L'ensemble \mathbb{Q}_p des nombres p-adiques

Julien Heyd

19 Janvier 2021

Sommaire

- Introduction
- Valuation p-adique et norme p-adique
- \bigcirc Construction topologique de \mathbb{Q}_p
- Construction algébrique de ℚ_n

Introduction

- Construire de nouveaux corps contenant Q.
- Deux manières : topologique et algébrique.
- Aboutissant aux mêmes corps.

Sommaire

- Introduction
- 2 Valuation p-adique et norme p-adique
- lacksquare Construction topologique de \mathbb{Q}_p
- \P Construction algébrique de \mathbb{Q}_p

Sommaire

- Introduction
- 2 Valuation p-adique et norme p-adique
- \bigcirc Construction topologique de \mathbb{Q}_p
- Construction algébrique de ℚ
 D
 Construction algébrique de Q
 D
 Construct

Pour $p \in \mathbb{P}$ un nombre premier.

Définition

(Valuation *p*-adique) Pour $a \in \mathbb{Q} \setminus \{0\}$,

$$a=p^m\frac{u}{v},$$

où $m \in \mathbb{Z}$ et u, v non divisible par p.

On définit alors $m =: ord_p(a)$ la valuation p-adique de a.

Pour a = 0, on pose $ord_p(a) = \infty$.

Pour $p \in \mathbb{P}$ un nombre premier.

Définition

(Valuation *p*-adique) Pour $a \in \mathbb{Q} \setminus \{0\}$,

$$a=p^m\frac{u}{v}$$

où $m \in \mathbb{Z}$ et u, v non divisible par p.

On définit alors $m =: ord_p(a)$ la valuation p-adique de a.

Pour a = 0, on pose $ord_p(a) = \infty$.

Pour
$$a = \frac{u}{v} \in \mathbb{Q}$$
,

$$ord_p(a) = ord_p(u) - ord_p(v).$$
 $(p \in \mathbb{P})$

Proposition

Pour $(a, b) \in \mathbb{Q}^2$,

- $\min\{ord_p(a), ord_p(b)\} \leqslant ord_p(a+b) \leqslant \max\{ord_p(a), ord_p(b)\}$

Proposition

Pour
$$(a, b) \in \mathbb{Q}^2$$
,

Preuve:

Proposition

Pour $(a, b) \in \mathbb{Q}^2$,

Preuve: Soient $a = p^m \frac{u_1}{v_1}$ et $b = p^n \frac{u_2}{v_2}$.

Proposition

Pour $(a, b) \in \mathbb{Q}^2$,

<u>Preuve</u>: Soient $a = p^m \frac{u_1}{v_1}$ et $b = p^n \frac{u_2}{v_2}$.

1) Par définition.

Proposition

Pour $(a, b) \in \mathbb{Q}^2$,

<u>Preuve</u>: Soient $a = p^m \frac{u_1}{v_1}$ et $b = p^n \frac{u_2}{v_2}$.

- 1) Par définition.
- 2)

Proposition

Pour $(a, b) \in \mathbb{Q}^2$,

<u>Preuve</u>: Soient $a = p^m \frac{u_1}{v_1}$ et $b = p^n \frac{u_2}{v_2}$.

Par définition.
 Par définition.

$$p^{\min\{m,n\}}U = a + b = p^{\max\{m,n\}}V$$

Proposition

Pour $(a, b) \in \mathbb{Q}^2$,

<u>Preuve</u>: Soient $a = p^m \frac{u_1}{v_1}$ et $b = p^n \frac{u_2}{v_2}$.

- 1) Par définition.
- 2)

$$p^{\min\{m,n\}}U = a + b = p^{\max\{m,n\}}V$$
,

avec $ord_p(U) \geqslant 0$ et $ord_p(V) \leqslant 0$.

 $oldsymbol{0}$ valuation p-adique : notion de proximité

② Exemple : p = 3.

- valuation p-adique : notion de proximité
- **2** Exemple : p = 3.

$$a=3^{ord_3(a)}u,$$

avec u non divisible par 3.

- 1 valuation p-adique : notion de proximité
- **2** Exemple : p = 3.

$$a=3^{ord_3(a)}u,$$

avec u non divisible par 3.

* Si
$$a=0$$
 dans $\mathbb{Z}/3^m\mathbb{Z}$

- valuation p-adique : notion de proximité
- **2** Exemple : p = 3.

$$a=3^{ord_3(a)}u,$$

avec u non divisible par 3.

* Si a=0 dans $\mathbb{Z}/3^m\mathbb{Z}$ alors a=0 dans $\mathbb{Z}/3^k\mathbb{Z}$ pour $0\leqslant k\leqslant m$.

- valuation p-adique : notion de proximité
- ② Exemple : p = 3.

$$a=3^{ord_3(a)}u,$$

avec u non divisible par 3.

* Si a = 0 dans $\mathbb{Z}/3^m\mathbb{Z}$ alors a = 0 dans $\mathbb{Z}/3^k\mathbb{Z}$ pour $0 \leqslant k \leqslant m$.

Conclusion: "a est proche de 0 s'il est congru à $0 \mod (3^m)$ pour m très grand."

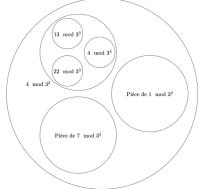
- valuation p-adique : notion de proximité
- **2** Exemple : p = 3.

$$a=3^{ord_3(a)}u,$$

avec u non divisible par 3.

* Si a=0 dans $\mathbb{Z}/3^m\mathbb{Z}$ alors a=0 dans $\mathbb{Z}/3^k\mathbb{Z}$ pour $0\leqslant k\leqslant m$.

<u>Conclusion</u>: "a est proche de 0 s'il est congru à $0 \mod (3^m)$ pour m très grand."



Pièce de 1 mod 3

Définition (Convergence p-adique)

On dit qu'une suite $(x_n)_{n=0}^\infty$ d'éléments de $\mathbb Q$ converge p-adiquement vers $a\in\mathbb Q$ si :

$$\lim_{n\to +\infty} ord_p(x_n-a)=+\infty$$

Définition (Convergence p-adique)

On dit qu'une suite $(x_n)_{n=0}^\infty$ d'éléments de $\mathbb Q$ converge p-adiquement vers $a\in\mathbb Q$ si :

$$\lim_{n\to+\infty} \operatorname{ord}_p(x_n-a)=+\infty$$

Exemple: pour tout $n \ge 0$, on pose $x_n = x^n$ et $ord_p(x) \ge 1$.

