On the computational complexity of MCMC in high-dimensional non-linear regression models

RICHARD NICKL

University of Cambridge (UK)

Conference for Elisabeth, Paris, 1st of June 2023

European Research Council Established by the European Commission

Statistical inverse regression models

Consider statistical observations arising as random vectors

 $Y_i = \mathscr{G}_{\theta}(X_i) + \varepsilon_i, \quad \varepsilon_i \sim^{i.i.d.} \mathcal{N}_V(0, I),$

- The X_i are covariates drawn iid from some law λ on a *d*-dimensional domain \mathcal{X} .
- The Y_i are 'response' variables in a vector space V of finite dim(V), say = 1.

We write $Z^{(N)} = (Y_i, X_i)_{i=1}^N$ for the data vector of sample size $N \in \mathbb{N}$.

Statistical inverse regression models

Consider statistical observations arising as random vectors

 $Y_i = \mathscr{G}_{\theta}(X_i) + \varepsilon_i, \quad \varepsilon_i \sim^{i.i.d.} \mathcal{N}_V(0, I),$

- The X_i are covariates drawn iid from some law λ on a *d*-dimensional domain \mathcal{X} .
- The Y_i are 'response' variables in a vector space V of finite dim(V), say = 1.

We write $Z^{(N)} = (Y_i, X_i)_{i=1}^N$ for the data vector of sample size $N \in \mathbb{N}$.

The regression fields

$$\{\mathscr{G}_{\theta}: \theta \in \Theta\}, \ \mathscr{G}_{\theta}: \mathcal{X} \to V,$$

are indexed by the high-dimensional parameter

$$\theta \in \Theta = \mathbb{R}^D$$

arising from the discretisation of a function space in some basis. We take asymptotics $D, N \rightarrow \infty$, possibly $D/N \rightarrow \kappa > 0$.

PDE model examples - Non-linear inverse problems

• The dependence $\theta \mapsto \mathscr{G}(\theta)$ is non-linear and we have in mind coefficient to solution maps of partial differential equations (PDEs).

PDE model examples - Non-linear inverse problems

- The dependence $\theta \mapsto \mathscr{G}(\theta)$ is non-linear and we have in mind coefficient to solution maps of partial differential equations (PDEs).
- A standard model problem concerns inference on the diffusivity coefficient $f_{\theta} = e^{\theta} > 0$ from (unique) solutions $u = u_{\theta} = \mathscr{G}_{\theta}$ of the elliptic PDE

$$abla \cdot (f_{\theta} \nabla u) = g \text{ in } \mathcal{X},$$

 $u = 0 \text{ on } \partial \mathcal{X}.$

- The dependence $\theta \mapsto \mathscr{G}(\theta)$ is non-linear and we have in mind coefficient to solution maps of partial differential equations (PDEs).
- A standard model problem concerns inference on the diffusivity coefficient $f_{\theta} = e^{\theta} > 0$ from (unique) solutions $u = u_{\theta} = \mathscr{G}_{\theta}$ of the elliptic PDE

$$abla \cdot (f_{ heta}
abla u) = g ext{ in } \mathcal{X},$$

 $u = 0 ext{ on } \partial \mathcal{X}.$

This can be regarded as a 'steady state' measurement of the process of diffusion. Inferring θ is sometimes known as 'Darcy's problem' (Stuart 2010).

- The dependence $\theta \mapsto \mathscr{G}(\theta)$ is non-linear and we have in mind coefficient to solution maps of partial differential equations (PDEs).
- A standard model problem concerns inference on the diffusivity coefficient $f_{\theta} = e^{\theta} > 0$ from (unique) solutions $u = u_{\theta} = \mathscr{G}_{\theta}$ of the elliptic PDE

$$abla \cdot (f_{ heta}
abla u) = g ext{ in } \mathcal{X},$$

 $u = 0 ext{ on } \partial \mathcal{X}.$

This can be regarded as a 'steady state' measurement of the process of diffusion. Inferring θ is sometimes known as 'Darcy's problem' (Stuart 2010).

• The 'forward' map $\theta \to \mathscr{G}_{\theta}$ can be 'evaluated' by numerical PDE methods (finite elements, etc.).

• A natural approach (Gauß, Tikhonov) is to minimise a least squares fit

$$Q_N(heta) = \sum_{i=1}^N |Y_i - \mathscr{G}_{ heta}(X_i)|_V^2 + \lambda \cdot \textit{pen}(heta), \hspace{0.2cm} \lambda > 0,$$

over $\theta \in \mathbb{R}^{D}$. The penalty term is also called a 'regulariser'.

• A natural approach (Gauß, Tikhonov) is to minimise a least squares fit

$$Q_N(heta) = \sum_{i=1}^N |Y_i - \mathscr{G}_{ heta}(X_i)|_V^2 + \lambda \cdot pen(heta), \ \lambda > 0,$$

over $\theta \in \mathbb{R}^{D}$. The penalty term is also called a 'regulariser'.

• Classical choices are Sobolev type norms

$$pen(\theta) = \|\theta\|_{H^{lpha}}^2 \simeq \sum_{j \leq D} j^{2\alpha/d} |\theta_j|^2, \ \ \alpha \in \mathbb{N},$$

or related ℓ_1 -type penalties/TV-type norms.

• A natural approach (Gauß, Tikhonov) is to minimise a least squares fit

$$Q_N(heta) = \sum_{i=1}^N |Y_i - \mathscr{G}_{ heta}(X_i)|_V^2 + \lambda \cdot pen(heta), \ \lambda > 0,$$

over $\theta \in \mathbb{R}^{D}$. The penalty term is also called a 'regulariser'.

