## About non-Bayesian optimal inference

Alice Guionnet<br>CNRS and Ens de Lyon

Elisabeth's birthday
May 31, 2023
Joint work with Justin Ko, Lenka Zdeborova and Florent Krzakala


UNPA
FNS DF IYON

## Matrix Estimation

Observe a $N \times N$ symmetric matrix $Y$ given by

$$
\mathbf{Y}=\mathbf{G}+\mathbf{X}
$$

where $\mathbf{G}$ is a noise. $\mathbf{X}$ is the signal that we will assume one dimensional

$$
\mathbf{X}=\rho u u^{T}
$$

How can we estimate the signal $\mathbf{X}$ when the dimension $N$ goes to infinity?




## Asymptotic of the spectrum of the noise matrix

Take $\mathbf{G}$ to be symmetric, with centered independent entries with covariance $1 / N$ and let $\left(\lambda_{i}\right)_{1 \leq i \leq N}$ be its eigenvalues.

Theorem (Wigner '56, Komlos-Furedi 81')
Almost surely, for any $a<b$

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \#\left\{i: \lambda_{i} \in[a, b]\right\}=\sigma([a, b])
$$

with $\sigma$ the semi-circle law :

$$
\sigma(d x)=\frac{1}{2 \pi} \sqrt{4-x^{2}} d x
$$



If $E\left[\left|X_{i j}\right|^{4+\epsilon}\right]<\infty$, the eigenvalues stick to the bulk :

$$
\lim _{N \rightarrow \infty} \max _{1 \leq i \leq N} \lambda_{i}=2 \quad \text { a.s }
$$

## The Baik-Ben Arous-Péché phase transition '05

Consider a $N \times N$ random matrix with independent centered entries with covariance

$$
\mathbf{Y}=\mathbf{G}+\rho u u^{T}
$$

where $u$ is a unit vector and $\rho>0$.

- If $\rho<1$, the largest eigenvalue converges almost surely towards 2 , as when $\rho=0$
- If $\rho>1$, the largest eigenvalue converges almost surely towards $\rho+\rho^{-1}$.


## The Baik-Ben Arous-Péché phase transition '05

Consider a $N \times N$ random matrix with independent centered entries with covariance

$$
\mathbf{Y}=\mathbf{G}+\rho u u^{T}
$$

where $u$ is a unit vector and $\rho>0$.

- If $\rho<1$, the largest eigenvalue converges almost surely towards 2 , as when $\rho=0$
- If $\rho>1$, the largest eigenvalue converges almost surely towards $\rho+\rho^{-1}$. If $\rho>1$, the signal can be detected by the largest eigenvalue and moreover Benaych-George-Rao ' 12 showed that it can be weakly recovered in the sense that the eigenvector $v$ corresponding to the largest eigenvalue is such that

$$
\langle u, v\rangle^{2} \rightarrow c(\rho)>0
$$

## Detection

$$
\mathbf{Y}=\mathbf{G}+\rho u u^{T}
$$

- If $\rho>1$, signal can be detected and recovered by Principal Component Analysis (cf Test by P. Bianchi, M. Debbah, M. Maida, J.Najim '11)
- If $\rho<1$ and the noise is Gaussian, \%beginitemize No test based on the eigenvalues can reliably detect the signal (Montanari, Reichman, Zeitouni '17)


## Minimal Mean Squared Error

$$
\mathbf{Y}=\mathbf{G}+\mathbf{X}_{0}
$$

Beyond PCA, a natural approach to estimate $\mathbf{X}$ is to minimize the mean square error

$$
\begin{aligned}
\mathrm{MMSE}_{\mathrm{N}} & =\min _{\theta} \frac{1}{N^{2}} \mathbb{E} \operatorname{Tr}(\mathbf{X}-\theta(\mathbf{Y}))^{2} \\
& =\frac{1}{N^{2}} \mathbb{E} \operatorname{Tr}(\mathbf{X}-\mathbb{E}[\mathbf{X} \mid \mathbf{Y}])^{2} .
\end{aligned}
$$

because the minimum is achieved at $\theta(\mathbf{Y})=\mathbb{E}[\mathbf{X} \mid \mathbf{Y}]$
How can we estimate $\mathbb{E}[\mathbf{X} \mid \mathbf{Y}]$ and MMSE for $N$ large?

