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Context of supply-demand
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Supply — demand balance

Since electricity cannot be stored on a large scale, it must be consumed as soon as it is produced. The proper
functioning of the electricity system is therefore based on the constant and real-time balance between production
and consumption.
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Portfolio Management Process
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2 Streamflow simulation

For mid-term management
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Context

Objectif: Streamflow estimation to assess the hydraulic production
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MORDOR Hydrological model
(see Garavaglia & Le-Lay 2017)

» Input: temperature, precipitation
» Output: streamflow
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Used data

= Variables: Temperature, precipitation, streamflow

= Location: Souloise-Infernet watershed in French Alpes

= Period: 1970-2013

= Characteristics: surface 214km2, latitude [850 — 2700] m

= Annual cycle streamflow: high in spring, low in winter and late
summer

1970-2013: annual cycle streamflow

1970-2013: mean annual cycle
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Bivariate stochastic weather generator

= Bivariate stochastic weather generator: temperature and precipitation
o From the thesis of Augustin Touron 2019 (co-supervised by Elisabeth Gassiat)
o Convergence of MLE for seasonal HMM with trend is proven in Touron 2019

o Dynamic of Hidden Markov Model

Observed €Y (polish)

Hidden - -- . € X (finite)

The dynamic of a hidden Markov model.

Conditional distribution of Y(t) given X(t) =
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Bivariate stochastic weather generator

Hyper-parameters

The model requires to specify several hyper-

parameters:

- K the number of hidden states

- d the degree of the trigonometric polynomials,
which sets the complexity of the seasonality,

- M and M; which correspond to the complexity of
the emission distributions.

By BIC criterion, K =7
By experience on univariate models, we select d = 2,
M=4and M, = 2.
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Estimation method

EM (Expectation — Maximization) algorithm: Find the MLE of the
marginal likelihood by iteratively applying these two steps

Let X = (Xy, ..., X,) and Y = (Y4, ..., Y,) and recall that X is not observed. The
likelihood function with initial distribution &

Lnz[0;Y] =Y may f2 (V1) [[ Qs (E — D) 2Y(Y2),
xeXT t="2

= Expectation step: Define Q(6|6?) as the expected value of the log
likelihood function of 0, with respect to the current conditional
distribution of Y and the current estimates of the parameters 6@

Q|(6,m), (6,7 | := B log Lz (6 (X,Y)) | Y]

= Maximization step: Find the parameters that maximize this quantity:
(H(‘I"i'l)’ H(‘I‘l'l)) = arg max Q(H (q}] H(‘I))

Remark: EM depends strongly on initial parameters, we thus execute a big
number of EM with different initial parameters and we retain which one with
highest log likelihood




Quality of 1000 scenarios of 1970-2013 time series of temperature and

precipitation

~ Temperature minimum and maximum Precipitation dry and wet spells
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Validation of simulated streamflows

1970-2013: mean annual regime

— observations
—— MORDOR
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Validation of simulated streamflows

Low flows sequences
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for short-term management

3 Demand forecast
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Context

L At EDF, forecast of electricity demand over several horizons:
= Long term : clarification for investment choices

= Mid term: quantification of failure risks, storage management (nuclear, hydraulic), purchases
=  Short term:

v' Weekly : load shedding, storage management, purchases
v' Daily/Intraday: power generation planning

Q Challenges for short-term forecast:
= Evolving context: new uses, health crisis, energy crisis, sobriety, etc.
= Delay of availability of data
= Weather forecast

Impact of COVID Impact of sobriety (source Bilan Electrique — Enedis)

Puissance moyenne mensuelle de consommation Max 2010-2021

réalisée sur le réseau Enedis ~O— Réalisé 2022

Moy 2010-2021

Réalisé 2021
Min 2010-2021
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=== 2 dernier
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Consumption forecast methodology
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Load forecast modelling
SN C et Yarables Eplicatives = Generalized Additive Model (GAM)

CNSB ~ s(Posan) + JourSemaine + Rupture + Tendance + j— . f- ) . : . .
s(Nebulosity) + s(Temperature) + s(TempL) Yi Xif +h (XL’) + fz()fgj;) T f3(X3?,,X4,;) T T E