• Classical choices are Sobolev type norms

$$pen(\theta) = \|\theta\|_{H^{lpha}}^2 \simeq \sum_{j \leq D} j^{2\alpha/d} |\theta_j|^2, \ \ \alpha \in \mathbb{N},$$

or related ℓ_1 -type penalties/TV-type norms.

• As \mathscr{G} is non-linear in θ , the map Q_N is not convex on \mathbb{R}^D .

• A natural approach (Gauß, Tikhonov) is to minimise a least squares fit

$$Q_N(heta) = \sum_{i=1}^N |Y_i - \mathscr{G}_{ heta}(X_i)|_V^2 + \lambda \cdot pen(heta), \ \lambda > 0,$$

over $\theta \in \mathbb{R}^{D}$. The penalty term is also called a 'regulariser'.

• Classical choices are Sobolev type norms

$$pen(\theta) = \|\theta\|_{H^{lpha}}^2 \simeq \sum_{j \leq D} j^{2\alpha/d} |\theta_j|^2, \ \alpha \in \mathbb{N},$$

or related ℓ_1 -type penalties/TV-type norms.

- As \mathscr{G} is non-linear in θ , the map Q_N is not convex on \mathbb{R}^D .
- The algorithmic runtime = {# required evaluations of (θ)} to compute such optimisers may scale exponentially in dimension D and sample size N.

Gaussian processes models for functions

Consider a centred Gaussian process $(X(z) : z \in \mathbb{Z} \subset \mathbb{R}^d)$, with covariance $K(y, z) = k_{\alpha}(z - y)$ where

$$k_{lpha}(z)=\int_{\mathbb{R}^d}\mathrm{e}^{i\langle z,\xi
angle_{\mathbb{R}^d}}dar{\mu}(\xi),\quad dar{\mu}(\xi)=(1+|\xi|^2)^{-lpha}d\xi,\ \ lpha>d/2,$$

modelling α -regular stationary random fields θ over \mathcal{Z} , with RKHS $\mathcal{H} = H^{\alpha}$.

Gaussian processes models for functions

Consider a centred Gaussian process $(X(z) : z \in \mathbb{Z} \subset \mathbb{R}^d)$, with covariance $K(y, z) = k_{\alpha}(z - y)$ where

 $k_{\alpha}(z) = \int_{\mathbb{R}^d} e^{i\langle z,\xi\rangle_{\mathbb{R}^d}} d\bar{\mu}(\xi), \quad d\bar{\mu}(\xi) = (1+|\xi|^2)^{-\alpha} d\xi, \quad \alpha > d/2,$

modelling α -regular stationary random fields θ over \mathcal{Z} , with RKHS $\mathcal{H} = H^{\alpha}$.

• Such 'Whittle-Matérn' processes are often discretised by projection onto the first D eigenfunctions of the Laplacian (= Karhunen-Loève expansion) or other bases, and as such used as **Bayesian priors** for θ and then also \mathcal{G}_{θ} in inverse problems.

Bayesian Inversion with Gaussian priors

The 'log-likelihood' of our statistical regression model is

$$\ell_N(heta) = \log d \mathcal{P}^N_ heta(Z^{(N)}) - \textit{const} = -rac{1}{2}\sum_{i=1}^N |Y_i - \mathscr{G}_ heta(X_i)|_V^2, \;\; heta \in \mathbb{R}^D,$$

whose evaluation requires only computation of $\mathscr{G}(\theta)$ (forward PDE).

Bayesian Inversion with Gaussian priors

The 'log-likelihood' of our statistical regression model is

$$\ell_N(heta) = \log d \mathcal{P}^N_ heta(Z^{(N)}) - \textit{const} = -rac{1}{2}\sum_{i=1}^N |Y_i - \mathscr{G}_ heta(X_i)|_V^2, \ \ heta \in \mathbb{R}^D,$$

whose evaluation requires only computation of $\mathscr{G}(\theta)$ (forward PDE).

Let $\Pi = \Pi_D$ be the *D*-dimensional discretisation of a Gaussian process prior with RKHS \mathcal{H} . The posterior distribution $\Pi(\cdot|Z^{(N)})$ given data $Z^{(N)}$ on \mathbb{R}^D equals

 $d\Pi(\theta|Z^{(N)}) \propto e^{\ell_N(\theta)} d\Pi(\theta) \propto e^{\ell_N(\theta) - \frac{1}{2} \|\theta\|_{\mathcal{H}}^2}, \ \theta \in \mathbb{R}^D.$

Bayesian Inversion with Gaussian priors

The 'log-likelihood' of our statistical regression model is

$$\ell_N(heta) = \log d \mathcal{P}^N_ heta(Z^{(N)}) - \textit{const} = -rac{1}{2}\sum_{i=1}^N |Y_i - \mathscr{G}_ heta(X_i)|_V^2, \;\; heta \in \mathbb{R}^D,$$

whose evaluation requires only computation of $\mathscr{G}(\theta)$ (forward PDE).

Let $\Pi = \Pi_D$ be the *D*-dimensional discretisation of a Gaussian process prior with RKHS \mathcal{H} . The posterior distribution $\Pi(\cdot|Z^{(N)})$ given data $Z^{(N)}$ on \mathbb{R}^D equals

 $d\Pi(\theta|Z^{(N)}) \propto e^{\ell_N(\theta)} d\Pi(\theta) \propto e^{\ell_N(\theta) - \frac{1}{2} \|\theta\|_{\mathcal{H}}^2}, \ \theta \in \mathbb{R}^D.$

If a Markov chain (ϑ_k) on \mathbb{R}^D has invariant measure $\Pi(\cdot|Z^{(N)})$, we can approximately compute the posterior mean vector

$$E^{\mathsf{\Pi}}[\theta|Z^{(N)}] = \int_{\mathbb{R}^{D}} \theta d\mathsf{\Pi}(\theta|Z^{(N)})$$

by ergodic 'sample' averages $\frac{1}{K} \sum_{k=1}^{K} \vartheta_k$ accrued along the chain.