## Estimating $\mathbb{E}[\mathbf{X} \mid \mathbf{Y}]$

Assume $G_{i j}$ is an array of independent variables with law $e^{g(y)} d y / Z$. Then with $X_{i j}=\sqrt{N} \rho u_{i} u_{j}$,

$$
Y_{i j}-\omega_{i j}=G_{i j} \Rightarrow \mathbb{P}\left(Y_{i j} \mid \mathbf{X}\right) \sim e^{g\left(y-X_{i j}\right)} d y
$$

By Bayes Theorem, if the law of $\mathbf{X}$ is known and equal to $\mathbb{P}_{X}$

$$
\begin{aligned}
\mathbb{P}(\mathbf{X} \mid \mathbf{Y}) & =\frac{\mathbb{P}(\mathbf{Y} \mid \mathbf{X}) \mathbb{P}_{X}(\mathbf{X})}{\int \mathbb{P}(\mathbf{Y} \mid \mathbf{X}) d \mathbb{P}_{X}(\mathbf{X})} \\
& =\underbrace{e^{e_{i<j} g\left(Y_{i j}-X_{i j}\right)} d \mathbb{P}_{X}(\mathbf{X})}_{Z_{N}(Y)}
\end{aligned}
$$

## Estimating $\mathbb{E}[\mathbf{X} \mid \mathbf{Y}]$

Assume $G_{i j}$ is an array of independent variables with law $e^{g(y)} d y / Z$. Then with $X_{i j}=\sqrt{N} \rho u_{i} u_{j}$,

$$
Y_{i j}-\omega_{i j}=G_{i j} \Rightarrow \mathbb{P}\left(Y_{i j} \mid \mathbf{X}\right) \sim e^{g\left(y-X_{i j}\right)} d y
$$

By Bayes Theorem, if the law of $\mathbf{X}$ is known and equal to $\mathbb{P}_{X}$

$$
\begin{aligned}
\mathbb{P}(\mathbf{X} \mid \mathbf{Y}) & =\frac{\mathbb{P}(\mathbf{Y} \mid \mathbf{X}) \mathbb{P}_{X}(\mathbf{X})}{\int \mathbb{P}(\mathbf{Y} \mid \mathbf{X}) d \mathbb{P}_{X}(\mathbf{X})} \\
& =\underbrace{e^{\left.e^{\sum_{i<j} g\left(Y_{i j}-X_{i j}\right.}\right) d \mathbb{P}_{X}(\mathbf{X})}}_{Z_{N}(Y)} .
\end{aligned}
$$

If $g(x)=-x^{2} / 2$,

$$
\partial_{Y_{i j}} \ln Z_{N}(\mathbf{Y})=\left(\mathbb{E}\left[X_{i j} \mid \mathbf{Y}\right]-Y_{i j}\right)
$$

and one can retrieve the MMSE from the typical behavior of $\mathbf{X}$ under the above measure. One can also retrieve the mutual information from the free energy $\mathbb{E}_{Y} \log Z_{N}(Y)$.

## The free energy

Assume $G_{i j}$ is an array of independent variables with law $e^{g(y)} d y / Z$ and set $X_{i j}=\sqrt{N} \rho u_{i} u_{j}$, One wants to estimate

$$
F_{N}=\frac{1}{N} \mathbb{E}_{Y} \log Z_{N}(Y)=\frac{1}{N} \mathbb{E}_{\mathbf{Y}} \log \int e^{\sum_{i, j} g\left(Y_{i j}-X_{i j}\right)^{2}} d \mathbb{P}_{X}(\mathbf{X})
$$

$\mathbf{Y}$ is assumed to be distributed according to $\mathbf{G}_{0}+\rho N^{-1 / 2} x_{0} x_{0}^{T}$.

