
CHAPTER 7

Perelman’s entropy and (some of) its consequences

1. Definition and properties

Let us start with a formal definition. Given a closed Riemannian manifold (Mn, g), a smooth
function f on M and a positive constant ⌧ , Perelman’s entropy is defined by:

W(g, f, ⌧) :=

Z

M

�
⌧
�
Rg +2�gf � |rgf |2g

�
+ (f � n)

� e�f

(4⇡⌧)
n
2
dµg.

Since
R
M

�
�gf � |rgf |2g

�
e�fdµg = 0 by observing that the integrand can be written as divg

�
e�frgf

�
,

Perelman’s entropy can be reformulated as:

W(g, f, ⌧) =

Z

M

�
⌧
�
Rg +|rgf |2g

�
+ (f � n)

� e�f

(4⇡⌧)
n
2
dµg. (1.1)

This formula will be more suited to show that W is coercive in a sense to be defined later.
Observe that if  is a di↵eomorphism of M , then the change of variable theorem shows that:

W(�⇤g,�⇤f, ⌧) = W(g, f, ⌧).

Moreover, if � > 0,
W(�g, f,�⌧) = W(g, f, ⌧).

One motivation for considering such a quantity comes from shrinking gradient Ricci soliton:

Lemma 7.1. Let (Mn, g) be a Riemannian manifold endowed with a smooth function f . Let

T := Ric(g) +
1

2
Lrgf (g)�

g

2
.

Then,
2 (divg T � T (rgf)) = rg

�
Rg +2�gf � |rgf |2g + f

�
. (1.2)

Proof. The proof is related to the proof of the Bianchi identity as in the proof of Lemma 2.5.
Indeed,

2(divg T � T (rgf)) = 2 divg Ric(g) + divg Lrgf (g)� 2Ric(g)(rgf)�rg|rgf |2g +rgf

= rg
�
Rg �|rgf |2g + f

�
+

1

2
rgtrg Lrgf (g) +�grgf � Ric(g)(rgf)

= rg
�
Rg +2�gf � |rgf |2g + f

�
,

where we have used the Bochner formula for vector fields and functions in the second line and the
last lien respectively. ⇤

Corollary 7.2. Let (Mn, g,X) be a closed shrinking Ricci soliton. Then there exists a smooth function
f on M such that (Mn, g,rgf) is a shrinking gradient Ricci soliton if and only if there exists a
smooth function f such that

Rg +2�gf � |rgf |2g + f = cst. (1.3)

Notice that the quantity in (1.3) is exactly the integrand in the definition of Perelman’s entropy
up to an additive constant n. This constant is designed for the integrand to be 0 on a shrinking
gradient Ricci soliton thanks to Lemma 2.5.
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64 7. PERELMAN’S ENTROPY AND (SOME OF) ITS CONSEQUENCES

Proof. Let T := Ric(g)+ 1
2 Lrgf (g)� g

2 as in Lemma 7.1. The tensor T measures the obstruction
to be a shrinking gradient Ricci soliton.

Notice that since (Mn, g,X) is a shrinking Ricci soliton, T = 1
2 Lrgf�X(g).

Now, observe the following integration by parts:

2

Z

M

|T |2g e�fdµg =

Z

M

hLrgf�X(g), T ig e�fdµg = �2

Z

M

⌦
rgf �X, divg

⇣
e�fT

⌘ ↵
g
dµg.

Since divg
�
e�fT

�
= divg T � T (rgf), the corollary follows. ⇤

As suggested by Corollary 7.2, let us see now if Perelman’s entropy can be minimized. The first
step is to check whether W is bounded from below on functions f such that

R
M

e�f dµg = (4⇡⌧)n/2.

For doing so, remark that if ' := (4⇡⌧)�n/4e�f/2, formula (1.1) can be reformulated as:

W⌧ (g,') := W(g, f, ⌧) =

Z

M

⌧
�
4|rg'|2g +Rg '

2
�
� '2 log'2 dµg �

⇣
n+

n

2
log(4⇡⌧)

⌘Z

M

'2 dµg.

Let H1(M) denotes the Sobolev space of functions ' in L2 such that their distributional gradient
lies in L2 as well.

Lemma 7.3. Let (Mn, g) be a closed Riemannian manifold. Then for any a > 0, there exists a
constant C = C(a, g) such that if ' 2 H1(M) with k'kL2 = 1,

Z

M

'2 log'2  a

Z

M

|rg'|2g dµg + C.