Random walk with Metropolis-Hastings adjustment (pCN)

Following Cotter, Roberts, Stuart & White (2013), Hairer, Stuart, Vollmer (2014):

pre-conditioned Crank-Nicolson (pCN) algorithm

Let $\Pi \sim N(0, \mathcal{K})$ on $\Theta = \mathbb{R}^{D}$. Fix $\delta > 0$ and initialise ϑ_{0} . For $k \geq 0$ do:

1. Draw $\xi \sim \Pi$ and calculate the proposal

$$p_{\vartheta_k} = \sqrt{1 - 2\delta}\vartheta_k + \sqrt{2\delta}\xi.$$

2. Set

$$\vartheta_{k+1} = \begin{cases} p_{\vartheta_k}, & \text{with probability } 1 \wedge \exp\{\ell_N(p_{\vartheta_k}) - \ell_N(\vartheta_k)\} \\ \vartheta_k, & \text{else.} \end{cases}$$

A standard 'Metropolis-Hastings' calculation shows that $\{\vartheta_k\}$ has invariant measure $\Pi(\cdot|Z^{(N)})$.

Discretised Langevin type algorithm (ULA)

Choose step size $\delta > 0$ and an initialiser ϑ_0 . For $\xi_k \sim^{iid} \mathcal{N}(0, I)$ in \mathbb{R}^D , do:

 $\vartheta_{k+1} = \vartheta_k + \delta \nabla \log d\Pi(\vartheta_k | Z^{(N)}) + \sqrt{2\delta} \xi_k, \ k \in \mathbb{N}.$

Discretised Langevin type algorithm (ULA)

Choose step size $\delta > 0$ and an initialiser ϑ_0 . For $\xi_k \sim^{iid} \mathcal{N}(0, I)$ in \mathbb{R}^D , do:

 $\vartheta_{k+1} = \vartheta_k + \delta \nabla \log d\Pi(\vartheta_k | Z^{(N)}) + \sqrt{2\delta} \xi_k, \ k \in \mathbb{N}.$

The discretisation step mis-specifies the invariant measure, but that 'bias' decreases as $\delta \to 0.$

As before, one can add a Metropolis-Hastings adjustment (MALA) accept/reject step to obtain the exact posterior distribution as invariant measure.

Let us focus on computation of the D-dimensional integral

$$E^{\Pi}[\theta|Z^{(N)}] = \frac{\int_{\mathbb{R}^{D}} \theta e^{\ell_{N}(\theta)} d\Pi(\theta) d\theta}{\int_{\mathbb{R}^{D}} e^{\ell_{N}(\theta)} d\Pi(\theta) d\theta}$$

Let us focus on computation of the D-dimensional integral

$$\mathsf{E}^{\mathsf{\Pi}}[\theta|Z^{(N)}] = \frac{\int_{\mathbb{R}^{D}} \theta e^{\ell_{N}(\theta)} d\Pi(\theta) d\theta}{\int_{\mathbb{R}^{D}} e^{\ell_{N}(\theta)} d\Pi(\theta) d\theta}.$$

The worst case deterministic numerical cost for evaluating the integral of a D-dimensional 1-Lipschitz function scales as $D^{D/4}$ (Novak & Wozniakowski 2008).

Let us focus on computation of the D-dimensional integral

$$\mathsf{E}^{\mathsf{\Pi}}[\theta|Z^{(N)}] = \frac{\int_{\mathbb{R}^{D}} \theta e^{\ell_{N}(\theta)} d\Pi(\theta) d\theta}{\int_{\mathbb{R}^{D}} e^{\ell_{N}(\theta)} d\Pi(\theta) d\theta}.$$

The worst case deterministic numerical cost for evaluating the integral of a D-dimensional 1-Lipschitz function scales as $D^{D/4}$ (Novak & Wozniakowski 2008).

Randomised ('Monte Carlo') algorithms **may** beat such computational barriers with universal accuracy $1/\sqrt{K}$ after K iterations (central limit theorem).

Bakry & Emery (1985), Dalayan (2017), Durmus & Moulines (2019)..

In the class of **strongly globally log-concave** target measures, Langevin-type algorithms achieve polynomial mixing time in D, N with high probability for any precision level (in W_2 -distance).

This applies to ${\rm linear}~{\mathscr G}$ and Gaussian priors as the posterior is then log-concave.

Bakry & Emery (1985), Dalayan (2017), Durmus & Moulines (2019)..

In the class of **strongly globally log-concave** target measures, Langevin-type algorithms achieve polynomial mixing time in D, N with high probability for any precision level (in W_2 -distance).

This applies to ${\rm linear}~{\mathscr G}$ and Gaussian priors as the posterior is then log-concave.

The theory extends to target measures satisfying a **log-Sobolev inequality** (e.g., Vempala & Wibisono (2021)), but the LSI-constants scale *exponentially* in bounded ('Holley-Stroock') perturbations.