## The free energy

Assume $G_{i j}$ is an array of independent variables with law $e^{g(y)} d y / Z$ and set $X_{i j}=\sqrt{N} \rho u_{i} u_{j}$, One wants to estimate

$$
F_{N}=\frac{1}{N} \mathbb{E}_{Y} \log Z_{N}(Y)=\frac{1}{N} \mathbb{E}_{\mathbf{Y}} \log \int e^{\sum_{i, j} g\left(Y_{i j}-X_{i j}\right)^{2}} d \mathbb{P}_{X}(\mathbf{X})
$$

$\mathbf{Y}$ is assumed to be distributed according to $\mathbf{G}_{0}+\rho N^{-1 / 2} x_{0} x_{0}^{T}$.
If the signal has rank one, and $g(x)=-x^{2} / 2$ then $F_{N}$ ressembles the free energy of spin glasses that can be estimated by Guerra-Talagrand's techniques:
if $X_{i j}=N^{1 / 2} \rho u_{i} u_{j}, u_{i}=N^{-1 / 2} x_{i}, x_{i}$ iid law $\mathbb{P}_{X}$,

$$
F_{N}=\frac{1}{N} \mathbb{E}_{\mathbf{Y}} \log \int e^{\rho N^{-1 / 2}\left\langle\mathbf{x}, \mathbf{Y}_{\mathbf{x}}\right\rangle} d \mathbb{P}_{X}^{\otimes N}(\mathbf{x})+C
$$

## Mutual information in the homogeneous low rank case

Consider the Bayes optimal setting

$$
\mathbf{Y}=\mathbf{G}_{0}+\frac{\rho}{N} \mathbf{x}_{0} \mathbf{x}_{0}^{T}
$$

where $\mathbf{G}_{0}$ follows, as $\mathbf{G}$, the Gaussian law $\left(g(x)=-x^{2} / 2\right)$ and the $x_{0}(i)$ iid with law $\mathbb{P}_{0}=\mathbb{P}_{X}$ centered.
Theorem (Lelarge-Miolane '17)

$$
\lim _{N \rightarrow \infty} F_{N}=\frac{\rho}{4} \mathbb{E}_{\mathbb{P}_{0}}\left[x^{2}\right]-\sup _{q \geq 0} \mathcal{F}(\rho, q)
$$

The supremum in $q$ is achieved at $q^{*}(\rho)=\max (0,1-1 / \rho)$ and $\mathcal{F}(\rho, 0)=0$. Moreover :

$$
\lim _{N \rightarrow \infty} \operatorname{MMSE}_{N}(\rho)=E_{P_{0}}\left[X^{2}\right]^{2}-q^{*}(\rho)^{2}
$$

As for the BBP transition, the transition occurs at $\rho=1$.
Here $\mathcal{F}(s, q)$ is the Parisi functional :

$$
\mathcal{F}(s, q)=-\frac{\rho^{2}}{4} q^{2}+\mathbb{E}_{\substack{z \widetilde{\widetilde{X} \sim P_{0}(0) 1}}}\left[\log \int d \mathbb{P}_{0}(X) \exp \left\{\rho \sqrt{q} Z x+\rho q x X-\frac{\rho}{2} q x^{2}\right\}\right]
$$

## Inhomogeneous Low Rank estimation

## $\mathbf{Y}=\Delta \odot \mathbf{G}+\mathbf{X}, \mathbf{X}=x x^{T}$

$$
F_{N}(\Delta)=\frac{1}{N} \mathbb{E}_{Y} \log Z_{N}(Y)=\frac{1}{N} \mathbb{E} \log \int e^{-\sum_{i<j} \frac{1}{2 \Delta_{i j}^{2}}\left(Y_{i j}-\frac{1}{\sqrt{N}} x_{i} \cdot x_{j}\right)^{2}} d \mathbb{P}_{X}^{\otimes N}(x) .
$$