In particular, for ⌧ > 0,

inf
�
W⌧ (g,') |' 2 H1(M), k'kL2 = 1

 
> �1.

Proof. Let c(n) > 0 such that c(n)'2 log'2  '2+2/n for all ' 2 R. Then, if k'kL2 = 1,
Z

M

log'2'2 dµg  c(n)�1
Z

M

'2+2/n dµg  "

Z

M

'2+4/n dµg + c(n, ")

Z

M

'2 dµg

 "

Z

M

'2 · '4/n dµg + c(n, ")

 "k'k2
L

2n
n�2

k'k
4
n
L2 + c(n, ") = "k'k2

L

2n
n�2

+ c(n, ").

Now, the Sobolev inequality k'k2
L

2n
n�2

 CS

�
krg'k2

L2 + k'k2
L2

�
for all ' 2 H1(M) implies:

Z

M

log'2'2 dµg  "CSkrg'k2
L2 + c(n, ")CS| {z }

=c(n,",g)

,

if k'kL2 = 1 as expected. ⇤

Corollary 7.4. Let (Mn, g) be a closed Riemannian manifold. Then for each ⌧ > 0, there exists a
smooth minimizer f = f(⌧, g) of Perelman’s entropy, i.e. there exists a smooth function f⌧ such
that:

W(g, f, ⌧) = inf
�
W⌧ (g,') |' 2 H1(M), k'kL2 = 1, ' � 0

 
.

Thanks to this corollary, we can define the following invariant for a metric g and a number ⌧ > 0:

µ(g, ⌧) := inf

⇢
W(g, f, ⌧) | f 2 C1(M),

Z

M

e�fdµg = (4⇡⌧)
n
2

�
. (1.4)

Due to the aforementioned scaling properties: if  is a di↵eomorphism of M and if � > 0,

µ(� ⇤g,�⌧) = µ(g, ⌧).

Proof.
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Claim 7.5. There exists a nonnegative minimizer ' in H1 with unit L2 norm.

Let ('i)i be a minimizing sequence of W⌧ (g, ·) such that k'ikL2 = 1. Then Lemma 7.3 ensures
that ('i)i is bounded in H1. By Sobolev embeddings (Kondrakov’s Theorem [Aub98, Chapter 2]):
H1(M) ,! Lq(M), q < 2n/n� 2, is compact so that there exists a subsequence converging strongly
to some function ' in the Lq, q < 2n/n� 2, topology and such that it converges weakly in the H1

norm. In particular, we get that ' has unit L2 norm. Since lim infi!+1 krg'ikL2 � krg'kL2 , we
get that µ(g, ⌧) = limi!+1W⌧ (g,'i) � W⌧ (g,'), i.e. ' is a minimizer which can be assumed to be
nonnegative since W⌧ (g, ) � W⌧ (g, | |) for all  2 H1.

Let us stick to ⌧ = 1 for the sake of clarity from now on.
Moreover, ' satisfies the PDE

�4�g'+
⇣
Rg �

⇣
n+

n

2
log(4⇡)

⌘
� µ(g, 1)

⌘

| {z }
=:V

'� ' log'2

| {z }
=:F

= 0, (1.5)

in the weak sense.

Claim 7.6. �g' belongs to Lp for some p > n/2.

Indeed, since ' is in L2n/n�2 and V is in Ln/(2�") for some small " > 0 since it is bounded, the
product V ·' lies in L2n/(n+2�2") for " > 0 small enough. Now, ' 2 L2n/n�2 implies that for any � > 0
small enough, ' log'2 lies in L(2n/n�2)��. Therefore, F lies in L2n/(n+2�2") for " > 0 small enough.
Calderon-Zygmund elliptic estimates show that ' lies in L2n/(n�2�2") (�gu = f 2 Lp ) u 2 Lr

where r�1 := p�1 � 2/n). This improvement can be iterated a finite number of times to achieve the
desired claim.

Claim 7.7. ' is C2,↵
loc

for every ↵ 2 (0, 1).

Since �g' belongs to Lp for some p > n/2, De Giorgi-Nash-Moser theory (see [HL11, Chapter
4] for instance) ensures that ' is locally bounded. Therefore, �g' is locally bounded which implies

by Morrey’s elliptic estimate that ' is C1,↵
loc

for every ↵ 2 (0, 1). The function x log x being locally

Hölder, �g' is locally Hölder too which by Schauder estimates imply that ' is C2,↵
loc

. Therefore, '
satisfies (1.5) in the pointwise sense.