HARDNESS OF POSTERIOR COMPUTATION FOR LOCAL COLD START MCMC

[Joint work with A. Bandeira, A. Maillard, S. Wang, (2023)]

A radial average negative log-likelihood

We consider posteriors arising from α -regular Gaussian process priors and expected log-likelihoods $-E_{\theta_0}\ell_N(\theta) = -\frac{N}{2} - \frac{N}{2}w(\|\theta - \theta_0\|)$, with w of the form

which is locally convex near 0 and then grows piece-wise linearly from t/2 onwards. We consider 'local' algorithms initialised in [t, L] where w exhibits linear growth.

Setup and notation: $B_s, \Theta_{r,r+\varepsilon}$

Recall that for Whittle-Matern $N(0, \Sigma_{lpha})$ -prior, the posterior on $\Theta = \mathbb{R}^D$ is

$$d\Pi(\theta|Z^{(N)}) \propto \exp\left(\ell_N(\theta) - \frac{1}{2}\theta^T \Sigma_{\alpha}^{-1}\theta\right), \quad \theta \in \mathbb{R}^D.$$

Recall that for Whittle-Matern $N(0, \Sigma_{\alpha})$ -prior, the posterior on $\Theta = \mathbb{R}^{D}$ is

$$d\Pi(heta|Z^{(N)})\propto \expig(\ell_N(heta)-rac{1}{2} heta^T\Sigma_lpha^{-1} hetaig),\quad heta\in\mathbb{R}^D.$$

Define Euclidean balls centred at the ground truth $\theta_0 \in \mathbb{R}^D$,

$$B_r = \{\theta \in \mathbb{R}^D : \|\theta - \theta_0\|_{\mathbb{R}^D} \le r\}$$

and *D*-dimensional annuli

$$\Theta_{r,\varepsilon} = \left\{ \theta \in \mathbb{R}^D : \|\theta - \theta_0\|_{\mathbb{R}^D} \in (r, r + \varepsilon] \right\} = B_{r+\varepsilon} \setminus B_r.$$

We consider non-intersecting 'inner' and 'outer' annuli $\Theta_{s,\eta}$ and $\Theta_{r,\varepsilon}$, with $s < \sigma$.

Recall that for Whittle-Matern $N(0, \Sigma_{\alpha})$ -prior, the posterior on $\Theta = \mathbb{R}^{D}$ is

$$d\Pi(heta|Z^{(N)})\propto \expig(\ell_N(heta)-rac{1}{2} heta^T\Sigma_lpha^{-1} hetaig),\quad heta\in\mathbb{R}^D.$$

Define Euclidean balls centred at the ground truth $\theta_0 \in \mathbb{R}^D$,

$$B_r = \{\theta \in \mathbb{R}^D : \|\theta - \theta_0\|_{\mathbb{R}^D} \le r\}$$

and *D*-dimensional annuli

$$\Theta_{r,\varepsilon} = \left\{ \theta \in \mathbb{R}^D : \|\theta - \theta_0\|_{\mathbb{R}^D} \in (r, r + \varepsilon] \right\} = B_{r+\varepsilon} \setminus B_r.$$

We consider non-intersecting 'inner' and 'outer' annuli $\Theta_{s,\eta}$ and $\Theta_{r,\varepsilon}$, with $s < \sigma$. We will assume $\theta_0 = 0$ is the ground truth so that **the prior is already centred at the correct value**, and the 'picture' is centred at the origin.

General hitting time bound

Consider any Markov chain $(\vartheta_k : k \in \mathbb{N})$ with invariant 'target' measure μ (e.g., $\mu = \Pi(\cdot|Z^{(N)})$) for which the ratio bound

$$rac{\mu(\Theta_{m{s},\eta})}{\mu(\Theta_{\sigma,arepsilon})} \leq e^{-
u m{N}}$$

holds for some $\nu > 0$. For constants $\eta < \sigma - s$, suppose ϑ_0 is started in the 'outer annulus' $\Theta_{\sigma,\varepsilon}$, drawn from the **conditional** distribution $\mu(\cdot | \Theta_{\sigma,\varepsilon})$, and denote by

$$\tau_{s} = \inf\{k : \vartheta_{k} \in \Theta_{s,\eta}\}$$

the **hitting time** of the Markov chain onto the intermediate annulus $\Theta_{s,\eta}$. Then

$$\Pr(\tau_s \leq K) \leq K e^{-\nu N}$$
, for all $K > 0$.

Because of monotonic, radial growth of $-E_{\theta_0}\ell_N(\theta)$, with high prob. and for $\sigma = 1$,

$$\frac{1}{N}\log\frac{\Pi(\Theta_{s,\eta}|Z^{(N)})}{\Pi(\Theta_{1,\varepsilon}|Z^{(N)})} \leq \frac{1}{N}\log\frac{\Pi(\Theta_{s,\eta})}{\Pi(\Theta_{1,\varepsilon})} + w(1+\epsilon) - w(s) + o_P(1).$$

Because of monotonic, radial growth of $-E_{\theta_0}\ell_N(\theta)$, with high prob. and for $\sigma = 1$,

$$\frac{1}{N}\log\frac{\Pi(\Theta_{s,\eta}|Z^{(N)})}{\Pi(\Theta_{1,\varepsilon}|Z^{(N)})} \leq \frac{1}{N}\log\frac{\Pi(\Theta_{s,\eta})}{\Pi(\Theta_{1,\varepsilon})} + w(1+\epsilon) - w(s) + o_{\mathcal{P}}(1).$$

In high dimensions a 'free energy barrier' can appear (cf. Ben Arous, Wein, Zadik (2022, CPAM) in spin glass models with uniform priors), because the 'intermediate annulus' $\Theta_{s,\eta}$ has much smaller Gaussian volume than the outer annulus $\Theta_{1,1+\varepsilon}$.

