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Statistical inverse regression models

Consider statistical observations arising as random vectors

Yi = Gθ(Xi ) + εi , εi ∼i.i.d. NV (0, I ),

• The Xi are covariates drawn iid from some law λ on a d-dimensional domain X .

• The Yi are ‘response’ variables in a vector space V of finite dim(V ), say = 1.

We write Z (N) = (Yi ,Xi )
N
i=1 for the data vector of sample size N ∈ N.

The regression fields
{Gθ : θ ∈ Θ}, Gθ : X → V ,

are indexed by the high-dimensional parameter

θ ∈ Θ = RD

arising from the discretisation of a function space in some basis. We take
asymptotics D,N →∞, possibly D/N → κ > 0.
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PDE model examples – Non-linear inverse problems

• The dependence θ 7→ G (θ) is non-linear and we have in mind coefficient to
solution maps of partial differential equations (PDEs).

• A standard model problem concerns inference on the diffusivity coefficient
fθ = eθ > 0 from (unique) solutions u = uθ = Gθ of the elliptic PDE

∇ · (fθ∇u) = g in X ,
u = 0 on ∂X .

This can be regarded as a ‘steady state’ measurement of the process of diffusion.
Inferring θ is sometimes known as ‘Darcy’s problem’ (Stuart 2010).

• The ‘forward’ map θ → Gθ can be ‘evaluated’ by numerical PDE methods (finite
elements, etc.).
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Penalised Least Squares / Tikhonov Regularisation

A natural approach (Gauß, Tikhonov) is to minimise a least squares fit

QN(θ) =
N∑
i=1

|Yi − Gθ(Xi )|2V + λ · pen(θ), λ > 0,

over θ ∈ RD . The penalty term is also called a ‘regulariser’.

Classical choices are Sobolev type norms

pen(θ) = ‖θ‖2
Hα '

∑
j≤D

j2α/d |θj |2, α ∈ N,

or related `1-type penalties/TV-type norms.

As G is non-linear in θ, the map QN is not convex on RD .

The algorithmic runtime = {# required evaluations of G (θ)} to compute
such optimisers may scale exponentially in dimension D and sample size N.
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Gaussian processes models for functions

Consider a centred Gaussian process (X (z) : z ∈ Z ⊂ Rd), with covariance
K (y , z) = kα(z − y) where

kα(z) =

∫
Rd

e i〈z,ξ〉Rd d µ̄(ξ), d µ̄(ξ) = (1 + |ξ|2)−αdξ, α > d/2,

modelling α-regular stationary random fields θ over Z, with RKHS H = Hα.

• Such ‘Whittle-Matérn’ processes are often discretised by projection onto the first
D eigenfunctions of the Laplacian (= Karhunen-Loève expansion) or other bases,
and as such used as Bayesian priors for θ and then also Gθ in inverse problems.
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Bayesian Inversion with Gaussian priors

The ‘log-likelihood’ of our statistical regression model is

`N(θ) = log dPN
θ (Z (N))− const = −1

2

N∑
i=1

|Yi − Gθ(Xi )|2V , θ ∈ RD ,

whose evaluation requires only computation of G (θ) (forward PDE).

Let Π = ΠD be the D-dimensional discretisation of a Gaussian process prior with
RKHS H. The posterior distribution Π(·|Z (N)) given data Z (N) on RD equals

dΠ(θ|Z (N)) ∝ e`N (θ)dΠ(θ) ∝ e`N (θ)− 1
2‖θ‖

2
H , θ ∈ RD .

If a Markov chain (ϑk) on RD has invariant measure Π(·|Z (N)), we can
approximately compute the posterior mean vector

EΠ[θ|Z (N)] =

∫
RD

θdΠ(θ|Z (N))

by ergodic ‘sample’ averages 1
K

∑K
k=1 ϑk accrued along the chain.
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Random walk with Metropolis-Hastings adjustment (pCN)

Following Cotter, Roberts, Stuart & White (2013), Hairer, Stuart, Vollmer (2014):

pre-conditioned Crank-Nicolson (pCN) algorithm

Let Π ∼ N(0,K) on Θ = RD . Fix δ > 0 and initialise ϑ0. For k ≥ 0 do:

1. Draw ξ ∼ Π and calculate the proposal

pϑk
=
√

1− 2δϑk +
√

2δξ.

