Ilya Zlotnikov (University of Stavanger) LMO harmonic analysis seminar, 13 December 2022

On completeness and frame properties of certain exponential families

(The talk is based on joint work with A. Kulikov and A. Ulanovskii)

We study completeness and frame properties of the system

$$E(\Lambda,\Gamma) := \{t^k e^{2\pi i \lambda t} : \lambda \in \Lambda, k \in \Gamma\}, \quad \Gamma \subset \mathbb{N}_0 = \{0, 1, 2, \dots\}, \Lambda \subset \mathbb{R}.$$

Let X(I) be a space of functions supported on I, e.g. X = C(I) or $X = L^p(I)$, where $I = [-\sigma, \sigma]$. The radius of completeness of the family $E(\mathbb{Z}, \Gamma)$ in the space X is denoted by

$$r_X(E(\mathbb{Z},\Gamma)) = \sup\{a \ge 0 : E(\mathbb{Z},\Gamma) \text{ is complete in } X(-a,a)\}.$$

It is well-known that

•

$$r_{L^2}(E(\mathbb{Z},\{0\})) = r_{L^2}(\{e^{2\pi int}\}_{n\in\mathbb{Z}}) = r_C(\{e^{2\pi int}\}_{n\in\mathbb{Z}}) = \frac{1}{2};$$

• if
$$\Gamma = \{0, 1, 2, \dots, N\}$$
 then

$$r_C(E(\mathbb{Z},\Gamma)) = r_{L^2}(E(\mathbb{Z},\Gamma)) = \frac{\#\Gamma}{2} = \frac{N+1}{2}.$$

One may ask the following

Question Is it true that for any $\Gamma \subset \mathbb{N}_0$ we have

$$r_C(E(\mathbb{Z},\Gamma)) = r_{L^2}(E(\mathbb{Z},\Gamma))?$$

It turns out that in general this is false. More precisely, if Γ has "gaps" then the answer depends on $\#\Gamma_{odd}$ and $\#\Gamma_{even}$, where

$$\Gamma_{odd} = \Gamma \cap (2\mathbb{Z} + 1)$$
 and $\Gamma_{even} = \Gamma \cap 2\mathbb{Z}$.

We proved the following

Theorem 1 (A. Kulikov, A. Ulanovskii, I. Z., 2022). Given a finite set $\Gamma \subset \mathbb{N}_0$ satisfying $0 \in \Gamma$. Then

$$r_{L^2}(E(\mathbb{Z},\Gamma)) = \frac{\#\Gamma}{2} \qquad r_C(E(\mathbb{Z},\Gamma)) = \begin{cases} \#\Gamma_{odd} + \frac{1}{2}, & \text{if } \#\Gamma_{odd} < \#\Gamma_{even}, \\ \#\Gamma_{even}, & \text{if } \#\Gamma_{odd} \ge \#\Gamma_{even}. \end{cases}$$

Our argument is based on a description of certain uniqueness sets for lacunary polynomials.

References

 Aleksei Kulikov, Alexander Ulanovskii, Ilya Zlotnikov, Completeness of Certain Exponential Systems and Zeros of Lacunary Polynomials, (2022) arxiv.org/abs/2210.00504