Because of monotonic, radial growth of $-E_{\theta_0}\ell_N(\theta)$, with high prob. and for $\sigma = 1$,

$$rac{1}{N}\log rac{\Pi(\Theta_{s,\eta}|Z^{(N)})}{\Pi(\Theta_{1,arepsilon}|Z^{(N)})} \leq rac{1}{N}\log rac{\Pi(\Theta_{s,\eta})}{\Pi(\Theta_{1,arepsilon})} + w(1+\epsilon) - w(s) + o_P(1).$$

In high dimensions a 'free energy barrier' can appear (cf. Ben Arous, Wein, Zadik (2022, CPAM) in spin glass models with uniform priors), because the 'intermediate annulus' $\Theta_{s,\eta}$ has much smaller Gaussian volume than the outer annulus $\Theta_{1,1+\varepsilon}$.

For α -regular Gaussian process priors with $\eta = o(N^{-b}), b = b_{\alpha,d} > 0$, and $D/N \simeq \kappa > 0$, this barrier is **non-degenerate** at the (1/N) log scale:

$$\frac{1}{N}\log\frac{\Pi(\Theta_{\mathfrak{s},\eta})}{\Pi(\Theta_{1,\varepsilon})}\leq -\nu, \ \ \nu>0, \quad \text{some } \varepsilon>0.$$

Because of monotonic, radial growth of $-E_{\theta_0}\ell_N(\theta)$, with high prob. and for $\sigma = 1$,

$$rac{1}{N}\log rac{\Pi(\Theta_{s,\eta}|Z^{(N)})}{\Pi(\Theta_{1,arepsilon}|Z^{(N)})} \leq rac{1}{N}\log rac{\Pi(\Theta_{s,\eta})}{\Pi(\Theta_{1,arepsilon})} + w(1+\epsilon) - w(s) + o_P(1).$$

In high dimensions a 'free energy barrier' can appear (cf. Ben Arous, Wein, Zadik (2022, CPAM) in spin glass models with uniform priors), because the 'intermediate annulus' $\Theta_{s,\eta}$ has much smaller Gaussian volume than the outer annulus $\Theta_{1,1+\varepsilon}$.

For α -regular Gaussian process priors with $\eta = o(N^{-b}), b = b_{\alpha,d} > 0$, and $D/N \simeq \kappa > 0$, this barrier is **non-degenerate** at the (1/N) log scale:

$$\frac{1}{N}\log\frac{\Pi(\Theta_{\mathfrak{s},\eta})}{\Pi(\Theta_{1,\varepsilon})}\leq -\nu, \ \ \nu>0, \quad \text{some } \varepsilon>0.$$

We show that this **does not prevent** the posterior to charge all its mass inside of B_s – the barrier lies outside of the region where the posterior concentrates.

Let $\mathcal{P}_N(\theta, A)$ denote a sequence of kernels describing the transition dynamics from $\theta \in \mathbb{R}^D$ into $A \subset \mathbb{R}^D$ of a Markov chain (ϑ_k) .

Condition (A)

i) $\mathcal{P}_N(\cdot, \cdot)$ has invariant distribution $\Pi(\cdot | Z^{(N)})$. ii) For some fixed $c_0, L > 0, \eta = \eta_N > 0$, with high prob., $\sup \mathcal{P}_N(\theta, \{\vartheta : \|\theta - \vartheta\|_{\mathbb{R}^D} \ge \eta/2\}) \le e^{-c_0 N}, \quad N \ge 1.$

The second condition means that the MCMC moves 'locally', with large steps being unlikely to occur. This condition can be verified for pCN and MALA with natural parameter choices.

θ∈Βı

A general hitting time lower bound

Theorem

Let $\Pi(\cdot|Z^{(N)})$ arise from prior $N(0, \Sigma_{\alpha})$, $b = \alpha/d - 1/2 > 0$ and $D/N \simeq \kappa > 0$. There exists $s_b \in (0, 1/2)$ s.t.:

Let $\Pi(\cdot|Z^{(N)})$ arise from prior $N(0, \Sigma_{\alpha})$, $b = \alpha/d - 1/2 > 0$ and $D/N \simeq \kappa > 0$. There exists $s_b \in (0, 1/2)$ s.t.:

i) The average log-likelihood is unimodal with mode 0, locally log-concave near 0, radially symmetric, Lipschitz continuous and decreasing in $\|\theta\|_{\mathbb{R}^D}$ on \mathbb{R}^D .

Let $\Pi(\cdot|Z^{(N)})$ arise from prior $N(0, \Sigma_{\alpha})$, $b = \alpha/d - 1/2 > 0$ and $D/N \simeq \kappa > 0$. There exists $s_b \in (0, 1/2)$ s.t.:

i) The average log-likelihood is unimodal with mode 0, locally log-concave near 0, radially symmetric, Lipschitz continuous and decreasing in $\|\theta\|_{\mathbb{R}^D}$ on \mathbb{R}^D .

ii) For any r > 0 fixed and with high probability, $\ell_N(\theta)$ is radially symmetric and decreasing in $\|\theta\|_{\mathbb{R}^D}$ on the set $\{\theta : \|\theta\|_{\mathbb{R}^D} \ge rN^{-b}\}$.