Définition (Convergence p-adique)

On dit qu'une suite $(x_n)_{n=0}^{\infty}$ d'éléments de $\mathbb Q$ converge p-adiquement vers $a\in\mathbb Q$ si :

$$\lim_{n\to+\infty} \operatorname{ord}_p(x_n-a)=+\infty$$

Exemple: pour tout $n \ge 0$, on pose $x_n = x^n$ et $ord_p(x) \ge 1$.

$$ord_p(\sum_{k=0}^n x^k - \frac{1}{1-x}) = ord_p(x)(n+1)$$

Définition (Convergence p-adique)

On dit qu'une suite $(x_n)_{n=0}^{\infty}$ d'éléments de $\mathbb Q$ converge p-adiquement vers $a\in\mathbb Q$ si :

$$\lim_{n\to+\infty} \operatorname{ord}_p(x_n-a)=+\infty$$

Exemple: pour tout $n \ge 0$, on pose $x_n = x^n$ et $ord_p(x) \ge 1$.

$$ord_p(\sum_{k=0}^n x^k - \frac{1}{1-x}) = ord_p(x)(n+1)$$

fournit

$$\sum_{k=0}^{\infty} x^k = \frac{1}{1-x}.$$

Définition (Valeur absolue p-adique)

Pour $a\in\mathbb{Q}$, on définit sa valeur absolue p-adique notée $|a_p|$ par:

$$|a|_p = p^{-ord_p(a)}$$

Définition (Valeur absolue *p*-adique)

Pour $a\in\mathbb{Q}$, on définit sa valeur absolue p-adique notée $|a_p|$ par:

$$|a|_p = p^{-ord_p(a)}$$

Elle définit une norme sur $\ensuremath{\mathbb{Q}}$:

Définition (Valeur absolue p-adique)

Pour $a\in\mathbb{Q}$, on définit sa valeur absolue p-adique notée $|a_p|$ par:

$$|a|_p = p^{-ord_p(a)}$$

Définition (Valeur absolue *p*-adique)

Pour $a \in \mathbb{Q}$, on définit sa valeur absolue p-adique notée $|a_p|$ par:

$$|a|_p = p^{-ord_p(a)}$$

Elle définit une norme sur $\mathbb Q$: pour $a,b\in\mathbb Q$,

Séparation:

Définition (Valeur absolue p-adique)

Pour $a \in \mathbb{Q}$, on définit sa valeur absolue p-adique notée $|a_p|$ par:

$$|a|_p = p^{-ord_p(a)}$$

Définition (Valeur absolue p-adique)

Pour $a \in \mathbb{Q}$, on définit sa valeur absolue p-adique notée $|a_p|$ par:

$$|a|_p = p^{-ord_p(a)}$$

- **1** Séparation: $|a|_p = 0 \iff a = 0$
- 4 Homogénéité sur Q :

Définition (Valeur absolue p-adique)

Pour $a \in \mathbb{Q}$, on définit sa valeur absolue p-adique notée $|a_p|$ par:

$$|a|_p = p^{-ord_p(a)}$$

- **1** Séparation: $|a|_p = 0 \iff a = 0$
- lacksquare Homogénéité sur \mathbb{Q} : $|ab|_p = |a|_p |b|_p$

Définition (Valeur absolue *p*-adique)

Pour $a \in \mathbb{Q}$, on définit sa valeur absolue p-adique notée $|a_p|$ par:

$$|a|_p = p^{-ord_p(a)}$$

- **1** Séparation: $|a|_p = 0 \iff a = 0$
- $oldsymbol{@}$ Homogénéité sur \mathbb{Q} : $|ab|_p = |a|_p |b|_p$
- Inégalité triangulaire :

Définition (Valeur absolue *p*-adique)

Pour $a \in \mathbb{Q}$, on définit sa valeur absolue p-adique notée $|a_p|$ par:

$$|a|_p = p^{-ord_p(a)}$$

- **1** Séparation: $|a|_p = 0 \iff a = 0$
- a Homogénéité sur \mathbb{Q} : $|ab|_p = |a|_p |b|_p$
- 1 Inégalité triangulaire : grâce à

$$\min\{|a|_p,|b|_p\}\leqslant |a+b|_p\leqslant \max\{|a|_p,|b|_p\}$$

Définition (Valeur absolue p-adique)

Pour $a \in \mathbb{Q}$, on définit sa valeur absolue p-adique notée $|a_p|$ par:

$$|a|_p = p^{-ord_p(a)}$$

Elle définit une norme sur \mathbb{Q} : pour $a,b\in\mathbb{Q}$,

- **1** Séparation: $|a|_p = 0 \iff a = 0$
- a Homogénéité sur \mathbb{Q} : $|ab|_p = |a|_p |b|_p$
- 3 Inégalité triangulaire : grâce à

$$\min\{|a|_p, |b|_p\} \leqslant |a+b|_p \leqslant \max\{|a|_p, |b|_p\}$$

 $\underline{\text{Notation}}$: Valeur absolue p-adique = norme p-adique.

Définition (Valeur absolue p-adique)

Pour $a \in \mathbb{Q}$, on définit sa valeur absolue p-adique notée $|a_p|$ par:

$$|a|_p = p^{-ord_p(a)}$$

Elle définit une norme sur \mathbb{Q} : pour $a, b \in \mathbb{Q}$,

- **1** Séparation: $|a|_p = 0 \iff a = 0$
- 4 Homogénéité sur \mathbb{Q} : $|ab|_p = |a|_p |b|_p$
- Inégalité triangulaire : grâce à

$$\min\{|a|_p, |b|_p\} \le |a+b|_p \le \max\{|a|_p, |b|_p\}$$

Notation: Valeur absolue p-adique = norme p-adique.

Ainsi, on peut réécrire :

Définition (Convergence p-adique)

On dit qu'une suite $(x_n)_{n=0}^{\infty}$ d'éléments de $\mathbb Q$ converge p-adiquement vers $a\in\mathbb Q$ si :

$$\lim_{n\to+\infty}|x_n-a|_p=0$$

 \mathbb{Q} est-il complet ?

 \mathbb{Q} est-il complet ?

Proposition

 \mathbb{Q} munit de $|.|_p$ n'est pas complet.

 \mathbb{Q} est-il complet ?

Proposition

 \mathbb{Q} munit de $|.|_p$ n'est pas complet.

 $\underline{\text{Preuve}}$: On va montrer que quelque soit la valeur absolue prise, $\mathbb Q$ est non complet, pour cela on va rappeler

Définition (Valeur absolue sur un corps K)

On appelle valeur absolue sur K toute application |.| de K dans \mathbb{R}_+ qui vérifie :

- **1** Multiplicativité: $\forall (x, y) \in K^2$, |xy| = |x||y|.
- **2** Inégalité triangulaire: $\forall (x,y) \in K^2$, $|x+y| \leq |x| + |y|$.
- § Séparation: $\forall x \in K, |x| = 0 \iff x = 0.$

Il y a deux types :

Il y a deux types:

Définition (Valeur absolue archimédienne et non-archimédienne)

On appelle valeur absolue sur K

- **1** non-archimédienne si pour tout $(x, y) \in K^2$, $|x + y| \leq \max\{|x|, |y|\}$.
- ② archimédienne si pour tout $x \in K^*$ et $y \in K$, il existe $n \in \mathbb{N}$ tel que |nx| > |y|

Proposition (Suite de Cauchy)

Pour $(x_n)_{n=0}^{\infty} \in K^{\mathbb{N}}$ avec K munit d'une valeur absolue non-archimédienne. $(x_n)_{n=0}^{\infty}$ est une suite de Cauchy si, et seulement si,

$$\lim_{n\to+\infty}|x_{n+1}-x_n|=0.$$

Proposition (Suite de Cauchy)

Pour $(x_n)_{n=0}^{\infty} \in K^{\mathbb{N}}$ avec K munit d'une valeur absolue non-archimédienne. $(x_n)_{n=0}^{\infty}$ est une suite de Cauchy si, et seulement si,

$$\lim_{n\to+\infty}|x_{n+1}-x_n|=0.$$

Preuve:

Proposition (Suite de Cauchy)

Pour $(x_n)_{n=0}^{\infty} \in K^{\mathbb{N}}$ avec K munit d'une valeur absolue non-archimédienne. $(x_n)_{n=0}^{\infty}$ est une suite de Cauchy si, et seulement si,

$$\lim_{n\to+\infty}|x_{n+1}-x_n|=0.$$

Preuve:

 (x_n) est une suite de Cauchy si :

$$\forall \epsilon > 0, \ \exists N \in \mathbb{N} \mid \forall (n,m) \in \mathbb{N}^2, \ m > n \geqslant N \Longrightarrow |x_n - x_m| \leqslant \epsilon$$

Proposition (Suite de Cauchy)

Pour $(x_n)_{n=0}^{\infty} \in K^{\mathbb{N}}$ avec K munit d'une valeur absolue non-archimédienne. $(x_n)_{n=0}^{\infty}$ est une suite de Cauchy si, et seulement si,

$$\lim_{n\to+\infty}|x_{n+1}-x_n|=0.$$

Preuve:

 (x_n) est une suite de Cauchy si :

$$\forall \epsilon > 0, \ \exists N \in \mathbb{N} \mid \forall (n, m) \in \mathbb{N}^2, \ m > n \geqslant N \Longrightarrow |x_n - x_m| \leqslant \epsilon$$

• Qu'une suite de Cauchy vérifie $\lim_{n\to+\infty}|x_{n+1}-x_n|=0$ suit immédiatement de la définition.

Proposition (Suite de Cauchy)

Pour $(x_n)_{n=0}^{\infty} \in K^{\mathbb{N}}$ avec K munit d'une valeur absolue non-archimédienne. $(x_n)_{n=0}^{\infty}$ est une suite de Cauchy si, et seulement si,

$$\lim_{n\to+\infty}|x_{n+1}-x_n|=0.$$

Preuve:

 (x_n) est une suite de Cauchy si :

$$\forall \epsilon > 0, \ \exists N \in \mathbb{N} \mid \forall (n, m) \in \mathbb{N}^2, \ m > n \geqslant N \Longrightarrow |x_n - x_m| \leqslant \epsilon$$

- Qu'une suite de Cauchy vérifie $\lim_{n\to+\infty}|x_{n+1}-x_n|=0$ suit immédiatement de la définition.
- Qu'une suite qui vérifie une telle propriété soit de Cauchy provient de l'inégalité ci-dessous:

Proposition (Suite de Cauchy)

Pour $(x_n)_{n=0}^{\infty} \in K^{\mathbb{N}}$ avec K munit d'une valeur absolue non-archimédienne. $(x_n)_{n=0}^{\infty}$ est une suite de Cauchy si, et seulement si,

$$\lim_{n\to+\infty}|x_{n+1}-x_n|=0.$$

Preuve:

 (x_n) est une suite de Cauchy si :

$$\forall \epsilon > 0, \ \exists N \in \mathbb{N} \mid \forall (n, m) \in \mathbb{N}^2, \ m > n \geqslant N \Longrightarrow |x_n - x_m| \leqslant \epsilon$$

- Qu'une suite de Cauchy vérifie $\lim_{n\to+\infty}|x_{n+1}-x_n|=0$ suit immédiatement de la définition.
- Qu'une suite qui vérifie une telle propriété soit de Cauchy provient de l'inégalité ci-dessous:

$$|x_m - x_n| = |x_m - x_{m-1} + ... + x_{n+1} - x_n| \leqslant \max\{|x_m - x_{m-1}|, ..., |x_{n+1} - x_n|\}$$

Soit |.| une valeur absolue sur \mathbb{Q} .

Soit |.| une valeur absolue sur \mathbb{Q} . On invoque le théorème d'Ostrowski :

Soit |.| une valeur absolue sur \mathbb{Q} . On invoque le théorème d'Ostrowski :

Théorème d'Ostrowski

Toute valeur absolue non triviale sur $\mathbb Q$ est équivalente à $|.|_p$ pour un entier premier p ou $p=\infty$ (la valeur absolue usuelle).

Soit |.| une valeur absolue sur \mathbb{Q} . On invoque le théorème d'Ostrowski :

Théorème d'Ostrowski

Toute valeur absolue non triviale sur $\mathbb Q$ est équivalente à $|.|_p$ pour un entier premier p ou $p=\infty$ (la valeur absolue usuelle).

- Le cas $p=\infty$ est connu avec une suite $(x_n)_{n=0}^{\infty}$ définie par $x_{n+1}=\frac{1}{2}(x_n+\frac{2}{x_n})$
- p premier impair.

Soit |.| une valeur absolue sur $\mathbb{Q}.$ On invoque le théorème d'Ostrowski :

Théorème d'Ostrowski

Toute valeur absolue non triviale sur $\mathbb Q$ est équivalente à $|.|_p$ pour un entier premier p ou $p=\infty$ (la valeur absolue usuelle).

- Le cas $p=\infty$ est connu avec une suite $(x_n)_{n=0}^\infty$ définie par $x_{n+1}=\frac{1}{2}(x_n+\frac{2}{x_n})$
- p premier impair. On choisit $a \in \mathbb{Z}$ tel que:
 - a n'est pas un carré dans Q
 - p ne divise pas a.
 - a est un carré modulo p.
 - a existe car on prend un $a = 1 \mod(p)$.

Soit |.| une valeur absolue sur \mathbb{Q} . On invoque le théorème d'Ostrowski :

Théorème d'Ostrowski

Toute valeur absolue non triviale sur $\mathbb Q$ est équivalente à $|.|_p$ pour un entier premier p ou $p=\infty$ (la valeur absolue usuelle).

- Le cas $p=\infty$ est connu avec une suite $(x_n)_{n=0}^{\infty}$ définie par $x_{n+1}=\frac{1}{2}(x_n+\frac{2}{x_n})$
- p premier impair. On choisit $a \in \mathbb{Z}$ tel que:
 - a n'est pas un carré dans Q
 - p ne divise pas a.
 - a est un carré modulo p.
 - a existe car on prend un $a = 1 \mod(p)$.

En effet, la distance entre deux carrés successifs dans $\mathbb Z$ croit linéairement, alors il existe kp et (k+1)p situé entre deux carrés successifs.

Soit |.| une valeur absolue sur \mathbb{Q} . On invoque le théorème d'Ostrowski :

Théorème d'Ostrowski

Toute valeur absolue non triviale sur $\mathbb Q$ est équivalente à $|.|_p$ pour un entier premier p ou $p=\infty$ (la valeur absolue usuelle).

- Le cas $p=\infty$ est connu avec une suite $(x_n)_{n=0}^{\infty}$ définie par $x_{n+1}=\frac{1}{2}(x_n+\frac{2}{x_n})$
- p premier impair. On choisit $a \in \mathbb{Z}$ tel que:

 - p ne divise pas a.
 - a est un carré modulo p.
 - a existe car on prend un $a = 1 \mod(p)$.

En effet, la distance entre deux carrés successifs dans \mathbb{Z} croit linéairement, alors il existe kp et (k+1)p situé entre deux carrés successifs.

Alors
$$a = 1 + kp$$
 convient.

Construction d'une suite de Cauchy $(x_n)_{n=0}^\infty \in \mathbb{Z}^\mathbb{N}$ qui ne converge pas dans \mathbb{Q} pour $|.|_p$.

