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Chapter 1

Introduction

In 1872, Felix Klein asked the following question. “Given a multiplicity

and a group, to study the entities from the point of view of properties

which are not changed by the transformations of the group... this can

also be expressed as: given a multiplicity and a transformation group;

develop the theory of invariants relative to this group” ([15]).

Felix Klein

In this first volume, we concretely illustrate this visionary point of view by classifying geometric objects

by invariants under different group actions (invariant factors, similarity invariants...) and different per-

spectives (algebraic, topological...). We focus our attention on linear objects, leaving the study of bilinear

and quadratic objects to the next volume.

Our motivation is to give, starting from the basic knowledge of dimension theory in linear algebra and

calculus, a bridge to modern methods of algebra with as little formal theory as possible. We will try to

explain how a balance between the abstract use of diagrams and modules on the one hand and concrete

matrices on the other hand allows to obtain non-trivial and hopefully interesting results quickly.

To illustrate our perspective, similarity questions of matrices with field coefficients will be our leitmotif

example throughout this book for many reasons (importance of this problem, concrete character of the

objects, deep insights into a lot of more general subjects like arithmetic, K-theory, algebraic geometry,

. . . . It is definitely not our pretension to make a study of these advanced topics, but we have tried to use

methods which will be useful later.

In the first part, we give an introduction to module language theory in order to solve the following

problem as our typical illustration: how to decide when two square matrices are similar. We do not use

reduction theory, eigenvalues, or irreducible elements to solve this classification problem. The gain is

9



10 CHAPTER 1. INTRODUCTION

that we can solve this problem in an algorithmic and field independent way, (contrary to any method

based on eigenvalues because in general computing roots of polynomials or factorizing them is hope-

less). The price to pay is the non-continuity of these algorithms (though they are semi-continuous in a

sense). We discuss the intrinsic aspects of continuity topics in the last part of the book.

In the second (more classical) part we will discuss reduction theory, where the key point is the factoriza-

tion of the characteristic polynomials into linear terms (eigenvalues) or, more generally, into irreducible

polynomials. The good news is that this process has continuity properties. The bad news is that we do

not know how to factorize a polynomial in general. We have included a section on the simultaneous

reduction of matrices, emphasizing the important notion of irreducible action of matrices.

In the third part, we illustrate the interest in both perspectives by studying the topology of similarity

classes, which are of fundamental importance in advanced mathematics.

We try to do this in a concrete way, i.e. with methods that lead to algorithms. After all, it is better to

know how to construct an object than simply to know that it exists. However, our goal is not to provide

optimized programs in terms of efficiency (that’s another topic, and an interesting one at that!), but to

explore the how. In particular, we do not restrict ourselves to formally constructivist methods ([3]), but

try to provide as many existence theorems as possible that can explicitly lead to the construction of the

object in question, for example by a computer. Remarkably, we encounter the typical numerical short-

comings of Gaussian elimination algorithms. These phenomena can be of a purely numerical nature or

due to non-continuous behaviour, as will be clearly seen. We strongly advise the reader to implement

the various algorithms on a machine: this will allow him to verify that he has thoroughly understood

the proofs. For our part, we have used the program SAGEMATH, based on Python.

In a subsequent volume, we will look at bilinear/quadratic geometry.

The material of this book is more or less classical, only the perspective is somehow more original. There

are many excellent books in the literature from the classical monographs ([20], [21], [5],[6], [16]. . . ) that

aim to give a coherent “state of the art” to the abundant academic literature at the post-calculus level.

Our book has one thing in common with all these books: it is intended to be actively worked on, not

just passively read. This explains why we have tried to strike a balance between a fully formal and dry

exposition and a “ready to eat” style.

Photo credits: ChronoMaths, Flickr user Duncan, Patrick Fradin, Marcel Gotlib, UQAM, Wikipedia.

1.1 Point of view

There are many ways to do mathematics, and it is rarely the case that there is only one good way. Writing

a book emphasizes some choices. Our main choice is not original, but it is important: morphisms are

more important than objects! This is why matrices are so important in our approach.

0See 14.3.3.2 to temper this statement.
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Let us illustrate our purpose by two extreme ways of thinking mathe-

matics by two universal genius. Finding a path between these two peaks

guided our work.

Alexander Grothendieck

In his huge Récoltes et Semailles writing1, explains how generalizing problems is a fruitful way to solve

problems.

Take, for example, the task of proving a theorem that remains hypothetical (which, to some, may seem to be the

essence of mathematical work). I see two extreme approaches to the task. The first is the hammer and chisel

approach, where the problem is seen as a tough, smooth nut, and the goal is to get to the nutritious core protected

by the shell. The principle is simple: place the edge of the chisel against the shell and strike hard. If necessary, you

repeat this in several different places until the shell cracks - and then you’re satisfied. [...].

I could illustrate the second approach by sticking with the image of the nut that needs to be opened. The first

metaphor that came to mind is that you soak the nut in an emollient liquid-why not just water? From time to time

you rub it to help the liquid penetrate, but otherwise you let time do its work. As the weeks and months go by,

the shell softens-and when the time is right, a gentle squeeze of the hand is enough to open the shell like that of a

perfectly ripe avocado. Or the nut is left to ripen in the sun and rain, and perhaps even the frost of winter. When

the time is right, a delicate sprout emerges from the nutritious kernel and pierces the shell as if in a game, or rather,

the shell opens by itself and allows it to pass through. [...]

Readers who are even slightly familiar with some of my work will have no difficulty recognizing which of these

two approaches is “mine”.

This way of going from the particular to the general contrasts with Decartes’ method.2.

• Not to accept as true anything which I did not clearly know to be so.

• To divide each difficulty I examined into as many parts as possible and as might be necessary for its best

solution.

• To conduct my thoughts in an orderly manner, beginning with the simplest and easiest to know objects, in

order to ascend little by little, as if by steps, to the knowledge of the most complex.

1A. Grothendieck, Récoltes et Semailles I, II: Réflexions et témoignage sur un passé de mathématicien, Gallimard (2022)
2R. Descartes, Discourse on the Method (1637), Gallimard (2009).
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René Descartes

• To make everywhere such complete enumerations, and such general surveys, that I may be sure of omitting

nothing. This is the rule of enumeration. To make a complete review of objects, which involves prudence and

circumspection.

1.2 Prerequisites and conventions (in progress)

1.2.1 Prerequisites

We assume that the reader is familiar with basic definitions in algebra without any further expertise

(general definitions of rings, ideals, points). For the convenience of the reader, we recall the notion of

quotient (4.2). Some familiarity with basic algebraic properties of fields, Z and k[T], is assumed (they

are principal ideal rings -PID-). To make the reading easier, a proof of the main results is given in 6.2

and in (9).

No knowledge of linear algebra beyond the basics of dimension theory is assumed. 3 and the Gauss

elimination method, the relationship between matrices and endomorphisms, and the elementary prop-

erties of the determinant. Strictly speaking, therefore, we do not assume any special knowledge of

eigenvalue or reduction theory, although it is recommended to have taken an introductory course on

the subject before studying our book.

Readers who have studied linear algebra in the context of real or complex vector spaces are just asked to

accept (or verify) that nothing changes on an arbitrary field. It may happen that we use group notions

3Strictly speaking, it is easy to follow our path to all the results using only Gauss elimination and formal properties of the

determinant
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in a particular subsection, but these points can always be skipped on a first reading.

In Part III, we freely use basic notions from analysis, probability, and topology of metric spaces as taught

in standard undergraduate programs.

1.2.2 Conventions

We will use at length the notation k for a (commutative) field and V for a k vector space, which is finite

dimensional unless explicitly assumed otherwise.

Unless expressly otherwise stated 4, rings are assumed to be commutative and

with a unit element 1, generally denoted R. Morphisms of rings are maps com-

patible with addition, product and unit element. Their multiplicative group

of units is denoted R×.

We recall that R is a domain (or an integral domain) if R is nonzero and if the product of two nonzero

elements is nonzero. Finally, x ∈ R is called nilpotent if one of its powers is zero.

As usual, we’ll denote by Ei,j ∈ Mp,q(R) the matrix with all coefficients zero except the one at row i

and column j, which is 1. We call it the “standard basis” of Mp,q(R), recalling that tautologically every

matrix A = [ai,j ] has a unique decomposition A =
∑
i,j ai,jEi,j as a linear combination of these matrices.

We say that A ∈ Mp,q(R) is diagonal if ai,j = 0 for all i ̸= j. The coefficients ai,i, i = 1, . . . ,min(p, q)

are often denoted by ai and called the diagonal coefficients. We will identify Rn as the set of columns

Mn,1(R) when n ≥ 1 with the canonical family ej = (δi,j)i, which will be referred to as the canonical

basis5 of Rn.

Transvection T1,2(2)

We will often use the following square matrices.

Definition 1.2.2.1 A square matrix is a

4We will say explicitly in this case non commutative ring.
5anticipating the module discussion below.
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• standard transvection6if is of the form Ti,j(r) = Id+rEi,j , i ̸= j;

• a permutation matrix if it is of the form Mσ = [δi,σ(j)] for a permutation σ ∈ Sn where δi,j is the Kronecker

symbol equal to 1 if i = j and 0 if not;

• dilatation if its of the form D(r) = Id+(r − 1)E1,1 with r ∈ R×;

• a Bézout matrix if it of the form diag(A, Id) with A ∈ M2(R) of determinant 1.

By construction, transvections and Bézout matrices have determinant 1 and det(D(r)) = r, det(Mσ) =

ε(σ). In general, it is recalled that line and column operations on rectangular matrices with coefficients

in a ring R are obtained by multiplication on the right or left by transvections or permutation matrices,

these matrices being invertible (of determinant ±1).

1.3 Useful tools

1.3.1 Division by monic polynomials

As the reader will see, it is often useful to adapt the usual division algorithm to polynomial rings with

values in rings. The price is that we have to assume that the leading coefficient is invertible or, which

remains the same, equal to 1. Let us make a precise statement.

Proposition 1.3.1.1 [Left Euclidean Division] Let R be a non-necessarily commutative ring with unit and A,B ∈

R[T]. If the leading term of B is invertible, there exists a unique pair Q,R ∈ R[T] such that A = BQ + R and

either R = 0 or deg(R) < deg P.

If we set deg(0) = −∞, the last condition A = BQ + R and either R = 0 or deg(R) < deg P can simply

be written as A = BQ+R deg(R) < deg P. Of course, there is an analogous statement for right division

(change R to Ropp with the multiplication in reverse order). Left and right division coincide in the

commutative case (by uniqueness).

Proof. Uniqueness If (Q1,R1) and (Q2,R2) satisfy the necessary conditions, then

B(Q1 −Q2) = R2 − R1 and deg(B(Q1 −Q2)) = deg(B) + deg(Q1 −Q2)

since the leading coefficient of B is invertible. Since deg(R2 − R1) ≤ max(deg(R2),deg(R1)) < deg(B)

we get deg(Q1 −Q2) < 0, which gives Q1 = Q2 and therefore R1 = R2.

Existence (induction on deg(A).

6If there is no danger of confusion, just call it transvection. See 7.8.13 for the vocabulary.
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If deg(A) < deg(B) we take Q = 0 and R = A;

If deg(A) ≥ deg(B): let a, b be the leading coefficients of A,B and M the monomial b−1aTdegA−deg B;

then BM has the same leading monomial as A, so deg(A − UM) < deg(A). By induction, there are two

polynomials Q and R such that (A− BM) = BQ+R and deg(R) < deg(B), so A = BQ+M) + R.

1.3.2 Zorn’s lemma

Even though it is not necessary for us most of the time, the existence of maximal elements in a great

generality is often convenient. Let us explain how Zorn’s Lemma (which is equivalent to the axiom of

choice) can be used to obtain the existence of maximal ideals.

Let E be a (partially) ordered set. For example, we can think of the set of subsets of a given set ordered

by inclusion. But there are many more examples.

Definition 1.3.2.1 We say that E is inductive if every non-empty totally ordered part has an upper bound in E.

Example(s) 1.3.2.2 R equipped with the usual order relation is not inductive. Similarly, the set of intervals

[0, x[, x ∈ R ordered by inclusion is not inductive. On the other hand, the set of subsets of a set ordered by

inclusion is inductive.

Max Zorn

Lemma 1.3.2.3 (Zorn’s lemma) Every non-empty inductive set has a maximal ele-

ment.

This lemma can be seen as an axiom of set theory, in fact equivalent to the axiom of choice: if (Ei) is a

non-empty family of sets, then
∏

Ei is non-empty. We will consider it as such.

Corollary 1.3.2.4 [Krull’s lemma] Every non-zero ring has a maximal ideal. More generally, every proper ideal

of a ring is contained in a maximal ideal.

Proof. Let E be the family of proper ideals of A containing a given proper ideal J (for example, J = {0}

because our rings are nonzero). Since J is proper, E is not empty. Obviously, E is inductive: the union of

a totally ordered family of proper ideals is still a proper ideal, which is an upper bound. Zorn’s lemma

finishes the job.
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We could also prove, essentially formally, that just as Q is contained in the algebraically closed field C

(4.6.13), any field k is contained in some algebraically closed field Ω. We will use this result freely in

some (rare) places (see for example [13], Theorem 4.7).



Part I

Linear algebra over rings

17





Chapter 2

Warm-up I: Matrices with ring

coefficients

2.1 Introduction

Perspective

We explain how determinant identities and the Gauss elimination method give

non-trivial general results without any reference to advanced linear algebra and

reduction theory. This elementary but non-trivial part can be skipped in a first

reading.

2.1.1 Review on formal polynomials

We suggest that the reader skip this point, which is for reference only. Formally speaking, algebraic

identities are polynomial identities. Let us recall some basic facts. A polynomial with one variable

P(T) =
∑
n∈N xnT

n ∈ R[T] is nothing more than the sequence of its coefficients xn ∈ R, assumed to be

0 for all but a finite number1 of indices n. The degree deg(P) of P ̸= 0 is the largest n such that an ̸= 0 as

usual.
1in this case the family is said to be of finite support or almost zero and the sum is said to be finite)

19
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More generally, let I be any set and I(N) be the set of maps I → N which are zero for all but a finite

number of indices2. A polynomial with several variables P(Ti) =
∑
ν=(ni)∈N(I) xνT

ν ∈ R[Ti, i ∈ I] is

nothing but the sequence of its coefficients xν which are assumed to be 0 for all but a finite number of

indices ν. If i = (δi,j)j∈I, the “indeterminate” Ti is the polynomial 1.Ti.

The sum is defined as usual component by component and the product by

∑
xµT

µ
∑

yνT
ν =

∑
µ+ν=κ

xµyνT
κ

, giving R[Ti] the structure of a commutative ring with unit the constant polynomial associated with the

sequence δ(0),µ. As usual, we have T0
i = 1 and Tν =

∏
Tνii (which is a finite product by construction).

The most important (universal) property of polynomial rings is summarised in their well-known evalu-

ation rule (see 4.3.0.1). We want to stress the importance of the commutativity assumption (see 2.1.3.1).

Lemma 2.1.1.1 Let R be a commutative ring and ri ∈ R, ∈ I. Then there exists a unique evaluation morphism

Z[Ti] → R mapping Ti to ri. The image of P is denoted by P(ri).

Proof. Only the multiplicativity is unclear. With the above notation

P(ri)Q(ri) =
∑

xµr
µ
∑

yνr
ν =

∑
µ+ν=κ

xµyνr
µrν

commutativity
=

∑
µ+ν=κ

xµyνr
κ = (PQ)(ri)

with rµ =
∏
rµi

i (finite product which does not depend on the order of the factor by commutativity).

2.1.2 Principle of the permanence of identities

Proposition 2.1.2.1 Let P ∈ Z[T1, · · · ,Tn] and Ii, 1 = 1, · · · , n be infinite sets of some field of character-

istic zero k. If P vanishes on
∏

Ii, then P = 0. In particular, for any ring R and any (ri) ∈ Rn, we have

P(r1, · · · , rn) = 0. For example, if a polynomial P of integral coefficients in the variables Ti,j , 1 ≤ i ≤ n, j ≤ m

vanishes on all complex matrices [ti,j ] (or even on some open set) of Mn,m(C), then for any ring R and

M ∈ Mn,m(R) we have P(M) = 0.

Proof. We observe Z[T1, · · · ,Tn] ⊂ k[T1, · · · ,Tn] (because the characteristic of k is zero) and we reduce

by induction to the fact that a polynomial in one variable not identically zero has only a finite number

of roots.

2This condition is not empty only for infinite I, which will rarely be useful to us.
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Corollary 2.1.2.2 All integral formulas for the determinant which are valid for complex square matrices remain

valid for square matrices in any commutative ring R.

This is in particular the case for the Cramer’s rule tCom(A)A = AtCom(A) = det(A) Id for any A ∈

Mn(R) and its corollary the multiplicative group GLn(R) of matrices having an inverse is equal to {A ∈

Mn(R)| det(A) ∈ R×}.

This also allows us to consider the special linear group SLn(R) = Ker(GLn(R) → R×) which is of

fundamental importance.

Remark(s) 2.1.2.3 As the interested reader can check, all formal properties of the determinant can easily be proved

directly for matrices with coefficients in a ring without using any linear algebra in a field.

2.1.3 Cayley-Hamilton in Mn(R)

Let us start with a simple lemma, which is usually considered more or less “obvious” in a commutative

situation.

Let τ ∈ R be an element of a non-necessary commutative ring with unit R and let R[T] → R be the

evaluation additive group morphism

P(T) =
∑
i≥0

πiT
i 7→ P(τ) =

∑
i≥0

πiτ
i

.

In this non-commutative situation we have to be careful with its multiplicativity.

Lemma 2.1.3.1 Let P =
∑
i πiT

i,P =
∑

PiT
i ∈ R[T] and assume that t commutes with all the coefficients πi

of P. Then,

(PP)(τ) = P(τ)P(τ).

Proof. We have

[PP](τ). =
∑
k

 ∑
i+j=k

πiπj

 τk ==
∑
i,j

πiπjτ
i+j

and

P(τ)P(τ) =
∑
i

πiτ
i
∑
j

πjτ
j =

∑
i,j

πiτ
iπjτ

j τ
ipj=pjτ

i

=
∑
i,j

πiπjτ
i+j
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Corollary 2.1.3.2 (Cayley-Hamilton) Let A ∈ Mn(R) and χA(T) = det(T Id−A). Then, χA(A) = 0.

Proof. For the first point, Cramer’s rule applied to T Id−A ∈ Mn(R[T]) = Mn(R)[T] gives the identity

(∗) tCom(T Id−A)(T Id−A) = χA(T) Id.

Since A commutes with the two coefficients Id,A of T Id−A, the lemma 2.1.3.1 shows that the evaluation

of (*) at τ = A is the product of the evaluation of tCom(T Id−A) at τ = A and the evaluation at τ = A

af T = A of T−A, which is zero. So is the evaluation χA(A) on the right.

2.2 Maximal rank matrices

As usual, each A ∈ Mp,q(R) is identified with the (R-linear) map X 7→ AX from Rq to Rp. We assume

that R is not the zero ring.

Proposition 2.2.0.1 Let p, q ne positive integers and A ∈ Mp,q(R),B ∈ Mq,p(R)

1. If q < p, then det(AB) = 0.

2. If A is surjective, then q ≥ p.

3. If A is injective then q ≤ p.

4. If A is bijective then q = p

Proof. (1). As before, we consider the generic matrices A = (Xi,j),B = (Yj,i) with Xi,j ,Yi,j , 1 ≤ i ≤

p, 1 ≤ j ≤ p are indeterminates and we look in the general matrix identity det(AB) = 0 which is a

polynomial identity of q2p2 indeterminates in Z[Xi,j ,Yj,i]. But this identity is true for complex matrices

Ac,Bc because the square matrix AcBc cannot be injective because Bc : C
p → Cq is not (for dimensional

reasons).

(2). Let Bj ∈ Rq, j = 1, · · · ,m be such that ABj = E1,j (E1,j is the usual “canonical basis” of Rq) and

B ∈ Mq,p(R) be the corresponding matrix. You have AB = Idq . Taking the determinant, we get q ≥ p

thanks to (1).

(3). Assume by contradiction q > p and let B =

 Idp

0q−p

 which defines the canonical injection Rp ↪→ Rq .

Let C = BA ∈ Mq(R) and L = (0, . . . , 0, 1) = E1,q ∈ M1,q(R). Since q > p, you have LB = 0. By Cayley-

Hamilton there exists a monic polynomial Td+
∑
i<d aiT

i which annihilates C. We can assume that d is

minimal among these polynomials. Since C is injective as B and A, one has a0 ̸= 0 by minimality. Left

composing the equation Cd+
∑
i<d aiC

i = 0 with L, we get a0L = 0 and therefore a0 = 0, a contradiction.
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(4). Any (2) or (3) implies (4) (apply for both A and A−1, the latter being defined as usual because A is

bijective).

Remark(s) 2.2.0.2

• A more natural, but less elementary, proof will be given below. Specifically, see 4.6.9 for (2) and (4) with an

argument using the choice axiom, and 5.3.7 for (2), (3) and (4) with an argument not using the choice axiom.

The idea in this last case is to reduce to this statement by reducing to the case of a matrix with coefficients in

a field using Krull’s lemma(1.3.2.4).

• I have learned the nice argument in (3) from the post https: // mathoverflow. net/ q/ 47846 of Balasz

Strenner.

2.3 Reminder on Gauss elimination method

Let us give a version of Gauss elimination which, as far as possible, does not use dilatations or permu-

tation matrices.

The nine chapters Karl Friedriech Gauss

The elimination method was rediscovered by Gauss and Jordan in the 19th century. But it was known

to the Chinese at least in the 1st century BCE ([8]).

With definition 1.2.2.1 in mind, we set

Definition 2.3.0.1 Let R be a ring and p, q ≥ 1 two integers. We denote by En(R) the subgroup of GLn(R)

generated by the transvections. We say that two matrices A,B of Mp,q(R) with p, q ≥ 1 are

• Gauss-equivalent (A ≡ B) if they differ by a series of left and right multiplications by transvections (that we

call Gauss-operations) or equivalently if the exists P ∈ Ep(R),Q ∈ Eq(R) with B = P−1AQ.;

https://mathoverflow.net/q/47846
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• equivalent (A ∼ B) if the exists matrices P ∈ GLp(R),Q ∈ GLq(R) with B = P−1AQ.

Gauss equivalent ⇒ equivalent. Note also that the Gauss equivalence a priori uses permutation matrices.

But they are hidden in the definition (see 2.3.1.1).

2.3.1 Some universal formulas

Although the reader can skip this (elementary) section, the following examples will be quite useful (see

8.4.0.1 below). This also illustrates how permutation matrices can play(or do not play) a role in the

Gauss elimination method, no matter what the coefficients ring is a field. Recall that R is an arbitrary

(commutative) ring.

Lemma 2.3.1.1

1. Let D be an invertible diagonal matrix of Mn(R). Then, D ≡ diag(det(D), 1, . . . , 1).

2. Let any permutation matrix Mσ, σ ∈ Sn is Gauss equivalent in Mn(Z) hence in Mn(R) to

diag(ε(σ), 1, . . . , 1).

3. Let t, a0, . . . , an−1 ∈ R and

C(t, an−1, . . . , a0) =



t 0 · · · an−1

−1 t 0 · · · an−2

...
. . . . . . · · ·

...

. . . 0 −1 t a1

· · · · · · 0 −1 a0


∈ Mn(R).

Then, C(t, an−1, . . . , a0) ≡ diag(1, . . . , 1,
∑
ait

n−i).

Proof.

1. An easy induction argument reduces to the n = 2 case. And we just perform the Gauss operations

(having in mind that the determinant remains 1 to simplify the computations3)

x 0

0 y

 Col≡

x x

0 y

 Lin≡

 x x

1− y 1

 Col≡

xy x

0 1

 Lin≡

xy 0

0 1


2. Induction on n starting with the tautological n = 1. As always, the key point is n = 2 which is

solved thanks to the formula

(∗) M(1,2) = diag(−1, 1)T1,2(−1)T2,1(1)T1,2(−1) = T1,2(1)T2,1(−1)T1,2(1) diag(−1, 1)

3We indicate the pivot and the bold coefficient is the pivot
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If n > 2, using (1, 2, 3) = (1, 2)(2, 3) and (*), we get that M(1,2,2) is the product of (6!) transvections.

In particular, a product of an even number of transvections is Gauss-equivalent to Id and finally

using (∗) again, we get the result.

3. Using successive columns operations of type Cn 7→ Cn + xjCn−j for j > 1, we put zeros on the last

column to get by inductions the equivalences

C(t, an−1, . . . , a0) ≡ C(t, an−1, . . . ap+1, ap + ap−1t+ . . . a0t
p, 0, . . . , 0)

and finally

C(t, an−1, . . . , a0) ≡ C(t,
∑

ait
n−i, 0, · · · , 0) = C(t, 1, 0, · · · , 0).diag(1, . . . , 1,

∑
ait

n−i).

But

C(t, 1, 0 . . . , 0) =



t 0 · · · 1

−1 t 0 · · · 0

...
. . . . . . · · ·

...

. . . 0 −1 t 0

· · · · · · 0 −1 0


≡



0 0 · · · 1

−1 t 0 · · · 0

...
. . . . . . · · ·

...

. . . 0 −1 t 0

· · · · · · 0 −1 0


and using line operations

-1 t 0 · · ·
...

. . . . . . · · ·

. . . 0 −1 t

· · · · · · 0 −1


≡



−1 0 0 · · ·
...

. . . . . . · · ·

. . . 0 −1 t

· · · · · · 0 −1


≡ · · · ≡ − Idn−1

and therefore

C(t, 1, 0 . . . , 0) ≡ C(0, 1, 0, . . . , 0) = diag(1,− Idn−1)Mσ

where σ is the n-cycle (1, 2, . . . , n) of signature ε(σ) = (−1)n−1 giving the result by (1) and (2).

2.3.2 The usual field case

Proposition 2.3.2.1 Let A ∈ Mp,q(k)− {0}.

1. There exists δ ∈ k∗ such that A is Gauss-equivalent to diag(δ, Idρ, 0p−ρ,q−ρ) with ρ = rank(A)− 1.

2. GLn(k) is generated by transvections and dilatations.

3. SLn(k) is generated by transvections.
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Proof.

(1). Induction on p+ q ≥ 2, the case p+ q = 2 being trivial we assume now p > 1 or q > 1. If both the last

column and line are zero, one applies the induction to the (necessarily non zero) remaining Mp−1,q−1(k)

matrix.

The key point is showing that a non zero line (x, y) is Gauss equivalent to (0, 1). We perform column

operations with the pivot written in bold and the other (changing coefficient) by a ⋆. Because (x, 0) ≡

(⋆, x) we can assume y ̸= 0. Then, we have, (⋆,y) ≡ (1, ⋆) ≡ (1, 0) ≡ (⋆,1) ≡ (0, 1) as wanted.

Transposing if necessary, we can assume that either the last line is nonzero, i.e.there exists j < q such

that ap,j ̸= 0. Using the previous case (for the line of indices j, q), one can assume ap,q = 1.

Then, again using Gauss-operations Cj 7→ Cj − ap,jCq and Li 7→ Li − ai,qCq , one can now assume that

the only non zero coefficient of the last line and column is ap,q = 1 and we finish by induction on the

remaining Mp−1,q−1(k) matrix.

(2) and (3) are direct consequences of (1).

Recall that the derived subgroup D(G) of a group G is the subgroup generated by the commutators [g, h] =

ghg−1h−1, g, h ∈ G. It is normal and G/D(G) is the largest abelian quotient of G.

Corollary 2.3.2.2 One has

1. D(GL(V)) = SL(V) except if n = 2 and Card(k) = 2.

2. D(SL(V)) = SL(V) except if n = 2 and Card(k) = 2, 8.

A group G with D(G) = G is called perfect.

Proof. We identify V and kn by the choice of a basis of V. Proof of (1). Because the derived group

is normal and all transvections are conjugate in GLn (due to the relation Eσ(i),σ(j) = MσEi,jM
−1
σ for

σ ∈ Sn), it is enough to show that in our case one transvection is a commutator. If n ≥ 3 and any

characteristic, one computes [Id+E2,1, Id+E1,3] = Id+E2,3. If n = 2, let us choose λ ̸= 0, 1. Then,

[diag(λ, 1),T1,2(λ) = T1,2(λ− 1) which is a transvection.

Proof of (2). If n ≥ 3, two transvections τ ′ = gτγ−1 are certainly conjugate not only under GLn [Because

one can change g by a dilation of ratio det(g)−1 commuting with τ ]. We leave the n = 2 case in exercise

(adapt the GLn argument with a general diagonal matrix in SL2).

Let V be an n-dimensional vector space with n ≥ 2, PV its set of lines (dimension 1 linear subspaces),

PV∗ its set of hyperplanes (dimension (n− 1) linear subspaces)4.

4At this stage, this is just a notation. Nothing has to be known about projective geometry.
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2.3.3 Normal subgroups of GL(V)

We will explain the so-called Iwasawa to study normal subgroups of perfect groups G, or equivalently

we will give a criterium of simplicity of G/Z(G) where Z(G) is the centrum of G.

Definition 2.3.3.1 Let G be a group acting on a set X,and B ⊆ X.

1. We say that B is a G-block and if for all g ∈ G, the sets gB and B are either equal or disjoint. Blocks reduced

to a point or to the whole X are called trivial.

2. We say G acts primitively on X if:

(a) The action of G on X is transitive;

(b) the only G-blocks are trivial.5.

3. We say G acts 2-transitively on X if for all x1, x2, y1, y2 ∈ X, x1 ̸= x2, y1 ̸= y2, there exists g ∈ G such

that g · x1 = y1 and g · x2 = y2.

Lemma 2.3.3.2 Let G be a group acting 2-transitively on a set E. Then the action is primitive.

For instance, SL(V) and GL(V) act 2-transitively on PV if dim(V) ≥ 2.

Proof. Let B be a subset of X having at least two elements and such that B ̸= X. Let us show that there

exists g ∈ G such that gB ̸= B and gB ∩ B ̸= ∅ and therefore that B is not a G-block.

Let a ̸= b ∈ B and c ∈ X \ B. By 2-transitivity, there exists g ∈ G such that ga = a and gb = c. We have

a ∈ gB ∩ B, hence gB ∩ B ̸= ∅, and c ∈ gB, c /∈ B, hence gB ̸= B.

Proposition 2.3.3.3 (Iwasawa criterium) Let G be a group acting faithfully and primitively on a set X. We

assume that there exists a family Kx ⊂ Gx, x ∈ X such that

1. Each Kx is abelian.

2. For any g ∈ G⟩,G = ⟨gKg−1⟩.

3. ∪x∈XKx generates G.

Then any normal subgroup acting non trivially on X contains D(G).

Proof. We start with the direct part of the previous footnote.
5Or equivalently (exercise) if the stabilizer Gx of a point x ∈ X is a maximal subgroup of G.
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Lemma 2.3.3.4 The stabilizer Gx of any primitive action is a maximal subgroup of G.

Proof. Let Gx ⊂ H ⊂ G and B = {hx, h ∈ H}. I claim that B is a block. If not, assume B ∩ g(B) ̸ ∅.

There exists h, h′ ∈ H such that hx = gh′x hence h−1gh′ ∈ Gx ⊂ H. Therefore, g ∈ H and g(B) ⊂ B

proving B = {x} and B = X by primitivity assumption. In the first case, H = Gx and we are done. In

the second case, H acts transitively on X. Therefore, for any g ∈ G there exists h ∈ H such that gx = hx

hence gh−1 ∈ Gx ⊂ H showing g ∈ H.

Let N be a normal subgroup and let x ∈ X. Since N is normal, NGx is a subgroup of G containing Gx

and is therefore equal to Gx or G by maximality.

If NGx = Gx, we have N ⊆ Gx, and therefore for all

g ∈ G, gNg−1 ⊂ gGxg
−1 = Ggx.

By normality of N, we get N = N∩ gNg−1 ⊂ Gx ∩Ggx, hence N acts trivially on X and therefore N = {1}

because G hence N acts faithfully on X: we are done in this case.

Assume now NGx = G. One has Nx = NGxx = Gx = X because G acts transitively and therefore N acts

transitively on X. Let y = nx, n ∈ N be any point of X and κ ∈ Ky = nKxn
−1 which can therefore be

written κ = nkn−1 with (n, k) ∈ N×Kx. We have

κ = nkn−1 = nkn−1k−1k
N◁G
∈ NKx

proving Ky ⊂ NKx for any y ∈ X hence G = NKx. We deduce that the morphism k 7→ k mod N is a

surjection from the abelian group Kx to G/N commutative hence N ⊂ D(G).

Corollary 2.3.3.5 If dim(V) ≥ 2, any normal non trivial normal subgroup of GL(V) (or SL(V)) contains SL(V)

unless k is a field with 2 (or 8) elements.

Proof. Take X = P(V) and Kx
∼→ Hom(V/Dx,Dx) be the group of transvections of line Dx (cf. 7.8.8) and

apply Iwasawa criterium and 2.3.2.2.

2.4 Exercises

Exercise 2.4.1 Let k be a field and R a ring.

1. Assume that R is a domain and letP,Q ∈ R[T]−{0}. Prove deg(PQ) = deg(P)+deg(Q) and deduce that

R[T] is a domain.

2. Show that the invertible elements of k[T] are the non-zero constant polynomials from k∗ (compare with 2.4.7).
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3. Show that a matrix from Mn(R) is invertible if and only if its determinant is an invertible of R×.

4. Deduce that M ∈ Mn(k[T]) is invertible if and only if det(M) ∈ k∗.

Exercise 2.4.2 Prove that the evaluation map of lemma 2.1.3.1 is a (skew)-ring morphism if and only t commutes

with any element of R.

Exercise 2.4.3 Give an example of square matrices τ,A ∈ M2(C) such that the evaluation at τ of tCom(T Id−A)(T Id−A) =

χA(T) Id is not equal to the products of the evaluation at τ of tCom(T Id−A) and of (τ −A). What is the value

of χA(τ) in this case ?

Exercise 2.4.4 With the notation above prove the identity

TnχAB(T) = TmχBA(T)

Hint : Consider the matrices C =

T Idm B

A In

 , D =

Idm −B

0 T Idn

. Give another proof of 2.1.3.2.(2)

Exercise 2.4.5 Prove that GLn,+(R) and GLn(C) are connected (for their usual metric topology). Same ques-

tions for SLn.

Exercise 2.4.6 Give a computer program of 2.3.2.1 for instance using the open source SAGE mathematical soft-

ware (with Python kernel). Evaluate its complexity and numerical complexity. How can you guarantee that your

program is exact for matrix with rational coefficients ?

Exercise 2.4.7 Let R be a ring and P =
∑n
i=0 aiT

i ∈ R[T].

1. Let x be a nilpotent element of R. Show that 1 + x is invertible.

2. Show that P is nilpotent if and only if for all i ∈ N, ai is nilpotent.

3. Show that P is invertible in R[T] if and only if a0 is invertible and for all i ≥ 1, ai is nilpotent. Hint: if

Q =
∑m
i=0 biT

i is an inverse of P, one could start by showing that for all r ≥ 0, ar+1
n bm−r = 0.

Exercise 2.4.8 Let G act primitively and faithfully on a set X. Assume that for some x ∈ X, the Gx contains an

abelian normal subgroup whose conjugate subgroups generate G. Then D(G) ⊂ G [Adapt the proof of Iwasawa

criterium].

Exercise 2.4.9 (Dedekind’s independence lemma) Let G be a group and χ1, . . . , χn : G → k∗ distinct

morphisms of groups. Show that the family (χi) is free in the k-vector space Map(G,k) [By contradiction,

starting with a non trivial dependence relation of minimal length relation
∑
λiχi = 0 with λi ∈ k, construct a

shorter one by evaluating this relation at g and gh for h suitably chosen].
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Chapter 3

Modules

3.1 Introduction

Perspective

This chapter introduces the language of modules and diagrams in as light a manner

as possible. The idea behind this is that all formal constructions of vector spaces

or abelian groups apply mutatis mutandis to this general framework by accepting

scalars valued in a ring rather than a field (or integers for abelian groups). As

we shall see here and throughout the text, the diagrammatic perspective (see 3.4),

once familiar, is extremely valuable, unifying and simplifying. Paradoxically, this

attempt at abstraction not only opens the doors to deep, modern mathematics, but

often makes it very concrete, even computable and algorithmic.

It is suggested that the reader first quickly browse through Section 3.2 to pay close attention to the

next points (properties of the cokernel (3.5.0.1), k[T]-module associated to a vector endomorphism (3.7),

fitting ideals) and then focus directly on the exercises. This will allow him to become progressively and

concretely involved in these topics during the next chapters.

0See for example section 8.2 and chapters ?? and 13 dedicated to the study of the linear group and the similarity classes of

square matrices.

31
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Unlike the usual methods of linear algebra, which depend largely on the study of eigenvalues of en-

domorphisms, we will focus on polynomials and their action on endomorphisms. While annihilating

polynomials play a special role, their roots are not really important in deciding whether two endo-

morphisms are similar. The advantage is that we usually do not know how to compute the roots of

polynomials. Worse, the constructions of linear algebra are often discontinuous in the coefficients of

matrices and thus poorly support the numerical approximation of these roots (13). Of course, the notion

of eigenvalue remains essential, as will be seen repeatedly. But it is often useless if one cannot compute

the roots of the characteristic polynomial or, worse, if the characteristic polynomial does not divide.

3.2 Definitions and first examples

We know that a vector space over a field k is an abelian group M equipped with an external law k×M →

M verifying four usual compatibilities rules. The notion of a module is obtained exactly in the same way,

by allowing the field k to be a ring R (recall that for us R is commutative with unit).

Definition 3.2.0.1 Let R be a ring.

• An R-module M (or module over R) is an abelian group equipped with a “scalar multiplication” map R ×

M → M verifying the four compatibility rules: for any x, x′ ∈ R and m,m′ ∈ M

1. x(m+m′) = xm+ xm′

2. (x+ x′)m = xm+ x′m

3. 1m = m

4. x(x′m) = (xx′)m

• A submodule N of M is a subgroup stable by scalar multiplication.

• A morphism of modules f : M → M′ is a morphism of abelian groups between two modules M,M′ such that

for all x ∈ R,m ∈ M we have f(xm) = xf(m). The set of these morphisms is denoted by HomR(M,M
′).

As in classical linear algebra, HomR(M,M
′) has a natural R-module structure (exercise) and as in lin-

ear algebra, f ∈ HomR(M,M
′) has an inverse g ∈ HomR(M

′,M) if and only if f is both injective and

surjective (exercise).

Example(s) 3.2.0.2 By definition, modules over fields are vector spaces. Let’s provide more interesting examples.

1. The multiplication of R makes R an R-module whose submodules are by the very definition its ideals.
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2. Z-modules are identified with abelian groups through scalar multiplication

n.m = sign(n)
|n|∑
i=0

m, n ∈ Z,m ∈ M.

3. In general, if M is an arbitrary R-module and x ∈ R, we denote AnnM(x) = Ker(M
x−→ M) and M[r] =

∪n>0Ker(M
xn

−−→ M), which is indeed a submodule as a union of increasing submodules (exercice).

4. The set Cc(X,R) of continuous functions with compact support from a topological space X to R is a module

over the ring of continuous functions from X to R. If T is a non-compact metric space, Cc(X,R) is an ideal

but not a ring (exercice). This ideal is not finitely generated for example if X = Rn (exercice).

5. Let Mi, i ∈ I be a family of modules. As in linear algebra, the abelian group product
∏

Mi has a natural

module structure: it is the unique structure such that all projections πj :
∏

Mi → Mj are linear. In other

terms, a.(mi) = (ami) (cf. 3.6.1).

6. With the previous notation, the subset ⊕Mi of
∏

Mi consisting of almost null families is a submodule called

the direct sum of Mi. The (finitely supported) family (mi) is often denoted
∑
mi. If I is furthermore finite,

then ⊕Mi =
∏

Mi (cf. 3.6.1).

7. If V is a k-vector space (or more generally an R-module), the set of formal polynomials1with coefficients

in V is naturally a k[T]-module. Precisely, as a k-vector space, V[T] is the set of formal polynomials with

V-coefficients2

V[T] = {
∑
finite

viTi}
∼→ ⊕NV.

The scalar multiplication is then characterised by T
∑
viT

i =
∑
viT

i+1.

The following table summarizes how the formal constructions of linear algebras adapt to modules. To

simplify the notation, the Greek letters λ, µ . . . denote elements of a ring R, while the Latin letters

x,m, n . . . denote elements of modules. The statements are implicitly universally quantified. So we

write λ(µx) = (λµ)x for ∀λ, µ ∈ R and ∀x ∈ M, we have λ(µx) = (λµ)x.

2That is, sums
∑

i≥0 viT
i with vi = 0 if i is large enough.
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Generalities for modules

Property/Definition Vector space Module

Scalars R R = field R = ring

Addition (M,+) abelian group

External multiplication λ(µx) = (λµ)x and 1x = x

Distributivity λ(x+ y) = λx+ λy, (λ+ µ)x = λx+ µx

Linear combination
∑

finite

λixi

Subspace N N stable by linear combinations

Generated subspace ⟨xi⟩ ⟨xi⟩ ={linear combinations of xi}

Sum of subspaces Ni +Ni ={linear combinations of xi ∈ Ni}

Product3of Ni
∏

Ni = {(xi), xi ∈ Ni}

Direct sum3 of Ni ⊕Ni = {(xi) ∈
∏

Ni|Card{i|xi ̸= 0} <∞}

R(I),Rn R(I) = ⊕IR, R
n = ⊕ni=1R =

∏n
i=1 R

Generalities on morphismes

Property/Definition Vector space Module

Morphism f ∈ HomR(M,M
′) morphisms of groups| f(λx) = λf(x)

f injective Ker(f) = {0}

Isomorphism Bijective morphism

HomR(R
n,M) HomR(R

n,M)
f 7→(f(ej))j

= Mn

Matrices HomR(R
n,Rm) = Mm,n(R)

3.3 Quotient, cokernel

The problem we are tackling is as follows. Let f : M → N be a morphism of R-modules. The injectivity

of f is characterized by the nullity of the kernel, denoted by Ker(f). Is there a module whose nullity can

3See 3.6.1.
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be used to measure the surjectivity of f? We define a relation on N by the condition

n ∼ n′ if and only if ∃m such that n− n′ = f(m).

