

π(φ|HDN ) ∝ π(HDN |φ)π(φ). (I.86)

Proposition 2 and Remark 12 tell that the conditional distribution of the GP H(z) is a
Gaussian distribution:
[
H(z) |HDN , φ

]
∼ Np

[
F(z)Tβ + ΣT

zDΣ−1
DD(HDN − FDβ), σ2

(
1−ΣT

zDΣ−1
DDΣzD

)]
.

(I.87)

The joint posterior distribution of
[
H(z), φ |HDN

]
can then be obtained by applying

Bayes’ formula:

π(H(z), φ |HDN ) ∝ π(H(z) |HDN , φ)π(HDN |φ)π(φ). (I.88)

Finally, marginalizing the above joint posterior distribution by integrating φ out leads
to the posterior predictive distribution:

π(H(z) |HDN ) =

∫
π(H(z), φ |HDN ) dφ. (I.89)

In Proposition 2, only β is assumed unknown, which corresponds to the case where no
prior information for β is available, as shown in Santner et al. (2003, (100)). Thus, the
corresponding non informative prior distribution is

π(φ) = π(β) ∝ 1, (I.90)

which helps deriving the posterior mode

β̂ = arg max
β

[L (β |HDN )π(β)] (I.91)

= arg max
β
L (β |HDN ) , (I.92)

and the posterior predictive distribution
[
H(z) |HDN

]
in this case is

Np
[
F(z)T β̂ + ΣT

zDΣ−1
DD(HDN − FDβ̂), σ2

(
1 + γ(z)T (FT

DΣ−1
DDFD)−1γ(z)−ΣT

zDΣ−1
DDΣzD

)]
.

(I.93)
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We find the same expression for the predictor and the prediction variance as described in
Proposition 2. Santner et al. (2003, (100)) recommend the MLE or the RMLE to obtain
a good predictor from an empirical study, and MLE is chosen in our work which is already
implemented by the DACE toolbox. In fact, it permits to estimate all the parameters with
explicit formula and can be regarded as the non informative case with BP method. Moreover,
it is known that under certain assumptions of differentiability of the likelihood, the MLE
is asymptotically efficient. However, it should not be forgotten that the computation of
the likelihood is expensive, especially when the number N of data is large, apart from the
high cost of inverting the covariance matrix ΣDD of size N × N . For this reason, several
approximating methods for the likelihood can be carried out (see Stein et al., 2004, (104)).
A complete list of these methods can also be found in (87) (Rasmussen and Williams, 2006)
.
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CHAPTER II. ELICITING THE PRIOR DISTRIBUTIONS

As explained in the previous chapter, the Bayesian framework is chosen to solve inverse
problems as it takes into account the prior information possibly coming from experts, and it
is expected to be useful in a small sample size setting. In this chapter, we aim at calibrating
prior distributions, which is required by Bayesian inference. Let us recall the Bayesian model
we opt for:

Xi |m,C ∼ Nq(m,C), (II.1)

Ui ∼ Np(0, R), (1 ≤ i ≤ n), (II.2)

with prior assumptions

m |C ∼ Nq(µ,C/a), (II.3)

C ∼ IWq(Λ, ν), (II.4)

(II.5)

where µ, a,Λ, ν are the hyperparameters to be specified. This Bayesian model can be de-
scribed by the following directed acyclic graph (DAG).

Figure II.1: DAG of the Bayesian model

To calibrate the prior distributions (II.4-II.5) , the full conditional posterior distributions of
m, C and X = (X1, . . . , Xn), knowing the current simulated values, the observed data (y,d)
and the hyperparameters ρ = (µ, a,Λ, ν) will be useful. This calculation also provides a
basis for the MCMC algorithm, presented in Chapter III. It is worth noting that the variance
matrix R of the measurement error Ui is not a prior hyperparameter, which can be given by
analyzing the measurement system or expertise. In the present work, R is assumed to be
known.

In this chapter, we use the capital character Y = (Y T
1 , . . . , Y

T
n )T to denote the corresponding

random process from which the observations y = (yT1 , . . . , y
T
n )T arise.

II.1 Full conditional posterior distributions

For the computation of the full conditional posterior distributions of (m,C,X), we distinguish
two versions, the rich man version and the poor man version, according to our computational
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budget. In the rich man version, which is not always realistic, it is assumed that the budget
is so important that the number of calls to H is not limited. While, in the poor man version,
the function H is replaced by a cheaper kriging meta-model due to a limited budget. We
begin with the ideal rich man version.

II.1.1 Computation following the rich man version

Bayes’ formula leads to the following equality:

π(m,C,X|Y,d, ρ) =
π(m,C,X,Y|d, ρ)

π(Y|d, ρ)
, (II.6)

which is proportional to π(m,C,X,Y|d, ρ). We begin with treating this joint distribution.
Let us recall that by injecting the prior distributions (II.4-II.5), the full conditional distribu-
tion of Y can be written as the product of n normal distributions:

Yi | di, Xi,m,C, ρ ∼ Np
[
H(Xi, di), R

]
. (II.7)

Still applying Bayes’ formula, the joint distribution π(m,C,X,Y |d, ρ) can be developed as
follows:

π(m,C,X,Y |d, ρ) ∝ π(Y |X,m,C,d, ρ) · π(X |m,C, ρ) · π(m |C, ρ) · π(C | ρ)

=

(
1

(2π)p/2|R|1/2
)n
· exp

[
− 1

2

n∑

i=1

(
Yi −H(Xi, di)

)T
R−1

(
Yi −H(Xi, di)

)]

�

(
1

(2π)q/2|C|1/2
)n
· exp

[
− 1

2

n∑

i=1

(Xi −m)TC−1(Xi −m)
]

�

(
1

(2π)q/2|Ca |1/2

)
· exp

[
− 1

2
(m− µ)T (

C

a
)−1(m− µ)

]

�
|Λ|ν/2 |C|− ν+q+1

2 exp
[
− 1

2 Tr(Λ · C−1)
]

2νq/2 Γq(ν/2)
.

Thus, up to an additive constant,

log π(m,C,X |Y,d, ρ)
exp∝ −(ν + n+ q + 2) log |C|

−
n∑

i=1

(m−Xi)
TC−1(m−Xi) − a(m− µ)TC−1(m− µ)

−
n∑

i=1

(
Yi −H(Xi, di)

)T
R−1

(
Yi −H(Xi, di)

)
− Tr(Λ · C−1).

(II.8)
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CHAPTER II. ELICITING THE PRIOR DISTRIBUTIONS

In this formula, by selecting the terms relative to m, C and X, respectively, we obtain:

log π(m |C,X,Y,d, ρ)
exp∝ −

n∑

i=1

(m−Xi)
TC−1(m−Xi)− a(m− µ)TC−1(m− µ) (II.9)

log π(C |m,X,Y,d, ρ)
exp∝ −(ν + n+ q + 2) log |C|

−Tr
[( n∑

i=1

(m−Xi)(m−Xi)
T + a(m− µ)(m− µ)T + Λ

)
C−1

]
(II.10)

log π(X |m,C,Y,d, ρ)
exp∝ −

n∑

i=1

(m−Xi)
TC−1(m−Xi)−

n∑

i=1

(
Yi −H(Xi, di)

)T
R−1

(
Yi −H(Xi, di)

)
.

(II.11)

The full conditional posterior distributions of m and C can then be determined as follows:

m |C,X,Y,d, ρ ∼ N
( a

n+ a
µ+

n

n+ a
Xn,

C

n+ a

)
, where Xn =

1

n

n∑

i=1

Xi; (II.12)

C |m,X,Y,d, ρ ∼ IW
(

Λ +
n∑

i=1

(m−Xi)(m−Xi)
T + a(m− µ)(m− µ)T , ν + n+ 1

)
.

(II.13)

While the full conditional posterior distribution of X, as described in (II.11), cannot be
formulated in a closed-form expression, due to the complex function H. Thus, numerical
methods, typically Monte Carlo Markov chains (MCMC), are required to approximate this
posterior distribution. This MCMC algorithm will be detailed in the next chapter.

The determination of the distribution (II.13) of C is direct. We provide the proof for m.
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Proof. of (II.12): We have from (II.9) that

log π(m |C,X,Y,d, ρ)

= −
[ n∑

i=1

(m−Xi)
TC−1(m−Xi) + a(m− µ)TC−1(m− µ)

]

= −
[ n∑

i=1

q∑

j=1

q∑

k=1

(mj −Xj
i )(mk −Xk

i )C−1
jk +

q∑

j=1

q∑

k=1

a(mj − µj)(mk − µk)C−1
jk

]

= −
q∑

j=1

q∑

k=1

[
nmjmk −

n∑

i=1

mjX
k
i −

n∑

i=1

mkX
j
i +

n∑

i=1

Xj
iX

k
i + amjmk − amjµk − amkµj + aµjµk

]
· C−1

jk

= −
q∑

j=1

q∑

k=1

(n+ a)
[
mjmk −

∑n
i=1X

k
i + aµk

n+ a
mj −

∑n
i=1X

j
i + aµj

n+ a
mk +

∑n
i=1X

j
iX

k
i + aµjµk

n+ a

]
· C−1

jk

= −
q∑

j=1

q∑

k=1

(n+ a)
[(
mj −

∑n
i=1X

j
i + aµj

n+ a

)(
mk −

∑n
i=1X

k
i + aµk

n+ a

)
· C−1

jk

+
(∑n

i=1X
j
iX

k
i + aµjµk

n+ a
− (
∑n

i=1X
j
i + aµj)(

∑n
i=1X

k
i + aµk)

(n+ a)2

)
· C−1

jk

]

exp∝ −
(
m− n

n+ a
Xn −

a

n+ a
µ
)T( C

n+ a

)−1(
m− n

n+ a
Xn −

a

n+ a
µ
)
.

The full conditional posterior distribution of m can then be easily deduced

m |C,X,Y,d, ρ ∼ N
( a

n+ a
µ+

n

n+ a
Xn,

C

n+ a

)
. (II.14)

II.1.2 Computation following the poor man version

In practice, the function H is usually highly computationally expensive. It is thus necessary
to replace it with a cheaper kriging meta-model, as presented in Chapter I. As the need of
this surrogate comes from a limited budget, it is called the poor man version.

In this version, the full conditional posterior distributions of m and C remain the same as
in the rich man version, described in (II.12) and (II.13), since they are independent from H.
The only change concerns the missing data X, whose full conditional posterior distribution
in the rich man version is described in (II.11).

An uncertainty model adapted to the meta-model

A direct and naive idea is to replace H by its kriging predictor Ĥ defined in (I.47) such that
the model (I.4) becomes

Yi = Ĥ(Xi, di) + Ui, i = 1, . . . , n, (II.15)

33
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and it leads to the following full conditional posterior distribution of X, derived from (II.11):

log π(X |m,C,Y,d, ρ)
exp∝ −

n∑

i=1

(m−Xi)
TC−1(m−Xi)−

n∑

i=1

(
Yi − Ĥ(Xi, di)

)T
R−1

(
Yi − Ĥ(Xi, di)

)
.

(II.16)

However, this simple replacement ignores the uncertainty related to the meta-model. A
more convenient solution is to consider Yi as the realization of a Gaussian Process Yi, under
assumption that H is the realization of a Gaussian process H. The original model can be
rewritten in the following way:

Yi = Ĥ(Xi, di) +
(
H(Xi, di)− Ĥ(Xi, di)

)
+ Ui, (II.17)

= Ĥ(Xi, di) + Vi(Xi, di), i = 1, . . . , n. (II.18)

The property of the kriging modeling that it takes into account the spatial structure of the
DOE permits us to model the dependence between different sample points. By defining n
samples of the GP Y = {Yi, i = 1, . . . , n} and n samples of the input Z = {Zi, i = 1, . . . , n}
with Zi = (Xi, di), the original model adapted in the poor man version can be written in the
following form:

Y =




Y11
...
Y1n

...
Yp1

...
Ypn




=




Ĥ1(Z1)
...

Ĥ1(Zn)
...

Ĥp(Z1)
...

Ĥp(Zn)




+




V11(Z1)
...

V1n(Zn)
...

Vp1(Z1)
...

Vpn(Zn)




︸ ︷︷ ︸
new uncertainty error

= Ĥ(Z) + V(Z), (II.19)

with

Vji(Zi) =
(
Hj(Zi)− Ĥj(Zi)

)
+ Uji, (II.20)

where Hj(Zi) denotes the j-th component of the GP H at point Zi, Ĥj(Zi) denotes the
corresponding predictor and the Uji denotes the j-th component of the measurement error
Ui, with i = 1, . . . , n and j = 1, . . . , p. It is worth noting that the new uncertainty error
combines two types of uncertainty: one comes from the error term Ui (with the variance
matrix R) and the other is derived from the kriging meta-model (i.e. the variance matrix
MSE).

The advantage is that the correlation between the outputs H(Zk) and H(Zl) has been taken
into account. In fact, for each j-th dimension Hj of the output, the kriging meta-model error
for the whole sample {Zi, i = 1, . . . , n} can be written as

Ej =
(
Hj(Z1)− Ĥj(Z1), . . . ,Hj(Zn)− Ĥj(Zn)

)T
(II.21)

= (Ej1, . . . , Ejn)T . (II.22)
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For two different sample points zk and zl with k 6= l, there exists a correlation between the
outputs H(zk) and H(zl). Derived from (I.48), the covariance of the j−th dimension of the
output is given by:

Cov [Ejk, Ejl |HDN = HDN ] = σ2
(
Kψ(zjk − zjl) + γ(zjk)

T (FT
DN

Σ−1
DDFDN )−1γ(zjl)−ΣT

zjkD
Σ−1
DDΣzjlD

)
,

(II.23)

where Kψ(z− z′) denotes the autocorrelation which only depends on the distance between z
and z′, zji denotes the j−th dimension of zi with 1 ≤ i ≤ n and 1 ≤ j ≤ p, and

γ(z) = F(z)− FT
DN

Σ−1
DDΣzD. (II.24)

Moreover, given the observations HDN of the function H on the design of experiments DN ,
the vectors E1, . . . , Ep are assumed to be mutually independent. It is reasonable to assume
also that the vectors are independent from the random variables U1, . . . , Un which describe
the measurement errors.

It is worth noting that the model (II.19) is ordered according to the variables’ order (Ĥ1(Z), · · · , Ĥp(Z)).
The advantage is that the kriging variance matrix can be written as a block diagonal ma-
trix, as now detailed. Given the observations HDN , the new error term Vi = (V1i, . . . ,Vpi)T
described in (II.20) follows a normal distribution:

Vi(z) |HDN = HDN ∼ N
[
0, R+ MSE(z)

]
. (II.25)

Following the adapted model (II.19), it can then be proved that the distribution of Y , knowing
the variables Z and the observations HDN , is also a normal distribution:

Y |Z,HDN = HDN ∼ N
[
Ĥ(Z),R + MSE(Z)

]
, (II.26)

where

R =




R11

. . .

R11

0

. . .

0

Rpp
. . .

Rpp




,



 n lines



 n lines

with Rii the i−th diagonal component of the diagonal variance matrix R, and MSE(Z) is the
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block diagonal matrix

MSE(Z) =




[MSE1(Z)] 0

. . .

0 [MSEp(Z)]






 n lines



 n lines

composed with the variance matrices MSEj(Z) ∈Mn×n described as

MSEj(Z) = E
(

(Hj(Z)− Ĥj(Z))2 |HDN = HDN

)
, (II.27)

for j = 1, . . . , p. The precise expression of the variance and covariance is given in (I.48) and
(I.55).

The distribution in (II.26) leads to the following full conditional posterior distribution of the
grouped random variables X, which is different from (II.11):

π
Ĥ

(X |m,C,Y ,d, ρ,HDN ) ∝ π
Ĥ

(Y |X,m,C,d, ρ,HDN ) · π(X |m,C)

∝ |R + MSE(Z)|− 1
2 · exp

{
− 1

2

n∑

i=1

(Xi −m)TC−1(Xi −m)

−1

2

((
Y1 − Ĥ(Z1)

)T
, . . . ,

(
Yn − Ĥ(Zn)

)T)(
R + MSE(Z)

)−1




(
Y1 − Ĥ(Z1)

)

...(
Yn − Ĥ(Zn)

)




}
.

(II.28)

The logarithm of this conditional distribution can then be written:

log π
Ĥ

(X | . . . ) exp∝ − log |R + MSE(Z)| −
n∑

i=1

(Xi −m)′C−1(Xi −m)

−
((
Y1 − Ĥ(Z1)

)′
, . . . ,

(
Yn − Ĥ(Zn)

)′)(
R + MSE(Z)

)−1




(
Y1 − Ĥ(Z1)

)

...(
Yn − Ĥ(Zn)

)


 ,

(II.29)

which is preferred in our numerical calculations as it may avoid some numerical problems.

In this way, the “block diagonal” form of the matrix R + MSE(Z) makes the calculation of
the inverse of the covariance matrix easier.
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Remark 15. The “block diagonal” form of the matrix R + MSE(Z) is validated only under
the assumption that the variance matrix R is diagonal, which means

Uki ⊥⊥ U ji , for k 6= j, (II.30)

for ∀i ∈ {1, . . . , n}.

Once again, the full conditional posterior distribution of X computed in the rich man version
in (II.11) does not belong to any closed-form family of distribution. For this reason, it is
necessary to rue a MCMC algorithm, e.g. the Metropolis-Hastings algorithm which will be
presented in detail in the next chapter.

II.2 Prior calibration (elicitation) of the hyperparameters

II.2.1 Initial modeling (prior predictive distribution)

To calibrate the hyperparameters ρ = (µ, a,Λ, ν), it would be helpful to compute the prior
predictive distribution of Xi, which means marginalizing the joint distribution of (m,C,X)
by integrating the parameters θ = (m,C) out. Integrating over values of the parameters θ is
natural in the context where the expert opinion is not attached to any model (see Bousquet,
2006, (9)). The prior predictive distribution makes sense for the statistician and it is more
intuitive to experts as some features of this distribution can be relatively easily assessed from
them (see Kadane and Wolfson, 1998, (50), Garthwaite et al., 2005, (32)).

Given values for the hyperparameters µ, a,Λ and ν, the prior predictive probability function
of Xi can be calculated as

πXi(x) =

∫∫
πXi(x|m,C)π(m|C)π(C) dC dm

∝
∫∫
|C|−1/2 exp

[
− 1

2
(x−m)TC−1(x−m)

]

·|C
a
|−1/2 exp

[
− 1

2
(m− µ)T (

C

a
)−1(m− µ)

]

· |C|− ν+q+1
2 exp

[
− 1

2
Tr(Λ · C−1)

]
dC dm

∝
∫∫
|C|− ν+q+3

2 exp
{
− 1

2

[
(x−m)TC−1(x−m) + a(m− µ)TC−1(m− µ) + Tr(Λ · C−1)

]}
dC dm.

(II.31)

Considering the inner term in the exponential function, we can prove that

(x−m)TC−1(x−m) + a(m− µ)TC−1(m− µ)

=

(
m− x

1 + a
− a

1 + a
µ

)T ( C

1 + a

)−1 (
m− x

1 + a
− a

1 + a
µ

)
+ (x− µ)T

(
1 + a

a
C

)−1

(x− µ).

(II.32)
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Plugging this term in (II.31) leads to the following development:

πXi(x) ∝
∫
|C|− ν+q+2

2 exp
{
− 1

2

[
(x− µ)T

(
1 + a

a
C

)−1

(x− µ) + Tr(Λ · C−1)
]}

dC

·
∫
| C

1 + a
|−1/2 exp

[
− 1

2

(
m− x

1 + a
− a

1 + a
µ
)T

(
C

1 + a
)−1

(
m− x

1 + a
− a

1 + a
µ
)]
dm

∝ |Λ +
a

a+ 1
(x− µ)(x− µ)T |− ν+1

2

∫
|Λ + a

a+1(x− µ)(x− µ)T | ν+1
2 |C|− ν+q+2

2 exp
[
−1

2Tr
((

Λ + a
a+1(x− µ)(x− µ)T

)
C−1

)]
dC

︸ ︷︷ ︸
∝1

,

∝ |Λ +
a

a+ 1
(x− µ)(x− µ)T |− ν+1

2 (II.33)

= |Λ|−ν+1
2

[
1 + (x− µ)T

(
a+ 1

a
Λ

)−1

(x− µ)

]−ν+1
2

. (II.34)

Thus, the density of Xi can be written as:

πXi(x) ∝ | a+ 1

a(ν + 1− q)Λ|− 1
2

[
1 + (x− µ)T

(
a+ 1

a(ν + 1− q)Λ

)−1

(x− µ)

]− (ν+1−q)+q
2

,(II.35)

which indicates the following multivariate Student distribution:

Xi ∼ Stq

(
µ,

a+ 1

a(ν + 1− q)Λ, ν + 1− q
)
, (1 ≤ i ≤ n), (II.36)

with

E[Xi] = µ, (II.37)

Var[Xi] =
a+ 1

a(ν − 1− q)Λ. (II.38)

In (II.33), we recognize the Inverse-Wishart distribution:

IW
[
Λ +

a

a+ 1
(x− µ)(x− µ)T , ν + 1

]
, (II.39)

using the following identity:

Γq

(
ν + 1

2

)
/Γq

(ν
2

)
= Γ

(
ν + 1

2

) /
Γ

(
ν + 1− q

2

)
(II.40)

where Γq(·) denotes the multivariate gamma function of order q and Γ(·) denotes the gamma
function under the following recursive relationship:

Γq(a) = π
q(q−1)

4

q∏

j=1

Γ

(
a+

1− j
2

)
. (II.41)
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Remark 16. The multivariate Student distribution described in (II.36) tends to a Gaussian
distribution as ν → ∞:

√
a(ν − q − 1)

a+ 1
Xi

L
 Nq

(
µ,Λ

)
. (II.42)

The distribution (II.36) is the prior predictive distribution of Xi, which could be quite use-
ful in practice. As mentioned at the beginning of the section, expert information is usually
expressed on intuitive variables, independently of any statistical parameterization. This in-
formation can often be assimilated to prior predictive features rather than prior parametrical
features. The hyperparameters µ, a, Λ and ν can thus be more easily elicited from the expert.

II.2.2 Calibration for conjugate priors

Since the Gaussian and the Inverse-Wishart distributions belong to the exponential family
of distributions, conjugate prior distributions can be used for their parameters. This section
addresses the issue of eliciting the prior hyperparameters from the prior predictive represen-
tation, following the ideas promoted by Kadane and Wolfson (1998, (50)).

Analysis: How to choose the hyperparameters a and µ?

In formula (II.12) which gives the full conditional posterior distribution of m, the prior mean
µ can be chosen to be mExp according to expert knowledge. Moreover, the hyperparameter a
can be regarded as the size of a virtual sample to be adjusted with respect to our knowledge
or belief, while n is the fixed size of the observed sample.

When a is close to 0, the impact of the prior distribution disappears; when a is large, the
impact of the data disappears. A default choice is a = 1, which means that the prior
information is as important as the information brought by one data. The advantage of this
standard choice is that it does not bring an excessive importance on prior information with
respect to data information.

Analysis: how to choose the Inverse-Wishart hyperparameters Λ and ν ?

The other two hyperparameters Λ and ν, known as two components of the prior Inverse-
Wishart (IW) distribution of C, are more difficult to interpret. First, we choose the inverse
scale matrix Λ under the following form:

Λ = t · CExp (II.43)

where CExp denotes the prior variance matrix with respect to the expert opinion and t is
a related hyperparameter to be specified. This formulation is natural since for any C ∼
IWq (Λ, ν), we have

E(C) =
1

ν − q − 1
Λ. (II.44)
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By fixing t = ν − q − 1, we get from (II.43):

E(C) =
t

ν − q − 1
· CExp = CExp. (II.45)

Thus, a natural prior choice for ν is:

ν = t+ q + 1. (II.46)

In what follows, we only need to calibrate the hyperparameter t. We choose to analyze the
full conditional posterior distribution of C, which is an Inverse-Wishart distribution, given
in (II.13). Note that the inverse scale matrix contains three terms :

Λ,
n∑

i=1

(m−Xi)(m−Xi)
T and a(m− µ)(m− µ)T .