2. Set

ϑk+1 =

{
pϑk

, with probability 1 ∧ exp{`N(pϑk
)− `N(ϑk)}

ϑk , else.

A standard ‘Metropolis-Hastings’ calculation shows that {ϑk} has invariant
measure Π(·|Z (N)).
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Computation: gradient based MCMC

Discretised Langevin type algorithm (ULA)

Choose step size δ > 0 and an initialiser ϑ0. For ξk ∼iid N (0, I ) in RD , do:

ϑk+1 = ϑk + δ∇ log dΠ(ϑk |Z (N)) +
√

2δξk , k ∈ N.

The discretisation step mis-specifies the invariant measure, but that ‘bias’
decreases as δ → 0.

As before, one can add a Metropolis-Hastings adjustment (MALA) accept/reject
step to obtain the exact posterior distribution as invariant measure.
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Algorithmic complexity

Is posterior computation by MCMC possible in such non-linear regression problems
in polynomial run time in dimension D and sample size (informativeness) N?

Let us focus on computation of the D-dimensional integral

EΠ[θ|Z (N)] =

∫
RD θe

`N (θ)dΠ(θ)dθ∫
RD e`N (θ)dΠ(θ)dθ

.

The worst case deterministic numerical cost for evaluating the integral of a
D-dimensional 1-Lipschitz function scales as DD/4 (Novak & Wozniakowski 2008).

Randomised (‘Monte Carlo’) algorithms may beat such computational barriers
with universal accuracy 1/

√
K after K iterations (central limit theorem).
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Sampling from log-concave targets

Bakry & Emery (1985), Dalayan (2017), Durmus & Moulines (2019)..

In the class of strongly globally log-concave target measures, Langevin-type
algorithms achieve polynomial mixing time in D,N with high probability for any
precision level (in W2-distance).

This applies to linear G and Gaussian priors as the posterior is then log-concave.

The theory extends to target measures satisfying a log-Sobolev inequality (e.g.,
Vempala & Wibisono (2021)), but the LSI-constants scale exponentially in
bounded (‘Holley-Stroock’) perturbations.
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Hardness of posterior computation for local cold start MCMC

[Joint work with A. Bandeira, A. Maillard, S. Wang, (2023)]
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A radial average negative log-likelihood

We consider posteriors arising from α-regular Gaussian process priors and
expected log-likelihoods −Eθ0`N(θ) = −N

2 −
N
2 w(‖θ − θ0‖), with w of the form

0 t / 2 t L
r

w
(r

)

which is locally convex near 0 and then grows piece-wise linearly from t/2 onwards.
We consider ‘local’ algorithms initialised in [t, L] where w exhibits linear growth.
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Setup and notation: Bs ,Θr ,r+ε

Recall that for Whittle-Matern N(0,Σα)-prior, the posterior on Θ = RD is

dΠ(θ|Z (N)) ∝ exp
(
`N(θ)− 1

2
θTΣ−1

α θ
)
, θ ∈ RD .

Define Euclidean balls centred at the ground truth θ0 ∈ RD ,

Br = {θ ∈ RD : ‖θ − θ0‖RD ≤ r}

and D-dimensional annuli

Θr ,ε =
{
θ ∈ RD : ‖θ − θ0‖RD ∈ (r , r + ε]

}
= Br+ε \ Br .

We consider non-intersecting ‘inner’ and ‘outer’ annuli Θs,η and Θr ,ε, with s < σ.

We will assume θ0 = 0 is the ground truth so that the prior is already centred
at the correct value, and the ‘picture’ is centred at the origin.
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Jerrum’s bottleneck

General hitting time bound

Consider any Markov chain (ϑk : k ∈ N) with invariant ‘target’ measure µ (e.g.,
µ = Π(·|Z (N))) for which the ratio bound

µ(Θs,η)

µ(Θσ,ε)
≤ e−νN

holds for some ν > 0. For constants η < σ − s, suppose ϑ0 is started in the ‘outer
annulus’ Θσ,ε, drawn from the conditional distribution µ(·|Θσ,ε), and denote by

τs = inf{k : ϑk ∈ Θs,η}

the hitting time of the Markov chain onto the intermediate annulus Θs,η. Then

Pr(τs ≤ K ) ≤ Ke−νN , for all K > 0.
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Large Deviation Landscape (Franz-Parisi functional)

Because of monotonic, radial growth of −Eθ0`N(θ), with high prob. and for σ = 1,

1

N
log

Π(Θs,η|Z (N))

Π(Θ1,ε|Z (N))
≤ 1

N
log

Π(Θs,η)

Π(Θ1,ε)
+ w(1 + ε)− w(s) + oP(1).