This is an equivalence relation thanks to the additivity of f . The equivalence class of n ∈ N is defined as

follows:

n = {n+ f(m), m ∈ M} = n+ f(M)

We denote Coker(f) the set of equivalence classes of ∼. Thus, as a set,

Coker(f) = {n+ f(M), n ∈ N}

and the application π : N → Coker(f) defined by n 7→ π(n) = n is surjective. The following statement

is both immediate and significant.

Proposition 3.3.0.1 There exists a unique R-module structure on Coker(f) such that π is a morphism. This

structure is characterized by the following properties: n+ n′ = n+ n′ and n+ n′ is the neutral element, denoted

by 0. Furthermore, f is surjective if and only if coker(f) = 0.

This completes the solution to the problem. A notable and fundamental case arises when f is the inclu-

sion of a submodule.

Definition 3.3.0.2 Let j : N′ ↪→ N be the inclusion of a submodule N′ of N. We say that Coker(j) is the quotient

of N by N′ and we denote it N/N′.

It is important to note that the cokernel can be characterized by its properties, rather than by its con-

struction. This concept is elaborated upon in section 3.6.2.1.

Remark(s) 3.3.0.3 In general, our focus is on modules up to canonical equivalence. To this end, we will identify

two modules for which a canonical isomorphy exists, i.e., one that depends on no choice.

• For instance, as in linear algebra, we will most often identify an injective morphism j : M → N with

the submodule image j(M) because j defines a canonical isomorphism M ≃ j(M) and we simply say (but

somewhat abusively) that M is a submodule of M.

• In linear algebra, the reader is likely accustomed to identifying a finite-dimensional vector space with its

bidual (cf. 7.4.0.1), a Euclidean space with its dual (cf. 7.8.5), a square matrix of dimension 1 with its unique

coefficient (actually its trace), and so on.

We will explore additional examples in the forthcoming sections.



36 CHAPTER 3. MODULES

The following result is formal but important (compare with 3.6)

Proposition 3.3.0.4 If f ∈ HomR(M,N), then f induces a canonical isomorphism f : M/Ker(f) ≃ Im(f).

Proof. We define

f(m) = f(m+Ker(f)) = f(m+Ker(f)) = f(m) + f(Ker(f)) = f(m) ∈ Im(f).

Thus, f is well defined and linear. It is surjective. If m is in the kernel, f(m) = f(m) = 0 and therefore

m ∈ Ker (f) so m = 0.

In particular, if a submodule N of M admits has a complement4 S, the restriction S → M/N of the projec-

tion M → M/N is an isomorphism (see more generally 3.10.6). But, contrary to usual linear algebra, the

existence of complement is exceptional.

3.4 Exact sequences and diagrams

For f ∈ Hom(M,N) a morphism of modules; we have a canonical sequence of morphisms

(∗) 0 → Ker(f)
ι−→ M

f−→ N
π−→ Coker(f) → 0

We notice that the composition of two consecutive morphisms d ◦ δ (namely f ◦ ι and π ◦ f ) are null,

which is equivalent to the inclusions Im(δ) ⊂ Ker(d). But we have better: these inclusions are equalities!

This leads to the following definition

Definition 3.4.0.1 Let di ∈ Hom(Mi,Mi+1) morphisms, noted as a «sequence»:

· · ·Mi−1
di−1−−−→ Mi

di−→ Mi+1 · · ·

.

4Meaning as usual N⊕ S = M.
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1. We say that the sequence is a complex (at i) if di ◦ di−1 = 0 ie Im(di−1) ⊂ Ker (di).

2. We say that the sequence is exact (at i) if in addition Im(di−1) ⊃ Ker (di) ie Ker (di) = Im(di−1).

An exact sequence is therefore a special complex and an (important) example of a diagram. By defini-

tion, the sequence 0 → M
f−→ N is exact if and only if f is injective and M

f−→ N → 0 is exact if and only if

f is surjective. The reader will check that the sequence (*) is exact.

We want to explain how to express properties of morphisms in terms of diagrams. Before we give a

formal definition, let us illustrate this notion with an example.

Slightly generalizing the notion of matrix equivalence (see 2.3.0.1) and matrix similarity, let us recall

standard definitions of linear algebra.

Definition 3.4.0.2

1. a ∈ Homk(V,W) and a′ ∈ Homk(V
′,W′) are said equivalent (a ∼ a′) if there exist isomorphisms f :

V′ ∼−→ V, g : W′ ∼−→ W such that a′ = g−1 ◦ a ◦ f .

2. a ∈ Endk(V) and a′ ∈ Endk(V
′) are said similar (a ≈ a′) if there exist an isomorphism f : V′ ∼−→ V such

that a′ = f−1 ◦ a ◦ f .

Graphically, (1) means that in the diagram

V′ a′ //

f

��

W′

g

��
V

a //W

the two possible ways to join V′ to W by successive compositions from above V′ → W′ → W and from

below V′ → V → W coincides (knowing that the vertical arrows are isomorphisms).

In the same way, (2) means that in the diagram

V′ a′ //

f

��

V′

f

��
V

a // V

possible ways to join V to W by successive compositions from above V′ → V′ → V and from below

V′ → V → V coincides (knowing that the vertical arrows are isomorphisms).

composition is commutative with exact lines5 (this last condition being empty for the first diagram).

A general formal definition (readers are encouraged not to waste too much time on the general defini-

tion, but rather to make it their own with the examples that follow) might be
5By convention, the lines of a diagram are horizontal, the columns vertical.
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Definition 3.4.0.3 Let G = (S,A) be a directed graph with vertices S and edges A.

1. A diagram6is the data for each vertex Σ ∈ S of a module MΣ and for each edge a : Σ> → Σ< of A of a

morphism fa : MΣ> → MΣ< .

2. The diagram is said to be commutative if for every couple of vertices Σ,Σ′, the composed of the fa associated

with an oriented path from Σ to Σ′ depends only on the vertices and not on the chosen path.

In practice, we will only deal with diagrams composed of squares or triangles for which the definition

of commutativity will be obvious.

3.5 Functoriality and diagram chasing

Although very simple, the following functoriality statements are crucial. This is a very convenient form

to formulate the universal properties of kernels and cokernels (cf. §3.6).

Proposition 3.5.0.1 (Functoriality I) Assume we have a commutative diagram of R-modules where the top

horizontal line is exact and the bottom line is a complex.

M1
µ1 //

��

M2
//

��

M3
// 0

N1
ν1 // N2

// N3
// 0

Then there exists a unique morphism

f3 : M3 → N3

making the completed diagram commutative

M1
µ1 //

��

M2
//

��

M3
//

f3

��

0

N1
ν1 // N2

// N3
// 0

If in addition, the lower complex line is an exact sequence and the two arrows Mi → Ni, i = 1, 2 are isomorphisms,

then f3 is an isomorphism. In particular, there is canonical isomorphism Coker (µ1) = M3.

6There are more general definitions, allowing diagrams with several arrows between two edges. We do not use these diagrams.
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Proof. We focus on the existence and uniqueness of the commutative diagram

M1
µ1 //

f1

��

M2

f2

��

µ2 // M3

f3

��

// 0

N1
ν1 // N2

//ν2 // N3

If there are two arrows f3 and f ′3 that work, we have f3 ◦ µ2 = ν2 ◦ f2 = f ′3 ◦ µ2 so f3 and f ′3 coincide on

µ2(M2) = M3 and therefore are equal, hence the uniqueness.

For existence, let m3 ∈ M3 and consider m2 one antecedent by µ2. If m2 is not unique, it is defined

modulo Ker(µ2) = Im(µ1). By linearity, the image ν2 ◦ f2(m2) is well defined modulo ν2 ◦ f2 ◦ µ1(M1).

But by commutativity of the left square, we have ν2 ◦ f2 ◦ µ1 = ν2 ◦ ν1 ◦ f1 = 0 because ν2 ◦ ν1 = 0 by

hypothesis. Thus, ν2 ◦ f2(m2) is well defined, i.e. depends only on m3. Then set f3(m3) = ν2 ◦ f2(m2)

which is checked to work.

For the second part, we can easily verify by hand that the bijectivity of f1, f2 implies that of f3 (exercice).

Let’s give a «categorical»proof, which has the advantage of generalizing to other contexts. Under the

bijectivity assumptions of f1, f2, we want to prove that f3 admits a left inverse g3 and a right inverse d3.

From g3 ◦ f3 = IdM3
we then obtain by composing on the right by d3 the equality g3 = d3 and thus that

f3 is invertible.

Let’s show the existence of g3. Call g1, g2 the inverses of f1, f2. As f2 ◦µ1 = ν1 ◦ f1, by composing on the

left by g2 and on the right by g1 we have ν2 ◦ g1 = g2 ◦ ν1 so we have a commutative diagram with exact

lines

M1
µ1 //

f1

��

M2

f2

��

µ2 // M3

f3

��

// 0

N1
ν1 //

g1

��

N2

g2

��

ν2 // N3

g3

��

// 0

M1
ν1 // M2

//ν2 // M3
// 0

that we can complete uniquely in a commutative diagram with exact lines according to the first point

M1
µ1 //

f1

��

M2

f2

��

µ2 // M3

f3

��

// 0

N1
ν1 //

g1

��

N2

g2

��

ν2 // N3

g3

��

// 0

M1
ν1 // M2

//ν2 // M3
// 0

But by looking at the outer square, taking into account g1 ◦ f1 = IdM1
and g2 ◦ f2 = IdM2

, we have a

commutative diagram with exact lines

M1
ν1 //

Id

��

M2

Id

��

ν2 // M3

g3◦f3
��

// 0

M1
ν1 // M2

//ν2 // M3
// 0
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But we also have a commutative diagram

M1
ν1 //

Id

��

M2

Id

��

ν2 // M3

Id

��

// 0

M1
ν1 // M2

//ν2 // M3
// 0

which, thanks to the uniqueness in the first point, gives g3 ◦ f3 = IdM3
. By exchanging the roles of M,N,

we construct the right inverse of f3.

Let us turn to the last point. By construction of the cokernel, we have a canonical exact sequence

(0) M1
µ1→ M2 → Coker(µ1) → 0

Apply the functoriality to the commutative diagram with exact lines

M1
µ1 //

Id

��

M2
//

Id

��

Coker(µ1) // 0

M1
µ1 // M2

µ2 // M3
// 0

We obtain exactly the same statement by «reversing the direction of the arrows»7

Proposition 3.5.0.2 (Functoriality II) Suppose we have a commutative diagram of R-modules where the bottom

horizontal line is exact and the top line is a complex.

0 // M1
// M2

µ2 //

��

M3

��
0 // N1

// N2
ν2 // N3

Then there exists a unique morphism

ι1 : M1 → N1

making the completed diagram commutative

0 // M1
//

ι1

��

M2
µ2 //

��

M3

��
0 // N1

// N2
ν2 // N3

If in addition, the top complex line is an exact sequence and the two arrows Mi → Ni, i = 2, 3 are isomorphisms,

then ι3 is an isomorphism. In particular, there is canonical isomorphism N1 = Ker (ν2).

7an injection 0 → M → N being thus replaced by a surjection M → N → 0 and vice versa! This is a general phenomenon:

any formal statement involving commutative diagrams, complexes, and exact sequences gives rise to an analogous statement by

reversing the direction of the arrows. We can give a precise sense to this statement valid in any «abelian category». We will content

ourselves, and it is quite sufficient, to see this as a meta-principle.
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A sometimes useful generalization is the famous (and formal) five lemma

Remark(s) 3.5.0.3 The above result is most often in the following weakened form. Consider a commutative

diagram of modules with exact lines

0 // M2
//

f2

��

M3
//

f3

��

M4
//

f4

��

0

0 // N2
// N3

// N4
// 0

If f2, f4 bijective f3 bijective.

3.6 Universal properties

The question posed is to characterize the various modules M in question by the “calculation” of

h(T) = Hom(T,M) or h∨(T) = Hom(M,T)

for T an arbitrary “test module”. This treats T as a variable and h, h∨ as a function of T whose values

are sets. One should say functor: the composition with f ∈ HomR(M,N) defines a (linear) map hf (T) :

hM(T) → hN(T) (resp. h∨f : h∨(N) → h∨M(T)), which is compatible with composition8 The correct

general framework for formulating what follows is that of the Yoneda lemma in categories, but we will

stay within the framework of modules for the examples that interest us, to avoid unnecessary formalism.

3.6.1 Sum and product

Let Mi, i ∈ I be a family of modules. We denote Mi
φi→ ⊕Mi the canonical injections and

∏
Mi

πi→ Mi the

canonical projections. If T is a test module we have the two tautological applications

h∨(T) :

 HomR(⊕Mi,T) →
∏

Hom(Mi,T)

f 7→ (φi ◦ f)

and

h(T) :

 HomR(T,
∏

Mi) →
∏

Hom(T,Mi)

g 7→ (g ◦ πi)

Lemma 3.6.1.1 (Universal properties of sum and product) The applications h(T) and h∨(T) are bijective.

8The reader will recognize the usual notion of «restriction»of a morphism for hf (T) and dually of «transpose»for h∨(f).
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The proof is immediate and left as an exercice. In the case of the direct sum, the meaning of the lemma

is that giving a morphism f : ⊕Mi → T is equivalent to giving a collection of morphisms fi : Mi → T

(thanks to the formula f(
∑
mi) =

∑
fi(mi) which is well defined because the sum is actually finite).

3.6.2 Kernel and cokernel

Let f : M → N be a morphism of modules. By construction, we have the two exact sequences

0 → Ker (f)
j−→ M → N and M → N

p−→ Coker(f) → 0

that characterize kernel and cokernel (see also 3.10.2 and 3.10.5).

If T is a test module we have two tautological applications

h∨(T) :

 Hom(Coker(f),T) → Hom0(N,T) = {ψ ∈ Hom(N,T)|ψ ◦ f = 0}

φ 7→ φ ◦ p

and

h(T) :

 Hom(T,Ker (f)) → Hom0(T,M) = {ψ ∈ Hom(T,M)|f ◦ ψ = 0}

φ 7→ j ◦ φ

Lemma 3.6.2.1 (Universal properties of kernel and cokernel) The applications h(T) and h∨(T) are bijective.

Proof. Let us prove, for example, the universal property of the cokernel ie construct the inverse of h∨(T).

Observing that we have an exact sequence 0 → T
Id−→ T → 0. Let then ψ ∈ Hom0(N,T). The condition

ψ ◦ f = 0 precisely ensures the commutativity of the diagram

M
f //

��

N
p //

ψ

��

Coker(f) // 0

0 // T
Id // T // 0

so that 3.5.0.1 ensures the existence of a unique φ which makes the diagram

M
f //

��

N
p //

ψ

��

Coker(f) //

φ

��

0

0 // T
Id // T // 0
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commute. We verify that the application ψ 7→ φ is the inverse of h∨(T).

The meaning of the lemma is that providing a morphism φ from the cokernel to T is equivalent to

providing a morphism ψ from N to T such that the composition ψ ◦ f is zero, or ψ factors through the

quotient (or is passing to the quotient) in φ if and only if ψ◦ = 0 (and the analogous for the kernel

by reversing the directions of the arrows). From a diagrammatic perspective, we often summarize by

retaining only the informal meaning of the statement:

T

If ψ ◦ f = 0 then M
f // N

ψ

;;

// Coker(f)

∃!φ

OO

Another way of expressing this, in terms of the functors h and h∨, is that the sequences of module

morphisms

0 → Hom(Coker(f),T) → Hom(N,T) → Hom(M,T)

and

0 → Hom(T,Ker (f)) → Hom(T,M) → Hom(T,N)

are exact.

3.7 A key example: the k[T]-module Va

If R = k[T] and M is an R-module, multiplication by the elements of k seen as

constant polynomials makes M a k-vector space. Furthermore, multiplication

by T defines a ∈ Endk(M): the homotethy of ratio T. Conversely, if V is a

k-vector space and a ∈ Endk(V), we define a R-module structure Va on V by

the formula T.v = a(v) and by linearity

P(T).v = P(a)(v) for all P ∈ R = k[T], v ∈ Va = V

These two constructions are inverses of each other:

The k[T]-modules are identified with the pairs (V, a), a ∈ Endk(V).

Submodules of Va are then identified with subspaces of V stable by a (exercice).

From the perspective of morphisms, the identification works as follows. If N = Wb is a second module

associated with an endomorphism b ∈ Endk(W), a morphism f ∈ HomR(M,N) = Homk[T](Va,Vb) is

defined by f ∈ Homk(V,W) such that for any m ∈ M

f ◦ a(m) = f(Tm) = Tf(m) = b ◦ f(m)
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Homk[T](Va,Wb) = {f ∈ Homk(V,W) such that b ◦ f = f ◦ a}

When a = b, Endk[T](Va) is therefore the k-algebra of endomorphisms of V commuting with a.

Corollary 3.7.0.1 If f ∈ Isomk[t](Va,Wb) if and only if a = f−1 ◦ b ◦ f so that Va and Wb are isomorphic if

and only if a and b are similar.

The corollary says that if we understand the module Va up to isomorphism, we understand a up to

similarity. The main tool for “computing” Va is the following crucial proposition, which expresses Va

as a cokernel. This allows its computation using the cokernel functoriality 3.5.0.1 and matrix operations

in Mn(k[T]), as we will see later. Let us explain how to do this.

There is a unique lifting ã ∈ Endk[T](V[T]) of a to V[T] (see 3.2.0.2) characterized by ã(vTi) = a(v)Ti.

Let πa :∈ Hom(V[T] → Va) the unique lifting of IdV (we have πa(
∑
viT

i) =
∑
ai(vi)).

Proposition 3.7.0.2 The sequence

(i) 0 → V[T]
Ti−ã−−−→ V[T]

πa−→ Va → 0

is exact.

Proof. Let v ∈ V. The image of the constant polynomial v ∈ V[T] by πa is v. Therefore πa is onto.

We then have

πa ◦ (Ti− ã)(v) = Tπa(v)− a(v) = a(v)− a(v) = 0

hence πa ◦ (Ti− ã) = 0 since V generates V[T] and therefore Im(Ti− ã) ⊂ Ker (πa).

Conversely, let v(T) =
∑
i≥0 T

ivi ∈ Ker (πa), i.e.

v0 +
∑
i≥1

ai(vi) = 0.

Thus, we have

v(T) =
∑
i≥1

(Tii− ãi)(vi).

But since Ti and ã commute, we have (geometric series sum)

Tii− ãi = (Ti− ã) ◦ (
i−1∑
j=0

Tj ãi−1−j)

and thus v(T) ∈ Im(Ti− ã). Hence the exactness in the middle.

Let us turn to the exactness on the left (although it is not necessary for the purpose of studying matrix

similarity). Indeed,
∑
viT

i ∈ Ker(T Id−ã) if and only if vi−1−a(vi) = 0 for all i setting v−1 = 0. Because

vi = 0 for i≫ 0, we get vi = 0 by descending induction.
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Although the proposition is true in full generality, let us focus to the finite dimension case. Let B =

(εi)1,≤i≤n be a basis of V defining an isomorphism kn
∼−→ V (mapping the canonical basis element ei to

εi) and A = MatB(a) ∈ Mn(k) = Endk(k
n).

By definition, P(T) ∈ k[T] acts on of the k[T]-module on VA = (kn)A by the rule P(T)X = P(A)X for all

X ∈ kn = Mn,1(k) and we have a surjective morphism πA : (k[T])n → (kn)A defined by πA(
∑

XiT
i) =∑

AiXi. By construction, the isomorphism kn
∼→ V defined by B defines an isomorphism of k[T]-

modules (kn)A
∼→ Va. By abuse,we still denote the composite (k[T])n

πA−−→ (kn)A
∼→ Va by πA.

Corollary 3.7.0.3 With the above notations

1. The map (Pi(T) =
∑
j Pi,jT

j) 7→
∑
i,j Pi,jeiT

j is an isomorphism of k[T]-modules (k[T])n ∼→ V[T].

2. The above morphisms makes the following diagram commutative

0 // (k[T])n
Ti−A //

��

(k[T])n
πA //

��

VA = (kn)A //

��

0

0 // V[T]
Ti−ã // V[T]

πa // Va // 0

In other words,

Coker(T Id−A)
∼−→ Va

Observe that the computation is functorial in the following sense. If B = MatB(b) for b ∈ Endk(V), the

diagram

0 // (k[T])n
Ti−A //

��

(k[T])n
πA //

��

Va

��

// 0

0 // (k[T])n
Ti−B // (k[T])n

πB // Vb // 0

3.8 Cokernel of diagonal matrices

The following simple but crucial example generalizes the well-known exact sequence

Z
n−→ Z → Z/nZ → 0

Let us consider a “diagonal rectangular matrix” D ∈ Mp,q(R) «diagonal» in the sense that its coefficients

di,j are zero if i ̸= j and define ν = min(p, q), µ = sup(p, q). We have a block decomposition

D = (∆, 0) if q ≥ p ≥ 1,D =

∆

0

 if p ≥ q ≥ 1



46 CHAPTER 3. MODULES

with ∆ = diag(di) ∈ Mν(R) or in a synthetic way

D =

diag(di)ν,ν 0ν,q−ν

0p−ν,ν 0p−ν,q−ν


(where matrices of size (a, b) with a or b non > 0 are empty). In this setup, the morphism Rq

D−→ Rp

defines a sequence

(∗) Rq = Rν × Rµ−ν

X

Y

 7→D

X

Y

=∆X

−−−−−−−−−−−−−−→ Rp = Rν
X7→(xi mod di)i−−−−−−−−−−−→

ν∏
i=1

R/(di) → 0 if q ≥ p

or

(∗) Rq = Rν

X7→DX=

∆X

0


−−−−−−−−−−−→ Rp = Rν × Rµ−ν

(X,Y)7→((xi mod di)i,Y)−−−−−−−−−−−−−−−−−→
µ∏
i=1

R/(di)× Rν−µ → 0 if p ≥ q

Lemma 3.8.0.1 The sequence (*) is exact. In particular, one has a canonical isomorphism

Coker(D) =

ν∏
i=1

R/(di)× R(µ−ν)+ .

Proof. Let’s deal with the case q ≥ p, the other case being completely analogous.

The arrow Rp = Rν
X7→(xi mod di)i−−−−−−−−−−−→

ν∏
i=1

R/(di) is surjective. We just have to prove the exactness of the

middle.

The composition of the two non trivial arrows is

X

Y

 7→ (dixi mod di)i and is therefore zero proving

the inclusion Im ⊂ Ker.

If X ∈ Rν maps to zero, we have xi mod di = 0 for all i and therefore there exists X′ ∈ Rν such that

x′i = dixi for all i or equivalently X = D

X′

0

 proving Ker ⊂ Im hence the exactness. The last point is

just the functoriality of the cokernel. 3.5.0.1.

With this generality, it’s impossible to recover the diagonal coefficient only from the isomorphism class

of cokernel. It is even the case when n = m = 1: the cokernel of the [6] ∈ M1(Z) is Z/6Z but also

Z/2Z× Z/3Z thanks to the usual Chinese remainder lemma. Let’s fix this problem.

We say, mimicking the definition of a finite dimensional vector space:
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Definition 3.8.0.2 A module M is of finite type if it has a finite generating family (mi)1≤i≤n or equivalently9, if

there exists a surjective morphism π : Rn → M.

Let M be a finite type module. We will define in general an increasing sequence of ideals depending

only on M which are effectively computable in most of the case: its Fitting ideals10. If they do not fully

determine M, they give a deep insight on M and even determine M when R is a PID as we will see later.

3.8.1 Determinantal ideals

Let A,B ∈ Mp,q(R). Let us recall that for any integer subsets I ⊂ [1, · · · , p] and J ⊂ [1, · · · , q] of the same

cardinality n, the minor AI,J of A the size n square matrix AI,J = (ai,j)i∈I,j∈J. Its determinant is defined

up to sign, depending on orderings on I and J.

Definition 3.8.1.1 For n ∈ Z, we define

∧n(A) = ⟨det(AI,J, I ⊂ [1, · · · , p], J ⊂ [1, · · · , q] and Card(I) = Card(J) = p⟩

the ideal generated by the determinant of all size n minors A.

If n ≤ 0, the minors are the empty matrix whose determinant is 1 and ∧n(A) = R. If n > min(p, q),

we have not any minor and ∧n(A) = {0}. Using the development of a matrix with respect to a row or

column gives that ∧n(A) is a decreasing sequence of ideals.

Lemma 3.8.1.2 Let A,B ∈ Mp,q(R) and Q ∈ Mq,r(R).

1. ∧n(AQ) ⊂ ∧n(A) for any n ∈ Z.

2. If A and B are equivalent then ∧n(A) = ∧n(B) for all n ∈ Z.

Proof.

1. Each column of AQ is a linear combination of columns of A. The multilinearity of the determinant

then ensures that the minor (AQ)I,J is a linear combination of determinants of size nmatrices whose

columns are made from columns of A (possibly equal) and whose rows are indexed by I. If two

columns are equal, the determinant is zero (the determinant is alternating). Otherwise, the set of

columns in question is indexed by a set K of cardinality n and the determinant in question is of the

9Define π(xi) =
∑

ximi and conversely strating from π defined mi = π(ei).
10Our presentation is sort of mix between the original approach of H. Fitting [10] and a nice presentation due to Melvin Hochster.
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form AI,K which implies that det(AP)I,J is a linear combination of det(AI,K) with Card(K) = n, and

therefore belongs to ∧n(A).

2. If Q ∈ Mq(R) is invertible, applying (1) to AQ and Q−1 yields an equality ∧n(AQ) = ∧n(A) in this

case. Since the determinant of a matrix is equal to that of its transpose, we get ∧n(A) = ∧n(tA) for

all n and therefore ∧n(PA) ⊂ ∧n(A) if P ∈ GLp(R) hence the result.

Example(s) 3.8.1.3 Because square invertible matrices are equivalent to Id, we get A ∈ Mn(R) invertible if (and

only if!) ∧n(A) = R for n ≤ p and ∧n(A) = R for all i > p.

If R = k is a field, we know better (Gauss algorithm for instance): any A ∈ Mp,q(k) is equivalent to

diagonal matrix Dr = diag(ir, 0) ∈ Mp,q(k) (with r = rk(A)). By direct computation, we certainly have

∧n(Dr) = {0} for n > r and ∧n(Dr) = k if n ≤ r. We deduce

Corollary 3.8.1.4 If A,B ∈ Mp,q(k), then rank(A) ≤ n if and only of ∧n+1(A) = {0}. It is equal to n if

moreover ∧n(A) ̸= {0}. Equivalently, A,B are equivalent if and only if ∧n(A) = ∧n(B) for all n ∈ Z.

We will see later that this remains true if R is a PID (6.3.1.2), but is not true in general (6.7.15).

3.8.2 Fitting ideals

Let #»m = (mi)1≤i≤n be generators of M and π : Rn
(m1,...,mn)−−−−−−−→ M the corresponding surjective morphism.

By definition (xj) ∈ Rn belongs to Ker(π) if and only if there exists a relation
∑
xjmj = 0 between these

generators.

Let KJ = (Kj)j∈J be any family or relations (finite or not), i.e.Kj ∈ Ker(π). We denote ∧p( #»m,KJ) be the

the ideal generated by the size p minors extracted from KJ (meaning a size p minor of the (n, p) matrix

Kj1 , . . . ,Kjp where j1, . . . , jp ∈ J).

1. If p > n, there is not any such minor and ∧p( #»m,K) = 0.

2. f p ≤ 0, the matrix is empty whose determinant is 1 and ∧p(K) = R.

Let J ⊂ J′. We certainly have ∧p( #»m,KJ) ⊂ ∧p( #»m,KJ′) for all p. We certainly have equality when KJ′

differs from KJ by just adding 0

(∗) if for all j′ ∈ J′ −K we have Kj′ = 0 then for all p, ∧p( #»m,KJ) = ∧p( #»m,KJ′)
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or, in down to earth term, adding 0 column -i.e.trivial relations- does not change ∧p (a minor of KJ′ is

either 0 or a minor of KJ depending if all the corresponding columns belong to J or not). More generally,

let us prove

Lemma 3.8.2.1

If Kj′ ∈ Span(Kj , j ∈ J) then for all p ∧p ( #»m,KJ) = ∧p( #»m,KJ′)

Proof. We have to prove ∧p( #»m,KJ′) ⊂ ∧p( #»m,KJ). Because any minor of KJ′ involves finitely many

columns which in turn are a linear combination of finitely many columns of KJ, one can assume J, J′ fi-

nite. If we write Kj′ =
∑
aj,j′Kj for each j′ ∈ J′, we get K′

J = KJA where A is a matrix of HomR(R
J′
,RJ).

This shows that (KJ,KJ′) = (KJ, 0)

Id A

0 Id

 and (KJ,KJ′) and (KJ, 0) equivalent. They have therefore

the same invariant ideals and we get ∧p( #»m,KJ,KJ′) = ∧p( #»m,KJ, 0)
(∗)
= ∧p( #»m,KJ).

The lemma immediately gives

Corollary 3.8.2.2 If both KJ and K′
J generate Ker(π), then ∧p( #»m,KJ) = ∧p( #»m,KJ′) for all p. We will denote

these common values by ∧p( #»m).

In other words, the determinantal ideals ∧p( #»m) does not depend on the system of generators of Ker(π).

Let us prove in a analogous way that it does not depend on the choice of generators in the following

sense.

Lemma 3.8.2.3 Let m′ ∈ M. Then ∧p+1( #»m,m′) = ∧p( #»m) for all p ≥ 0. In other words, ∧n+1−p( #»m,m′) =

∧n−p( #»m) for all p ≤ n.

Proof. Let us write m′ =
∑
i ximi and let π′ : Rn+1 ( #»m,m′)−−−−→ M. Then π′(t(yi)) = 0 if and only if

0 =
∑
yimi + yn+1m

′ =
∑

(yi − yn+1xi)mi = π(t(yi − yn+1xi)) = 0 giving Ker(π′) = Ker(π) ⊕t

(−x1, . . . ,−xn, 1). If KJ is a family of generators of Ker(π) seen as a family of vectors of Rn ⊂ Rn+1 with

last coordinate 0, we have K′ = (KJ,



−x1
...

−xn
1


) generate Ker(π′). To compute a p+ 1 minor of K′, we can

assume J finite and consider K′ as a matrix in

K′ =

K ∗

0 1

 ∈ Mn+1,q+1
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where q = Card(J). But K′ is equivalent (Gauss operations) to K′ =

K 0

0 1

 whose p + 1 minors are

either those of K of size p or 0 depending if the last line and column is among the lines/rows defining

the minor or not. By invariance of determinantal ideals under equivalence, the lemma follows.

Thanks to the above independence lemma, the following definition makes senses.

Definition 3.8.2.4 Let #»m = (m1, . . . ,mn) be a finite generating family of M and let p ≥ 0. We define the

sequence of Fitting ideals11Φ•(M) = (Φp(M))p of M by the formula

Φp(M) = ∧n−p( #»m).

Example(s) 3.8.2.5 If M = Rn, using the canonical basis as generators of Rn to compute the Fitting ideals, we

get Ker(π) = {0} and all the minors are empty and therefore have determinant 1 and therefore Φp(M) = R if

p ≤ n and Φp(R
n) = {0} if p > n.

The main immediate but deep properties of Fitting ideals are summarized below.

Proposition 3.8.2.6 Let M,M′ be a finite type module and A ∈ Mn,q(R).

1. We have Φp(M) = {0} if p < 0 and Φp(M) = R if p > n.

2. For I and ideal of R, the only non trivial Fitting invriant is Φ0(R/I) = I.

3. The sequence Φ•(M) is increasing.

4. If f : M → M′ is is an isomorphism, then Φ•(M) = Φ•(M
′).

5. If M = Coker(A), the determinantal ideals ∧n−p(A) = Φp(M) does not depend on A but only on M.

6. Φp(M⊕M′) =
∑
i+j=p Φi(M)Φj(M

′).

Proof.

1. By definition (see 3.8.1).

2. Use the projection R → R/I to compute the (1) minors.

11In his seminal paper [10], Fitting considered the ideals associated to the family of Ker(π) generated by all its elements. But

it’s quite clear that it knew that a generating family is sufficient. His goal was to define invariants of modules.
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3. Developing a determinant with some row gives ∧n+1(A) ⊂ ∧p(A) giving (1).

4. If π : Rn → M is onto, so is f ◦ π : Rn → M′ and π, f ◦ π have the same kernel. Therefore, their

Fitting ideals are equal because the corresponding set of relations are equal!

5. This is the independance of Fitting ideals from the generator set.

6. If π, π′ are surjective morphisms Rn → M,Rn
′ → M′ respectively, so is

π ⊕ π′ : Rn+n
′
= Rn ⊕ Rn

′
→ M⊕M′

with kernel the direct sum of the kernels. The corresponding minors are diagonal matrices of minors

of π and π′ whose determinant is their product.

3.9 Properties to handle with caution

Let us first summarize the notions we will be talking about. Unless their definitions are just mimicking

classical linear algebra, their properties in the module case are heavily different as we will discuss.

Finiteness and Freeness

Property/Definition Vector space Module

Free family (xi)i∈I

∑
λixi = 0 ⇒ λi ≡ 0 or R(I) λi 7→

∑
λixi−−−−−−−→ M injective

Generating family (xi)i∈I ⟨xi⟩ = M or R(I) λi 7→
∑
λixi−−−−−−−→ M surjective

Base (xi)i∈I (xi) free and generating or R(I) λi 7→
∑
λixi−−−−−−−→ M bijective

Free module M M ≃ R(I) i.e. M admits a base

Finite type module M finite generating family or Rn → M surjective

3.9.1 Finiteness

We have defined the Fitting ideals of any finite type module M and we have seen that they are just deter-

minants of minors of a matrix A provided M
∼→ Coker(A). These modules are called finite presentation

modules.

11Se 3.9.4.2 for the finite type case and chapter 5 in general.
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Definition 3.9.1.1 A module M is of finite presentation if there is an exact sequence Rm → Rn → M → 0.

Down to earth, this means exactly that the kernel Rn → M is finitely generated. Contrary to the case of

vector spaces, for general rings it is not true that a submodule of a module of finite type is of finite type..�

As we will see in detail in the chapter 5, rings for which this pathology does not occur are Noetherian

rings, a huge generalization of fields containing almost all rings that appear naturally in algebra or

number theory. As a first approach, let us explain here how they are defined and what this means for

our finiteness problem.

Definition 3.9.1.2 A ring is Noetherian if every ideal is finitely generated.

For instance, fields and PID are Noetherian. By definition, any finite type module over a Noetherian

ring is of finite presentation.

Exercise 3.9.2 Show that the rings of continuous real functions on R is non Noetherian.

Proposition 3.9.2.1 Let M be a finite type module over a Noetherian ring R and N ⊂ M a submodule. Then N is

of finite type.

Proof. Induction on the minimal number n of generators of M (obviously true for n = 0!). Assume M

is generated by n + 1 element : we have a surjective morphism π : Rn+1 → M inducing a surjection

N = π−1(N) → N. We just have to prove that N is of finite type. The kernel of the projection

p :

 Rn+1 → R

(x1, . . . , xn+1) → xn+1

is Rn and we have an exact sequence 0 → N ∩ Rn → N → p(N) → 0. By induction, N ∩ Rn has a finite

number of generators gi. But p(N) is an ideal of R which has a finite number of generators of the form

p(γj). The finite family (gi, γj) generates N.

Exercise 3.9.3 Adapt the proof below and prove that if R is a PID, any submodule of Rn is free (we will give a far

more general statement in 6.4.0.1).

3.9.4 Free modules

The reader will convince himself that the data of a basis (ei)i∈I of M is equivalent of the data of an

isomorphism R(I) ∼→ M. When such a data exists, we say that M is free. As soon as R is not a field, there
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are plenty of non free module . Indeed, if x is neither 0 or invertible, the R-module R/(x) is never free�

(exercice).

Example(s) 3.9.4.1

• R is a free module with base 1. More generally, Rm is free with base (canonical) (ej = E1,j)1≤j≤m or even

R(I) is free with basis (ej)j∈J with ej = (δi,j)j∈I.

• R<n[T] is a free R-module with base Ti, i < n therefore of rank n for n ∈ N = N ∪ {∞}.

• Mp,q(R) is a free module with the standard base (Ei,j)1≤i≤p,1≤j≤q .

• If (ei)1≤i≤n is a basis of the k-vector space V ⊂ V[T] (3.2.0.2), then (ei) is a basis for V[T]
∼→ (R[T])n.

Proposition 3.9.4.2 Let M be a finite type module which is free. Then, there exist a unique integer n such that M

is isomorphic to Rn. This integer is called the rank of M.

Proof. Let (mi)i∈I be a basis of M and π : RN → M a surjection (M is of finite type). Let J ⊂ I be the finite

set of indices involved in the decomposition of each π(ek), k = 1, . . .N. The image Im(π) is generated

by (mi)i∈J. Because this subfamily is free, it generates a submodule M′ of M isomorphic to RJ. By

surjectivity of π, one has M′ = M and we get therefore RJ ∼→ M hence the existence of n = Card(J). By

(4) of 2.2.0.1, n is uniquely determined by M.

�

Remark(s) 3.9.4.3

1. This property fails if R is no longer assumed to be commutative (see 3.10.8).

2. We already know that ⊕i∈IMi →
∏
i∈I is not an isomorphism unless all but a finite number of Mi are zero.

In fact, if I is infinite, the direct product RI is usually not even a free module12 (see3.10.11)!

3.9.5 Torsion

A torsion element of a module is an element of M annihilated by a nonzero element of R. If R is a field

(vector space situation) this notion is empty : 0 is the only torsion element. A module whose all elements

are torsion is called a torsion module.
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Example(s) 3.9.5.1 • Any finite ring is torsion.

• In finite dimension, the k[T]-module Va associated to a ∈ End(V) is canceled by χa(T) for instance (2.1.3.2)

and therefore is torsion (or perhaps more elementary, a dependence relation between the n2 + 1 elements

Id, f, . . . , fn
2

in the n2-dimensional vector space Endk(V)) meaning by construction P(T).Va = {0}.).

• More generally13, if I is a nonzero ideal of R, the quotient module R/I is torsion.

If R is an integral domain14 and M a module, the set Mtors of torsion elements of M is a submodule called

torsion module . It is no longer true if R is no integral (observe that 2 mod 6 and 3 mod 6 are torsion in�

Z/6Z but that 5 mod 6 is not). We will prove in the sequel that if R is PID, finite type modules are free6.4

if an only if they have no torsion. This is far from being true in general (7.8.11).

3.9.6 Summary of some specifics of modules

Bases, Finiteness, Complements

Property/Definition Vector space Module

Torsion x ̸= 0 free x ̸= 0 free iff x non torsion

Permanence of finiteness

subvector spaces of kn are of

finite dimension

submodules of Rn of finite

type iff R Noetherian

Bases Always free

Plenty of non free modules if

R ̸= k

Complement submodules Always exist Usually don’t exist

Exact sequences Always split Usually don’t splitt

3.10 Exercises

Exercise 3.10.1

1. Show that an abelian group is finite if and only if the associated Z-module is of finite type and torsion.

2. Show that if Va corresponds to (V, a) (refer to 3.7), then V is finite-dimensional if and only if Va is of finite

type and torsion.
13The advanced reader will notice that Va is isomorphic to k[T]/(µa) where µa is the minimal polynomial of a in the case

where a is a cyclic endomorphism. We will shortly discuss in detail these topics.
14Recall that this means that R is not zero and that the product of two nonzero elements is nonzero.
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Exercise 3.10.2 Let f ∈ Hom(M,N).

1. Show that the sequence 0 → K → M
f−→ N is exact if and only if K can be identified (canonically) with the

kernel of f . Compare with 3.5.0.2 infra.

2. Show that the product or direct sum of exact sequences is still exact.

Exercise 3.10.3 Let R be an integral domain.

1. Show that the relation (r1, s1) ∼ (r2, s2) ⇐⇒ r1s2 = r2s1 defines an equivalence relation on R×(R\{0}).

Denote the equivalence class of an element (r, s) by r
s . Let Frac(R) denote the set of equivalence classes.

2. Define + and · on Frac(R) by

r1
s1

+
r2
s2

=
r1s2 + r2s1

s1s2
and

r1
s1

· r2
s2

=
r1r2
s1s2

Show that Frac(R) is a field (the fraction field of R) with respect to + and · with 0 = 0
1 and 1 = 1

1 .

3. Can you state and prove a universal property of the fraction field?

Exercise 3.10.4 Consider a commutative diagram of modules with exact lines

M1
//

f1

��

M2
//

f2

��

M3
//

f3

��

M4
//

f4

��

M5

f5

��
N1

// N2
// N3

// N4
// N5

1. If f2, f4 injective and f1 surjective, then f3 injective.

2. If f2, f4 surjective and f5 injective, then f3 bijective.

Exercise 3.10.5 (Snake lemma) Consider a commutative diagram of modules with exact rows:

A
i //

f

��

B
p //

g

��

C //

h
��

0

0 // A′ i′ // B′ p′ // C′

1. Show that i sends Ker f into Ker g and p sends Ker g into Kerh.

2. Show that i′ induces a morphism Coker f → Coker g and that p induces a morphism Coker g → Cokerh.

3. Show that there exists a unique morphism δ : Kerh→ Coker f such that the following sequence is exact:

Ker f −→ Ker g −→ Kerh
δ−→ Coker f −→ Coker g −→ Cokerh.

Show that if i is injective and p is surjective, then the following sequence is exact:

0 −→ Ker f −→ Ker g −→ Kerh
δ−→ Coker f −→ Coker g −→ Cokerh −→ 0.

4. (Bonus) Retrieve the Five Lemma from the snake Lemma.
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Exercise 3.10.6 Consider an exact sequence of modules 0 → M1
f1−→ M2

f2−→ M3 → 0. It is said that σ ∈

HomR(M3,M2) is a section of f2 if f2 ◦ σ = IdM3 . When such a section exists, the sequence is said to be split.

1. Assuming such a section exists, show that the application (m1,m3) 7→ f1(m1) + σ(m3) defines an isomor-

phism M1 ⊕M3 ≃ M2. Deduce that M1 ≃ f1(M1) then admits a supplement.

2. Conversely, assume that M1 ≃ f1(M1) admits a complement S. Show that f3 defines an isomorphism

S ≃ M3.

3. Show that a submodule N of M is a direct factor if and only if the exact sequence 0 → N → M → M/N → 0

is split. In this case, show that every supplement of N is isomorphic to M/N.

4. Show that if n > 1, the canonical exact sequence 0 → Z → Z → Z/nZ → 0 is not split. In particular nZ

has no complement in Z.�

5. Let π : Rn+m → Rm be the projection onto the last m coordinates. Show that there is an exact sequence

0 → Rn → Rn+m
π−→ Rm → 0 and that this sequence is split.