The second and the third terms correspond to the total squared deviation within the sample
{Xi} of size n and the virtual sample {m} of size a. Considering an unbiased estimator of
the sample variance:

Ĉ =
1

n

n∑

i=1

(m−Xi)(m−Xi)
T , (II.47)

the total squared derivation in {Xi} can be written n Ĉ. Moreover, assuming

m | Ĉ ∼ N
(
µ, Ĉ/a

)
(II.48)

leads to

Ĉ

a
' 1

a

a∑

i=1

(m− µ)(m− µ)T , (II.49)

which provides a measure of the total squared derivation of {m} as a · Ĉ/a = Ĉ. The full
conditional posterior distribution (II.13) of C can then be written as follows:

C |m,X,Y,d, ρ ∼ IW
(
t CExp + (n+ 1) Ĉ, ν + n+ 1

)
. (II.50)

Under the assumption that ν = q + t+ 1, the posterior mean of C equals finally

E(C |m,X,Y,d, ρ) =
t CExp + (n+ 1) Ĉ

t+ n+ 1
(II.51)

=
t

t+ n+ 1
· CExp +

n+ 1

t+ n+ 1
· Ĉ. (II.52)

We obtain an elegant expression which provides us the possibility to tune the importance
(weight) of the prior choice by choosing a proper t, which is homogeneous to n+ 1. Recalling
that we have interpreted a as the size of a virtual sample. Formula (II.52) gives us a good
reason to take:

t = a+ 1 ⇒ t = 2 is a default choice (with a = 1). (II.53)
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II.3 An alternative view: Jeffreys non informative prior

Unfortunately, sometimes neither prior information nor expert knowledge is available. In this
case, a non informative prior distribution can be chosen. In this section, we aim at computing
the full conditional posterior distributions in this case.

II.3.1 General introduction

The Jeffreys non informative prior distribution πJ(θ) (see Kass and Wasserman, 1996, (52)),
which remains invariant under reparameterization, is a standard non informative prior dis-
tribution. It is as follows:

πJ(θ) = πJ(m)πJ(C) =
IΩm(m)

Vol(Ωm)
· ∆C

|C| q+2
2

IΩC (C), (II.54)

with

∆C =

(∫

ΩC

1

|C| q+2
2

dC

)−1

. (II.55)

In our case study, as the meta-model is defined on a compact set, the simulated missing data
X should be in this compact set. Moreover, the parameters m and C are also restricted to
be in compact sets Ωm and ΩC as expressed in (II.54). If Ωm and ΩC are strictly included in
Rq+ and Rq×q+ , the Jeffreys non informative distribution is proper in our case.

II.3.2 Calculation of the full conditional posterior distributions

This computation is restricted to the poor man version as it is more complicated. According
to Bayes’ formula, the joint distribution πJ(m,C,X |Y ,d,HDN ) can be written as:

πJ(m,C,X |Y ,d,HDN ) ∝ π
Ĥ

(Y |X,m,C,d,HDN ) · π(X |m,C) · πJ(m,C)

∝ |R + MSE(Z)|− 1
2 · exp

{
− 1

2

n∑

i=1

(Xi −m)′C−1(Xi −m)

−1

2

((
Y1 − Ĥ(Z1)

)′
, . . . ,

(
Yn − Ĥ(Zn)

)′)(
R + MSE(Z)

)−1




(
Y1 − Ĥ(Z1)

)

...(
Yn − Ĥ(Zn)

)




}

· |C|−n2 · exp
[
− 1

2

n∑

i=1

(Xi −m)TC−1(Xi −m)
]
· IΩm(m) · IΩC (C) · |C|− q+2

2 .
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Up to an additive constant, we have

πJ(m,C,X |Y ,d,HDN )

∝ |C|−n+q+2
2 · |R + MSE(Z)|− 1

2 · exp

{
− 1

2

n∑

i=1

(m−Xi)
TC−1(m−Xi)

−1

2

((
Y1 − Ĥ(Z1)

)′
, . . . ,

(
Yn − Ĥ(Zn)

)′)(
R + MSE(Z)

)−1




(
Y1 − Ĥ(Z1)

)

...(
Yn − Ĥ(Zn)

)




}
.

(II.56)

Denoting Xn = 1
n

∑n
i=1Xi, the full conditional posterior distribution of m verifies

πJ(m |C,X,Y ,d,HDN ) ∝ IΩm exp
[
− 1

2
(m−Xn)′

(
C

n

)−1

(m−Xn)
]
. (II.57)

This is a normal distribution truncated on Ωm:

m |C,X,Y ,d,HDN ∼ IΩm · N
(

Xn,
C

n

)
. (II.58)

Similarly, the full conditional posterior distribution of C verifies

πJ(C |m,X,Y ,d,HDN ) ∝ IΩC |C|−
n+q+2

2 exp
[
− 1

2
Tr
(
n (m−Xn)(m−Xn)′ · C−1

) ]
.

(II.59)

Thus, it is an Inverse-Wishart distribution truncated on ΩC :

C |m,X,Y ,d,HDN ∼ IΩC · IW
(
n (m−Xn)(m−Xn)′, n+ 1

)
. (II.60)

Moreover, the full conditional posterior distribution of the missing data X knowing the current
parameters θ, the observations Y ,d and the evaluations HD is given by (II.28). It requires
a numerical method, e.g. the MCMC algorithm, for the simulation of those missing data.
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CHAPTER III. MCMC METHOD ADAPTED TO INVERSE PROBLEMS

This chapter describes the Markov chain Monte Carlo (MCMC) method, namely the Metropolis-
Hastings-within-Gibbs algorithm (or Hybrid MCMC algorithm) we used in this thesis. First,
we recall the general definition of a MCMC method.

Definition 3. ((91)) A Markov chain Monte Carlo method for the simulation of a distribution
f is any method producing an ergodic Markov chain (X [t]) whose stationary distribution is f .

In other words, a MCMC algorithm generates a Markov chain (X [t]) with the help of a
chosen transition kernel from an arbitrary starting point x[0], converging towards the target
distribution f .

III.1 Metropolis-Hastings-within-Gibbs algorithm (Hybrid MCMC
algorithm)

III.1.1 Target Gibbs sampler

Gibbs sampling is a MCMC algorithm which draws each unknown quantity (the parameters
m, C and the unobserved data X) in the present context iteratively from the full conditional
posterior distributions given the current values of the other quantities. Unfortunately, the
distribution of X knowing (m,C) does not belong to any known family of distributions, and
that is why a numerical method such as the Metropolis-Hastings (MH) algorithm (see for
instance Tierney, 1995, (110)) is necessary. This type of Gibbs sampler combined with a MH
step is named the Metropolis-Hastings-within-Gibbs algorithm (or Hybrid MCMC algorithm).

The convergence of the simulated samples
(
m[r], C [r],X[r]

)
towards the stationary joint dis-

tribution πH (m,C,X |Y,d, ρ)1 can be verified under some regularity conditions (cf. Section
III.2). Moreover, each variable will converge to its own marginal posterior distribution, i.e.
π(m |Y,d), π(C |Y,d) and π(X |Y,d). Thus, thanks to MCMC, Bayesian inference avoids
some numerical difficulties related to the missing data structure arising in frequentist infer-
ence, although there is still the price of numerical simulations to be paid.

With the prior choices described in Chapter II by (II.4) and (II.5), the calculated posterior
distributions (II.11), (II.12), (II.13) and (II.28) lead to the following algorithm:

Gibbs sampler (at the (r + 1)-th iteration)

Given (m(r], C [r],X[r]) for r = 0, 1, 2, . . . , generate:

1. C [r+1]| · · · ∼ IW
(

Λ +
∑n

i=1(m[r] −X [r]
i )(m[r] −X [r]

i )′ + a(m[r] − µ)(m[r] − µ)′, ν + n+ 1
)

.

2. m[r+1]| · · · ∼ N
(

a
n+aµ + n

n+aX
[r]
n ,

C[r+1]

n+a

)
where X

[r]
n denotes the empirical mean of the

n vectors X
[r]
i , i = 1, . . . , n.

1Or πĤ (m,C,X |Y,d,HD, ρ) for the more general poor man version
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3. In the rich man version,

X[r+1]| · · · ∝ exp− 1
2

n∑
i=1

[
(X

[r+1]
i −m[r+1])T

[
C [r+1]

]−1

(X
[r+1]
i −m[r+1]) +

(
Yi −H [r+1]

i

)T
R−1

(
Yi −H [r+1]

i

)]
},

where H
[r+1]
i = H(X

[r+1]
i , d). While in the poor man version,

X[r+1]| · · · ∝ |R+MSE[r+1]|− 1
2 ·exp

{
− 1

2

∑n
i=1(X

[r+1]
i −m[r+1])T

[
C [r+1]

]−1

(X
[r+1]
i −m[r+1])−

1
2

((
Y1 − Ĥ [r+1]

N,1

)T
, . . . ,

(
Yn − Ĥ [r+1]

N,n

)T)(
R + MSE[r+1]

)−1




Y1 − Ĥ [r+1]
N,1

...

Yn − Ĥ [r+1]
N,n




}
,

where Ĥ
[r+1]
N,i = ĤN (X

[r+1]
i , d) and MSE[r+1] = MSE(X[r+1], d).

In the poor man version, MSE(X[r+1], d) is a block diagonal matrix of size np×np and R is a
diagonal matrix of the same size, both of which have been described in Section II.1.2. Since
the distribution of X[r+1] is not in a closed-form, numerical methods, the Metropolis-Hastings
(MH) algorithm, are typically required. Suppose that l iterations of the MH algorithm are
applied at each iteration of the Gibbs sampler. In this thesis, l is chosen equal to 1 (referring
to Section III.1.2). The two versions of the MH algorithm are now presented.

III.1.2 Inner Metropolis-Hastings algorithm (the rich man version)

The MH algorithm is based on an instrumental distribution, which causes useless simulations
(rejections) when it is badly chosen.

Metropolis-Hastings algorithm (the rich man version, at the (r + 1)-th iteration)

Given θ[r+1] = (m[r+1], C [r+1]) and X[r] =
(
X

[r]
1 , . . . , X

[r]
n

)T
, for each sample X

[r]
i , 1 ≤ i ≤ n:

1. Let Xi,0 = X
[r]
i

2. For s = 1, . . . , l, updating X
[r]
i :

− Generate

X̃i,s ∼ J(· | m[r+1], C [r+1], Xi,s−1) (III.1)

where J is the proposal (instrumental) distribution.

− Let

α
(
Xi,s−1, X̃i,s

)
= min

{
πH(X̃i,s | Yi, di, θ[r+1], ρ)

πH(Xi,s−1 | Yi, di, θ[r+1], ρ)

J(Xi,s−1|X̃i,s, θ
[r+1])

J(X̃i,s|Xi,s−1, θ[r+1])
, 1

}
,

(III.2)
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take

Xi,s =

{
X̃i,s, with probability α

(
Xi,s−1, X̃i,s

)
;

Xi,s−1, otherwise.

More precisely, generate u ∼ U[0,1], then

Xi,s =

{
X̃i,s, if u < α

(
Xi,s−1, X̃i,s

)
;

Xi,s−1, otherwise.

3. Let X
[r+1]
i = Xi,l

A specific Hybrid MCMC algorithm, which uses one MH step within an iteration of Gibbs
sampling, was proposed in Muller (1991, (74)). By assuming l = 1, the modified MH algo-
rithm is as follows.

Modified Metropolis-Hastings algorithm (the rich man version, at the (r + 1)-th
iteration)

Given
(
m[r+1], C [r+1],X[r]

)
, for each sample X

[r]
i , 1 ≤ i ≤ n:

1. Simulate

X̃i ∼ J(· | m[r+1], C [r+1], X
[r]
i ) = J(· | θ[r+1], X

[r]
i ) (III.3)

where J is the instrumental distribution.

2. Take

X
[r+1]
i =





X̃i, with probability α
(
X

[r]
i , X̃i

)
;

X
[r]
i , with probability 1− α

(
X

[r]
i , X̃i

)
,

where

α
(
X

[r]
i , X̃i

)
= min

{
πH(X̃i | Yi, di, θ[r+1], ρ)

πH(X
[r]
i | Yi, di, θ[r+1], ρ)

J(X
[r]
i |X̃i, θ

[r+1])

J(X̃i|X [r]
i , θ[r+1])

, 1

}
. (III.4)

As indicated in (91) (pp. 393-396), the arguments for this more rapid MH version are twofold
:

1. its stationary distribution remains πH(m,C,X |Y,d, ρ);

2. even without convergence at the MH step, Gibbs sampling also leads to an approxima-
tion of its target distribution.

In fact, the quality of the simulation at each iteration has no great effect on the validation of
the iterative algorithm. Providing a more “precise” approximation of X[r+1] in MH steps does
not necessarily lead to a better approximation of the joint distribution πH(m,C,X |Y,d, ρ).
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Moreover, the replacement of the target full conditional posterior distribution πH(X
[r+1]
i | . . . )

by the instrumental distribution J(X
[r+1]
i | . . . ) may even be beneficial for the speed of excur-

sion of the chain. (See also Chen and Schmeiser, 1998, (16))

The choice of the instrumental distribution J in a MH algorithm is a critical issue. Although
the convergence of the algorithm is ensured under some generic assumptions on J (see Section
III.2), the chain can still suffer from a very slow rate of convergence, depending strongly on
J . An efficient instrumental distribution J will sample candidates in regions where the target

distribution πH(X
[r+1]
i | . . . ) is high.

Based on the modified MH algorithm, several possible instrumental distributions J1, J2 and
J3 are considered and compared (see also Kuhn and Lavielle, 2004, (57)).

1. J could be the normal distribution N
(
m[r+1], C [r+1]

)
, which is independent from the

previous value X
[r]
i :

J
(
X̃i | θ[r+1], X

[r]
i

)
= J

(
X̃i | θ[r+1]

)
, 1 ≤ i ≤ n. (III.5)

The ratio term in α
(
X

[r]
i , X̃i

)
described by (III.4) can be simplified as follows:

πH

(
X̃i | Yi, di, θ[r+1], ρ

)

πH

(
X

[r]
i | Yi, di, θ[r+1], ρ

)
J
(
X

[r]
i |X̃i, θ

[r+1]
)

J
(
X̃i|X [r]

i , θ
[r+1]

)

=
J
(
X̃i | θ[r+1]

)
πH

(
Yi | X̃i, di, ρ

)

J
(
X

[r]
i | θ[r+1]

)
πH

(
Yi | X [r]

i , di, ρ
)
J
(
X

[r]
i |θ[r+1]

)

J
(
X̃i|θ[r+1]

)

=
πH

(
Yi | X̃i, di, ρ

)

πH

(
Yi | X [r]

i , di, ρ
)

where

πH (y | Xi, di, ρ) ∝ exp

{
−1

2

[(
y −H(Xi, di))

TR−1(y −H(Xi, di)
)]}

, (III.6)

as according to the model defined in (I.4) and the normal assumption on Ui, we have

Yi | Xi, di, ρ ∼ N (H(Xi, di), R) , 1 ≤ i ≤ n. (III.7)

2. J could be the normal distribution Nq
(
X

[r]
i , κC

[r+1]
)

, with parameter κ to be fixed,

which leads to the following balance relationship:

J
(
X̃i | X [r]

i , θ
[r+1]

)
= J

(
X

[r]
i | X̃i, θ

[r+1]
)
, (III.8)

thanks to the symmetry property of the normal distribution. The ratio term in the
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expression of α
(
X

[r]
i , X̃i

)
with respect to J can be simplified as follows:

πH

(
X̃i | Yi, di, θ[r+1], ρ

)

πH

(
X

[r]
i | Yi, di, θ[r+1], ρ

)
J
(
X

[r]
i |X̃i, θ

[r+1]
)

J
(
X̃i|X [r]

i , θ
[r+1]

)

=
πH

(
X̃i | Yi, di, θ[r+1], ρ

)

πH

(
X

[r]
i | Yi, di, θ[r+1], ρ

) · 1

=
πH

(
X̃i, Yi | di, θ[r+1], ρ

)

πH

(
X

[r]
i , Yi | di, θ[r+1], ρ

) ,

where the joint distribution of (Xi, Yi) knowing (di, θ
[r+1], ρ) can be calculated as fol-

lows, by applying Bayes’ formula:

πH

(
x, y | di, θ[r+1], ρ

)
= π

(
x | θ[r+1]

)
πH

(
y | x, di, ρ

)

∝ exp

{
−1

2

[
(x−m[r+1])′(C [r+1])−1(x−m[r+1]) + (y −H(x, di))

′R−1(y −H(x, di))
]}

.

(III.9)

3. J could be a succession of q uni dimensional Gaussian random walksN
(
X

[r]
i (l), κC [r+1](l, l)

)

with l = 1, . . . , q, which means that each component of X̃i is to be updated respectively.
In more details, after the construction of the l-th component of X̃i, the current candi-
date is:

X̃i =
(
Xi(1), . . . , Xi(l − 1), X̃i(l), X

[r]
i (l + 1), . . . , X

[r]
i (q)

)T
, (III.10)

where the (q − l) positions (X
[r]
i (l + 1), . . . , X

[r]
i (q)) have not yet been updated.

Assuming κ = 2, Figure III.1 provides us an illustration of J1, J2 and J3 in an uni dimensional
case. Remark that when Xi is uni dimensional, J2 and J3 are the same. J1 is centered on
m[r+1], which is relatively stable as it is simulated according to a normal distribution (see
(II.12)) out of the MH step. J2 is centered on the previous simulated value X [r], which is
more variable and thus a larger variance κC [r+1] is assumed to attenuate this variation.
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Figure III.1: Examples of instrumental distributions

Remark 17. In Barbillon (2010, (3)), l1 iterations with proposal 1, l2 iterations with proposal
2 and l3 iterations with proposal 3, such that l1 + l2 + l3 = l of MH steps have been carried out
for the simulation of the missing data X. However, choosing l1, l2 and l3 is a difficult issue,
which is highly related to the numerical model. In Section III.3, we will discuss the choice of
proposal distributions with two examples.

III.1.3 Inner Metropolis-Hastings algorithm (the poor man version)

At (r + 1)-th iteration, the missing data X[r+1] is to be updated sequentially, as follows.

Modified Metropolis-Hastings algorithm (the poor man version, at the (r + 1)-th
iteration)

Given
(
m[r+1], C [r+1],X[r]

)
, for each sample X

[r]
i , 1 ≤ i ≤ n:

1. Generate

X̃i ∼ J(· | m[r+1], C [r+1], X
[r]
i ) = J(· | θ[r+1], X

[r]
i ) (III.11)

where J is the instrumental distribution.

2. Let

α
(
X

[r]
i , X̃i

)
= min

{
πĤ(X̃i | Y ,d, θ[r+1], ρ,HD)

πĤ(X
[r]
i | Y ,d, θ[r+1], ρ,HD)

J(X
[r]
i |X̃i, θ

[r+1])

J(X̃i|X [r]
i , θ[r+1])

, 1

}
, (III.12)

where

X̃i =
(
X

[r+1]
1 , . . . , X

[r+1]
i−1 , X̃i, X

[r]
i+1, . . . , X

[r]
n

)T
, (III.13)

X
[r]
i =

(
X

[r+1]
1 , . . . , X

[r+1]
i−1 , X

[r]
i , X

[r]
i+1, . . . , X

[r]
n

)T
. (III.14)

3. Take

X
[r+1]
i =





X̃i, with probability α
(
X

[r]
i , X̃i

)
;

X
[r]
i , with probability 1− α

(
X

[r]
i , X̃i

)
.
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4. Update

X
[r+1]
i =

(
X

[r+1]
1 , . . . , X

[r+1]
i , X

[r]
i+1, . . . , X

[r]
n

)T
.

Remark 18. In practice, the components of X[r+1] can be simulated in a random order, as
mentioned in Liu et al. (1995, (63)), in order to accelerate the convergence of the chain
towards its stationary distribution π

Ĥ
(m,C,X | . . . ), by increasing the “mixing” of the sim-

ulated Markov chain.

In what follows, similar instrumental distributions J are to proposed as in the rich man
version. However, the computations are somewhat different, as described now:

1. J could be the normal distribution N
(
m[r+1], C [r+1]

)
. which is independent from the

previous value X
[r]
i :

J
(
X̃i | θ[r+1], X

[r]
i

)
= J

(
X̃i | θ[r+1]

)
, 1 ≤ i ≤ n. (III.15)

Thus, the ratio term in α
(
X

[r]
i , X̃i

)
can be rewritten as:

π
Ĥ

(
X̃i | Y ,d, θ[r+1], ρ,HD

)

π
Ĥ

(
X

[r]
i | Y ,d, θ[r+1], ρ,HD

)
J
(
X

[r]
i |X̃i, θ

[r+1]
)

J
(
X̃i|X [r]

i , θ
[r+1]

)

=
π
(
X̃i | θ[r+1]

)
π
Ĥ

(
Y | X̃i,d, ρ,HD

)

π
(
X

[r]
i | θ[r+1]

)
π
Ĥ

(
Y | X[r]

i ,d, ρ,HD

)
J
(
X

[r]
i | θ[r+1]

)

J
(
X̃i | θ[r+1]

)

=
π
Ĥ

(
Y | X̃i,d, ρ,HD

)

π
Ĥ

(
Y | X[r]

i ,d, ρ,HD

)

Remark 19.

π
(
X̃i | θ[r+1]

)

π
(
X

[r]
i | θ[r+1]

)
J
(
X

[r]
i | θ[r+1]

)

J
(
X̃i | θ[r+1]

) = 1, (III.16)
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since using the notation X̃i and X
[r]
i defined in (III.13) and (III.14),

π
(
X̃i | θ[r+1]

)

π
(
X

[r]
i | θ[r+1]

) =

exp

{
−1

2

(
X̃i −m[r+1]

)T (
C [r+1]

)−1
(
X̃i −m[r+1]

)}

exp

{
−1

2

(
X

[r]
i −m[r+1]

)T (
C [r+1]

)−1
(
X

[r]
i −m[r+1]

)}

·
exp

{
−1

2

∑i−1
j=1

(
X

[r+1]
j −m[r+1]

)T (
C [r+1]

)−1
(
X

[r+1]
j −m[r+1]

)}

exp

{
−1

2

∑i−1
j=1

(
X

[r+1]
j −m[r+1]

)T (
C [r+1]

)−1
(
X

[r+1]
j −m[r+1]

)}

·
exp

{
−1

2

∑n
j=i+1

(
X

[r]
j −m[r+1]

)T (
C [r+1]

)−1
(
X

[r]
j −m[r+1]

)}

exp

{
−1

2

∑n
j=i+1

(
X

[r]
j −m[r+1]

)T (
C [r+1]

)−1
(
X

[r]
j −m[r+1]

)}

=
J
(
X̃i | θ[r+1]

)

J
(
X

[r]
i | θ[r+1]

) .

Remark 20. The large vector Y (referring to Section II.1.2) is normally distributed
knowing the variables X,d and the observations HDN :

Y |X,d, ρ,HDN = HDN ∼ N
[
Ĥ(Z),R + MSE(Z)

]
(III.17)

with Z = (X,d). Its conditional density is given by

π
Ĥ

(y |X,d, ρ,HD) ∝ |R + MSE(Z)|− 1
2

· exp

{
− 1

2

((
y1 − Ĥ(Z1)

)′
, . . . ,

(
yn − Ĥ(Zn)

)T)(
R + MSE(Z)

)−1




(
y1 − Ĥ(Z1)

)

...(
yn − Ĥ(Zn)

)




}
.

2. J could be the normal distribution N
(
X

[r]
i , κC

[r+1]
)

with κ to be chosen, the so-called

“symmetric” instrumental distribution since

J
(
X̃i | X [r]

i , θ
[r+1]

)
= J

(
X

[r]
i | X̃i, θ

[r+1]
)
. (III.18)

The ratio term in α
(
X

[r]
i , X̃i

)
can then be simplified in a similar manner:

π
Ĥ

(
X̃i | Y ,d, θ[r+1], ρ,HD

)

π
Ĥ

(
X

[r]
i | Y ,d, θ[r+1], ρ,HD

)
J
(
X

[r]
i |X̃i, θ

[r+1]
)

J
(
X̃i|X [r]

i , θ
[r+1]

)

=
π
Ĥ

(
X̃i | Y ,d, θ[r+1], ρ,HD

)

π
Ĥ

(
X

[r]
i | Y ,d, θ[r+1], ρ,HD

) · 1

=
π
Ĥ

(
X̃i,Y | d, θ[r+1], ρ,HD

)

π
Ĥ

(
X

[r]
i ,Y | d, θ[r+1], ρ,HD

) ,
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where the joint distribution of (X̃i,Y) given (d, θ[r+1], ρ,HD) can be computed as:

π
Ĥ

(
x,y | d, θ[r+1], ρ,HD

)
= π

(
x | θ[r+1], ρ,d, HD

)
π
Ĥ

(y | x,d, ρ,HD)

∝ |R + MSE(z)|− 1
2 · exp

{
− 1

2

n∑

i=1

[
(xi −m)′C−1(xi −m)

]

−1

2

((
y1 − Ĥ(z1)

)T
, . . . ,

(
yn − Ĥ(zn)

)′)(
R + MSE(z)

)−1




(
y1 − Ĥ(z1)

)

...(
yn − Ĥ(zn)

)




}
,

according to (II.11).