In high dimensions a ‘free energy barrier’ can appear (cf. Ben Arous, Wein, Zadik
(2022, CPAM) in spin glass models with uniform priors), because the ‘intermediate
annulus’ Θs,η has much smaller Gaussian volume than the outer annulus Θ1,1+ε.

For α-regular Gaussian process priors with η = o(N−b), b = bα,d > 0, and
D/N ' κ > 0, this barrier is non-degenerate at the (1/N) log scale:

1

N
log

Π(Θs,η)

Π(Θ1,ε)
≤ −ν, ν > 0, some ε > 0.

We show that this does not prevent the posterior to charge all its mass inside of
Bs – the barrier lies outside of the region where the posterior concentrates.
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D/N ' κ > 0, this barrier is non-degenerate at the (1/N) log scale:

1

N
log

Π(Θs,η)

Π(Θ1,ε)
≤ −ν, ν > 0, some ε > 0.

We show that this does not prevent the posterior to charge all its mass inside of
Bs – the barrier lies outside of the region where the posterior concentrates.
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Genius in a bottle and step sizes of Markov chains

Let PN(θ,A) denote a sequence of kernels describing the transition dynamics from
θ ∈ RD into A ⊂ RD of a Markov chain (ϑk).

Condition (A)

i) PN(·, ·) has invariant distribution Π(·|Z (N)).

ii) For some fixed c0, L > 0, η = ηN > 0, with high prob.,

sup
θ∈BL

PN(θ, {ϑ : ‖θ − ϑ‖RD ≥ η/2}) ≤ e−c0N , N ≥ 1.

The second condition means that the MCMC moves ‘locally’, with large steps
being unlikely to occur. This condition can be verified for pCN and MALA with
natural parameter choices.
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A general hitting time lower bound

Theorem

Let Π(·|Z (N)) arise from prior N(0,Σα), b = α/d − 1/2 > 0 and D/N ' κ > 0.
There exists sb ∈ (0, 1/2) s.t.:

i) The average log-likelihood is unimodal with mode 0, locally log-concave near 0,
radially symmetric, Lipschitz continuous and decreasing in ‖θ‖RD on RD .

ii) For any r > 0 fixed and with high probability, `N(θ) is radially symmetric and
decreasing in ‖θ‖RD on the set {θ : ‖θ‖RD ≥ rN−b}.

iii) Defining s = sbN
−b, we have Π(Bs |Z (N))

N→∞−−−−→ 1 in probability.

iv) There exist ε,C > 0 s.t. for any Markov kernels PN on RD and associated
chains (ϑk) satisfying Condition (A) for ηN ∈ (0, sbN

−b), we can find an initialiser
ϑ0 ∈ ΘN−b,εN−b s.t. w.h.p. the hitting time τBs for ϑk to reach Bs is

τBs ≥ exp
(

min{c0, 1}D/2
)
.

In fact we can take ϑ0 ∼ µ|Θ
N−b,εN−b

with µ = Π(·|Z (N)).
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A hardness result for MALA

Hitting time lower bound I

Let ϑk denote the MALA Markov chain with step size γ. Assume the setting of
the general theorem with a N(0,Σα) prior. Then there exist some constant
c1, c2, ε > 0 such that whenever

γ ≤ c1N
−1−b−2α,

there is an initialisation point ϑ0 ∈ ΘN−b,εN−b , such that with high probability
under the data and the Markov chain,

τBs ≥ exp
(
c2D

)
,

while still Π(Bs |Z (N))
N→∞−−−−→ 1 in probability.

So the MCMC outputs act effectively as a pure random number generator, not
informed by the data likelihood.
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A hardness result for pCN

Hitting time lower bound II

Let ϑk denote the pCN Markov chain with ‘step size’ β. For the N(0,K)-prior
with K = Σα for α > d/2, let G be as in the previous Theorem.

Then there exist constants c1, c2, ε > 0 such that if β ≤ c1N
−1−2b there is an

initialisation point ϑ0 ∈ ΘN−b,εN−b (or ϑ0 ∼ µ|Θ
N−b,εN−b

) s.t. the hitting time

τBs = inf{k : ϑk ∈ Bs}

satisfies with high probability

τBs ≥ exp
(
c2D

)
while still Π(Bs |Z (N))

N→∞−−−−→ 1 in probability.