) o = Parameters estimated by maximizing penalized log-likelihood
3 grands types de variables explicatives

lllustration de quelques splines

TEMPERATURE POSITION ANNEE TYPE_JOUR

mmﬁ,r}|_V_X5_fl(xl)_f-Q(Xz)+-+-||2‘|‘Al/flu(X)QdX—I-/\z /f;(x)zdx—l—.“

="\With GAM, we separate explicative variables in 3 types: non-
thermosensitive or calendar effects, thermosensitive effects and trend

\ Y \\\/ »Performance:
= before COVID, less than 2% of MAPE

E—
= Y \k = with last COVID crisis and sobriety, about 3% of MAPE
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Kalman filter

Using of Kalman filter (thesis of Joseph Moullart de Vilmarest) to ajust GAM’s effects:

d
¢ Start with a GAM model Vi = Bo+ Zj:lfj(xt,j) T &

* Define f(xt) — (1rfT1(xt,1)r '"’de(xt,d))T

v, Xy : domestic demand and explicative variable at t
fj : linear and non linear effects

f; : standardized effects

*  We seek to estimate the coefficients 6, in adaptative way so that : E[yt |xt] = Qg"f (xt)

ye = 0 f(x;) + & avec & ~ N(0,02) Space equation
0t11 = 6; + 1 avec n, ~N(0,Q) State equation

wher @ is diagonal covariance matrix.

Illustration of fonct of Kalman filter

0,1 realvalue of
coefficients at t+1

§t+1|t estimation at t of
0,1 obtained by state
equation

0, estimation at t+1 of
041 obtained indirectly by
the knowledge of y; (space
equation)

0¢11)¢+1 estimation at t+1 of
041 by compromise
between 6/,; and 0,4,

Algorithm 1: Kalman Filter

Initialization: the prior 8, ~ ,-'Il'u'r{:él.. P, ) where
P, € R4 s positive definite and 6, € R,

Recursion: at each time stept = 1,2, ...
1) Prediction:

Ely: | (€5 Ys)sct, ] = 6, f(zs),
Vaar [y; | (T, Ys)s<t, Te] = o® + f(;vf}TPff{Tf} .

2) Estimation:

- Pf(r) .

9t+l - 83 + f{Tt}THf{J:t) +Jz{yt _Ht f{Tf})‘
. Pff{mt}f{ﬂ.?f}TPf
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Different approaches

Different cases in the fonction of the matrix Q:

Evolution of coefficients 0 for each case

Cas Statique Cas Statique break
e Staticcase:Q =0, 02=1, 6, =1, P, =diag(d) wheredisthe 50001 50001
number of effects => the coefficients 0 vary slightly. BRI f’”“:%
04 R e 04 "'.;\%A «‘Jkﬁz—A ,_»\
s =T s A
(] Q S
£ = \
* Dynamic case : 5000 5000-
e 02,0, initialized by an analytical formula ( maximum likelihood)
« Q initialized by grid search on a stable period (for ex. 01/09/2014 - Jan  Apr ] W oct Jan  Apr ] e oct
ate ate
31/08/2019). We seek for each effect, a value of Q* = % We guarantee Cas Dynamigue Cas Dynamique break
50004 5000 4
then Q < o2 to avoid the coefficients varying too much with the
demand. o{ @ o
o o
[J] (]
£ =
* Break : In order to take into account the break linked to the first 20001 20001
lockdown, we add a « break » in modelling => We take Q = 0% X
Jaln A;Jr JL’I| O'ct Jaln Ai)r J\'l] O'ct
Diag(d) then Q" = Diag(d) only the day before of the first L dea
ecart_tlagl4 —— posan_type_jour2_ A —— temp_max_lisse_79
lockdown, then we take previous value of Q™ . intercept — posan_typejow2 8 — temperature
LJF — td type_jourl:rupture2
—— nebulosite_factor_chauff 975 A — tdch_temp_lisse_975 type_jour2:rupturell
—— nebulosite_factor_chauff 975 B — temp_lisse_97 vent_factor_chauff_975_A

—— ponts —— temp_lisse_998 vent_factor_chauff_975 B



Conclusion

= Modelling in electricity field is both rich and complex. We live in a changing world then we have to improve
constantly our methods and our models. Combining theory and practice is constantly required.

= Machine learning and deep learning are emerging but the capacity to interpret the models is important for
operational purposes.

= Data is the nerve of the war. Data in electricity field is difficult to measure exactly. Data processing is then

needed to obtain clean data. Furthermore, the data availability delay reduces the performance of adaptative
methods.
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