3. J could be a succession of q uni dimensional Gaussian random walksN
(
X

[r]
i (l), κC [r+1](l, l)

)

with l = 1, . . . , q, which updates X
[r+1]
i dimension by dimension. Similarly to the rich

man version, the current candidate X̃i is, after the update of the l-th dimension :

X̃i =
(
Xi(1), . . . , Xi(l − 1), X̃i(l), X

[r]
i (l + 1), . . . , X

[r]
i (q)

)T
, (III.19)

where the (q − l) positions (X
[r]
i (l + 1), . . . , X

[r]
i (q)) have not yet been modified.

III.2 Convergence issues of the MCMC algorithms

III.2.1 Two important theorems

The following theorems ensure the convergence of a Markov chain (see Gilks et al., 1996,
(37)).

Theorem 1. Suppose that
(
ψ[t]
)

is positive recurrent, with stationary distribution π(·), then
for any real function f ∈ L1(π),

f̄N (ψ)
P−→ Eπ [f(ψ)] , (III.20)

where f̄N (ψ) is the empirical mean of f
(
ψ[t]
)
t=1,...,N

and Eπ
[
f(ψ)

]
is the expectation of f(ψ)

with respect to π(·).

Theorem 2. If, in addition,
(
ψ[t]
)

is aperiodic with transition kernel P (·, ·), then

∥∥Pn(ψ(0), ·)− π(·)
∥∥ −→

n→∞
0 (III.21)

for π-almost all starting point ψ(0), which is equivalent to the convergence on total variation
(TV) norm:

lim
n→∞

∥∥
∫
Pn(ψ(0), ·)µ(dψ)− π(·)

∥∥
TV = 0, (III.22)
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for any initial distribution µ, where Pn(ψ(0), ·) denotes the kernel for n transitions with
starting point ψ(0) defined as follows

Pn(ψ(0), A) =

∫

Ψ
Pn−1(y,A)P (ψ(0), dy). (III.23)

Recall that the total variation norm is defined by

∥∥µ1 − µ2

∥∥
TV = sup

A
|µ1(A)− µ2(A)|. (III.24)

III.2.2 Convergence of MH Markov chain

To verify the convergence of the Metropolis-Hastings chain is equivalent to verify the property
of irreducibility and aperiodicity of the chain. With respect to its definition, the irreducibility
follows from sufficient conditions such as the positivity of the instrumental distribution J :

J (x1|x2) > 0, ∀(x1, x2) ∈ X × X , (III.25)

where X denotes the q first dimensions of Ω which corresponds to the domain for Xi. More-
over, a sufficient condition for the Metropolis-Hastings chain to be aperiodic is that the

probability of events such that {X [r+1]
i = X

[r]
i } is not zero, and thus

P



πH

(
X̃i | Yi, di, θ[r+1], ρ

)

πH

(
X

[r]
i | Yi, di, θ[r+1], ρ

)
J
(
X

[r]
i |X̃i, θ

[r+1]
)

J
(
X̃i|X [r]

i , θ
[r+1]

) ≥ 1


 < 1. (III.26)

Thus, a MH Markov chain satisfying (III.25) and (III.26) converges to its target distribution
since Theorems 1 and 2 hold.

III.2.3 Convergence of Metropolis-Hastings-within-Gibbs samplers

For the Markov chain
(
ψ[t])t = (m[t], C [t],X[t]

)
t

constructed in this chapter, the following
theorem (Roberts and Casella, 2004, (91)) holds.

Theorem 3. If one of the following conditions

i) π (ψ |y,d, ρ) satisfies the positivity condition, i.e.

πi (ψi |y,d, ρ) > 0 for every i = 1, 2, 3 implies that π (ψ |y,d, ρ) > 0,

where πi denotes the marginal distribution of ψi;

ii) the transition kernel is absolutely continuous with respect to π (ψ |y,d, ρ) (Tierney,
1994),

is satisfied, the chain is irreducible.
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Without the MH step, the condition of absolute continuity on the Gibbs kernel is satisfied
by most decompositions. However, in the Metropolis-Hastings-within-Gibbs algorithm, the
absolute continuity is lost (referring to Roberts and Casella, 2004, (91), pp. 380). The irre-
ducibility property has to be established for the construction considered. It is then necessary
to either study the positivity condition or the recursion properties of the chain. In our case,
the positivity condition is well verified as the marginal posterior density is always positive.
Thus the hybrid MCMC algorithm works well.

Moreover, for our irreducible Metropolis-Hastings-within-Gibbs Markov chain, the Harris
recurrence property car be guaranteed thanks to the following proposition (Roberts and
Rosenthal, 2006, (92)). This property allows us to replace the convergence from “almost all”
starting points by “all” starting points.

Proposition 3. Consider an irreducible Metropolis-Hastings-within-Gibbs Markov chain.
Suppose that from any initial state x, with probability 1, the chain will eventually move at
least once in each coordinate direction. Then the chain is Harris recurrent.

III.2.4 Diagnosis of the convergence: the Brooks-Gelman statistic

Background: Statistic of Gelman and Rubin

In 1992, Gelman and Rubin ((34)) proposed a statistic to diagnose the convergence of the
simulated Markov chain

(
ψ[t]
)

=
(
m[t], C [t],X[t]

)
. The method is based on m parallel chains,

generated from different initial values and only the M final simulations after the “burn-in”
period are considered.

Gelman and Rubin’s approach relies on the assumption of normality, which means that the
behavior of potential inferences, i.e. the posterior distributions of the variables of interest,
can be summarized by the mean and variance of the simulated draws. In the present work,
the statistic is calculated at each dimension for each quantity of interest m and C (X itself is
not a parameter to be explored), and a mean statistic is then computed. For each dimension
of each component denoted by ξ, l parallel chains are simulated and M iterations are collected
after the burn-in period, as follows:

ξ1 =
{
ξ1

1 , . . . , ξ
M
1

}

...

ξl =
{
ξ1
l , . . . , ξ

M
l

}
.

The between-chain variance B/M and the within-chain variance W can be calculated as
follows:

B

M
=

1

l − 1

l∑

j=1

(
ξj − ξ

)2
; (III.27)

W =
1

l(M − 1)

l∑

j=1

M∑

k=1

(
ξkj − ξj

)2
, (III.28)

where ξj denotes mean of the M draws from the j-th chain and ξ denotes mean of the lM
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draws from all the chains:

ξj =
1

M

M∑

k=1

ξkj , j = 1, . . . , l; (III.29)

ξ =
1

lM

l∑

j=1

M∑

k=1

ξkj . (III.30)

Then, an unbiased estimator of the variance σ2 can be given by a weighted average of B and
W :

σ̂2 =
M − 1

M
W +

1

M
B. (III.31)

By ignoring the minor contribution to variability brought by the degrees of freedom, the
Gelman and Rubin statistic R̂GR is the (over-)estimate of the ratio of between and within-
sequence inferences:

R̂GR =
σ̂2 + B

lM

W
, (III.32)

where the denominator indicates the between posterior variance estimate accounting for the
variability of the estimator ξ. After simplification,

R̂GR =
M − 1

M
+
l + 1

lM

B

W
≥ 1. (III.33)

The fact that R̂GR approaches to 1 is to say that the posterior distribution of the parallel
chains is close to the target distribution, which indicates the convergence has been reached.
Otherwise, a large R̂GR suggests that a longer time should be waited to increase W or to

decrease σ̂2.

Remark 21. A great limit of this approach is the assumption of normality of the posterior
distributions, which are thus summarized only by means and variances.

Diagnosis: Brooks and Gelman statistic

In 1998, Brooks and Gelman ((11)) proposed a method derived from the Gelman and Rubin’s
approach (1992, (34)), which avoid the assumption of normality, for monitoring the conver-
gence of iterative simulations. Once again, this statistic denoted by R̂BG is constructed on
the final M iterations after the “burn-in” period from l parallel simulated chains,

ξ1 =
{
ξ1

1 , . . . , ξ
M
1

}

...

ξl =
{
ξ1
l , . . . , ξ

M
l

}

described as follows:
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1. For each j-th individual chain ξj , calculate the empirical 100(1 − α)% interval which
is the difference between the 100(1 − α

2 )% and 100α2 % percentile of the M simulated

points
{
ξ1
j , . . . , ξ

M
j

}
. Thus, form the l within-sequence interval length estimates.

2. For the entire set of lM simulated draws from all chains, calculate the empirical 100(1−
α)% interval in the same way, to construct a total-sequence interval length estimate.

3. Evaluate the statistic R̂BG defined as

R̂BG =
∆

δ̄
,

where

− ∆ is the total-sequence interval length computed in step 2:

∆ = Q100(1−α
2

)% −Q100α
2

%, (III.34)

where Qp denotes the p-quantile for the set of the lM simulations;

− δ̄ = 1
l

∑l
j=1 θj , with θj the length of the within-sequence interval for the j-th chain

calculated in step 1:

θj = Qj100(1−α
2

)% −Q
j
100α

2
%, (III.35)

where Qjp denotes the p-quantile for the j-th chain.

Similarly, this statistic is calculated at each dimension for each of the parameters (m,C)
and the mean of statistics is then computed, denoted by R̂BG. The threshold value 1.2 is
advocated by the authors to declare the convergence of the simulated Markov chains.

Remark 22. In our experiments, we make use of a more conservative threshold to ensure that
the MCMC algorithms have converged to their stationary distribution. A MCMC chain has
been declared to have converged if the R̂BG statistics is smaller than 1.05 for 3,000 successive
iterations.

A practical trick : eliminating a troublesome chain To accelerate the convergence
rate, in practice, a trick is as follows. Among l parallel simulated chains, a bad chain which
is stuck and not converging may appear, while other chains perform well. In this case, to
detect and eliminate this tricky chain, the following procedure is suggested.

1. Simulate l Markov chains and continue k iterations after the supposed-to-be

burn-in period.

Remark 23. The true burn-in period should not be reached, otherwise we do not need
this trick ...

2. For each quantity of interest m and C, calculate at each dimension the R̂BG
statistics based on the k last simulations from the l parallel chains.
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− If R̂BG < 1.05, do nothing as the convergence has been reached;

− else, calculate the R̂BG statistic by removing the i-th chain (leave-one-
out procedure) with 1 ≤ i ≤ l, denoted by R̂BG,−i. If there exists i

such that R̂BG,−i < 1.05, the number of candidate i∗ = i.

3. Continue the MCMC algorithm and repeat frequently the calculations of R̂BG,−i
(e.g. every 50 iterations) for this extended period. If each time it indicates

the same candidate the i-th chain, the i-th chain is thus to be eliminated.

Remark 24. In this thesis, this strategy works well under the assumption that there is only
a single bad chain.

Some simulation results are given in Figures III.2-III.5. Comparing these figures we can see
that once a wrong chain has been removed, the convergence is immediately reached, indicated
by the statistic R̂BG which immediately decreases below 1.05.
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Figure III.2: Realization before removing the
chain
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Figure III.3: Realization after removing the
chain
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Figure III.4: R̂BG before elimination
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Figure III.5: R̂BG after elimination
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III.3 First numerical results of the MCMC algorithm

This section deals with numerical experiments to illustrate the behavior of the hybrid MCMC
algorithm. Let us recall the general form of inverse problems:

Yi = H(Xi, di) + Ui, i = 1, . . . , n (III.36)

where the non observed variable Xi ∼ Nq(m,C), the error term Ui ∼ Np(0, R) with a given R
and the observed input di is assumed to be related to the experimental conditions. Moreover,
as described in Chapter II, the prior distributions of the parameters θ = (m,C) are chosen
as follows.

m|C ∼ N
(
µ,
C

a

)
(III.37)

C ∼ IW
(

Λ, ν
)

= IW
(
t · C̃Exp, ν

)
. (III.38)

A Gibbs sampler is then construct to approximate the posterior distribution of θ. Two
examples for the function H are provided and tested. The first example for a physical
hydraulic engineering model mentioned in Section I.1.3. The second example is the classical
Sobol function defined in a unit domain. For each example, different designs of experiments
(DOEs) have been construct with different numbers of points within different experimental
domains. Moreover, with a fixed DOE, different proposal distributions have been tried in the
MH step. We compare the results of the Gibbs sampler following these different experiments.

III.3.1 Example 1: A hydraulic engineering model

The first example is the three-dimensional-input hydraulic model, where the function H :
R2 ⊗ R1 → R2 is given by:

H(x, d) =


x2 +

( √
5000

300
√

55− x2
× d

x1

)0.6

,
d 0.4x0.6

1 (55− x2)0.3

3000.4 × 50000.3



T

, (III.39)

with x = (x1, x2). In our case study, the observations y = (yT1 , . . . , y
T
n )T are generated from

the inverse problem model (III.36) where

Xi ∼ N
(( 30

50

)
,

(
52 0
0 1

))
, (III.40)

di ∼ Gumbel
(

1013,−458
)
, (III.41)

and the error term Ui is assumed to be normally distributed

Ui ∼ N
(
0,

(
10−5 0
0 10−5

))
. (III.42)

Moreover, the mean and variance of di are

E(di) = 1013− γ × 458 = 748.6

Var(di) =
π2

6
× 4582 = 345050,

58



γ = 0.5772 being the Euler constant.

The advantage of this “data generation” is that the simulation results can be evaluated by
comparing with the standard MLE results in the complete sequence problem. Following the
prior choices (III.37) and (III.38), the hyperparameters are chosen as follows.





a = 1,
t = 2,
ν = 5,

µ =

(
35
49

)
,

C̃Exp =

(
7.52 0
0 1.52

)
.

(III.43)

Moreover, the sample size n is fixed equal to 30 and the design domain Ω is given as

Ω = [20, 40]× [45, 55]× [min(d),max(d)], (III.44)

with d = {d1, . . . , d30}.

The Brooks-Gelman statistic is applied to diagnose the convergence, where the criterion R̂BG
is, in practice, calculated every 100 iterations for each coordinate m1, m2, C11 and C22 of θ
and we control the maximum of these calculated statistics. The convergence is accepted if
the maximal R̂BG remains smaller than 1.05 for 3,000 successive iterations.

Test A. DOEs D20, D100 vs. D500

Three DOEs are generated as the standard maximin-Latin Hypercube Designs (LHDs) (see
Chapter IV and V for more details), with 20, 100 and 500 points. The rich man version,
which is not depending on the meta-modeling technique, is used as a benchmark.

The following numerical experiments aim at estimating the posterior distributions of θ with
the help of the Gibbs sampler. We are interested in measuring the impact of the quality of
the DOEs, more precisely, the number of points of the DOE, in the performance of Bayesian
approach. As mentioned in the General Introduction, the meta-model brings an important
emulator error in the posterior distributions of θ.

Figure III.6 shows the posterior distributions of different qualities with respect to different
DOEs. For example, D100 and D500 brought a satisfying simulated distribution which is close
to the benchmark (the non-kriging rich man version), while D20 appears not efficient enough.
Thanks to Figure III.7, which displays the behavior of R̂BG for each component of m and C,
we are ensured that the convergence of Markov chains has been reached for each case as all
the R̂BGs are below 1.05.

Test B: proposal distributions J1 vs. J2

Two proposal distributions J1 and J2 in the Metropolis-Hastings algorithm (see Section
III.1.3) have been tested, based on the same hydraulical model (III.39). The same maximin-
LHD D100 has been built and the same hyperparameters have been chosen as described in
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Figure III.6: Posterior distributions of θ with help of D20, D100, D500 and the non-kriging rich man
version
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Figure III.7: R̂BG with help of D20, D100, D500 and the non-kriging rich man version

(III.43). At each (r + 1)-th iteration, we choose

J1 : X
[r+1]
i ∼ N

(
m[r+1], C [r+1]

)
; (III.45)

J2 : X
[r+1]
i ∼ N

(
X

[r]
i , κC

[r+1]
)
, (III.46)
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with 1 ≤ i ≤ n and κ = 2 for the burn-in period, κ = 1 for later iterations.

The posterior distributions of θ with respect to J1 and J2 are shown in Figure III.8 and the
convergence in the two cases is ensured by Figure III.9 where all the R̂BGs are below 1.05.
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Figure III.8: Posterior distributions of θ with proposal distributions J1 and J2
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Figure III.9: R̂BG with help of D100 and proposal distributions J1 and J2

In this illustration, it is clear that the proposal distribution J1 works better than J2. Apart
from their similar behaviors for m1 and C11, J1 and J2 give quite different results for m2 and
C22. The distribution related to J1 is well centered around the empirical value (the MLE
estimator) and J2 arises an algorithmic error, i.e. the Markov chains does converge but does
not converge to the desired posterior distributions.
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Test C: domains Ω vs. Ω′

Apart from the kriging domain Ω described in (III.44), we introduce a much larger domain
Ω′ to illustrate the impact of kriging domains on the simulation results. The domain Ω′ is
chosen as follows:

Ω′ = [10, 100]× [10, 55]× [10, 2000]. (III.47)

Figure III.10 illustrates the behaviors of the Gibbs sampler with respect to the two domains.
The same DOE maximin-LHD with 100 points has been chosen. We see that the solid curve
corresponding to the small domain Ω is well concentrated on the empirical value, which while
the dashed curve related to the large domain Ω′ is misleading.

That is why in the modeling procedure, we recommend to choose a kriging domain as small as
possible while containing the eventual values of Xi with the greatest probability, typically a
confidence domain at a certain level of significance, according to the following prior predictive
distribution of Xi:

Xi ∼ Stq

(
µ,

a+ 1

a(ν + 1− q)Λ, ν + 1− q
)
, (1 ≤ i ≤ n). (III.48)
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Figure III.10: Posterior distributions of θ in large and small kriging domains

Test D. Good prior vs. bad prior vs. non-informative prior

To illustrate the impact of the prior distributions, we consider the following different prior
distributions on the parameter θ. They are summarized in Table III.1.
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Prior PLV FHV BHV
µ {30, 50} {35, 49} {10, 54}
a 1 1 1
t 2 2 2
ν 5 5 5

C̃Exp

(
1.52 0
0 1

) (
7.52 0
0 1.52

) (
7.52 0
0 1.52

)

Table III.1: Description of the three prior distributions: PLV = perfect mean and low variance, FHV =
fair mean and high variance, BHV = bad mean and high variance.

Apart from the three mentioned informative priors, we also test the Jeffreys non informative
prior, as presented in Section II.3. Figure III.11 displays the marginal posterior distributions
based on 30 observations, with help of a maximin-LHD of 100 points. We obtain a huge
different between the posterior distribution derived from the BHV prior and other priors.
Especially, we notice that the Jeffreys non informative prior provides posterior results as good
as the informative ones.
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Figure III.11: Posterior distributions of θ with four types of prior distribution, based on 30 observations,
with help of D100 in small domain

Test E. Sample size n = 5, 10 vs. 30

Now we focus on the impact of the size of observations. We fix the prior distributions as
described in (III.43) and a maximin-LHD of 100 points. By vary the sample size n from 5,
10 to 30, we obtain the following Figure III.12 from a Gibbs sampler.

As shown in it, each marginal posterior distribution of θ is quite sensible to the sample
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size. We notice that by enriching our observed data, our simulation can be largely improved.
However, we should not forget that by adding observed data, the numerical computation
becomes more and more expensive, especially resulting form the inversion of the matrix
R + MSE(Z) of size np× np (cf. Chapter II).
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Figure III.12: Posterior distributions of θ based on 5, 10 and 30 observations, with help of D100 in small
domain

III.3.2 Example 2: A classical Sobol function

The second example is the so-called g-function of Sobol, defined on [0, 1]q as follows:

H(x1, x2) = g1 (x1) g2 (x2) , where gk(x) =
|4x− 2|+ ak

1 + ak
, k = 1, 2. (III.49)

In this function, ak ≥ 0 is called the weight coefficient, varying the contribution of each input
xk to the variability of the output. The small ak is, the more significant the variable xk is.
In our experiments, for ∀k, ak is fixed to 1. It is worth noting that this analytic function is
highly nonlinear and non monotonic, as illustrated in Figure III.13.

The two-dimensional uncertainty model can be described as

Yi = H(Xi) + Ui, i ∈ {1, . . . , n}, (III.50)

where the non observed variable Xi = (X1
i , X

2
i ) ∼ N2(m,C) and the error term Ui ∼ N1(0, R)

with a given R. This time the design domain Ω is fixed to be [0, 1]2 and three maximin-LHDs
with 20 points, 100 points and 500 points are generated.

By fixing the sample size n to 30, the dataset y = (yi, i = 1, . . . , 30) can be simulated
from model (III.50) with the non observed input Xi generated from the following Gaussian
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Figure III.13: Illustration of the Sobol function

distribution truncated in domain Ω

Xi ∼ 1ΩN2

(( 0.5
0.7

)
,

(
0.152 0
0 0.42

))
, (III.51)

and the error term Ui is generated from N1(0, 10−5). Moreover, the hyperparameters are
chosen as follows.





a = 1,
ν = 5,

µ =

(
0
0

)
,

Λ = 2 ·
(

0.152 0
0 0.42

)
.

In what follows, we aim at verifying the impacts of the quality of DOEs and the instrumental
distribution required in the MH step on the posterior distributions of θ.

Test A. DOEs D20, D100 vs. D500

Similarly to the previous hydraulic example, three standard maximin-LHDs D20, D100 and
D500 were generated in the same domain Ω. The Brooks-Gelman statistic R̂BG was calculated
to verify the convergence of the Gibbs sampler not shown here.

Figure III.14 displays the posterior distributions of θ with different numerical DOEs. Once
again, by increasing the number of points in the design, we improve the quality of the DOE
and consequently, the distribution curve approaches to the benchmark. In this example, with
the complex Sobol function, the difference between the posterior mean of m and the empirical
mean (red point) illustrates the impact of the prior choice µ. We may increase the size of
observations to reduce this impact to improve the simulation results.
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Figure III.14: Posterior distributions of θ with help of D20, D100, D500 and the non-kriging rich man
version

Test B: proposal distributions J1 vs. J2

Similarly to the first hydraulic case, the two proposal distributions J1 and J2, described in
Section III.1.3, have been tested here. The same maximin-LHD D100 has been chosen for
both cases and the posterior distributions of θ after the convergence are displayed in Figure
III.15. The BG statistic R̂BG ensures the convergence of the simulated Markov chains.

As shown in this figure, there are a significant difference between the two posterior distribu-
tions of θ by applying different proposal distributions J1 and J2. Contrary to the previous
example, with this Sobol function, it is difficult to say which proposal distribution works
better. It has been confirmed that the choice of the proposal distribution is highly related to
numerical models.
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Figure III.15: Posterior distributions of parameters θ = (m,C) with proposal distributions J1 and J2
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CHAPTER IV. EVALUATION OF THE RESULTS AND CRITERIA OF THE QUALITY OF A
DESIGN

This chapter is a collaboration with Gilles Celeux, Nicolas Bousquet and Mathieu Couplet. It
has been published in INRIA, RR-7995.

The inverse problem considered here is to estimate the distribution of a non-observed random
variable X from some noisy observed data Y linked to X through a time-consuming physical
model H. Bayesian inference is considered to take into account prior expert knowledge on
X in a small sample size setting. A Metropolis-Hastings-within-Gibbs algorithm is proposed
to compute the posterior distribution of the parameters of X through a data augmentation
process. Since calls to H are quite expensive, this inference is achieved by replacing H with
a kriging emulator interpolating H from a numerical design of experiments. This approach
involves several errors of different natures and, in this paper, we pay effort to measure and
reduce the possible impact of those errors. In particular, we propose to use the so-called

D̃AC criterion to assess in the same exercise the relevance of the numerical design and the
prior distributions. After describing how computing this criterion for the emulator at hand,
its behavior is illustrated on numerical experiments.

Keywords. Inverse problems, Bayesian analysis, Kriging, Design of Experiments, Assess-
ment Error.

IV.1 Introduction

Probabilistic uncertainty treatment is gaining fast growing interest in the industrial field.
Besides the uncertainty propagation challenges when dealing with complex and high CPU-
time demanding physical models, one of the key issues regards the quantification of the
sources of uncertainties. A key difficulty is linked to the highly-limited sampling information
directly available on uncertain input variables. It can be highly beneficial (a) to integrate
expert judgment, such as likely bounds on physical intervals or more elaborate probabilistic
information, or (b) to integrate indirect information, such as data on other, more easily
observable, parameters that are linkable to the uncertain variable of interest by a physical
model. Methods for (b) are making use of probabilistic inverse methods since the recovering
of indirect information involves generally the inversion of a physical model or a computer
simulator H. It leads to the following uncertainty model

Yi = H(Xi, di) + Ui, i ∈ {1, . . . , n}, (IV.1)

where Xi ∈ Rq is a non-observed input, di ∈ Rq2 an observed input related to the experimental
conditions and Ui ∈ Rp a measurement error. The error Ui and Xi are assumed to be
independent for i = 1, . . . , n. Moreover the (Yi, i = 1, . . . , n) are independent. The purpose is
to estimate the distribution of the random vectors Xis from the observations (yi, i = 1, . . . , n),
knowing that the function H (the physical model. . . ) cannot be inverted. In what follows,
the random vector Xi will be assumed to have a Gaussian distribution Nq(m,C), with mean
m and variance matrix C to be estimated, and the error vector Ui will be assumed to have a
Gaussian distribution Np(0, R), with known diagonal variance matrix R.