Claim 7.8. ' is positive.

Assume by contradiction that there is some point p in M such that '(p) = 0. Define for a
smooth radial cut-o↵ function  ̃(x) =  (rp(x)) where  is a smooth cut-o↵ function on R. Then,
(1.5) is equivalent to:

4

Z
R

0
 0(r)

Z

Sg(p,r)
g(rg',rgrp) d�g

| {z }
=:G(r)A(r)

dr +

Z
R

0
 (r)

0

BBBB@

Z

Sg(p,r)
V ' d�g

| {z }
=:V (r)A(r)

�
Z

Sg(p,r)
' log'2 d�g

| {z }
=:L(r)A(r)

1

CCCCA
dr = 0,

where A(r) :=
R
Sg(p,r)

d�g. If R is small enough compared to the injectivity radius of g at p, A(r) is

equivalent to rn�1. Now define �(r) := A(r)�1
R
Sg(p,r)

' d�g and observe that since ' is C2,↵
loc

by the

previous claim, �(r) and G(r) are di↵erentiable on (0, R) and:

|�0(r)A(r)�G(r)A(r)| 
Z

Sg(p,r)

����Hr �
A0(r)

A(r)

����' d�g  Cr�(r), r 2 (0, R), (1.6)

where Hr denotes the mean curvature of the geodesic sphere Sg(p, r).
Moreover, V (r)  v0�(r) by smoothness of V and by concavity of the function x log x: L(r) �

�(r) log�(r)2.
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Therefore, for r 2 (0, R):

4
d

dr
(G(r)A(r)) = V (r)A(r)� L(r)A(r)  v0�(r)A(r)� 2�(r) log�(r)A(r), r 2 (0, R).

By integrating between r = 0 and r 2 (0, R), on account that limr!0+ �(r) = 0 by assumption
on ' at p:

G(r)A(r)  v0
4

Z
r

0
�(s)A(s) ds� 1

2

Z
r

0
�(s) log�(s)A(s) ds, r 2 (0, R).

Invoking (1.6), a further integration shows that:

�(r)  C

Z
r

0
s�(s) ds+

v0
4

Z
r

0

Z
s

0
�(t)A(t) dt

ds

A(s)
� 1

2

Z
r

0

Z
s

0
�(t) log�(t)A(t) dt

ds

A(s)
, r 2 (0, R).

If � 2 (0, 1], let us take R su�ciently small so that �(r) 2 [0, e�1] and ��(r) log�(r)  C��1�(r)1��

for r 2 [0, R], C being a universal constant. Then, inserting this bound back to the previous estimate
together with the fact that A(r) is equivalent to rn�1 leads to:

�(r)  C

✓Z
r

0
s�(s) ds+ ��1

Z
r

0

Z
s

0
�(t)1��tn�1 dt

ds

sn�1
+

Z
r

0

Z
s

0
�(t)tn�1 dt

ds

sn�1

◆
, r 2 (0, R),

for some uniform positive constant C. Assume that for some k � 1, �(r)  rk for r 2 [0, R] then, if
� := k�1, the previous estimate gives the improvement:

�(r)  C

✓
rk+2

k + 2
+

krk+1

(k + 1)(n+ k � 1)
+

rk+2

(k + 2)(k + n)

◆
 rk+1/2,

for r 2 [0, R], R being independent of k. Iterating this reasoning, we end up by proving that �(r) = 0
for r 2 [0, R], i.e. ' ⌘ 0 on Bg(p,R) which leads by an open-closed argument that ' vanishes on M
identically, contradicting the fact that its L2-norm is 1. ⇤

2. Rigidity of shrinking gradient Ricci solitons

The first goal of this section is to prove that shrinking Ricci solitons are gradient on a closed
manifold. This is one of the first breakthrough due to Perelman.

Theorem 7.9. Let (Mn, g,X) be a shrinking Ricci soliton on a closed manifold. Then there exists a
smooth function f on M such that (Mn, g,rgf) is a shrinking gradient Ricci soliton.

Proof. Let ⌧ = 1 and let f be a smooth minimizer of Perelman’s entropy W(g, ·, 1) ensured by
Corollary 7.4. If ' := e�f/2/(4⇡)n/2 then the Euler-Lagrange equation satisfied by ' is:

Z

M

⇣
�4�g'+Rg '�

⇣
µ(g, 1) + n+

n

2
log 4⇡ + log'2

⌘
'
⌘
 dµg = 0,

for all  2 C1(M). This is equivalent to:

2�gf � |rgf |2g +Rg +f = cst.