6. Suppose there are three square matrices A,B,C with coefficients in R of size n, n+m,mmaking the diagram

commutative

0 // Rn //

A

��

Rn+m //

B
��

Rn //

C

��

0

0 // Rn // Rn+m // Rn // 0

Show that B is block triangular and identify the diagonal blocks. State and prove a reciprocal and compare

with the preceding remark.

Exercise 3.10.7 Let R be a commutative ring. Let I be a directed ordered set, that is, for every i, j ∈ I, there exists

k ∈ I such that k ≥ i, j. Let (Mi)i∈I be a family of R-modules. Assume that for every j ≥ i, we are given an

R-module homomorphism fij : Mi → Mj such that fii = Id and fjk ◦ fij = fik for all i ≤ j ≤ k.

We consider the set E of pairs (i, xi) with i ∈ I and xi ∈ Mi; in other words, E is the disjoint union of the Mi.

1. Define a relation ∼ on E by declaring that (i, xi) ∼ (j, xj) if there exists k ∈ I such that k ≥ i, k ≥ j, and

fik(xi) = fjk(xj). Show that this is an equivalence relation.

The inductive limit of the Mi is defined as the quotient set M of E by this relation. Denote by φi the map from

Mi to M sending xi to the equivalence class of (i, xi).

2. Show that there exists a unique R-module structure on M such that each map φi is an R-module homomor-

phism. We write M = lim−→i∈I
Mi.

3. Show that if N is an R-module, then for every family of homomorphisms ui : Mi → N satisfying uj ◦fij = ui

for all i ≤ j, there exists a unique homomorphism u : M = lim−→i∈I
Mi → N such that ui = u ◦ φi.
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4. Given a map f : M1 → M2 with I = {1, 2}, show that lim−→Mi = coker(f).

5. Let V be the set of neighborhoods of 0 in the complex plane (with the usual topology), ordered by U ≤ V if

and only if V ⊂ U. Let O(U) denote the complex vector space of holomorphic functions on U, and let fU,V

be the restriction map O(U) → O(V). Show that lim−→U∈V
O(U) is naturally isomorphic to the vector space of

power series with nonzero radius of convergence.

Exercise 3.10.8 We will show that if the ring R is not assumed to be commutative, then it may occur that the

R-modules Rn, n ≥ 1 are all isomorphic. To this end, we fix a real vector space V equipped with a countable base

(ek)k∈N and we denote R the ring of linear applications on V (equipped with composition), identified as «infinite

matrices» of

cRN×N. Define two linear applications T and T′ on V by the following relations for n ∈ N:T(e2n) = en,

T(e2n+1) = 0,

and

T′(e2n) = 0,

T′(e2n+1) = en.

Write the «matrices» of T and T′. Given n ∈ N∗, we consider Rn as an R-module for scalar multiplication:

R× Rn → Rn,


r,



T1

T2

...

Tn




7→



r ◦ T1

r ◦ T2

...

r ◦ Tn


.

1. Provide a one-element base for the R-module R1.

2. Show that (T,T′) is also a base for the R-module R1.

3. Show that R1 and R2 are isomorphic as R-modules then that Rn is isomorphic to R for every n ∈ N∗.

Exercise 3.10.9 Let d ≥ 1 be a natural number, R a principal ring and M = Rd. Let N be a submodule of M. We

aim to prove by induction on d that N is isomorphic to Rδ with δ ≤ d. Assume d ≥ 1 and the theorem proven for

submodules of Rd
′

if d′ < d.

1. Let ν = (ν1, · · · , νd) ∈ Nd − {0} and i such that ni ̸= 0. The map πi : (x1, · · · , xd) 7→ xi induces an exact

sequence

(ii) 0 → K → N
πi−→ C → 0

where C is a nontrivial submodule of A and K ⊂ Rd−1.

2. Show that there exist d′ < d and an exact sequence

0 → Rd
′ j−→ N

π−→ R → 0.

3. Show that there exists a section σ = A → N of π, i.e., satisfying π ◦ σ = IdA.
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4. Show that the map

 Rd
′ ⊕ R → N

(x, y) 7→ j(x) + σ(y)
is an isomorphism.

5. Conclude.

Exercise 3.10.10 Let R be the ring of continuous real-valued π-periodic functions, and let M be the set of contin-

uous functions f such that for all real x, f(x+ π) = −f(x).

1. Show that function multiplication makes M into an R-module.

2. Show that every pair (f, g) ∈ M2 can be uniquely written as (a cosx−b sinx, a sinx+b cosx) with a, b ∈ R.

3. Show that M⊕M is a free module. What is its rank?

4. Show that every f ∈ M has at least one zero.

5. Show that M is not a free module of rank 1.

6. Show that M is not free.

Exercise 3.10.11 Let N = Z(N) (direct sum of countable many copies of Z). It is a free submodule of M = ZN

(product of countable many copies of Z) with basis en = (δn,p)p∈N. Let φ ∈ HomR(M
∗,M) be the morphism

u 7→ (u(en))n∈N. We will prove that φ defines an isomorphism M∗ → N and then conclude by a cardinality

argument that M is not free15.

A. Determination of Ker(φ)

Let d ≥ 2 be an integer.

1. Show that Kerφ
∼→ G∗, where G = M/N.

2. Let Hd be the set of elements of G divisible by dk for all k. Show that Hd is a submodule of G.

3. Show that any linear form u : G → Z vanishes on Hd.

4. Determine H2 +H3. Conclude.

B. Determination of Im(φ)

For any x = 2vy ∈ Z, with y odd, we define |x|2 = 2−v ; we set |0|2 = 0.

1. Check that (x, y) 7→ |y − x|2 is metric on Z. Show that if x1, . . . , xn are integers such that the |xi|2 are

pairwise distinct, then
∑

|xi|2 is the largest among the |xi|2.

2. For x = (xn)n∈N ∈ M, define |x|2 = sup |xn|2. Show that |x|2 is a real number and ∀u ∈ M∗,∀x ∈

M, |u(x)|2 ≤ |x|2.

3. Let x = (an)n∈N. Under what condition does the sequence (|x−
∑
k akek|2)n∈N converges to 0?

15This method of proof of Baer’s result comes from [9]
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4. Let u ∈ M∗ and denote by S = {n | u(en) ̸= 0} the support of φ(u). Show that there exists x ∈ M be

an element whose support is S and such that the mappings S → |xs|2 and s 7→ u(es)|xs|2 from S to R are

strictly decreasing.

5. Let A ⊂ {0, 1}N be the set of all sequences with value in {0, 1} vanishing outside S. For ε ∈ A, define

Ψ(ε) = u(εx), where εx = (εnxn)n∈N. Determine |Ψ(ε)−Ψ(ε′)|2 as a function of s0 = inf{s | εs ̸= ε′s}.

Deduce that Ψ : A → Z is injective.

6. Prove Im(φ) = N by considering the cardinality of A [Hint: use for instance the map ε 7→
∑∞
k=0 ε

k2−k ∈

[0, 1] and use that [0, 1] is not countable.]

C. Conclusion

1. Describe M∗.

2. Prove that M is not free by a cardinality argument?

3. Show that the evaluation biduality morphism N → N∗∗ defined by x 7→ (φ 7→ φ(x)) is an isomorphism,

even though N is freely generated over Z with infinite rank.

Exercise 3.10.12 Using Krull’s theorem, how can you generalize 3.9.4.2 for general free modules?
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Chapter 4

Rings and modules

4.1 Introduction

Perspective

We will illustrate how modules are an important tool for studying rings and vice

versa. In particular, we will emphasise the role of matrices, which are crucial, the

first step towards the advanced notion of resolution of a module/ring.

4.2 Quotient rings

Recall that an ideal I of a ring R is a submodule of R, i.e. an additive subgroup of R such that ∀x ∈

R, xI ⊂ I. By 3.3 there is a unique group structure on R/I which makes the projection π : R → R/I a

morphism of additive groups. The main (simple but important) result is as follows:

Proposition 4.2.0.1 There exists a unique ring structure on R/I making the projection π : R → R/I a morphism

of rings whose kernel is I. Moreover,

61
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• One has the following universal property (cf. 3.6.2.1) : for any ring T, the natural sequence

0 → Homring(R/I,T) → Homring(R,T) → HomZ(I,T)

is exact.

• f ∈ Hom(R,R′) induces a canonical isomorphism of rings f : R/Ker(f) ≃ Im(f) (cf. 3.3.0.4).

• the maps J 7→ J = π−1(J) and I ⊃ J 7→ J/I identifies are inverse each other identifying ideals J of R = R/I

and ideals J of R containing I.

• π induces an isomorphism R/J
∼→ R/J for any ideal I ⊃ J.

In a diagrammatic way, the main point summarizes as

T

If ψ(I) = 0 then I �
� // R

ψ

>>

// R/I

∃!φ

OO

Proof. The proof goes straightforwardly as in the case of the module, except for the fact thatπ is multi-

plicative which follows from the computation

π(x1)π(x2) = (x1 + I)(x2 + I) + I = x1x2 + x1I + x2 + I2 + I = x1x2 + I

because x1I + x2 + I2 ⊂ I (recall that if I, J are ideals, IJ denotes the ideal generated bay all products ij

where i ∈ I, j ∈ J).

Definition 4.2.0.2 An ideal I of R is prime if an only if R/I is an integral domain, maximal if R/I is a field (cf.

4.6.9).

4.2.1 Product rings

The group
∏

Ri has a natural ring structure defined by (xi)(yi) = (xiyi) for xi, yi ∈ Ri. When the rings

are fields, its ideals are easy to understand. Indeed, let Ft, t ∈ T be a finite family of fields, FT =
∏
t∈T Ft

and pt : FT → Ft, t ∈ T the projection. For S ⊂ T, let IS be the ideal

IS = {(xt)| ∈ FT|xt = 0, ∀t /∈ S} = Ker(pS : FT → FS).

Lemma 4.2.1.1 Let I be an ideal of FT and S = {t ∈ T|pt(I) = {0}}. Then I = IS and FT/I = FS.
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Proof. Let et = (δt,t′)t′∈T ∈ FT. We have pS(I) = {0} by definition of S implying I ⊂ Ker(pS). Conversely,

let (xt) ∈ Ker(pS) and t ̸∈ S. Then pt(I) is a nonzero ideal of the field Ft and therefore is equal to Ft.

We can choose it ∈ I such that pt(it) = 1 ∈ Ft and therefore et = etii ∈ I. Then, x =
∑
t ̸∈S xtet ∈ I as

wanted.

4.2.2 Cyclic modules and quotient rings

As in the group case, a R-module is said cyclic if it can be generated by a single element. If R = Z,

it is well known that that any cyclic group is isomorphic to Z/nZ. and that its subgroups are cyclic

isomorphic to Z/dZ with nZ ⊂ dZ, i.e.d|n. In general, we get

Lemma 4.2.2.1 (Cyclic modules) A module M is cyclic if and only if it is isomorphic to R/I for some ideal I. In

this case we have

• I = AnnR(M) = {λ ∈ R|λM = {0}}.

• The map (J ⊃ I) 7→ N = JM ⊂ M has inverse N 7→ J = π−1(N) = {λ ∈ R|λx ∈ N} and identifies the

ideals of J ⊃ I and the submodules of N ⊂ M.

• We have J/I x−→ JM and R/J
x−→ M/N.

• In particular, if the ideals of R can be generated by a single element1, all submodules of a cyclic module

are cyclic.

Proof. Let x be a generator of M. Then, the map R/I
x−→ M is an isomorphism and conversely the image

of 1 by any such isomorphism is a generator of M. The rest is up to the reader.

4.3 Algebras

Given two rings, we say that B is an A-algebra if B is further equipped with an A-module structure

compatible with the product in the sense that

a · (bb′) = (a · b)b′ ∀a ∈ A, b, b′ ∈ B.

1Hence if R is a PID.
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This is equivalent to giving a ring morphism f : A → B since we can then define the module structure

by a · b = f(a)b for a ∈ A, b ∈ B. For example, C is an R-algebra, and a ring is a Z-algebra. A morphism

f ∈ HomA(B,B
′) of A-algebras is an A-module morphism which is multiplicative with f(1B) = 1B′ .

Proposition 4.3.0.1 Let B be an A-algebra and b ∈ B. There exists a unique algebra morphism A[T] → B that

sends T to b. Moreover, all morphisms are of this type.

Proof. Let φ be such a morphism. Then, necessarily, φ(
∑
i aiT

i) =
∑
i aiφ(T)

i and thus is determined

by b = φ(T). Conversely, we know (2.1.3.1) that this A-module morphism∑
i

aiT
i 7→

∑
i

aib
i

is also an A-algebra morphism.

Using the identification A[X,Y] = A[X][Y], we obtain that the algebra morphisms from A[X1, . . . ,Xn]

to B are identified with n-tuples b = (b1, . . . , bn) ∈ Bn (to such an element is associated the evaluation

morphism (P 7→ P(b))).

Note that if B is an A-algebra and I an ideal of B, then the quotient ring B/I is also an A-module (since

B and I are A-modules) and thus B/I is canonically an A-algebra.

4.4 Integrality

4.4.1 An application of Cayley-Hamilton

Proposition 4.4.1.1 (Determinant trick) Let f be an endomorphism of a finitely generated R-module M. There

exists a monic polynomial P ∈ R[T] that annihilates f . If additionally f(M) ⊂ IM, it can be assumed that the

coefficients of f with index < deg(P) belongs to I.

Proof. Let mi, 1 ≤ i ≤ n be a finite family of generators of M and write for each j (in a non-unique way)

f(mj) =
∑
i

ai,jmi

defining a matrix2 A = [ai,j ] of f . Note that if f(M) ⊂ IM, we can assume ai,j ∈ I. It is then enough to

look at P = det(T Id−A) and invoke Cayley-Hamilton theorem (2.1.3.2) for A ∈ Mn(R).

By applying the proposition to f = IdM, we obtain the famous Nakayama Lemma which is very impor-

tant in advanced commutative algebra.
2Depending on the non unique choices of the ai,j .
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Corollary 4.4.1.2 (Nakayama) Let M be a finitely generated module and I an ideal such that M = IM. Then,

there exists i ∈ I such that (1 + i)M = 0. In particular, if 1 + i is invertible (for instance if i is nilpotent), then

M = 0.

Example(s) 4.4.1.3 Let us show that, as in the vector space situation, any surjective endomorphism f of a finitely

generated R-module M is an isomorphism. As in the vector case case (3.7), we endow M with a structure of R[T]

module Mf by the rule P(T)m = P(f)(m). This module is finitely generated as M is and the surjectivity of f

gives Mf = (T)Mf . There exists therefore P ∈ R[T] such that (1 + P(T)T)M = 0. If f(m) = 0, we therefore

get (1 + TP(T))m = m + P(f)(f(m)) = 0 hence the injectivity of f . The analogous statement for injective

endomorphisms is definitely false (take Z 2−→ Z for instance).

4.4.2 Ring of integers

Let R′ be an R-algebra (in other words, consider a ring morphism R → R′).

Definition 4.4.2.1 An element x ∈ R′ is said to be integral over R if there exists a monic polynomial in with

coefficients in R annihilating x.

If R = k is a field, these elements are also called algebraic over k, the integrality condition being equivalent

to the usual algebraicity condition of the existence of a P ∈ k[T] − {0} cancelling x (divide by the

dominant coefficient of P).

Lemma 4.4.2.2 x ∈ R′ is integral over R if and only if it belongs to a subring of R′ which is of finite type over R.

Proof. If x is cancelled by a monic degree d polynomial of R[T], then R[x] is generated by 1, . . . , xd−1

hence the direct part. Conversely, if x belongs to a subring R′′ of R′ which is of finite type over R, the

determinant trick applied to the homotethy hx of ratio x on R′′ produces a monic annihilator P ∈ R[T]

and therefore P(hx)(1) = hP(x)(1) = P(x) = 0.

Corollary 4.4.2.3

1. The subset O of R′ of elements which integral over R forms a subring of R′.
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2. Any element of R′ which is integral over O belongs O

3. If k is a subfield of a field k′, the subset of elements of k′ that are algebraic over k forms a subfield of k′.

Proof. 1. If x, y ∈ O are cancelled by monic polynomials of degree d1, d2, then R[x, y] ⊂ R′ is generated

by the monomials xiyj , i < d1, j < d2 and therefore is made of integral elements by the above

lemma.

2. If x is integral over O, the subring of R′ generated by x and the coefficients of a monic polynomial

of O[T] cancelling x is of finite type over R and therefore x ∈ O.

3. By (1), it suffices to show that the inverse of a nonzero algebraic element x ∈ k′ is still nonzero.

Suppose therefore P is a unitary annihilator of x. But then, Tdeg(P)P(1/T) is a nonzero annihilator

of 1/x.

Definition 4.4.2.4 With the above notations, O is called the integral closure of R in R′. If moreover R is an

integral domain whose integral closure in its fraction field coincides with R, we say that R is an integrally closed

domain.

The following lemma gives the coherence of the terminology (see more generally 9.6.1).

Lemma 4.4.2.5 Z is integrally closed (see more generally 9.6.1).

Proof. Let p/q ∈ Q with GCD(p, q) = 1 root of P(T) = Tn +
∑
i<n aiT

i ∈ Z[T]. We have

0 = qnP(p/q) = pn +
∑
i<n

aip
iqn−i = pn + q(

∑
i<n

aip
iqn−i−1)

hence q|pn. By Gauss lemma, q|p and therefore q = ±1 and p/q ∈ Z.

Remark(s) 4.4.2.6 Observe that (2) shows that the field Q of complex numbers which are algebraic over Q is

an algebraically closed field, which is a good news. The set Z of complex numbers which are integral over Z is a

subring of Z. One will show Z is non Noetherian (5.3.3), which is a bad news in some extent.
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Remark(s) 4.4.2.7 With a slight abuse, one often simply say that a complex number which is algebraic over Q

is algebraic, the non algebraic complex numbers being the transcendental ones. A simple countability argument

shows that a randomly chosen complex number is almost surely (for the Lebesgue measure) transcendental. For

instance, both e (due to C. Hermite, 1873) ans π (F. Lindemann, 1883) are transcendental.

4.5 The Chinese remainder lemma

We know that the rings Z/nmZ and Z/nZ × Z/mZ are isomorphic if n and m are coprime, and the

reader probably knows more generally that R/(ab) ∼→ R/(a)× R/(b) for coprime ideals (a), (b) in a PID

R. The latter condition can also be written as (a) + (b) = R according to Bézout’s identity. We will give

a useful (fortunately quite straightforward) generalization in the case where R is a (commutative with

unit) algebra over some ring (recall that every ring has a unique structure of Z-algebras). Let us give a

slightly more general version.

«When General Han Ting arranges his soldiers in threes, there remain two soldiers, when he arranges

them in fives, there remain three, and when he arranges them in sevens, there remain two. How many

soldiers does Han Ting’s army consist of? », Sun Zi, around the 4th century.

Terracotta Army

Mausoleum of Emperor Qin

Proposition 4.5.0.1 (Chinese remainder lemma) Let I1, . . . , In, n ≥ 2 be ideals of R which are pairwise

coprime, i.e., such that Ii + Ij = R for i ̸= j and let M bean R-module. Let I(−j) = I1 · · · Îj · · · In be the ideal

product of the ideals Ii distinct from Ij
3

1.
∑
j I(−j) = R and I1 ∩ · · · ∩ In = I1 · · · In.

2. The canonical morphism R →
∏

R/Ij factors through ∩Ij to give an algebra isomorphism

φ : R/I1 ∩ · · · ∩ In ≃
∏

R/Ij .

Let εj ∈ I(−j) such that
∑
εj = 1 and ej = εj mod I1 . . . In.
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3. φ(ej) = (δi,j)i and therefore eiej = δi,jei and
∑

ei = 1 (complete family of orthogonal idempotents)4.

4. The canonical morphism M →
∏

M/Ij factors through ∩Ij to give an module isomorphism

φM : M/(I1 ∩ · · · ∩ In)M ≃
∏

M/IjM

whose inverse is (mj) 7→
∑

ejmj

5. The canonical morphism ⊕AnnM(Ij) → M is an isomorphism of inverse m 7→
∑
εjm.

Proof.

1. We can proceed by induction on n. If n = 2, this is the hypothesis I2 + I1 = R. Otherwise, we

apply the induction hypothesis to I1, . . . , In−1. We then obtain that the sum of the n − 1 ideals

I1 · · · Îj · · · In−1 is R. Multiplying by In, we get
∑
j<n I(−j) = In and the sum

∑
j I(−j) contains In.

Reapplying the same process to I2, . . . , In, we obtain that the sum contains I1. Since I1 +In = R, the

sum equals R.

2. The kernel of R → R/I1 × · · · × R/In is the intersection I1 ∩ · · · ∩ In. By the universal property of

the quotient, we thus have an injective algebra morphism. Let us verify that φ is onto. We write

1 =
∑
j εj , εj ∈ I(−j). Let xj mod Ij be arbitrary classes. Set x =

∑
j εjxj . Observe that

(∗) εj ≡ 0 mod Ii if i ̸= j and εj ≡ 1 mod Ij

and therefore x ≡ xjεj ≡ xj mod Ij for all j.

3. The other items follow directly from (*)

Remark(s) 4.5.0.2 The reader should notice that the quotient rings R of a finite product of rings
∏
i∈I Ri (as in

(2) above) is a finite direct product of quotient rings of Ri. For, let Ker be the ideal Ker = Ker(
∏

Ri → R) and

ei = (δi,j)j the i-th idempotent of
∏

Ri. Then, x =
∑

eix ∈ Ker if and only if eix = 0 proving Ker =
∏

eiKer

and R′ =
∏

Ri/eiKer . The ideals of fields being trivial, we get in particular that any quotient
∏
i∈I Fi of a finite

product of fields is isomorphic to
∏
j∈J Fj where J = {i ∈ I|eiKer = {0}} (compare with 4.2.1.1).

4Recall that by definition its is the ideal generated by products of
∏

i̸=j xi with xi ∈ Ii.
4By definition, an idempotent of a ring is an element e such that e2 = e. Two different idempotents are said to be orthogonal if

there product vanishes. A finite family of orthogonal idempotents is complete if there sum equals to 1.



4.6. EXERCISES 69

4.6 Exercises

Exercise 4.6.1 Show that there is a one to one correspondence between R-module M canceled by an ideal I ⊂ R

and R/I-modules.

Exercise 4.6.2 Let M a cyclic module over a principal ideal ring (PID) R with annihilator AnnR(M) = I. Prove

that the submodules N of M are cyclic and are in one to one correspondence with ideals J containing I. If R = k[T]

or R = Z, prove that their number is finite unless M
∼→ R (or equivalently I = {0})5. Prove that the ideal of

polynomials in R[T1,T2] vanishing at (0, 0) is not cyclic but is a submodule of cyclic module.

Exercise 4.6.3 Describe an isomorphism of R-algebras between R[T]/(T2 + T + 1) and C on one hand, and

between R[T]/(T(T + 1)) and R2 on the other hand.

Exercise 4.6.4 Generalize 4.3.0.1 to several variables (compare with 2.1.1.1).

Exercise 4.6.5 Show that that integral closure of Z[T2,T3] is Z[T]. Prove that the Z[T2,T3] and Z[T1,T2]/(T
3
1−

T2
2) are isomorphic.

Exercise 4.6.6 Let R be a ring. We recall (R[T])× = R× +TRnil[T] (2.4.7)

1. If x is nilpotent, show that 1 + x ∈ R×.

2. Show that a nilpotent element belongs to any prime ideal of R.

3. If x ∈ R is non nilpotent, show that R[T]/(xT− 1) is nonzero. Deduce that it has a maximal ideal.

4. Prove that the intersection of prime ideals of R is the set of nilpotent elements of R.

Exercise 4.6.7 (Resultant) Let R be a ring and P,Q ∈ R[T] be two polynomials of degrees p, q > 0. Let

Res(P,Q) denote the resultant of P and Q, defined as the determinant, in canonical bases (cf. 3.7), of the linear

map between free modules of rank p+ q

ρ(P,Q) :

 R<q[T]× R<p[T] → R<p+q[T]

(A,B) 7→ AP+ BQ

1. Calculate Res(P,Q) if P has degree 1.

2. By considering the comatrix of ρ(P,Q), show that there exist A,B ∈ R[T] of degrees q, p respectively such

that AP+ BQ = R(P,Q). Hence deduce that if P,Q have a common root in R, then R(P,Q) = 0.

3. If P,Q are also monic, show that ρ(P,Q) is the matrix of the multiplication µ : R[T]/(Q) × R[T] →

R[T]/(PQ) in canonical bases (of monomial classes Ti).

4. Still assuming P,Q are monic, show that there is a commutative diagram with exact rows

0 // R[T]/(PQ)
(T−x) // R[T]/((T− x)PQ)

evr // R // 0

0 // R[T]/(Q)× R[T]/(P)
(1,(T−x))//

ρ(P,Q)

OO

R[T]/(Q)× R[T]/((T− x)P)
evQ(x) //

ρ((T−x)P,Q)

OO

R //

Q(x)

OO

0
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where ev(A) = A(x) and evQ(A,B) = A(x). Hence deduce that ρ((T − x)P,Q) is block triangular with

diagonal diag(ρ(P,Q),Q(x)), and then that Res((T− x)P,Q) = Q(x)Res(P,Q).

5. If Q is monic, show that Res(
∏

(T− xi),Q) =
∏

Q(xi). What happens if Q is not assumed to be monic?

6. If R = k is a field, show that deg(PGCD(P,Q)) > 0 if and only if there exist nonzero A,B ∈ k[T] of degree

< q and < p respectively such that AP = BQ. Deduce that P,Q are coprime if and only if their resultant

Res(P,Q) ̸= 0.

Exercise 4.6.8 Let
√
d ∈ C be a square root of the square free integer d and K = Q(

√
d) = {a+b

√
d, a, b ∈ Q}.

Let x ∈ K.

1. Prove Q[T]/(T2 − d)
∼→ K and K is a field of dimension 2 over Q.

2. Compute the characteristic polynomial of the multiplication hx of x on the Q-vector space K.

3. Show that x is integral over Z if and only if det(hx),Tr(hx) ∈ Z.

4. Prove that the subring of K of integral elements over Z is Z[
√
d] if d ≡ 2, 3 mod (4) and Z[(1 +

√
19)/2] if

d ≡ 2, 3 mod (4).

5. What is the integral closure of Z[
√
d]?

Exercise 4.6.9 Let M be an R-module and I an ideal.

1. Show that I is prime if and only if I is a proper ideal and xy ∈ I ⇒ x ∈ I or y ∈ I.

2. Show that I is maximal among the family of proper ideals of R if and only if R/I is a field.

3. Show that M is of finite type if and only if there exists a surjective R-linear mapping Rn → M for some

n ∈ N.

4. Show that if f ∈ HomR(R
m,Rn) = Mn,m(R) is surjective then m ≥ n.

Hint: Consider a maximal ideal I of R and see that after reduction modulo I, the application f remains

surjective modulo I.

5. Show that if f is an isomorphism, then n = m.

6. Show that a free module of finite type L has a finite basis and that all its bases have the same cardinality: the

rank of L.

7. Show that the rank of L is the minimal cardinal of a finite generating family.

Exercise 4.6.10 Let P be a polynomial with integer coefficients P without rational root, d its degree and x ∈ R a

real root of P. Let (p, q) ∈ Z×N∗.

1. Show d > 1 .
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2. Show |P(pq )| ≥
1
qd

.

3. Show there exists C > 0 such that if pq ∈ [x− 1, x+ 1] then∣∣∣∣x− p

q

∣∣∣∣ ≥ C

qd
.

4. Show that ℓ =
∑
n≥0

10−n! is transcendental [Hint : what can you say about the periodicity of a decimal

expansion of a rational number ?].

Exercise 4.6.11 Let n be a positive integer and z1, . . . , zn be complex numbers. Define Pm(T) =
∏
i(T − zmi )

for m ≥ 0 and suppose that 0 < |zi| ≤ 1 for all i and that P1 ∈ Z[T].

1. Show that the Pm(T) have integer coefficients.

2. Show that the set {Pm, m ≥ 0} is finite.

3. Conclude that the zi are roots of unity.

Exercise 4.6.12 Let I be an ideal of R with I2 = {0} and n ≥ 1.

• Show that the reduction morphism SLn(R) → SLn(R/I) is onto.

• Prove that there is an exact sequence of group

{0} → Mn(R/I) → SLn(R) → SLn(R/I) → {1}

• If p is a prime number, compute Card(SLn(Z/pZ).

• For any m > 0, compute Card(SLn(Z/mZ) [Use the Chinese remainder theorem].

Exercise 4.6.13 (C is algebraically closed) Let P be a non constant complex polynomial.

1. Show that lim|z|→∞ 1/P(z) = 0.

2. If P has no complex root, show that 1/P is bounded over C.

3. Using that any bounded holomorphic function on the plane is constant; deduce that C is algebraically closed.
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Chapter 5

Noetherianity

David Hilbert Emmy Noether

5.1 Introduction

Perspective

Noetherian rings and modules are probably the most important notion encoun-

tered in this volume. This remarkably stable class of rings (and modules) allows in

particular to write any finite-type module as a cokernel of some matrix, allowing

to obtain quite general and non-trivial results in an easy way, such as the struc-

ture theorem for finite-type abelian groups (6.4.0.2) or more generally of finite-type

modules over PID (6.4.0.1). This view is the gateway to advanced topics such as

syzygies, homological algebra. . . .

The notion of a Noetherian ring inevitably leads back in 1890 to Hilbert’s fundamental paper [14] with

its three main theorems, the first being the fundamental theorem 5.2.2.1 in the case of polynomial rings.

However, as a student rightly pointed out to us, it is unfair to talk only about this tremendous paper1.

In fact, it was Emmy Noether who developed the general vision back in 1920 ([18]). We will give the

basics of Noetherian rings and modules and explain the connection with linear algebra.

1The other two theorems in the article are none other than the Nullstellensatz and the Syzygy Theorem!

73
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5.2 Noetherian modules

The image of a family of generators of a module through a morphism generates the image module.

Thus, every quotient of a finitely generated module is still finitely generated. However, while a submodule of

a finitely generated R module is still finitely generated when R is a field, this is generally not the case

(cf 3.7). However, it is the case in a Noetherian setting.

Lemma 5.2.0.1 Let M be an R module. The following properties are equivalent.

1. Every submodule of M is finitely generated.

2. Every increasing sequence of submodules eventually stabilizes.

3. Every non-empty family of submodules of M has a maximal element for inclusion.

Proof.

1 ⇒ 2. Let Mi be an increasing sequence of submodules. Thus, ∪Mi is a submodule of M and is therefore

finitely generated. Choose a finite family of generators: for n large enough, they all belong to Mn and

therefore Mi = Mn if i ≥ n.

2 ⇒ 3. Let F be a non-empty family of submodules M without any maximal element (proof by contra-

position). We construct a strictly increasing sequence of elements of F ̸= ∅ by induction by choosing

M0 one of its elements arbitrarily then by induction, assuming the sequence built for i ≤ n, we observe

that Mn is not maximal thus there exists Mn+1 in F which strictly contains Mn .

3 ⇒ 1. Thus, let N be a submodule of M and let F be the family of its finitely generated submodules. As

{0} ∈ F, this family is non-empty. Let N′ be a maximal element. It is finitely generated contained in N

by construction. Conversely, let n ∈ N. The module Rn + N′ is in F and contains the maximal element

N′: so it’s equal to it, so n ∈ N′. So we have N′ = N and therefore N is finitely generated.

Definition 5.2.0.2

1. A module that satisfies the previously mentioned equivalent conditions is said to be Noetherian.

2. A ring that is Noetherian as a module over itself is said to be a Noetherian ring.

Thus, a ring R is Noetherian if and only if it satisfies one of the following three equivalent propositions:

1. Every ideal is finitely generated.

2. Any increasing sequence of ideals eventually stabilizes.
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3. Every non-empty family of ideals has a maximal element for inclusion.

Example(s) 5.2.0.3 Fields, principal rings, and quotient rings of Noetherian rings are Noetherian. However,

a subring of a Noetherian ring is generally not Noetherian (for example, a polynomial ring over a field with an

infinity of variables is not Noetherian, whereas it is a subring of its fraction field of fraction (3.10.3) which is

certainly Noetherian!).

5.2.1 Stability under exact sequences

Proposition 5.2.1.1 Consider an exact sequence of modules

0 → M1
j−→ M2

p−→ M3 → 0.

Then M2 is Noetherian if and only if M1 and M3 are.

Proof.

⇒ A submodule of M1 is (isomorphic to) a submodule of M2 henece is of finite type. If N3 is a submodule

of M3; its inverse image p−1(M3) ⊂ M2 is finitely generated. But p being onto, we have p(p−1(N3)) = N3

hence N3 is also finitely generated.

⇐ Assume M1 and M3 are Noetherian, and let M′
2 be a submodule of M2. We have an exact sequence

0 → j−1(M′
2) → M′

2 → p(M′
2) → 0.

But j−1(M′
2) and p(M′

2) are finitely generated as submodules of M1 and M3. Therefore, one can choose a

finite family of generators for p(M′
2) of the form p(g′2,i) and a finite family of generators g1,k for j−1(M′

2).

The finite family j(g1,k), g′2,i of M′
2 generates it.

In particular, if R is Noetherian, then Rn is a Noetherian module, and thus so is any quotient. This leads

to the following important corollary.

Corollary 5.2.1.2 The Noetherian modules over a Noetherian ring are exactly the finitely generated modules.

Remark(s) 5.2.1.3 Every Noetherian module is of finite presentation, meaning that there exists an exact se-

quence Rm
A−→ Rn → M → 0 or equivalently Coker(A)

∼→ M. For, because M is of finite type, there exists a

surjective morphism Rn → M whose kernel Ker is again of finite type as submodule of he Noetherian module Rn.
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There exists therefore a surjective morphism Rm → Ker and the composition with the inclusion Ker → Rn gives

the wanted exact sequence. By functoriality of the cokernel, two equivalent matrices define isomorphic modules:

this is the reason of the deepness of the interplay between equivalence of matrices and modules study at least in the

Noetherian situation.

5.2.2 Hilbert’s Basis Theorem

Theorem 5.2.2.1 Let R be a Noetherian ring.

1. The polynomial ring R[T] is Noetherian.

2. Every finitely generated R-algebra is a Noetherian ring.

Proof. The second point is a direct consequence of the first (by induction, every polynomial ring over R

with n variables is Noetherian, and so is every quotient). Let’s consider the first point.

Let I be an ideal of R[T] and I∗ = I − {0}. If P is a nonzero polynomial, denote dom(P) its highest

degree nonzero coefficient. The formula dom(TnP) = dom(P) ensures that {0} ∪ dom(I∗) is an ideal

of R (exercise). Thus it has a finite number of generators of the form dom(Pi),Pi ∈ I∗, which can

be assumed to be of degree d ≥ 0 according to the previous formula. An immediate induction that

I = I ∩ R≥d[T] + I ∩ R≤d[T] is generated by (Pi) and I ∩ R<d[T]. But I ∩ R<d[T] is a sub-R-module of

R<d[T] ≃ Rd: so it is a Noetherian R-module (5.2.1.2). So you can take a finite number of generators Qj

(as R-module) and the finite family (Pi,Qj) generates I.

In fact, we have reused the Euclidean division argument used to show that k[T] is principal, the problem

being that we can only divide in R[T] if the leading coefficient of the polynomial is an invertible of R×.

This is the reason for introducing the ideals of the leading coefficients of I.

5.2.3 Krull’s intersection theorem

Let us start with a rather technical but fundamental lemma.

Lemma 5.2.3.1 (Artin-Rees) Let I be an ideal of a Noetherian ring R and N a submodule of a finitely generated

module M. Then, for every n ≥ 0, there existsm ≥ 0 such that ImM ∩N ⊆ InN.

Proof. The R-module

R(I) :=
⊕
n≥0

InTn ⊆ R[T]
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is a subring of R[T] (the Rees’ ring). Choosing generators xi, . . . , xd of I defines an R-algebra surjective

morphism R[T1, . . . ,Td,T] → R(I) sending any (Ti,T) to (xi,T). By 5.2.2.1, the Rees’ ring is a Noethe-

rian ring as a quotient of a Noetherian ring. As we did for vector spaces in 3.2.0.2, we can define the

M[T] as the R-module of formal polynomials with coefficients in M with its natural R(I)-module. Let

M(I) ⊃ M be the submodule

M(I) =
⊕
n≥0

InMTn ⊆ M[T]

Any family of generators of M generates M(I) hence M(I) is of finite type as its submodule

⊕
n≥0

(N ∩ InM)Tn

Let us choose a finite number of its generators of the form νnT
dn with νn ∈ N ∩ IdnM. Assuming

m ≥ n+max(dj), for any ν ∈ N ∩ ImM there exists xj ∈ Im−dj ∈ Im−D such that

νTm =
∑

xjνjT
m =

∑(
xjT

m−dj
)
·
(
νjT

dj
)
∈ InNTm

Corollary 5.2.3.2 (Krull) With the above notations, if N =
⋂
d≥1 I

dM, then IN = N. In particular, if I is

contained in the intersection of all maximal ideals2of R, then N = 0.

Proof. By Artin-Rees lemma, there exists m ≥ 0 such that ImM ∩ N ⊂ IN and therefore N ⊂ IN because

N =
⋂
d≥1 I

dM ⊆ ImM hence N = IN. By Nakayamma’s lemma, there exists i ∈ I such that (1+i)N = {0}

but 1 + i is invertible because any non invertible element belongs to some maximal ideal by Krull’s

lemma (1.3.2.4).

Proof of Theorem 4.1. Of course, we only need to show that N ⊆ IN. We apply the lemma for the

submodule N of M to get a non-negative integer m such that ImM ∩ N ⊆ IN. However, since N ⊆ ImM,

this implies N ⊆ IN. The last assertion in the theorem is a consequence of Nakayama’s lemma.

5.3 Exercises

Exercise 5.3.1 Let k ∈ N ∪∞ and R = Ck(R,R).

1. Show there exists a unique fn ∈ R such that fn(x) = exp(−2−nx−2) for all x ̸= 0.

2. Prove that the sequence of ideals (fn) is strictly increasing.

3. Prove that R is not Noetherian.
2This intersection is called the Jacobson’s radical.
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4. Give another proof using 5.2.3.2.

Exercise 5.3.2 A germ of function is an equivalence of real functions of class Ck, k ∈ N∪{∞} which are defined

in some neighborhood of 0 ∈ Rn where two such functions are equivalent if they coincide in some neighborhood of

0. Let R be the set of such germs and m be the set of germs vanishing at 0

1. Check that ordinary addition and products of functions make R a R-algebra.

2. Show that R is not a domain.

3. Show that m is the unique maximal ideal of R. What are the invertible elements of R.

4. Show that n → M is onto if and only if (R/m)n → M/mM is onto (look at the cokernel and use Nakayama’s

lemma).

5. If k = 0, show m = m2. Deduce that m is non Noetherain (use Nakayama’s lemma).

6. If k ∈ N∗, show that m/m2 is a R-vector space of infinite dimension. Deduce that m is non Noetherian (use

Nakayama’s lemma).

7. If k = ∞, prove that dimR m/m2 = n. Could you prove that R is non Noetherian?

Exercise 5.3.3

1. Prove that 2 is not invertible in Z.

2. Prove that the sequence of ideals (21/2
n

) ⊂ Z is strictly increasing.

3. Conclude.

Exercise 5.3.4 Let R be the ring of holomorphic functions on C.

1. Prove that R is a domain.

2. Prove that for any n ≥ 0 there exists a unique fn ∈ R, such that fn(z)
∏n
k=0(z − k) = sin(πz).

3. Compute fn(k) for k ∈ Z.

4. Prove that R is not Noetherian (see 9.6.9 and 9.6.10 for other properties of R).

Exercise 5.3.5 Let G be a finite group operating (on the left) on a ring R. Assume that the cardinality n of G is

invertible in R and denote RG the subring of R of elements invariant by G. Denote π : R → R the application

x 7→ 1
n

∑
g∈G gx.

1. Show that p is a projector of image RG.

2. Show that p is RG-linear.

3. Show that if R is Noetherian, then RG is Noetherian.
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Exercise 5.3.6 Let M be a non zero finite type module of a Noetherian ring R.

1. Prove that there exists m ∈ M− {0} such that AnnR(m) is a prime ideal p of M.

2. Prove that there exists a module injection A/p ↪→ M.

Exercise 5.3.7 Let R be any ring and A ∈ Mm,n(R).

1. Prove Krull’s theorem for Noetherian ring without the axiom of choice.

2. Prove that R is injective (resp. surjective) if and only if there exists a subring R0 of A such that A ∈

Mm,n(R0) and the associate morphism A0 : Rn0 → Rm0 defied by A has the same property.

3. Give another proof of (2) and (4) of 2.2.0.1.

4. Using 5.3.6, give another proof of (3) and (4) of 2.2.0.1.



80 CHAPTER 5. NOETHERIANITY



Chapter 6

Matrix and modules over PID

6.1 Introduction

Perspective

As explained in 5.2.1.3, the equivalence of matrices is deeply connected with the

structure of modules. We will show how this remark leads to general and non-

trivial results such as the structure theorem for finite type abelian groups (6.4.0.2)

or, more generally, for finite-type modules over PID (6.4.0.1).

We study the equivalence relation ∼ on Mp,q(R) for a PID R (the reader specifically interested in applica-

tions to abelian groups or similarity of matrices over fields (see chapter 8) may restrict to the Euclidean

rings R = Z or R = k[T]). If R is Euclidean, we will prove that the equivalence relation ∼ of matrices

coincides with the Gauss equivalence ≡ and give an efficient algorithm to handle this problem in this

case. Specifically, we address two questions.

1. Describe the quotient set Mp,q(R)/ ∼ by giving a canonical representative in each similarity class.

This is achieved in 6.3.1.2 (3).

2. Describe the quotient map Mp,q(R) → Mp,q(R)/ ∼ by giving an algorithmic way to decide when

A ∼ B. This is achieved in 6.3.1.2 (1).

81
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We have added a “cultural” chapter 6.6 giving some hints about advanced results that explain the deep

and subtle differences between these two equivalence relations that already arise in this “simple” case

of PID.