This implies that the dimension-independent ‘spectral gaps’ from Hairer, Stuart &
Vollmer (2014) exhibit exponential dependence o Lipschitz constants of Π(·|Z (N)).
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Polynomial time posterior computation via gradient stability and
log-concave approximation

[Joint work with S. Wang (2022), and also J. Bohr (2023)]
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The linearisation of G

For bounded perturbations, let G ′θ : Θ→ L2 be the linear operator s.t.

‖G (θ + h)− G (θ)− G ′θ[h]‖L2 = o(‖h‖)→ 0.

We require a stability inequality quantifying the ‘local injectivity’ of G ′θ at θ0.

‘Gradient stability’

Assume at θ0 ∈ RD that for some κ0 ≥ 0,

‖G ′θ0
[h]‖2

L2 & D−κ0‖h‖2 ∀h ∈ RD .

Here κ0 > 0 depends on the ‘local ill-posedness’ of G .

• For the Schrödinger equation: κ0 = 4/d

• For Darcy’s problem κ = 6/d

• For (non-Abelian) X -ray transforms κ = 1/2
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Local ‘average curvature’ in nonlinear models

The lack of log-concavity of the posterior manifests itself in (` = `1)

−∇2`(θ,Z ) = [∇G (θ)(X )][∇G (θ)(X )]T + [G (θ)(X )− Y ]∇2[G (θ)(X )].

For Y ,X fixed there is no reason why −∇2` should be (even only locally) convex.

However the ‘average’ Hessian computed under the sampling distribution PN
θ0

satisfies near θ0 and for ‖h‖RD ≤ 1 (and appropriate norm ‖ · ‖∗)

hTEθ0 [−∇2`(θ,Z )]h = ‖hT∇G (θ)‖2
L2 + O(‖G (θ)− G (θ0)‖∗).

‘Gradient stability’ controls the first term since hT∇G (θ) = G ′θ[h], h ∈ RD .

Hypothesis (local average convexity of −`N/N)

infθ∈B λmin

(
Eθ0 [−∇2`(θ,Z )]

)
≥ cmin > 0

on some neighbourhood B of θ0, whose size needs to be quantified.

For the PDE examples, G is sufficiently smooth that gradient stability implies the
last condition for appropriate neighbourhoods B of radius D−w ,w > 0.
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Roadmap to exploiting local average convexity

Concentration of measure: Local average curvature extends to the observed
likelihood function `N (empirical measures concentrate in high dimensions,
Talagrand (2014), Giné & N (2016), Vershynin (2018)).

Theorem

With high PN
θ0

-probability and for D . Nb some b > 0, one has,

infθ∈B λmin

[
−∇2`N(θ,Z )]

]
≥ Ncmin > 0.

Under global injectivity hypotheses for G the posterior is statistically consistent
(cf. Nickl (2023)) and puts its mass precisely in the region B of log-concavity near
θ0. We then ‘concavify’ Π(·|Z (N)) near θ0 by a proxy measure Π̃(·|Z (N)).

Theorem
Assuming local and global regularity of G we have whp under the data that the
proxy measure Π̃(·|Z (N)) is strongly globally-log-concave and satisfies

W 2
2

(
Π̃(·|ZN),Π(·|ZN)

)
≤ exp(−N b̄), b̄ > 0.
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Polynomial-time algorithms for posterior mean vectors

Consider computation of the high-dimensional Bochner integral

EΠ[θ|Z (N)] =

∫
RD

θdΠ(θ|Z (N))

under appropriate assumptions on D,G ,Π, θ0, covering our PDE examples.

We assume an initialiser into the region where average curvature holds, and then
run ULA on the proxy measure Π̃(·|Z (N)).

Theorem

For any precision level ε ≥ N−P , there exists a (‘warm start’) sampling algorithm
with polynomial computational cost

O(Nb1Db2ε−b3 ) (b1, b2, b3 > 0),

and whose output θ̂ε satisfies that with high probability∥∥θ̂ε − EΠ[θ|Z (N)]
∥∥
RD ≤ ε as well as

∥∥θ̂ε − θ0

∥∥
RD ≤ ε
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