Corollary 7.2 lets us conclude the proof of this theorem. ⇤
The second goal of this section we are concerned with is the existence of periodic solutions to

the Ricci flow, also called breathers. Recall that the Ricci flow is infinite dimensional dynamical
system on the space of metrics of a given manifold modulo scalings and di↵eomorphisms. A solution
to the Ricci flow (Mn, g(t))t2[0,T ] is a Ricci-breather if there exists 0  t1 < t2  T satisfying
g(t2) = ↵�⇤g(t1) for some ↵ > 0 and some di↵eomorphism � of M . Observe that a shrinking Ricci
soliton is a Ricci-breather with ↵ < 1, a steady Ricci soliton is a Ricci-breather with ↵ = 1 and an
expanding Ricci soliton is a Ricci-breather with ↵ > 1. The question whether there exists non-trivial
Ricci-breathers with ↵ < 1 on a closed manifold was answered by Perelman:

Theorem 7.10. Let (Mn, g(t))t2[0,T ] be a Ricci-breather with ↵ < 1. Then there exists a smooth

function f0 on M such that (Mn, g(0),rg(0)f0) is a shrinking gradient Ricci soliton.
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Before proving Theorem 7.10, we need to recall the fundamental monotonicity of Perelman’s
entropy along the Ricci flow:

Proposition 7.11. Let (Mn, g(t))t2(0,T ) be a solution to the Ricci flow on a closed manifold. Let
(f(t), ⌧(t)) evolve as follows:

@f

@t
= ��g(t)f � Rg(t)+|rg(t)f |2

g(t) +
n

2⌧
,

d⌧

dt
= �1. (2.1)

Then:
@

@t
+�g(t) � Rg(t)

� h
⌧(t)

⇣
Rg(t)+2�g(t)f(t)� |rg(t)f(t)|2

g(t)) + f(t)� n
⌘
(4⇡⌧(t))�

n
2 e�f(t)

i
=

2⌧(t)

����Ric(g(t)) +rg(t),2f(t)� g(t)

2⌧(t)

����
2

g(t)

(4⇡⌧(t))�
n
2 e�f(t).

In particular,

d

dt
W(g(t), f(t), ⌧(t)) = 2⌧(t)

Z

M

����Ric(g(t)) +rg(t),2f(t)� g(t)

2⌧(t)

����
2

g(t)

e�f(t)

(4⇡⌧(t))
n
2
dµg(t), t 2 (0, T ).

In particular, t ! µ(g(t), ⌧(t)) is increasing unless (Mn, g(t))t2(0,T ) is a shrinking gradient Ricci
soliton.

The system (2.1) can appear slightly ad-hoc at first sight, it can be reinterpreted in terms of
prescribing a density ⇢(t) := (4⇡⌧(t))�

n
2 e�f(t) as follows:

@

@t
⇢(t) = ��g(t)⇢(t) + Rg(t) ⇢(t),

d⌧

dt
= �1. (2.2)

The density ⇢(t) must satisfy a backward heat equation with a potential given by the scalar
curvature along the Ricci flow. System (2.2) is not well-posed, it can however be solved backward
in time, i.e. by prescribing an ”initial” condition later in time and by solving the corresponding
heat-type equation obtained by reversing the time variable.

The operator @t+�g(t)�Rg(t) is the formal adjoint of the heat operator @t��g(t) =: ⇤g(t) along
the Ricci flow as it can be checked by a straightforward integration by parts:

Z

M⇥[a,b]
(⇤g(t)') dµg(t)dt =

Z

M⇥[a,b]
'(⇤⇤

g(t) ) dµg(t)dt,

for any smooth function ',  with compact support in M ⇥ (a, b). Here ⇤⇤
g(t) denotes the operator

�@t ��g(t) +Rg(t).
In particular, the system (2.2) already shows thanks to a similar reasoning applied to  = ⇢ and

' = 1 that the density ⇢(t) is a probability density along the Ricci flow:

d

dt

Z

M

⇢(t) dµg(t) = 0, t 2 (0, T ).

Proof of Proposition 7.11. It is a brutal force computation. The di�culty is not to lose
track of the expected result!