6.2 Survival kit for PID and Euclidean rings

Euclide by Raphael

As usual, for x ̸= 0, y elements an integral ring R, we say that x|y if and only there exists z ∈ R such that

y = xz. We the write x|y. Recall that a principal ideal domain (PID) is an integral domain whose ideals

can be generated by a single element. The usual examples of PIDs are fields, the ring of integers Z or the

rings of polynomials with field coefficients k[T]. Their common pattern is the existence of an Euclidean

division.

Definition 6.2.0.1 An integral ring R is said Euclidean if there exists a function δ : R∗ → N such that for any

(a, b) ∈ R× R∗ there exists1q, r ∈ r such that a = bq + r and r = 0 or f(r) < f(b).

Lemma 6.2.0.2 An Euclidean ring is a principal ideal domain.

Proof. Ler I be a non zero ideal of an Euclidean ring R. One can choose a nonzero b ∈ I such that f(b) is

minimal in f(I−{0}) (which is a nonempty subset of N). Certainly, (b) ⊂ I. Let a ∈ I and write a = bq+r

with r = 0 or f(r) < f(b). Then, r = a− bq ∈ I. By minimality of f(b), one has r = 0 and I ⊂ (b).

1We do not require the uniqueness of (q, r).
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Definition 6.2.0.3 Let (xi) be a family of elements of an integral ring R and assume at least one of them is

nonzero. We say that d ∈ R is a greatest common divisor of (xi) if d divides all the xis and if d|xi for all i implies

d′|d. We write d = GCD(xi).

A GCD, when it exists, is unique up to multiplication by u ∈ R× (exercise): strictly speaking, the GCD is

an element of the so called monoid2. All the equalities below involving GCD should be seen as equalities

in this monoid in which the cautious reader will probably prefer to work.

Proposition 6.2.0.4 (Bézout’s theorem) Let (xi) be a family of elements of an principal ring R and assume at

least one of them is nonzero. Then, any generator of the ideal (xi) generated by the xi’s is a GCD of (xi). In

particular, 1 is a GCD of the family (xi) of if and only if there exists an almost zero family yi ∈ R such that∑
yixi = 1. We say in this case that the xi’s are (globally) coprime.

Proof. Let d such a generator of the ideal I generated by (xi). Its is ̸= 0 because at least one of the xi is

nonzero and therefore so is I. Because xi ∈ I = (d), we get d|xi. Conversely, assume that d′|xi for all i,

i.e.there exists yi|xi = yid
′. Because d belongs to I, one can write d =

∑
finite zixi = d′

∑
finite ziyi hence

d′|d and d = GCD(xi).

In particular, 1 = GCD(xi) implies the Bézout property: there exists a almost zero family yi ∈ R such

that
∑
yixi = 1. Conversely, if we have such a relation, we get 1 ∈ I and therefore I = R = R.1.

Proposition 6.2.0.5 (Gauss lemma) Let R be a PID and a, b, c ∈ R∗. If GCD(a, b) = 1 and a|bc then a|c.

Proof. Write a Bézout identity 1 = au + bv and, multiplying by c we get c = au + bcv, whic is a sum of

two terms divisible by c.

6.3 Matrix equivalence in PID and Euclidean rings

6.3.1 Invariant ideals of a matrix

In this section,

R is a PID, A = [ai,j ] ∈ Mp,q(R) is a matrix and ν = min(p, q).

Let us adapt Gauss elimination method 2.3.2.1 to prove the following proposition. We will need more

than Gauss elementary operations in this case.

2The product on R∗ induces an associative product of unit on R∗/R× (this kind of structure is called a monoid).
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Definition 6.3.1.1 Two matrices are Bézout equivalent if they differ by a series of left and right multiplications

by transvections Ti,j(x), x ∈ R and matrices of the form diag(A, Id) with A ∈ SL2(R) (we call them Bézout

matrices). We denote by ≃ the Bézout equivalence of matrices and by ω(A) the corresponding equivalence class

of A.

By construction, we have

Gauss equivalence ≡⇒ Bézout equivalence ≃⇒ equivalence ∼

The main observation is

If d is a GCD of (a, b) ∈ R2 − {0}, we have (a, b) ≃ (d, 0).

Indeed, by Bézout theorem, there exists u, v ∈ R|au+ bv = d and therefore

(a, b)

u b/d

v −a/d

 = (d, 0).

We say that A′ = [a′i,j ] ∈ ω(A) is extremal if one of its coefficient is maximal in the (nonempty) set of

ideals F = {(a′i,j),A′ ∈ ω(A)}, the corresponding coefficient a′i,j being called an extremal coefficient.

Theorem 6.3.1.2

1. A is Bézout equivalent to a diagonal matrix diag(dν , . . . , d1) with (d1) ⊂ · · · ⊂ (dν).

2. Coker(A)
∼→ ⊕nj=1R/Ij where (Ij)1≤j≤n is the increasing sequence

Ij = (0) for j = 1, . . . , n− ν and Ij+n−ν = (dj) for j = 1, . . . , ν

3. The Fitting ideals of Φi(Coker(A)), i ≥ 0 are equal to In . . . Ii+1 and therefore to (dν . . . dν−i+1) for 0 ≤

i ≤ ν − 1 and to R if i > ν.

4. The ideals Ij depend only on the equivalence class of A. They are called the invariant ideals3of A.

5. Two matrices are equivalent if and only if they have the same invariant ideals.

6. A ∈ GLn(R) is Bézout equivalent to diag(det(A), 1 . . . , 1).

Proof.

3By a slight language abuse, one says often that the di’s are the invariant factor of the matrix, even they are defined up to

multiplication by an invertible element.
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1. We use induction on p+ q starting with the obvious case p+ q = 2. We can assume A ̸= 0

• Transposing if necessary, one can assume q ≤ p = ν ≥ 1. Recall that the ideal ∧1(A) ∧1(A)

generated by the coefficients of A is invariant by matrix equivalence (3.8.1.2).

• Assume first p = 1 (A is a line matrix). I claim that A ≃ (d, 0, · · · , 0) with ∧1(A) = (d). This

is true if q = 1 and, using the invariance of ∧1(A) by equivalence, is reduced by an immediate

induction to the q = 2 case which we already know to be true. By a transpose argument, this

shows that we can replace a line or a column by a line or a column with all their coefficients

being zero except the first one: we refer to that as Bézout replacement. So we are done if either

p = 1 or q = 1.

• Assume now p, q > 1. One can assume that A is extremal with some ai,j an extremal coeffi-

cient. By Bézout replacement, A is equivalent to A′ with a′1,1 = ai,j . Because (a′1,1) = (ai,j)

is maximal in F, A′ is still extremal. One can therefore assume that dν = a1,1 is extremal and

dν ̸= 0 because A ̸= 0.

If a1,j , j > 1 is not divisible by a1, then (dν) is strictly contained in (∧1(dν , a1,j)). But using

Bézout replacement, this contradicts the maximality of (dν).

Therefore, dν |a1,j and (same argument dν |ai,1 for all i, j. By using usual Gauss operations, one

can assume that a1,j = ai,1 = 0 for all i, j > 1, without loosing extremality as before.

• I claim that in this situation dν |ai,j . If i > 1 say, the change L1 7→ L1 + Li changes L1 to

(dν , 0 . . . , 0, ai,j , 0, . . . , 0) and therefore dν |ai,j by the preceding Bézout replacement argument.

The matrix A is therefore of the form dν diag(1,A) with A ∈ Mp−1,q−1(R) and we conclude by

induction.

2. This is the functoriality of the cokernel and the computation of the cokernel in the diagonal case

(3.8.0.1).

3. Direct consequences of the calculations of the Fitting ideals of a direct sum (3.8.2.6).

4. The number N of indices such that di = 0 is the largest i ≥ 0 such that Φi(Coker(A)) = (0) showing

that independance of the number ρ = p − ν + N of zero ideals Ii. For the others, observe that

the sequence of product dj . . . d1 determines the di, i ≤ j provided di ̸= 0 because R is an integral

domain.

5. The direct implication is (4). Conversely, if Ij are the invariant ideals of A,A′ ∈ Mp,q(R), by (1)

and (4) they are Bézout equivalent to diagonal matrices diag(dj),diag(d′j) with (dj) = (d′j). Writing

d′j = ujdj , uj ∈ R×, we get diag(d′j) = Ddiag(d′j) with a diagonal invertible matrix D hence the

equivalence.

6. Direct consequence of (1) and 2.3.1.1.



86 CHAPTER 6. MATRIX AND MODULES OVER PID

Remark(s) 6.3.1.3 The matrix diag(dν , . . . , d1) with (d1) ⊂ · · · ⊂ (dν) ∈ Mp,q(R) in (1) is sometimes called

the Smith’s normal form A.

6.4 Invariant factors of a module

Let us reap the benefits of our labor.

Theorem 6.4.0.1 (Structure theorem of finite type modules over PID) Let M be a finite type module over a

PID R.

1. Every submodule of M is of finite type.

2. There exists an exact sequence Rm A−→ Rn → M → 0 and M
∼→ ⊕R/Ij where (Ij) is the sequence of proper

invariant ideals of A.

3. The Fitting ideals Φi(M), i ≥ 0 are equal to In . . . Ii+1.

4. The proper invariant ideals of A does depend only on M : they are called the invariant factors of M.

5. M is (non canonically) isomorphic to Mtors ⊕ Rr with r = rank(M) = Card{j|Ij = (0)} and

Mtors
∼→ ⊕j>rR/Ij = ⊕Ij ̸=(0),RR/Ij

6. M is free if and only if M has no torsion.

7. Every submodule N of a rank n free module M is free of rank r ≤ n. Moreover, there exists a basis e1, . . . , en

of M and 0 ̸= dr| . . . |d1 such that (diei)1≤i≤r is a (so called adapted) basis of N.

Proof. Let us explain why it is a reformulation of (6.3.1.2).

1. R is Noetherian and so is M (5.2.1.2).

2. The existence of the exact sequence is (5.2.1.3) and the remaining part is (6.3.1.2) taking into account

accont that R/Ij = {0} if Ij is not proper.

3. Cf. (6.3.1.2).

4. Cf. (6.3.1.2).

5. Direct consequence (2).

6. Direct consequence of the previous item and of 2.2.0.1.
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7. By choosing basis of M and N, the inclusion N → M becomes Rr
A−→ Rn with A ∈ Mn,r(R) an

injective matrix. Therefore, there exists D diagonal and P,Q invertible with A = PDQ (6.3.1.2).

Then, N = PDQ(Rr) = PD(Rr) and we set ej = (Pi,j)i the j-th column of P ∈ GLn(R) and di = Di,i

for Di,i ̸= 0.

Corollary 6.4.0.2 (Structure theorem of finite type abelian groups) Let G be a finite type abelian group.

1. There exists a unique sequence of integers 2 ≤ dn| . . . |d1 and r ≥ 0 such that G ∼→ ⊕iZ/diZ⊕ Zr.

2. If G is a subgroup of the multiplicative group k∗ of a field4, then G is cyclic.

Proof. 1. Set M = G and R = Z in the previous structure theorem.

2. Because G is finite, we can by (1) choose an isomorphism φ : G
φ−→ H = ⊕iZ/di with 2 ≤ dn| . . . |d1.

It maps Γ = {g ∈ G|gd1 = 1} isomorphically to {h ∈ H|d1h = 0} the latter group being equal to the

whole H. In particular, Card(Γ) = d1 . . . dr. But Td1 −1 has at most d1 roots in k giving d1 . . . dr ≤ d1

and therefore r = 1.

6.4.1 The Euclidean case

Proposition 6.4.1.1 Assume R is Euclidean. Then Bézout equivalence ⇔ Gauss equivalence

Proof. Let L = (a0, a1) ∈ R × R∗ and a0 = a1q0 + a2 with f(a2) < f(a1) or a2 = 0. Using the Gauss

operation a0 7→ a0 − q0a1, we get (a0, a1) ≡ (a1, a2) and we know GCD(a0, a1) ≡ GCD(a1, a2). By

induction, we construct ai such that (ai, ai + 1) ≡ (ai+1, ai+2) with GCD(ai, ai + 1) ≡ GCD(ai+1, ai+2)

and f(ai) strictly decreasing until ai+1 = 0 where in this case ai+1 = GCD(a0, a2). It follows that for

any a, b, one has (a, b) ≡ (GCD(a, b), 0).

If know B =

a b

c d

 is a Bézout matrix, it follows that B ≡

GCD(a, b) 0

γ δ

 with GCD(a, b)δ = 1

because det(B) = 1. By a Gauss operation, because δ is invertible one can further assume γ = 0 and

we have B ≡ diag(δ, δ−1) and therefore B ≡ Id2 thanks to the previous lemma. Therefore, any Bézout

operation is a Gauss operation.

4or even of G ⊂ R× where R is an integral domain.
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In particular, this shows that deciding whether two matrices with coefficients in an Euclidean ring are

equivalent or not is an algorithmic question because the finer Gauss equivalence problem is.

Corollary 6.4.1.2 If R is Euclidean, every invertible matrix A ∈ GLn(R) is Gauss equivalent to (det(A), Idn−1).

Proof. If A is invertible, we know (6.3.1.2) that their invariant factors are equal to 1 proving that A is

Gauss equivalent to an invertible diagonal matrix and we apply lemma 2.3.1.1. In particular, SLn(R) is

generated by transvections.

6.5 About uniqueness of invariant ideals

This section can be skipped on a first reading, not because it is difficult, but because the results are

more or less cultural than useful. In the PID situation we have seen that every module of finite type

M is isomorphic to a direct sum ⊕ni=1Mi with AnnR(M1) ⊂ AnnR(M2) ⊂ · · · ⊂ AnnR(Mn). In other

words, M is isomorphic to ⊕ni=1R/Ii, where I1 ⊂ I2 ⊂ · · · ⊂ In is an increasing sequence of proper ideals

depending only on M. In general, there are many modules that do not have this form. But in the case

where such a decomposition exists, let us show that the ideals are uniquely defined as in the PID case5

Assume therefore that M has such a decomposition but that R is no longer assumed to be a PID.

Lemma 6.5.0.1 Let Then

1. The minimal number of generators of M is n.

2. For k = 1, . . . , n, the ideal Ik is equal to the set of all x ∈ R such that xM can be generated by fewer than k

elements.

We say in this situation that the (Ik) as the invariant factor sequence of M (which generalize the PID

terminology).

Proof.

1. M is a quotient of Rn and has therefore a generating set consisting of n elements. Conversely, if we

have a generating family of d elements, we get a surjection Rd 7→ ⊕R/Ik → ⊕(R/In)
n which factors

through a surjection (R/In)
d → (R/In)

n implying d ≥ n by 2.2.0.1.

2. Let x ∈ R, and let k ≤ n. For any ideal I of R,let Ix = {y ∈ R|xy ∈ I}. By construction, the ideal

Ix = R if and only if x ∈ I. The multiplication by x defines an isomorphism xM ∼= ⊕n(x)k=1R/(Ik)x

where n(x) is the largest k such (Ik)x ̸= R. Because (Ik)x is increasing, one can apply (1) to xM and

5With this generality, I learned this nice argument fromhttps://math.stackexchange.com/q/3147043.

https://math.stackexchange.com/q/3147043
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therefore xM can be generated by fewer than k elements if and only if the k-th factor R/(Ik)x is zero

i.e.when x ∈ Ik.

Remark(s) 6.5.0.2

• We recover the fact that Rn and Rm are isomorphic if and only if n = m.

• One could hope that Fitting ideals would give the result as in the PID case. This is not the case (cf. exercice

6.7.14).

6.6 Supplementary Section: Insight into K-Theory

This section is cultural and can be skipped at first sight. Its purpose is to in-

troduce an important idea in mathematics: how to measure the obstacle to a

result being true. Here the question is how to measure the potential impossi-

bility of diagonalising matrices by Gaussian elimination in a ring R.

The precise question that naturally arises is: is the group GLn(R) generated by the elementary matrices

of pivot type transvections (1.2)? We will consider the matrices of permutations and dilatations (because

they can be easily handled by the determinant function below).

The first step is to move away from n: to do this, we consider GLn(R) as the subgroup of GLn+1(R)

consisting of block diagonal matrices of the form diag(M, 1), where M ∈ GLn(R). This allows us to

consider their infinite union GL(R), seen as the set of matrices of infinite size containing all linear groups

of finite size. We then define E(R) = ∪En(R) as the subgroup of GL(R) generated by all transvections

(cf. 2.3), i.e. the determinant 1 matrices which we can obtain by Gauss elimination (even if we allow the

matrices to grow).

The first result is both simple and remarkable, especially in the proof given by[17].

Lemma 6.6.0.1 (Whitehead) For any ring R, the group E(R) is the derived group [GL(R),GL(R)] generated

by the commutators [A,B] = ABA−1B−1 of matrices in GL(R).

In particular, E(A) is a normal subgroup, and the quotient K1(R) = GL(R)/[GL(R),GL(R)] is a commu-

tative group, as it is the abelianization of GL(R)! This is the group of algebraic K-theory of degree 1. As
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the determinant of any commutator is 1, the determinant map passes to the quotient (4.2) to define the

special group of algebraic K-theory of degree 1:

SK1(R) = Ker (GL(R)
det−−→ R×).

This group avoids considering dilations and permutation matrices, which do not play a crucial role in

pivoting. The inclusion R× = GL1(R) ↪→ GL(R) followed by the quotient projection GL(R) ↠ K1(R)

allows us to define a map:

R× × SK1(R) → K1(R),

which is visibly an isomorphism.

Remark(s) 6.6.0.2 This result is far from being banal. Precisely, E2(R) is not normal in GL2(R) for R =

k[T1,T2]. Precisely, the matrix A =

1 + T1T2 T2
1

−T2
2 1− T1T2

 /∈ E2(k[T1,T2] and one can show that

AM(1,2)A
−1 /∈ E2(R). More surprising, if R = Z[1/2 + θ] with θ =

√
−19/2, Cohn ( op. cit.) has shown

that A =

 3− θ 2 + θ

−3− 2θ 5− 2θ

 /∈ E2(R) and again AM(1,2)A
−1 /∈ E2(R) (Lam, op. cit.). And we know that R

is a PID (6.7.5)! On the other hand, Suslin has shown that En(k[T1, . . . ,Tm]) is normal in GLn(k[T1, . . . ,Tm])

for n > 2 and any m These deep results are far from being easy (cf. T. Y. Lam, Serre’s problem on projective mod-

ules, Springer Monographs in Mathematics, Springer, Berlin, 2006, §I.8).

The group SK1(R) is obviously the obstacle to the Gauss elimination algorithm (infinite) being able

to diagonalise matrices. And our results prove that if R is Euclidean, then SK1(R) = 0. It is worth

noting that this obstacle is very sudden. For example, in the case of the non-Euclidean principal ring

R = Z[ 1+
√
−19
2 ], we have SK1(R) = {1} (this follows from a general deep theorem about so-called

Dedekind rings, [2]). In other words, this is not an example where the pivot with elementary matrices

is insufficient, at least if one allows to increase the size of the matrices. Finding a principal R such that

SK1(R) is non-trivial is difficult. An example is given in [12]: take the subring of Z(T) generated by

Z[T] and the (Tm − 1)−1 for m ≥ 1. This is a principal ring (!) whose SK1 is even infinite.

6.7 Exercises

Exercise 6.7.1

1. Show that R = Z[i] ⊂ C is Euclidean (for (a, b) ∈ R×R∗ with a/b = x+iy, x, y ∈ R, define q = [x]+i[y]

and f(z) = |z|).

2. Show that R = Z[j] ⊂ C is Euclidean with j = exp( 2iπ3 ) (for (a, b) ∈ R×R∗ with a/b = x+yj, x, y ∈ R,

define q = [x+ 1/2] + j[y + 1/2)] and f(z) = |z|).
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Exercise 6.7.2 Prove that R[T] is a PID if an only if R is a field.

Exercise 6.7.3 Let R be an integral domain with fraction field K. Prove that the R-module K is free if and only

if R is a field and therefore if and only if R = K. Deduce that if R is a PID, K is torsion free but not free as a

R-module.

Exercise 6.7.4 Let R be a Euclidean ring. Show that there exists x ∈ R \ R∗ such that the restriction of the

natural surjection π : R → R/(x) to R∗ ∪ {0} is surjective. Show that then R/(x) is a field.

Exercise 6.7.5 Let R = Z
[
1+i

√
19

2

]
= Z[α] ⊂ C.

1. Check that R is an integral ring isomorphic to Z[T]/(T2 − T+ 5).

2. Prove that (2) is a maximal ideal of R.

3. Prove that R× = {±1} (look at the square N(z) = |z|2 of the module of an invertible element z ∈ R×).

4. Deduce from the preceding exercise that R is not Euclidean.

5. Assume that for all a, b ∈ R \ {0}, there exist q, r ∈ A such that N(r) < N(b) and

a = bq + r or 2a = bq + r.

6. Prove that this implies that R is a PID.

7. Let a, b ∈ R \ {0}. Prove that x can be written x = u+ vα, where u, v ∈ Q.

8. Let n = [v] and assume v /∈
[
n+ 1

3 , n+ 2
3

]
. Looking at the closest integers to u and v, prove that there exists

there exist q, r ∈ A such that N(r) < N(b) and a = bq + r.

9. Prove that if v ∈
[
n+ 1

3 , n+ 2
3

]
, there exist q, r ∈ A such that N(r) < N(b) and

2a = bq + r

.

10. Conclude that R is a PID.

Exercise 6.7.6 Solve the following systems of equations, with the unknown x ∈ Z:


x ≡ 1 (mod 2)

x ≡ 2 (mod 3)

x ≡ 3 (mod 5)

Exercise 6.7.7 Write a program computing the invariant ideals of a matrix with coefficients in Q[T] or Z. What

can you say about its complexity? About its numerical stability?
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Exercise 6.7.8 Give an algorithm to solve a finite number of linear equations with integral coefficients and test in

a suitable computer language like Python.

Exercise 6.7.9 Transform the proof of 6.4.1.1 into an algorithm and then to a Python program (use SageMath for

instance). What can you say about the complexity of this algorithm? About its numerical stability?

Exercise 6.7.10 Let K be a nonempty compact connected subset of C. We say that two holomorphic functions

defined on some open neighborhood of K are equivalent if they are equal in some neighborhood of K.

1. Show that the set of equivalence classes R has a natural structure of ring.

2. Show that R is an integral domain.

3. Let f a representative of an element of R. Show that f has a finite number of zeroes in K and that f is

invertible if and only if f does not vanish on K

4. Show that the R is a PID.

Exercise 6.7.11 Let R be ring of complex power series with positive convergence radius. Prove that R× is the set

of series not vanishing at zero. Deduce that R is a PID and is even Euclidean (it is an example of the so called

discrete valuation rings).

Exercise 6.7.12 Let K be the fraction field of R. Show that the rank of A considered as a matrix in Mn,m(K) is

equal to r = Card{j|Ij ̸= (0)} and that rank(Coker(A)) = n− r.

Exercise 6.7.13 Let P,Q ∈ k[T] be monic polynomials and A =

P 0

0 Q

. Compute δ1(A) and δ2(A) and

deduce that the invariant ideals of A are GCD(P,Q),LCM(P,Q). Retrieve this result using Gauss algorithm.

Deduce another algorithm than the Gauss elimination algorithm to compute the invariants ideals of a diagonal

matrix in Mp,q(R).

Exercise 6.7.14 Let R = Q[T,T1,T2]/(T
2(T1 − T2). Show that Mi = R/(TTi) ⊕ R/(T) have the same

Fitting ideals but distinct invariant sequences in the sense of 6.5 . Can you produce an analogous example with R

an integral domain?

Exercise 6.7.15 Use 6.7.14 to give an example of non equivalent matrices with the same Fitting ideals.



Part II

Linear algebra over fields

93





Chapter 7

Warm-up II: duality

René Magritte

7.1 Introduction

Perspective

Vector subspaces can be either described by generating families or by linear equa-

tions. Duality is an important even formal tool formalizing the bridge between

these two aspects.

7.2 Basic notions

As always, V denotes in this chapter a finite dimensional1 k-vector space and V∗ = Hom(V,k) denotes

its dual; the vector space of linear maps from V to k, i.e. linear forms of V.

For any φ ∈ V∗, v ∈ V, we denote ⟨φ, v⟩ = φ(v) the duality bracket2 V∗ ×V → k. This bracket is clearly

bilinear.
1Unless otherwise stated.
2Be careful, the dual acts to the right on vectors, cf. [5].
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A hyperplane is the kernel of a non-zero linear form φ. Conversely, any hyperplane H determines φ

up to multiplication by a non-zero scalar: choosing any v /∈ H defines a direct sum decomposition

H⊕ kv = V and φ is unambiguously defined by any (nonzero) value of v.

We recall that any any free family of V can be completed in a basis of V. In particular, any proper

subspace of V is contained in some hyperplane and in fact is precisely the intersection of hyperplanes

that contain it (cf. 7.3 7.3.0.1).

Proposition 7.2.0.1 Let V be a n-dimensional vector space and let Vi finitely many proper vector subspaces. If

k is infinite or if the number of subspaces is ≤ 2, then ∪Vi ̸= V.

Proof. By the above remark, we can assume that all the Vi’s are hyperplanes Ker(φi). Choosing a (finite)

basis of V, these linear forms φi are nothing but (homogeneous) degree one polynomial in the coor-

dinates. By assumption
∏
φi is zero on kn and therefore the polynomial

∏
φi(X1, . . . ,Xn) is zero in

k[X1, . . . ,Xn] because k is infinite. But a polynomial ring is an integral domain, showing that one the φi

is zero, a contradiction. If k is a finite field (of characteristic p ≥ 2), the cardinal of V is pn. The union of

two hyperplanes has cardinal at worst 2pn−1 − 1 ≤ pn − 1 (because 0 belongs to bot hyperplanes) and

the proposition follows.

Let B = (ei) be a (finite) basis of B = (ei) V. We define e∗i by the formula

⟨ej , e∗i ⟩ = δi,j

In other words, e∗i is the i-th coordinate function and we have

v =
∑
j

⟨v, e∗j ⟩ej

From this formula we get that B∗ = (e∗i ) is a basis of V∗ called the dual basis of B. In particular, dim(V∗) =

dim(V).

If V = kn = Mn,1(k) (column vectors), we have M1,n(k) = kn = V∗ (row vectors) and the duality

bracket is ⟨L,C⟩ = LtC where

L ∈ (kn)∗ is a row and C ∈ kn a column.

If B = (ej = [δi,j ]1≤i≤n) is the canonical basis (Ej,1 = ej) of kn = Mn,1(k) = V, its dual basis B∗ is

formed from the rows e∗i =
tei, which is the canonical basis (E1,i = e∗i ) of M1,n(k) = kn = V∗.

If W is a subspace of V (or even a subset), we recall that its orthogonal is defined by

W⊥ = {φ ∈ V∗|⟨φ,w⟩ = 0 for all w ∈ W} ⊂ V∗.

In concrete terms, the orthogonal of W ⊂ V is the set of linear equations satisfied by W. If now W∗ is a

subspace of V∗ (or even a subset) its polar in V is defined by

W◦
∗ = {v ∈ V|⟨φ, v⟩ = 0 for all φ ∈ W∗} ⊂ V.
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If B is a basis of an infinite dimensional vector space, the family B∗ is still free, but never

a basis. For example, the linear form φ defined by ⟨φ, ei⟩ = 1 for all i is certainly not

in the span of B∗. Even as a set, Card(V∗) > Card(V) (exercise). In fact, in the infinite

dimensional case, the algebraic dual is not the good notion. As the reader who has

notion in functional analysis knows, the good notion is an appropriate topological dual

of topological vector spaces.

In concrete terms, the polar of W∗ ⊂ V∗ is the set of vectors satisfying all the equations in W∗.

Example(s) 7.2.0.2 An important example comes from differential geometry. If f is a regular function on an

open Ω of Rn, its differential at ω ∈ Ω is a linear form on TωΩ = Rn: the differential df(ω). In the canonical

basis ( d
dxi

(ω))i of TxΩ, this form is the Jacobian J(ω) = ( dfdxj
(ω))j , seen as a row matrix. The kernel of df(ω)

is none other than the tangent hyperplane at ω to the hypersurface defined by the equation f = 0, as long as the

differential at that point is not zero. The generalisation to more than one function is contained in the notion of

higher dimensional submanifolds.

7.3 Formal biorthogonality

Whether V is of finite dimension or not, every subspace W is tautologically contained in the space

defined by the set of its equations

W ⊂ (W⊥)◦ ⊂ {v|(⟨φ, v⟩ = 0 for all φ ∈ W⊥}.

Lemma 7.3.0.1 We have

W = (W⊥)◦ = {v|(⟨φ, v⟩ = 0 for all φ ∈ W⊥}.

no matter what the dimensionality of V is.

Proof. Indeed, if v ̸∈ W, one can choose a complement S of W⊕kv in W and define for example φ ∈ W⊥

by the conditions ⟨φ,W⟩ = ⟨φ, S⟩ = {0} and (⟨φ, v⟩ = 1 which implies v /∈ (W⊥)◦ proving the reverse

inclusion.

7.4 Ante-dual basis: biduality

Henceforth, in this chapter, V is finite-dimensional.
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Proposition 7.4.0.1 Let V be of dimension n <∞. Then

1. The evaluation map

ev :

 V → V∗∗

v 7→ (φ 7→ (⟨φ, v⟩)

is a linear isomorphism.

2. For any basis B∗ of V∗, there exists a unique basis B of V called ante-dual whose dual is B∗, i.e. such that

B∗ = B∗.

Proof.

1. ev is injective between spaces of the same finite dimension.

2. B = ev−1((B∗)
∗) is the unique solution to the problem posed.

Example(s) 7.4.0.2 Let (α1, . . . , αn) be n distinct real numbers. We define for i ∈ [1, n] the Lagrange interpo-

lating polynomial

Li =
∏n

j=1
j ̸=i

X− αj
αi − αj

and define φi : P 7→ P(αi) as the linear evaluation function at αi. We can verify that for all i, j ∈ [1, n] φi(Lj) =

δij . Thus, the basis (φ1, . . . , φn) is the ante-dual basis of (L1, . . . ,Ln). Therefore, for any polynomial P ∈ Rn[X]

we have P =
∑n
i=1 φi(P)Li which leads to P =

∑n
i=1 P(αi)Li.

7.5 Orthogonal and polar in finite fimension

Proposition 7.5.0.1 Let W,W∗ be two subspaces of V,V∗ respectively. We have

1. dim(W) + dim(W⊥) = n.

2. dim(W∗) + dim(W◦
∗) = n.

3. W∗ = (W◦
∗)

⊥.

4. W = (W⊥)◦.

5. ev(W◦
∗) = W⊥

∗ .

6. ev(W) = W⊥⊥.
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Proof.

1. Choose a basis (ei, 1 ≤ i ≤ d of W and complete it to a basis B = (ei, 1 ≤ i ≤ n of V. If B∗ = (e∗i ) is

the dual basis, then by construction W⊥ = Vect(ei, i > d).

2. Choose a basis (φi, 1 ≤ i ≤ d of W∗ and complete it to a basis B∗ = (φi, 1 ≤ i ≤ n of V∗. If B = (ei)

is the ante-dual basis, then by construction W◦
∗ = Vect(φi, i > d).

3. Applying the argument from (1) to W = W◦
∗ and using the basis εi = en−i, we get W⊥ = (W◦

∗)
⊥ =

Vect(φi, i ≤ d) = W∗ which gives (3).

4. This has already been proved and is just is added for reference (7.3.0.1).

5. If φ ∈ W◦
∗ and w ∈ W, then ev(v)(φ) = φ(w) which is null because φ ∈ W◦

∗ and therefore ev(W◦
∗) ⊂

W⊥. Since these two spaces have the same dimension as established previously, this inclusion is an

equality.

6. If w ∈ W, and φ ∈ W⊥, then ev(v)(φ) = ⟨φ, v⟩ = 0 so that W ⊂ W⊥⊥. As these two spaces have the

same dimension as established previously, this inclusion is an equality.

Example(s) 7.5.0.2 If V is an euclidean space with scalar product (v, w) 7→ v.w, the partial linear map w 7→

(v 7→ v.w) has zero kernel and is therefore an isomorphism V 7→ V∗. One checks that this isomorphism identifies

W⊥ with the usual Euclidean orthogonal {v ∈ V|v.W = {0}} recovering the classical dimension formula in

Euclidean geometry dim(W⊥) = n − dim(W). Moreover, with this identification, w ∈ W ∩ W⊥ satisfies

w.w = 0 and therefore is zero ensuring in the Euclidean space the so called usual orthogonal decomposition

W
⊥
⊕ W⊥ = V.

Remark(s) 7.5.0.3 Note that orthogonality and polarity are strictly decreasing applications for inclusion.

Corollary 7.5.0.4 Let φi ∈ V∗, i = 1, · · · ,m. Then, the rank of Vect{φi} is that of the evaluation application V → km

v 7→ (φi(v))i

Proof. It suffices to observe that the kernel of the evaluation is the polar of Vect{φi} and then to invoke

the previous

proposition and the rank theorem.
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7.6 Biduality conventions (Finite dimension)

The previous paragraph thus allows, in finite dimension, thanks to ev, to identify V and its bidual, polar

W◦
∗ of W∗ and orthogonal W⊥

∗ , W and biorthogonal W⊥⊥. In general, we simply write W⊥
∗ for W◦

∗. In

finite dimension we generally consider spaces and duals, but we do not dualise the dual thanks to ev

and simply write W = W⊥⊥ whether W is a subspace of V or of V∗.

As an illustration, let’s give the simple but important algebraic lemma which in real cases is the algebraic

content of the theorem of linked extrema in differential geometry (interpret the result in terms of tangent

spaces of submanifolds of Rn in the spirit of the example 7.2.0.2).

The following lemma is the algebraic part of the search of extrema through constraints equalities (see

7.6.0.2 for constraint inequalities).

Lemma 7.6.0.1 Let φ and φi, i ∈ I be linear forms of V. Then, φ is a linear combination of the φi if and only if

∩iKer (φi) ⊂ Ker (φ).

Proof. By strict decrease of the orthogonal, the condition

∩iKer (φi) = Span(φi)
⊥ ⊂ Ker (φ) = Span(φ)⊥

is equivalent to the inclusion

Span(φ) = Span(φ)⊥⊥ ⊂ Span(φi)
⊥⊥ = Span(φi).

Remark(s) 7.6.0.2 (Farkas’ Lemma) If k = R, we have an analogous result for finite families of half-spaces

H+,H+
i defined by the inequalities f ≥ 0, fi ≥ 0. Indeed, it be can be shown ∩iH+

i ⊂ H+ if and only if φ is a

linear combination with positive coefficients of the φi. See [1].

7.7 Contravariance

Let Vi, i = 1, 2, 3, be arbitrary vector spaces,

Definition 7.7.0.1 If f ∈ Homk(V1,V2), we note tf ∈ Homk(V
∗
2,V

∗
1) the transpose of f defined by tf(φ2) =

φ2 ◦ f , in other words, ⟨tf(φ2), v1⟩ = ⟨φ2, f(v1)⟩ for every φ2 ∈ V∗
2, v1 ∈ V1.
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Let’s recall that a matrix and its transpose have the same rank: this is for instance an immediate con-

sequence of the fact that equivalent matrices have equivalent transpose and that equivalence classes of

matrices (with coefficients in a field) are classified by the rank).

We have the following (formal) proposition

Proposition 7.7.0.2 If f ∈ Homk(V1,V2) and Bi are bases of Vi.

1. The application f 7→ tf is linear injective.

2. If fi ∈ Homk(Vi,Vi+1), we have (contravariance of the transpose) t(f2 ◦ f1) = tf1 ◦ tf2.

Assuming further that the Vi’s are finite dimensional, we have

3. We have MatB∗
2 ,B

∗
1
(tf) = tMatB1,B2(f).

4. rk(f) = rk(tf).

5. With the identifications (7.6), the transposition is involutive.

6. Im(tf) = Ker(f)⊥ and Ker(tf) = Im(f)⊥.

7. If V1 = V2 = V, a subspace W of V is stable by f if and only if W⊥ is stable by tf .

Proof. Let us only give an argument for the fifth point (the verification of the rest is left as a exercise).

First, it is enough to show one of the two formulas (change f to tf and use the involution of the transpo-

sition and the orthogonal). Then, since Im(tf) and Ker(f)⊥ have the same dimension according to 1) and

7.5.0.1, it suffices to prove Im(tf) ⊂ Ker(f)⊥. Now, if f(v1) = 0, then ⟨tf(φ2), v1⟩ = ⟨φ2, f(v1)⟩ = 0.

7.8 Exercises

Exercise 7.8.1 Compare the orthogonal of a sum or intersection of sub vector spaces with the sum or intersection

of their orthogonals.

Exercise 7.8.2 Let V be the real vector space of polynomial of degree ≤ 3. Let a < c < b be reals and define

I ∈ V∗ by

⟨I,P⟩ =
∫ b
a

P(t)dt.

Compute dimSpan(eva, evc, evb, I) depending on the value of c. Deduce a formula for I depending only on

evaluation forms.

Exercise 7.8.3 Les φi, i = 1, . . . ,N linear forms on V and Ψ ∈ Hom(V,kN) = (φi). Prove that the rank of Ψ is

the dimension of the span of the φi’s.
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Exercise 7.8.4 Let X be any set and V a finite dimensional vector subspace of the R-vector space of functions

from X to R. Let n = dim(F).

1. Show that the family (evx), x ∈ X generates V∗

2. Show that there exists fi ∈ F, xi ∈ X, i = 1, . . . , n such that det(fi(xj)) ̸= 0.

3. Assume that all the functions of V are bounded on X. Show that any pointwise convergent sequence of

elements of F is uniformly convergent on X.

4. Does the result previous remain true if one no longer with no boundeness assumption?

Exercise 7.8.5 Let V = Rn with its canonical Euclidean structure < ⟨X,Y⟩ =t XY =
∑
xiyi.

1. Prove that Y 7→ (X 7→< langleX,Y⟩ is an isomorphism V → V∗.

2. Deduce that the Euclidean orthogonal W⊥ = {Y| < langleX,Y⟩, ∀X ∈ W} of a sub vector spaceW ⊂ V

has dimension n− dim(W).

Exercise 7.8.6 Let V = Mn(k). For A ∈ Mn(k), we recall that its trace is Tr(A) =
∑
ai,i.

1. Check that Tr(AB) = Tr(BA),∀A,B ∈ Mn(R). Deduce that Tr(PAP−1 = Tr(A) for any P ∈ GLn(R).

2. Recall how to define the trace of an endomorphism of a finite dimensional vector space.

3. Show that the linear map A → (B 7→ Tr(AB)) is an isomorphism V → V∗.

4. Show that the linear forms φ ∈ V∗ such that ⟨φ,AB⟩ = ⟨φ,BA⟩ for all A,B ∈ V are the multiple of the

trace map A 7→ Tr(A).

5. Prove that any hyperplane of V contains at least one invertible matrix.

6. What is the vector space generated by invertble matrices ?

Exercise 7.8.7 Let a ∈ Endk(V) which is not an homotethy λ Id.

1. Show that there exists x ∈ V such that (a, a(x)) is a free family.

Assume that Tr(a) = 0.

2. Deduce that there exists a basis B of V such that the diagonal elements of MatB(a) are zero.

3. Prove that a is the sum of two nilpotent endomorphism.

4. What is the vector space generated by nilpotent matrices?

Exercise 7.8.8 (General transvections) Let τ ∈ Endk(V). Show that following properties are equivalent.

1. H(τ) = Ker(τ − Id) is a hyperplane of V containing D(τ) = Im(τ − Id), which is a line in V.

2. There exist φ ∈ V∗ and v ∈ V, both nonzero, such that τ(x) = x+ φ(x)v with φ(v) = 0.
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3. There exists a (unique) f ∈ Homk(V/D(τ),D(τ)) such that τ is the composite morphism V → V/D(τ)
f−→

D(τ) → V.

4. The restriction to the affine hyperplane defined by the equation φ(x) = 1 is a translation by the vector v.

5. The natural morphism Hom(V/D,D) → GL(V)

6. The matrices of τ are similar to Idn+E1,2 =


1 1

0 1

 0

0 Idn−2,

 .

We say in this case that τ is a transvection of V of type (D(τ),H(τ)). If φ, v are as above, we define τλ(x) =

x+ λφ(x)v, λ ∈ k. Under these conditions, show:

7. H(τ) = Ker(φ),D(τ) = ⟨v⟩,

8. Transvections of type (⟨v⟩, ⟨φ⟩) are given by τλ, λ ∈ k∗, and λ 7→ τλ is an injective group morphism

(k,+) → (SL(V),×),

9. tτ is a transvection of V⋆ of type (H(τ),D(τ)) in some sense to be explained by the reader.

Exercise 7.8.9 Let V be the real vector space of polynomial function of degree ≤ 3. Let a < c < b three real

numbers and define evx, ι ∈ V∗, x ∈ R) by

⟨evx,P⟩ = P(x), ⟨ι,P⟩ =
∫ b
a

P(t)dt, P ∈ V

1. Compute dimSpan(eva, evb, evc, ι) according to the value of c.

2. Deduce a simple formula for
∫b
a
P(t)dt, P ∈ V.

Exercise 7.8.10 Define ∆ as the discrete differentiation operator ∆ : Qn[T] → Qn[T], P 7→ P(T+1)−P(T)

and the family of linear forms (φ1, . . . , φn) for all i ∈ [1, n] by: φi(P) = (∆iP)(0)

Define the family (Hn) by setting H0 = 1 and Hn = T(T−1)...(T−n+1)
n! , n > 0

1. Prove ∆Hn = Hn(T + 1)−Hn(T)

2. Prove that (φ1, . . . , φn) is the dual basis of (H1, . . . ,Hn) and deduce P =
∑n
i=0 ∆

iP(0)Hi for any P∈Qn[T].

3. Let P ∈ Qn[T]. Prove P(Z) ⊂ Z if and only if there exist α0, . . . , αn ∈ Z such that P =
∑n
i=0 αiHi.

4. How can you generalize?

Exercise 7.8.11 Show that the ideal of R = Z[T] generated by 2 and T is torsion free, of finite type but not free.

Exercise 7.8.12 Assume dim(V) ≥ 2. We want to prove by contradiction that there does not exist any functorial

isomorphism α : V → V∗ in the following sense. Any f ∈ Endk(V) gives rise to a commutative diagram

V
α−→ V∗

↓ f ↑ tf

V
α−→ V∗
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1. Prove

⟨α(f(x)), f(y)⟩ = ⟨α(x), y⟩ for all x, y ∈ V.

2. Prove that there exists x, y1, y2 ∈ V, f ∈ Endk(V) such that (x, y1) is free with

⟨α(x), y1⟩ = 0 and ⟨α(x), y2⟩ ≠ 0

and f maps (x, y1) to (x, y2).