Theorem (Barbier-Reeves'20, Behne-Reeves '22,
Ko-G-Zdeborova-Krzakala '22)
Assume $\Delta_{i j}=\Delta_{s t}$ for $i, j \in I_{s} \times I_{t},\left|I_{s}\right| / N \mapsto \alpha_{s}, 1 \leq i, j \leq n$ so that $\left(\Delta_{s, t}^{-1}\right)_{s, t} \geq 0$ and $\mathbb{P}_{0}=\mathbb{P}_{X}$. Then,

$$
\lim _{N \rightarrow \infty} F_{N}(\Delta)=\sup _{Q} \varphi_{\Delta}(\mathbf{Q}) .
$$

## Inhomogeneous Low Rank estimation

## $\mathbf{Y}=\Delta \odot \mathbf{G}+\mathbf{X}, \mathbf{X}=x x^{T}$

$$
F_{N}(\Delta)=\frac{1}{N} \mathbb{E}_{Y} \log Z_{N}(Y)=\frac{1}{N} \mathbb{E} \log \int e^{-\sum_{i<j} \frac{1}{2 \Delta_{i j}^{2}}\left(Y_{i j}-\frac{1}{\sqrt{N}} x_{i} \cdot x_{j}\right)^{2}} d \mathbb{P}_{X}^{\otimes N}(x)
$$

Theorem (Barbier-Reeves'20, Behne-Reeves '22,
Ko-G-Zdeborova-Krzakala '22)
Assume $\Delta_{i j}=\Delta_{s t}$ for $i, j \in I_{s} \times I_{t},\left|I_{s}\right| / N \mapsto \alpha_{s}, 1 \leq i, j \leq n$ so that $\left(\Delta_{s, t}^{-1}\right)_{s, t} \geq 0$ and $\mathbb{P}_{0}=\mathbb{P}_{X}$. Then,

$$
\lim _{N \rightarrow \infty} F_{N}(\Delta)=\sup _{Q} \varphi_{\Delta}(\mathbf{Q}) .
$$

- If $\left\|\sqrt{\alpha} \frac{1}{\Delta^{2}} \sqrt{\alpha}\right\|_{o p}<\frac{1}{9 d^{4} C^{\sigma}}$ then $\lim _{N \rightarrow \infty} \mathrm{MMSE}=\mathbb{E}_{X}\left\|x x^{\top}\right\|_{2}^{2}$.


## Inhomogeneous Low Rank estimation

## $\mathbf{Y}=\Delta \odot \mathbf{G}+\mathbf{X}, \mathbf{X}=x x^{T}$

$$
F_{N}(\Delta)=\frac{1}{N} \mathbb{E}_{Y} \log Z_{N}(Y)=\frac{1}{N} \mathbb{E} \log \int e^{-\sum_{i<j} \frac{1}{2 \Delta_{i j}^{2}}\left(Y_{i j}-\frac{1}{\sqrt{N}} x_{i} \cdot x_{j}\right)^{2}} d \mathbb{P}_{X}^{\otimes N}(x)
$$

Theorem (Barbier-Reeves'20, Behne-Reeves '22,
Ko-G-Zdeborova-Krzakala '22)
Assume $\Delta_{i j}=\Delta_{s t}$ for $i, j \in I_{s} \times I_{t},\left|I_{s}\right| / N \mapsto \alpha_{s}, 1 \leq i, j \leq n$ so that $\left(\Delta_{s, t}^{-1}\right)_{s, t} \geq 0$ and $\mathbb{P}_{0}=\mathbb{P}_{X}$. Then,

$$
\lim _{N \rightarrow \infty} F_{N}(\Delta)=\sup _{Q} \varphi_{\Delta}(\mathbf{Q}) .
$$