Construction d'une suite de Cauchy $(x_n)_{n=0}^\infty\in\mathbb{Z}^\mathbb{N}$ qui ne converge pas dans \mathbb{Q} pour $|.|_p$. On va construire pour cela :

- x_0 tel que $x_0^2 \equiv a \mod(p)$
- $x_1 \equiv x_0 \mod(p)$
- $x_1^2 \equiv a \mod(p^2)$.

Construction d'une suite de Cauchy $(x_n)_{n=0}^{\infty} \in \mathbb{Z}^{\mathbb{N}}$ qui ne converge pas dans \mathbb{Q} pour $|.|_p$.

On va construire pour cela :

- x_0 tel que $x_0^2 \equiv a \mod(p)$
- $x_1 \equiv x_0 \mod(p)$
- $x_1^2 \equiv a \mod(p^2)$.

En effet, On sait déjà par le 3 ième point qu'il existe x_0 tel que $x_0^2 \equiv a \mod(p)$ et notons b_0 le plus petit entier positif tel que $x_0 \equiv b_0 \mod p$.

On cherche x_1 sous la forme $x_1=b_0+b_1p$ avec $b_1\in\mathbb{Z}.$

Construction d'une suite de Cauchy $(x_n)_{n=0}^{\infty} \in \mathbb{Z}^{\mathbb{N}}$ qui ne converge pas dans \mathbb{Q} pour $|.|_p$.

On va construire pour cela :

- x_0 tel que $x_0^2 \equiv a \mod(p)$
- $x_1 \equiv x_0 \mod(p)$
- $x_1^2 \equiv a \mod(p^2)$.

En effet, On sait déjà par le 3 ième point qu'il existe x_0 tel que $x_0^2 \equiv a \mod(p)$ et notons b_0 le plus petit entier positif tel que $x_0 \equiv b_0 \mod p$.

On cherche x_1 sous la forme $x_1 = b_0 + b_1 p$ avec $b_1 \in \mathbb{Z}$.

Calculons x_1^2 :

$$x_1^2 \equiv b_0^2 + 2b_0b_1p \mod p^2$$

Construction d'une suite de Cauchy $(x_n)_{n=0}^{\infty} \in \mathbb{Z}^{\mathbb{N}}$ qui ne converge pas dans \mathbb{Q} pour $|.|_p$.

On va construire pour cela :

- x_0 tel que $x_0^2 \equiv a \mod(p)$
- $x_1 \equiv x_0 \mod(p)$
- $x_1^2 \equiv a \mod(p^2)$.

En effet, On sait déjà par le 3 ième point qu'il existe x_0 tel que $x_0^2 \equiv a \mod(p)$ et notons b_0 le plus petit entier positif tel que $x_0 \equiv b_0 \mod p$.

On cherche x_1 sous la forme $x_1 = b_0 + b_1 p$ avec $b_1 \in \mathbb{Z}$.

Calculons x_1^2 :

$$x_1^2 \equiv b_0^2 + 2b_0b_1p \mod p^2$$

On veut que $x_1^2 \equiv a \mod p^2$ i.e. $b_0^2 + 2b_0b_1p \equiv a \mod p^2$.

Construction d'une suite de Cauchy $(x_n)_{n=0}^{\infty} \in \mathbb{Z}^{\mathbb{N}}$ qui ne converge pas dans \mathbb{Q} pour $|\cdot|_P$.

On va construire pour cela :

•
$$x_0$$
 tel que $x_0^2 \equiv a \mod(p)$

•
$$x_1 \equiv x_0 \mod(p)$$

•
$$x_1^2 \equiv a \mod(p^2)$$
.

En effet, On sait déjà par le 3 ième point qu'il existe x_0 tel que $x_0^2 \equiv a \mod(p)$ et notons b_0 le plus petit entier positif tel que $x_0 \equiv b_0 \mod p$.

On cherche x_1 sous la forme $x_1 = b_0 + b_1 p$ avec $b_1 \in \mathbb{Z}$.

Calculons x_1^2 :

$$x_1^2 \equiv b_0^2 + 2b_0b_1p \mod p^2$$

On veut que $x_1^2 \equiv a \mod p^2$ i.e. $b_0^2 + 2b_0b_1p \equiv a \mod p^2$. b_0^2 et a étant congru au même nombre, il existe un $k \in \mathbb{Z}$ tel que $b_0^2 = a - kp$.

Construction d'une suite de Cauchy $(x_n)_{n=0}^\infty \in \mathbb{Z}^\mathbb{N}$ qui ne converge pas dans \mathbb{Q} pour $|.|_p$.

On va construire pour cela :

•
$$x_0$$
 tel que $x_0^2 \equiv a \mod(p)$

•
$$x_1 \equiv x_0 \mod(p)$$

•
$$x_1^2 \equiv a \mod(p^2)$$
.

En effet, On sait déjà par le 3 ième point qu'il existe x_0 tel que $x_0^2 \equiv a \mod(p)$ et notons b_0 le plus petit entier positif tel que $x_0 \equiv b_0 \mod p$.

On cherche x_1 sous la forme $x_1 = b_0 + b_1 p$ avec $b_1 \in \mathbb{Z}$.

Calculons x_1^2 :

$$x_1^2 \equiv b_0^2 + 2b_0b_1p \mod p^2$$

On veut que $x_1^2 \equiv a \mod p^2$ i.e. $b_0^2 + 2b_0b_1p \equiv a \mod p^2$. b_0^2 et a étant congru au même nombre, il existe un $k \in \mathbb{Z}$ tel que $b_0^2 = a - kp$. Ainsi:

$$a \equiv b_0^2 + 2b_0b_1p \equiv a + p(2b_0b_1 - k) \mod p^2$$

$$\iff p(2b_0b_1 - k) \equiv 0 \mod p^2 \iff 2b_0b_1 - k \equiv 0 \mod p$$

Et b_0 n'étant pas un multiple de p, il suffit de prendre b_1 tel que $b_1 \equiv k(2b_0)^{-1}$ mod p.

Construction d'une suite de Cauchy $(x_n)_{n=0}^{\infty} \in \mathbb{Z}^{\mathbb{N}}$ qui ne converge pas dans \mathbb{Q} pour $|.|_p$.

On va construire pour cela :

•
$$x_0$$
 tel que $x_0^2 \equiv a \mod(p)$

•
$$x_1 \equiv x_0 \mod(p)$$

•
$$x_1^2 \equiv a \mod(p^2)$$
.

En effet, On sait déjà par le 3 ième point qu'il existe x_0 tel que $x_0^2 \equiv a \mod(p)$ et notons b_0 le plus petit entier positif tel que $x_0 \equiv b_0 \mod p$.

On cherche x_1 sous la forme $x_1 = b_0 + b_1 p$ avec $b_1 \in \mathbb{Z}$.

Calculons x_1^2 :

$$x_1^2 \equiv b_0^2 + 2b_0b_1p \mod p^2$$

On veut que $x_1^2 \equiv a \mod p^2$ i.e. $b_0^2 + 2b_0b_1p \equiv a \mod p^2$. b_0^2 et a étant congru au même nombre, il existe un $k \in \mathbb{Z}$ tel que $b_0^2 = a - kp$. Ainsi:

$$a \equiv b_0^2 + 2b_0 b_1 p \equiv a + p(2b_0 b_1 - k) \mod p^2$$

$$\iff p(2b_0 b_1 - k) \equiv 0 \mod p^2 \iff 2b_0 b_1 - k \equiv 0 \mod p$$

Et b_0 n'étant pas un multiple de p, il suffit de prendre b_1 tel que $b_1 \equiv k(2b_0)^{-1}$ mod p.