3. Conclude.

Exercise 7.8.13 Let φ ∈ V∗ and v ̸= 0 cancelling φ and let H1 be the affine hyperplane of equation φ(x) = 1

1. Show that there exists a unique τ ∈ Endk(V) such that τ leaves H1 is invariant with restriction the transla-

tion x 7→ x+ v.

2. Show that in a suitable basis, the matrix of τ is the transvection T1,2(1).

3. Conversely, show that any standard transvection is associated as in (1) to a translation.



Chapter 8

Similarity in Mn(k)

8.1 Introduction

Perspective

We explain how the understanding of matrices with coefficients in the PID R = k[T]

allows to completely understand the similarity problem in Mn(k) in an algorithmic

manner (3.7).

The aim of this chapter is to study the similarity relation ≈ on Mn(k), in other words we want to under-

stand the quotient map1 of sets Mn(k) → Mn(k)/ ≈. We need to answer two questions

1. Describe Mn(k)/ ≈ by giving a canonical representative in each similarity class. This is done in

8.2.2.1.

2. Describe the map by giving an algorithmic way to decide when A is ≈ B. This is achieved in 8.4.0.2.

1The similarity relation ≈ of square matrices is an equivalence relation which should not be confused with the equivalence of

matrices ≈ (3.4.0.2).
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8.2 Similarity in Mn(k)

We use the dictionary between k-endomorphisms and R = k[T]-modules (3.7) to translate our problem

in terms of the equivalence class in Mn(R) of T Id−A withA ∈ Mn(k) and then to use our understanding

of these classes in this Euclidean situation (cf. 6.3.1.2).

8.2.1 Similarity invariants

Let a, b ∈ Endk(V) be an endomorphism of an n dimensional vector space V.

Lemma 8.2.1.1 Let Pi, 1 ≤ i ≤ m the unique monic generator of the invariant factor Ii of Va.

1. The torsion k[T]-module Va is of finite type and torsion.

2. The rank of the k[T]-module Va is zero and its invariant ideals are nonzero.

3. We have Pm| . . . |P1 and Va
∼→ ⊕mi=1k[T]/(Pi) with m ≤ n.

Proof.

1. Any finite generating family of the k-vector space V generates the k[T]-module Va which is there-

fore of finite type (and torsion by 3.9.5.1).

2. Use 6.4.0.1.

3. This is (5) of the structure theorem 6.4.0.1 taking into account rank(Va) = 0. Looking at the dimen-

sion gives n =
∑

deg(Pi) ≥ m.

Definition 8.2.1.2 With the above notations, we set Pi = 1 for m < i ≤ n and we say that (Pn| . . . |P1) are (is)

the (sequence of) similarity invariants of a.

Corollary 8.2.1.3 (Similarity invariants of vector space endomorphisms) Keeping the above notations, we

have

1. Va
∼→ ⊕ni=1k[T]/(Pi).

2. If Qn| . . . |Q1 are monic polynomials such that Va
∼→ ⊕ni=1k[T]/(Qi), then Pi = Qi for all i.

3. a and b are similar if and only if there similarity invariant are equal.
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Proof.

1. This is (3) of the above lemma taking into account k[T]/(Pi) = {0} if i > m.

2. This is (4) of 6.4.0.1.

3. Direct consequence of the dictionnary 3.7 and of the above lemma.

8.2.2 Explicit computations of the similarity invariants

Let B = (ei)1≤i≤n be a basis of V and A the matrix of a in this basis. With the notations and result of

3.7.0.2, let us recall that we have a functorial isomorphism

Coker(T Id−A)
∼−→ Va

deduced from the exact sequences

0 → V[T]
Ti−ã−−−→ V[T]

πa−→ Va → 0

which in matrix terms reads in

0 → (k[T])n
Ti−A−−−−→ (k[T])n

πA−−→ (k[T]n)A
∼−→ Va → 0

where πA(
∑

XiT
i) =

∑
AiXi.

Because Coker(T Id−A)
∼→ Va is torsion, the structure theorem 6.4.0.1 says that there exist nonzero

polynomials

Qn| . . . |Q1 ∈ R = k[T] such that T Id−A ≡ diag(Qi)

Moreover, we have
∏

(Qi) = det(T Id−A) because Gauss equivalent square matrices have the same

determinant. By 8.2.1.3, the sequence (Qi) is up to R× the sequence of the similarity invariants of Pi of

A. The diagonal matrix diag(Qi/Pi) belongs therefore to GLn(R) and its determinant thus belongs to R×.

But
∏

Qi and
∏

Pi being monic polynomials, we get
∏

(Qi) =
∏

Pi and therefore diag(Qi) ≡ diag(Pi)

by 6.4.1.2. We have got

T Id−A ≡ diag(Pi) where Pi are the similarity invariants of a.

Taking this result into account, we can rewrite entirely 8.2.1.3.

Corollary 8.2.2.1 Let A,B ∈ Mn(k) be the matrices of a, b ∈ Endk(V) in some basis. Let (Pn| . . . |P1)1,≤i≤n

be a sequence of monic polynomials. The following assertions are equivalent

• (Pi) is the sequence of similarity invariant of a
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• T Id−A ≡ diag(Pi).

• T Id−A ∼ diag(Pi).

• Va
∼→ ⊕k[T]/(Pi).

Moreover, the following conditions are equivalent.

• A and B are similar in Mn(k).

• T Id−A and T Id−B are equivalent in Mn(k[T]).

• The k[T]-modules Va and Vb are isomorphic.

We get then the following relations between the similarity invariants.

Corollary 8.2.2.2 We have the following formulas.

1.
∏n
i=1 Pi = χa(T).

2. P1|χa|Pn1 . In particular χa and P1 have the same roots in any extension of k (hence have the same irreducible

factors2).

3. P(a) = 0 if and only if P1|P. In other words, P1 is the minimal polynomial of a (often denoted by µa).

4. The morphism of k-algebras eva : k[T] → k[a] ⊂ Endk(V) induces a isomorphism k[T]/(µa)
∼→ k[a].

Proof.

1. There exists ,QQ′ ∈ GLn(R) such that T Id−A = Qdiag(Pi)Q
′. Because det(P) ∈ k∗, their determi-

nant χa(T) and
∏

Pi(T) differ by a multiplication by a scalar which is 1 because both polynomials

are monic.
2Cf. chapter 9.
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2. Because P1 is a multiple of each Pi, by taking the product, we find that Pn1 is a multiple of χa, thus

P1|χa|Pn1 .

3. P kills Va
∼→ ⊕k[T]/(Pi) iff and only if P kills all the k[T]/(Pi) in other words when Pi|P. Because

Pi|P for all i, we are done.

4. We have eva onto and Ker (eva) = (µa) and we conclude by the universal property of the kernel

(4.2.0.1).

Remark(s) 8.2.2.3

• Note that the above statement 8.2.2.2 denies the existence of µa without any prior knowledge. By construc-

tion, it is the unique monic polynomial of lowest degree that annihilates a.

• The interested reader can check that we did not use the Cayley-Hamilton theorem (2.1.3.2) to prove these

results. So the divisibility P1 = µa|χa is another (too complicated) proof in the field case.

• As we will see later (e.g. 8.4.0.4), the last Pi are often equal to 1. They contribute through the zero module to

Va, as we have already observed.

• Unlike the characteristic polynomial, the similarity invariants do not vary continuously with a. For example,

the similarity invariant of diag(0, t) is 1,T(T − t) when t ̸= 0 and T,T when t = 0. We will discuss this

phenomenon in full generality in the chapter 13.

�

Finally, let us give two classical results.

Corollary 8.2.2.4 Let A,B ∈ Mn(k) and K a field containing k. We have

1. A and tA are similar.

2. A,B are similar in Mn(k) if and only if they are similar in Mn(K)

Proof.

1. Observe that T− IdA = Qdiag(Pi)Q
′ implies T− Id tA = tQ′ diag(Pi)

tQ.

2. If Pi, P̃i are the similarity invariants of A in Mn(k) and Mn(K), we have T Id−A ≡ diag(Pi) in

Mn(k[T]) and therefore T Id−A ≡ diag(Pi) in Mn(k[T]) because GLn(k[T]) ⊂ GLn(K[T]). But by

definition of P̃i, we have also T Id−A ≡ diag(Pi) in Mn(K). By uniqueness, we get Pi = P̃i, hence

the result.
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8.3 An important example: diagonalization

Although the diagonalization of endomorphisms is not necessary to understand the similarity of ma-

trices, we will illustrate our results in this special case. We will denote by kλ the k[T] module kλ =

k[T]/(T − λ). It is of dimension 1 as a k-vector space, and conversely any k[T] module of k dimension

1 is of this form for a unique λ characterized by T.1 = λ.

By definition, we recall that a ∈ Endk(V) is diagonalizable if and only if V has a basis of eigenvectors,

i.e.if

Va = ⊕λ∈Spec(A) Ker(a− λ Id)

where Spec(A) = χ−1
a (0) = µ−1

a (0) is the set of eigenvalues of a. Equivalently, a is diagonalizable if its

matrix is similar to a diagonal matrix in some basis. In this case, the theory of similarity invariants reads

as follows.

Proposition 8.3.0.1 The following assertions are equivalent.

1. a is diagonalizable.

2. a is cancelled by some non zero P ∈ k[T] which is split with GCD(P,P′) = 1.

3. µa is split with GCD(µa, µ
′
a) = 1.

4. Va is a direct sum of dimension 1 module kλ.

In particular, the restriction of a diagonalizable morphism to a stable subspace is diagonalizable.

Proof. We prove (1) ⇒ (2) · · · ⇒ (4) ⇒ (1).

1. If D is the diagonal matrix of a in a diagonalization basis, then P(T) =
∏

(T − di) where di runs

over the distinct diagonal terms of D cancels a hence (2).

2. µa|P hence (3).

3. Each similarity invariant of Pi divides P1 = µa and therefore is a product of distinct linear factors.

By the Chinese reminder lemma applied to Iλ = (T− λ), λ ∈ Spec(a), we get

Va = ⊕λAnnM(T− λ) = ⊕Ker(a− λ Id)

and any series of basis of Ker(a− λ Id) defines the required sum by (4).

4. Tautology.

The last point follows from (2) because any polynomial which annihilates a cancels any restriction of a

to a stable subspace.
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As we will see in chapter 11, diagonalizable endomorphisms is the typical example of semisimple en-

domorphisms.

8.4 Frobenius Decomposition

Ferdinand Georg Frobenius

We will rephrase the previous results in terms of companion matrices provid-

ing a canonical representative C(P) in each similarity class A.

Definition 8.4.0.1 Let χ = Tn +
∑n−1
i=0 aiT

i ∈ k[T]

1. A type (or n-type) P is a sequence P = (Pn| · · · |P1) a sequence of monic polynomials with
∑

deg(Pi) = n.

It is a χ-type if moreover
∏

Pi = χ

2. The companion matrix C(χ) of χ is the matrix of the multiplication by T on k[T]/(χ).Thus, C(P) is the

empty matrix if P = 1

3. The generalized companion matrix of a type P is C(P) = diag(C(Pi)) ∈ Mn(k).

Explicitly, one has

C(χ) =



0 0 · · · 0 −a0
1 0 · · · 0 −a1
0 1 · · · 0 −a2
...

...
. . .

...
...

0 0 · · · 1 −an−1


.

We already know (apply (3) of 2.3.1.1 with R = k[T] and t 7→ −T, ai 7→ −an−i−1)

(∗) T Idn−C(χ) ≡ diag(χ, 1, . . . , 1) ∈ Mn(k).

Using deg(Pi) = n, we get more generally (using (1) of 2.3.1.1)

C(P) ≡ diag(P1, . . . ,Pn)

We rewrite the similarity invariant theorem 8.2.2.1 as follows.
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Corollary 8.4.0.2 (Frobenius Reduction) Let P = (Pn| · · · |P1) be a type and A ∈ Mn(k). Then, A ≈ C(P)

(i.e. A and C(P) are similar) if and only P is the sequence of similarity invariants of A.

Remark(s) 8.4.0.3 (Frobenius decomposition)

• It is said that C(P) is the Frobenius normal form of A.

• Using 4.2.2.1, we can rephrase the Frobenius reduction theorem above as follows. With the above notations,

P is the sequence of similarity invariants of a if and only if there exists a direct sum decomposition

Va =
∑

Vi into cyclic modules with Annk[T](Vi) = (Pi).

• The degree condition n = deg(Pi) forces very often a lot of components of a type P to be equal to 1. This is

the case for the type associated to a companion which will be appear the most likely (13.5.2.2).

• The reader will deduce easily (*) from 8.2.2.1 in the field case, which is the usual way to prove that. We

wanted to stress that this equivalence is formal and does not depend on the coefficient ring.

Using 4.2.2.1, we get the more or less classical result in the case of a unique companion block C(P)

Corollary 8.4.0.4 Let a ∈ Endk(V). The following statements are equivalent3:

1. The matrix of A in a suitable basis is the companion matrix C(χ).

2. µa = χa = χ.

3. The similarity invariants are (1, · · · , 1, χ).

4. Va and k[T]/(χ) are isomorphic k[T]-modules.

5. Va is cyclic as (k[T]-module) and χa = χ.

8.5 Commutant

It is then easy to study the commutant (see 3.7.0.1)

Endk[T](Va) ≃ Endk[T](⊕k[T]/(Pi)).

for example, to calculate its dimension.

3This also equivalent for infinite fields that V has a finite number of subspaces stable by a (9.2.2.2).



8.6. AN ALGORITHM FROM ∼ TO ≈ 113

Proposition 8.5.0.1 The dimension of the commutant of a is
∑

(2i − 1) deg(Pi). In particular,

dimEndk[T](Va) ≥ n with equality if and only if a is cyclic.

Proof. We have

Endk[T](⊕k[T]/(Pi)) = ⊕i,j Homk[T](k[T]/(Pi),k[T]/(Pj))

Since k[T]/(Pi) is cyclic generated by the class of 1, an element of

Homk[T](k[T]/(Pi),k[T]/(Pj))

is determined by its image (P mod Pj) where P satisfies

(∗) PiP ≡ 0 mod Pj

(universal property of the quotient 4.2.0.1). If i ≤ j, we have Pj |Pi, and this condition is automatically

satisfied so that

Homk[T](k[T]/(Pi),k[T]/(Pj)) ≃ k[T]/(Pj) if i ≤ j

If i > j, we have Pi|Pj so the condition (∗) reads P ≡ 0 mod Pj/Pi so that

Homk[T](k[T]/(Pi),k[T]/(Pj)) ≃ Pj/Pik[T]/(Pj) ≃ k[T]/(Pi) if i > j

We therefore have

dimk(Endk[T](Va)) =
∑
i≤j

deg(Pj) +
∑
i>j

deg(Pi)

=
∑
j

j deg(Pj) +
∑
i

(i− 1) deg(Pi)

=
∑

(2i− 1) deg(Pi)

Using n =
∑

deg(Pi), we get dimEndk[T](Va) − n = 2
∑n
i=1(i − 1) deg(Pi) ≥ 0. Furthermore, equality

implies (i − 1) deg(Pi) = 0 for every i, thus deg(Pi) = 0 if i > 1 so that equality is equivalent to the the

fact that a is cyclic.

8.6 Appendix: Algorithm from equivalence to similarity

We know therefore that if Ti − A and Ti − B are equivalent, i.e., if there exist P(T),Q(T) polynomial

and invertible matrices such that

P(T)(Ti−A) = (Ti− B)Q(T)−1,

then there exists P ∈ GLn(k) such that B = PAP−1.
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Proposition 8.6.0.1 (Thanks to O. Debarre) There exists an algorithm for computing such a P.

Proof. We can perform the divisions by monic (here of degree one) in R[T] with R = Mn(k[T])

P(T) = (Ti− B)P1(T) + P0,

Q(T)−1 = Q̃1(T)(Ti−A) + Q̃0,

with P0 and Q̃0 in Mn(k) (let’s stress that R is not in a commutative ring4. We obtain by substituting

((Ti− B)P1(T) + P0)(Ti−A) = (Ti− B)(Q̃1(T)(Ti−A) + Q̃0)

or also

(Ti− B)(P1(T)− Q̃1(T))(Ti−A) = (Ti− B)Q̃0 − P0(Ti−A).

The left-hand side is therefore of degree at most 1 in T, which is only possible if P1(T) = Q̃1(T). Thus

(Ti − B)Q̃0 = P0(Ti − A) (argue by contradiction and look at the highest degree term). The equality

of the coefficients of T gives Q̃0 = P0, that of the constant coefficients gives BQ̃0 = P0A. It remains to

show that Q̃0 is invertible. We perform another division i R[T]

Q(T) = Q1(T)(Ti− B) + Q0

and we write

i = Q(T)−1Q(T)

= (Q̃1(T)(Ti−A) + Q̃0)Q(T)

= Q̃1(T)(Ti−A)Q(T) + Q̃0Q(T)

= Q̃1(T)P(T)
−1(Ti− B) + Q̃0(Q1(T)(Ti− B) + Q0)

=
(
Q̃1(T)P(T)

−1 + Q̃0Q1(T)
)
(Ti− B) + Q̃0Q0.

Again, as Q̃0Q0 is constant, the factor of Ti− B is zero and Q̃0Q0 = i, hence the conclusion.

8.7 Summary on similarity invariants

Collating what we have proved, we have the following results which was wanted in 5.1.

Let A,B ∈ Mn(k) and P = (Pn| · · · |P1) a family of monic polynomials.

• A and B are similar if and only if they have the same similarity invariants or equivalently if VA
∼→

VB.

• The family of similarity invariants of C(P) is P and the similarity invariants of C(P) are (1, · · · , 1,P).
4See 1.3.1.1
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If P is the family of similarity invariants of A, we have:

• A and C(P) are similar (Frobenius Reduction).

• VA ≃ ⊕k[T]/(Pi) where A also denotes the endomorphism of V = kn associated.

• T Id−A is equivalent to diag(P1, · · · ,Pn).

• The GCD of minors of T Id−A of size i is equal to δi =
∏
j≥n−i+1 Pj .

• P is calculated by Gauss elimination by “diagonalizing” T Id−A in Mn(k[T]).

• We have χA = P1 · · ·Pn and P1 = µA.

The proof strategy is illustrated by the following diagram.

TId-B1TId-A1

diag(P1)

TId-B2TId-A2

diag(P2)

diag(P)| ∑deg(Pi)≠ n

A3(T) B3(T)Polynomial Invariants
P=(Pn,…,P1)

Mn(k[T])/∼

A1 B1

C(P1)

A2 B2

C(P2)

Mn(k)/≈

Similiraty 
classes

Equivalence
Classes 

A--->TId-A

diag(P)| ∑deg(Pi)= n

A3 B3

8.8 Exercises

Exercise 8.8.1 Let (a1, . . . , an) ∈ Cn. Is the matrix (aiaj)1≤i,j≤n diagonalizable?

Exercise 8.8.2 Let A,B ∈ Mn(C) with AB = BA and let M =

A B

0 A

. Give a condition for M to be

diagonalizable.
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Exercise 8.8.3 Let a0, . . . , an−1 be complex numbers, and let

A =



a0 a1 · · · an−1

an−1
. . . . . .

...

...
. . . . . . a1

a1 · · · an−1 a0


∈ Mn(C)

1. Prove that C = C(Tn − 1) is diagonalizable over C.

2. Find a complex polynomial P such that A = P(C).

3. Prove that A is diagonalizable and compute its eigenvalues.

Exercise 8.8.4 Let A,B ∈ M(k) such that AB− BA = A.

1. Compute AdB− BAd.

2. Prove that A is nilpotent.

3. Can you give an example with A ̸= 0?

Exercise 8.8.5 Let a, b ∈ EndR(W) such that ab− ba = Id with W is an arbitrary real vector space.

1. Show that dim(V) = ∞.

2. Assume that W is endowed with a norm and that a, b are continuous. Show that a would be nilpotent and

then that a or b is not continuous (adapt 8.8.4).

3. Give an example [Hint: think at basics of quantum mechanics!].

4. What can you say if we replace k with an arbitrary field?

Exercise 8.8.6 Let P ∈ C[T], a ∈ EndC(V) is such that P′(a) is invertible. Show that: P(a) is diagonalizable if

and only if a is diagonalizable.

Exercise 8.8.7 Show that a diagonalizable endomorphism x is cyclic if and only χa has simple roots.

Exercise 8.8.8 Let A,B ∈ V = Rn[T] with GCD(A,B) = 1 and B =
∏

(T− xi) is split with simple roots. We

define a ∈ Endk(V) to itself that associates to any polynomial P the remainder of the Euclidean division of AP by

B.

1. Prove that a is an endomorphism of E.

2. Prove that 0 ∈( a) and determine the associated eigenspace.

3. Prove that for each k = 1, . . . , p, the polynomial

Pk(X) =
∏

j ̸=k
(T− xj)

is an eigenvector of a.
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4. Deduce that a is diagonalizable.

Exercise 8.8.9 Let G ⊂ GLn(C) be a sugroup. Assume that there exists N > 0 such that gN = Id for any g ∈ G.

1. Prove that any g ∈ G is diagonalizable.

2. Let τ : G → Cd defined by g 7→ (Tr(ggi)) where g1, . . . , gd generates Span(G) ⊂ Mn(C).

3. Prove that τ is injective.

4. Prove that G is finite.

Exercise 8.8.10 Show that the restriction of a cyclic endomorphism to a stable subspace remains cyclic.

Exercise 8.8.11 (difficult) Show that the inclusion k[a] in his bicommutant, that is the set of endomorphisms

that commute with all elements of Endk[T](Va), is an equality.
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Chapter 9

The irreducibility toolbox

9.1 Introduction

Perspective

Even if it is difficult or almost impossible to compute the decomposition of an in-

teger into prime factors, the existence of this unique decomposition is certainly of

first importance. Analogously, even if it is mostly impossible to compute the eigen-

values of an endomorphism, 1, the existence of a unique decomposition of the char-

acteristic polynomial into linear factors if k = C (or in irreducible polynomials in

general) is of first importance. We explain the general theory behind these notions.

In this chapter, R denotes a domain (i.e. an integral commutative ring commutative with unit) and k is

its field of fractions(3.10.3).

119
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9.2 An UFD criterion

Definition 9.2.0.1 We say that x ∈ R∗ is irreducible if it is non-invertible and if x = x1x2 implies x1 or x2 is

invertible.

In other words, x ∈ R∗ is irreducible if its divisors are up to multiplication by a unit equal to 1 or x.

Notice that whether x is irreducible only depends on the ideal (x).

Example(s) 9.2.0.2

• Irreducible elements of Z are ±-prime numbers.

• Irreducible polynomials in C[T] are degree one polynomial.

• Irreducible polynomials in R[T] are degree one polynomial and degree two polynomial without real root if

k = C (exercise).

9.2.1 Uniqueness condition

We know that positive irreducible integers are precisely prime numbers. Generally, we only have one

implication

Lemma 9.2.1.1 Let x ∈ R∗. If the ideal (x) is prime then x is irreducible.

Proof. If x = x1x2, the product x1x2 is zero in R/(x) which by definition is integral. Hence, the class

(x1 mod x) for example is zero so that x1 = y1x and x = y1xx2. Simplifying by x (integrity), we get

x2 ∈ R×.

1See 14.3.3.2 to temper this statement and more generally chapter 14.
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The converse is the so called Euclid property and is the heart of the uniquess property of irreducible

decomposition.

Definition 9.2.1.2 (Euclid’s Property) We say (by abuse) that R satisfies Euclid property if the ideal generated

by an irreducible element is prime, that is if any irreducible element dividing a product divides one of the factors.

We will use the following proposition at length in the sequel, especially for irreducible polynomials in

k[T].

Proposition 9.2.1.3 The maximal ideals in a PID R which is not a field are ideals generated by irreducible

elements.

Proof. Assume p is irreducible and let a ̸≡ 0 mod (p). Because GCD(a, p) divides p, it is equal to 1 or

p. But p does not divide a therefore GCD(a, p) = 1 and by Bézout theorem there exists u, v such that

au + pv = 1 and u mod p is the inverse of a mod (p) ∈ R/(p). Moreover, because p is not invertible,

R/(p) is nonzero and R/(p) is a field.

Conversely, if R/(p) is a field, it is a domain and (p) is prime and therefore p is irreducible.

Proposition 9.2.1.4 A PID satisfies Euclide’s property.

Proof. Let x, x1, x2 ∈ R∗ with x|x1x2 irreducible and let d = GCD(x, x1). Because d|x and x irreducible,

we again have d = 1 or d = x. In the second case, we have have done because x = d|x1 by definition. In

the first case, we apply Gauss lemma for PID (6.2.0.5) and we get x|x2.

Definition 9.2.1.5 Let R be a domain and x ∈ R∗.

R is a unique factorization domain (UFD) if

1. x has a decomposition x = u
∏n
i=1 pi with u ∈ R× and pi irreducible;

2. if x = u′
∏n′

i=1 p
′
i, with u′ ∈ R× and p′i irreducible is another decomposition, then, n = n′ and, up to

renumbering, (pi) = (p′i) for all i.

If x = u
∏n
i=1 pi is a decomposition as above, we can therefore define for any irreducible element p the

integer

vp(x) = Card{i|(pi) = (p)}.
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The reader will check (strongly using uniqueness and not only existence of irreducible decompositions)

the following properties for nonzero elements x, y of an UFD (exercice).

• vp(x) is the maximal power of p dividing x.

• x|y if and only if vp(x) ≤ vp(y) for any irreducible element p.

• vp(xy) = vp(x) + vp(y) and vp(x+ y) ≥ min(vp(x), vp(y)).

• x is square free2 if vp(x) ≤ 1 for all p.

Lemma 9.2.1.6 (Uniqueness Lemma) Let R be an integral domain such that every element of R∗ admits a

decomposition into irreducible elements. Then R is UFD if and only it satisfies Euclid’s property.

Proof. Assume R is UFD and let x be irreducible. Suppose we have a decomposition x = x1x2. We

decompose each xi into irreducible elements xi = ui
ni∏
j=1

pi,j giving x = u1u2
∏
i,j

pi,j . Thus, we have two

decompositions of x into irreducible elements, one having of length 1, the other of length n1 +n2. Thus,

by uniqueness, 1 = n1 + n2 and for instance n1 = 0 which proves that x1 is invertible hence R satisfies

Euclide’s property.

Assume now that R satisfies Euclid’s property. We prove the uniqueness by induction on the sum ℓ of

the lengths of two possible decompositions of the same non-zero element. If ℓ = 0, there is nothing to

prove. Assume that we have (with the previous notation)

u1

n1∏
j=1

p1,j = u2

n2∏
j=1

p2,j

with ℓ = n1 + n2 ≥ 1. We have for instance n1 ≥ 1 and p1,1|
∏
p2,j . By Euclide’s property, renumbering

if necessary, one has (p1,1) = (p2,1) implying at once n2 ≥ 1. Changing u2 to another unit, we get by

integrality of R

u1

n1∏
j=2

p1,j = u2

n2∏
j=2

p2,j

and we conclude by induction.

Corollary 9.2.1.7 Up to multiplication by R×, the number of divisors of a nonzero element of an UFD is finite.

This property is not true in general (see 9.6.8).

2with no non unit square divisor
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9.2.2 Stable subspaces of endomorphisms

We know that the stable subspaces by a ∈ Endk(V) are its submodules (3.7). Therefore if Va is cyclic

they are also cyclic because k[T] is a PID (4.2.2.1) and in one to one correspondence to ideals J containing

(µa) = AnnVa. Therefore, the stable subspaces of a cyclic endomorphism are exactly the P(a)(V) with

P being monic divisors of χ. In particular, they are finite in number (9.2.1.7). Remarkably, the converse

is essentially true.

Proposition 9.2.2.1 If k is infinite, an endomorphism that has only a finite number of stable subspaces is cyclic.

Proof. Let a be such an endomorphism. We have to find some cyclic vector for a. The family of stable

strict subspaces) of V is a finite family of strict subspaces. Since k is infinite, this union is a proper

subspace (7.2.0.1) and any point in the complement is a cyclic vector.

Obviously, if k is finite the proposition is false since there is only a finite number of subspaces of V in

this case, stable or not.

Remark(s) 9.2.2.2 When k = C, any endomorphism a in dimension > 1 admits non-trivial stable spaces (take

proper lines). When k = R, either it admits stable lines (real eigenvalues) or stable planes (take for example the

plane defined by the real and imaginary parts of the coordinates of a non-zero eigenvalue vector of the matrix of a

in a base or, what comes to the same, consider an irreducible degree 2 polynomial characteristic factor). If k = Q

and if P ∈ Q[T] is irreducible of degree n (take for example P(T) = Tn − 2 which is irreducible over Q by

Eisenstein’s criterion (9.6.4), then the multiplication endomorphism by T on Q[T]/(P) has no non-trivial stable

subspaces since it is cyclic and its minimal does not have a strict divisor: the stable subspaces of an endomorphism

depend strongly on the arithmetic of the base field. See chapter 11 for more results about the existence of stable

complements of stable subspaces.

9.2.3 Existence criterion

Lemma 9.2.3.1 Every nonzero and non-invertible element in a Noetherian domain R is a product of irreducible

elements.

Proof. Then, let F be the set of proper and nonzero principal ideals (x) of R with x is not a product of

irreducible elements. If F were non-empty, it would have a maximal element (x) ∈ F for inclusion. If

x were irreducible, x = x is a decomposition of x into product of irreducible elements contradicting

(x) ∈ F. Therefore x is not irreducible and x can be written x1x2 with x1 and x2 non-invertible. Thus
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(x) ⊊ (xi). By maximality, (xi) /∈ F so that each xi is a product of irreducible elements, and so is their

product x. A contradiction.

We summarize the main preceding results in the following corollary.

Corollary 9.2.3.2

• An integral Noetherian domain is UFD if and only if it satisfies Euclid’s property.

• A PID is UFD.

• In a PID, the number of divisors (up to multiplication by a unit), is finite.

In particular, k[T] is UFD. Using the Chinese Remainder lemma and (4.2.1.1), we get

Corollary 9.2.3.3 P ∈ k[T] is square free if and only if k[T]/(P) is a product of fields and more generally, any

quotient of k[T]/(P) is a product of fields

Notice that lemma 9.2.3.1 implies that the existence of decomposition into irreducible elements is very

often automatic, but, unfortunately, is more or less useless without uniqueness. For example, according

to the above, the ring R[T1,T2]/(T
2
1 − T3

2) is Noetherian, obviously integral (exercise). But T1 and T2

are irreducible in the quotient and the element T2
1 = T3

2 of the quotient has two distinct decompositions

(exercise).

Remark(s) 9.2.3.4 The ring Z of complex algebraic integers over Z has no irreducible element and therefore is

neither Noetherian (that we already know, see 5.3.3) nor UFD. We already know that Z ∩Q = Z therefore Z is

not a field (because 1/2 ̸∈ Z for instance). If Z were Noetherian or UFD, there would exist at least one irreducible

element p (9.2.3.1). But
√
p is cancelled by T2−p ∈ Z[T] and therefore

√
p ∈ Z (4.4.2.3). The formula p = (

√
p)2

contradicts the irreducibility of p.

9.3 GCD, LCM in UFD

Let (xi) be a finite family of nonzero elements of an integral domain R. Recall that an element x ∈ R∗

is a GCD of (xi) if it is maximal (for the divisibility partial order) among the common divisors to the xi.

Since R is a domain, a GCD of a family, if it exists, is defined up to multiplication by a unit. Considering

minimal common multiples, we get the notion of LCM. As in the case of integers, we have
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Lemma 9.3.0.1 If R is UFD, the GCD and the LCM of (xi) exist. Moreover, GCD and LCM are homogeneous

: for any x ∈ R∗, we have3GCD(xxi) = xGCD(xi) and LCM(xxi) = xLCM(xi)

Proof. Let us chose one generator for each ideal generated by an irreducible element and let P be the

set of all these elements. Then, there is a unique decomposition in a finite product (almost all terms are

equal to 1)

xi = ui
∏

p∈P
pvp(xi), ui ∈ R×

and we define

GCD(xi) =
∏

p∈P
pmini(vp(xi)) and LCM(xi) =

∏
p∈P

pmaxi(vp(xi))

which are verified to be suitable. The equality vp(xxi) = vp(x) + vp(xi) gives the homogeneity.

Note GCD(xi) is also the greatest communicator divisor of the family (0, xi) allowing to define the GCD

for a finite family with at least one non zero element.

9.4 Transfer of the UFD property

We now demonstrate the following UFD transfer theorem to polynomial rings

Theorem 9.4.0.1 If R is UFD, then R[T] is UFD.

We need to treat both the uniqueness of decompositions (thus Euclid’s property) and their existence. For

this, we will compare the notion of irreducible elements in R[T] and k[T] (where k is the fraction field

of R) using the notion of content (due to Gauss). We will look closely at the irreducible decomposition

of P ∈ R[T] into the UFD ring k[T] by comparing the irreducibility of P in R[T] and k[T].

Recall the equality (R[T])× = R×, which holds for any domain R (only because in this case we have

deg(PQ) = deg(P) + deg(Q), see exercise 2.4.7 for the general case).

9.4.1 Gauss’ content

In the remainder of this chapter, R denotes an UFD domain.

3Let us again emphasize that GCD,LCM and below contents c(P) are only defined up to multiplication by a unit. Therefore

any equality involving them has to be understood as equality up to multiplication by a unit.
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Definition 9.4.1.1 Let P ∈ R[T] be a nonzero polynomial. We define the content c(P) of P as the GCD of its

coefficients. A polynomial with content c(P) = 1 is said to be primitive.

For example, monic polynomials of R[T] are primitive. The content is homogeneous of weight 1 with

respect to multiplication by nonzero element such as the GCD.

Theorem 9.4.1.2 (Gauss) Let P,Q be be nonzero polynomials of R[T]. Then, c(PQ) = c(P)c(Q).

Proof. By homogeneity, we may assume P,Q are primitive and let us prove that PQ is primitive. Other-

wise, let p be an irreducible of R dividing c(PQ). Since R is UFD, it satisfies Euclid’s lemma: the quotient

R = R/(p) is integral. The reduction morphism R → R induces a ring morphism R[T] → R/(p)[T] such

that 0 = PQ = P·Q. Since R[T] is an integral domain like R, for example P = 0, i.e.p|c(P), a contradiction

because c(P) = 1.

Corollary 9.4.1.3 The irreducible elements of R[T] are

1. The irreducible elements of R;

2. The primitive polynomials of R[T] that are irreducible in k[T].

Proof. Recall the equality (R[T])∗ = R×. The first point follows immediately for degree reasons.

Assume now that P of > 0 degree is irreducible in R[T]. Then P is primitive according to the first point.

Suppose that P is the product of two polynomials P̃1, P̃2 ∈ k[T]. By reducing to a common denominator

di ∈ R∗ of the coefficients of P̃i, we can write P̃i = Pi/di with Pi ∈ R[T]. We then have

(∗) d1d2P = P1P2

so that d1d2 = d1d2c(P) = c(P1)c(P2) (homogeneity and multiplicativity of content). Replacing in (*),

we get

P = P1/c(P1)P2/c(P2)

with Pi/c(Pi) ∈ R[T] by definition of content. Because P is irreducible in R[T], we deduce for example

that P1/c(P1) ∈ R[T]× = R×. Therefore, deg(P1/c(P1)) = deg(P̃1) = 0 hence the irreducibility of P

k[T].

The converse is tautological (who can do more can do less)
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9.4.2 The Transfer theorem

We can now prove the transfer theorem 9.4.0.1.

Proof. As before, the defining properties of UFD being invariant under multiplication by a unit, for

simplicity we simply write during the proof an equality for an equality up to R×. We know that R[T]

is a domain. We just have to prove the existence and uniqueness of decompositions into irreducible

elements.

• Existence. Let P ∈ R[T] be non-zero. If P is a constant x ∈ R∗, we write the decomposition x =
∏
pi

into irreducible factors in R and invoke (9.4.1.3). If P is of degree > 0, by factoring out a GCD of

its coefficients, we can assume P is primitive. As in the proof of 9.4.1.3, a common denominator

argument then allows us to write its decomposition in the principal therefore UFD k[T]

P =
∏

Pi/di

with Pi ∈ R[T] irreducible in k[T] and di ∈ R∗. By taking the contents, we have c(P) =
∏
di and

P =
∏

Pi/c(Pi) which is the sought decomposition.

• Uniqueness. Let us show that R[T] satisfies Euclid’s lemma (9.2.1.2). Suppose that the irreducible

polynomial divides the product of P1,P2 ∈ R[T].

If P is of degree > 0, it is primitive and irreducible in k[T] according to (9.4.1.3). As k[T] is UFD

since principal, P|P1 for example (in k[T] ) and a common denominator argument allows once more

to write dP1 = Q1 · P with d ∈ R∗,Q1 ∈ R[T]. By taking the contents we again have dc(P1) = c(Q1)

and therefore P1 = c(P1)Q1/c(Q1)P and thus P divides P1 in R[T].

If P is a constant p ∈ R∗, then p is irreducible in R and R = R/(p) is a domain by Euclide’s lemma.

Reducing P|P1P2 mod p yields P1P2 = 0 in the domain R[T] hence P1 = 0 or P2 meaning P|P1 or

P|P2.

For example, a polynomial ring in n variables over a field or more generally over PID is UFD. But

beware, this remarkable stability of the UFD property does not carry over to quotients, as does the

property of being Noetherian. The knowledgeable reader will relate this to the notion of non-singularity

in geometry.

9.5 Irreducibility of the cyclotomic polynomial over Q

From now on, in the rest of this chapter, k = Q and Ω = C.

We can take here ζn = exp
(
2 iπ
n

)
so that the primitive n-th roots of unity (in C) are the complex numbers

of the form ζmn = exp
(
2 iπm
n

)
, where m ∈ (Z/nZ)∗.
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Definition 9.5.0.1 We define the n-th cyclotomic polynomial

Φn(T) =
∏

m∈(Z/nZ)∗

(
T− exp

(
2 iπm

n

))
.

Let us show that Φn is irreducible and has integer coefficients.

Lemma 9.5.0.2 We have Φn(T) ∈ Z[T].

Proof. Then, every n-th root of unity has an order d that divides n: it is a primitive d-th root of 1. Con-

versely, if ζ is a primitive d-th root of 1 with d|n, it is an n-th root of 1. We deduce that the set of n-th

roots of 1 is the disjoint union parametrized by the divisors d of n of the primitive d-th roots. As

Tn − 1 =
∏

ζ∈µn

(T− ζ),

we deduce the formula

(i) Tn − 1 =
∏

d|n
Φd(T).

Starting from Φ1(T) = T − 1 ∈ Z[T], we assume by induction on d that Φd has integer coefficients

according to whatever d < n. We just have to recall that the quotient of an integer coefficient polynomial

by a monic integer coefficients polynomial is an integer coefficient polynomial (1.3.1.1) to conclude his

is also true for d = n.

Recall that a complex number is said to be an algebraic integer if it is the root of a monic polynomial with

integral coefficients. And the roots of 1 are definitely algebraic integers!

Proposition 9.5.0.3 (Gauss) Let P ∈ Z[T] be a non-constant monic polynomial.

1. If P is irreducible in Z[T], it is irreducible in Q[T].

2. If P is monic, then the monic irreducible factors of the factorization of P in Q[T] have integer coefficients.

3. The minimal polynomial of an algebraic integer has integral coefficients.

Proof.

1. Immediate consequence of (9.4.1.3) with R = Z (“who can do most can do less”).

2. Take an irreducible decomposition P =
∏

Pi in Z[T]. Because P is monic, all the dominant coeffi-

cients of the Pi’s are equal to ±1 and we can threfore assume that they are monic. They are therefore

primitive hence irreducible in Q[T] by (9.4.1.3).



9.5. IRREDUCIBILITY OF THE CYCLOTOMIC POLYNOMIAL OVER Q 129

3. Let P be a monic integral polynomial cancelling x ∈ Z and let Q ba an irreducible factor in Z[T]

cancelling x. Then, ±Q is monic because P is and Q is irreducible in Q[T] by 9.4.1.3: it is the (monic)

minimal polynomial of x which has therefore integral coefficients.

Then:

Theorem 9.5.0.4 The cyclotomic polynomial Φn is irreducible over Q.

The proof, due to Gauss, is very smart.

Proof. Let P be the minimal polynomial of ζn. It suffices to prove Φn|P, or that all primitive roots of

unity cancel P.

Let p be a prime not dividing n and let ζ be a root of P. Then ζ is necessarily a primitive root because

P|Φn. The key is the following lemma.

Lemma 9.5.0.5 ζp is a root of P.

Proof. Suppose, by contradiction, P(ζp) ̸= 0. Write

Tn − 1 = P(T)S(T)

with S(T) ∈ Q[T]. Since ζn is an integer, we have P(T) ∈ Z[T] according to Corollary 9.5.0.3. P(T) being

moreover monic, S(T) ∈ Z[T]. Since P(ζp) ̸= 0, we have S(ζp) = 0. Thus, the polynomials P(T) and

Q(T) = S(Tp) have a common complex root. Their GCD (calculated over Q) is therefore non-constant,

so that P divides Q in Q[T] (irreducibility of P) and also in Z[T] since P is moreover monic. Reduce

modulo p. We obtain

Q(T) = S(Tp) = (S(T))p

using the Frobenius morphism. Since by hypothesis n ̸= 0 in Fp, Tn − 1 and its derivative nTn−1 have

no common root in Fp, so that Tn − 1 and P have no common factor in Fp[T]. Let Π be an irreducible

factor of P. As it divides S
p
, it divides S, so that Π2|Tn − 1 in Fp[T]. We obtain a contradiction since P is

separable.

We can now finish the proof of Theorem 9.5.0.4.

Let then ζ be a root of P and ζ ′ be any root of Φn. We write ζ ′ = ζm with GCD(m,n) = 1 (because ζ ′

is primitive). By decomposing m into a product of prime factors, a repeated application of the lemma

gives that ζ ′ is a root of P and therefore Φn|P.
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9.6 Exercices

Exercise 9.6.1 Let K be the fraction field of an UFD R. Show that x ∈ K is integral over R if and only if it

belongs to R (an UFD is integrally closed, see 4.4.2.5).

Exercise 9.6.2 For which value of n are the polynomials T(T + 1) . . . (T + n)± 1 irreducible in Q[T] ?

Exercise 9.6.3 Let P ∈ Z[T] be a monic polynomial and p a prime number.