- If $\left\|\sqrt{\alpha} \frac{1}{\Delta^{2}} \sqrt{\alpha}\right\|_{o p}<\frac{1}{9 d^{4} C^{\sigma}}$ then $\lim _{N \rightarrow \infty} \operatorname{MMSE}=\mathbb{E}_{X}\left\|x x^{\top}\right\|_{2}^{2}$.
- If $\left\|\sqrt{\alpha} \frac{1}{\Delta^{2}} \sqrt{\alpha}\right\|_{o p}>\frac{1}{\mathbb{E}_{X}\left\|x x^{T}\right\|_{2}^{2}}$ then $\lim _{N \rightarrow \infty} \operatorname{MMSE}<\mathbb{E}_{X}\left\|x x^{T}\right\|_{2}^{2}$. Sharp if $\mathbb{P}_{X}$ is Gaussian.


## Inhomogeneous Low Rank estimation

## $\mathbf{Y}=\Delta \odot \mathbf{G}+\mathbf{X}, \mathbf{X}=x x^{T}$

$$
F_{N}(\Delta)=\frac{1}{N} \mathbb{E}_{Y} \log Z_{N}(Y)=\frac{1}{N} \mathbb{E} \log \int e^{-\sum_{i<} \frac{1}{2 \Delta_{i j}^{2}}\left(Y_{i j}-\frac{1}{\sqrt{N}} x_{i} x_{j}\right)^{2}} d \mathbb{P}_{X}^{\otimes N}(x) .
$$

Theorem (Barbier-Reeves'20, Behne-Reeves '22,
Ko-G-Zdeborova-Krzakala '22)
Assume $\Delta_{i j}=\Delta_{s t}$ for $i, j \in I_{s} \times I_{t},\left|I_{s}\right| / N \mapsto \alpha_{s}, 1 \leq i, j \leq n$ so that $\left(\Delta_{s, t}^{-1}\right)_{s, t} \geq 0$ and $\mathbb{P}_{0}=\mathbb{P}_{X}$. Then,

$$
\lim _{N \rightarrow \infty} F_{N}(\Delta)=\sup _{Q} \varphi_{\Delta}(\mathbf{Q}) .
$$

- If $\left\|\sqrt{\alpha} \frac{1}{\Delta^{2}} \sqrt{\alpha}\right\|_{o p}<\frac{1}{9 d^{4} C^{\sigma}}$ then $\lim _{N \rightarrow \infty} \mathrm{MMSE}=\mathbb{E}_{X}\left\|x x^{\top}\right\|_{2}^{2}$.
- If $\left\|\sqrt{\alpha} \frac{1}{\Delta^{2}} \sqrt{\alpha}\right\|_{o p}>\frac{1}{\mathbb{E}_{X}\left\|x x^{T}\right\|_{2}^{2}}$ then $\lim _{N \rightarrow \infty} \operatorname{MMSE}<\mathbb{E}_{X}\left\|x x^{T}\right\|_{2}^{2}$. Sharp if $\mathbb{P}_{X}$ is Gaussian.
- same transition as BBP for $\Delta^{-2} \odot \mathbf{Y}-\frac{1}{N} \operatorname{diag}\left(\Delta^{-2} 1\right)$ (WIP Ko, Mergny, Pak)


## Universality Questions

- Universality with respect to the law of the noise G,
- Universality with respect to the noise which may not be additive,
- Universality with respect to the distribution of $u=x / \sqrt{N}$ and $u_{0}=x_{0} / \sqrt{N}$ and $\mathbf{G}, \mathbf{G}_{0}$ : in non-Bayesian (or mismatched setting), we may have

$$
\mathbb{P}_{0} \neq \mathbb{P}_{X}, \quad \text { Law of }\left(\mathbf{G}_{0} \mid u_{0}\right) \neq \operatorname{Law} \text { of }(\mathbf{G} \mid u)
$$

This is a technical challenge as this destroys symmetry between replicas (we are not on the Nishimori line anymore) so that classical spin glass techniques do not apply.