Ce qui prouve l'existence de x_1 .

Par itération,

Par itération, on peut construire $(x_n)_{n=0}^{\infty}$ telle que

$$x_n \equiv x_{n-1} \mod (p^n)$$
 et $x_n^2 \equiv a \mod (p^{n+1})$

Par itération, on peut construire $(x_n)_{n=0}^{\infty}$ telle que

$$x_n \equiv x_{n-1} \mod (p^n)$$
 et $x_n^2 \equiv a \mod (p^{n+1})$

De plus la suite est de Cauchy par :

$$\forall n \in \mathbb{N}, |x_{n+1} - x_n|_p = |\lambda p^{n+1}|_p \leqslant p^{-(n+1)} \to 0$$

Par itération, on peut construire $(x_n)_{n=0}^{\infty}$ telle que

$$x_n \equiv x_{n-1} \mod (p^n)$$
 et $x_n^2 \equiv a \mod (p^{n+1})$

De plus la suite est de Cauchy par :

$$\forall n \in \mathbb{N}, |x_{n+1} - x_n|_p = |\lambda p^{n+1}|_p \le p^{-(n+1)} \to 0$$

et on a:

$$\forall n \in \mathbb{N}, |x_n^2 - a|_p = |\mu p^{n+1}|_p \leqslant p^{-(n+1)} \to 0$$

Par itération, on peut construire $(x_n)_{n=0}^{\infty}$ telle que

$$x_n \equiv x_{n-1} \mod (p^n)$$
 et $x_n^2 \equiv a \mod (p^{n+1})$

De plus la suite est de Cauchy par :

$$\forall n \in \mathbb{N}, |x_{n+1} - x_n|_p = |\lambda p^{n+1}|_p \leqslant p^{-(n+1)} \to 0$$

et on a:

$$\forall n \in \mathbb{N}, |x_n^2 - a|_p = |\mu p^{n+1}|_p \leqslant p^{-(n+1)} \to 0$$

Donc par continuité de la racine carré, $(x_n)_{n=0}^{\infty}$ admet une limite non rationnel.

Par itération, on peut construire $(x_n)_{n=0}^{\infty}$ telle que

$$x_n \equiv x_{n-1} \mod (p^n)$$
 et $x_n^2 \equiv a \mod (p^{n+1})$

De plus la suite est de Cauchy par :

$$\forall n \in \mathbb{N}, |x_{n+1} - x_n|_p = |\lambda p^{n+1}|_p \le p^{-(n+1)} \to 0$$

et on a:

$$\forall n \in \mathbb{N}, |x_n^2 - a|_p = |\mu p^{n+1}|_p \leqslant p^{-(n+1)} \to 0$$

Donc par continuité de la racine carré, $(x_n)_{n=0}^{\infty}$ admet une limite non rationnel. Donc $\mathbb Q$ est non complet.

- Pour p=2, on procède de même avec le choix d'un $a \in \mathbb{Z}$ tel que:
 - a n'est pas un cube dans Q
 - a impair.
 - a est un cube modulo 2.

et d'une suite de Cauchy $(x_n)_{n=0}^{\infty} \in \mathbb{Z}^{\mathbb{N}}$ non convergente dans \mathbb{Q} vérifiant :

$$x_n \equiv x_{n-1} \mod (2^n)$$
 et $x_n^3 \equiv a \mod (2^{n+1})$

Sommaire

- Introduction
- Valuation p-adique et norme p-adique
- 4 Construction algébrique de \mathbb{Q}_p

Complétion p-adique de $\mathbb Q$

Soit C_p l'ensemble des suites de Cauchy sur $(\mathbb{Q}, |\cdot|_p)$.

Complétion p-adique de \mathbb{Q}

Soit C_p l'ensemble des suites de Cauchy sur $(\mathbb{Q}, |\cdot|_p)$.

$$\mathcal{C}_{p}:=\{(x_{n})_{n=0}^{\infty}\in\mathbb{Q}^{\mathbb{N}}\mid\forall\epsilon\in\mathbb{Q}_{+}^{*},\;\exists N_{\epsilon}>0\mid\forall(n,m)\in\mathbb{N}^{2},\;n,m\geqslant N_{\epsilon}\Longrightarrow|x_{n}-x_{m}|_{p}<\epsilon\}$$

Complétion p-adique de $\mathbb Q$

Soit C_p l'ensemble des suites de Cauchy sur $(\mathbb{Q}, |\cdot|_p)$.

$$\mathcal{C}_{p}:=\{(x_{n})_{n=0}^{\infty}\in\mathbb{Q}^{\mathbb{N}}\mid\forall\epsilon\in\mathbb{Q}_{+}^{*},\;\exists N_{\epsilon}>0\;|\;\forall(n,m)\in\mathbb{N}^{2},\;n,m\geqslant N_{\epsilon}\Longrightarrow|x_{n}-x_{m}|_{p}<\epsilon\}$$

Propriété

 C_p est munit d'une structure d'anneau commutatif.

Complétion p-adique de $\mathbb Q$

Soit C_p l'ensemble des suites de Cauchy sur $(\mathbb{Q}, |\cdot|_p)$.

$$\mathcal{C}_{p}:=\{(x_{n})_{n=0}^{\infty}\in\mathbb{Q}^{\mathbb{N}}\mid\forall\epsilon\in\mathbb{Q}_{+}^{*},\;\exists N_{\epsilon}>0\;|\;\forall(n,m)\in\mathbb{N}^{2},\;n,m\geqslant N_{\epsilon}\Longrightarrow|x_{n}-x_{m}|_{p}<\epsilon\}$$

Propriété

 C_p est munit d'une structure d'anneau commutatif.

En effet, on le voit comme sous-anneau de $(\mathbb{Q}^{\mathbb{N}},+,\cdot)$.

On veut un espace où les suites de Cauchy à valeurs dans $\mathbb{Q}^{\mathbb{N}}$ convergent.

On veut un espace où les suites de Cauchy à valeurs dans $\mathbb{Q}^{\mathbb{N}}$ convergent. On définit alors \sim :

$$(x_n) \sim (y_n) \Longleftrightarrow \lim_{n \to +\infty} |y_n - x_n|_p = 0.$$

On veut un espace où les suites de Cauchy à valeurs dans $\mathbb{Q}^{\mathbb{N}}$ convergent. On définit alors \sim :

$$(x_n) \sim (y_n) \Longleftrightarrow \lim_{n \to +\infty} |y_n - x_n|_p = 0.$$

Propriété

 \sim est une relation d'équivalence sur $\mathcal{C}_{\textit{p}}.$

On veut un espace où les suites de Cauchy à valeurs dans $\mathbb{Q}^{\mathbb{N}}$ convergent. On définit alors \sim :

$$(x_n) \sim (y_n) \Longleftrightarrow \lim_{n \to +\infty} |y_n - x_n|_p = 0.$$

Propriété

 \sim est une relation d'équivalence sur \mathcal{C}_p .