1. Show that if P mod p is irreducible in Z/pZ[T], then P is irreducible in Q[T].

2. Show that there is only two irreducible polynomials of degree 2 in Z/2Z[T].

3. Show that T5 − T− 1 is irreducible in Q[T].

Exercise 9.6.4 [Eisenstein’s criterion] Let k be the fraction field of a PID R and P(T) = anT
n + an−1T

n−1 +

· · · + a1x + a0 ∈ R[T]. Assume that there exists p ∈ R irreducible such that such that the following three

conditions hold

1. p divides each ai for 0 ≤ i < n,

2. p does not divide an,

3. p2 does not divide a0.

Prove that P is irreducible in k[T].

Exercise 9.6.5 Let R = Z[2i] = {a+ 2bi | a, b ∈ Z} ⊂ C and P1 = 2iT + 2, P2 = −2iT + 2. For P ∈ R[T],

we define its content ideal c(P) ⊂ R as the ideal generated by its coefficients4 . Show that c(P1P2) ̸= c(P1)c(P2).

Deduce that R is not UFD.

Exercise 9.6.6 (Berlekamp’s Algorithm) Let p be a prime number and let P ∈ Fp[T] be a monic polynomial.

We write

P =
∏n

i=1
Pmi
i ,

where each mi > 0 and the Pi are distinct, monic, irreducible polynomials. Our goal is to compute this factoriza-

tion.

1. Explain how computing GCD(P,P′) allows us to reduce to the case where P square-free, which we will

assume from now on.

2. Show that there is a ring isomorphism R = Fp[T]/(P)
∼→

∏n
i=1 Fp[T]/(Pi) which is also an isomorphism

of Fp-vector spaces.

3. Show that the Frobenius morphism F : x 7→ xp of R is Fp-linear and compute dimFp(Ker(F− Id)).

4This example is due to Kaplanski
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4. Deduce from the previous question an effective criterion for testing the irreducibility of a polynomial over a

finite field.

Assume n > 1 and let Q ∈ Ker(F− Id)− Fp.

5. Let Q ∈ Ker(F− Id). Show that the following identity holds in Fp[T]: P =
∏
α∈Fp

GCD(P,Q− α).

6. Show that all of the αi ∈ Fp (for i = 1, . . . , n) are equal if and only if Q ∈ Fp ⊂ Fp[T]/(P).

7. Show that there exists α ∈ Fp such that: GCD(P,Q− α) ̸= 1 and GCD(P,Q− α) ̸= P.

8. Conclude.

Exercise 9.6.7 Consider the polynomial P(T) = T4 + 1 in Z[T]. The goal of this exercise is to show that P is

irreducible in Z[T], but reducible mod p for every prime number p.

1. Find the roots of P in C, and express P as a product of two complex polynomials of degree 2 in all possible

ways.

2. Deduce that P is irreducible in Z[T]. Is it irreducible in (Z[i])[T], (Z[
√
2])[T], and (Z[i

√
2])[T]?

3. Recall that for any prime number p, the group (Z/pZ)∗ is cyclic (6.4.0.2). Show that for every p, there exists

an element x ∈ Z/pZ such that x2 ∈ {−1, 2,−2}.

4. Deduce that for every prime p, the reduction P ∈ (Z/pZ)[T] of P mod p is not irreducible.

Exercise 9.6.8 Let R ⊂ C[T] the ring5of complex polynomial P such that P(0) ∈ R.

1. Show that R is Noetherian.

2. Show that T is irreducible in R.

3. Show that for any x ∈ R, we have (x+ i)T|T2.

4. Show if x, y are two distinct real numbers, ((x+ i)T) ̸= ((y + i)T).

Exercise 9.6.9 We keep the notations of 5.3.4. Let ξ ∈ C.

1. Show that R is an integral domain.

2. Compute R×.

3. Show that the ideal of f ∈ R such that f(ξ) = 0 is principal and maximal. What is the quotient field R/Iξ?

4. Show that ξ ̸= ξ′ ⇒ Iξ ̸= Iξ′ .

5. What are the irreducible elements of R?

5This example comes from D.D. Anderson, D.F. Anderson, M.Zafrullah, Factorization in integral domains, Journal of Pure and

Applied Algebra, Volume 69 (1), 1990, 1-19.
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6. Show that R satisfies Euclide’s lemma but that R is not a UFD.

Exercise 9.6.10 We keep the notations of 9.6.9. We “recall” that the set of zeroes of f ∈ R∗ is a coutable family

(zn) of C with no limit point6. Conversely (see [19]), we “recall” Weierstrass’ theorem: for any countable family

(zn) with no limit point and any sequence of integer dn ≥ 1, there exists f ∈ R, cn ∈ C∗ such that

f(z) ∼zn cn(z − zn)
dn and z ̸= zn ⇒ f(z) ̸= 0

1. Show that any non zero family in R has a GCD.

2. Show that any ideal of finite type is principal.

3. Is R a PID?

4. What about LCM?

Exercise 9.6.11 Let m,n, x be positive integers and p a prime number dividing the integer Φn(x).

1. Compute Φn(0) and prove (a mod p) ∈ (Z/pZ)∗.

2. Show that GCD(Tn − 1,Tm − 1) = TGCD(n,m) − 1.

3. If m|n and m ̸= n, show that we have Φn(T)(Tm − 1)|Tn − 1 in Z[T].

4. Show p|n or p ≡ 1 mod n [Look at the order m of (x mod p) in the multiplicative group (Z/pZ)∗].

Suppose there are only finitely many prime numbers p1, . . . , pr such that pk ≡ 1 mod n for k1, . . . , r and assume

x = np1 · · · pr.

5. Show n > 2 and Φn(x) ≥ 2.

6. Show Φn(x ≡ 1 mod (p).

7. Conclude.

6This point is elementary, exercice.



Chapter 10

Primary decomposition in PID

Camille Jordan

10.1 Introduction

Perspective

We explain how to decompose torsion modules over PIDs using its their UFD prop-

erty and the Chinese remainder lemma. We illustrate this result showing how

the Frobenius reduction of Va immediately leads to Jordan reduction of endomor-

phisms.

10.2 Torsion modules over PID

Let M be a torsion module (M = Mtors) over a PID ring R and let P be the set of nonzero prime ideals of

R.

133
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10.2.1 Primary decomposition

Definition 10.2.1.1 Let (p) = p ∈ P. The p-primary (or p-primary) part of M is the submodule M[p] = M[p] =

{x ∈ M|∃n ≥ such that pnx = 0}.

Observe that the primary components are functorial in the following sense. For any p ∈ P, the diagram

M[p]

��

� � // M

��
N[p] �

� // N

commutes. In this context, the Chinese reminder lemma (4.5.0.1 gives the following important result.

Proposition 10.2.1.2 Let M be module.

1. Assume xM = {0} for some nonzero x ∈ R.

(a) For all j, there exists εj ∈ (
∏
i ̸=j p

vi
i ) such that

∑
j εj = 1.

(b) The natural map ⊕p∈PM[p] → M is an isomorphism of inverse m 7→
∑
εim.

(c) The scalar multiplication by εi is the projection πi : M
∼→ ⊕jM[pj ] → M[pi] ↪→ M.

(d) The family of projections πi is orthogonal (meaning
∑
πi = IdM and πi ◦ πj = δi,jπi).

2. Assume M is torsion. Then the natural map ⊕p∈PM[p] → M is still an isomorphim.

Proof.

• We have GCD(pvii , p
vj
j ) = 1 and therefore (Bézout’s theorem) Ii + Ij = R if i ̸= j with Ij = (p

vj
j ).

Then, and (1) is just (5) of the Chinese remainder lemma.

• Because M = ∪x∈R∗ AnnM(x), we have M[p] = ∪x∈R∗ AnnM(x). Applying (1) to each AnnM(x), the

functoriality of primary components gives (2).
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Example(s) 10.2.1.3 Let a ∈ Endk[V].

• Let P,Q ∈ k[T] coprime polynomials. Applying 10.2.1.2 to Va, we get the famous “kernel lemma”

Ker(PQ(f)) = Ker(P(a))⊕Ker(Q(a)).

• If χa(T) =
∏
λ∈Spec(a)(T− λ)vλ splits (or equivalently if µa splits), we have χa(T)Va = {0} and

Va[T− λ] = ⊕λ∈Spec(a) Ker(a− λ Id)vλ

with spectral projection eλ(a) : Va → Va[T − λ] belonging to k[a]. This is the classical “characteristic

spaces decomposition1”

10.2.2 Invariant ideals and primary decomposition

Assume is finite type and torsion. Its invariant ideals (d1) ⊂ · · · ⊂ (dn) are nonzero because M is torsion.

Let d1 =
∏
j

p
d1,j
j be a prime irredundant decomposition of d1 (i.e. (pi) ̸= (pj) if i ̸= j). Then, up to unit,

each di can be uniquely written

di =
∏
j

pdi,jj with d1,j ≥ d2,j · · · ≥ dx,j ≥ 0.

By definition, we have M
∼→ R/(di) and the Chinese remainder lemma gives

M[pj ]
∼→ ⊕iR/(p

di,j
j ).

Conversely, assume that we have some direct sum decomposition

M
∼→ ⊕i,jR/(p

di,j
j ).

Reordering if necessary, we can assume that each sequence (di,j)i≥1 is decreasing with di,j = 0 for i

large enough. Then, we define

di =
∏
j

p
di,j
j .

The sequence of ideals (di) is increasing and its proper terms are the invariant ideals of M. Graphically,

for each prime (pj), we order powers that appear in descending order (di+1,j ≤ di,j) in the jth column,

d1 → p
d1,1
1 p

d1,2
2 · · ·

d2 → p
d2,1
1 p

d2,2
2 · · ·

...
...

...

and read off the invariant factors d1, d2, etc., from the rows (starting from the first one).

1These terminologies are only French Universal.
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10.3 Application: Jordan reduction

We retain the previous notations (and remind that a matrix of size ≤ 0 is an empty matrix).

Let A ∈ Mn(k) and P = (Pn| . . . |P1 = µA) the similarity invariants of A. Assume χA, or equivalently2

µA, splits over k and denote by Λ the set of its distinct roots. One gets

χA(T) =
∏

Λ
(T− λ)dλ .

If we specialize to the case χA = Tn, we have Pi = Tdi with di ≥ 0 decreasing and
∑
di = n.

Definition 10.3.0.1 A partition of an integer n ≥ 0 is a decreasing sequence d = (di)1≤i≤n of non negative

integers such that
∑
di = n.

Since each Pi divides χA, we have

Pi =
∏

Λ
(T− λ)dλ,i where dλ = (dλ,i)i is a partition of dλ.

The primary decomposition of the Frobenius decomposition of VA implies

VA[T− λ] = Ker(a− λ Id)dλ
∼→ ⊕ik[T]/((T− λ)dλ,i

and

VA
∼→ ⊕λ ⊕i k[T]/((T− λ)dλ,i).

Let Bλ,i = ((T− λj) mod (T− λ)dλ,i)j<dλ,i
. It is a k-basis of k[T]/((T− λ)dλ,i . The formula

T(T− λ)j = (T− λ)j+1 + λj(T− λ)j

ensures that the matrix MatBλ,i
(T) the multiplication by T on k[T]/((T− λ)dλ,i is λ+ Jdλ,i

Jm = C(Tm) =



0 0 · · · 0 0

1 0 · · · 0 0

0 1 · · · 0 0

...
...

. . .
...

...

0 0 · · · 1 0


∈ Mn(k)

is the standard Jordan block of size m . Using 10.2.2, we get

Theorem 10.3.0.2 (Jordan Reduction) Under the above assumptions and notations above, we have with

χA(T) =
∏

Λ
(T− λ)dλ

2see 8.2.2.2
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1. A is similar to a unique diagonal matrix diag(λ+Jdi,λ) with for every λ the sequence (di,λ)i being a partition

of dλ.

2. In particular, if χA = Tn (i.e., A is nilpotent), there exists a unique partition d = (di) of n verifying

A is similar to the diagonal block matrix Jd = diag(Jdn , · · · , Jd1). The similarity invariants of A are

Tdn ,Tdn−1 , · · · ,Td1 .

10.3.1 Examples

(1) The elementary divisors of the Jordan reduction



λ 1 0 0 0 0

0 λ 0 0 0 0

0 0 λ 1 0 0

0 0 0 λ 0 0

0 0 0 0 λ 0

0 0 0 0 0 µ


(where λ ̸= µ), are

(T− λ)2 (T− µ)

(T− λ)2

(T− λ).

The similarity invariants are thus

(T− λ) , (T− λ)2 , (T− λ)2(T− µ).

(2) If M =


0 4 2

−1 −4 −1

0 0 −2

, we have

TI−M =


T −4 −2

1 T + 4 1

0 0 T + 2

 .

Let’s perform elementary operations according to the algorithm - or rather its outline - described in the

proof of the proposition 6.3.1.2 :
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T −4 −2

1 T + 4 1

0 0 T + 2

 L1↔L2−−−−→


1 T + 4 1

T −4 −2

0 0 T + 2



L2→L2−TL1−−−−−−−−→


1 T + 4 1

0 −4− T(T + 4) −2− T

0 0 T + 2


C2→C2−(T+4)C1

C3→C3−C1

−→


1 0 0

0 (T + 2)2 −2− T

0 0 T + 2



L2→L2+L3−−−−−−−→


1 0 0

0 (T + 2)2 0

0 0 T + 2


C1↔C2

L1↔L2

−→


1 0 0

0 T + 2 0

0 0 (T + 2)2

 .

The similarity invariants are thus T+ 2 and (T + 2)2 and the Jordan reduction is


−2 1 0

0 −2 0

0 0 −2

. An

endomorphism with matrix M is not cyclic.

(3) If M =


3 1 0 0

−4 −1 0 0

6 1 2 1

−14 −5 −1 0

, we obtain as the reduction for TI−M the matrix


(T− 1)2 0 0 0

0 (T− 1)2 0 0

0 0 1 0

0 0 0 1

 .

The invariant factors are (T − 1)2 and (T − 1)2, and the Jordan reduction is


1 1 0 0

0 1 0 0

0 0 1 1

0 0 0 1

. An endo-

morphism with matrix M is not cyclic.

(4) An endomorphism is cyclic if and only if, for each eigenvalue, there is only one Jordan block.

10.4 Exercises

Exercise 10.4.1 Find the Jordan reduction of the following matrices:



10.4. EXERCISES 139


1 0 0

1 −1 0

−1 0 −1

 ,


0 2 0 −1

−3 3 1 −3

−2 1 2 −2

0 −1 0 1



Exercise 10.4.2 What are the primary parts of (Q5)A for A =



0 0 0 0 1

1 0 0 0 3

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0


?

Exercise 10.4.3 Let M ∈ Mn(k) be a nilpotent matrix.

1. Show that rk(M) = n− 1 if and only if the Jordan reduction is Jn.

2. If k = R, show that the set of nilpotent matrices of rank n − 1 is the largest open set of the set of nilpotent

matrices on which the Jordan reduction is continuous (with the topology defined by a norm on Mn(R)).

3. Show that rk(M) = n − 2 if and only if M has exactly two Jordan blocks Jp, Jn−p where p is the index of

nilpotency of M. Show that p ≥ n/2.

4. Let p ≥ n/2, an integer q = n − p, and set for t ∈ k, let Mt = diag(Jp, Jq) + tEp+q,p (adding t at the

bottom of the p-th column). Calculate the index of nilpotency of Mt depending on t. Deduce that the Jordan

reduction of Mt is diag(Jp+1, Jq−1) if t ̸= 0 and diag(Jp, Jq) otherwise.

5. Assume k = R. What is the set of continuity of the Jordan reduction application restricted to the subset of

nilpotent matrices of rank n− 2 (with the topology defined by a norm on Mn(R))?

Exercise 10.4.4

1. How many similarity classes are there of matrices A ∈ M8(k) such that ImA = KerA?

2. How many similarity classes are there of nilpotent matrices A ∈ M5(k) such that the rank of A2 is 2?

3. How many similarity classes are there of nilpotent matrices A ∈ M9(k) such that the rank of A3 is 5?

Exercise 10.4.5 Let A ∈ Mn(k) and x ̸= 1 (we assume Card(k) > 2). Show that A and xA are similar if and

only if A is nilpotent. Deduce an example of a pair of nilpotent commuting matrices in M2(k) which do not admit

a common Jordan basis (compare with (12.2.0.2) below).

Exercise 10.4.6 Let M be a complex invertible matrix. Show that M generates a compact subgroup of GLn(C) if

and only M is diagonalizable with module 1 eigenvalues.

Exercise 10.4.7 Let k be the field of real or complex numbers. Let M be the k[T]-module = k(T)/k[T] where

k(F) = Frac(k[T]). Let r(T) = P(T)/Q(T) ∈ k(T) with GCD(P,Q) = 1.
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1. Let z ∈ k. Show that (T− z)−n, n ≥ 0 is a basis of the (T− z)-primary part of M.

2. If some denominator Q is split, show that there exists a unique decomposition

r(T) = E(T) +
∑
z,n

λz,n
(T− z)n

where (λz,n) is an almost zero family of k and E(T) ∈ R.

Assume k = R.

3. Let τ(T) = T2+aT+b ∈ R with a2−4b < 0. Show that 1,T, τ,Tτ, τ2,Tτ2, . . . is a basis of the τ -primary

part of M.

4. Show that there exists a unique decomposition

r(T) = E(T) +
∑
z,n

λz,n
(T− z)n

+
∑
τ,n

λτ + µτT

τ(T)n

where E(T) ∈ R and

(λz, n, λτ,n, µτ,n)

is an almost zero family of k3 and τ runs over the monic degree two polynomials of negative discriminant.

Exercise 10.4.8 Adapt 10.4.7 to give and prove a Jordan reduction theorem for real matrices.



Chapter 11

Semisimplicity

Jorge Luis Borges

“Simplicity// It opens, the gate to the garden/ with the docility of a page/

that frequent devotion questions and inside, my gaze/ has no need to fix

on objects/ that already exist, exact, in memory.// I know the customs and

souls/ and that dialect of allusions/ that every human gathering goes weav-

ing./ I’ve no need to speak/ nor claim false privilege;/ they know me well

who surround me here,/ know well my afflictions and weakness.// This is to

reach the highest thing,/ that Heaven perhaps will grant us:/ not admiration

or victory/ but simply to be accepted/ as part of an undeniable Reality,/ like

stones and trees.”

11.1 Introduction

Perspective

Following Descartes’ philosophy, we are interested in semisimple endomorphisms,

the simplest class of endomorphisms generalizing that of diagonalizable endomor-

phisms. We explain how to canonically decompose any endomorphism into a

semisimple part and a nilpotent part reducing somehow the study of square matri-

ces to these two classes.

11.2 Semisimple modules

Definition 11.2.0.1 Let M be the set of maximal ideals of R and m ∈ M. Let M be an R-module.

1. We define M(m) = AnnM(m) = {m ∈ M|m.m = {0}} and k(m) = R/m (which is a field by definition).

141
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Ryoan-ji, Kyoto

2. M is said

• semisimple if every submodule of M has a complement;

• simple if M non-zero and has no non-trivial submodules.

3. An endomorphism a ∈ Endk(V) is semisimple if the k[T]-module Va is.

In this commutative situation, the theory is very... simple. The key lemma is the following.

Lemma 11.2.0.2 Let M be a semisimple module and N a submodule and S a complement of S.

1. N is isomorphic to the quotient M/S and M = M/N is isomorphic to the submodule S.

2. Submodules and quotient modules of M are semisimple.

Proof.

1. Clear.

2. Enough to prove that M/N is semisimple by (1). Let π : M → M b the canonical surjection and S′ a

complement of π−1(N) in M. Then π(S′) is a complement of N in M (check !).

Example(s) 11.2.0.3 If R is a field, recall that any vector space has a basis and that any subvector space has a

complement obtained by complementing a given basis. It follows that in this field case any module is definitely

semisimple and simple modules are dimension 1 vector spaces.
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If p is irreducible in a UFD, R/(p2) is certainly not semisimple: if pR/(p2) ∼→ R/(p) had a complement S, we

would have R/(p2) ∼→ R/(p)⊕ S
∼→ R/(p)⊕ R/(p). In particular, R/(p2) would be canceled by p, which is not

the case.

Let us observe that, (m) canceling M(m), the R-module structure on M defines a canonical k(m)-vector

space structure on M(m). In particular, M(m) is semisimple no matter the properties of M itself.

Proposition 11.2.0.4 Let M be an R-module. Then, M is semi simple if and only if the natural morphism

⊕m∈MM(m) → M is an isomorphism. In particular,

1. Up to isomorphism, {k(m), m ∈ M} is the set of all simple modules.

2. M is semisimple module if and only if it is a direct sum of simple modules.

Proof. Let us observe that ⊕m∈MM(m) → M is injective without any hypothesis on M. Let (mm ∈

M(m))m∈F be a finite family such that
∑

Fmm = 0 (∗). Let I =
∏

m∈F m and em ∈ R/I be the complete

family of idempotents the Chinese remainder lemma 4.5.0.1. The action of R on ⊕m∈FM(m) factors

through R/I and we have emmm′ = δmm′m for all m,m′ ∈ F. Multiplying (*) by each em we get mm = 0

for all m ∈ F hence the injectivity.

Assume M is semisimple and let us turn to the surjectivity. Let S be a complement of (the image of)

⊕m∈MM(m) in M. If S ̸= {0}, let s ∈ S− {0} and m ∈ M containing J = AnnR(s) (Krull’s lemma 1.3.2.4).

Then Rs is semisimple (11.2.0.2) and isomorphic to R/J which is also semisimple (11.2.0.2 again). But

k(m) = R/(m) is a quotient of R/J = Rs and therefore isomorphic a submodule of Rs ⊂ S. But the

image of 1 in S is canceled by (m) and therefore belongs to M(m), a contradiction.

Conversely, assume ι : ⊕m∈MM(m) → M is surjective and let N be a a submodule of M. Because

N(m) = N∩M(M), the injection ⊕m∈MN(m) → ⊕N is surjective because ι is. Let Sm be any complement

of N(m) in M(m) as k(m)-vector spaces. Then S = ⊕m∈MSm with its canonical R-module structure is a

complement of N in M.

Using (again) the existence of basis of vector spaces, the rest of the proposition follows.

Remark(s) 11.2.0.5

• It follows that every semisimple module is a torsion module (except if R is a field).

• If R is a field any module is semisimple : this the existence of complement of vector spaces which is at the

earth of the preceding proof and depens on Zorn’s lemma.
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• If M is of finite type, semisimple modules are Noetherian modules thanks to 11.2.0.2. The reader will check

by himself (exercise) that the use of Zorn’s lemma is unnecessary in this case (which would be sufficient for

our purpose).

Let us recall (8.2.2.2) the canonical isomorphism of k-algebras

k[T]/(µa)
∼−→ k[a]

and (8.2.1.3) the (non canonical) isomorphism of k[T]-modules

Va
∼→ ⊕ni=1k[T]/(Pi)

where Pn| . . . |P1 = µa are the similarity invariants of a.

Corollary 11.2.0.6 Let a ∈ Endk(V) with V of finite dimension. The following conditions are equivalent.

1. a is semisimple.

2. µa is square free in k[T].

3. k[a] is a (finite) product of fields containing k.

4. k[a] is reduced1

In particular, diagonalizable endomorphisms are semisimple.

Proof.

(1) ⇒ (2). If P1 = µa is divisipble by a square P2 of some irreducible polynomial P, the quotient

k[T]/(P2) of Va is not semisimple (11.2.0.3) and therefore Va neither.

(2) ⇒ (3). Because k[T]/(µa)
∼−→ k[a], 11.2.0.3 gives the result.

(3) ⇒ (4). A product of fields has no nilpotent elements.

(4) ⇒ (1). If k[T]/(µa)
∼−→ k[a] is reduced, then µa is square free (if µa is divisible by P2, then the

square of the non zero element µa/P mod (µa) is zero). Therefore, all similarity invariants Pi are

square free because they divide µa implying that k[T]/(Pi) is a product of fields (11.2.0.3), an so is

Va
∼→ ⊕k[T]/(Pi) which is therefore semisimple by 11.2.0.4.

1A ring is reduced is 0 is the only nilpotent element, i.e.if it the only element which has a positive power equal to 0.
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Example(s) 11.2.0.7 If µa splits, semisimple means diagonalizable. More generally, if GCD(P,P′) = 1 then

P is square free. Therefore, GCD(µa, µ
′
a) = 1 ⇒ a is semisimple. The converse being true for characteristic

zero or more generally for perfect fields (11.3.0.4). This (partly) explains why semisimplicity is the appropriate

generalization of diagonalizibility if µa is non split. We will discuss in full details this topoic and more generally

the diagonalizable endomorphisms in the next chapter.

11.3 «Reminder» on perfect fields

On a general field K, it may happen that a polynomial without squared factors has multiple roots in

a larger field. For example, this is the case with T2 + t in K = F2(t), the fraction field (3.10.3) of the

polynomial ring F2[t] [t is assumed to be transcendental over F2]. This does not occur for perfect fields.

Definition 11.3.0.1 Let R be a ring and p ≥ 0 the generator of the ideal {n ∈ Z|n.R = {0}} = {n ∈ Z|n.1R =

0}. If p = 0 or if p is a prime number2, we say that p is the characteristic of R.

In particular, R is of characteristic p if and only if Z/pZ embeds in R (notice that this embedding is

unique). In particular, a field k is of characteristic p if Q ⊂ k (p = 0) or Fp ⊂ k (p prime and Fp the finite

field Z/pZ).

Proposition 11.3.0.2 Let R be a ring with positive characteristic p. Then, the application F : x 7→ xp is a ring

morphism called the Frobenius morphism. If R is moreover a domain (for instance a field), F is injective.

Proof. F certainly preserves product and unit element. For addition, recall the well-known divisibility

p|

p
n

 for 1 ≤ n ≤ p− 1. Then, for x, y ∈ R, we have by Newton’s formula

F(x+ y) = (x+ y)p = xp +

p−1∑
n=1

p
n

xnyp−n + yp = F(x) + F(y)

Assume moreover R is a domain and x ∈ Ker (F)/ We have xp = 0 and therefore x = 0 hence the

injectivity.

2If p is composite, the notion of characteristic is useless. Observe that the characteristic of a domain is always defined (exercice).
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Definition 11.3.0.3 A field k of characteristic p is said to be perfect if p = 0 or if every x ∈ k admits a (necessarely

unique) p-th root x1/p, i.e. if its Frobenius morphism is an isomorphism.

Thus, any algebraically closed field or any finite field is perfect (since an injection between finite sets is

bijective). We have to prove the following statement.

Lemma 11.3.0.4 Let k be a perfect field and P ∈ k[T].

• Then, P is square-free if and only if GCD(P,P′) = 1. In particular, if P irreducible, then GCD(P,P′) = 1.

• If K is a field containing k, than A ∈ Mn(k) is semisimple if and only if it is semisimple in Mn(K).

In particular, A is semisimple if and only if A is diagonalizable in Mn(Ω) for some algebraically closed Ω

containing k.

Proof. The second item follows from the first and the invariance of the GCD from k[T] to K[T].

The direction ⇐ immediately follows from Bézout’s identity. Let’s consider the direct direction. Suppose

P is without squared factors and write P =
∏

Pi with Pi irreducible. If GCD(P,P′) ̸= 1, one of the Pi

divides P′ =
∑
i P

′
i

∏
j ̸=i Pj and thus Pi|P′

i. By comparing degrees, we have P′
i = 0. This implies that

the characteristic of k is a prime number p and that all coefficients of Pi of indices not multiples of p are

zero: Pi =
∑
n anpT

np. But in this case, we have Pi = (
∑
n a

1/p
np Tn)p, the Frobenius of k[T] being a ring

morphism because pk[T] = {0}, a contradiction with the irreducibility of Pi.

This corollary is false in the non perfect case.

Remark(s) 11.3.0.5 When the base field K is not perfect, there are semisimple matrices over K which, considered

in an overfield, are no longer semisimple. With the notations of 11.3, this is the case with A =

0 t

1 0

 over

K = F2(t) because χA(T) = T2 + t is irreducible over K but not over K(t1/2) = K[τ ]/(τ2 − t) and a fortiori

over Ω ⊃ K. Moreover, A+ t1/2 Id is even nilpotent! The correct notion in the non-perfect case is that of absolute

simplicity defined by the condition GCD(µa, µ
′
a) = 1, a condition which is stronger than semisimplicity.

Exercise 11.3.1 Let V be a k-vector space of finite dimension and φ an automorphism of k. Denote [φ]⊗V as the

vector space with underlying group V and external law λ.[φ]v = φ(λ)v. Show dim(V) = dim([φ]⊗V). Deduce

that any field of finite dimension over a perfect field is still perfect.
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11.3.2 Sums of semisimple endomorphisms

The next lemma is a generalization of the classical diangonalizability result for two commuting diago-

nalizable endomorphisms (result which will be discussed in the next chapter). In our context, one has

to be a little bit cautious.

Lemma 11.3.2.1 Let a, b ∈ Endk(V) which commutes and let P ∈ k[T1,T2]. Assume a is semisimple and

GCD(µb, µ
′
b) = 1 (in the perfect case, this is equivalent to a, b semisimple by 11.3.0.4). Then P(a, b) is semisimple.

In particular a+ b is semisimple.

Proof. Because k[P(a, b)] ⊂ k[a, b] ⊂ Endk(V), its enough to show that k[a, b] is reduced. But the k-

algebra surjective morphism k[T1,T2] defined by T1 7→ a, T2 7→ b factors through

R = k[T1,T2]/(µa(T1), µb(T2)) = k[a][T2]/(µb(T2))

But k[a] is a finite product of fields Ki (containing k) by 11.2.0.6. Because the GCD does not depends on

the subfield where it is calculated by Euclide’s algortithm, µb is also square free in Ki[T2] and

R =
∏

Ki[T2]/(µb(T2))

is therefore a product of fields implying that its quotient k[a, b] is reduced by 11.2.0.3.

11.4 Jordan-Chevalley Decomposition

Let’s begin with a very important result, although easily demonstrated, which allows the construction

of polynomial roots step-by-step (adaptation of Newton’s method).

11.4.1 Hensel’s lemma and existence

Lemma 11.4.1.1 (Hensel-Newton) Let I be a nilpotent ideal (IN = 0) of an arbitrary ring R and P ∈ R[T].

Assume there exists x0 ∈ R such that P(x0) ≡ 0 mod I and P′(x0) mod I is invertible. Then, there exists x ∈ R

such that x ≡ x0 mod I and P(x) = 0.

Proof. First, observe that if a mod I is invertible, then a is invertible in a. Indeed, if b mod I is its inverse,

ab = 1− i with i ∈ I. Formally expanding 1/(1− i) into a series, we deduce that 1− i is invertible with

the inverse
∑
k<N i

k since ik = 0 for k ≥ N and thus b/(1− i) is the inverse of a.

We will compute (algorithmically) an approximate root

xk mod I2
k

|P(xk) ≡ 0 mod I2
k

and xk ≡ x0 mod I
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Kurt Hensel

Gotlib

Isaac Newton

by successive approximations. Proceed by induction on k ≥ 0 (with tautological initialization). Assum-

ing the property holds at rank k, we then seek xk+1 in the form xk+1 + ε, ε ∈ I2
k

so that xk+1 is indeed

an approximation of xk mod I2
k

.

The integral Taylor formula for polynomials3 gives

P(xk+1) = P(xk) + εP′(xk) + ε2Q(xk, ε)

with Q[T,Y] ∈ R[T,Y] (check this!). Since xk ≡ x0 mod I, we have P′(xk) ≡ P′(x0) mod I and therefore

P′(xk) is invertible in R (a represnetative of an inverse mod I2
k

would be enough for our purpose). We

then set ε = −P(xk)/P
′(xk) which belongs to I2

k

because P(xk) ≡ 0 mod I2
k

by induction hypothesis.

As ε2 ∈ I2
k+1

, this choice is suitable to achieve the induction.

To conclude, we choose k such that 2k ≥ N+ 1 and set x = xk: the algorithm converges exponentially4!

Corollary 11.4.1.2 (Existence) Let a ∈ Endk(V) (with k a perfect field). There exist d, ν ∈ k[a] ⊂ Endk[a]

such that a = d+ ν and d semisimple, ν nilpotent. In particular, d and ν commute.

Proof. Let π ∈ k[T] be the product of the irreducible factors of the minimal µa of a. As it is without

squared factors, it is coprime with its derivative. Choose α, β ∈ k[T] such that απ + βπ′ = 1.

3Which is a direct consequence of Newton’s expansion in this case.
4without the usual problems of bad choices of initial values in usual Newton’s real method.
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Let I be the ideal π(a)k[a] of k[a]. We have µa|πn and therefore πn(a) = 0 so that In = 0. Furthermore,

we have β(a)π′(a) = 1 mod I and thus π′(a) mod I is invertible. By setting x0 = a ∈ k[a], we deduce

the existence of x ∈ k[a] such that x = a mod I and π(x) = 0 mod In = (0). We then set d = x and

ν = a − P(a). As π(d) = 0, d is semisimple. Since ν = a − P(a) ∈ I and In = 0 implying that ν is

nilpotent.

Remark(s) 11.4.1.3 This is essentially Chevalley’s proof. Beyond its (very fast) algorithmic character, it is im-

portant because it allows the definition of semisimple and nilpotent parts within the context of Lie algebras and

algebraic groups (on a perfect field), see for example the excellent [4].

11.4.2 Uniqueness

Theorem 11.4.2.1 (Jordan-Chevalley) We still assume k is a perfect field. For any a ∈ Endk(V), there exists

a unique pair (d, ν) with d semisimple, ν nilpotent, d and ν commuting with a = d + ν. Moreover d, ν ∈ R =

k[a] ⊂ Endk[a].

Proof. Only uniqueness requires an argument given the above. Suppose d, ν as in the theorem and a pair

d′, ν′ ∈ k[a] as in Corollary 11.4.1.2. Since d, ν commute with each other, they commute with d+ ν = a.

They therefore also commute with d′, ν′ because these are polynomials in a. But d + ν = d′ + ν′ i.e.,

d− d′ = ν′ − ν. However, ν′ − ν is nilpotent (as a sum of commuting nilpotents) and d− d′ semisimple

(as a sum of commuting semisimples, 11.3.2.1); an endomorphism that is both semisimple and nilpotent

being zero since its minimal polynomial has no squared factors and divides Tn, we indeed have d = d′

and u = u′.

A diagonalizable endomorphism a thus decomposes into d = a and ν = 0. Thus a =

1 2

0 2

 decom-

poses into a + 0 and not into

1 0

0 2

 +

0 2

0 0

 as one might be tempted to write. Furthermore, the �

assumption of k being a perfect field cannot be relaxed: the matrix

0 t

1 0

 from 11.3.0.5 does not have

a Jordan-Chevalley decomposition.

If one wants such a decomposition in the imperfect case, one must restrict to endomorphisms with

separable characteristic polynomials and replace semisimple with absolutely semisimple. The proof is

then identical.



150 CHAPTER 11. SEMISIMPLICITY

11.4.3 Similarity class of the components

We retain the previous notation. a = d + ν. The invariant factors of the semisimple part d are entirely

determined by χa since two diagonalizable endomorphisms with the same characteristic polynomials

are similar over Ω and the invariants do not depend on the base field (cf. 11.6.9). Similarly, the similarity

invariants of a determine the nilpotent type da of ν. One way to see this is to observe that the nilpo-

tent parts of two similar matrices have similar nilpotent parts by uniqueness of the Jordan-Chevalley

decomposition.

11.4.4 Appendix: What about the algorithmic nature of the decomposition?

On re-examining the proofs supra, it is easy to see that finding d and ν is algorithmic if you know the

product π of the different irreducible factors of Pn. SageMath does this very well thanks to the “fac-

tor”command. But what if this command did not exist? In characteristic zero, one is easily convinced of

the formula

π = Pn/GCD(Pn,P
′
n)

so the process is algorithmic thanks to Euclid’s GCD algorithm in k[T]. In characteristic p > 0 it is more

complicated because there are polynomials with a zero derivative: the polynomials in Tp.

The exercise 11.6.9 provides an “algorithm” to find π for a perfect field of characteristic p > 0. The quotes

are justified by the assumption that the inverse of Frobenius5 F : x 7→ xp of k is known algorithmically.

Regarding Hensel’s lemma, the very writing of the proof is an algorithm that lives in the k[a] ⊂ Md(k)

where d = dim(V). It involves computing the inverse of P′(xn) as long as 2n < d. This is a small number

of times, but if the matrices are large, the calculation is heavy. One way to make it easier is to consider

the algebraic isomorphism k[T]/µa
∼−→ k[a] and work within that quotient, which is less computationally

demanding.

However, these algorithms are very unstable. For two reasons. The first is that the Gaussian pivot is a

numerically unstable algorithm. And working with polynomial coefficients does not help. The second

is more serious. As will be seen below, the similarity invariants do not vary continuously with the

coefficients of the matrix (see, for example, the theorem 13.2.0.3). Therefore, approximating the values

of the coefficients becomes dangerous. If the matrices have rational coefficients or are in finite fields, one

can, with great care, control the height of the coefficients and thus work with true equalities. Although

these algorithms tend to explode the sizes of the integers involved... In short, a real subject for reflection,

one of the motivations that led us to include the topological study of similarity classes in chapter 13.

5is true for finite fields, for example.



11.5. JORDAN-CHEVALLEY AND SPECTRAL PROJECTORS 151

11.5 Jordan-Chevalley and spectral projectors

Assume χa(T) =
∏

(X− λ)vλ splits giving the primary decomposition (10.2.1.3)

Va = ⊕λ∈Spec(a)Va[T− λ] = ⊕λ∈Spec(a) Ker(a− λ)vλ

The Jordan-Chevalley decomposition a = d+ ν is simply calculated by

d =
∑

λeλ(a) and ν = a− d

as we have just seen. Matrixwise, if B = ⊔Bλ where Bλ is a basis of Ker(a− λ)vλ , we have

A = MatB(a) = diag(λ Id+Nλ) with Nλ nilpotent

and

D = MatB(d) = diag(λ Id), N = MatB(ν) = diag(Nλ)

Of course, one could even chose a Jordan basis (10.3.0.2) to have nicer form of Nλ.

11.5.1 d-th roots in GLn

An immediate and useful application is the existence of polynomial d-th roots in the algebraically closed

case.

Proposition 11.5.1.1 Let d be an integer > 0 and assume k is algebraically closed with characteristic prime to d.

Let χ be unitary of degree n. There exists Pd,χ ∈ k[T] such that for any matrix A ∈ GLn(k) with χA = χ we

have Pd,χ(A)d = A.

Proof. Since χ(0) ̸= 0, the polynomials χ and T are coprime and we can write a Bézout identity UT +

Vχ = 1 in k[T]. With the previous notations, since χD = χA = χ, the matrix D is invertible with inverse

U(D). Since D and N commute,

A = D(Id+D−1N) = D(Id+U(D)N)

with D−1N being nilpotent. We can then write a d-th root of D as

D1/d =
∑

λ1/deλ(A)

which is therefore a polynomial depending only on χ and d evaluated in A. Furthermore, the coefficients

of the power series (1 + z)1/d are the generalized binomial coefficients

1/d

i

 , i ≥ 0 and thus are in

Z[1/d]. Since d is invertible in k and (D−1N)n = 0, we have a d-th root

(D−1N)1/d =
∑
i<d

1/d

i

 (D−1N)i
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which is indeed a polynomial depending only on χ and d evaluated in A as are D−1 and N, which is

what we wanted.

We cannot hope for more. On the one hand, the statement is clearly false in the general case of non-

algebraically closed fields, already in the case n = 1. On the other hand, a non-zero nilpotent matrix N

does not admit a d-th root. In fact, it would be nilpotent so that its n-th power would be zero, but also

equal to n!

11.6 Exercises

Exercise 11.6.1 Let λ be an eigenvalue of a and dλ its multiplicity as root of χa. Prove dim(a− λ Id) ≤ dλ (∗).

Prove that a is diagonalizable if and only if χa spits over k with equality in (*) for all eigenvalues.

Exercise 11.6.2 Let M be a complex square matrix of size n > 1. We denote by Mnil the nilpotent component of

its Jordan-Chevalley decomposition. The goal is to give some properties of Mnil. Recall that the exponential of M

is defined by the absolutely convergent series (for any norm on Mn(C))

exp(M) =

∞∑
k=0

Mk

k!

and that the exponential of the sum of two commuting matrices is the product of their exponentials.

1. Compute exp(M)nil in terms of Mnil and M.

2. Show that exp(M)nil = 0 if and only if Mnil = 0. What can be deduced from this?

3. Show that the set of diagonalizable complex matrices is dense in Mn(C).

4. Show that the map M 7→ Mnil is not continuous on Mn(C).

5. What is the set of points of continuity of the map M 7→ Mnil (Difficult)?

Exercise 11.6.3 Recall that the exponential of a complex square matrix of M is defined by the absolutely convergent

series (for any norm on Mn(C)):

exp(M) =

∞∑
k=0

Mk

k!

and that the exponential of the sum of two commuting matrices is the product of their exponentials.

1. If M ∈ Mn(R), prove that det(M) ≥ 0.

2. Show that exp(Mn(R) is the set of square of real matrices.

3. If n > 1, show that there exists real matrices of size n with positive determinant but who are not square of

any real matrix.
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Exercise 11.6.4 Let p be prime, K the fraction field of Fp[T] and V = K[X,Y]/(Xp − T,Yp − T). Show

that V is of finite dimension over K and that the K-endomorphisms of V multiplying by X and Y respectively

are semisimple, commute but their difference is nilpotent (this is exercise 14 chapter VII.5 [6] rewritten without

tensor product).

Exercise 11.6.5 Let A,B ∈ Mn(k) be two commutting matrices. Show that the k-algebra k[A,B] is a quotient

of k[T1,T2]/(µA, µB). Deduce using 4.5.0.2 that if the minimals of A,B and their respective derivatives are

coprime, any element C of k[A,B] is semisimple (without using 11.3.2.1). Is µC necessary coprime with its

derivative?

Exercise 11.6.6 Let d be the semisimple part of a in its Chevalley-Jordan decomposition. Prove χa = χd.

Exercise 11.6.7 Let (Pn, . . . ,P1) be the similarity invariants of a ∈ Endk(V). Assume that k is perfect. Let

Pi =
∏
j P

vi,j
i,j be an irredundant decomposition into irreducible factors. Compute the type of the nilpotent part

of the Jordan-Chevalley decomposition of a in terms of vi,j and deg(Pi,j). Can you find an effective algorithm to

compute this type ?