## Universality Heuristics

Lesieur, Krzakala, Zdeborova '17 : Study for general $g$ the conditional law

$$
d \mathbf{G}_{N}^{Y}(\mathbf{x})=\frac{1}{Z_{X}^{g}(\mathbf{Y})} \prod_{1 \leq i<j \leq N} e^{g\left(Y_{i j}, \frac{x_{i} i_{j}}{\sqrt{N}}\right)} \prod_{1 \leq i \leq N} d \mathbb{P}_{X}\left(x_{i}\right)
$$

where

$$
\operatorname{Law} \operatorname{of}(\mathbf{Y})=\frac{1}{Z_{0}} e^{\sum_{i j} g^{0}\left(y_{i j}, \rho N^{-1 / 2} x_{i}^{0} x_{j}^{0}\right)} d \mathbb{P}_{0}^{\otimes N}\left(x_{0}\right) \prod d y_{i j},
$$

with $g \neq g^{0}$ and $\mathbb{P}_{X} \neq \mathbb{P}_{0}$.
Predict by the so-called replica approach the limit of

$$
F_{N}(g)=\mathbb{E}_{\mathbf{Y}}\left[\frac{1}{N} \log Z_{X}^{g}(\mathbf{Y})-\frac{1}{N} \sum_{i<j} g\left(y_{i j}, 0\right)\right]
$$

-> The goal of our recent research is to prove these results.

## Universality

- Assume that $\mathbb{P}_{0}$ and $\mathbb{P}_{X}$ are compactly supported,
- The functions $g(Y, w), g^{0}(Y, w)$ are three times differentiable in $w$,
- Consistent estimator : $\int \partial_{w} g(y, 0) e^{g^{0}(y, 0)} d y=0$.


## Theorem (Ko-G-Zdeborova-Krzakala '23)

Let

$$
H_{N}^{\bar{\beta}}\left(\mathbf{x}: \mathbf{x}^{0}, W\right)=\sum_{i<j}\left(\beta \frac{W_{i j}}{\sqrt{N}} x_{i} x_{j}+\frac{\beta_{S N R}}{N} x_{i} x_{j} x_{i}^{0} x_{j}^{0}+\frac{\beta_{S}}{2 N}\left(x_{i} x_{j}\right)^{2}\right)
$$

and if $W_{i j}$ are iid $N(0,1)$, $x_{0}$ iid law $\mathbb{P}_{0}$,

$$
F_{N}(\bar{\beta})=\mathbb{E}_{W, \mathbf{x}^{0}}\left[\frac{1}{N} \log \int e^{H_{N}^{\bar{\beta}}\left(\mathrm{x}: \mathrm{x}^{0}, W\right)} d \mathbb{P}_{X}^{\otimes N}(\mathbf{x})\right]
$$

Then

$$
\left|F_{N}(g)-F_{N}(\bar{\beta})\right|=O\left(N^{-1 / 2}\right)
$$

where, if $\mathbb{P}_{\text {out }}^{0} \simeq e^{g^{0}(y, 0)} d y, \beta=\mathbb{E}_{\mathbb{P}_{\text {out }}^{0}}\left[\left(\partial_{w} g(y, 0)\right)^{2}\right]^{1 / 2}$,
$\beta_{S N R}=\mathbb{E}_{\mathbb{P}_{\text {out }}^{0}}\left[\partial_{w} g(y, 0) \partial_{w} g^{0}(y, 0)\right], \beta_{S}=\mathbb{E}_{\mathbb{P}_{\text {out }}^{0}}\left[\partial_{w}^{2} g(y, 0)\right]$.