Many approaches are possible to approximate this inverse problem as linearizing the physical
model H around a fixed point x0 (see Celeux et al. 2010, (15)), or using a non linear
approximation of the function H obtained through kriging and making use of a stochastic

70



procedure with this non linear approximation of H (see Barbillon et al. 2011, (4)). In this
paper we opt for a Bayesian approach allowing to take into account prior knowledge that can
be helpful, in particular, to avoid identifiability problems.

The estimation problem related to this inverse problem involves many possible errors:

• Estimation error: Usually the sample size n is small with respect to the dimension of
the problem and the variance of the estimates could be expected to be large;

• Emulator error: Since H is too complex, there is the need to replace it with an emulator
Ĥ and the discrepancy between H and Ĥ could induce an important error;

• Algorithmic error: To proceed to statistical inference, there is the need to use com-
plex stochastic algorithms. In the Bayesian setting, those algorithms are Monte Carlo
Markov Chains (MCMC) algorithms which produce Markov chains converging to the
desired posterior distributions. But, controlling the convergence of the MCMC algo-
rithms towards their limit distributions is important to get reliable estimates.

• Prior error: The prior knowledge on the parameters m and C is expected to produce
regularized estimates of smaller variances than maximum likelihood estimates. But, if
the prior distributions are irrelevant, it could jeopardize the statistical analysis.

Beyond the estimation problem, this paper is mainly concerned with the assessment of the
quality of the proposed estimates. It implies to measure and control the above mentioned
error sources. In this context, we focus on the prior error which received little attention
and propose to measure it with a criterion (DAC) well-adapted for emulators defined on
a compact set. Obviously those different error sources are linked and their relations for
uncertainty analysis with small samples are discussed. The paper is organized as follows. In
Section 2, the MCMC algorithm for a Bayesian estimation of an emulator of model (IV.1)
is presented and the possible error sources are precisely described. Then, the DAC criterion
to measure the prior error is presented in Section 3 as the resulting strategy for assessing
both the emulator and the prior distribution. Numerical experiments, where different criteria
assessing the different error sources are illustrated and compared, are presented in Section 4
and a Discussion section ends the paper.

IV.2 Bayesian inference with a Gaussian emulator

In the Bayesian framework, the first task is to choose a prior distribution π(θ) for the pa-
rameter θ = (m,C) to be estimated in the model (IV.1). A conjugate prior distribution has
been selected

m |C ∼ Nq(µ,C/a); (IV.2)

C ∼ IWq(Λ, ν), (IV.3)

the hyperparameters ρ = (µ, a,Λ, ν) being specified by the user.

The posterior distribution π(θ|y) is approximated with a Gibbs sampler including a Metropolis-
Hastings step (see for instance Tierney, 1995, (110)). Actually, the calculation of the full con-
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ditional posterior distributions of m,C and X = {X1, . . . , Xn} lead to the following Gibbs
sampler (below the (r + 1)-th iteration):

Given (m[r], C [r],X[r]) for r = 0, 1, 2, . . . , generate

1. C [r+1]| · · · ∼ IW
(

Λ+
∑n

i=1(m[r]−X [r]
i )(m[r]−X [r]

i )′+a(m[r]−µ)(m[r]−µ)′, ν+n+1
)

2. m[r+1]| · · · ∼ N
(

a
n+aµ+ n

n+aX
[r]
n ,

C[r+1]

n+a

)
where X

[r]
n denotes the empirical mean of the

n vectors X
[r]
i , i = 1, . . . , n

3. X[r+1]| · · · ∝ exp
{
− 1

2

∑n
i=1

[ (
X

[r+1]
i −m[r+1]

)′ (
C [r+1]

)−1
(
X

[r+1]
i −m[r+1]

)

+
(
Yi −H(X

[r+1]
i , di)

)′
R−1

(
Yi −H(X

[r+1]
i , di)

) ]}

which is not belonging to a closed form family of distributions. That is why a Metropolis-
Hastings (MH) step is used to simulate X[r+1] from its full conditional distribution.

Now, considering situations where extensive sampling of H(X, d) is too time-consuming, we
propose to replace H with a maximin LHD (Latin Hypercube Design) kriging emulator Ĥ,
following Barbillon (2010, (3)). This emulator is briefly described below.

• Kriging is a geostatistical method (Matheron 1971, (66)) that has been adapted by Sacks
and al. (1989b, (99)) to approximate a physical model H on a bounded hypercube Ω.
This method has known a growing interest in meta-modeling since the works of Koehler
and Owen (1996, (55)), Santner and al. (2003, (100)) and Fang and al. (2006, (29)),
among others. According to this approach the function H is regarded as the realization
of a Gaussian Process (GP) H ∼ GP(µ, c), characterised by its mean and variance
functions: µ(z) = E[H(z)] and c(z, z′) = Cov[H(z),H(z′)] = σ2Kε(‖z − z′‖)
for any z = (x, d), Kε being a symetric positive kernel such that Kε(0) = 1. In a
Bayesian perspective, GP modelling can be interpreted as providing H with a prior
(Rasmussen & Williams, 2006, (87)). The process H can be proved to be normally
distributed knowing some evaluations HDN = {H(z(1)), . . . ,H(z(N))} on a design of
experiments DN = {z(1), . . . , z(N)} of N points z(j) = (x(j), d(j)).

The best MSPE (Mean Squared Prediction Error) predictor of H, denoted by Ĥ, is the
conditional mean:

Ĥ(z) = E (H(z) |HDN ) , ∀z ∈ Ω.

Then Ĥ(z) is minimizing the conditional expectation of the loss function (H(z)−Ĥ(z))2,
so-called MSE (Mean Squared Error) (see Johnson et al. 1990 for details, (47)),

MSE(z) = E
(

(H(z)− Ĥ(z))2 |HDN

)
, ∀z ∈ Ω.
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• The set DN = {z(1), . . . , z(N)} is chosen on Ω ∈ Rq+q2 according to a maximin LHD (see
McKay, Beckman, and Conover 1979, (67)): each dimension of the multidimensional
domain Ω is divided into N intervals of equal length and the set DN of N points are
selected such that when projected on any dimension, each interval contains one and
only one of the N projected points. Moreover, DN is chosen to be maximin, i.e. it
maximizes

δD = min
i 6=j
‖z(i) − z(j)‖

among the LHD of size N .

For the kriging version, considering the new emulator error, the conditional distribution of
X is as follows

π(X |Y,m,C, ρ,HDN ) ∝ π(X |m,C, ρ,HDN ) · π(Y |X,m,C, ρ,HDN )

= |R + MSE(Z)|− 1
2 · exp

{
− 1

2

n∑

i=1

[
(Xi −m)′C−1(Xi −m)

]

−1

2

((
Y1 − Ĥ(Z1)

)′
, . . . ,

(
Yn − Ĥ(Zn)

)′)(
R + MSE(Z)

)−1




(
Y1 − Ĥ(Z1)

)

...(
Yn − Ĥ(Zn)

)




}
,

(IV.4)

where

R =




R11

. . .

R11

0

. . .

0

Rpp
. . .

Rpp




,



 n lines



 n lines

with Rii the i−th diagonal component of the diagonal variance matrix R, and MSE(Z) is the
block diagonal matrix

MSE(Z) =




MSE1(Z) 0

. . .

0 MSEp(Z)






 n lines



 n lines
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composed with the variance matrices MSEj(Z) ∈Mn×n described as

MSEj(Z) = E
(

(Hj(Z)− Ĥj(Z))2 |HDN

)
,

for j = 1, . . . , p, where Z denotes the n sample points {Z1, . . . , Zn} with Zi = (Xi, di), Hj
denotes the jth dimension of the Gaussian process H and HDN is the evaluations of the
function H on the design DN . Simulating this conditional distribution of X requires the
Metropolis-Hastings (MH) step described in Appendix A.

Controlling the algorithmic error An important problem when running MCMC algo-
rithms is monitoring the convergence of the simulated Markov chain in order to minimize
the above mentioned algorithmic error. Actually, MCMC algorithms can converge slowly
and stopping a simulated chain too early could lead to a poor approximation of the target
distribution. Monitoring the convergence of a MCMC algorithm is also a difficult problem.
Despite many efforts have been paid on this question, there is not an absolute way to answer
it. We chose to use the much employed Brooks-Gelman (BG) statistics (Brooks et Gelman,
1998, (11)) computed from five replications of the Monte Carlo Markov chain (see Appendix
C). The MCMC algorithm is stopped if the BG statistics is smaller than 1.05. We select this
severe threshold of 1.05, instead of the more standard 1.2 value suggested in (11), to make
sure that a reasonable approximation of the target distribution has been reached.

Measuring the emulator error However, a good monitoring of the MCMC algorithm
could be jeopardized if the emulator Ĥ is too far from the model H (the emulator error).
Typically, the emulator error can be large if the number of points N of the design DN is too
small. Two much employed criteria to measure the quality of a design are experimented here.

i) The coefficient of predictability Q2 (see Vanderpoorten and Palm, 2001, (112)) is

Q2 = 1− PRESS(D∗)∥∥H(D∗)−H(D∗)
∥∥2 , (IV.5)

with

PRESS(D∗) =
∥∥H(D∗)− Ĥ(D∗)

∥∥2

the Euclidean distance between the true function value H and the approximated value
Ĥ on a validation sample D∗ = {v(1), . . . , v(N∗)}, H(D∗) denoting the mean function
value on D∗:

H(D∗) =
1

N∗

N∗∑

i=1

H(v(i)).

A cheaper version of Q2 can be obtained by cross-validation, as follows (leave one out
procedure):

Q2 CV = 1− PRESSCV∑N
i=1

∥∥H(z(i))−HDN

∥∥2 . (IV.6)
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where

HDN =
1

N

N∑

i=1

H(z(i)),

and

PRESSCV =
N∑

i=1

e2
(i) =

N∑

i=1

∥∥H(z(i))− Ĥ−i(z(i))
∥∥2

with

• e(i) is the prediction error at z(i) of a fitted model without the point z(i);

• Ĥ−i(z(i)) is the approximation of H at z(i) derived from all the points of the design
except z(i).

Both versions of Q2 are related to the ratio of variance explained by an emulator. The
closer Q2 to 1, the smaller this ratio is and the better the quality of the design DN is.

ii) An alternative criterion is the Mahalanobis distance (MD) (see Bastos and O’Hagan
2009, (5)), computed on a validation sample D∗ with N∗ points as follows:

MD =
(
H(D∗)− Ĥ(D∗)

)′(
MSE(D∗)

)−1(
H(D∗)− Ĥ(D∗)

)
, (IV.7)

where MSE(D∗) (Mean Squared Error) is the conditional variance matrix of the design
D∗ knowing HD∗ = {H(v(1)), . . . ,H(v(N∗))}. An interest of this criterion is to take into
account the correlations between the points through the MSE(D∗) term. Obviously,
the MD value is sensitive to the choice of D∗. D∗ could be generated as a maximin
LHD. A cheaper cross-validated version of MD is as follows:

MDCV =
1

N

N∑

i=1

(
H(z(i))− Ĥ−i(z(i))

)′(
MSE−i(z(i))

)−1(
H(z(i))− Ĥ−i(z(i))

)
,

where Ĥ−i(z(i)) denotes the predictor of H at point z(i) by using the design D−i =
{z(1), . . . , z(i−1), z(i+1), . . . , z(N)} and MSE−i(z(i)) denotes the related squared error.

Now, the smaller the sample size n, the greater the estimation error is. The two above
mentioned criteria are not aiming to measure the estimation error. But since H is complex,
it is quite difficult to assess this error in an inverse modeling context. Bayesian inference
could be expected to be helpful to reduce the estimation error when n is small and when
reliable prior information is available. However, if the prior information is not relevant, the
prior error will be large and Bayesian inference could be harmful. For this very reason, it
is important to be able to measure the relevance of the prior information. In the present
context, it is possible to use a promising criterion, the so-called DAC criterion (Bousquet
2008, (10)) for this task, as detailed in the next section.
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IV.3 Assessing a prior distribution and a design

IV.3.1 The DAC criterion

The DAC criterion (Bousquet 2008, (10)) has been conceived as a measure of the discrepancy
between a prior distribution of a model parameters and the data. Let y be a sample with pdf
f(y|θ). Let πJ(θ) be a benchmark non-informative prior (see for instance Yang and Berger
1998, (122)) and π(θ) the prior distribution derived from the prior information on θ. DAC is

DAC(π|y) =
KL(πJ(θ|y)||π(θ))

KL(πJ(θ|y)||πJ(θ))
, (IV.8)

where KL(p||q) is denoting the Kullback-Leibler distance between the probability distribu-
tions p and q, which is defined as

KL(p||q) =

∫

X
p(x) log

p(x)

q(x)
dx, (IV.9)

X being the set of all accessible values for x. The rationale underlying DAC criterion is
as follows: the posterior distribution πJ(θ|y) derived from the non-informative prior can be
regarded as an ideal prior distribution on θ in perfect agreement with the data y. Thus,
KL(πJ(θ|y)||π(θ)) is measuring the distance between the prior π to be assessed and the ideal
prior πJ(·|y).

If DAC(π|y) ≤ 1, the informative prior π is closer to the ideal prior than the non-informative
prior πJ , and the data y and the prior π(θ) are declared to be in agreement. Otherwise
if DAC(π|y) > 1, the data y and the prior π(θ) are declared to be discrepant. DAC has
been proved to be efficient when the non-informative prior πJ(θ) is proper (see Bousquet
2008, (10)).

IV.3.2 The impact of the emulator

In the present context, a kriging emulator defined on a compact set Ω is used to compute an
approximation of the posterior distribution of the parameter θ = (m,C). Since the emulator
is defined on a compact set, the parameters m and C are also restricted to be in compact
sets Ωm and ΩC . It allows us to define a proper non-informative prior πJ(m,C) (chosen as
the Jeffreys prior for the multivariate Gaussian model), then a tractable DAC. The technical
precisions about Ωm, ΩC and the calculation of DAC are provided in Appendices D and E.

It is important to remark that the DAC criterion is depending on the design DN . Denoting
πJ(θ|y, DN ) the posterior distribution of θ given the data y and the current design DN =
{z(1), . . . , z(N)},

DAC(π|y,HDN ) =
KL
(
πJ(θ|y,HDN )||π(θ)

)

KL (πJ(θ|y,HDN )||πJ(θ))
.

A DAC value greater than one is just indicating that there is something misleading between
the data, the prior and the design. Thus, if the data and the prior are known (or assumed)
to be relevant, DAC could regarded as a criterion to assess the design as Q2 or MD.
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IV.3.3 Computing DAC

Since

S

T
≤ 1⇐⇒ S − T ≤ 0, if ≥ 0, T > 0, (IV.10)

a numerically more convenient version of DAC, denoted by D̃AC is

D̃AC(π|y,HDN ) = KL
(
πJ(θ|y,HDN )||π(θ)

)
−KL

(
πJ(θ|y,HDN )||πJ(θ)

)
.

The critical value for D̃AC is 0. Since the support of πJ(θ|y,HDN ) is Ω, we have

KL
(
πJ(θ|y,HDN )||π(θ)

)
=

∫

Ω
πJ(θ|y,HDN ) log

πJ(θ|y,HDN )

π(θ)
dθ

= EπJ (θ|y,HDN
)

[
log πJ(θ|y,HDN )

]
− EπJ (θ|y,HDN

) [log π(θ)] ,

and

KL
(
πJ(θ|y,HDN )||πJ(θ)

)
=

∫

Ω
πJ(θ|y,HDN ) log

πJ(θ|y,HDN )

πJ(θ)
dθ

= EπJ (θ|y,HDN
)

[
log πJ(θ|y,HDN )

]
− EπJ (θ|y,HDN

)

[
log πJ(θ)

]
.

Therefore, the transformed D̃AC can be written as:

D̃AC(π|y,HDN ) = KL
(
πJ(θ|y,HDN )||π(θ)

)
−KL

(
πJ(θ|y,HDN )||πJ(θ)

)

= EπJ (θ|y,HDN
)

[
log πJ(θ)

]
− EπJ (θ|y,HDN

) [log π(θ)] ,

and the D̃AC criterion can be computed using the outputs of a Gibbs sampler run with a
non-informative prior πJ(·) (In practice, we chose a Jeffreys non-informative prior.)

D̃AC(π|y,HDN ) w
1

R

R∑

r=1

log πJ(θr)− 1

R

R∑

r=1

log π(θr), (IV.11)

where θr ∼ πJ(·|y,HDN ), r ∈ {1, ..., R} is a simulated sequence obtained by Gibbs sampling.
For the purpose of simplicity, in the following we use the notation

D̃ACN := D̃AC(π|y,HDN ).

D̃ACN ≤ 0 means the prior distribution π(θ) and the couple (y, HDN ) are declared compat-
ible. Now, computing DAC criterion requires to run an additional Gibbs sampler with the
non-informative prior distribution. Denoting Xn = 1

n

∑n
i=1Xi, the full conditional distribu-

tion of m verifies

πJ(m |C,Y,X, ρ,HD) ∝ IΩm exp
[
− 1

2
(m−Xn)′

(
C

n

)−1

(m−Xn)
]
.
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Thus, it is a normal distribution truncated on Ωm: IΩm · N
(
Xn,

C
n

)
. The full conditional

distribution of the variance matrix C verifies

πJ(C |m,Y,X, ρ,HD) ∝ IΩC |C|−
n+q+2

2 exp
[
− 1

2
Tr
(
n (m−Xn)(m−Xn)′ · C−1

) ]
.

(IV.12)

Thus it is an Inverse-Wishart distribution truncated on ΩC :

IΩC · IW
(
n (m−Xn)(m−Xn)′, n+ 1

)
. (IV.13)

Moreover, the full conditional distribution of the missing data X given the current parameters
θ, the observation y,d and the evaluations HDN is given by (IV.4).

Using those full conditional posterior distributions, the Gibbs sampler approximating the
posterior distribution of (m,C) with a non-informative prior truncated to the domain Ωm×ΩC

could be straightforwardly described. Obviously, it incorporates the MH step presented in
Appendix A to simulate the missing data X.

Remark: The simulation of C is difficult since n (m − Xn)(m − Xn)′ is not a definite
but a semi-definite positive matrix and numerical problems can occur. However, up to an
additive constant, the calculation (IV.12) is proper. For this reason, we recommend to use a
Metropolis-Hastings algorithm for simulating C, as presented in Appendix B.

IV.3.4 Using the D̃AC criterion

By its very nature, the criterion D̃AC is measuring the agreement between the observed
data and the prior distribution. As shown above, it could be computed without particular
difficulties, despite it needs to run an additional Gibbs sampler, when the distribution H has
been replaced by a kriging emulator Ĥ. Thus D̃AC is depending on the prior distribution
and the design DN . Hence D̃AC is a criterion allowing to assess both the prior and design
relevances with respect to the observed data y. But this double assessment has to be done
properly using the following procedure:

1. If D̃AC ≤ 0 then the prior and the design are declared to be acceptable.

2. If D̃AC > 0, the following step is required:

under a ‘‘good prior’’ assumption, efforts are paid to improve the design

by increasing N or modifying Ω. If D̃AC is not decreasing under zero, it

means that the prior information is questionable and there is the need to

go back to the experts.

This procedure is depicted by the following diagram:
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IV.4 Numerical experiments

In order to illustrate the behavior of the the above mentioned criteria, numerical experiments
are performed from simulated data on a simplified version of a hydraulic model Y = H(X, d)+
U partly used in (75) where

H(X, d) =


X2 +

( √
5000

300
√

55−X2
× d

X1

)0.6

,
d 0.4X0.6

1 (55−X2)0.3

3000.4 × 50000.3


 ,

with

X ∼ N
(( 30

50

)
,

(
52 0
0 1

))
,

d ∼ Gumbel
(

1013,−458
)
,

and the error term U ∼ N (0, 10−5 · I2).

Since we are mainly concerned in analyzing the behavior of D̃AC, six different prior dis-
tributions on the model parameters were considered. They are summarized in Table IV.1.
Remind that the prior distributions or the parameters m and C are m|C ∼ N (µ,C/a) and
C ∼ IW(Λ, ν) with Λ = t · C̃Exp.
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Prior PLV PMV PHV FHV BMV BHV
µ {30, 50} {30, 50} {30, 50} {35, 49} {10, 54} {10, 54}
a 1 10 10 1 1 1 5 10 1 1
t 2 2 30 2 2 2 2 2
ν 5 5 33 5 5 5 5 5

C̃Exp

(
1.52 0
0 1

) (
52 0
0 1

) (
7.52 0
0 1.52

) (
7.52 0
0 1.52

) (
52 0
0 1

) (
7.52 0
0 1.52

)

Table IV.1: Description of the six prior distributions: PLV = perfect mean and low variance, PMV =
perfect mean and medium variance, PHV = perfect mean and high variance, FHV =

fair mean and high variance, BMV = bad mean and medium variance, BHV =
bad mean and high variance.

IV.4.1 Assessing the design

The first experiments are aiming to assess the ability of criteria Q2 and MD to measure the
quality of a design. In this purpose three different designs with 20 points, 100 points and 500
points have been considered on two different domains

Ω1 = [25.1001, 34.8999]× [48.0400, 51.9600]× [40, 1800]

Ω2 = [20, 40]× [45, 55]× [min
i

(di),max
i

(di)].

Ω1 can be thought of as a realistic domain and Ω2 is a larger domain. When using a validation
sample D∗, we choose it as a maximin LHD with 100 points. Figures IV.1 and IV.2 give the
box plots of 1 − Q2 based on 20 repetitions computed on a validation sample and by cross-
validation respectively. The closer one and Q2 are, the better the design is supposed to be.
The observed differences on 1−Q2 according to the designs are relevant but hardly perceptible
as even a small design of 20 points on the large domain Ω2 produces small 1 − Q2 values.
The difficulty with criterion Q2 is to choose a sensible threshold to declare that a design is
acceptable.

Quality criterion : Q2

Number of points in design

1−
Q2

20 100 500

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

small domain
large domain

Figure IV.1: 1−Q2 box plots calculated on a validation sample for six designs

Figures IV.3 and IV.4 display the box plots of log(MD) in the same conditions. As it could
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Quality criterion : Q2

Number of points in design

1−
Q2

20 100 500
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large domain

Figure IV.2: 1−Q2 box plots calculated by cross-validation for six designs

be expected, this criterion is decreasing when the number of design points increases. The
cross-validated MD does not seem very sensitive for the domain Ω1 and the cross-validated
MD values for the larger domain with a design of 500 points are amazing (see Figure IV.4).
Moreover, contrary to Q2 criterion, no reference value is available with MD and it seems
difficult to use this more expensive criterion to assess a design (see Figure IV.3).

Quality criterion : MD

Number of points in design

log
(M

D)

20 100 500

6
8

10
12

14

small domain
large domain

Figure IV.3: MD box plots calculated on a validation sample for six designs

IV.4.2 Assessing the prior and the design

The following numerical experiments aim to analyze the ability of D̃AC to assess either a
design or a prior distribution.

Figures IV.5 and IV.6 depict the behavior of D̃AC for the domains Ω1 and Ω2, for 20 rep-
etitions of the model with the six prior distributions and maximin LHDs with 20, 100 and
500 points. From those figures, it appears that the ”bad” priors are discarded by D̃AC in all
cases, but for the other priors even the design with 20 points seems acceptable. Obviously, for
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Quality criterion : MD by cross−validation

Number of points in design

log
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Figure IV.4: MD box plots calculated by cross-validation for six designs

this poor design the Gibbs sampler converges dramatically slower (2 000 iterations for D500

and 100 000 iterations for D20), but in many situations it is not an issue. Actually, the main
computational burden is computing the highly CPU-time demanding physical model H. In
the present context, running a Gibbs sampler with a design of N points require N calls to
the function H and it could be faster to run a Gibbs sampler on a D20 for 100 000 iterations
than a Gibbs sampler with a D500 for 2 000 iterations. . . Moreover, the similar behavior of
D̃AC in Figures IV.5 and IV.6 for both domains shows that the domain choice does not affect
the agreement between the prior and the data. For this reason, we only reported the next
experiments for the small domain Ω1.

Figure IV.7 which displays the behavior of D̃AC for the PLV and FHV prior with different
hyperparameters a and t values shows that those hyperparameters are sensitive and that too
concentrated priors (related to large values of a and t) could lead to a doubtful Bayesian
inference. For example, for the PLV prior increasing the value of a, which weights the prior
mean µ, does not much change the value of D̃AC as µ is equal to the actual mean m; while
for the FHV prior, a larger a results in a larger D̃AC value as in this “fair” case, µ and the
actual mean m are different.

