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Introduction

Plateau problem consists in minimizing the area of a surface
spanning a boundary. It is inspired by soap films.
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Introduction

An ideal formulation of Plateau problem would...

1 ..define the class of "surfaces spanning a given boundary"
(also called competitors) and their "area";

2 ..lend itself to the direct method of the calculus of variation;
3 ..stay close to Plateau’s original motivations: describing soap

films.
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The formulation of Rado and Douglas
(1930s)

Let

D2 = { (x , y) ∈ R2 | x2 + y2 ≤ 1 }
S1 = { (x , y) ∈ R2 | x2 + y2 = 1 }

Let Γ be a Jordan curve in R3 which plays the role of a boundary.

1 A surface spanning Γ is defined as a continuous map
f : D2 → R3 such that f sends S1 homemorphically onto Γ.

2 The area of such a surface is defined as the total variation of f
(also called the area-integral or area functional).
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The formulation of Federer and Fleming
(1960s)

Federer and Fleming work with integral currents and minimize their
mass (an area computed with multiplicity). They have developped
the flat convergence for which integral currents enjoy a
compactness principle and the mass is lower semicontinuous.



The formulation of Reifenberg (1960s)

Reifenberg works with sets of the Euclidean space which span a
boundary in the sense of algebraic topology and minimizes their
(spherical) Hausdorff measure. A set E spans the boundary Γ if E
contains Γ and cancels its generators.



Reifenberg competitors

Fix Γ a closed subset of Rn and let L be a subgroup of the
homology group Hd−1(Γ).

Definition (Reifenberg competitors)
A Reifenberg competitor is a compact subset E ⊂ Rn such that E
contains Γ and the morphism induced by inclusion,

Hd−1(Γ) Hd−1(E ∪ Γ),

is zero on L.



Hausdorff measures

Definition (Hausdorff measure Hd)

Hd(E ) := lim
δ→0+

inf

{∑
k

diam(Ak)d

∣∣∣∣∣ E = ∪kAk , diam(Ak) ≤ δ

}

where (Ak) is a sequence of balls.



Figure: Computing the H1 measure of a spiral



Sliding deformations

We fix Γ a closed subset of Rn.

Definition (Sliding deformation along a boundary)
Let E be a closed, Hd -locally finite subset of Rn. A sliding
deformation of E is a Lipschitz map f : E → Rn such that there
exists a continuous homotopy F : I × E → Rn satisfying the
following conditions:

F0 = id & F1 = f

∀t ∈ [0, 1], Ft(E ∩ Γ) ⊂ Γ

∀t ∈ [0, 1], Ft = id in E \ K

where K is some compact subset of E .



E

Γ

f(E)

Γ
Figure: Fixed boundary; f = id on Γ.
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Γ

f(E)

Γ
Figure: Free boundary; f (E ∩ Γ) ⊂ Γ.



Sliding competitors

Definition (Sliding competitors)
We fix E0 a compact, Hd finite subset of Rn. The sliding
competitors induced by E0 are the images of E0 under sliding
deformations.
Unknown existence!



Minimal sets

A (sliding) minimal set is a closed, Hd -locally finite sets E ⊂ Rn

such that for every sliding deformation f of E ,

Hd(E ∩W ) ≤ Hd(f (E ∩W )).

where Hd is the d-dimensional Hausdorff measure and W is the set

W = { x ∈ Rn | f (x) 6= x } .

A few results are known about their regularities.
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Figure: Soap films spanning the skeleton of a tetrahedron (left) and the
skeleton of a cube (right).



Minimal sets in small dimensions

Minimal cones (without boundaries)

1 d = 1 : a line or three half-lines making an angle of 2π
3 in a

plane.
2 d = 2,n = 3 : planes, three half-planes making an angle of 2π

3 ,
the cone passing through the edges of a regular tetrahedron
centered at 0.

3 n > 3 : No complete list..
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Minimal sets in small dimensions

Theorem (Jean Taylor)
We work in R3 with d = 2. We define

E ∗ =
{
x ∈ E

∣∣∣ ∀r > 0, Hd(E ∩ B(x , r)) > 0
}

Every point of E ∗ \ Γ admits a neighborhood in which E is
C 1-diffeomorph to a minimal cone.



Alhfors-regularity and rectifiability

Proposition
Let

E ∗ =
{
x ∈ E

∣∣∣ ∀r > 0, Hd(E ∩ B(x , r)) > 0
}
.

There exist constants C > 1 (depending on n, Γ) and δ > 0
(depending on n, Γ) such that for all x ∈ E ∗, for all 0 < r ≤ δ,

C−1rd ≤ Hd(E ∩ B(x , r)) ≤ Crd .

Moreover, E is Hd rectifiable.



Figure: A H1 rectifiable set.
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Direct method

Strategy initiated by De Lellis, De Philippis, De Rosa, Ghiraldin and
Maggi.

Proposition
Let C be a nonempty class of closed, Hd -finite subsets E ⊂ Rn. We
assume that for all E0 ∈ C, for all sliding deformation f of E0 in Rn,

inf {Hd(E ) | E ∈ C } ≤ Hd(f (E0)).

If (Ek) is a minimizing sequence of the Hausdorff measure Hd in C,
then, up to a subsequence, there exists a sliding minimal set E such
that

Hd Ek ⇀ Hd E .

In particular Hd(E ) ≤ inf {Hd(E ) | E ∈ C }.



Solution of the Reifenberg problem...

Theorem (...away from the boundary)
We assume that

m = inf {Hd(E \ Γ) | E Reifenberg } <∞ (2)

and that there exists a compact set C ⊂ Rn such that

m = inf {Hd(E \ Γ) | E Reifenberg, E ⊂ C } . (3)

Then there exists a Reifenberg competitor E ⊂ C such that
Hd(E \ Γ) = m.



Solution of the Reifenberg problem...

Theorem (...with the boundary)
We assume that

m = inf {Hd(E ) | E Reifenberg } <∞ (4)

and that there exists a compact set C ⊂ Rn such that

m = inf {Hd(E ) | E Reifenberg, E ⊂ C } . (5)

Then there exists a Reifenberg competitor E ⊂ C such that
Hd(E ) = m.
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