Let $\Pi(\cdot|Z^{(N)})$ arise from prior $N(0, \Sigma_{\alpha})$, $b = \alpha/d - 1/2 > 0$ and $D/N \simeq \kappa > 0$. There exists $s_b \in (0, 1/2)$ s.t.:

i) The average log-likelihood is unimodal with mode 0, locally log-concave near 0, radially symmetric, Lipschitz continuous and decreasing in $\|\theta\|_{\mathbb{R}^D}$ on \mathbb{R}^D .

ii) For any r > 0 fixed and with high probability, $\ell_N(\theta)$ is radially symmetric and decreasing in $\|\theta\|_{\mathbb{R}^D}$ on the set $\{\theta : \|\theta\|_{\mathbb{R}^D} \ge rN^{-b}\}$.

iii) Defining $s = s_b N^{-b}$, we have $\Pi(B_s | Z^{(N)}) \xrightarrow{N \to \infty} 1$ in probability.

Let $\Pi(\cdot|Z^{(N)})$ arise from prior $N(0, \Sigma_{\alpha})$, $b = \alpha/d - 1/2 > 0$ and $D/N \simeq \kappa > 0$. There exists $s_b \in (0, 1/2)$ s.t.:

i) The average log-likelihood is unimodal with mode 0, locally log-concave near 0, radially symmetric, Lipschitz continuous and decreasing in $\|\theta\|_{\mathbb{R}^D}$ on \mathbb{R}^D .

ii) For any r > 0 fixed and with high probability, $\ell_N(\theta)$ is radially symmetric and decreasing in $\|\theta\|_{\mathbb{R}^D}$ on the set $\{\theta : \|\theta\|_{\mathbb{R}^D} \ge rN^{-b}\}$.

iii) Defining $s = s_b N^{-b}$, we have $\Pi(B_s | Z^{(N)}) \xrightarrow{N \to \infty} 1$ in probability.

iv) There exist ε , C > 0 s.t. for any Markov kernels \mathcal{P}_N on \mathbb{R}^D and associated chains (ϑ_k) satisfying Condition (A) for $\eta_N \in (0, s_b N^{-b})$, we can find an initialiser $\vartheta_0 \in \Theta_{N^{-b}, \varepsilon N^{-b}}$ s.t. w.h.p. the hitting time τ_{B_s} for ϑ_k to reach B_s is

 $\tau_{B_s} \geq \exp\big(\min\{c_0,1\}D/2\big).$

In fact we can take $\vartheta_0 \sim \mu_{|\Theta_{N^{-b},\varepsilon N^{-b}}}$ with $\mu = \Pi(\cdot|Z^{(N)})$.

Hitting time lower bound I

Let ϑ_k denote the MALA Markov chain with step size γ . Assume the setting of the general theorem with a $N(0, \Sigma_{\alpha})$ prior. Then there exist some constant $c_1, c_2, \varepsilon > 0$ such that whenever

$$\gamma \leq c_1 N^{-1-b-2\alpha},$$

there is an initialisation point $\vartheta_0 \in \Theta_{N^{-b}, \varepsilon N^{-b}}$, such that with high probability under the data and the Markov chain,

 $au_{B_s} \geq \exp(c_2 D),$

while still $\Pi(B_s|Z^{(N)}) \xrightarrow{N \to \infty} 1$ in probability.

So the MCMC outputs act effectively as a pure random number generator, not informed by the data likelihood.

Hitting time lower bound II

Let ϑ_k denote the pCN Markov chain with 'step size' β . For the $N(0, \mathcal{K})$ -prior with $\mathcal{K} = \Sigma_{\alpha}$ for $\alpha > d/2$, let \mathcal{G} be as in the previous Theorem.

Then there exist constants $c_1, c_2, \varepsilon > 0$ such that if $\beta \leq c_1 N^{-1-2b}$ there is an initialisation point $\vartheta_0 \in \Theta_{N^{-b}, \varepsilon N^{-b}}$ (or $\vartheta_0 \sim \mu_{|\Theta_{N^{-b}, \varepsilon N^{-b}}}$) s.t. the hitting time

$$\tau_{B_s} = \inf\{k : \vartheta_k \in B_s\}$$

satisfies with high probability

 $au_{B_s} \ge \exp\left(c_2 D\right)$

while still $\Pi(B_s|Z^{(N)}) \xrightarrow{N \to \infty} 1$ in probability.

This implies that the *dimension-independent* 'spectral gaps' from Hairer, Stuart & Vollmer (2014) exhibit exponential dependence o Lipschitz constants of $\Pi(\cdot|Z^{(N)})$.

POLYNOMIAL TIME POSTERIOR COMPUTATION VIA GRADIENT STABILITY AND LOG-CONCAVE APPROXIMATION

[Joint work with S. Wang (2022), and also J. Bohr (2023)]

The linearisation of ${\mathscr G}$

For bounded perturbations, let $\mathscr{G}'_{\theta}:\Theta\to L^2$ be the linear operator s.t.

$$\|\mathscr{G}(\theta+h) - \mathscr{G}(\theta) - \mathscr{G}'_{\theta}[h]\|_{L^2} = o(\|h\|) \to 0.$$

The linearisation of ${\mathscr G}$

For bounded perturbations, let $\mathscr{G}'_{\theta}: \Theta \to L^2$ be the linear operator s.t.

$$\|\mathscr{G}(\theta+h) - \mathscr{G}(\theta) - \mathscr{G}'_{\theta}[h]\|_{L^2} = o(\|h\|) \to 0.$$

We require a stability inequality quantifying the 'local injectivity' of \mathscr{G}'_{θ} at θ_0 .