Figures IV.8 displays the marginal posterior distributions with a LHD-maximum design of
100 points and Figure IV.9 with a LHD-maximum design of 20 points. Those figures confirm
the D̃AC diagnosis. There are great differences between the posteriors derived from ”bad
priors” and the other ones, including the posterior derived from the Jeffreys prior, which are
quite similar. It is also important to notice than there is no sensitive differences between
the posteriors derived from the 100 points and 20 points designs as indicated by the D̃AC
criterion.

It seems that D̃AC is indicating that a reasonable prior can resist to a poor design. It is not
always true. For instance a poor design of 18 randomly generated points on the faces of a
cube (Three points were generated on each face.) has been considered with the same model
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DAC within small domain
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Figure IV.5: D̃AC in small domain with six priors and three designs

DAC within large domain
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Figure IV.6: D̃AC in large domain with six priors and three designs

Y = H(X, d) + U but with the Sobol function H

H(X, d) =
2∏

k=1

gk (| sin(Xk)|) g3 (| sin(d)|) , where gk(x) =
|4x− 2|+ ak

1 + ak
,

with ak = 1. A Gibbs sampler of 800 000 runs has been run to estimate the posterior
distribution πJ(θ|y,HDN ). As shown in the left graph of Figure IV.10, D̃AC18 remains
positive for the four prior choices indicating the need to improve the design.
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DAC with PLV prior, small domain
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DAC with FHV prior, small domain
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Figure IV.7: D̃AC with PLV and FHV priors for the small domain Ω1 and different values of the
hyperparameters a and t
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Figure IV.8: Posterior of θ with help of D100 in small domain Ω1

IV.5 Discussion

We have shown that Bayesian analysis was possible and beneficial to solve inverse problems
by estimating the parameters of highly complex uncertainty models. Bayesian analysis is
possible thanks to MCMC algorithms such as Gibbs sampling and the approximation of the
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Figure IV.9: Posterior of θ with help of D20 in small domain Ω1
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Figure IV.10: D̃AC for D18 and D100 with the Sobol function

physical model by a kriging emulator using a maximin LHD. Bayesian analysis is beneficial
since it allows to take into account properly prior knowledge and avoids linearization of the
physical model H. Our analysis has shown that Bayesian inference could be beneficial because
MCMC algorithms could be hoped to be rapid even with a maximin LHD with few points
in comparison to the huge time needed to compute H. From this point of view, it could
be helpful to translate the time to get a realization of H as a number of iterations of the
MCMC algorithm in order to choose the number of points of the emulator’s design. Let us
suppose that the computation time of one call to H equals the computation time of L(N)
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iterations of the MCMC algorithm1. The integer L(N) is expected to be quite large and is a
decreasing function of the number N of points of the design DN which is as well the number
of ”possible” calls to H. Our analysis proved that even when N is small, it is possible to
increase the number of iterations of the MCMC algorithm to get a good approximation of
the model parameter posterior distribution in an acceptable CPU time. For instance, with
the hydraulic model, the CPU time (in seconds) has been 999 for N = 500, 1930 for N = 100
and 10 100 for N = 20 on a laptop PC, with two Intel P9700 cores of 2.80GHz

In this perspective, there is the need to control the four error sources listed in the introduction.

• By its very nature, Bayesian inference is helpful to control the estimation error when
the number n of observations is small.

• The algorithmic error can be efficiently controlled with the BG statistics. To make sure
that this error is not too big, we advocate a more severe threshold value 1.05 than the
standard threshold 1.2.

• We propose to use the so-called D̃AC criterion which could be thought of as a relevant
measure of the discrepancy between the observed sample and the prior distribution in
order to control both the emulator error and the prior error. In our context, this crite-
rion can be computed without major difficulties: the emulator is defined on a compact
set and, consequently, proper non-informative priors are available. Our experiments
show a promising behavior of this criterion. Obviously, computing D̃AC is not free
since it involves to run an additional MCMC algorithm for non-informative priors. But
we think that the result is worth the trouble. Moreover, as soon as the MCMC with
a non-informative prior has been run, any informative prior can be assessed. On the
other hand when D̃AC is greater than zero, it could be difficult to separate the emulator
and the prior errors since both errors could be quite intricate. More experiments are
needed to assess the relevance and sensibility of this criterion. But we think that it is a
promising tool to drive Bayesian inference using an emulator for dealing with complex
inverse problems in uncertainty analysis.

Finally, the conclusion of this study can be stated as follows. When the prior knowledge
on the model parameters is relevant, Gibbs sampling or other MCMC algorithms on an
appropriate emulator could be expected to lead to a sensible estimation of these parameters
with well calibrated prior distributions while dramatically saving the number of calls to the
expensive function H. And, the criterion D̃AC could be expected to be helpful to honestly
calibrate the prior distributions and choose a good design for the emulator.

1Recall that N is the total allowed number of calls to H and it is also the number of points of the emulator
design.
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Appendix A. the Gibbs sampling with a Jeffreys non informative prior

Given (m[r], C [r],X[r]) for r = 0, 1, 2, . . . , generate

1. C [r+1] |m[r],X[r],Y , ρ,HDN ∼ IW
(∑n

i=1(m[r] −X [r]
i )(m[r] −X [r]

i )′, n+ 1
)
· 1ΩC ;

2. m[r+1] |C [r+1],X[r],Y , ρ,HDN ∼ N
(
X[r], C

[r+1]

n

)
· 1Ωm ,

with X[r] =
∑n

i=1X
[r]
i ;

3. X[r+1] |m[r+1], C [r+1],Y , ρ,HDN ⇒ Metropolis-Hastings algorithm

More precisely, this full conditional posterior distribution is proportional

to

|R + MSE[r+1]|− 1
2 · exp

{
− 1

2

n∑

i=1

(X
[r+1]
i −m[r+1])′

[
C [r+1]

]−1
(X

[r+1]
i −m[r+1])

− 1

2

((
Y1 − Ĥ [r+1]

N,1

)′
, . . . ,

(
Yn − Ĥ [r+1]

N,n

)′)(
R + MSE[r+1]

)−1




Y1 − Ĥ [r+1]
N,1

...

Yn − Ĥ [r+1]
N,n




}
,

with Ĥ
[r+1]
N,i = ĤN (X

[r+1]
i , d) and MSE[r+1] = MSE(X[r+1], d).

The Metropolis-Hastings step inside the Gibbs sampler At step r + 1 of Gibbs
sampling, after simulating m[r+1],C [r+1], the missing data X[r+1] have to be updated with a
Metropolis-Hasting (MH) algorithm. The MH step is updating X[r] = (Xr

1 , . . . , X
r
n)′ in the

following way:

• For i = 1, . . . , n

1. Generate X̃i ∼ J(· | Xr
i ) where J is the proposal distribution.

2. Let

α(Xr
i , X̃i) = min

( π
Ĥ

(X̃ | Y , θ[r+1], ρ,d, HD) J(Xr
i |X̃i)

π
Ĥ

(X[r] | Y , θ[r+1], ρ,d, HD) J(X̃i|Xr
i )
, 1
)
,

where

X̃ =
(
Xr+1

1 , . . . , Xr+1
i−1 , X̃i, X

r
i+1, . . . , X

r
n

)′

X[r] =
(
Xr

1 , . . . , X
r
i−1, X

r
i , X

r
i+1, . . . , X

r
n

)′

3. Take

Xr+1
i =

{
X̃i with probability α(Xr

i , X̃i),

Xr+1
i otherwise.
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Remarks:

• Many choices are possible for the proposal distribution J . It appears that choosing an

independent MH sampler with J chosen to be the normal distributionN
(
m[r+1], C [r+1]

)

give satisfying results for the model (IV.1).

• In practice, it can be beneficial to choose the order of the updates by a random per-
mutation of {1, . . . , n} to accelerate the convergence of the Markov chain to its limit
distribution.

Appendix B. Metropolis-Hasting (MH) algorithm for simulating C

1. Iteration 0: Choose an arbitrary value C [0] = C0

2. Iteration h: Update C [h] as follows:

• Generate ξ from the following proposal distribution f∗, which is adding

a small correction εIq to the semi-positive definite matrix (m−Xn)(m−
Xn)′

f∗(ξ) = IΩC (ξ) · IW
(
n (m−Xn)(m−Xn)′ + εIq, n+ 1

)
.

• Let

α(C [h−1], ξ) =
g(ξ)f∗(C [h−1])

g(C [h−1])f∗(ξ)
∧ 1, (IV.14)

with g proportional to the target distribution which means the truncated

Inverse-Wishart distribution (IV.13)

g(C) = IΩC (C) · |C|−n+q+2
2 exp

[
− 1

2
Tr
(
n (m−Xn)(m−Xn)′ · C−1

) ]
.

• Choose C [h] as follows

C [h] =

{
ξ with probability α(C [h−1], ξ),

C [h−1] otherwise.
(IV.15)

In this way, we obtain a Markov chain (C [h]) which converges to the distribution (IV.13).

Appendix C. Brooks-Gelman Statistics

In 1998, Brooks and Gelman proposed a method derived from the method proposed by
Gelman and Rubin (1992a), for monitoring the convergence of iterative simulations ((11)).
Supposing m parallel chains have been simulated, the statistic R̂BG is constructed on the
final M iterations after the “burn-in” period, as follows:

1. For each individual chain j, calculate the empirical 100(1−α)% interval δj , which is the
difference between the 100(1− α

2 )% and 100α2 % percentile of the M simulated points.
Thus, form the m within-sequence interval length estimates.
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2. For the entire set of mM simulated draws from all chains, calculate the empirical
100(1− α)% interval to construct a total-sequence interval length estimate.

3. Evaluate the statistic R̂BG defined as

R̂BG =
∆

δ̄

• ∆ the total-sequence interval length;

• δ̄ = 1
m

∑m
j=1 θj , with θj the length of the within-sequence interval for the j-th

chain.

The threshold value 1.2 is advocated by the authors (R̂BG < 1.2) to declare that the sim-
ulation procedure has converged. In our experiments, we make use of a more conservative
threshold and procedure to ensure that the MCMC algorithms have converged to their station-
ary distribution. A MCMC chain has been declared to have converged if the R̂BG statistics
is smaller than 1.05 for 3,000 iterations.

Appendix D. Computing D̃AC for the kriging emulator

The compact set Ωm = Ω = Ω1× . . .×Ωq where Ωi denotes the domain for the i-th coordinate
of X. To determine the compact set ΩC related to the variance matrix C, it is convenient
to consider its eigenvalue decomposition C = V DV T where D is the diagonal matrix of
eigenvalues of C with |C| = |D| and V the orthogonal matrix of eigenvectors of C. For each
dimension i = 1, . . . , q, X2

i ≤ βi = max
(
(max Ωi)

2, (min Ωi)
2
)
. On the other hand, recalling

that R is the variance matrix of the measurement error in model (IV.1), it is reasonable to
assume that the measurement error is smaller than the variance and thus |R|1/p ≤ |C|1/q =
|D|1/q. Finally, the domain of variance ΩC can be defined as follows:

ΩC =



C = V DV T ∈ S+

q st. |D| ≥ |R|q/p, 0 ≤ Dii ≤

√√√√
q∑

j=1

β2
i , i = 1 . . . , q



 ,(IV.16)

where S+
q is the set of symmetric positive definite matrices of rank q.

The benchmark prior πJ(θ) is chosen here as the Jeffreys prior for a multivariate Gaussian
distribution restricted to Ωm, ie.

πJ(θ) =
IΩm(m)

Vol(Ωm)
· ∆C

|C| q+2
2

IΩC (C) (IV.17)

with

∆C =

(∫

ΩC

1

|C| q+2
2

dC

)−1

.
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Thus

∆−1
C =

∫

ΩC

1

|C| q+2
2

dC

=

∫

ΩC

1

|D| q+2
2

d (V DV T )

=

∫
dV

[∫

ΩD

1

|D| q+2
2

dD

]
,

where

ΩD =



D ∈ DS

+
q st. |D| ≥ |R|q/p, 0 ≤ Dii ≤

√√√√
q∑

j=1

β2
j , i = 1 . . . , q



 . (IV.18)

Now, any orthogonal matrix V of dimension q is characterized by the composition of q(q−1)/2
rotations (ψ1, . . . , ψq(q−1)/2) (cf. Thiested 1988, (108)),

∫
dV =

∫ π

0
· · ·
∫ π

0︸ ︷︷ ︸
q(q−1)/2 times

dψ1 . . . dψq(q−1)/2 = πq(q−1)/2.

Thus

∆−1
C = πq(q−1)/2

[∫

ΩD

1

|D| q+2
2

dD

]
.

Finally, it remains to calculate the integral
∫

ΩD
1

|D|
q+2
2

dD. Denoting it I(q, a, β1, . . . , βq),

with a = |R|q/p it is derived by induction on q (the detailed calculation is given in Appendix
IV.5).

I (q, a, β1, . . . , βq) =

(
q − 1

q

)q−1

I

(
q − 1,

(
a

βq

) q
q−1

, β
q
q−1

1 , . . . , β
q
q−1

q−1

)
, (IV.19)

and

I (2, a, β1, β2) =
1

a
log

β1β2

a
+

1

β1β2
− 1

a
.

Appendix E. Computing the normalising constant of the diagonal
variance matrix domain

We are aiming to calculate

I =

∫

ΩC

1

|C| q+2
2

dC, (IV.20)

when the variance matrix C is diagonal and the domain ΩC is defined as follows:

ΩC =
{
C ∈ S+

q st. |C| ≥ |R|q/p, |Cij | ≤
√
βiβj , i, j = 1 . . . , q

}
. (IV.21)
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Since C is diagonal, the above definition is equivalent to

{
0 ≤ Ci ≤ βi∏q
i=1Ci ≥ a,

(IV.22)

where {Ci, 1 ≤ i ≤ q} are the diagonal elements of C. Conditions (IV.22) are equivalent to
the conditions





a
β2···βq ≤ C1 ≤ β1

a
C1β3···βq ≤ C2 ≤ β2,
...

a
C1C2···Cq−1

≤ Cq ≤ βq

(IV.23)

Considering I as a function of (q, a, β1, . . . , βq), the integral (IV.20) can be developed as
follows

I (q, a, β1, . . . , βq) =

∫ β1

a
β2···βq

1

C
q+2
2

1

dC1

∫ β2

a
C1β3···βq

1

C
q+2
2

2

dC2 · · ·
∫ βq

a
C1···Cq−1

1

C
q+2
2

q

dCq

=
2

qa
q
2

∫ β1

a
β2···βq

1

C1
dC1

∫ β2

a
C1β3···βq

1

C2
dC2 · · ·

∫ βq−1

a
C1···Cq−2βq

1

Cq−1
dCq−1

− 2

qβ
q
2
q

∫ β1

a
β2···βq

1

C
q+2
2

1

dC1

∫ β2

a
C1β3···βq

1

C
q+2
2

2

dC2 · · ·
∫ βq−1

a
C1···Cq−2βq

1

C
q+2
2

q−1

dCq−1

=
2

qa
q
2

Iq−1 −
2

qβ
q
2
q

(
q − 1

q

)q−1

I

(
q − 1,

(
a

βq

) q
q−1

, β
q
q−1

1 , . . . , β
q
q−1

q−1

)
,

(IV.24)

where

Iq−1 =

∫ β1

a
β2···βq

1

C1
dC1

∫ β2

a
C1β3···βq

1

C2
dC2 · · ·

∫ βq−1

a
C1···Cq−2βq

1

Cq−1
dCq−1

=
1

(q − 1)!

(
log

β1 . . . βq
a

)q−1

, (IV.25)

is obtained by induction and

∫ β1

a
β2···βq

1

C
q+2
2

1

dC1

∫ β2

a
C1β3···βq

1

C
q+2
2

2

dC2 · · ·
∫ βq−1

a
C1···Cq−2βq

1

C
q+2
2

q−1

dCq−1

=

(
q − 1

q

)q−1

I

(
q − 1,

(
a

βq

) q
q−1

, β
q
q−1

1 , . . . , β
q
q−1

q−1

)
,

by the variable change

yi = C
q
q−1

i .
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Thus step by step thanks to equation (IV.24), the integral can be calculated when C is
diagonal. For instance for q = 2, 3, 4 we get

I (2, a, β1, β2) =
1

a
log

β1β2

a
+

1

β1β2
− 1

a
,

I (3, a, β1, β2, β3) =
1

3a
3
2

(
log

β1β2β3

a

)2

− 4

9a
3
2

log
β1β2β3

a
− 8

27 (β1β2β3)
3
2

+
8

27a
3
2

,

I (4, a, β1, β2, β3, β4) =
1

12a2

(
log

β1β2β3β4

a

)3

− 1

8a2

(
log

β1β2β3β4

a

)2

+
1

8a2

(
log

β1β2β3β4

a

)

+
1

16 (β1β2β3β4)2 −
1

16a2
.
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CHAPTER V. ADAPTIVE DESIGN OF EXPERIMENTS

This chapter is a collaboration with Mathieu Couplet and Nicolas Bousquet. It is in prepara-
tion for a submission.

This paper deals with the issue of building adaptive designs of experiments (DOEs) to solve
inverse problems using meta-modeling (e.g. kriging). The inverse problem considered here is
to estimate the distribution of a non-observed random variable X from some noisy observed
data Y through a time-consuming physical model H. Bayesian inference is favored as it
accounts for prior expert knowledge on X in a small sample size setting. Since it involves a
high number of calls to H, the model is replaced by the kriging predictor Ĥ, along with the
uncertainty of the meta-model. Ĥ is calculated from a numerical DOE, following a method-
ology proposed in Fu et al. (2012, (30)). In this paper, we propose an adaptive method
to build a DOE adapted to our particular purpose to estimate the posterior distribution of
the parameters of X, by sequentially enriching the current DOE until a given computational
budget is filled. Two Bayesian criteria, a weighted integrated mean square error (W-IMSE)
and an expected conditional divergence (E-CD), are proposed. Several numerical experi-
ments are conducted on examples. They show that such adaptive designs can significantly
outperform the standard maximin-Latin Hypercube Designs (LHDs) and the E-CD criterion
is recommended as it is successfully conducted and easier to adjust.

Keywords. Inverse problems; Bayesian inference; Kriging; Adaptive design of experiments;
Markov models.

V.1 Introduction

In the past decades, science and engineering greatly benefited from the growing computational
capability of computers, which allows making use of physical models with increasing levels
of complexity. Complex numerical simulators are especially gaining fast development in
the engineering field. However, good approximation precision is often paid for with high
computational cost. Especially in fields such as statistic, optimization and probability (e.g.
rare events), where many evaluations are required. Thus, so-called meta-modeling techniques
have been developed to overcome the computational budget limitation (Sacks et al., 1989b,
(99)).

In this paper, we focus on treating the inverse problems of the following kind:

Yi = H(Xi, di) + Ui, i ∈ {1, . . . , n}, (V.1)

where Xi ∈ Rq is a non-observed input, di ∈ Rq2 an observed input related to the experimental
conditions and Ui ∈ Rp a measurement error. Ui and Xi are assumed to be independent for
i = 1, . . . , n. Moreover, the observations Yi are assumed to be independent for i = 1, . . . , n.
The purpose is to estimate the distribution of the random vectors Xis from the observations
(yi, i = 1, . . . , n), knowing that the physical model H cannot be inverted. In what follows,
Xi will be assumed to follow a Gaussian distribution Nq(m,C), with mean m and variance
matrix C to be estimated, and the error vector Ui will be assumed to follow a centered
Gaussian distribution with known diagonal variance matrix R. The aim of the calibration is
to estimate the parameters of interest θ = (m,C) from the observed data (yi, di, i = 1, . . . , n).
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Many approaches are possible to approximate this inverse problem as linearizing the phys-
ical model H around a fixed point x0 (see Celeux et al., 2010, (15)), or using a nonlinear
approximation of the function H obtained through kriging and making use of a stochastic
procedure with this approximation (see Barbillon et al., 2011, (4)). In this paper, Bayesian
inference is privileged (see Fu et al., 2012, (30)). In such a Bayesian statistical framework,
a Metropolis-Hastings-within-Gibbs algorithm is used to produce Markov chains converging
towards the desired posterior distribution of θ.

However, as said previously, the numerical simulator H is often highly time-consuming.
Therefore, using a meta-model is needed to reduce the cost. A meta-model (e.g. kriging)
is an approximation of the original simulator built from its evaluations at a certain number
of input values, a so-called design of experiments (DOE). The evaluation budget is usually
limited, therefore it is crucial to develop methods to efficiently construct the DOEs, such that
the obtained posterior distributions of θ are as close as possible to those with accessibility of
the function H.

Inspired by the Efficient Global Optimization (EGO) algorithm (see Jones et al., 1998, (48)),
this paper provides an adaptive method to sequentially build DOEs in such a way that
new points are added to the current design according to some criterion. Two criteria are
proposed here: Weighted-IMSE is minimizing the prediction error brought by the meta-
model, especially in the regions of interest indicated by the current estimate of the posterior
distribution of θ, while Expected-CD is maximizing the Kullback-Leibler divergence between
two successive estimates of the posterior distributions of θ. A first global exploration is
carried out by an initial space-filling maximin-Latin Hypercube Design (LHD).

The paper is organized as follows. Section V.2 gives details about kriging and the maximin-
LHD. In Section V.3, the meta-modeling technique is combined in a Bayesian framework and
the inversion is carried out using a Metropolis-Hastings-within-Gibbs algorithm. An impor-
tant point is that the Gaussian Process (GP) obtained by kriging is fully embedded inside
the model including the additional covariance. In the next two sections, the Expected-CD
and Weighted-IMSE criteria to be optimized are described. Numerical studies are conducted
on examples in Section V.6. It is important to underscore that even though the illustrating
models are relatively cheap, the adaptive technique is addressed to really time-consuming
functions. Finally, a discussion section sums up the main ideas and the methodology of the
paper, and highlights several research aspects for further work.

Both methodologies are combined in a Bayesian inversion framework carried out using a
Metropolis-Hastings-within-Gibbs algorithm in Section V.3. In the next two sections, the
two criteria for deriving adaptive DOEs are described, involving an optimization problem to
choose the best point to be added. Numerical studies are conducted on examples in Section
V.6. Finally, a discussion section sums up the main ideas and the methodology of the paper,
and highlights several research aspects for further work.

V.2 Kriging meta-model and design of experiments

This section provides a short review of meta-modeling techniques followed by a general pre-
sentation of the design of experiments, especially the construction of the maximin-Latin
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Hypercube Design, which is chosen as the initial condition of the adaptive kriging methodol-
ogy.

V.2.1 Kriging meta-model

Kriging is a geostatistical method (Matheron 1971, (66)) that has been adapted by Sacks
and al. (1989b, (99)) to approximate a physical model H on a bounded hypercube Ω. This
method has known a growing interest in meta-modeling since the works of Koehler and Owen
(1996, (55)), Santner and al. (2003, (100)) and Fang and al. (2006, (29)), among others.
More specifically, it consists of deriving a predictor Ĥ(z) for any z = (x, d) ∈ Ω, from the
training set HDN evaluated from a DOE

DN =
(
zT(1), . . . , z

T
(N)

)T
, (V.2)

with each z(i) = (x(i), d(i)). According to this approach, the function H is regarded as the
realization of a Gaussian Process (GP) H:

∀z ∈ Ω, H(z) =
k∑

i=1

βifi(z) + Z(z), (V.3)

where fis are basis functions of linear regression corresponding to weight coefficients βi, and
Z is a Gaussian process with zero mean and stationary autocovariance

Cov
[
Z(z),Z(z′)

]
= σ2Kψ(‖z − z′‖), ∀(z, z′) ∈ Ω2, (V.4)

with Kψ a symmetric positive definite kernel such that Kψ(0) = 1. This is equivalent to
assume a GP prior distribution for H in a Bayesian perspective (see Rasmussen & Williams,
2006, (87)). At any prediction point z, the processH can be proved to be normally distributed
knowing the evaluations HDN (Santner et al. 2003, (100)):

H(z) |HDN = HDN ∼ N
[
µH(z), σ2

H(z)
]
. (V.5)

The best linear unbiased predictor (BLUP) for H(z), denoted by Ĥ(z), is the conditional
kriging mean µH(z) and the conditional kriging variance σ2

H(z) is the so-called MSE (Mean
Squared Error) (see Johnson et al. 1990 for details, (47)), which provides an estimate of the
predicting accuracy. Assuming that the covariance parameters (σ2, ψ) are known, MSE can
be expressed by the following equation:

MSE(z) = σ2
H(z) = σ2

(
1 + γ(z)T (FT

DΣ−1
DDFD)−1γ(z)−ΣT

zDΣ−1
DDΣzD

)
, (V.6)

where γ(z) = F(z)− FT
DΣ−1

DDΣzD, and

• F(z) = [f1(z), . . . , fk(z)]
T is a k × 1 vector of basis functions,

• FD = [F(z(1)), . . . ,F(z(N))]
T is a N × k regression matrix evaluated at design DN ,

• ΣzD = [Kψ(z, z(1)), . . . ,Kψ(z, z(N))]
T is a N × 1 vector of correlations between z and

design points,
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• ΣDD = [Kψ(z(i), z(j))]1≤i,j≤N is a N×N correlation matrix evaluated within the design
of experiments.