Exercise 11.6.8 (Hensel’s lemma) Let I be an ideal of R with I2 = (0) and P 7→ P the canonical morphism

R[T] → R/I[T]. Let P,Q,Π ∈ R[T] be monic polynomials such that

• Π = PQ

• There is a Bézout relation in R[T]

(∗) UP + VQ = 1 with U,V ∈ R[T]

The goal is to show that there is factorization of Π in R lifting (*) (compare with 11.4.1.1).

1. Show that one can assume UP+VQ = 1.

2. Show that one can assume deg(U) < deg(Q) and deg(V) < deg(P).

3. Conclude.

Exercise 11.6.9 Let k be a field and χ =
∏
πni
i the decomposition into unitary irreducible factors of P a unitary

polynomial of degree n. We denote χred =
∏
πi. In the first four questions, k is assumed to be a perfect field of

characteristic p > 0 and I the set of indices i such that ni is coprime with p.

1. Show that χ/GCD(χ, χ′) =
∏
i∈I πi.

2. Show that
∏
i/∈I πi is a p-th power in k[T].

3. Write an algorithm computing
∏
i∈I πi and

∏
j /∈I π

nj/p
j .

4. Deduce an algorithm computing χred.

5. What is χred in characteristic zero?
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6. Program the algorithm on Fp? On Fpn? On a general perfect field?

7. How to generalize on a non-perfect field?

8. Always for k a general field, consider the sequence of polynomials χ
red

= (χi)1≤i≤n defined by χ1 =

χred, χi+1 = (χ/(
∏
j≤i χj)red. Show that χ

red
is the sequence of invariant factors of the semisimple

endomorphisms with characteristic polynomial χ.

9. Assuming again k perfect and let D,N be the Jordan-Chevalley decomposition of M ∈ Mn(k). What are the

similarity invariants of D based on the invariants P of M [Use the previous question]? Can you similarly

describe the invariants of N based on Pi [Place yourself in k and study the application Pi 7→ Pi/Pi,red and

its iterates]? Program the obtained algorithm for example on Fp.

Exercise 11.6.10 Let p be a prime number and Ω be an algebraically closed field containing Z/pZ.

1. Show that a finite subfield ofΩ has cardinality q = pn for some n > 0.

2. Conversely, show that for any n > 0, the set Fq of roots of Tq − T in Ω is the unique subfield of Ω of

cardinality q.

Let F be the Frobenius morphism of Fq with q = pn. Let x be a generator of the cyclic group F∗
q (6.4.0.2).

3. Check F ∈ EndFp(Fq).

4. Prove that x,F(x), . . . ,Fn−1(x) are pairwise distinct.

5. Using 2.4.9, prove that Id,F, . . . ,Fn−1 are linearly independent in EndFp
(Fq).

6. Prove that the minimal polynomial of F is Tn − 1.

7. Prove that F is a cyclic endomorphism and give its Frobenius reduction.

8. Study the diagonalization/semisimplicity of F.



Chapter 12

Simultaneous reduction

12.1 Introduction

Perspective

This chapter gives criteria for simultaneously reducing matrices in simpler forms

(diagonal, triangular). These are fundamental tools for understanding the general

linear group GLn(k). This topic also allows to introduce the important notion of

irreducible action on a nonzero finite dimensional k vector space V.

Definition 12.1.0.1 Let A be a nonempty subset of Endk(V) (or Mn(k) for V = kn). We say that A acts

irreducibly on V if the only subspaces which are stable by all elements of A are {0} and V. If A is reduced to a

single element a, we say that a acts irreducibly1

The reason to be interested in this notion in our context is the following. If W is stable by A, the maps

V
a−→ V → V/W factors through V/W into aV/W ∈ Endk(V/W). In matrix terms, this simply means that

completing a basis of W in a basis B of V, we have for all a ∈ A

MatB(a) =

Mat(aW) ∗

0 Mat(aV/W)


1The most common use of this notion is when A is at least stable by product, or even a group or a k-sub-algebra of Endk(V).
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allowing to do induction on dim(V) for statements "passing" to the diagonal blocs. This will be our

"valuable stable space tool" for various induction arguments.

Example(s) 12.1.0.2 The following sets

1. act irreducibly: Endk(V), a plane rotation of angle ̸= 0, π, the so-called diedral group D6 of isometries

preserving an equilateral triangle. . . ;

2. do not act irreducibly (in dimension > 1): the set of upper-triangular matrices, any complex matrix, any real

matrix of size > 2, any commuting sets of complex matrices (see ). . .

The following formal observation is useful

Lemma 12.1.0.3 A ⊂ Endk(V) acts irreducibly on V if and only if tA = {ta, a ∈ A} ⊂ Endk(V
∗) acts

irreducibly on V∗.

Proof. Observe that W is invariant under A if and only if its orthogonal W⊥ is invariant under tA

(7.7.0.2).

12.2 Commuting family of matrices

The main observation is the following.

Lemma 12.2.0.1 If a, b ∈ Endk(V) commute, then any eigenspace of a is b-stable.

Proof. Let v ∈ Ker (a−λ Id). One has a(b(v)) = b(a(v)) = b(λv) = λb(v) proving b(v) ∈ Ker (a−λ Id).

Proposition 12.2.0.2 Let A ⊂ Endk(V) be an arbitrary set of commuting endomorphisms.

1. If χa splits for all a ∈ A, then there exists a common trigonalization basis B for A.

2. If a is diagonalizable for all a ∈ A, then there exists a common diagonalization basis B for S.

Proof.

1. Induction on dim(V): by the "valuable stable space tool", one can assume A acts irreducibly. By

12.2.0.1, any eigenspace of a is invariant under A and therefore is equal to V showing that a is

scalar (and dim(V) = 1) which proves (1).
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2. We use induction on n = dim(V) ≥ 0. We may assume that n > 0 and that the statement is true in

dimension < n. If all the ai are homotheties λi Id, any base is suitable. Otherwise, let i such that ai

is not a homothety. Then, ai has at least two distinct eigenvalues so that all its eigenspaces Ei(λ)

are of dimension < n. But they are stable by all the aj and their restrictions aj(λ) to each Ei(λ) are

diagonalizable for all j (8.3.0.1). For each λ, we then choose a common diagonalization base for the

aj(λ) and the union of these bases suits.

Remark(s) 12.2.0.3 These results are of fundamental importance in group theory. This shows that commutative

subgroups of GLn(C) of diagonalizable matrices are conjugate to subgroups of the groups of invertible diagonal

matrices the converse being obviously true (this is (2) of the above result). For (1), this shows that commutative

subgroups of GLn(C) are are conjugate to subgroups of the groups of upper triangular matrices the converse being

obviously false. The good generalization of commutative groups is the notion of solvable groups. In this case, one

can show that connected solvable subgroups of GLn(C) are exactly connected subgroups of GLn(C) (see 12.5).

But the connectedness assumption cannot be dropped (see exercise 12.6.1).

12.3 The Burnside-Wedderburn theorem

This result is important and classical2

Theorem 12.3.0.1 Let A ⊂ Endk(V) acting irreducibly on V. Assume moreover that χa is split and that A is

stable by (nonempty) product3. Then either A = {0} or
#»

A = Endk(V).

Proof.

• If A = {0}, observe that V is a line.

• We can assume A ̸= {0} and, changing A to Span(A) that A is a k-algebra (a priori without unit).

Let d = min{rk(a), a ∈ A− {0}}. We have d > 0 and we will first prove d = 1.

• Assume d > 1 and let α ∈ A with rk(α) = d. One can therefore choose x, y ∈ V such that α(x) and

α(y) are independent. But A.α(x) is invariant under A and therefore A.α(x) = {0} or A.α(x) = V.

In the first case A.α(x) = {0}, the nonzero line Span(α(x)) is invariant under A and therefore the

whole V contradicting d > 1.
2Our proof is a mild adaptation of the nice note I. Halperin and P. M. Rosenthal, Burnside’s theorem on algebras of matrices,

Amer. Math. Monthly 87 (1980), no. 10, 810.
3The nonempty assumption means that we do not assume Id ∈ A.
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Thus A.α(x) = V and we can choose a ∈ A such that a(α(x)) = y implying that .

Let λ ∈ k be an eigenvalue of the restriction of αa to its stable space Im(α) (by hypothesis, χαa splits

and so does the characteristic polynomial of αa| Im(α) ): we have

rk(αaα− λα) = dim Im((αa− λ Id)|Im(α) < d.

But because αaα(x) and α(x) independent, we also have rk(αaα−λα) contradicting the minimality

of d.

• We have therefore d = 1 and Im(α) is a line generated by some x ̸= 0. There exists a nonzero linear

form φ ∈ V∗ such that α = φ ⊗ x : v 7→ φ(v)x for all v ∈ V. By 12.1.0.3, we have tA.φ = V∗.

The formula αa(v) = ta(φ)(v)x show that Ψ ⊗ x : v 7→ Ψ(v)x belongs to A for every Ψ ∈ V∗.

Analogously, the formulas aΨ ⊗ x(v) = Ψ(v)a(x) and αa(v) = ta(φ)(v)x show that Ψ ⊗ y ∈ A for

every Ψ ∈ V∗, y ∈ V. The theorem follows because because every rank 1 morphism is of the form

Ψ⊗ y for some Ψ ∈ V∗, y ∈ V [recall that Ei,j = e∗j ⊗ ei is a basis of Endk(V) if (ei) is some basis of

V].

12.4 Stable family of nilpotent and unipotent matrices

Theorem 12.4.0.1 (Kolchin) Let ε ∈ {0, 1}. Assume4A ⊂∈ Endk(V) is stable by product and that χa(T) =

(T− ε)n for all a ∈ A. Then, then there exists a common trigonalization basis B for A.

Proof. Because the characteristic polynomial of a block triangular matrix a above

Mat(aW) ∗

0 Mat(aV/W)


is the product of the characteristic polynomials of the blocks, the "valuable stable space tool" shows that

we just have to prove that all element have a (nonzero) common eigenvector, meaning

(∗) ∩a∈A Ker(a− ε Id) ̸= {0}

Using the "valuable stable space tool" again, we can assume that A acts irreducibly on V.

If A = {0} we are done (and we have ε = 0 in this case).

If A ̸= {0}, we have
#»

A = Endk(V) by 12.3.0.1. In particular we have ε = 1giving Tr(a) = n = Tr(ab)

for any a, b ∈ A. Therefore, Tr(a(Id−b) = 0 for any a ∈ A and therefore for also any a ∈ Endk(V). But

Tr(AB) = 0 for any A ∈ Mn(k) ⇒ B = 0 because 0 = Tr(Ei,jB) = Bj,i. This gives b = Id for all b ∈ A

(and n = 1 but does not matter) hence the common eigenvalue.

4See I. Kaplansky, The Engel-Kolchin theorem revisited, in Contributions to algebra (collection of papers dedicated to Ellis Kolchin),

pp. 233–237, Academic Press, New York-London for some (mild) generalizations.
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An endomorphism g ∈ Endk(V) such that Spec(g) = {1} is called unipotent. A subgroup of GL(V)

whose elements are unipotent is called unipotent.

Corollary 12.4.0.2 Every unipotent subgroup of GLn(k) is contained in a a maximal unipotent subgroup which

is conjugate to the group of upper triangular matrices with 1 in the diagonal.

12.5 Connected solvable matrix subgroups

This section can be skipped in a first reading. In this section we assume the reader to be familiar with

basics of quotient groups.

12.5.1 Basics on solvable groups

We will look at a large class of of groups which contains the example encountered in this chapter: the

commutative groups and all subgroups of the group of triangular matrices.

Definition 12.5.1.1 A group G is said to be solvable if it has a decreasing sequence of subgroups

{1} = Gn ⊂ · · · ⊂ G0 = G

such that for 0 ≤ i ≤ n − 1, the group Gi+1 ⊂ Gi is normal in Gi and the quotient group Gi/Gi+1 is

commutative.

Example(s) 12.5.1.2 Any commutative group is solvable. Any sous-group of the group of invertible upper-

triangular matrices is solvable (see 12.5.1.4 and 12.6.4). The groups S3 and S4 are non-commutative and solvable

(12.6.1).

Let us characterize solvable groups using the derived subgroup. Recall that the derived subgroup DG

of a group G is normal and that the quotient G/DG is the maximal commutative quotient of G.

Lemma 12.5.1.3 G is solvable if and only if DnG is trivial for n large enough.

Proof. If G is solvable and Gi is as in the definition, the image of a commutator in the abelian group

G0/G1 is trivial so that D1G is contained in G1. By induction, we show that DiG is contained in Gi and

therefore DnG is trivial. Conversely, if DnG is trivial, we set Gi = DiG.



160 CHAPTER 12. SIMULTANEOUS REDUCTION

We define for G solvable its length ℓ(G) = min{i ≥ 0|Di(G) = {1}.

Corollary 12.5.1.4 If

1 → G1 → G2 → G3 → 1

is exact, then G2 is solvable if and only if G1 and G3 are solvable.

Proof. On the one hand, we have DnG2 → DnG3 surjective and DnG1 → DnG2 injective so that G2 being

solvable implies G1 and G3 are solvable. Conversely, if DnG3 is trivial, the image of DnG2 in G3 is zero

and therefore DnG2 is contained in G1. If now we also have DmG1 = 1, we deduce Dm+nG2 ⊂ DmG1 =

1, hence the converse.

Remark(s) 12.5.1.5 Therefore, the class of solvable groups is the smallest class of subgroups stable by isomor-

phisms and exact sequences. In fact, we have better. If G has an increasing sequence of subgroups

1 = G0 ⊂ · · · ⊂ Gn = G

with Gi normal in Gi+1 and Gi+1/Gi solvable, then G is solvable.

12.5.2 The Lie-Kolchin theorem

In this section, we assume that k is a subfield of C which induces a metric topology on Mn(k) associated

to any norm on Mn(C). The following theorem is both classical and important.

Theorem 12.5.2.1 (Lie-Kolchin) Let G ⊂ GLn(V) be a solvable connected subgroup such that χg is split for

every g ∈ G. There exists a common trigonalization basis B for G.

Proof.

• As before, by the "valuable stable space tool", one can assume that G acts irreducibly on V.

• If Γ is any connected group, then D(Γ) is connected. Indeed, the set Γi of products of i commutators

[γ1γ2γ
−1
1 γ−1

2 ] is a continuous image5 of the connected set Γ2i and is therefore connected. Then D(Γ)

is a union of connected set having Id as common point: it is connected.

• If ℓ(G) ≤ 1, then G is commutative and there is a common trigonalization basis B for G (12.2.0.2).

5product and inverse are polynomial in the entries and therefore define continuous maps
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• Assume now ℓ(G) > 1 and set H = Dℓ(G)−1(H). The group H is connected and solvable with ℓ(H) =

1 and therefore it is commutative. By(12.2.0.2), one can choose a non zero common eigenvector v

for H (with eigenvalue λ(h) ∈ k). Let (g, h) ∈ G×H and v∗ ∈ V∗ such that ⟨v∗, v⟩ = 1. Because H is

normal in G, one has

(∗) hg(v) = g(g−1hg(v)) = λ(g−1hg)g(v)

Applying v∗ ◦ g to (*) we get ⟨v∗, g−1hg(v)⟩ = λ(g−1hg) proving that (g, h) 7→ λ(g
−1hg) is con-

tinuous. If h is fixed, g 7→ λ(g−1hg) takes value in the finite set Spec(h) and therefore is constant

because G is connected. Taking its value at g = Id, we get λ(g−1hg) = λ(h). Using (*), we get that

hg(v) = λ(h)g(v) = gh(v).

• Because v was an arbitrary common H-eigenvector, hg and gh coincides on each such vector. By (*),

g(v) is such a vector proving hg−gh = 0 on Span (Gv)
irreducibility

= V proving that g and h commute.

• Any eigenspace of h is both nonzero and invariant by G hence is equal to V proving that h = λ(h) Id

for all h ∈ H. Because ℓ > 1, we have H ⊂ DG ⊂ SL(V) and therefore λ(h) is a (n = dim(V))th-root

of 1. Therefore H is finite hence H = {Id} because it is connected.

Corollary 12.5.2.2 Assume k is algebraically closed. Every connected solvable subgroup of GLn(k) is contained

in a a maximal connected solvable subgroup which is conjugate to the group of upper triangular matrices.

12.6 Exercises

Exercise 12.6.1

• Show that the hyperplane of equation
∑
xi = 0 of kn is invariant by A = {Mσ, σ ∈ Sn}.

• Show that A does not act irreducibly on kn but that its image in Endk(H) (through the restriction M 7→ M|H)

is irreducible.

• Show that S3 embedds in GL2(C) but that is not conjugate to any subgroup of the group of invertible upper-

triangular matrices.

• More generally, does the group of invertible upper-triangular matrices contain any group isomorphic to S3?

Exercise 12.6.2

1. Show that (1, 2, 3) generates a normal subgroup of S3.

2. Show that K = {Id, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)} is an abelian normal subgroup of S4.
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3. Deduce that neither S3 or S4 is solvable.

Exercise 12.6.3 Show that the set A of rotations of the Euclidean plane V acts irreducibly. Compute Span(A) ⊂

Endk(V).

Exercise 12.6.4 We aim to show that the group B of matrices of GLn(k) that are upper triangular is solvable (k

is a field). Let U be the subgroup of B of matrices whose eigenvalues are all equal to 1 (unipotent matrices).

1) Show that we have an exact sequence of groups

1 → U → B → (k∗)n → 1.

Deduce that B is solvable if and only if U is solvable.

Let (ei) be the canonical basis of kn. For i ≤ n, let Fi be the subspace of kn generated by e1, . . . , ei. We have

Fi = (0) if i ≤ 0 and Fn = kn. For all f ∈ U, we denote by ln(f) the matrix f − Id. For all j = 0, . . . , n, let Uj

be the subset of U comprising the matrices f such that ln(f)(Fi) ⊂ Fi−j for i ≤ n.

2) Verify that we have

(1) = Un ⊂ Un−1 ⊂ · · · ⊂ U1 = U.

Show that Ui is a normal subgroup of U for all i ≤ n and therefore also of Ui−1.

3) Let f ∈ Uj . Show that for all i ≤ n, the restriction ln(f)i,j of ln(f) to Fi induces a linear map

of Fi/Fi−j−1 which is zero if and only if ln(f)(Fi) ⊂ Fi−j−1.

4) Show that the map

lnj :

 Ui →
∏
i End(Fi/Fi−j)

f 7→ (ln(f)i,j)

is a group morphism and calculate its kernel.

5) Deduce that U is solvable. Conclude.

Exercise 12.6.5 Compute the maximal number of commuting symmetries of GLn(R). Deduce that the groups

GLn(R) and GLm(R) are isomorphic if and only if n = m. How can you generalize?

Exercise 12.6.6 Show that a non trivial unipotent subgroup of GL(V) does not contain any compact subgroup

(compare with 10.4.6).

Exercise 12.6.7 Following Kaplanski, generalize Kolchin’s theorem (12.4.0.1) as follows. Let ε ∈ {0, 1}. Assume

A ⊂∈ Endk(V) is stable by product and that χ−1
a (0) ⊂ {0, 1} for all a ∈ A. Then, then there exists a common

trigonalization basis B for A [Remember that a vector space is not the union of two proper subspaces].

Exercise 12.6.8 Let n > 0 and Fi,j ∈ Mn(k) − {0} such that Fi,jFk,l = δj,kFi,l for all i, j, k, l ∈ {1, . . . , n}.

Let φ ∈ Endk(Mn(k)) such that φ(AB) = φ(A)φ(B) for all A,B ∈ Mn(k).

1. If n = 1, show that there exists λi ∈ k∗ such that Fi,j = λi/λj for all i, j.
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2. Show that there exists a common diagonalization basis B = (fi) of Ei,i, i = 1, . . . , n.

3. Show that there exists λi,j ∈ k∗ such tat Fi,j(fl) = δj,lλi,jfi.

4. Show that φ is either 0 or an isomorphism [Look at Ker (φ)].

5. If φ ̸= 0, show that there exists P ∈ GLn(k), uniquely defined up to non zero scalar, such that φ(A) =

PAP−1 for all A ∈ Mn(k).
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Chapter 13

Topology of similarity classes

Hasse diagram of A5

(6) 30

(5, 1) 28

(4, 2)
ppp LLL 26

(4, 12)
NNN

(32)
rrr

24

(3, 2, 1)
ppp LLL 22

(3, 13)
NNN

(23)
sss

18

(22, 12) 16

(2, 14) 10

(16) 0

Baohua FU GeometryNilpOrbits

Hasse Diagram of M6

13.1 Introduction

Perspective

Here we provide a perspective on the geometry of similarity classes through their

topology. To avoid formalism, we restrict ourselves to matrices in Mn(k), where

k is any subfield of C endowed with the metric topology1derived from any norm

on Mn(C). We have chosen to keep our module-theoretic method in high detail,

even though the proofs might be a bit shorter here and there by first reducing to

the nilpotent case. The reason for this is to provide “natural proofs” and, more

importantly, to illustrate the modern notion of deformation/family of modules.

We will study the topology of the set of matrices up to similarity. In other words, we will study the

quotient map f : Mn(k) → Mn(k)/GLn(k), where P ∈ GLn(k) acts on A ∈ Mn(k) by P.A = PAP−1.

Specifically, f(M) = O(M), where O(M) is the conjugacy class of M. Because the action GLn(k) ×
1As mentioned above, in the case of a general infinite field, the Zariski topology should be considered, which poses no real

difficulty once its definition is known (see exercise 13.6.10). In fact, the topology must be finer than that of Zariski, the usual

operations on matrices must be continuous, and the points of k must not be open, ensuring that the closure of k∗ is k. This is

where the infinity of the field comes into play in the case of Zariski topology.

167
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Mn(k) → GLn(k) is certainly continuous, our quotient has a canonical topological structure : the finest

topology making f continuous. In other words, U ⊂ Mn(k)/GLn(k) is open if and only if f−1(U)

is open. Be cautious that even this topology is very natural, it comes not from any metric as we will�

illustrate in detail later (see also 13.6.1).

Remark(s) 13.1.0.1 The reader will verify (exercice) the following universal property of this topology, which is

the natural generalization of the quotient map universal property in our context. If T is any topological space, the

map  Homcont(Mn(k)/GLn(k),T) → Hominv(Mn(k),T)

φ 7→ φ ◦ f

is bijective where

Hominv(Mn(k),T) = {φ ∈ Homcont(Mn(k),T)|∀(P,A) ∈ GLn(k)×Mn(k), φ(P.A) = φ(P)}.

In particular, because the characteristic polynomial is invariant by conjugation, the characteristic poly-

nomial map

γ :

 Mn(k) → kn

A 7→ det(T Id−A)

defines a continuous (polynomial!) map γ which is invariant and by the above universal property de-

fines a continuous map

µ : Mn(k)/GLn(k) → kn

where we identify a monic degree n polynomial with its first n coefficients. Because the image of µ is

well understood (its just an affine space), we will mainly focus our study to the topology of the various

fibers µ−1(χ) or, which remains to the same, to the various fibers γ−1(χ). This is achieved in 13.5.1.4.

13.2 χ-types

Let χ ∈ k[T] be a degree n monic polynomial and recall (8.4.0.1) that a χ-type is a sequence P =

(Pn| · · · |P1) of monic polynomials of k[T] such that
∏

Pi = χ.

Definition 13.2.0.1 We denote O(P) the set of matrices in Mn(k) similar to the companion matrix C(P). We

define the degree of P by deg(P) = n =
∑

deg(Pi).

So O(P) is the orbit of C(P) under the action of GLn(k) by conjugation. The theory of similarity in-

variants tells us that O(P) consists of matrices with similarity invariants P and that Md(k) is the disjoint
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union of O(P), since P covers all n-types (8.7). From the point of view of the introduction 13.1 this means

that

the set of types of degree n is identified with Mn(k)/GLn(k).

Our goal is to study the closure O(P) of the orbit O(P). We define a (topological) relation ⪯ on χ-types

(or types for short) as follows.

P ⪯ Q if and only if O(P) is contained in the closure O(Q).

By continuity of the characteristic polynomial, we have P ⪯ Q ⇒
∏

Pi =
∏

Qj allowing to restrict

ourselves to χ-types for a given χ. The relation ⪯ is a reflexive and transitive relation on types2. Since

O(Q) is invariant by conjugation, it is a union of orbits and we have

O(Q) = ∪P⪯QO(P).

Our goal is to characterize this relation in a combinatorial manner. We define a (combinatorial3) relation

on degree n-types by

(*) P ≤ Q if and only if ∀i = 1, · · · , n,
∏
j≤i Pj |

∏
j≤iQj .

This relation is a (partial) order. For degree reasons, we have P ≤ Q ⇒
∏

Pi =
∏

Qj .

We will therefore restrict ourselves to χ-types.

Dividing (*) by χ, we get

(∗) P ≤ Q ⇔ ∀i = 2, · · · , n,
∏

j≥i
Qj |

∏
j≥i

Pj .

Example(s) 13.2.0.2 We have (T,T) ≤ (1,T2). Moreover O(T,T) = O(02) = {02} and O(1,T2) is the set

of all non zero nilpotent matrices in M2(k). In particular, 02 ∈ O(1,T2) because lim

0 1/m

0 0

 = 0 hence

(T,T) ⪯ (1,T2).

Because we have only two types in this dimension 2 case, we deduce in this case P ⪯ Q ⇔ P ≤ Q.

The result is general.

Theorem 13.2.0.3 Let P,Q be two χ-types. Then, P ⪯ Q if and only P ≤ Q. In other words, the topological and

combinatorial orders on n-types coincide.

2At this stage, the anti-symmetry is not clear (cf. 13.3.0.2).
3Compare with cf. 13.4.2.
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Remark(s) 13.2.0.4 This theorem is a reformulation, more transparent in my opinion, of Theorem 4 from [11].

Indeed, to our knowledge, it was Gerstenhaber who fully elaborated the structure of orbit closures, although we

have not been able to stricto sensu find this statement.

13.3 P ⪯ Q ⇒ P ≤ Q

This implication follows from a the continuity of determinants using the calculation of similiraty invari-

ants using minors (8.7).

Lemma 13.3.0.1 Let α = (αk) be a converging sequence of degree d complex polynomials4. Assume that each αk

is a multiple of some monic polynomial β ∈ k[T]. Then, β| lim(α).

Proof. Let R be the k-subalgebra of the algebra of complex sequences generated by the d+1-sequences of

coefficients of α. All elements of R are converging sequences (because sums and products of converging

sequences are converging). By 1.3.1.1, one can perform the division α ∈ R[T] by the monic polynomial

β ∈ k[T] ⊂ R[T] to obtain α = βq + r with deg(r) < deg(β). Because β|αk for every k, we get that

rk ∈ k[T] is zero and finally r = 0. Because all elements of R are converging sequences, we get by

continuity of the product lim(α) = β lim(q).

Corollary 13.3.0.2 We have the direct implication P ⪯ Q ⇒ P ≤ Q. In particular, ⪯ is a ordering.

Proof. Let (Ak) be a sequence of matrices of with similarity invariants Q converging to some matrix

A∞ ∈ Mn(k) with similarity invariants P. Then, we know that δi(Q) =
∏
j≥n−i+1 Qj , i = 1, . . . , n

is the GCD of the minors of size i of all the matrices T Id−Ak (8.7). In particular, δi(Q) divides the

determinant of each these minors MI,J(Ak) which are converging to the corresponding det(MI,J(A∞))

of A∞ by continuity of the determinant. By the lemma above, δi(Q)|δi(P). Using
∏
j≥1 Pj =

∏
j≥1 Qj ,

we get
∏
j≤n−i Pj |

∏
j≤n−iQj , i = 1, . . . , n and therefore P ≤ Q because we have equality if i = 0 in the

preceding relation.
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The main point is to construct a family of matrices indexed by some parameter

ε which are similar to C(Q) for ε ̸= 0 and to C(P) if ε = 0. We will achieve this

goal in a simple but typical case using an important idea: constructing such a

family remains to construct a family of modules thanks to the dictionary be-

tween modules and endomorphism. This is lemma 13.4.1.1. As the reader will

see, a new condition on our family of modules appear : the freeness property

of (4) in the lemma op. cit. . This is the flatness condition which is omnipresent

in modern algebraic or number theory.

13.4 P ≤ Q ⇒ P ⪯ Q

13.4.1 An elementary deformation

Let R = k[τ ] be the polynomial ring in the variable τ .

Lemma 13.4.1.1 Let (P2,P1) = P ≤ Q = (Q2,Q1) two χ-type of degree n and A(τ) ∈ M2(R[T]) =

EndR[T](R[T]
2) be the matrix

A(τ) =

P2 τQ2

0 P1


and C[τ ] the R[T]-module C[τ ] = Coker(A(τ)). For ε ∈ k, we define

C(ε) = C[τ ]/(τ − ε)

as a R[T]/(T− ε) = k[T]-module.

1. We have an isomorphism of k[T]-modules C(ε) ∼→ Coker(A(ε)).

2. If ε ∈ k∗, then the invariant ideals of C(ε) are Q.

3. If ε = 0 ∈ k∗, then the invariant ideals of C(0) are P.

4. The R-module C(τ) is free of rank n.

Proof. 1. By definition, we have an exact sequence

R[T]2
A(τ)−−−→ R[T]2 → C[τ ] → 0.

But in general, if M1 → M2 → M3 → 0 is exact then it is straightforward to check that M1/IM1 →

M2/IM2 → M3/IM3 → 0 is exact for any ideal I and follows from the fonctoriality of the cokernel.

4Because all norms on k≤d[T] are equivalent, we can use any norm to define the convergence notion. Notice that convergence

suh of sequence of polynomials is equivalent to the convergence of each coefficients sequences.
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2. P ≤ Q means Q2|P2 and therefore the GCD of the coefficients of A(ε)) is Q2 hence is its second

similarity invariant. Because its determinant of A(ε)) is P2P1 = χ = Q2Q1, the second is Q1.

3. Clear.

4. Let φ be the natural composition φ : R<d2 [T] ⊕ R<d1 [T] → R[T] ⊕ R[T] → Coker(A(τ)) with

di = deg(Pi). Let us show that φ is an R-linear isomorphism.

Surjectivity. Let (X2,X1) ∈ R[T]2. We write X1 = Y1P1 + R1 with deg(R1 < d1) (division by the

monic polynomial P1) and X2 − τQ2Y1 = P2Y2 + R2 with deg(R2) < d2 (division by the monic

polynomial P2). We have X2

X1

 = A(τ)

Y2

Y1

+

R2

R1


hence the surjectivity.

Injectivity. Let (X2,X1) ∈ R<d2 [T]⊕ R<d1 [T] in Ker(φ), i.e.such thatX2

X1

 = A(τ)

Y2

Y1


for some (Y2,Y1) ∈ R[T]2. We have P1Y1 = X1. Because P1 is monic, we get d1 > deg(X1) =

deg(P1Y1) = deg(P1) + deg(Y1) = d1 + deg(Y1) hence Y1 = 0. The second relation X2 = P2Y2 +

τQ2Y1 = P2Y2 yields in the same way d2 > deg(X2) = deg(P2Y2) = deg(P2) + deg(Y2) = d2 +

deg(Y2) hence Y2 = 0.

Corollary 13.4.1.2 P ≤ Q ⇒ P ⪯ Q.

Proof. Let B be the basis (1, . . . ,Td2−1)⊔(1, . . . ,Td1−1) of R<d2 [T]⊕R<d1 [T]
∼→ Rn and H(τ) = MatB(φ

−1◦

hT ◦ φ) ∈ Mn(R) where hT is the multiplication by T onC(τ). By just rephrasing the lemma 13.4.1.1 we

get that the similarity invariants of H(ε) are Q is ε ̸= 0 and are P if ε = 0, hence P ⪯ Q.

Our family of k[T]-modules C(ε), ε ∈ k is the typical example of an (algebraic) deformation of our module

C(0).

13.4.2 ≤=⪯

Definition 13.4.2.1 Let P,Q be χ-types and P is the (finite) set of irreducible divisors of χ. We say that P is an

elementary deformation of Q if there exists π ∈ P, monic polynomials P̃i and n ≥ j > i ≥ 1 such that

P = (P̃n, . . . , πP̃j , . . . , P̃i . . . , P̃1), and Q = (P̃n, . . . , P̃j , . . . , πP̃i, . . . , P̃1)
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i.e.

Pk = Qk = P̃k if k ̸= i, j and Pj = πQj = πP̃j , Qi = πPi = πP̃i.

We write in this case P ⪯e Q

The definition is justified by

Lemma 13.4.2.2 With the notation above, P ⪯e Q ⇒ P ⪯ Q.

Proof. Apply lemma 13.4.1.1 to (Pi, πQj) ≤ (πPi,Qj).

The main theorem 13.2.0.3 is now a consequence of the following proposition.

Proposition 13.4.2.3 Let P ⪯ Q be two distinct χ-types.

1. There exists a finite series of elementary deformations P = R0 ⪯
e
R1 ⪯

e
. . . ⪯

e
RN−1 ⪯

e
RN = Q.

2. P ⪯ Q.

Proof. (1) ⇒ (2) thanks to the preceding lemma. It suffices to prove the existence of a partition R such

that P ⪯
e
R ⪯ Q when P ̸= Q and to iterate the process (which eventually stops when RN = Q because

the number of χ-types is finite.)

Because P ̸= Q, one can choose π ∈ P, ℓ ∈ [1, . . . , n] such that

(∗) vπ(Pℓ) ̸= vπ(Qℓ)

Because P ≤ Q, we have

(1) ∀k, vπ(P1 . . .Pk) ≤ vπ(Q1 . . .Qk).

(*) implies that the inequality (1) is strict for some k. Let i be the smallest integer such that (1) is strict.

We have therefore

(1′) Pk = Qk if k < i and πPi|Qi.

Dividing (1) by χ we get

(2) ∀k, vπ(Qn . . .Qk) ≤ vπ(Pn . . .Pk).

Again (*) implies that the inequality (2) is strict for some k. Let j be the largest integer such that (2) is

strict. We have therefore

(2′) Qk = Pk if k > j and πQj |Pj .
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If i ≥ j, we have P = Q by (1’) and (2’), a contradiction. Therefore j > i.

Let R = (Rk)1|≤k≤n be the family

Rk = Pk if k ̸= i, j and Ri = πPi, Rj = Pj/π
(2′)
∈ k[T].

We have
∏

Ri = χ. Let us verify that R is divisibility decreasing which will prove that R is a χ-type

with the wanted property.

For k ∈ X = [1, n] − {i, j}, we have Pk = Rk implying that the restriction of R to X is decreasing. We

have to show Rk|Rk−1 for k ∈ {i, i+ 1, j, j + 1}.

• If k = i we have Ri = πPi
(1′)

| Qi|Qi−1 = Pi−1 = Ri−1.

• If k = i+ 1

– If j ̸= i+ 1, we have Ri+1 = Pi+1|Pi|Ri.

– If j = i+ 1, we have Ri+1 = Rj = Pj/π|Pj
j>i

| Pi|Ri.

• If k = j

– If j ̸= i+ 1, we have Rj = Pj/π|Pj |Pj−1 = Rj−1.

– If j = i+ 1, already done.

• If k = j + 1 we have Rj+1 = Pj+1 = Qj+1|Qj
(2′)

| Pj/π = Rj .

Certainly P ≤ R. Let us finally verify R ≤ Q.

• It is true for k < i because R and P coincides in this range.

• For i ≤ k < j, by (2’), one has
∏
l≤k Rk = π

∏
l≤k Pk

(1′)

| |
∏
l≤k Qk.

• For k ≥ j, one has
∏
l≤k Rl =

∏
l≤k Ql.

This concludes the proof of theorem 13.2.0.3.

13.5 Topological applications

We want to study Mn(k)/GLn(k) using our continuous µ to kn defined by the characteristic polynomial

(13.1). We start with its fibers µ−1(χ) or, what remains to the same by definition of the topology of the

set γ−1(χ) of matrices with given characteristic polynomial χ.
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13.5.1 Topology of the fibers µ−1(χ)

We keep the notations above and we denote by T be the set of χ-types ordered by ≤=⪯. Let

Mχ = {A ∈ Mn(k)|χA = χ} 13.1
= γ−1(χ).

If P is a monic degree n ≥ 1 polynomial, we define Pred as the product of its (monic) irreducible divisors.

As we have already observed, in our zero characteristic zero case, characteristic, Pred = P/GCD(P,P′)

and can be algorithmically computed (cf. 11.6.9 for the general case).

Lemma 13.5.1.1

1. There exists5a unique decreasing sequence of monic polynomials Pr,i ∈ k[T]

• If P,Q are coprime polynomials, one has (PQ)r,i = Pr,iQr,i for all i ≥ 1.

• If P = πd for some irreducible polynomial π, we have Pr,i = π if i ≤ d and Pr,i = 1 if i > d.

2. All Pr,i are square free, Pr,i = 1 for i > n and
∏

Pi = P.

3. χ
ss

is the smallest element of T.

4. χ
cycl

is the largest element of T.

Proof. (1) and (2) are just reflecting that k[T] is UFD.

(3) Let Q ∈ T. Because P|Q if and only if vπ(Q) for any irreducible π, one can assume χ = πd and

Q = (πδd , . . . , πδ1) for some partition δ of d. But the corresponding partition of πd is (1, . . . , 1) which is

certainly ≤ δ and therefore χss ≤ Q.

(4) We have
∏
i≤k Qi|

∏
i≤nQi = χ =

∏
i≤k Qi for any i ≤ 1.

Definition 13.5.1.2 χ
cycl

= (1, . . . , 1, χ) is called the cyclic χ-type and χss = (χr,n, . . . , χr,1) the semi-simple

type. The corresponding similarity classes are called the cyclic (resp. semi-simple) orbits.

Remark(s) 13.5.1.3 The cyclic type χ
cycl

is the χ-type of the companion matrix C(χ) and the semi-simple type

χ
ss

is the χ-type of the multiplication hT by T on V = ⊕k[T]/(χr,i) which is therefore semi-simple because each

χr,i is square free.

5See 13.6.7 for an alternative algorithmic definition
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By definition, the cyclic orbit is the subset of Mχ of cyclic elements the semi-simple orbit is the subset of

Mχ of semi-simple elements.

Corollary 13.5.1.4

1. Mχ = ⊔P∈TO(P). In particular µ−1(χ) is finite.

2. O(P) = ⊔Q≤PO(Q).

3. The cyclic orbit is the only orbit which is open (resp. dense) in Mχ.

4. The semi-simple orbit is the only closed orbit in Mχ (and therefore in the whole Mn(k)).

5. µ−1(χ) is closed if and only C(χ) is both semi-simple and cyclic6or equivalently if Card(µ−1(χ)) = 1.

6. More generally, O(P) is open and dense in its closure O(P).

7. O(P) = O(Q) if and only if P = Q.

Proof. 1. It is a rephrasing the main theorem of similiraty invariants (see 8.7).

2. ≤=⪯.

3. Use (2) and (3) of lemma 13.5.1.1.

4. Use (2) and (4) of lemma 13.5.1.1.

5. Use (3) and (4).

6. Use (2).

7. ≤=⪯.

13.5.2 Global properties of Mn(k)/GLn(k)

Let us start with a general lemma.

Lemma 13.5.2.1 Let ∅ ̸= Ω ⊂ kn which is defined by the non vanishing of a finite number of polynomials. Then,

Ω is dense in kn.

6If moreover χ(0) ̸= 0, a matrix similar to C(χ) is called regular element of GLn(k). Observe A is regular if and only if its

complex eigenvalues are distinct (exercise).
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Proof. Let Pi ̸= 0 be the polynomial inequations defining Ω and ω ∈ Ω. Let x ∈ kn − Ω and consider

D0
t = {ω+ tx ∈ Ω, t ∈ k}. The one variable polynomial Pi(ω+Tx) does not vanish at T = 0. Therefore,

its set of roots Zi is finite an so is the union ∪Zi. Therefore, D0
t is the complement of finite set in the line

⟨ω, x⟩ ⊂ kn and there are certainly points of D0
t arbitrary close of x by the density of k in C.

Proposition 13.5.2.2

1. Mn(k)/GLn(k) is connected.

2. The set of cyclic classes is open and dense.

3. Both the set of regular classes (both semi-simple and cyclic) is open and dense.

4. The set of rank ≥ r matrices is open and dense (semi-continuity of the rank).

Proof.

1. Mn(Q) is dense in Mn(C) and therefore Mn(k) is dense in Mn(C). Because the latter is connected,

Mn(k) is connected and so is its continuous image Mn(k)/GLn(k).

2. By definition of the quotient topology, we have to show that the inverse image of the set of cyclic

classes is open and dense in Mn(k) and therefore that the set of cyclic matrices A is so. But writing

that A is cyclic is writing deg(µA) = n or Id, . . . ,An−1 is a free family. This condition can be written

by the non vanishing of a bunch of determinants of matrices whose coefficients are polynomial in

the coefficients of the Ai’s, and we get the openness (or use item (4) above). We conclude by 13.5.2.1.

3. Because a matrix in Mn(k) is cyclic if and only if is characteristic polynomial of degree n, the regu-

larity condition is equivalent to GCD(χ, χ′) = 1 (recall that k is perfect being of zero characteristic).

The latter condition can be written Res(χ, χ′) ̸= 0 where Res ∈ k[Ti,j ] (4.6.7). We conclude by

13.5.2.1 again.

4. Apply the determinant characterization δr(A) ̸= {0} of 3.8.1.4.

Remark(s) 13.5.2.3 It’s easy and useful to prove openness and density of regular matrices without using the

resultant (see 14.3.1.1) but the corresponding result is weaker because we do not get the algebraic nature of the

locus and therefore that it is huge (for instance we don not get that Lebesgue almost surely any polynomial has

distinct roots).
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13.6 Exercises

Exercise 13.6.1 Assume n ≥ 2. Show that the image of tE1,2, t ∈ k in Mn(k)/GLn(k) is constant except for

t = 0. Deduce that Mn(k)/GLn(k) is not separated.

Exercise 13.6.2 Let g : Mn(k) → k be a continuous GLn(k)-invariant function. Show that there exists a unique

continuous function g on kn such that g = g ◦ f with f the quotient map f : Mn(k) → Mn(k)/GLn(k).

Exercise 13.6.3 Show that there does not exist any norm on Mn(k), k = R, C invariant under similarity.

Exercise 13.6.4 Let p : Mn(R) → R+ be an application satisfying the triangle inequality, positively homoge-

neous (p(tA) = |t|p(A) for t ∈ R)7 and invariant by similarity.