'Gradient stability' Assume at $\theta_0 \in \mathbb{R}^D$ that for some $\kappa_0 \ge 0$, $\|\mathscr{G}'_{\theta_0}[h]\|^2_{L^2} \gtrsim D^{-\kappa_0} \|h\|^2 \quad \forall h \in \mathbb{R}^D.$

The linearisation of ${\mathscr G}$

For bounded perturbations, let $\mathscr{G}'_{\theta}: \Theta \to L^2$ be the linear operator s.t.

$$\|\mathscr{G}(\theta+h) - \mathscr{G}(\theta) - \mathscr{G}'_{\theta}[h]\|_{L^2} = o(\|h\|) \to 0.$$

We require a stability inequality quantifying the 'local injectivity' of \mathscr{G}'_{θ} at θ_0 .

'Gradient stability' Assume at $\theta_0 \in \mathbb{R}^D$ that for some $\kappa_0 \ge 0$, $\|\mathscr{G}'_{\theta_0}[h]\|^2_{L^2} \gtrsim D^{-\kappa_0} \|h\|^2 \quad \forall h \in \mathbb{R}^D.$

Here $\kappa_0 > 0$ depends on the 'local ill-posedness' of \mathscr{G} .

- For the Schrödinger equation: $\kappa_0 = 4/d$
- For Darcy's problem $\kappa = 6/d$
- For (non-Abelian) X-ray transforms $\kappa=1/2$

Local 'average curvature' in nonlinear models

The lack of log-concavity of the posterior manifests itself in $(\ell = \ell_1)$

 $-\nabla^2 \ell(\theta, Z) = [\nabla \mathscr{G}(\theta)(X)] [\nabla \mathscr{G}(\theta)(X)]^T + [\mathscr{G}(\theta)(X) - Y] \nabla^2 [\mathscr{G}(\theta)(X)].$

For Y, X fixed there is no reason why $-\nabla^2 \ell$ should be (even only locally) convex.

Local 'average curvature' in nonlinear models

The lack of log-concavity of the posterior manifests itself in $(\ell = \ell_1)$

 $-\nabla^2 \ell(\theta, Z) = [\nabla \mathscr{G}(\theta)(X)] [\nabla \mathscr{G}(\theta)(X)]^T + [\mathscr{G}(\theta)(X) - Y] \nabla^2 [\mathscr{G}(\theta)(X)].$

For Y, X fixed there is no reason why $-\nabla^2 \ell$ should be (even only locally) convex.

However the 'average' Hessian computed under the sampling distribution $P_{\theta_0}^N$ satisfies near θ_0 and for $\|h\|_{\mathbb{R}^D} \leq 1$ (and appropriate norm $\|\cdot\|_*$)

 $h^{T} E_{\theta_{0}}[-\nabla^{2} \ell(\theta, Z)]h = \|h^{T} \nabla \mathscr{G}(\theta)\|_{L^{2}}^{2} + O(\|\mathscr{G}(\theta) - \mathscr{G}(\theta_{0})\|_{*}).$

'Gradient stability' controls the first term since $h^T \nabla \mathscr{G}(\theta) = \mathscr{G}'_{\theta}[h], \ h \in \mathbb{R}^D$.

Local 'average curvature' in nonlinear models

The lack of log-concavity of the posterior manifests itself in $(\ell=\ell_1)$

 $-\nabla^2 \ell(\theta, Z) = [\nabla \mathscr{G}(\theta)(X)] [\nabla \mathscr{G}(\theta)(X)]^T + [\mathscr{G}(\theta)(X) - Y] \nabla^2 [\mathscr{G}(\theta)(X)].$

For Y, X fixed there is no reason why $-\nabla^2 \ell$ should be (even only locally) convex.

However the 'average' Hessian computed under the sampling distribution $P_{\theta_0}^N$ satisfies near θ_0 and for $\|h\|_{\mathbb{R}^D} \leq 1$ (and appropriate norm $\|\cdot\|_*$)

$$h^{T} E_{\theta_{0}}[-\nabla^{2} \ell(\theta, Z)]h = \|h^{T} \nabla \mathscr{G}(\theta)\|_{L^{2}}^{2} + O(\|\mathscr{G}(\theta) - \mathscr{G}(\theta_{0})\|_{*}).$$

'Gradient stability' controls the first term since $h^T \nabla \mathscr{G}(\theta) = \mathscr{G}'_{\theta}[h], \ h \in \mathbb{R}^D$.

Hypothesis (local average convexity of $-\ell_N/N$)

$$\inf_{\theta \in \mathcal{B}} \lambda_{\min} (E_{\theta_0}[-\nabla^2 \ell(\theta, Z)]) \ge c_{\min} > 0$$

on some neighbourhood \mathcal{B} of θ_0 , whose size *needs to be quantified*.

For the PDE examples, \mathscr{G} is sufficiently smooth that gradient stability implies the last condition for appropriate neighbourhoods \mathcal{B} of radius D^{-w} , w > 0.

Roadmap to exploiting local average convexity

Concentration of measure: Local average curvature *extends to the observed likelihood* function ℓ_N (empirical measures concentrate in high dimensions, Talagrand (2014), Giné & N (2016), Vershynin (2018)).

Theorem

With high $P_{\theta_0}^N$ -probability and for $D \lesssim N^b$ some b > 0, one has,

$$\inf_{\theta \in \mathcal{B}} \lambda_{\min} \big[-\nabla^2 \ell_N(\theta, Z) \big] \ge Nc_{\min} > 0.$$

Roadmap to exploiting local average convexity

Concentration of measure: Local average curvature *extends to the observed likelihood* function ℓ_N (empirical measures concentrate in high dimensions, Talagrand (2014), Giné & N (2016), Vershynin (2018)).