In most general cases where the covariance parameters are unknown, several methods can
be used to estimate them, e.g. maximum likelihood, restricted maximum likelihood, cross-
validation or Bayesian kriging techniques. The predictor Ĥ(z) and the variance MSE(z)
which will not be detailed here can also be expressed explicitly by plugging in the estimated
covariance terms.

Obviously, the predicting accuracy highly depends on the position of the prediction point
z ∈ Ω with respect to the spatial structure of the DOE.

V.2.2 Design of experiments (maximin-Latin Hypercube Designs)

Following Picheny et al.(2010, (84)), it is possible to distinguish three kinds of DOEs:

• Space-filling designs, which aims to fill the input space with a finite number of points
independently of models, the maximin-LHD for example;

• model-oriented designs, which attempts to construct a suited DOE accounting for the
model H or the meta-model;

• purpose-oriented designs, which takes into account the final object to find the best
adapted DOE, for example to find the best posterior distributions of θ in the current
case-study.

In this paper, we choose to build a purpose-oriented DOE in an adaptive way to solve the
inverse problems. Namely, we get a first calibration of the covariance parameters from a
space-filling design such as the maximin-Latin Hypercube Design (LHD), then the DOE is
to be improved through some sequential strategies. Proposing such strategies is the central
point of this paper. First, the standard maximin-LHD is reviewed. We choose a domain Ω
to illustrate our explication.

The concept of LHD was introduced by McKay et al. (1979, (67)) and two distance criteria
namely maximin and minimax were proposed by Johnson et al. (1990, (47)) to choose the
optimal LHDs. Maximin means maximizing the minimum inter-site distance between the set
of N points:

δD = min
i 6=j
‖z(i) − z(j)‖2,

while minimax means minimizing the maximum Euclidean distance between any point z ∈ Ω
and its nearest neighbor among the set of N design points

hD = sup
z∈Ω

min
1≤i≤N

‖z − z(i)‖2.

Ideally, the criterion maximin can avoid generating the points of design too close to each other
and thus ensure good filling of the space, while minimax aims at making none of points in
the domain Ω be far from the design. However, the optimization involved with the minimax
is quite time-consuming, especially in large dimensions. For this reason, the maximin-LHD
is chosen as our adaptive strategy.
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V.3 Embedding the meta-model into Bayesian inference

In this section, we recall the Bayesian framework, introduced in Fu et al. (2012, (30)), within
which the inverse problem of estimating the distribution of the missing-data X is considered.
The following conditional conjugated prior distribution was chosen,

m |C ∼ Nq(µ,C/a), (V.7)

C ∼ IWq(Λ, ν), (V.8)

ρ = {a, µ,Λ, ν} being the hyperparameters . It can be noted that a can be regarded as the
size of a virtual sample corresponding to the belief of the practitioner on the prior informa-
tion (provided by experts). A Gibbs sampler involving data augmentation was proposed to
compute its posterior distribution of the parameters. Actually, replacing the expensive-to-
compute function H with a kriging emulator Ĥ (see Barbillon, 2010, (3)) and introducing a
new emulator error MSE, the Gibbs sampler can be adapted as follows:

Gibbs sampler (at the (r + 1)-th iteration)

Given (m[r], C [r],X[r]) for r = 0, 1, 2, . . . , generate:

1. C [r+1]| · · · ∼ IW
(

Λ +
∑n

i=1(m[r] −X [r]
i )(m[r] −X [r]

i )′ + a(m[r] − µ)(m[r] − µ)′, ν + n+ 1
)

,

2. m[r+1]| · · · ∼ N
(

a
n+aµ+ n

n+aX
[r]
n ,

C[r+1]

n+a

)
where X

[r]
n = n−1

∑n
i=1X

[r]
i ,

3. X[r+1]| · · · ∝ |R+MSE[r+1]|− 1
2 ·exp

{
− 1

2

∑n
i=1(X

[r+1]
i −m[r+1])′

[
C [r+1]

]−1

(X
[r+1]
i −m[r+1])−

1
2

((
Y1 − Ĥ [r+1]

N,1

)′
, . . . ,

(
Yn − Ĥ [r+1]

N,n

)′)(
R + MSE[r+1]

)−1




Y1 − Ĥ [r+1]
N,1

...

Yn − Ĥ [r+1]
N,n




}

where Ĥ
[r+1]
N,i = ĤN (X

[r+1]
i , di) and MSE[r+1] = MSE(X[r+1],d) is the block diagonal matrix

MSE(X[r+1],d) =




MSE1(X[r+1],d) 0
. . .

0 MSEp(X[r+1],d)




}
n lines

}
n lines

In the third step, the variance matrices MSEj(X
[r+1],d) ∈Mn×n are defined by

MSEj(X
[r+1],d) = E

((
Hj(X[r+1],d)− Ĥj(X

[r+1],d)
)2
|HDN

)
,

for j = 1, . . . , p, where Hj denotes the j-th dimension of the Gaussian process H. Moreover,

R =




R1 0
. . .

0 Rp




}
n lines

}
n lines

, with Ri =




Rii 0
. . .

0 Rii


 ,
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where Rii is the i−th diagonal component of the diagonal variance matrix R. It is worth
noting that this third conditional distribution does not belong to any closed form family of
distributions. Therefore a Metropolis-Hastings (MH) step is used to simulate X[r+1] (see
Appendix A).

As discussed in Fu et al. (2012, (30)), the use of the MCMC algorithms involves many
possible errors. According to experimental trials, the accuracy of the meta-model plays a
critical role in the the estimation problem. MCMC algorithms can produce Markov chains
converging towards the desired posterior distribution. However, if the function H is really
badly approximated, apart from the algorithmic error introduced by the MCMC algorithm,
the result can also suffer from an emulator error.

V.4 The Expected-Conditional Divergence criterion for adaptive
designs

The two following sections address the issue of adaptive designs of experiments. Two strate-
gies are proposed. In this section, we propose a criterion called E-CD (Expected-Conditional
Divergence) to define the adaptive procedure, which can be considered as a variation of the
Expected-Improvement criterion proposed by Jones et al. (1998, (48)).

V.4.1 Principle

Ideally, the posterior distribution of the parameters θ = (m,C) after adding a new point
z(N+1) to the current DOE DN should be as close as possible to the posterior distribution
knowing the original function H, i.e. a relevant discrepancy measure between the two relative
distributions is to be minimized. Based on information-theoretical arguments given in Cover
and Thomas (2006, (18)), the Kullback-Leibler divergence

KL
(
π(θ|y,d, H) ||π(θ|y,d,HDN ∪ {H(z)}))

)
, (V.9)

is a good choice of discrepancy measure. Remind that given two densities p(x) and q(x)
defined over the same space X ,

KL(p||q) =

∫

X
p(x) log

p(x)

q(x)
dx.

Assuming that this quantity can be calculated, we search for the next point z(N+1) within the
feasible region Ω, as the global minimum of this divergence. Of course, the term π(θ|y,d, H)
makes this formulation intractable, but we can derive a tractable criterion from it.

z(N+1) = argmin
z∈Ω

KL
(
π(θ|y,d, H) ||π(θ|y,d,HDN ∪ {H(z)})

)

= argmin
z∈Ω

KL
(
π(θ|y,d, H) ||π(θ|y,d,HDN ∪ {H(z)})

)
−KL

(
π(θ|y,d, H) ||π(θ|y,d,HDN )

)

= argmax
z∈Ω

∫

θ∈Ω
π(θ|y,d, H) log

π(θ|y,d,HDN ∪ {H(z)})
π(θ|y,d,HDN )

dθ

' argmax
z∈Ω

∫

θ∈Ω
π(θ|y,d,HDN ∪ {H(z)}) log

π(θ|y,d,HDN ∪ {H(z)})
π(θ|y,d,HDN )

dθ

= argmax
z∈Ω

KL
(
π(θ|y,d,HDN ∪ {H(z)}) ||π(θ|y,d,HDN )

)
. (V.10)
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Under the assumption π(θ|y,d,HDN ∪ {H(z)}) ' π(θ|y,d, H) to ensure the penultimate
passage, minimizing the KL divergence (V.9) becomes asymptotically equivalent to maximize
in z the KL divergence given in the (V.10). In other words, this strategy aims at finding
the optimal point z(N+1) which modify the actual distribution π(θ|y,d,HDN ) as much as
possible. Our choice appears asymptotically relevant.

The preceding formulation is not satisfactory yet, since one evaluation of the criterion requires
one evaluation of H, which is time-consuming. However, in the spirit of EGO, it is possible
to derive a new criterion from the former considering the following Gaussian process based
on the available observations HDN instead of H:

hN (z) := H(z) |HDN ,

which follows the normal distribution given in (V.5). Thus, we define the expected distance
criterion:

z(N+1) = argmax
z∈Ω

Eπ(hN )

[
KL
(
π(θ|y,d,HDN ∪ {hN (z)}) ||π(θ|y,d,HDN )

)]
.(V.11)

The idea of considering the Gaussian variable hN (z) rather than the predictor ĤN (z) allows
us to take into account the uncertainty introduced by the kriging method, while it requires
usual Monte Carlo methods to approximate the double integrals, i.e. the expectation and
the Kullback-Leibler distance.

A practical problem with the so-defined criterion is that for one more search of the new point
z, one additional Gibbs sampler has to be run to approximate the posterior distribution
π(θ|y,d,HDN ∪ {hN (z)}), while Monte Carlo methods require thousands of searches. The
CPU computational time is not negligible.

V.4.2 The Expected-Conditional Divergence criterion

Preliminary experiments showed that the criterion defined in (V.11) is generally too expen-
sive to compute because of the Gibbs sampler. In this subsection, we provide the so-called
Expected-Conditional Divergence (E-CD) criterion, which depends only on the intermediate
full-conditional posterior distributions of θ. More precisely, at the (r + 1)-th iteration of the
Metropolis-Hastings-within-Gibbs algorithm, the criterion is described as:

z(N+1) = argmax
z∈Ω

E-CD(z)

with

E-CD(z) = Eπ(hN )

[
KL
(
π(θ|X̃(r+1)(z)) ||π(θ|X(r+1))

)]
,

where X(r+1) and X̃(r+1)(z) denote the missing data samples simulated from

X(r+1) ∼ π
(
·|y,d, θ(r+1),HDN

)
,

X̃(r+1)(z) ∼ π
(
·|y,d, θ(r+1),HDN ∪ {hN (z)}

)
.

It is worth noting that in the E-CD criterion, the final posterior distribution of θ is replaced
by its sequential conditional posterior distribution at the (r + 1)-th iteration. Thus, we do

100



not wait for the convergence of the simulated Markov chains to compute the criterion, with
the purpose to speed up the research of a new relevant location z(N+1). Even if it may be less
efficient, we do not need to call the expensive function H and we are free of any additional
Gibbs sampling. This method can be expected to have good performances by exploring more
candidates faster.

As presented before, Monte Carlo methods are recommended for the double integrals in
(V.12). The empirical version of the CD strategy can then be summarized by the following
five steps.

Expected-Conditional Divergence algorithm

At iteration r + 1 (large enough), for each candidate z:

1. generate M samples (h1
N (z), . . . , hMN (z)) according to (V.5) and build M corresponding

emulators (Ĥ1
N+1(z), . . . , ĤM

N+1(z)) with Ĥi
N+1(z) based on the dataset HDN

∪{hiN (z)}.

2. for i = 1, . . . ,M,

(i) sample X̃(r+1),i(z) from π(·|y,d, θ(r+1), Ĥi
N+1(z)),

(ii) sample Θi = {θi1, . . . , θiL1
} with θ = (m1, . . . ,mq, C11, . . . , Cqq) from π(·|X̃(r+1),i(z),y,d),

3. sample Ψ = {θ1, . . . , θL2
} from π(·|X(r+1),y,d),

4. find the optimal point z(N+1) within the domain Ω

z(N+1) = argmax
z∈Ω

1

M

M∑

i=1

K̂L
(

Θi ||Ψ
)

= argmax
z∈Ω

Ê-CDM (z), (V.12)

where K̂L(Θi ||Ψ) denotes the empirical KL divergence.

5. repeat 1)-4) until the maximum budget has been reached.

Remark 25. Since we are in the context with an expensive code H, the stopping criterion
based on the maximum budget appears a good practical choice.

In the Expected-Conditional Divergence algorithm, (V.12) requires two computations : the
empirical KL divergence and the inner optimization problem. Let us begin with the first
calculation. As in Wang et al. (2006, (116)), a Nearest-Neighbor (NN) approach is applied
to estimate the KL distance, as explained in Appendix B.

The optimization problem can be solved with help of the Simulated Annealing (SA) method,
as presented in Appendix C.
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V.5 The Weighted-IMSE criterion for adaptive designs

In this section, we provide another criterion as a modified version of the weighted-IMSE
criterion (see Sacks et al., 1989a, (98), Picheny et al., 2010, (84)), adapted to inverse problems
in Bayesian framework.

V.5.1 The Integrated MSE criterion

The Integrated Mean Square Error (IMSE) criterion (Sacks et al., 1989b, (99)) is a measure
of the average accuracy of the kriging meta-model over the domain Ω:

IMSE(Ω) =

∫

Ω
MSE(z) dz,

where MSE(z) follows (V.6). Aiming at ensuring the prediction accuracy in the regions of
main interest, Picheny et al. (2010, (84)) proposed the W-IMSE criterion which consists in
adding a weight function ω to indicate the critical regions. Based on the current design DN

of N points, W-IMSE is defined as follows:

W-IMSE(z∗) =

∫

Ω
MSE (z|DN ∪ {z∗})w (z|DN ,HDN ) dz, (V.13)

where MSE (z|DN ∪ {z∗}) denotes the prediction variance by adding the point z∗ = (x∗, d∗)
into DN and w (z|DN ,HDN ) is a weight function emphasizing the MSE term over a region
of interest. An adapted choice of ω to our Bayesian framework is to be given in the next
section. It is worth noting that the calculation of MSE does not depend on the expensive
evaluation H(z∗) and the weight factor w only depends on the available observations HDN .
The next point to add to the DOE is thus defined by

z(N+1) = arg min
z∈Ω

W-IMSE(z).

V.5.2 Adaptation to our purpose

Defining the regions of interest is the essential task in applying the W-IMSE criterion. As
presented in previous sections, a probabilistic solution to inverse problems is to approximate
the posterior distribution of the parameters θ = (m,C) using a Metropolis-Hastings-within-
Gibbs algorithm (cf. Section V.3). Assuming that the (N + 1)−th new point is added at the
(r + 1)−th iteration of the Gibbs sampling, the weight function is defined by the following
formula:

w (z|DN ,HDN ) ∝
n∏

i=1

π
(
x, d|yi, θ(r+1), DN ,HDN

)

∝
n∏

i=1

|R + MSE(x, d)|− 1
2 · exp

{
− 1

2
(x−m(r+1))′

[
C(r+1)

]−1
(x−m(r+1))

−1

2

(
yi − Ĥ(x, d)

)′(
R + MSE(x, d)

)−1(
yi − Ĥ(x, d)

)}
, (V.14)
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which is derived from the full conditional posterior distribution of X described in Section
V.3 and W-IMSE defined in (V.13) can be considered as the posterior weighted prediction
error up to a multiplicative constant. The advantage of this choice is twofold. First, such
defined weight function ω indicates a potential position for the missing-data X where the
accuracy of the meta-model should be improved. Second, this weight function depends on
the observation sample y = {y1, . . . , yn}, which is coherent with the Bayesian inference and
the advantage of building a purpose-oriented design can be emphasized.

Besides, as w (z|DN ,HDN ) is of different nature from the prediction variance MSE, a com-
promising level α is introduced. We derive the following version of the W-IMSE criterion:

W-IMSE(z∗) =

∫

Ω
MSEα (z|DN ∪ {z∗}) w1−α (z|DN ,HDN ) dz. (V.15)

In this equation, α varying between 0 and 1 makes the criterion more flexible: if α is close
to 1, the impact of the weight parameter ω disappears and the criterion becomes IMSE; if
α approaches to 0, the prediction error MSE will not be taken into account. Experimental
trails proved that the choice of α is critical.

However, such a chosen weight function w, defined as the product of n possible small densities,
may cause numerical (underflow) problems. One solution to this issue is normalizing w1−α,

which leads to the weight function w1−α∫
w1−α a density of probability, as initially suggested by

Picheny et al. (2004, (84)):

W-IMSE(z∗) =

∫

Ω
MSEα (z|DN ∪ {z∗})

w1−α (z|DN ,HDN )∫
Ω w1−α (z′|DN ,HDN ) dz′

dz. (V.16)

Another solution is dividing w1−α by its maximum in domain Ω, which leads to

W-IMSE(z∗) =

∫

Ω
MSEα (z|DN ∪ {z∗})

w1−α (z|DN ,HDN )

maxz′∈Ω w1−α (z′|DN ,HDN )
dz. (V.17)

Both solutions require a Monte Carlo approximation to calculate the normalizing constant.
The computing budgets are equivalent. In our work the first solution described in (V.16) has
been chosen.

For a DOE of dimension one or two, a Cartesian grid over the design space Ω can be used to
solve the numerical integration and optimization problems (see Picheny, 2010, (84)). In more
general cases of higher dimension, stochastic integration and global optimization techniques
should be preferred, e.g. the Monte Carlo method and the Simulated Annealing (SA) algo-
rithm (see Kirkpatrick et al., 1983, (54)). In this paper, the Monte Carlo method has been
applied even for the two-dimensional example. The SA algorithm, as the main stochastic
optimization method, is presented in Appendix C.

Next section is devoted to exploring on examples if the proposed methodology may be suc-
cessfully conducted. Moreover, we compare them with a simple criterion which selects an
optimal point z(N+1) to minimize the maximum MSE, the so-called MMSE, by adding this
point to the current DOE:

z(N+1) = argmin
z∗∈Ω

MMSE(z∗)

= argmin
z∗∈Ω

max
z∈Ω

MSE (z|DN ∪ {z∗}) .
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V.6 Numerical experiments

This section deals with numerical studies to check the performances of our adaptive kriging
strategies. The first example is a simplified model with two inputs, and the second example
is a more complex physical hydraulic engineering model. In both examples, the performance
of the W-IMSE and E-CD criteria is compared with the standard maximin-LHD and the
MMSE criterion, under the same evaluation budget which means the same number of calls
to H. A good kriging meta-model with enough points has been built as a benchmark. Once
again, we mention that despite of these simplified examples, our adaptive techniques aim at
treating highly complex industrial codes.

V.6.1 Example: Two-input toy model

We begin with the following two-dimensional parametric function (see Bastos and O’Hagan,
2009, (5))

H(x1, x2) =

(
1− exp

(
− 1

2x2

))(
2300x3

1 + 1900x2
1 + 2092x1 + 60

100x3
1 + 500x2

1 + 4x1 + 20

)
,

with xi ∈ (0, 1), i = 1, 2. The two-dimensional uncertainty model can then be described as

Yi = H(Xi) + Ui, i ∈ {1, . . . , n}, (V.18)

In our experimental trials, the design domain Ω is fixed to be [0, 1]2. Three types of DOE
presented in Table V.6.1 are generated.
.

DOE 1 10-point-maximin-LHD
DOE 2 5-point-maximin-LHD + 5-point-W-IMSE

5-point-E-CD
5-point-MMSE

DOE 3 100-point-maximin-LHD (benchmark)

Table V.1: Description of the three types of DOE for the two-dimensional model

The dataset Y = (Yi, i = 1, . . . , 30) of size n = 30 is simulated from the uncertainty model
(V.18) where the missing data Xi is generated with the following Gaussian distribution,
truncated in domain Ω:

Xi ∼ 1ΩN2

(( 0.5
0.7

)
,

(
0.152 0
0 0.42

))
, (V.19)

and the error term Ui is the realization of a N1(0, 10−5) random variable. Moreover, in (V.7)
and (V.8), the hyperparameters are chosen as follows. Recall that a can be interpreted as
the size of a virtual sample to be adjusted with respect to our belief on expert opinion.





a = 1,
ν = 5,

µ =

(
0
0

)
,

Λ = 2 ·
(

0.152 0
0 0.42

)
.
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In practice, 3,000 iterations of the MCMC algorithm were used for the ”pre” burn-in period,
the relevance of which was controlled using the Brooks-Gelman diagnostic of convergence (see
Brooks and Gelman, 1998, (11)). Here, the criterion R̂BG was calculated every 50 iterations
and the convergence is accepted if R̂BG remains smaller than 1.05 for at least 3,000 successive
iterations. The points {z(6), . . . , z(10)} are added one by one into the current design every 100

iterations, after the pre burn-in period. For the SA algorithm, the initial point x[0] is fixed
to be the current simulated missing data x, the initial temperature β0 equals 100 and a large
standard deviation σ = 100 is chosen for the instrumental distribution.

Weighted-IMSE criterion The first experiment concerns the performance of the W-IMSE
criterion. Four values, 1, 0.8, 0.5 and 0.2, have been chosen for the weight parameter α. The
number of iterations of the SA algorithm is chosen equal to 1,000 and the number of iterations
of the MC algorithm is limited to 1,000. Moreover, the initial DOE consists of a 5-point-
maximin-LHD and 5 points are added iteratively to the DOE according to this criterion as
presented in Table V.6.1.

Figure V.1 provides a comparison of the so-built W-IMSE designs with the standard 10-
point-maximin-LHD, the E-CD design and the MMSE design. We can see that the added
points are not far from the hypothesized mean (0.5, 0.7) and the four W-IMSE-designs are
similar.

However, the posterior distributions of the parameters θ are quite sensitive to the choice of α.
Figure V.2 displays these posterior distributions with the different meta-models. We can see
that the 10-point-maximin-LHD performs really poorly, which has been improved with help
of the adaptive procedure. Moreover, the MMSE criterion performs correctly. The W-IMSE
criterion improved the posterior distributions of m2 and C22, which are sensitive to the choice
of α. Besides, for the posterior distribution of m1 and C11, α = 1, 0.5 and 0.2 do not work
well.

We can say that the interest of using the W-IMSE criterion is verified in this case-study, but,
the high dependence to α remains a great disadvantage. In what follows, α is fixed to be 0.8
in our case-study.

Expected-CD criterion To compute an empirical version of this criterion, the number of
generated GPs hiN (z) is chosen equal to 100, the size of the sample Θi and Ψ is limited to 1,000
and the number of iterations of the SA algorithm is fixed to 1,000. As presented in Figure
V.1, 5 points are added sequentially according to this criterion into a 5-point-maximin-LHD.
Moreover, the same 10-point-maximin-LHD and the same benchmark have been used for this
case-study.

From Figure V.3, the E-CD design outperforms the 10-point-maximin-LHD under the same
budget, i.e. the same number of calls to H and the E-CD criterion performs more efficiently
that the MMSE criterion and similarly to the W-IMSE criterion with α = 0.8. It is worth
noting that it is free of the constraint of the choice of α, which can be considered as an
important advantage.
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Figure V.1: Standard maximin-LHD, E-CD design, W-IMSE designs of experiments with
α = 1, 0.8, 0.5, 0.2 and MMSE design

V.6.2 Example: A hydraulic engineering model

The second example is a simplified three-dimensional-input model, which involves a hydraulic
function described as:

H(x, d) =


x2 +

( √
5000

300
√

55− x2
× d

x1

)0.6

,
d 0.4x0.6

1 (55− x2)0.3

3000.4 × 50000.3



′

, (V.20)

with x = (x1, x2). This three-dimensional model takes the form defined in (V.1). Following
similar Gaussian assumptions on Xi and Ui, the same prior distributions on θ = (m,C) have
been chosen as in (V.7) and (V.8) and a Gibbs sampler was then run to approximate the
posterior distributions of θ.

In this case-study, the observations y = {y1, . . . , y30} with the sample size n = 30 are
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Figure V.2: Posterior distributions of θ with benchmark, standard maximin-LHD, MMSE design and
W-IMSE designs with α = 1, 0.8, 0.5, 0.2

generated from the hydraulic model (V.1), where

Xi ∼ N
(( 30

50

)
,

(
52 0
0 1

))
,

di ∼ Gumbel
(

1013,−458
)
,

and the error term Ui ∼ N (0, 10−5 · I2). Several choices of the prior distribution of θ have
been discussed and compared in Fu et al. (2012, (30)). As it is not the central point of this
paper, here, we apply only the ”FMHV” (Fair Mean High Variance) prior. The prior choice
of hyperparameters has been inherited from the two-dimensional example except for the prior
mean µ and the prior variance term Λ:





µ =

(
35
49

)
,

Λ = 2 ·
(

7.52 0
0 1.52

)
.