Définition

Soit
$$\mathcal{N} := \{(x_n)_{n=0}^{\infty} \in \mathbb{Q}^{\mathbb{N}} \mid \lim_{n \to +\infty} x_n = 0\}.$$

On veut un espace où les suites de Cauchy à valeurs dans $\mathbb{Q}^{\mathbb{N}}$ convergent. On définit alors \sim :

$$(x_n) \sim (y_n) \Longleftrightarrow \lim_{n \to +\infty} |y_n - x_n|_p = 0.$$

Propriété

 \sim est une relation d'équivalence sur $\mathcal{C}_{\textit{p}}.$

Définition

Soit $\mathcal{N} := \{(x_n)_{n=0}^{\infty} \in \mathbb{Q}^{\mathbb{N}} \mid \lim_{n \to +\infty} x_n = 0\}.$

Propriété

 \mathcal{N} est un idéal maximal de \mathcal{C}_p .

On veut un espace où les suites de Cauchy à valeurs dans $\mathbb{Q}^{\mathbb{N}}$ convergent. On définit alors \sim :

$$(x_n) \sim (y_n) \Longleftrightarrow \lim_{n \to +\infty} |y_n - x_n|_p = 0.$$

Propriété

 \sim est une relation d'équivalence sur $\mathcal{C}_{\textit{p}}.$

Définition

Soit $\mathcal{N} := \{(x_n)_{n=0}^{\infty} \in \mathbb{Q}^{\mathbb{N}} \mid \lim_{n \to +\infty} x_n = 0\}.$

Propriété

 \mathcal{N} est un idéal maximal de \mathcal{C}_p .

Définition

On définit l'ensemble des nombres p-adique par

$$\mathbb{Q}_p := \mathcal{C}_p / \mathcal{N} = \mathcal{C}_p / \sim .$$

Théorème

Pour $p \in \mathbb{P} \cup \{\infty\}$, \mathbb{Q}_p est un corps commutatif contenant \mathbb{Q} .

Théorème

Pour $p \in \mathbb{P} \cup \{\infty\}$, \mathbb{Q}_p est un corps commutatif contenant \mathbb{Q} .

Preuve:

Théorème

Pour $p \in \mathbb{P} \cup \{\infty\}$, \mathbb{Q}_p est un corps commutatif contenant \mathbb{Q} .

Preuve: L'idéal ${\mathcal N}$ étant maximal et ${\mathcal C}_p$ étant un anneau commutatif, par quotient,

Théorème

Pour $p \in \mathbb{P} \cup \{\infty\}$, \mathbb{Q}_p est un corps commutatif contenant \mathbb{Q} .

<u>Preuve</u>: L'idéal $\mathcal N$ étant maximal et $\mathcal C_p$ étant un anneau commutatif, par quotient, il suit que $\mathbb Q_p$ est un corps commutatif.

Théorème

Pour $p \in \mathbb{P} \cup \{\infty\}$, \mathbb{Q}_p est un corps commutatif contenant \mathbb{Q} .

<u>Preuve</u>: L'idéal \mathcal{N} étant maximal et \mathcal{C}_p étant un anneau commutatif, par quotient, il suit que \mathbb{Q}_p est un corps commutatif.

Ensuite, on va montrer que \mathbb{Q}_p contient un sous-corps s'identifiant à \mathbb{Q}

Théorème

Pour $p \in \mathbb{P} \cup \{\infty\}$, \mathbb{Q}_p est un corps commutatif contenant \mathbb{Q} .

<u>Preuve</u>: L'idéal \mathcal{N} étant maximal et \mathcal{C}_p étant un anneau commutatif, par quotient, il suit que \mathbb{Q}_p est un corps commutatif.

Ensuite, on va montrer que \mathbb{Q}_p contient un sous-corps s'identifiant à \mathbb{Q} : considérons alors l'application

$$i:q\in\mathbb{Q}\mapsto\overline{(q)}_{n=0}^\infty\in\mathbb{Q}_p.$$

Cette application est trivialement injective, donc bijective sur son image, de plus, par définition des lois + et \cdot sur \mathbb{Q}_p ,

Théorème

Pour $p \in \mathbb{P} \cup \{\infty\}$, \mathbb{Q}_p est un corps commutatif contenant \mathbb{Q} .

<u>Preuve</u>: L'idéal $\mathcal N$ étant maximal et $\mathcal C_p$ étant un anneau commutatif, par quotient, il suit que $\mathbb Q_p$ est un corps commutatif.

Ensuite, on va montrer que \mathbb{Q}_p contient un sous-corps s'identifiant à \mathbb{Q} : considérons alors l'application

$$i:q\in\mathbb{Q}\mapsto\overline{(q)}_{n=0}^{\infty}\in\mathbb{Q}_{p}.$$

Cette application est trivialement injective, donc bijective sur son image, de plus, par définition des lois + et \cdot sur \mathbb{Q}_p , c'est aussi un homomorphisme d'anneaux,

Théorème

Pour $p \in \mathbb{P} \cup \{\infty\}$, \mathbb{Q}_p est un corps commutatif contenant \mathbb{Q} .

<u>Preuve</u>: L'idéal \mathcal{N} étant maximal et \mathcal{C}_p étant un anneau commutatif, par quotient, il suit que \mathbb{Q}_p est un corps commutatif.

Ensuite, on va montrer que \mathbb{Q}_p contient un sous-corps s'identifiant à \mathbb{Q} : considérons alors l'application

$$i:q\in\mathbb{Q}\mapsto\overline{(q)}_{n=0}^{\infty}\in\mathbb{Q}_{p}.$$

Cette application est trivialement injective, donc bijective sur son image, de plus, par définition des lois + et \cdot sur \mathbb{Q}_p , c'est aussi un homomorphisme d'anneaux, et \mathbb{Q} est donc isomorphe à $\mathrm{Im}\,i=\{\mathrm{les}\ \mathrm{classes}\ \mathrm{des}\ \mathrm{suites}\ \mathrm{constantes}\},$ qui est donc un sous-corps de \mathbb{Q}_p .

Remarque

Pour $q \in \mathbb{Q}$, on note $q := \overline{(q)}_{n=0}^{\infty} \in \mathbb{Q}_p$.

Remarque

Pour $q \in \mathbb{Q}$, on note $q := \overline{(q)}_{n=0}^{\infty} \in \mathbb{Q}_p$.

Remarque

On a $\mathbb{Q}_{\infty} := \mathbb{R}$.

Ainsi pour la suite, on va seulement étudier les \mathbb{Q}_p pour $p \in \mathbb{P}$.

Soit $p \in \mathbb{P}$.

Soit $p \in \mathbb{P}$.

Proposition-Définition (Norme p-adique sur \mathbb{Q}_p)

Pour un nombre p-adique a, soit $(a_n)_{n=0}^{\infty}$ un représentant de a, on définit alors la norme p-adique de a, toujours notée $|a|_p$, par:

$$|a|_p = \lim_{n \to +\infty} |a_n|_p$$

Soit $p \in \mathbb{P}$.

Proposition-Définition (Norme p-adique sur \mathbb{Q}_p)

Pour un nombre p-adique a, soit $(a_n)_{n=0}^{\infty}$ un représentant de a, on définit alors la norme p-adique de a, toujours notée $|a|_p$, par:

$$|a|_p = \lim_{n \to +\infty} |a_n|_p$$

<u>Preuve</u>: En effet, elle vérifie les axiomes : **séparation**, **inégalité triangulaire** et **homogénéité** puisque ils sont vrais sur \mathbb{Q} .