Theorem

With high $P_{\theta_0}^N$ -probability and for $D \lesssim N^b$ some b > 0, one has,

$$\inf_{\theta \in \mathcal{B}} \lambda_{\min} \big[- \nabla^2 \ell_N(\theta, Z) \big] \ge Nc_{\min} > 0.$$

Under global injectivity hypotheses for \mathscr{G} the posterior is statistically consistent (cf. Nickl (2023)) and puts its mass precisely in the region \mathcal{B} of log-concavity near θ_0 . We then 'concavify' $\Pi(\cdot|Z^{(N)})$ near θ_0 by a proxy measure $\tilde{\Pi}(\cdot|Z^{(N)})$.

Roadmap to exploiting local average convexity

Concentration of measure: Local average curvature *extends to the observed likelihood* function ℓ_N (empirical measures concentrate in high dimensions, Talagrand (2014), Giné & N (2016), Vershynin (2018)).

Theorem

With high $P_{\theta_0}^N$ -probability and for $D \leq N^b$ some b > 0, one has,

$$\inf_{\theta \in \mathcal{B}} \lambda_{\min} \big[-\nabla^2 \ell_N(\theta, Z) \big] \ge Nc_{\min} > 0.$$

Under global injectivity hypotheses for \mathscr{G} the posterior is statistically consistent (cf. Nickl (2023)) and puts its mass precisely in the region \mathcal{B} of log-concavity near θ_0 . We then 'concavify' $\Pi(\cdot|Z^{(N)})$ near θ_0 by a proxy measure $\tilde{\Pi}(\cdot|Z^{(N)})$.

Theorem

Assuming local and global regularity of \mathscr{G} we have whp under the data that the proxy measure $\tilde{\Pi}(\cdot|Z^{(N)})$ is strongly globally-log-concave and satisfies

$$\mathcal{N}_2^2ig(ilde{\mathsf{\Pi}}(\cdot|Z^{\mathcal{N}}), {\mathsf{\Pi}}(\cdot|Z^{\mathcal{N}}) ig) \leq \exp(-N^{ar{b}}), \ ar{b} > 0.$$

Consider computation of the high-dimensional Bochner integral

$$E^{\Pi}[\theta|Z^{(N)}] = \int_{\mathbb{R}^D} \theta d\Pi(\theta|Z^{(N)})$$

under appropriate assumptions on $D, \mathcal{G}, \Pi, \theta_0$, covering our PDE examples.

Consider computation of the high-dimensional Bochner integral

$$E^{\Pi}[\theta|Z^{(N)}] = \int_{\mathbb{R}^D} \theta d\Pi(\theta|Z^{(N)})$$

under appropriate assumptions on $D, \mathscr{G}, \Pi, \theta_0$, covering our PDE examples.

We assume an initialiser into the region where average curvature holds, and then run ULA on the proxy measure $\tilde{\Pi}(\cdot|Z^{(N)})$.

Consider computation of the high-dimensional Bochner integral

$$E^{\Pi}[\theta|Z^{(N)}] = \int_{\mathbb{R}^D} \theta d\Pi(\theta|Z^{(N)})$$

under appropriate assumptions on $D, \mathcal{G}, \Pi, \theta_0$, covering our PDE examples.

We assume an initialiser into the region where average curvature holds, and then run ULA on the proxy measure $\tilde{\Pi}(\cdot|Z^{(N)})$.

Theorem

For any precision level $\varepsilon \ge N^{-P}$, there exists a ('warm start') sampling algorithm with polynomial computational cost

$$O(N^{b_1}D^{b_2}\varepsilon^{-b_3}) \quad (b_1, b_2, b_3 > 0),$$

Consider computation of the high-dimensional Bochner integral

$$E^{\Pi}[\theta|Z^{(N)}] = \int_{\mathbb{R}^D} \theta d\Pi(\theta|Z^{(N)})$$

under appropriate assumptions on $D, \mathcal{G}, \Pi, \theta_0$, covering our PDE examples.

We assume an initialiser into the region where average curvature holds, and then run ULA on the proxy measure $\tilde{\Pi}(\cdot|Z^{(N)})$.

Theorem

For any precision level $\varepsilon \ge N^{-P}$, there exists a ('warm start') sampling algorithm with polynomial computational cost

$$O(N^{b_1}D^{b_2}\varepsilon^{-b_3}) \quad (b_1, b_2, b_3 > 0),$$

and whose output $\hat{ heta}_{arepsilon}$ satisfies that with high probability

$$\left\|\hat{\theta}_{\varepsilon} - E^{\mathsf{T}}[\theta|Z^{(N)}]\right\|_{\mathbb{R}^{D}} \leq \varepsilon \ \text{ as well as } \left\|\hat{\theta}_{\varepsilon} - \theta_{\mathsf{0}}\right\|_{\mathbb{R}^{D}} \leq \varepsilon$$

R. Nickl, *Bayesian non-linear statistical inverse problems*, Zürich Lectures in Advanced Mathematics (EMS press), (2023)

R. Nickl, S. Wang, On polynomial-time computation of high-dimensional posterior measures by Langevin-type algorithms, *J. Eur. Math. Soc.*, (2022)

A. Bandeira, A. Maillard, R. Nickl, S. Wang, On free energy barriers in Gaussian priors and failure of cold start MCMC for high-dimensional unimodal distributions, *Phil. Trans. Roy. Soc. A*, (2023)

J. Bohr, R. Nickl, On log-concave approximations of high-dimensional posterior measures and stability properties in non-linear inverse problems. *Ann. Inst. H. Poincaré (Probab. Statist.)*, (2023).