The design domain Ω is given as [20, 40]× [45, 55]× [min(d),max(d)], with d = {d1, . . . , d30}.

Similarly, the Brooks-Gelman statistic R̂BG was calculated to verify the convergence of the
Gibbs sampler and the same parameterization was assumed for the SA algorithm. Once again,
the performances of the W-IMSE and E-CD criteria are verified with help of a benchmark as

107



CHAPTER V. ADAPTIVE DESIGN OF EXPERIMENTS

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12
Distribution of m1 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

2

4

6

8

10

12

14
Distribution of m2

0 0.02 0.04 0.06 0.08 0.1 0.12
0

10

20

30

40

50
Distribution of C11

0 0.05 0.1 0.15 0.2 0.25
0

10

20

30

40

50

60
Distribution of C22

 

 

Maximin−LHD MMSE Expected−CD Reference empirical value

Figure V.3: Posterior distributions of θ with benchmark, standard maximin-LHD, MMSE design and
E-CD design

well as a standard maximin-LHD and the MMSE design under the same computing budget.
The so-built DOEs are summarized in Table V.6.2.
.

DOE 1 20-point-maximin-LHD
DOE 2 10-point-maximin-LHD + 10-point-W-IMSE

10-point-E-CD
10-point-MMSE

DOE 3 500-point-maximin-LHD (benchmark)

Table V.2: Description of the three types of DOE for the three-dimensional model

Moreover, the important parameters for the adaptive procedure were as follows:

1. Weighted-IMSE criterion:

• the weight parameter α = 0.8,

• the number of iterations of the SA algorithm L = 5, 000,

• the size of the MC algorithm M = 5, 000.

2. Expected-CD criterion:

• the number of the GPs M = 50,
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• the size of the sample Θi and Ψ L1 = L2 = 5, 000,

• the number of iterations of the SA algorithm L = 5, 000.

Figures V.4-V.6 illustrate the behavior of each criterion. Figure V.4 displays the posterior
distribution of θ with respect to the three DOEs (Table V.6.2). We can see both the W-IMSE
and E-CD criteria work well to improve the standard space-filling technique, better than the
MMSE criterion. However, between the two criteria, it is difficult to say which criterion
works better in this example.
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Figure V.4: Posterior distributions of θ with benchmark, standard maximin-LHD, W-IMSE (α = 0.8)and
E-CD designs

Now, we compare the emulator errors yielded by the so-built DOEs, using the coefficient of
predictibility Q2 (see Vanderpoorten and Palm, 2001, (112), and Appendix D). In this paper,
we use a cross-validation leave-one-out version for computational simplicity. The closer Q2

to 1, the smaller the variance explained by the emulator and the better the quality of the
DOE.

Displayed on Figure V.5, the Q2 coefficient related to the maximin-LHD D20 equals 0.9745
and the benchmark Q2 corresponding to the D500 equals 0.9933. Moreover, by adding 10
points iteratively to the initial design D10 according to our two proposed criteria, we obtain
an increasing coefficient Q2 and the E-CD criterion provides a slightly better Q2 value.

On Figure V.6, six iso-joint probability densities of Xi = (X1
i , X

2
i ) are displayed, which

correspond to their prior and posterior predictive distributions following the five DOEs de-
scribed in Table V.6.2. The prior predictive distribution can be proved to be the following
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Figure V.5: Comparaison of the quality of different DOEs (Q2 criterion)

multivariate Student (see Chapter II)

Xi ∼ Stq

(
µ,

a+ 1

a(ν + 1− q)Λ, ν + 1− q
)
.

To generate M samples of Xi from their posterior predictive distribution, which means
marginalizing the joint posterior distribution π(m,C,X|y,d) by integrating the parameters
θ = (m,C) out, we propose the following procedure:

1. simulate X
(r)
i ∼ N

(
m[r], C [r]

)
with r = 1, . . . ,M, where m[r] and C [r] belong

to the final M simulated samples from the hybrid MCMC algorithm,

2. estimate the probability density f of Xi from {X(1)
i , . . . , X

(M)
i },

3. draw the iso-curves of f.

It confirms that with the help of adaptive procedures, the posterior joint probability of X1
i

and X2
i become more concentrated on the posterior values and the E-CD criterion works

better than the IMSE and the MMSE criteria, as it brings iso-curves more similar to those
with the reference. It is worth noting that on Figure A), we set a quite concentrated prior
probability. To conclude, the adaptive designs outperform the standard space-filling DOE
with the same number of calls to H and the E-CD criterion seems the most efficient in this
example.

V.7 Discussion

This article aims to provide an adaptive methodology to improve the space-filling design of
experiments, typically the maximin-Latin Hypercube Design, such that the meta-model yields
a better trade-off between the reduction of the global uncertainty and the exploration of the
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Figure V.6: Posterior cumulative distribution functions of X with different designs

regions of interest. The resulting posterior distributions can thus be improved to provide a
more convenient solution to inverse problems.

In this methodology, two adaptive criteria have been proposed to sequentially complete the
current design. The first one is a modified version of the standard Weighted-IMSE criterion
in Bayesian framework. It is obtained by weighting the MSE term over a region of interest
indicated by the current full conditional posterior distributions. The other criterion, called
Expected-CD, focuses on minimizing the Kullback-Leibler divergence between the posterior
distribution related to the DOE and the desired distribution.

In the second time, numerical experiments have highlighted, on two examples, that applying
this adaptive procedure can reduce the prediction error and improve the accuracy of the
meta-modeling approximation, compared with the standard space-filling DOE.

Although the two criteria work well in our case-study, several limitations and importance
points still appear, which also give us directions of further research:

• Both criteria involve expensive numerical integration. The E-CD criterion is a little
more expensive than the W-IMSE criterion since it requires the calculation of the
empirical KL divergence.

• Furthermore, it is worth noting that in the definition of W-IMSE, the choice of α is
quite important. As the second weight function is globally much smaller that the first
prediction error, this balance parameter permits us to find a good behavior of this
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criterion. In this paper, we have not systematically studied this important parameter.

• Another point of interest would be the adaptation of the methodology to more compli-
cated hydraulic models, for example, the important MASCARET and TELEMAC-2D
codes, both of which are based the French Garonne river and play a critical role in flood
risk assessment.

In conclusion, such adaptive procedures can be useful when the CPU time required to compute
an occurrence of the simulator H of physical models is dramatically greater than the time
required to run a Gibbs sampler, a Monte Carlo integration or to perform an optimization
with a Simulated Annealing procedure.
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Appendix A. The Metropolis-Hastings step inside the Gibbs sampler

At step r + 1 of Gibbs sampling, after simulating m[r+1],C [r+1], the missing data X[r+1]

have to be updated with a Metropolis-Hasting (MH) algorithm. The MH step is updating
X[r] = (Xr

1 , . . . , X
r
n)′ in the following way:

• For i = 1, . . . , n

1. Generate X̃i ∼ J(· | Xr
i ) where J is the proposal distribution.

2. Let

α(Xr
i , X̃i) = min

( π
Ĥ

(X̃ | Y , θ[r+1], ρ,d, HD) J(Xr
i |X̃i)

π
Ĥ

(X[r] | Y , θ[r+1], ρ,d, HD) J(X̃i|Xr
i )
, 1
)
,

where

X̃ =
(
Xr+1

1 , . . . , Xr+1
i−1 , X̃i, X

r
i+1, . . . , X

r
n

)′

X[r] =
(
Xr

1 , . . . , X
r
i−1, X

r
i , X

r
i+1, . . . , X

r
n

)′

3. Take

Xr+1
i =

{
X̃i with probability α(Xr

i , X̃i),

Xr+1
i otherwise.

Remarks:

• Many choices are possible for the proposal distribution J . It appears that choosing an

independent MH sampler with J chosen to be the normal distributionN
(
m[r+1], C [r+1]

)

give satisfying results for the model (V.1).

• In practice, it can be beneficial to choose the order of the updates by a random per-
mutation of {1, . . . , n} to accelerate the convergence of the Markov chain to its limit
distribution.

Appendix B. Nearest-Neighbor approach

K̂LL1,L2(Θi ||Ψ) =
d

L1

L1∑

j=1

log
νL2(θij)

ρiL1
(θij)

+ log
L2

L1 − 1
, (V.21)

where d denotes the dimension of the parameter θ (2q in our case), νL2(θij) denotes the

(Euclidean) distance between θij ∈ Θi and its nearest neighbor in sample Ψ

νL2(θij) = min
r=1,...,L2

||θr − θij ||2,
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and ρiL1
(θij) denotes the (Euclidean) distance of θij to its nearest neighbor in sample Θi except

itself (as it is also included in Θi)

ρiL1
(θij) = min

l=1,...,L1; l 6=j
||θil − θij ||2.

It has been proved in Wang et al. (2006, (116)) that under some regularity conditions on the

samples Θi and Ψ, the estimator K̂LL1,L2(Θi ||Ψ) is consistent in the sense that

lim
L1,L2→∞

E
(

K̂LL1,L2(Θi ||Ψ)−KL(Θi ||Ψ)
)2

= 0, (V.22)

and asymptotically unbiased, i.e.

lim
L,R→∞

E
[
K̂LL1,L2(Θi ||Ψ)

]
= KL(Θi ||Ψ). (V.23)

Appendix C. Simulated Annealing algorithm (searching for the minimum of a function
f)

Given the current point z(k), at iteration k + 1 :

1. Generate z̃ ∼ N
(
z(k), σ2

)
, with a certain fixed variance σ2.

2. Let

λ
(
z(k), z̃

)
= min

(
1, exp

(f(z(k))− f(z̃)

βk+1

))
,

where βk+1 is the current temperature at step k + 1.

3. Accept

z[k+1] =

{
z̃, with probability λ

(
z(k), z̃

)
,

z(k), otherwise.

4. Update βk+1 = 0.99× βk.

Appendix D. Coefficient of predictibility Q2

The cross-validation leave-one-out version of the coefficient of predictibility Q2 (see Vander-
poorten and Palm, 2001, (112)) is

Q2 = 1− PRESS
∑N

i=1

∥∥H(z(i))−HDN

∥∥2 .

where

HDN =
1

N

N∑

i=1

H(z(i)),
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and

PRESS =

N∑

i=1

e2
(i) =

N∑

i=1

∥∥H(z(i))− Ĥ−i(z(i))
∥∥2

with

• e(i) is the prediction error at z(i) of a fitted model without the point z(i);

• Ĥ−i(z(i)) is the approximation of H at z(i) derived from all the points of the design
except z(i).

Remark: Q2 is related to the ratio of variance explained by an emulator. The closer Q2 to
1 and the better the quality of the DOE is.
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CHAPTER VI. UNCERTAINTY ANALYSIS IN FLOOD RISK ASSESSMENT

This chapter is dedicated to the application of the methodologies previously presented to
a real case-study of uncertainty management in the field of hydraulic engineering. More
precisely, we aim at treating the uncertainty related to the flood risk assessment. Two
hydraulic EDF codes are considered in this section: the uni-dimensional MASCARET code
and the two-dimensional TELEMAC-2D code.

VI.1 Introduction

The hydraulic engineering models treated in this thesis come from Rocquigny et al. (2008,
(23)). The mathematical problem is defined in terms of uncertainty analysis, and can be
illustrated in the following diagram.

Input

Model

d
H(.) Y

Output

X

Figure VI.1: Diagram of the problem of uncertainty

In Figure VI.1, we observe the output Y which is related to two types of input with the
help of the function H representing the hydraulic model: X denotes a random input with
uncertainty and d denotes a fixed input. In the current flood risk assessment, the Garonne
river spreading over about 50 km between Tonneins and La Réole is considered. The output
of the function H is the water level, the observed input of the model is the flow Q and the
most important uncertainty source comes from the Strickler coefficient Ks which measures
the friction of the river bed. This coefficient has a physical sense since it is directly related to
the water volume from the bottom of the river, which is usually determined by the calibration
of the water level and flow. The related uncertainty is both epistemic due to the small sample
size used for the calibration and random due to the change of the water level and flow during
a flood.

The final aim of the treatment of uncertainty is to predict the risk of dyke overflow during a
flood event and so, we are placed in the step B: “Quantification of the uncertainty sources” of
the general scheme of treating uncertainties, presented in the Introduction (Figure 1). Taking
into account the measurement error, which is considered as the second source of uncertainty,
the hydraulic model is as follows:

Y = H(Ks, Q) + U. (VI.1)

The uncertainty treatment consists of calibrating the Strickler coefficient Ks from the ob-
served couple (Y,Q). The hydraulic engineering function H results from the complex St-
Venant equation, solved through the finite difference method (for the MASCARET code)
and the finite element method (for the TELEMAC-2D code), where the limit conditions are
provided by the flow of the river Q.
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Many studies have already been addressed to calibrate the non observed Strickler coefficient
Ks. In Horrit (2000, (44)), Goutal et al. (2005, (39)) and Bernardara et al. (2008, (8)) for
example, Ks was assumed constant and only the uncertainty introduced by the error term
U was taken into account. The main idea of the solution is as follows. Given a sample of
observations (yi, di) with i = 1, . . . , n, the estimate of the Stickler coefficient Ks is minimizing
the cost function C which is the sum of the squares of the differences between the observations
and the results of the model, so-called the Least squares:

K̂s = argmin
Ks

n∑

i=1

(
yi −H(Ks, di)

)2
. (VI.2)

This deterministic solution not taking into account the variability of Ks is restrictive and
harmful. In this thesis, the variability of Ks is well considered in the Bayesian statistical
framework. It would be interesting to compare our calibration results with the existing
solutions.

VI.1.1 Uncertainty source in the MASCARET code

The MASCARET code is developed at EDF in collaboration with the Centre d’Etudes Tech-
niques Maritimes and River (CETMF), which brings together the computer code of free
surface. In this uni-dimensional model, the Garonne river is described by a hydraulic axis
corresponding to the main direction of flow. We are interested in the MASCARET code
combined with compound channel, where there are two main sources of uncertainty: the
friction on the riverbed and the friction on the floodplain. Both frictions are assumed to be
homogeneous with respect to the physical position. Figure VI.2 gives an illustration of the
riverbed and the floodplain on a cross-section of a river channel.

Figure VI.2: Cross-section of a river channel

The riverbed is the main area of flow out of flood periods. The floodplain is the secondary
zone of flow in flood, when the dimension of the water passes over the crest of the bank. The
third zone is the so-called storage area. It is considered as a reservoir filling up with a flood,
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which does not participate in the actual flow since the speed in the direction of the flow axis
is assumed zero. Nevertheless it interacts with the flood plain in relation to water extraction.
The following notation has been chosen for the two types of friction:

Ks,min = Strickler coefficient on the riverbed

Ks,maj = Strickler coefficient on the floodplain.

Besides, in MASCARET model, the corresponding kriging domain of inputs can be described
as

Ω = ΩQ × Ωmaj × Ωmin. (VI.3)

VI.1.2 Uncertainty source in the TELEMAC-2D code

In this two-dimensional TELEMAC model, the river area is divided into a mesh of about
41,000 nodes, as shown in Figure VI.3.

Figure VI.3: Mesh made in the Telemac-2D code

Ideally, the dimension q of the source of uncertainty Ks would be 41,000 to take into account
the variability of Ks with each node. However, in practice, the dimension of Ks can be
reduced down to four based on the facts that:

1. the topography is relatively homogeneous over large areas around the riverbed of the
Garonne;

2. none of the water levels is available at the floodplain at the beginning of the upstream
section, which makes impossible to calibrate the Strickler coefficient on the floodplain
at this section.

In this case, the Garonne river can be divided into three sections, separated by Tonneins,
Mas d’Augenais, Marmande and La Réole, as shown in Figure VI.4.
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Figure VI.4: Profiles across the bed of the Garonne river

The variables of interest in this model would be three Strickler coefficients on the riverbed
of each section and one global Strickler coefficient on the floodplain. We use the following
notation:

Ks,minTA = Strickler coefficient on the riverbed of section 1 (Tonneins - Mas d’Augenais)

Ks,minAA = Strickler coefficient on the riverbed of section 2 (Mas d’Augenais - Marmande)

Ks,minAL = Strickler coefficient on the riverbed of section 3 (Marmande - La Réole)

Ks,maj = Strickler coefficient on the floodplain of the three sections.

Thus, the kriging domain required by the meta-modeling technique can be noted as:

Ω = ΩQ × Ωmaj × ΩminTA × ΩminAA × ΩminAL . (VI.4)

In the following section, we will discuss how to select a reasonable domain Ω from the available
knowledge.

VI.2 Choosing the kriging domain and dyke positions

VI.2.1 Domain of the Strickler coefficients

The Strickler coefficient Ks is well-known to be variant with respect to different types of river
channels. A complete international bibliography is available on the subject, and provides the
following table.
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Nature of the majority surface Strickler coefficient

within the considered area (in m1/3 · s−1)

smooth concrete 75-90
coated bottom (concrete) 70-80
channel in the ground, not grassed 60
channel in the ground, grassed 50
river plain, without shrub 35-40
river plain, sparse vegetation 30
river banks, very narrow vegetated 10-15
river natural bottom 30-50
floodplain grassland 20-30
river bottom cluttered with obstacles 10-30
flood plain 10-30
floodplain in vines or bushes 10-15
urbanized floodplain 10-15
floodplain forest <10
algal blooms 3.3 - 12.5

Table VI.1: Several orders of magnitude of the Strickler coefficient, taken from (24; 115; 102; 114) and stated
in (28).

Taking into account the variability of Ks indicated in Table VI.1, the kriging domain Ω of the
Strickler coefficient on the riverbed can be chosen as [20, 70] and for the Strickler coefficient
on the floodplain, the domain is a priori selected as [10, 30].

VI.2.2 Domain of the flow of the river

Moreover, frequent values of the flow Q can be found at EDF (2008, (7)), where 19 mea-
surements between 1914 and 1987 are available, summarized in Figure VI.5 with its fitting
distribution. A large enough empirical domain [700, 4800] for this fixed input can thus be
reasonably chosen.
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Figure VI.5: Flow histogram of the observations (1914-1987).

Finally, summarizing the domain choice and the diagram in Figure VI.5, the kriging domain
Ω can be specified as :

Ω = [700, 4800]× [10, 30]× [20, 70] (VI.5)

for the MASCARET code and

Ω = [700, 4800]× [10, 30]× [20, 70]× [20, 70]× [20, 70], (VI.6)

for the TELEMAC-2D code.

VI.2.3 Dyke positions - Sensitivity analysis

In the hydraulic model, the water level Y is observed at several dyke positions and composed
as a vector of outputs. In the note EDF (2008, (7)), a sensitivity analysis has been provided,
which shows that among the four stations of Figure VI.4, at Marmande and Tonneins the wa-
ter level is more sensitive to the variability of the Strickler coefficient Ks. These two stations
are thus chosen to ensure that the inverse problem is well-posed to be free of identifiability
problem.

The x and y coordinates of the stations are:

O(Marmande) = (426627, 246567) ,

O(Tonneins) = (438007, 234088) . (VI.7)

Here we provide a more general test of sensitivity. We generate M samples of the Strickler
coefficient Ks = {K1

s , . . . ,K
M
s } from the normal distribution

Ki
s ∼ N

(
µ,CExp

)
, (VI.8)
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with i = 1, . . . ,M and M samples of the river flow Q = {Q1, . . . , QM} from the Gumbel
distribution with mean 2000 and standard deviation 1000. It is worth noting that the prior
choice of Q is coherent with the histogram shown in Figure VI.5 and its fitting distribution.

At each random position p, M observations of the water level Yp = {Y 1
p , . . . , Y

M
p } can be

obtained with each component

Y i
p = δp ◦H(Ki

s, Q
i) + U i, (VI.9)

where

δp =

{
1, if it is observed at the position p;
0, else.

(VI.10)

If the empirical variance is such that Var(Yp) > Var(Yp′), we can say that the position p is
better than the position p′ to measure the water level, as it is more sensitive to the Strickler
coefficient Ks as well as the flow of river Q.

The numerical results of the sensibility analysis are summarized in Figure VI.6.
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Figure VI.6: Variability of the water level / Strickler coefficient of the Garonne river.

One can see that the most sensitive positions are near the upstream of the river. Under the
assumption that the water level depends only on the Strickler coefficient at its downstream,
it is understandable that at La Réole, the most downstream dyke position (see Figure VI.2),
the water level is not at all sensitive to the Strickler coefficient.

According to the results of our sensitivity analysis, two dyke quite sensitive but not too close
to each other positions have been chosen:

O(p1) = (428493, 242837),

O(p2) = (434384, 236751) .
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Remark 26. The two chosen positions are not quite far from the Marmande and Mas
d’Agenais described in (VI.7), according to the note EDF (2008, (7))

VI.3 Eliciting the prior distributions

In the Bayesian framework, apart from the observed data, prior information and expert
knowledge can be taken into account to improve the estimation. In the hydraulic applications,
several types of information sources are available. This section addresses the issue of the prior
elicitation of hyperparameters ρ = (µ, a,Λ, ν) from the available information.

VI.3.1 Statistical modeling

In Chapter II, it has been proven that the prior predictive distribution of Ks, which is the
marginal distribution of Ks by integrating the mean and variance parameters out, is the
following multivariate Student distribution:

Ks ∼ Stq

(
µ,

a+ 1

a(ν + 1− q)Λ, ν + 1− q
)
. (VI.11)

Under the assumptions that

Λ = t · CExp (VI.12)

t = ν − q − 1, (VI.13)

(VI.11) leads to

E[Ks] = µ, (VI.14)

Var[Ks] =
a+ 1

a
CExp, (VI.15)

where CExp denotes the prior variance matrix of Ks which represents the expert opinion (see
Section II.2.2). These hyperparameters can thus be elicited from the predictive distribution.

In hydraulic models, the Strickler coefficient Ks on the floodplain can be reasonably a priori
assumed to be independent from the friction on the riverbed, as the topographic areas are of
quite different nature (by the shrub-land, the non-vegetated land...) For the TELEMAC-2D
code, two Strickler coefficients on the riverbed are most likely correlated. However, as no
prior information is available on this correlation and only the ”marginal” knowledge about
the frictions is known, all the Strickler coefficients are a priori assumed to be independent1.
In summary, the prior variance matrices for the two models are assumed to be diagonal under
the following form:

CExp =




σ2
maj 0

0 σ2
min


 , (VI.16)

1See numerical experiments in Section VI.4.2 for the validation of this assumption.
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for the MASCARET code and

CExp =




σ2
maj 0 0 0

0 σ2
minTA

0 0

0 0 σ2
minAA

0

0 0 0 σ2
minAL


 , (VI.17)

for the TELEMAC-2D code. The next two subsections are addressed to select the prior mean
µ and the prior variance CExp.

VI.3.2 prior calibration of µ and a from expert knowledge

In this section, we focus on calibrating the prior mean µ of the variable of interest Ks. We
begin with the Strickler coefficient on the floodplain.

As presented in Section VI.1, the knowledge on the friction on the floodplain is generally
not available by lack of data. However, a methodology developed by EDF, carrying out the
calculations of Oversize Safety (CMS), has succeeded in determining this coefficient. In the
case of the Garonne river, an empirical value of 17 m1/3 ·s−1 has been proposed by Besnard et
al. (2008, (6; 7)), which can be considered as the prior mean for the friction on the floodplain.
This value is characteristic of areas with low vegetation.

On the other hand, several types of information allow us to assess the Strickler coefficients
on the riverbed. Table VI.1 in the Section VI.2 summarizes some related documented values.
Based on numerical tests and preliminary studies, Besnard et al. (2008 (6; 7)) proposed the
following estimates of the frictions on the riverbed, which can also be considered as the prior
values in a Bayesian approach:

• section 1 (Tonneins - Mas d’Augenais) : 45 m1/3.s−1

• section 2 (Mas d’Augenais - Marmande) : 38 m1/3.s−1

• section 3 (Marmande - La Réole) : 40 m1/3.s−1

The prior value for the mean µ can be found in Section VI.3.4. Moreover, the size a of the
virtual sample (refer to Section II.2.2 for the interpretation) can be chosen equal to 1, as at
least one sample is required to specify a median/mode/mean. It is worth noting that this
choice is variable, which depends on our confidence on the expert judgement, the complexity
of the variable of interest Ks and so on. The last hyperparameter to calibrate is t. As
explained in Section II.2.2, it can be chosen as:

t = a+ 1. (VI.18)

VI.3.3 prior calibration of CExp through statistical analysis

In this section, we aim at calibrating the prior variance of Ks which measures the uncertainty
brought by this Strickler coefficient. The prior knowledge is available under the form of the
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calibration curve average - standard deviation of the Manning coefficient, proposed by U.S.
Army Corps of Engineers (1996, (111)) and recalled in Liu (2009, (62)). It is shown in Figure
VI.7.