## Limiting free energy

## Theorem (Ko-G-Zdeborova-Krzakala '23)

For any real numbers $\bar{\beta}=\left(\beta, \beta_{S N R}, \beta_{S}\right)$,
$\lim _{N \rightarrow \infty} F_{N}(\bar{\beta})=\sup _{S, M}\left\{\varphi_{\bar{\beta}}(S, M)\right\}, \quad \varphi_{\bar{\beta}}(S, M)=\varphi_{\beta}(S, M)+\frac{\beta_{S N R} M^{2}}{2}+\frac{\beta_{S} S^{2}}{4}$
The limit is given by
$\varphi_{\beta}(S, M)=\inf _{\mu, \lambda, \zeta, Q}\left(\mathbb{E}_{0}\left[X_{0}(\lambda, \mu, Q, \zeta)\right]-\mu S-\lambda M-\frac{\beta^{2}}{4} \sum_{k=0}^{r-1} \zeta_{k}\left(Q_{k+1}^{2}-Q_{k}^{2}\right)\right)$
where $\lambda, \mu \in \mathbb{R}^{2}$ and for $\zeta_{-1}=0<\zeta_{0}<\cdots<\zeta_{r-1}<1$ and $0=Q_{0} \leq Q_{1} \leq \cdots \leq Q_{r-1} \leq Q_{r}=S$ we defined recursively the random variables $X_{r}, X_{r-1}, \ldots, X_{0}$ by

$$
X_{r}=\log \int e^{\beta \sum_{j=1}^{r} z_{i} x+\lambda x^{2}+\mu x x^{0}} d \mathbb{P}_{x}(x), X_{j}=\frac{1}{\zeta_{j}} \log \mathbb{E}_{z_{j+1}} e^{\zeta_{j} X_{j+1}}
$$

where $z_{j}$ are Gaussian random variables with variance $Q_{j}-Q_{j-1}$ and $x^{0}$ is an independent random variable with distribution $\mathbb{P}_{0}$.

## Quenched Large deviations for the overlaps

Recall $H_{N}^{\bar{\beta}}\left(\mathbf{x}: \mathbf{x}^{0}, W\right)=\sum_{i<j} \beta \frac{W_{i j}}{\sqrt{N}} x_{i} x_{j}+\frac{\beta_{S N R}}{2} N R_{1,0}^{2}+\frac{\beta_{s}}{4} N R_{1,1}^{2}$ and let

$$
d \mathbf{G}_{\bar{\beta}}^{N}(\mathbf{x})=\frac{1}{Z_{N}\left(\mathbf{x}^{0}, W\right)} e^{H_{N}^{\bar{\beta}}\left(\mathbf{x}: \mathbf{x}^{0}, W\right)} d \mathbb{P}_{X}^{\otimes N}(\mathbf{x})
$$

where $R_{\cdot, * *}$ are the overlaps $R_{1,1}:=\frac{1}{N} \sum_{i=1}^{N} x_{i}^{2}, \quad R_{1,0}:=\frac{1}{N} \sum_{i=1}^{N} x_{i} x_{i}^{0}$.

## Theorem

For every $\bar{\beta}=\left(\beta, \beta_{S N R}, \beta_{S}\right) \in \mathbb{R}^{3}$, the law of $\left(R_{1,1}, R_{1,0}\right)$ under $\mathbf{G}_{\bar{\beta}}^{N}$ satisfies an almost sure $L D P$ with good rate function $I_{\bar{\beta}}^{F P}$ given by

$$
I_{\bar{\beta}}^{F P}(S, M)=-\varphi_{\bar{\beta}}(S, M)+\sup _{s, m}\left(\varphi_{\bar{\beta}}(s, m)\right) .
$$

In other words, for any measurable subset $B$ of $\mathbb{R}^{2}$, for almost all $\left(W, \mathbf{x}^{0}\right)$,

$$
\begin{aligned}
& -\inf _{(S, M) \in B^{\circ}} I_{\bar{\beta}}^{F P}(S, M) \leq \liminf _{N \rightarrow \infty} \frac{1}{N} \log \mathbf{G}_{\bar{\beta}}^{N}\left(\left(R_{1,1}, R_{1,0}\right) \in O\right) \leq \\
& \quad \leq \limsup _{N \rightarrow \infty} \frac{1}{N} \log \mathbf{G}_{\bar{\beta}}^{N}\left(\left(R_{1,1}, R_{1,0}\right) \in B\right) \leq-\inf _{(S, M) \in \bar{B}} I_{\bar{\beta}}^{F P}(S, M)
\end{aligned}
$$

## Comments on large deviations

- The large deviation for $R_{1,1}$ under $\mathbf{G}_{\beta, 0,0}^{N}$ was proven by Panchenko '15, The main point of our work is to extend it to $R_{1,0}$.