Attention !: Est-ce que $|\cdot|_p:\mathbb{Q}_p\to\mathbb{R}_+$?

Attention !: Est-ce que $|\cdot|_p: \mathbb{Q}_p \to \mathbb{R}_+$? Ce qui se justifie par :

Proposition

Soit $(x_n)_{n=0}^{\infty} \in \mathcal{C}_p \setminus \mathcal{N}$, la suite $(|x_n|_p)_{n=0}^{\infty}$ est constante à partir d'un certain rang.

Attention !: Est-ce que $|\cdot|_p:\mathbb{Q}_p\to\mathbb{R}_+$? Ce qui se justifie par :

Proposition

Soit $(x_n)_{n=0}^{\infty} \in \mathcal{C}_p \setminus \mathcal{N}$, la suite $(|x_n|_p)_{n=0}^{\infty}$ est constante à partir d'un certain rang.

Ainsi,

Définition

(Valuation p-adique sur \mathbb{Q}_p) La valuation p-adique $ord_p(a)$ d'un nombre $a \in \mathbb{Q}_p$ est l'unique entier $m \in \mathbb{Z} \cup \{\infty\}$ tel que:

$$|a|_p = p^{-m}$$

Lemme

 $(\mathbb{Q},|.|_p)$ est dense dans $(\mathbb{Q}_p,|.|_p)$.

Lemme

 $(\mathbb{Q},|.|_p)$ est dense dans $(\mathbb{Q}_p,|.|_p)$.

Lemme

 $(\mathbb{Q}_p, |.|_p)$ est complet.

Proposition

Soit $(a_n)_{n=0}^{\infty}$ une suite de \mathbb{Q}_p .

Alors, la série $\sum a_n$ converge dans \mathbb{Q}_p <u>si et seulement si</u> la suite $(a_n)_{n\in\mathbb{N}}$ tend p-adiquement vers 0.

Proposition

Soit $(a_n)_{n=0}^{\infty}$ une suite de \mathbb{Q}_p .

Alors, la série $\sum a_n$ converge dans \mathbb{Q}_p <u>si et seulement si</u> la suite $(a_n)_{n\in\mathbb{N}}$ tend p-adiquement vers 0.

Proposition

Toute boule ouverte dans \mathbb{Q}_p est aussi fermée.

Proposition

Soit $(a_n)_{n=0}^{\infty}$ une suite de \mathbb{Q}_p .

Alors, la série $\sum a_n$ converge dans \mathbb{Q}_p <u>si et seulement si</u> la suite $(a_n)_{n\in\mathbb{N}}$ tend p-adiquement vers 0.

Proposition

Toute boule ouverte dans \mathbb{Q}_p est aussi fermée.

Proposition

Tout point d'une boule de \mathbb{Q}_p en est un centre.

Proposition

Il y a un nombre dénombrable de boules ouvertes sur \mathbb{Q}_p .

Proposition

Il y a un nombre dénombrable de boules ouvertes sur $\mathbb{Q}_p.$

Proposition

Deux boules de \mathbb{Q}_p sont d'intersection non vide \underline{si} et seulement \underline{si} l'une est incluse dans l'autre.

Sommaire

- Introduction
- 2 Valuation *p*-adique et norme *p*-adique
- 4 Construction algébrique de \mathbb{Q}_p

Supposons que \mathbb{Q}_p est déjà construit.

Supposons que \mathbb{Q}_p est déjà construit. On va décrire \mathbb{Q}_p à l'aide de

Proposition-Définition

L'ensemble \mathbb{Z}_p des entiers p-adiques est donné par

$$\mathbb{Z}_p = \{ x \in \mathbb{Q}_p \mid ord_p(x) \geqslant 0 \} = \{ x \in \mathbb{Q}_p \mid |x|_p \leqslant 1 \} = \overline{B}(0,1)$$

est un anneau commutatif intègre lorsqu'il est muni des mêmes lois que \mathbb{Q}_p .

Supposons que \mathbb{Q}_p est déjà construit. On va décrire \mathbb{Q}_p à l'aide de

Proposition-Définition

L'ensemble \mathbb{Z}_p des entiers p-adiques est donné par

$$\mathbb{Z}_p = \{ x \in \mathbb{Q}_p \mid ord_p(x) \geqslant 0 \} = \{ x \in \mathbb{Q}_p \mid |x|_p \leqslant 1 \} = \overline{B}(0,1)$$

est un anneau commutatif intègre lorsqu'il est muni des mêmes lois que \mathbb{Q}_p .

On va voir le lien entre \mathbb{Q}_p et \mathbb{Z}_p .

Supposons que \mathbb{Q}_p est déjà construit. On va décrire \mathbb{Q}_p à l'aide de

Proposition-Définition

L'ensemble \mathbb{Z}_p des entiers p-adiques est donné par

$$\mathbb{Z}_p = \{x \in \mathbb{Q}_p \mid ord_p(x) \geqslant 0\} = \{x \in \mathbb{Q}_p \mid |x|_p \leqslant 1\} = \overline{B}(0,1)$$

est un anneau commutatif intègre lorsqu'il est muni des mêmes lois que \mathbb{Q}_p .

On va voir le lien entre \mathbb{Q}_p et \mathbb{Z}_p .

Dans la partie suivante, on va décrire algébriquement \mathbb{Z}_p .

Supposons que \mathbb{Q}_p est déjà construit. On va décrire \mathbb{Q}_p à l'aide de

Proposition-Définition

L'ensemble \mathbb{Z}_p des entiers p-adiques est donné par

$$\mathbb{Z}_p = \{x \in \mathbb{Q}_p \mid ord_p(x) \geqslant 0\} = \{x \in \mathbb{Q}_p \mid |x|_p \leqslant 1\} = \overline{B}(0,1)$$

est un anneau commutatif intègre lorsqu'il est muni des mêmes lois que \mathbb{Q}_p .

On va voir le lien entre \mathbb{Q}_p et \mathbb{Z}_p .

Dans la partie suivante, on va décrire algébriquement \mathbb{Z}_p .

Ainsi, on obtiendra une construction algébrique de \mathbb{Q}_p .

Supposons que \mathbb{Q}_p est déjà construit. On va décrire \mathbb{Q}_p à l'aide de

Proposition-Définition

L'ensemble \mathbb{Z}_p des entiers p-adiques est donné par

$$\mathbb{Z}_p = \{x \in \mathbb{Q}_p \mid ord_p(x) \geqslant 0\} = \{x \in \mathbb{Q}_p \mid |x|_p \leqslant 1\} = \overline{B}(0,1)$$

est un anneau commutatif intègre lorsqu'il est muni des mêmes lois que \mathbb{Q}_p .

On va voir le lien entre \mathbb{Q}_p et \mathbb{Z}_p .

Dans la partie suivante, on va décrire algébriquement \mathbb{Z}_p .

Ainsi, on obtiendra une construction algébrique de \mathbb{Q}_p .