Figure VI.7: Uncertainty in the estimates of Manning coefficient M = 1/Ks, Figure 3.5 in (62), originally
from (111).

The main idea is to calibrate the variance CExp by deriving the mean-variance relationship
on Ks with the help of the mean and variance of M , proceeding as follows. Let us note that
M̂ is the estimator of M based on observed data, σM is its proper prior standard deviation,
Ks = 1/M denotes the corresponding Strickler coefficient and K̂s denotes its prior estimator.
Under the assumption that the sample size is large enough, the Central Limit Theorem (CLT)
leads to the following convergence in distribution

σ−1
M

(
M̂ −M

)
L−→ N (0, 1) , (VI.19)

which can be transformed into the convergence of K̂s by applying the Delta method. In
detail, with the help of the function f(x) = 1/x and f ′(x) = −1/x2, the Delta method states

σ−1
M

(
f(M̂)− f(M)

)
L
 N

(
0,
[
f ′(M)

]2)
(VI.20)

⇐⇒ σ−1
M

(
M̂−1 −M−1

)
L
 N

(
0,M−4

)
(VI.21)

⇐⇒ M2σ−1
M

(
M̂−1 −M−1

)
L
 N (0, 1) . (VI.22)

As M = 1/Ks, it is equivalent to

Ks
−2σ−1

M

(
K̂s −Ks

)
L
 N (0, 1) , (VI.23)

which leads to the following approximation:

Var[K̂s] ' K̂s
4
σ2
M . (VI.24)
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By replacing K̂s by the prior mean µ and using Figure VI.7 to fix the value of σ2
M , the

predictive prior variance of Ks can be computed as follows.

Var[Ks] =




34 0

0 100


 , (VI.25)

for the MASCARET code and

Var[Ks] =




34 0 0 0
0 100 0 0
0 0 100 0
0 0 0 100


 , (VI.26)

for the TELEMAC-2D code. Moreover, using a = 1 and (VI.15) can lead to the prior value
of the matrix CExp, which will be detailed in the next section.

VI.3.4 Summary of the prior elicitation

In summary, we propose in Table VI.2 the elicitation of the hyperparameters with respect to
the two hydraulic models.

Hyperparameters MASCARET TELEMAC-2D

µ

(
17
40

)



17
45
38
40




a 1 1
t 2 2
ν 5 7

CExp




4.12 0

0 7.12







4.12 0 0 0
0 7.12 0 0
0 0 7.12 0
0 0 0 7.12




Table VI.2: Prior calibration of the hyperparameters for two models

VI.4 Numerical experiments

It is worth mentioning in this section that, the experimental trials validating our methodology
have been carried out from data simulated from the true physical code.

The first example is the uni-dimensional MASCARET model with two Strickler coefficients
to estimate, and the second example is the more complex TELEMAC-2D model with four
Strickler coefficients. For each one, two maximin-LHDs with 20 and 200 points are generated
and there are two data samples with 10 and 50 observations. Moreover, in order to make the
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prior assumptions on the model parameters described in Table VI.2 being one perfect and
one fair priors, we consider two kinds of distributions to generate the data sample. The next
two subsections provide their formulas.

VI.4.1 First model: the MASCARET code

The first experiments aim at assessing the ability of the Bayesian methodology to calibrate the
uncertainty in the MASCARET code, accounting for the impacts of the prior assumptions,
the sample sizes and the quality of the DOEs.

Under the assumption of the “perfect prior”, the missing data Ks is simulated from

Ks ∼ N
(
µ,CExp

)
= N



(

17
40

)
,




4.12 0

0 7.12




 . (VI.27)

By adding a small difference ∆ to the mean the the variance term, we generate Ks for the
“fair prior” that

Ks ∼ N
(
µ+ ∆µ, CExp + ∆CExp

)
= N



(

18
35

)
,




32 0

0 52




 . (VI.28)

Remark 27. Under the “fair prior” assumption, we prefer a smaller variance in the data
generation than the prior variance CExp as it is natural to assume less uncertainty introduced
by the observation than the prior elicitation.

The observation samples yn = {y1, . . . , yn} with the sample size n = 10 and 50 can thus be
generated from

Y = H(Ks, Q) + U, (VI.29)

with Q ∼ Gumbel(1550, 780) and H the MASCARET code which is an approximating solu-
tion to the St-Venant equation through finite difference methods.

Remark 28. In the Gumbel distribution, the parameters 1550 and 780 have been chosen
according to the empirical mean 2, 000 and the empirical standard deviation 1, 000 of Q, as
explained in Section VI.2.3 (cf. Figure VI.5).

Figure VI.8 displays the marginal posterior distributions of θ with the “perfect prior” assump-
tion. Four cases have been analyzed with respect to the sample size n = 10, 50 and the number
of points of the maximin-LHD N = 20, 200. The normal distribution N (m[r+1], C [r+1]) has
been chosen as the instrumental distribution to simulate X [r+1] in the MH algorithm. The
curve with respect to D200 and 50 observations seems to perform the best, which is un-
derstandable as it profits of the largest amount of information and is closed to the “true”
value.

Figure VI.9 shows the posterior distributions of θ under the same experimental conditions
except for the “fair prior” assumption. The curve with D200 and 50 observations works the
best whereas the difference with other curves become less significant. Moreover, we remark
that as expected, the posterior distributions with a “fair prior” are globally less concentrated
than with a “perfect prior”.
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Figure VI.8: Posterior distributions of θ with perfect prior, the sample size n = 10, 50 and maximin-LHDs
D20, D200

VI.4.2 Second model: the TELEMAC-2D code

In the second time, we focus on validating our Bayesian methodology in uncertainty treat-
ment with the help of the TELEMAC-2D code. Alike in the first example, we simulate the
observation samples in the following way. Under the “perfect prior” assumptions, the missing
data Ks is simulated from

Ks ∼ N
(
µ, C̃Exp

)
= N







17
45
38
40


 ,




4.12 0 0 0
0 7.12 0.2× 7.12 0.2× 7.12

0 0.2× 7.12 7.12 0.2× 7.12

0 0.2× 7.12 0.2× 7.12 7.12





 ,

(VI.30)

and by introducing a difference ∆ to the prior distribution (referring to Table VI.2), we
generate Ks under the “fair prior” assumption:
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Figure VI.9: Posterior distributions of θ with fair prior, the sample size n = 10, 50 and maximin-LHDs
D20, D200

Ks ∼ N
(
µ+ ∆µ, C̃Exp + ∆C̃Exp

)
= N

(



18
42
35
44


 ,




4.12 0 0 0
0 7.12 0.2× 7.12 0.2× 7.12

0 0.2× 7.12 7.12 0.2× 7.12

0 0.2× 7.12 0.2× 7.12 7.12



)
.

(VI.31)

Remark 29. A correlation equal to 0.2 between Ks,mins has been assumed under both as-
sumptions as in the reality, the frictions on the riverbed is often correlated. This causes a
variance different from CExp described in Table VI.2. That is why it is noted C̃Exp instead of
CExp.

Similarly, two observation samples yn = {y1, . . . , yn} of size n = 10 and 50 are generated
from

Yp = δp ◦H(Ks, Q) + U, (VI.32)

where Q ∼ Gumbel(1550, 780), H is the TELEMAC-2D code as an approximating solution
to the St-Venant differential equation through finite element methods and p denotes the dyke
position chosen to observe the river level Y . As presented in Section VI.2.3, two dyke positions
are chosen according to our sensitivity analysis, which are not far from the Marmande and
Mas d’Agenais. In the following experiments, the two observations positions are chosen to
be Marmande and Mas d’Agenais for some reliability reasons.
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In Figure VI.10, four marginal posterior distributions of θ under the assumption of “perfect
prior” are displayed, with respect to the sample size n = 10, 50 and two maximin-LHDs
D20 and D200. In the MH algorithm, the instrumental distribution has been chosen as the
normal distribution N (m[r+1], C [r+1]). We find that the quality of posterior distributions are
influenced by both the observations and the choice of DOEs.
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Figure VI.10: Posterior distributions of θ with perfect prior, the sample size n = 10, 50 and
maximin-LHDs D20, D200

Figure VI.11 shows the posterior distributions of θ with the “fair prior” assumption. Different
from the MASCARET code, in this example, the performance of the MCMC algorithm under
the “fair prior” assumption is quite similar to that under the “perfect prior” assumption.
This indifference to the prior distributions makes reasonable the application of the Bayesian
inference in the TELEMAC-2D code.

VI.4.3 Test: Checking the D̃AC criterion

This section focuses on verifying the performance of the D̃AC criterion, which is applied to
assess the prior and design relevance with respect to the observations (cf. Chapter IV). For
the purpose of simplicity, the simpler computational code MASCARET has been chosen.
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Figure VI.11: Posterior distributions of θ with fair prior, the sample size n = 10, 50 and maximin-LHDs
D20, D200

To that end, the first step is to display a Gibbs sampling to obtain a sample θr ∼ πJ(·|yn, HDN )
(r = 1, . . . , R) with a non informative prior πJ , chosen here as the Jeffreys prior:

πJ(θ) =
IΩm(m)

Vol(Ωm)
· ∆C

|C| q+2
2

IΩC (C). (VI.33)

Choosing an instrumental distribution The Gibbs sampling with a Jeffreys non infor-
mative prior has been described in Appendix A in Chapter IV. In the MH step which updates
the missing data from X[r] to X[r+1], the following two instrumental distributions have been
considered (referring to Chapter III)

J1 : N
(
m[r+1], C [r+1]

)
, (VI.34)

J2 : N
(
X[r], 5C [r+1]

)
. (VI.35)

Similarly to previous examples, the sample size n has been fixed to be 10 and 50, and two
maximin-LHDs D20 and D200 have been chosen. A sample of the posterior distribution of θ
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is obtained by the Gibbs sampler once the convergence has been reached. The corresponding
”posterior” distributions are displayed in Figures VI.12 and VI.14. It is worth noting that for
J1, the quotation marks are necessary. In fact, with the first instrumental distribution which
seems to work badly, it is quite difficult to reach the convergence. Figure VI.12 represents
only the current distributions of θ after 30 000 iterations of Gibbs sampling.

Its bad behavior has been confirmed in Figure VI.13. We provide an example of the simulation
of m1. Based on 50 observations and the maximin-LHD D20, our 10 parallel simulated chains
behaved all differently and the BG statistics remained high.
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Figure VI.12: Posterior distributions of θ with Jeffreys non informative prior and the instrumental
distribution J1, the sample size n = 10, 50 and maximin-LHDs D20, D200

In the contrary, as shown in Figure VI.14, J2 provides good results for all the parameters. The
convergence of the simulated Markov chains has been checked in Figure VI.14. These figures
illustrate the importance of choosing a suitable instrumental distribution. In the following,
we choose the second instrumental distribution J2 to calculate the D̃AC criterion.
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Figure VI.13: Distributions of m1 and the corresponding BG statistics, resumed from 10 parallel chains,
with 50 observed data, the maximin-LHDs D20 and the instrumental distribution J1, for the MASCARET
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Figure VI.14: Posterior distributions of θ with Jeffreys non informative prior and the instrumental
distribution J2, the sample size n = 10, 50 and maximin-LHDs D20, D200

Using the D̃AC criterion To check the behavior of D̃AC, two different prior distributions
on the MASCARET model hyperparameters are considered and summarized in Table VI.3
(cf. Chapter II for the meaning of the hyperparameters).
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Figure VI.15: Distributions of m1 and the corresponding BG statistics, resumed from 10 parallel chains,
with 50 observed data, the maximin-LHDs D20 and the instrumental distribution J2, for the MASCARET

code

Prior PMV BLV
µ {17, 40} {5, 60}
a 1 1
t 2 2
ν 5 5

C̃Exp

(
4.12 0
0 7.12

) (
1 0
0 1

)

Table VI.3: Description of the two prior distributions: PMV denotes perfect mean and medium variance,
BLV denotes bad mean and low variance.

Figure VI.16 displays the behaviors of D̃AC for 20 repetitions with the PMV and BLV
priors, in four different cases with the sample size n = 10, 50 and the maximin-LHDs D20

and D200. It appears that the “bad” value BLV prior is rejected by D̃AC in all the four
cases as this criterion remains positive, and it seems almost acceptable for the last case with
50 observed data and 200 points in design, as D̃AC is quite near zero. Moreover, the PMV
prior is obviously acceptable in each case study, thanks to the negative D̃ACs, which shows
a perfect agreement between the prior, the data and the design.

Figure VI.17 displays the marginal posterior distributions of θ with respect to the two priors,
based on 10 and 50 observed data and two maximin-LHDs D20 and D200. It confirms the
performance of D̃AC. Just as it indicated, the BLV prior remains far from the “supposed
true” values, according to which our observations have been generated, especially for C11 and
C22. However, the PMV prior provides us reasonable posterior values in all of the four cases.
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DAC with PMV prior, in Mascaret model
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Figure VI.16: D̃AC with PMV and BLV priors, based on n = 10, 50 observations and two
maximin-LHDs D20 and D200, in the MASCARET code
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Figure VI.17: Posterior distributions of θ with two informative priors, based on n = 10, 50 observations,
and two maximin-LHDs D20 and D200

VI.4.4 Test: Checking the E-CD and W-IMSE criteria

This section aims at verifying the behavior of the E-CD and W-IMSE criteria in constructing
the adaptive DOEs, which have been presented in Chapter V. For the purpose of simplicity,
the numerical experiments have been made on the MASCARET code.

In this case-study, 10 observations y = {y1, . . . , y10} have been generated under the assump-
tion of ”fair prior”, described in (VI.28). The design domain Ω is given by (VI.5). The
performance of the W-IMSE and E-CD criteria are verified with the help of a reference and
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equally a standard maximin-LHD under the same computing budget. The so-built DOEs are
summarized in Table VI.4.4.
.

DOE 1 10-point-maximin-LHD
DOE 2 5-point-maximin-LHD + 5-point-W-IMSE

5-point-E-CD
DOE 3 200-point-maximin-LHD (benchmark)

Table VI.4: Description of the three types of DOE for the MASCARET model

Moreover, the important parameters of the adaptive procedure were as follows:

1. Weighted-IMSE criterion:

• the weight parameter α = 0.8,

• the number of iterations of the SA algorithm L = 1, 000,

• the size of the MC algorithm M = 1, 000.

2. Expected-CD criterion:

• the number of the GPs M = 30,

• the size of the sample Θi and Ψ L1 = L2 = 1, 000,

• the number of iterations of the SA algorithm L = 1, 000.

Figure VI.18 displays the posterior distributions of θ = (m,C) with respect to the three
DOEs. We can see that both the W-IMSE and E-CD criteria are very active to improve the
standard space-filling design, and E-CD works even better. The importance of applying the
adaptive methodology in industrial fields has been verified. Moreover, we remark that the
numbers of iterations of the SA and MC algorithms have been reduced in this experiments
for the computing budget concern. However, adding sub-optimal points to the current DOE
still provided satisfying results.
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VII

Conclusion and perspective

A. Summary and main contributions

The work presented in this thesis was aimed at providing a Bayesian solution to inverse prob-
lems under the Gaussian assumption on the variable of interest, with an numerical simulator
expensive to compute. One call to the simulator may require several hours of computation.
This goal has been achieved in the light of the industrial examples presented in Chapter VI.

To reach the goal with a small sample setting and available expert knowledge, a Bayesian
framework has been chosen and it has been decided to apply the kriging technique to approx-
imate the time-consuming function. Chapter I provides a review of the main tools required
in this work. Besides, several probability estimation techniques for frequentist inference have
been discussed along with their pros and cons.

The construction of the Bayesian model has been discussed in Chapter II. It focused on the
elicitation of prior distributions, which can be considered as the basis of the Bayesian analysis.
Moreover, by introducing the meta-modeling methodology, another source of uncertainty was
added and the original uncertainty model was modified to adapt to the Bayesian framework
combined with the kriging prediction.

Chapter III is devoted to the description of the main algorithm: the Metropolis-Hastings-
within-Gibbs algorithm. It provides an exhaustive presentation by distinguishing two versions
depending on the availability of the time-consuming function. In addition, the main properties
of the so-built Markov chains and the convergence issues have been studied.

Chapter IV is a key chapter on the evaluation of the results following such a Gibbs sampling.
It resumes the estimation error, emulator error, algorithmic error and prior error, which can
affect the posterior results. In this chapter, a Bayesian criterion was proposed to control
the impact of some of those errors by assessing the relevance between the numerical design
and the prior distribution. The need to improve the numerical design in order to reduce the
emulator error is thus highlighted.

For this reason, Chapter V is devoted to proposing an adaptive methodology to construct the
numerical design in a sequential way. A purpose-oriented DOE has been defined which takes
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into account the observations y. Two Bayesian criteria were provided, whose performances
were compared in view of two examples.

The final Chapter VI has described a real industrial application. Two codes from EDF used
by engineers for hydraulic applications were exercised to yield the interest of applying the
methods developed in this thesis work.

B. Further investigations

We hope that the contributions of this thesis are helpful to solve inverse problems in uncer-
tainty analysis. Nevertheless, there are still some points and some directions which need to
be developed.

1. Bayesian model In the main model (I.4), it has been assumed in our case study that
the input di related to the experimental conditions is observed and the measurement error
Ui follows a centered normal distribution with a known variance. In order to propose a more
general model, we introduce another variable input Zi with known distributions. Namely the
model (I.4) could become:

Yi = H(Xi, Zi, di) + Ui. (VII.1)

Moreover, there is no reason except for the purpose of simplicity to assume that the variability
of the error term Ui is known. In future researches, this assumption could be removed to
make the model more reliable, keeping in mind that an unknown variance R might cause
nonidentifiability problems.

2. MCMC algorithms Second, in the Metropolis-Hastings-within-Gibbs algorithm, it
would be interesting to develop an Adaptive Metropolis-Hastings (AMH) algorithm (see e.g.
Pasanisi et al., 2012, (77), Roberts and Rosenthal, 2007, 2009, (93), (94)) to accelerate the
convergence of the simulated Markov chain. More precisely, as mentioned in Chapter III that
the choice of the proposal distribution J plays a critical role in the performance of the MCMC
algorithms, choosing a proper J accounting for the evaluation of the current full conditional
posterior distribution to approach the stationary distribution is a promising research subject.

Besides, due to the observation cost or other limitations, the sample y may be partially
observed, which indicates a missing data framework. The MCMC algorithms, especially the
Gibbs sampler, are used to deal with such missing data schemes.

3. Adaptive kriging method A first study could be to test the robustness of the proposed
adaptive methodology in Bayesian approach, by trying a form of the initial DOE different
from the maximin-LHD to compare the posterior results.

Moreover, if we have several available calculators, it would be effective to make several evalu-
ations of the time-consuming function H at one time. For example, we use the E-CD criterion
to find add several optimal points by controlling the distance between them.
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4. Multi-fidelity meta-modeling In the treatment of the hydraulic applications, we have
considered two industrial codes: MASCARET and TELEMAC-2D, where the evaluation time
of the first code is negligible compared to the second code. This highlights the interest of
applying the multi-fidelity meta-modeling technique (see Kennedy and O’Hagan, 2000, (53)).
We introduce the main idea here. Consider two levels of code Z1(·) and Z2(·), where Z2(·) is
the higher level code. We assume that for ∀x, given the point Z1(x), we can learn no more
about Z2(x) from any other run Z1(x′) for x′ 6= x. Under a prior assumption that each output
of the code can be considered as the realization of a Gaussian Process (GP), we describe the
multi-level model as follows:

{
Z2(x) = ρ1(x)Z1(x) + δ2(x)
Z1(x) ⊥⊥ δ2(x),

(VII.2)

where we define that

δ2(x) ∼ N
(
fT2 (x)β2, σ

2
2Kr2

)
, (VII.3)

and

Z1(x) ∼ N
(
fT1 (x)β1, σ

2
1Kr1

)
. (VII.4)

We let β = (β1, β2), φ = (σ1, σ2, r1, r2, ρ) and Z = (Z1, Z2), the process [Z2(x) | Z, β, φ] after
integrating over β is shown to be a Gaussian process

[Z2(x) | Z, φ] ∼ N
(
mZ2(x), S2

Z2
(x)
)
, (VII.5)

where the posterior mean function mZ2(x) is a cheap approximation for the expensive code
Z2(x).

5. Polynomial chaos Introduced by Ghanem et Spanos (1991, (36)), the polynomial chaos
focuses on approximating the random variables by Gaussian polynomials or Wiener-Hermite
expansion, to characterize the uncertainty in dynamical system. We use this idea to develop
a spectral representation of Xi.

The Gaussian assumption on the non observed variable Xi can be replaced by a weaken one,
say any second-order distributions, thanks to the Wiener-Hermite parameterization. In fact,
apart from the Gaussian distribution, any second-order distribution can be approximated by
Hermite polynomials defined in standard Gaussian probability space. The so-called Wiener-
Hermite representation (see e.g. Wiener, 1938, (120)) is as follows:

Xi ' XP,M
i =

P−1∑

j=0

zi,jPi,j(ξi), (VII.6)

where Pi,js denote the multivariate Hermite polynomials of degree lower than p (the degree
of the expansion), at a sequence of independent standard normal random variables ξi =
(ξi,1, . . . , ξi,M ) and zi,js (j = 0, . . . , P − 1) denote P integer coefficients to be estimated for
each Xi, with

P =
(M + p)!

M ! p!
. (VII.7)
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The same representation can be done for the measurement error Ui. The advantage is that
we can remove the Gaussian hypothesis on Xi and Ui to make a more general modeling while
a Gaussian space can still be used.

Based on the Wiener-Hermite representation, an interesting parameterization (see Perrin,
2008, (81), Rachdi, 2011,(86)) transforms the model into the standard Gaussian probability
space

Yi = h(ξi; θi), i ∈ {1, . . . , n}, (VII.8)

where ξi, as previously defined, denotes a M−dimensional independent standard normal
random variable, θi denotes the related coefficients in the Wiener-Hermite expansion and h
corresponds to a variation of the original function H adapted to this new parameterization.
Calibrating the posterior distribution of the variable Xi becomes to estimate the coefficients
θi. It should be noted that a larger P requires more prior eliciting work.
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Abstract

This thesis provides a probabilistic solution to inverse problems through Bayesian techniques.
The inverse problem considered here is to estimate the distribution of a non-observed random
variable X from some noisy observed data Y explained by a time-consuming physical model
H. In general, such inverse problems are encountered when treating uncertainty in industrial
applications. Bayesian inference is favored as it accounts for prior expert knowledge on X
in a small sample size setting. A Metropolis-Hastings-within-Gibbs algorithm is proposed
to compute the posterior distribution of the parameters of X through a data augmentation
process. Since it requires a high number of calls to the expensive function H, the model
is replaced by a kriging meta-model Ĥ. This approach involves several errors of different
natures and we focus on measuring and reducing the possible impact of those errors. A D̃AC
criterion has been proposed to assess the relevance of the numerical design of experiments
and the prior assumption, taking into account the observed data. Another contribution is
the construction of adaptive designs of experiments adapted to our particular purpose in the
Bayesian framework. The main methodology presented in this thesis has been applied to a
real hydraulic engineering case-study.

Keywords: inverse problem, Bayesian inference, expert opinion, Markov model, hybrid
MCMC algorithm, Kriging, assessment error, prior-data conflict, adaptive design of experi-
ments.

Résumé

Ce travail de recherche propose une solution aux problèmes inverses probabilistes avec des
outils de la statistique bayésienne. Le problème inverse considéré est d’estimer la distribution
d’une variable aléatoire non observée X à partir d’observations bruitées Y suivant un modèle
physique coûteux H. En général, de tels problèmes inverses sont rencontrés dans le traitement
des incertitudes. Le cadre bayésien nous permet de prendre en compte les connaissances
préalables d’experts en particulier lorsque peu de données sont disponibles. Un algorithme
de Metropolis-Hastings-within-Gibbs est proposé pour approcher la distribution a posteriori
des paramètres de X avec un processus d’augmentation des données. À cause d’un nombre
élevé d’appels, la fonction coûteuse H est remplacée par un émulateur de krigeage (méta-
modèle) Ĥ. Cette approche implique plusieurs erreurs de nature différente et, dans ce travail,

nous nous attachons à estimer et réduire l’impact de ces erreurs. Le critère D̃AC a été
proposé pour évaluer la pertinence du plan d’expérience (design) et le choix de la loi a
priori, en tenant compte des observations. Une autre contribution est la construction du
design adaptatif adapté à notre objectif particulier dans le cadre bayésien. La méthodologie
principale présentée dans ce travail a été appliquée à un cas d’étude en ingénierie hydraulique.

Mots-clés: problème inverse, inférence bayésienne, expert industriel, modèle de Markov,
algorithme MCMC hybride, krigeage, erreur d’évaluation, conflit entre données et a priori,
plans d’expérience adaptatifs.
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