1. Give a non trivial example of invariant semi-norm on Mn(R).

2. Show that A is nilpotent if and only if A and 2A are similar. Deduce the value of p(A).

3. Show p(A) = 0 if A is a traceless matrix (Use 7.8.7).

4. Compute p.

Exercise 13.6.5 Let H6 be the graph whose vertex are the nilpotent T6-types and with a vertex between two types

P,Q if and only if P ≤ Q. Draw H6 and compare with the Hasse diagram at the beginning of the chapter.

Exercise 13.6.6 Let ∅ ̸= Ω ⊂ Cn which is defined by the non vanishing of a finite number of polynomials. Show

that almost surely relative to the Lebesgue measure, x ∈ Cn belongs to Ω.

Exercise 13.6.7 With the notations of 13.5.1.1, prove that Pr,1 = Pred and Pr,i+1 = (P/Pr,i)red for i ≥ 1.

Deduce an effective algorithm to compute these polynomials (see 11.6.9). Can you generalize to the perfect case?

Exercise 13.6.8 The semi-simple part of the Jordan-Chevalley decomposition of a ∈ Mχ is χ
ss

(cf. 11.4.2.1).

Exercise 13.6.9 Show that the semi-simple orbit of µ−1(χ) is the only closed point and that the cyclic orbit is an

open and dense point. Show that µ−1(χ) is separated if and only if Card(µ−1(χ) = 1. Prove if P ̸= Q are points

of µ−1(χ), there exists an open subset of µ−1(χ) such that either P ∈ U and Q ̸∈ U or Q ∈ U and P ̸∈ U (this

property is sometimes called the Kolmogorov separation property).

Exercise 13.6.10 Prove that O(P) is the zero set of a finite family of polynomials8in k[Ti,j ].

Exercise 13.6.11 Prove that the set of regular matrices of size n ≥ 2 is not open. What is its topological interior ?

Exercise 13.6.12 Show that any continuous GLn-invariant (by conjugation) function on Mn(C) factors through

γ (13.1). Deduce that µ : Mn(k)/GLn(k) → kn induces an isomorphism of there algebra of numerical functions

although µ is not an homeomoprhism.

7Such an application is called a semi-norm.
8The advanced reader will rephrase this statement by saying that these closures are Zariski closed. He will verify that it implies

that our closure coincides with the corresponding Zariski closure.
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Eigenvalues and primary components
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14.1 Introduction

Perspective

We focus our attention on the eigenvalues of complex and real matrices, with par-

ticular attention to matrices with non-negative coefficients. Our aim is to under-

stand their continuity properties with respect to the matrix coefficients, which is a

necessary condition for being able to approximate them appropriately.

In this chapter we consider k ⊂ C and a ∈ Endk(V) with matrix A ∈ Mn(k) in a basis with characteristic

polynomial χ. We are mainly interested in the set Spec(A) of its complex eigenvalues.

179



180 CHAPTER 14. EIGENVALUES AND PRIMARY COMPONENTS

14.2 Continuity of primary components (χ fixed)

We know from the chapter 13 that the similarity invariants do not vary continuously with the coefficients

of the matrix, even when the characteristic polynomial is a given monic polynomial χ. The counterpart

of this bad news is that they can be computed in an effective exact way, but with an algorithm that

is numerically unstable by nature. However, if the matrix has Q coefficients, for example, or more

generally if the field is “fully computable”, we can perform exact calculations with a computer. In

summary,

Frobenius decomposition is exactly computable, but in general difficult if not impossible to

approximate because it is not continuous, even if χa is fixed.

On the other hand, we have in hand another decomposition (10.2.1.2) of Va which in our case reads as

follows. We write the irredundant prime decomposition

χ =
∏

Pvii

of χ in monic irreducible polynomials and, remembering χ(a) = 0 hence χ.Va = {0} by Cayley-

Hamilton, we get

(∗) Va = ⊕Va[Pi]

where

Va[Pi] = Ker(Pvii (a))

is the Pi-primary part of the χ-torsion module. We denote by πi(a) the spectral projection onto Va[Pi]

parallel to ⊕j ̸=i]Va[Pj ].

Lemma 14.2.0.1 One has dimVa[Pi] = vi deg(Pi).

Proof. The minimal polynomial of the restriction of a to dimVa[Pi] is a power of Pi and therefore so is its

characteristic polynomial χ = Pwi
i . But dimdimVa[Pi] = deg(χi) = wi deg(Pi). By multiplicativity of the

determinant, we get
∏

Pvii = χ =
∏
χi =

∏
Pwi
i and by uniqueness of the irredundant decomposition

the lemma follows.

Corollary 14.2.0.2 Let λ ∈ Spec(a). One has vλ(χa) ≥ dimKer(a−λ Id). Moreover, a is diagonalizable if and

only χa is split and we have vλ(χa) = dimKer(a− λ Id) for all λ.

Proof. The lemma with Pλ = T− λ and the inclusion Ker(a− λ Id) ⊂ Va[T− λ] gives the inequality and

(*) the equality criterium.
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Proposition 14.2.0.3 Let α : S → Mn(k) be a a continuous. Assume that χα(s) = χ for all s ∈ S.

1. There exists polynomials ei ∈ k[T] depending on χ (and not on α) such that πi(α(s)) = ei(α(s)).

2. πi(α(s)) is continuous of constant rank dimVa(s)[Pi] = vi deg(Pi).

Proof.

1. This is the Chinese remainder lemma 4.5.0.1.

2. A polynomial is continuous, so is its composition its α. Apply then the preceding lemma.

In summary,

The prime decomposition of χ is not exactly computable in general. But given a prime decomposition

of χ, the primary parts vary continuously with a, provided χa = χ is fixed. In particular, unlike the

Frobenius decomposition, the primary parts behave well by approximation.

If χ =
∏
λi∈Spec(A)(T − λi)

vi is split (for instance if k = C), we have Pi(T) = T − λi Vi[Pi] = Ker(a −

λi)
vi . If we now want to vary χ and understand Pi, we therefore have to look at the continuity of the

eigenvalues.

14.3 Regularity of polynomial roots

14.3.1 Continuity

Let Z be set of complex roots of a monic degree d-polynomial P. Let Pn be a sequence of monic degree

d polynomials converging1 to P and Zn be set of complex roots of Pn.

Proposition 14.3.1.1 Let λ be a root of P with multiplicity mλ.

1. For any ε > 0, there exists N such that for all n > N the number of complex roots of Pn in B(λ, ε) counted

with multiplicity is mλ.

2. There exists d converging sequences λi,n, 1 ≤ i ≤ d such that Pn =
∏
i(T− λi,n) = Pn(T).

3. If all the roots of the Pn are real, so are the roots of P.

1With respect to an arbitary norm on Cd[T].
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P(T) = T3(T− 2− i)(T− 4 + i)

Proof. 2 We prove (1)+(2) by induction on d, the case d = 1 being tautological. Assume d > 1. For any n,

let λ1,n be a root of Pn which is the closest of λ. We have Pn(T) =
∏

(T−µi) where µi ∈ Zn and therefore

|Pn(λ)| =
∏

|λ − µi| ≥ |λ − λ1,n|d. But limPn(λ) = P(λ) = 0 and therefore we have limλ1,n = λ. In

particular, for n≫ 0, we have λ1,n ∈ B(λ, ε).

Let R be ring of convergent complex sequence. The sequence (Pn(T)) belongs to R[T] and the rest of its

Euclidean division (1.3.1.1) by T−(λ1,n) vanishes (it is a constant and vanishes on T = (λ1,n)). Therefore,

one can write Pn(T) = (T − λ1,n)Qn(T) where Qn(T) is a converging sequence of monic degree d − 1

polynomials. We have also P(T) = (T − λ)Q(T) where Q(T) is a monic degree d − 1 polynomial. By

continuity of the product, we have (T − λ) limQn(T) = (T − λ)Q(T) implying limQn(T) = Q(T) and

we apply the induction hypothesis to (Qn).

(3) follows from directly (2).

Remark(s) 14.3.1.2 The following statement, although equivalent, is sometimes useful. Let X ⊂ C and define

the number of roots in X of a polynomial P counted with multiplicity as

degX(P) =
∑
λ∈X

mP(λ).

Then, if Ω is open in C, then degX restricted to the space Md of monic degree d complex polynomial is lower

semi-continuous in the following sense: for any n,

{P ∈ Md|degΩ(P) ≥ n} is open in Md.

2We have chosen to give a proof which can be generalized to algebraically closed normed fields rather giving a proof baser on

residue formula. We encourage the reader to give a proof (in the complex case) using this idea.
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Corollary 14.3.1.3 Let π : Cd → M be the continuous map (λi) →
∏

(T−λi) and f : Cd → C be a continuous

function invariant through the natural action of Sd on Cd. Then, there exists a unique f : M → C such that

f = f ◦ π.

Proof. Observe that π is surjective (C is algebraically closed) giving the uniqueness.

Moreover, π(λ) = P exactly means that λi are the roots of P and therefore P determines (λ) up to

reordering. This gives the existence of f as a map of sets.

Let (Pn
14.3.1.1
=

∏
i(T− λi,n)) be a sequence M converging to P ∈ M. We have

lim f(Pn) = lim f((λi,n)) = f(lim(λi,n))
invariance

= f((λi)) = f(P)

hence the continuity of f .

14.3.2 Smoothness of simple roots

Let φ : Cd × C → C be the “universal” polynomial function (ai, z) 7→ zd +
∑
i<d aiz

i defining poly-

nomials Pa ∈ C[T], a = (ai). By smoothness we mean C∞ (or even holomorphic for the advanced

reader).

Proposition 14.3.2.1 Let α = (αi) ∈ Cd and λ0 is a simple root of the polynomialPα. There exists a smooth

function λ defined in a neighborhood U ⊂ Cd of a and a neighborhood D ⊂ C of λ such that λ(a) is the only root

of Pa belonging to V for any a ∈ U. Moreover, this root is simple.

Proof. Because φ is smooth, we just have to verify that the hypothesis of the implicit function theorem

are fulfilled, namely that the differential d2φ(λ0, α) of

C = R2 → C

(x, y) 7→ φ(α, x+ iy)

is not zero at λ0. But the (polynomial) Taylor expansion Pα(λ0 + h) = Pα(λ0 + h) + hP′
α(λ0) + o(h)

shows that the differential d2φ(λ0, α) is the complex similarity h 7→ P′
α(λ0) which is invertible because

P′
α(λ0) ̸= 0.

Remark(s) 14.3.2.2 We could have used this proposition to show that the locus of polynomials with distinct roots

is open.
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14.3.3 Properness

Proposition 14.3.3.1 Let z be a root P =
∑
i≤n aiT

i be a degree n complex polynomial.

1. We have the bound |z| ≤ max{1,
∑
i<n |ai|/|an|} = B(P).

2. The continuous map π : Cn 7→ Cn[T] mapping (z1, . . . , zn) to
∏

(T− zi) is proper.

Proof.

1. If |z| ≥ 1, we write

|z| = | −
∑
i<n

ai/anz
i−n| ≤

∑
i<n

|ai|/|an||z|i−n ≤
∑
i<n

|ai|/|an|

2. If the coefficients of the monic polynomial P are bounded by M ≥ 1, its roots are bounded by

nM by (1). The inverse image of a compact by π is therefore bounded and moreover closed in

Cn (continuity of π) hence compact by Bolzano-Weierstrass theorem. By definition, π is therefore

proper3 of π.

Remark(s) 14.3.3.2 This bound show that it is always possible, at least theoretically, to handle the factorization

problem of polynomials with integer coefficients. For, if Q = Tm +
∑
i<m biTi ∈ Z[T],m < n is a monic divisor

of a monic P ∈ Z[T], its roots are bounded by B(P). But, up to sign, bi is the sum of all products of i distinct

of its roots leading to the bound |bi| ≤

m
i

 (B(P))i. This shows, that there is only a finite number of Q which

are candidate to divide P and that their coefficients are in the (huge) box [−2n−2(B(P))n−1, 2n−2(B(P))n−1].

So if we have a computer with huge capacity, we could decide whether P is irreducible over Q or not. But this

method is of exponential complexity. Fortunately, their exits algorithms in polynomial time using factorization

of polynomial in finite fields (see for instance Berlekamp’s algorithm in 9.6.6 or [13]) and Hensel’s lemma (see

11.6.8) as starting points and subtle and difficult results about Euclidean lattices4. But the starting point of these

algorithms is to improve these kind of bounds as we will do now.

3The reader will give another proof of (2) using the continuity of roots.
4A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovasz, Factoring polynomials with rational coefficients, Math. Ann. 261 (1982), no.

4, pp. 515–534
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Remark(s) 14.3.3.3 Let A ∈ Mn(C). We can certainly bound the coefficient of χA in terms of the norm of

A. For instance, using the polynomial definition of the determinant, we get (exercise) the very rough bound for

these coefficients 2nn!(1 +max |ai,j |)n giving a polynomial bound (at fixed n) i for the eigenvalues of A. We will

explain how to get linear bounds in terms of the norm of A.

14.4 Localizing eigenvalues

14.4.1 Gershgorin disks

Gershgorin disks

We denote by D(z0,R) the closed disk D(z0,R) = {z ∈ C such that |z − z0| ≤ R}.

Proposition 14.4.1.1 Let A ∈ Mn(C) and Ri =
∑
j ̸=i |aij |, i = 1, . . . , n.

1. (Hadamard)If A is strictly dominant diagonal, i.e.

∀i ∈ {1, . . . , n}, |aii| > Ri

then A is an invertible matrix.

2. (Gershgorin I) In general,

Spec(A) ⊆
n⋃
i=1

D(aii,Ri).

3. (Gershgorin II)5If F is a connected component6of Γ =
⋃n
i=1 D(aii,Ri), then the number of eigenvalues

counted with multiplicities which are in F is the number of indices such that F is the union of the Geshgorin’s

disks Di. In other words, degF(χA) = Card{i|ai,i ∈ F}.
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Proof.

1. Assume x = (xi) is a nonzero vector in Ker (A) and let i such that |xi| is maximal among the

modulus of the coordinates of x. The ith coordinate of Ax is
∑
ai,jxj = 0. Therefore,

|ai,i||xi| ≤
∑
j ̸=i

|ai,j ||xj | ≤ |xi|
∑
j ̸=i

|ai,j |

and A is not dominant diagonal because one can divide this inequality by |xi| > 0.

2. Apply (2) to A− λ Id with λ ∈ Spec(A).

3. Let F′ be the (finite) union of the connected components of Γ and d ∈ [0, . . . n]. They are closed in Γ

as any connected component and therefore are closed in C because Γ is closed (even compact). The

Gershgorin’s disks D of At are Di(At) = D(ai,i, tRi) and therefore are contained in Di(A1) = Di(A).

In particular, Spec(At) ⊂ F ⊔ F′ for all t ∈ [0, 1]. Let Ω′ = C− F′. Let

At = diag(ai,i) + t(A− diag(ai,i)), t ∈ [0, 1]

Because F ⊂ Ω′, one has degΩ(χA0
) = d and by continuity of the roots of a polynomial (14.3.1.2)

{t|degF(χAt
) ≥ d} = {t|degΩ′(χAt

) ≥ d}

is open in [0, 1]. But Spec(At) ⊂ F ⊔ F′ and therefore,

{t|degF(χAt
) ≤ d} = {t|degF′(χAt

) ≥ n− d}

is also open and so is Ud = {t|degF(χAt
) = d} and [0, 1] = ⊔d≤nUd. By connectedness of [0, 1], only

one of the U′
ds is nonempty and equal to [0, 1]. But for d = Card{i|ai,i ∈ F}, we have 0 ∈ Ud because

A0 = diag(ai,i).

Observe that one can shrink Γ using Spec(A) = Spec(tA).

Using that the characteristic polynomial of a companion matrix C(P) of P(T) = Tn +
∑
i<n aiT

i is P,

we get the bound

Corollary 14.4.1.2 If P(z) = 0, then |z| ≤ max{|a0|, 1 + |ai|, i > 0} ≤ 1 + ∥P∥∞.

14.4.2 Landau’s inequality

5This refinement of Gershgorin can certainly be skipped in firts reading. We give a proof because all the proofs that we have

been able to find are at best incomplete. We assume that the reader is familiar with basics on connectedness.
6The reader will observe that a disk being connencted, F is an union of some of the Di’s.
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Proposition 14.4.2.1 (Landau) Let P = anT
n + · · · + a0 = an

∏
(T − zi) ∈ C[T] be a polynomial of degree

n, with complex roots z1, . . . , zn and

M(P) = |an|
∏

max(1, |zj |).

Then,

1. M(P) is multiplicative.

2. 1
2π ln

∫2π
0

|P(eiθ)|2dθ = ∥P∥2 (Parseval equality for polynomials).

3. lnM(P) = 1
2π

∫2π
0

ln |P(eiθ)|dθ (Jensen’s equality for polynomials).

4. M(P) ≤ ∥P∥2 where
(∑

|aj |2
)1/2 is the standard Hermitian norm of P ∈ Cn[T].

This inequality is due to Landau and we give the following nice argument due to K. Mahler7

Proof.

1. Direct consequence of the formula an
∏
i∈I(T− zi)a

′
m

∏
j∈J(T− zj) = ana

′
m

∏
k∈I⊔J(T− zk).

2. Direct consequence of the formulas

|P(eiθ)|2 = P(eiθ)P(eiθ) =
∑
k,l

akale
i(k−l)θ and

1

2π
ln

∫2π
0

ei(k−l)θ = δk,l

3. Observe that if the equality if true for P,Q it is true for PQ. Because it is true in degree 0, we just

have to prove the equality for P(T) = T− z. Recall that the logarithm function

z 7→ ln(1− z) = −
∑
n≥0

zn/(n+ 1)

is holomorphic on the open unit disk D. Moreover, ln |1 − z|2 − ln(1 − z) − ln(1 − z) is continuous

on D with value in 2iπZ and therefore is equal to 0 for z ∈ D. We have for any θ ∈ R, z ∈ C with

|z| < 1

2 ln |eiθ − z| = ln |1− ze−iθ|2 = ln(1− ze−iθ) + ln(1− zeiθ) = −
∑
n≥0

zne−niθ −
∑
n≥0

zneniθ/(n+ 1)

with normal convergence in θ. Integrating, we get

(∗) 1

2π

∫2π
0

ln(|eiθ − z|)dθ = 0 = ln(max(1, |z|) if |z| < 1

7K. Mahler, An application of Jensen’s formula to polynomials, Mathematika 7 (1960), 98–100. We just simplify the argument

avoiding the use of the general Jensen’s formula for holomorphic functions.
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If |z| > 1, we write

1

2π

∫2π
0

ln |eiθ − z|dθ = ln |z|+ 1

2π

∫2π
0

ln |z−1eiθ − 1|dθ = ln |z] + 1

2π

∫2π
0

ln |z−1 − e−iθ|dθ

and by (*) for z−1

1

2π

∫2π
0

ln |eiθ − z|dθ = ln(|z]) + 1

2π

∫2π
0

ln |z−1 − eiθ|dθ = ln(|z|) = ln(max(1, |z|)

If |z| = 1, a continuity argument gives the result.

4. The logarithm being concave on R, we have8,

lnM(P)2
(3)
=

1

2π

∫2π
0

ln |P(eiθ)|2dθ ≤ ln
1

2π

∫2π
0

|P(eiθ)|2dθ (2)
= ln ∥P∥2

14.4.3 Spectral radius

We define the spectral radius ρ(A) of A ∈ Mn(C) as

ρ(A) = max
λ∈Spec(A)

|λ|.

We want to estimate ρ(A) in terms of the size of A, precisely its norm, or better its operator norm. Any

norm ∥∥ on Cn induces a norm on Mn(C) by the rule

∥A∥ = sup
x ̸=0

∥Ax∥/∥x∥ = sup
x|∥x∥=1

∥Ax∥.

Such a norm is called an operator norm on Mn(C). Although all norms are equivalent in finite dimension,

the main asset of the operator norm is their multiplicativity property (check!)

(∗). ∥AB∥ ≤ ∥A∥∥B∥

Exercise 14.4.4 Show that the operator norms of A ∈ Mn(C) associated to the 1-norm ∥x∥1 =
∑

|xi| is the sup

of the 1-norm of the column of A.

Let N be the set of operator norms on Mn(C)

Proposition 14.4.4.1 Let A ∈ Mn(C).

• ρ is a continuous in A.

• (Householder) ρ(A) = inf∥∥∈N ∥A∥.

• (Gelfand) For any norm on Mn(C), one has ρ(A) = limk→+∞ ∥Ak∥| 1k .

8This is Jensen’s inequality in general, which is a simple exercice in our continuous case using approximation of integrals by

Riemann’s sums.
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Let us start with a lemma. Although it a straigthforward of Jordan reduction theorem, let us give a more

elementary proof.

Lemma 14.4.4.2 For any real ε > 0, A is similar to some upper triangular matrix Tε = ((tεi,j)1≤i,j≤n) such

that:

max
1≤i≤n

n∑
j=i+1

|tεi,j | < ε

Proof. Since the matrix A ∈ Mn(C) is triangularizable, one can assume A = ((ti,j)1≤i,j≤n) is upper

triangular. For δ > 0, we have:

Aδ = D−1
δ ADδ =



a1,1 δa1,2 . . . δn−1a1,n

0 a2,2 . . .
...

0 0
. . .

...

0 0 0 an,n


where Dδ = diag(1, δ, . . . , δn−1)

Then Aδ makes the job for δ small enough.

Proof. (Continuity) Use 14.3.1.3.

(Householder) Let x ∈ Cn be a unit eigenvector of A whose eigenvalue has maximum modulus. We

have ρ(A)∥x∥ = ∥Ax∥ ≤ ∥A∥ which gives: ρ(A) ≤ inf∥∥∈N ∥A∥.

Let us prove the reverse inequality. Let ε > 0, and, thanks to the preceding lemma, let us choose

Pε ∈ GLn(C) such that A = P−1
ε TεPε with Tε as in the lemma. We choose the operator norm induced

by ∥x∥ = ∥Pεx∥∞. where ∥x∥∞ = sup(|xi|) as usual. We obtain

∥A∥ = sup
x̸=0

∥Ax∥/∥x∥ = sup
P−1

ε x ̸=0

∥AP−1
ε x∥/∥P−1

ε x∥ = sup
x ̸=0

∥PεAP−1
ε x∥∞/∥x∥∞ = ∥P−1

ε APε∥∞.

Therefore,

∥A∥ = ∥P−1
ε APε∥∞ = ∥Tε∥∞ = max

1≤i≤n

|tn,n|, |ti,i|+
n∑

j=i+1

|tεi,j |

 ≤ ρ(A) + ε

which gives reverse inequality ρ(A) = inf∥∥∈N ∥A∥.

(Gelfand) Assume first ∥.∥ ∈ N. With the above notation, or k ∈ N∗:

∥Ak∥ = ∥PεTkεP−1
ε ∥∞ ≤ γε∥Ak∥∞ ≤ γε(ρ(A) + ε)k

where γε = ∥Pε∥∞∥P−1
ε ∥∞. Thus ∥Ak∥ 1

k ≤ γ
1
k
ε (ρ(A) + ε). On the other hand ρ(A)k = ρ(Ak) ≤ ∥Ak∥.

Since γ
1
k
ε → 1 as k → +∞, we deduce ρ(A) = lim ∥Ak∥ 1

k . Now, if N is any norm on Mn(C), there

exists a, b > 0 such that a∥Ak∥ ≤ N(Ak) ≤ b∥Ak∥ (equivalence of norms in finite dimension). Because

lim a1/k = lim b1/k = 1, we get the result.
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14.4.5 Smoothness of simple eigenspaces

Let A0 ∈ Md(C) and assume λ0 ∈ Spec(A) a simple root of χA0 . Using the smoothness of simple roots

(14.3.2.1) and the smoothness of A 7→ χA, we know that that there exists a neighborhood Ω of A0 and

V ⊂ C of λ0 and a smooth function λ : Ω → C such that λ(A0) = λ0 and λ(A) is the unique eigenvector

of A belonging to V which can be assumed to be simple shrinking U if necessary. Let πλ : U → Md(C)

be the rank 1 projector onto Ker(A− λ Id) (parallel to the other primary components).

Proposition 14.4.5.1 The projector πλ is smooth.

Proof. Let R be the ring of complex smooth functions on Ω. By 1.3.1.1, one can write χA = (T− λ)Q(T)

for Q(T) ∈ R[T] and we have Q(λ) = χ′
A(λ) ̸= 0 for all A ∈ Ω. Dividing Q by T − λ in R[T] yields

Q(T) = (T− λ)Q̃(T) + r, r ∈ R and evaluating at λ, we get r = Q(λ) and therefore a Bézout relation

Q(T)/Q(λ)− (T− λ)Q̃(T)/Q(λ) = 1.

And using the Chinese Remainder Lemma as always, we have πλ = Q(A)/Q(λ) which is smooth.

Notice that, shrinking if necessary, we can choose continuously a basis of Im(πλ) : pick a minimal

number of independent columns of πλ0
(A0) and look at the locus of Ω where these columns πλ(A) are

independent (semi-continuity of the rank).

14.5 Perron-Frobenius for positive matrices

We will present the nice presentation [7] of the classical Perron-Frobenius theory for real positive matri-

ces due to Hannah Cairns with her king permission. In the sequel, we say that a possibly rectangular

real matrix A is non negative (A ≥ 0) if all its coefficients are ≥ 0 and positive A > 0 if they are > 0.

Theorem 14.5.0.1 (Perron-Frobenius I) Let A ∈ Mn(R
+) a positive matrix. Then:

1. ρ = ρ(A) is a simple root of χA and is nonzero.

2. The eigenspace of ρ is one dimensional generated by a positive vector.

3. All eigenvalues λ ̸= ρ have modulus |λ| < ρ.

Proof. Let x ∈ Cn. We will denote by |x| the vector whose components are |xi|. If moreover x ∈ Rn, we

will use repeatedly the obvious but key fact

(∗) x ≥ 0 and x ̸= 0 ⇒ Ax > 0
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(choose xj > and write (Ax)i =
∑
k Ai,kxk ≥ Ai,jxj > 0).

In particular, we get Ak > 0/RightarowAℓ > 0 for ℓ ≥ k and therefore A cannot be nilpotent showing

ρ > 0.

Assume first A > 0.

The key observation is the following.

Let λ ∈ Spec(A) with λ| = ρ and x ̸= 0 an eigenvector for λ. Then, A|x| = ρ|x| and |x| > 0.

By the triangle inequality, A|x| ≥ |Ax|, so A|x| ≥ |Ax| = |λx| = ρ|x|. If the two sides are equal, then

we are done. Suppose that A|x| ≠ ρ|x|. Then (*) gives the strict inequality A2|x| > ρA|x|. By continuity,

there is some r > ρ with A2|x| ≥ rA|x| and by induction using (*) again we get for any m ≥ 1

Am+1|x| ≥ rAm|x| ≥ · · · ≥ rmA|x|

The miracle is that the 1-norm of a non negative vector is just the sum of its coefficients! Therefore,

taking the 1-norm of both sides we get

∥Am+1∥1∥|x|∥1 ≥
∥∥Am+1|x|

∥∥
1
≥ rm∥A|x|∥1.

or because both x and Ax are non zero, rm ≤ C∥Am+1∥1 for some C > 0. By Gelfand’s theorem (14.4.4.1),

this gives ρ < r ≤ ρ, a contradiction and therefore A|x| = ρ|x|. Because A|x| > 0 thanks to (*) and ρ > 0,

we get also |x| > 0 hence (1).

Thus, we have proved that ρ ∈ Spec(A) and that |x| is a positive eigenvector for ρ. Hence we have

|Ax| = ρ|x| = A|x| giving for instance

∑
A1,j |xj | =

∣∣∣∑A1,jxj

∣∣∣
which is an equality in the triangle equality in Cn. There exists therefore (14.6.1) α ∈ C such that

A1,jxj = αA1,j |xj | and therefore x = α |x|| proving λ = ρ because |x| is a nonzero eigenvector for both

ρ and λ which proves (3).

For (2), let us choose x0 a non zero real vector of A for ρ and let y another such non-zero real eigenvectors

for ρ. By (*), |x0| is an eigenvector for ρ and by the preceding point, there exists α ∈ C such that y = α|x0|.

Because y, x0 are real, α ∈ R and |x0| is a basis of the eigenspace of ρ, proving (2).

(3) is a duality argument. Because tA and A have the same eigenvalues and tA > 0 > 0, one can choose

y > 0 such that tAy = ρy or equivalently tyA = ρty. Let x be a positive basis of the line Ker (A − ρ Id).

The hyperplane Hy defined by y is stable by A and has equation {x|tyx = 0} (see cf. chapter 7 or check

directly). Because x, y > 0, one has tyx > 0 and Rx ∩ Hy = {0} and a decomposition in stable spaces

Rn = Rx⊕Hy and A is similar to diag(ρ,B) for B ∈ Mn−1(R) and we have χA(T) = (T− ρ)χB(T). If ρ

is not simple, χB(ρ) = 0 and ρ ∈ Spec(B) which contradicts dimKer(A− ρ Id) = 1 proving (3).

Assume Ak > 0 for some k > 0.
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We reduce to the previous case more or less straightforwardly. Let the eigenvalues of A be λ1, . . . , λn in

decreasing order of absolute value, repeated with respect with their multiplicity. Then the eigenvalues

of the positive matrix Ak are λk1 , . . . , λkn, again in decreasing order of absolute value.

By the above result, λk1 = ρ(A)k is positive and has a positive eigenvector |x|, and the other eigenvalues

λki are strictly smaller in absolute value, so λk1 > |λ2|k ≥ · · · ≥ |λn|k. Taking the kth root, we get

|λ1| > |λ2| ≥ · · · ≥ |λn|, so λ1 is a simple root of χA and |λ1| = ρ. In particular, the corresponding

eigenspace Vλ1(A) is one dimensional. But Vλ1(A) ⊂ Vλk
1
(Ak) = R|x|, so the two spaces are equal and

A|x| = λ1|x|. Therefore, λ1|x| = A|x| > 0 and λ1 > 0 which shows λ1 = ρ.

Corollary 14.5.0.2 Assume A ≥ 0. Then, ρ = ρ(A) ∈ Spec(A) and there is a non negative eigenvector x ̸= 0

for ρ(A).

Proof. Let Ak, k ≥ 1 be the sequence of positive matrices Ak = (ai,j + 1/k) and take xk a positive

eigenvector of Ak for ρ(Ak) with ∥xk∥1 = 1. By compactness of the (positive quadrant) of the unit

sphere, one can assume limxk = x with x ≥ 0 of norm 1 and (continuity of ρ) Ax = ρx.

14.5.1 Basics on graphs

For us, an oriented (finite) graph is a pair G = (V,E ⊂ V × V) where V is the (finite) set of vertices and

E the set of edges. As usual, we represent V as a collection of points and each v, v′ as an arrow v → v′.

There is obvious notions of paths from v to v′, length of path and so on.

To each graph is associated its adjacency matrix G defined by Gv,v′ = 1 if (v, v′) ∈ E and Gv,v′ = 0 else.

An immediate induction shows that the number of length k-paths from v to v′ of G is Gkv,v′ . Certainly, G

is a non-negative matrix.

Lemma 14.5.1.1 The shortest length of a path from v to v′ is ≤ n where n is the number of vertices of G. In

particular, matrix terms, if Gkv,v′ ̸= 0 for some k > 0, then Gkv,v′ ̸= 0 for some k with 0 < k < n.

Proof. A path of shortest length (when it exists!) has certainly distinct vertices and by the pigeon holes

principle this number is ≤ Card(V) = n and its length is ≤ n− 1.

In general, mimicking the connected equivalence relation, for v, v′ ∈ V, we say

v ≡ v′ ⇔ there is a path from v to v′ and from v′ to v.

This is an equivalence relation and the equivalence classes are called the strongly connected compo-

nents. An oriented graph is then said to be strongly connected if there is a unique connected component,

i.e. if it is nonempty and if for any ordered pair (v, v′) ∈ V× V, there is a path from v to v′.
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3 strong connected components

Conversely, to any A ∈ Mn(k), one can associate a graph G = G(A) with V = {1, . . . , n} and (i, j) is and

edge if and only if ai,j ̸= 0. If A is moreover a non negative real matrix and G is the adjacency matrix of

its graph, we have as before Aki,j ̸= 0 if and only if Gki,j ̸= 0 and therefore Aki,j ̸= 0 for some k > 0 if and

only if Aki,j ̸= 0 for some k with 0 < k ≤ n.

14.5.2 Perron-Frobenius for irreducible matrices

Definition 14.5.2.1 A non negative matrix A ∈ Mn(R) is said to be irreducible if its graph G(A) is strongly

connected. In particular, A ̸= 0.

Therefore, because

A is irreducible if for any i, j, there exists 1 ≤ k ≤ n− 1 such that Aki,j > 0.

Of course, if A ≥ 0 satisfies Ak > 0 for some k > 0, then A is irreducible. The converse is not true but

one can compare precisely the two notions in terms of spectral radius.

Lemma 14.5.2.2 Let A ≥ 0. Then, A is irreducible if and only if (Id+A)n−1 > 0.

Proof. Let (i, j) ∈ {1, . . . , n}.

⇒ Let 1 ≤ k ≤ n− 1 such that Aki,j > 0. By the Newton formula, we have

(Id+A)n−1
i,j =

∑
ℓ≤n−1

n− 1

ℓ

Aℓi,j ≥
∑

1≤ℓ≥n−1

n− 1

ℓ

Aℓi,j ≥ Aki,j > 0.

⇐ If i ̸= j, we have in the same way

0 < (Id+A)n−1
i,j =

∑
ℓ≤n−1

n− 1

ℓ

Aℓi,j =
∑

1≤ℓ≤n−1

n− 1

ℓ

Aℓi,j

and there certainly exists 1 ≤ ℓ ≤ n− 1 such that Aki,j > 0. If i = j, one has (Id+A)n−1
i,i ≥ 1 > 0.
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Theorem 14.5.2.3 (Perron-Frobenius II) Let A ∈ Mn(R
+) be an irreducible matrix. Then:

1. ρ = ρ(A) is a simple root of χA.

2. The eigenspace of ρ is one dimensional generated by a positive vector.

3. All eigenvalues λ ̸= ρ have modulus |λ| < ρ.

4. ρ(A) > 0.

Proof. I claim ρ(Id+A) = 1 + ρ(A). Indeed, let 1 + λ ∈( Id+A). We have λ ∈( A) and by triangle

inequality ≤ 1 + λ| ≤ 1 + |λ| ≤ 1 + ρ(A) showing ρ(Id+A) ≤ 1 + ρ(A). Conversely, by 14.5.0.2, ρ(A) is

an eigenvalue of A and therefore 1 + ρ(A) is an eigenvalue of Id+A implying 1 + ρ(A) ≤ ρ(Id+A).

1. By 14.5.0.1 for Id+A we know therefore that 1 + ρ(A) is a simple root of χ( Id+A)(T) = χA(T− 1).

2. By 14.5.0.2, let x ̸= 0 be a non negative eigenvector of A for ρ(A) and therefore a a non negative

eigenvector of the positive matrix (Id+A)n−1. By 14.5.0.1 (2) applied to Id+A , we get x > 0.

3. Follows directly from 14.5.0.1 (3) applied to Id+A and Spec(Id+A) = {1 + λ, λ ∈ Spec(A).

4. We have Ax = ρ(A)x and x > 0. Therefore Ax > 0 and ρ(A) > 0.

Terminology: An eigenvalue λ of A ∈ Mn(C) is called a dominant eigenvalue if λ has multiplicity 1 in χA

and |λ| > |µ| for all eigenvalues µ ̸= λ.

14.5.3 A classical illustration

Rather than classically choosing the historical (and nowadays quite old-fashioned) PageRank algorithm

of Google9, let us explain how primitive matrices are used in population dynamics through the so called

Leslie model10.

Lets divide the population in n age classes Gk. We assume that the birth bk rate and survival sk rate in

each age class Gk is independent of the (discrete) time t ∈ N. If Nk(t) = CardGk, this means N1(t+1) =

b1N1(t) + b2N2(t) + · · · + bnNn(t) for the offsprings (the birth rate includes the early deaths in the first

9Cf. the historical paper “The PageRank Citation Ranking: Bringing Order to the Web” by L. Page, S. Brin, R. Motwani and

T. Winograd. http://ilpubs.stanford.edu:8090/422/ and for the mathematics behind for instance A. N. Langville and C. D.

Meyer Jr. A survey of eigenvector methods for Web information retrieval, SIAM Rev. 47 (2005), no. 1, 135–161
10P. H. Leslie. On the Use of Matrices in Certain Population Mathematics. Biometrika 33, no. 3 (1945): 183–212.

https://doi.org/10.2307/2332297.

http://ilpubs.stanford.edu:8090/422/
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age class) Nk(t+ 1) = sk−1Nk−1(t) k = 2, . . . , n that is N(t+ 1) = AN(t) where A is the Leslie matrix

A =



b1 b2 · · · bn

s1 0 · · · 0

0 s2 0 · · · 0

...
...

. . . . . .
...

0 0 sn−1 0


.

If we restrict to age class of the population of childbearing age, one can assume that bi, sj > 0 and the

graph of A has shape

1 2 3 4 5

and is certainly strongly connected. Using the Perron-Frobenius II theorem 14.5.2.3, we show immedi-

ately that the normalized histogram of the population defined the normalized vector N(t)/∥N(t)∥ where

N(t) =t (N1(t), . . . ,Nn(t)) will converge when t goes to ∞ to the unique positive eigenvector of A for

ρ(A) of 1-norm 1.

14.5.4 Markov chains

In this item, we assume that the reader is familiar with basics on probabilities. We consider a sequence of

random variables X0,X1, . . . with values in {1, . . . , n} on some probability space Ω. We assume (which

is a very strong assumption) that the transition probability matrix P ≥ 0 defined by

Pi,j = Prob(Xt+1 = i | Xt = j)

does not depend on on the (discrete) time t.

Writing Ω = ⊔iXt+1 = i, we get
∑
i Pi,j = 1 for all j : the 1-norm of each column is 1 (a positive matrix

with this property is called stochastic).

Writing Ω = ⊔jXt = j, we get
∑
i Pi,jpt,i = 1 where pt = (Prob(Xt = i))i is the probability distribution

of Xt. In other words, we have

pt+1 = Ppt.

If we assume that P is moreover irreducible, the Perron-Frobenius II theorem 14.5.2.3 shows that pt

converges when the discrete time t goes to ∞ to the unique positive eigenvector of P for ρ(P) of 1-norm

1 as before. Of course, more can be said by analyzing carefully the speed of convergence for instance

and so on.
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14.6 Exercices

Exercise 14.6.1 Let zi be n complex numbers such that the triangle inequality is an equality |
∑
zi| =

∑
|zi|.

Show that there exists α ∈ C such that (zi) = α(|zi|). Compare with theorem 1.39 of [19]. [Hint : assume first∑
zi ∈ R+].

Exercise 14.6.2 Continuité avec P′/P.

Exercise 14.6.3 Généralités sur la topo quotient

Exercise 14.6.4 Cn/Sn = Cn comme métrique

Exercise 14.6.5 distance Hausdorff

Exercise 14.6.6 Let R ⊂ Mn(C) the set of matrices with real spectrum. We define the eigenvalue functions on R

by ordering the eigenvalues of A ∈ R, λ1(A) ≥ λ2 ≥ · · · ≥ λn(A). Let Ω ⊂ R be the open subset of Mn(R) of

matrices with distinct real eigenvalues.

1. Prove that λi is a continuous function on R.

2. Prove that the restriction of λi to Ω is a smooth function.

3. If n ≥ 2, prove that there exists no continuous function λ on M2(C) such that λ(A) ∈ Spec(A) for all

A ∈ Spec(A).

Exercise 14.6.7 1. Prove that the closure in Mn(R) of diagonalizable matrices in the set of trigonalizable ma-

trices.

2. What is its interior ?

3. Same questions replacing R by any subfield of C.

Exercise 14.6.8 Let A(a, b, c) =

a b

c 1− a

 and Ω the set of (a, b, c) ∈ C3 such that det(A) = 0. Compute

the spectral projector e0 and observe that is smooth on the whole Ω. Show that there does not exist any continuous

function v0 : Ω → C3 − {0} such that v0(a, b, c) is a basis of A(a, b, c).

Exercise 14.6.9 Let Ω → M2(C) be the set or rank 1 matrices. Show

1. Ω is open.

2. There does not exist any continuous map x : Ω ⊂ C2 − {0} such that Ax = 0 for all A ∈ Ω.

Exercise 14.6.10 We keep the hypothesis of the theorem and let x ∈ Rn − {0} such that x ≥ 0.

1. Show that lim (A/ρ)
k
= πρ.

2. Prove πρ(x) ̸= x.

3. Prove that Akx/∥Akx∥ is well defined if k >> 0 and converges to a positive basis of Ker (A− ρ Id).
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4. How can you generalize if we only assume that A has a unique eigenvalue of maximal modulus?

Exercise 14.6.11 (Power method) Let M ∈ Md(C). Show that A has a dominant eigenvalue if and only if there

is a sequence of complex numbers zn such that lim znAn is a rank 1 projector. Can you give a way to approximate

the corresponding eigenvalue?

Exercise 14.6.12 Let A = (ai,j)1≤i,j≤2 be a random matrix with coefficients 4 independent centered Gaussian

variables. Prove that the probability that χA is split over R is 1/2. How can you generalize?

Exercise 14.6.13 Let A : R → Mn(C) be a smooth application and assume that A(0) has a dominant eigenvalue.

Show that t 7→ ρ(A(t)) is smooth in a neighborhood of 0.

Exercise 14.6.14 Let x be a complex number algebraic over Q.

1. Show that there exists a unique primitive polynomial P ∈ Z[T] with positive dominant coefficient which

cancels x and is irreducible over Q.

2. We define the height of x by 1/d lnM(P) (cf. Landau’s inequality). Show that there exists a finite number of

algebraic numbers with bounded height and degree.
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Gershgorin disks, 185
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associated with an endomorphism, 43

cyclic, 63

free, 52

Noetherian, 74

quotient, 34

semisimple, 141

morphism,

Frobenius, 145

Noetherian,

Hilbert’s basis theorem, 76

module, 74

ring, 74

operator norm, 188

order,

≤ on types, 169

≤ on partitions, 172

⪯ on types, 169

partition of an integer, 136

perfect group, 26

Permanence principle of algebraic identities, 20

permutation matrix, 13
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