L'anneau \mathbb{Z}_p des entiers p-adiques

Proposition

$$\mathbb{Q}_p = \bigcup_{m \in \mathbb{Z}} p^m \mathbb{Z}_p.$$

L'anneau \mathbb{Z}_p des entiers p-adiques

Proposition

$$\mathbb{Q}_p = \bigcup_{m \in \mathbb{Z}} p^m \mathbb{Z}_p.$$

Lemme

$$Frac(\mathbb{Z}_p) \simeq \mathbb{Q}_p$$
.

Οù

$$\left\{\begin{array}{cc} Frac(\mathbb{Z}_p) & \longrightarrow \mathbb{Q}_p \\ \frac{a}{b} & \longmapsto \frac{a}{b} \end{array}\right..$$

Proposition-Définition

On définit

$$\mathbb{Z}_{(p)} := \{ \frac{a}{b} \mid a, b \in \mathbb{Z}, p \nmid b \}$$

un sous-anneau de \mathbb{Q} et de \mathbb{Z}_p^{top} .

Proposition-Définition

On définit

$$\mathbb{Z}_{(p)} := \{ \frac{a}{b} \mid a, b \in \mathbb{Z}, p \nmid b \}$$

un sous-anneau de \mathbb{Q} et de \mathbb{Z}_p^{top} .

Proposition

Pour tout entier $m \ge 0$,

$$\mathbb{Z}/p^m\mathbb{Z} \simeq \mathbb{Z}_{(p)}/p^m\mathbb{Z}_{(p)} \simeq \mathbb{Z}_p^{top}/p^m\mathbb{Z}_p^{top}$$

Grâce à

Définition (Limite inverse)

Soient $\{X_n\}_{n=1}^\infty$ une suite d'ensembles, et $\{f_n:X_{n+1}\to X_n\}_{n=1}^\infty$ une suite d'applications

$$\dots \xrightarrow{f_4} X_4 \xrightarrow{f_3} X_3 \xrightarrow{f_2} X_2 \xrightarrow{f_1} X_1$$

On appelle limite inverse de la suite $\{X_n\}_{n=1}^{\infty}$ et on note $\varprojlim_n X_n$ le sous-ensemble de $\prod_{n=1}^{\infty} X_n$ donné par:

$$\lim_{n \to \infty} X_n = \{(a_n)_{n=1}^{\infty} \in \prod_{n=1}^{\infty} X_n \mid \forall n \geqslant 1, f_n(a_{n+1}) = a_n\}$$

Grâce à

Définition (Limite inverse)

Soient $\{X_n\}_{n=1}^\infty$ une suite d'ensembles, et $\{f_n:X_{n+1}\to X_n\}_{n=1}^\infty$ une suite d'applications

$$\dots \xrightarrow{f_4} X_4 \xrightarrow{f_3} X_3 \xrightarrow{f_2} X_2 \xrightarrow{f_1} X_1$$

On appelle limite inverse de la suite $\{X_n\}_{n=1}^{\infty}$ et on note $\varprojlim_n X_n$ le sous-ensemble de $\prod_{n=1}^{\infty} X_n$ donné par:

$$\lim_{n \to \infty} X_n = \{(a_n)_{n=1}^{\infty} \in \prod_{n=1}^{\infty} X_n \mid \forall n \geqslant 1, f_n(a_{n+1}) = a_n\}$$

Ainsi

Proposition

$$\mathbb{Z}_p^{top} = \mathbb{Z}_p \simeq \varprojlim \mathbb{Z}/p^n\mathbb{Z} =: \mathbb{Z}_p^{alg}$$

Ainsi

Théorème

$$\mathbb{Q}_p^{top} \simeq \mathbb{Q}_p^{alg}$$
.

Théorème

Soit $x \in \mathbb{Q}_p$. Alors x admet une écriture de la forme:

$$x=\sum_{n=m}^{\infty}c_{n}p^{n},\ c_{n}\in\{0,1,\ldots,p-1\}\ ext{et}\ m\in\mathbb{Z}$$

De plus cette écriture est unique que l'on note $x = (\dots c_{m+1}c_m)_p$.

$$* 1 = 1 \times p^0 = \dots 001_p =: 1_2$$

Théorème

Soit $x \in \mathbb{Q}_p$. Alors x admet une écriture de la forme:

$$x=\sum_{n=m}^{\infty}c_{n}p^{n},\ c_{n}\in\{0,1,\ldots,p-1\}\ ext{et}\ m\in\mathbb{Z}$$

De plus cette écriture est unique que l'on note $x = (\dots c_{m+1}c_m)_p$.

$$\overline{*1 = 1 \times p^0} = \dots 001_p =: 1_2$$

*
$$p = 1 \times p + 0 \times p^0 =: 10_p$$

Théorème

Soit $x \in \mathbb{Q}_p$. Alors x admet une écriture de la forme:

$$x=\sum_{n=m}^{\infty}c_{n}p^{n},\ c_{n}\in\{0,1,\ldots,p-1\}\ ext{et}\ m\in\mathbb{Z}$$

De plus cette écriture est unique que l'on note $x = (\dots c_{m+1}c_m)_p$.

$$\overline{*1} = 1 \times p^0 = \dots 001_p =: 1_2$$

$$* p = 1 \times p + 0 \times p^0 =: 10_p$$

$$\ast \ -1_2 = \dots 111_2$$

Théorème

Soit $x \in \mathbb{Q}_p$. Alors x admet une écriture de la forme:

$$x=\sum_{n=m}^{\infty}c_{n}p^{n},\ c_{n}\in\{0,1,\ldots,p-1\}\ ext{et}\ m\in\mathbb{Z}$$

De plus cette écriture est unique que l'on note $x = (\dots c_{m+1}c_m)_p$.

$$\overline{*1 = 1 \times p^0} = \dots 001_p =: 1_2$$

$$* p = 1 \times p + 0 \times p^0 =: 10_p$$

$$* -1_2 = \dots 111_2 \text{ car } \dots 111_2 + 1_2 = \dots 000_2 =: 0_2$$

Théorème

Soit $x \in \mathbb{Q}_p$. Alors x admet une écriture de la forme:

$$x=\sum_{n=m}^{\infty}c_{n}p^{n},\ c_{n}\in\{0,1,\ldots,p-1\}\ ext{et}\ m\in\mathbb{Z}$$

De plus cette écriture est unique que l'on note $x = (\dots c_{m+1} c_m)_p$.

Exemples:

$$\overline{*1 = 1 \times p^0} = \dots 001_p =: 1_2$$

$$* p = 1 \times p + 0 \times p^0 =: 10_p$$

$$*-1_2 = \dots 111_2 \text{ car } \dots 111_2 + 1_2 = \dots 000_2 =: 0_2$$

Avec ce théorème, on peut compter dans \mathbb{Q}_p .

Bibliographie

- Number Theory 1, Fermat's Dreams; Kazuya Kato, Nobushige Kurokawa, Takeshi Saito. Éditions de l'American Mathematical Society.
- p-adique Numbers, An introduction; Fernando Q. Gouvêa. Éditions Springer-Verlag Berlin Heidelberg GmbH.
- Géométrie Algébrique. Une introduction ; Daniel Perrin. Éditions EDP Sciences.
- ullet Topological properties of \mathbb{Z}_p and \mathbb{Q}_p and Euclidean models; Samuel Trautwein, Esther Röder, Giorgio Barozzi ; https://www2.math.ethz.ch/education/bachelor/seminars/hs2011/p-adic/report5.pdf