Observe first that if u(t) := 2�g(t)f(t) + Rg(t)�|rg(t)f(t)|2
g(t),

@

@t
u(t) = �g(t)Rg(t)+2|Ric(g(t))|2

g(t)

+ 2
⇣
�g(t)(@tf(t)) + 2hRic(g(t)),rg(t),2f(t)ig(t)

⌘

� 2Ric(g(t))(rg(t)f(t),rg(t)f(t))� 2g(t)(rg(t)@tf(t),rg(t)f(t)).
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Now,

�g(t)(@tf(t)) = ��g(t)�g(t)f(t)��g(t)Rg(t)+�g(t)|rg(t)f(t)|2
g(t)

= ��g(t)(�g(t)f(t) + Rg(t)) + 2|rg(t),2f(t)|2
g(t)

+ 2Ric(g(t))(rg(t)f(t),rg(t)f(t)) + 2g(t)(rg(t)�g(t)f(t),rg(t)f(t)),

and,

�2g(t)(rg(t)@tf(t),rg(t)f(t)) = 2g(t)(rg(t)
⇣
�g(t)f(t) + Rg(t)�|rg(t)f(t)|2

g(t)

⌘
,rg(t)f(t)),

so that,

@

@t
u(t) = ��g(t)u(t) + 2g(t)(rg(t)u(t),rg(t)f(t)) + 2|Ric(g(t)) +rg(t),2f(t)|2

g(t).

@

@t
[⌧(t)u(t) + f(t)� n] =

⌧(t)
⇣
��g(t)u(t) + 2g(t)(rg(t)u(t),rg(t)f(t))

⌘
+ 2⌧(t)|Ric(g(t)) +rg(t),2f(t)|2

g(t)

�
⇣
Rg(t)+2�g(t)f(t)� |rg(t)f(t)|2

g(t)

⌘
��g(t)f(t)� Rg(t)+|rg(t)f(t)|2

g(t) +
n

2⌧(t)

= ⌧(t)
⇣
��g(t)u(t) + 2g(t)(rg(t)u(t),rg(t)f(t))

⌘
+ 2⌧(t)

����Ric(g(t)) +rg(t),2f(t)� g(t)

2⌧(t)

����
2

g(t)

+ 2|rg(t)f(t)|2
g(t) ��g(t)f(t)

= ��g(t)v(t) + 2g(t)(rg(t)v(t),rg(t)f(t)) + 2⌧(t)

����Ric(g(t)) +rg(t),2f(t)� g(t)

2⌧(t)

����
2

g(t)

.

As an intermediate conclusion, if v(t) := ⌧(t)u(t) + f(t)� n,

�⇤⇤
g(t) (v(t)⇢(t)) =

�
@tv(t) +�g(t)v(t)

�
⇢(t) + 2g(t)(rg(t)v(t),rg(t)⇢(t))� v(t)

⇣
⇤⇤

g(t)⇢(t)
⌘

=
�
@tv(t) +�g(t)v(t)

�
⇢(t) + 2g(t)(rg(t)v(t),rg(t)⇢(t))

=
⇣
@tv(t) +�g(t)v(t)� 2g(t)(rg(t)v(t),rg(t)f(t))

⌘
⇢(t)

= 2⌧(t)

����Ric(g(t)) +rg(t),2f(t)� g(t)

2⌧(t)

����
2

g(t)

⇢(t),

as expected. Therefore,

d

dt
W (g(t), f(t), ⌧(t)) =

Z

M

�⇤⇤
g(t) (v(t)⇢(t)) dµg(t)

= 2⌧(t)

Z

M

����Ric(g(t)) +rg(t),2f(t)� g(t)

2⌧(t)

����
2

g(t)

⇢(t)dµg(t),

by integration by parts. ⇤
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We are in a good position to prove Theorem 7.10:

Proof of Theorem 7.10. Let ⌧(t) := ⌧ � t > 0 where ⌧ > t2 remains to be defined. Then by
the monotonicity result from proposition 7.11,

µ(g(t1), ⌧(t1))  µ(g(t2), ⌧(t2)),

with equality if and only if (Mn, g(t))t2(0,T ) is a shrinking gradient Ricci soliton. Now, by assumption,
g(t2) = ↵�⇤g(t1). One can check that: µ(g(t2), ⌧(t2)) = µ(g(t1),↵�1⌧(t2)) by the scaling properties
of the geometric quantities involved in the definition of W. Therefore, all we need to ensure is
a number ⌧ satisfying the conditions ⌧ > t2 and ↵�1⌧(t2) = ⌧(t1). The number ⌧ := (↵�1t2 �
t1)/(↵�1 � 1) does the job since ↵ < 1 and we are done.

⇤