## Comments on large deviations

- The large deviation for $R_{1,1}$ under $\mathbf{G}_{\beta, 0,0}^{N}$ was proven by Panchenko '15, The main point of our work is to extend it to $R_{1,0}$.
- It is enough to prove the LDP when $\beta_{S N R}=\beta_{S}=0$ by Varadhan's Lemma,


## Comments on large deviations

- The large deviation for $R_{1,1}$ under $\mathbf{G}_{\beta, 0,0}^{N}$ was proven by Panchenko '15, The main point of our work is to extend it to $R_{1,0}$.
- It is enough to prove the LDP when $\beta_{S N R}=\beta_{S}=0$ by Varadhan's Lemma,
- If $I_{\bar{\beta}}^{F P}$ has a unique minimizer $\left(S^{*}, M^{*}\right)$, they are the almost sure limit of the overlaps under $\mathbf{G}_{\bar{\beta}}^{N}$.


## Comments on large deviations

- The large deviation for $R_{1,1}$ under $\mathbf{G}_{\beta, 0,0}^{N}$ was proven by Panchenko '15, The main point of our work is to extend it to $R_{1,0}$.
- It is enough to prove the LDP when $\beta_{S N R}=\beta_{S}=0$ by Varadhan's Lemma,
- If $I_{\bar{\beta}}^{F P}$ has a unique minimizer $\left(S^{*}, M^{*}\right)$, they are the almost sure limit of the overlaps under $\mathbf{G}_{\bar{\beta}}^{N}$.
- The large deviations can be extended to the original Gibbs measures

$$
d \mathbf{G}_{Y}^{N}(\mathbf{x} \in A)=\frac{1}{Z_{Y}^{N}} e^{\sum_{i j} g\left(Y_{i j}, \frac{x_{i} x_{j}}{\sqrt{N}}\right)} d \mathbb{P}_{X}^{\otimes N}(\mathbf{x})
$$

and our results show they are universal given the parameters $\beta=\mathbb{E}_{\mathbb{P}_{\text {out }}^{0}}\left[\left(\partial_{w} g(y, 0)\right)^{2}\right]^{1 / 2}, \beta_{S N R}=\mathbb{E}_{\mathbb{P}_{\text {out }}^{0}}\left[\partial_{w} g(y, 0) \partial_{w} g^{0}(y, 0)\right]$, $\beta_{S}=\mathbb{E}_{\mathbb{P}_{\text {out }}^{0}}\left[\partial_{w}^{2} g(y, 0)\right]$. This shows universality of likelihood in a large class of problems.

## Comments on phase transitions

- Phase transition are complicated to establish in general : it is open.


## Comments on phase transitions

- Phase transition are complicated to establish in general : it is open.
- Particular cases of mismatched studied by Pourkamali-Macris '20, Camilli, Contucci, Mingione '22, Barbier, Hou, Mondelli, Saenz '22.


## Comments on phase transitions

- Phase transition are complicated to establish in general : it is open.
- Particular cases of mismatched studied by Pourkamali-Macris '20, Camilli, Contucci, Mingione '22, Barbier, Hou, Mondelli, Saenz '22.
- When $\beta=L \beta^{\prime}, \beta_{S N R}=L \beta_{S N R}, \beta_{S}=L \beta_{S}^{\prime}$, and $\mathbb{P}_{X}$ is invariant under rotation, we find again the BBP transition since :

$$
H_{N}^{\bar{\beta}}\left(\mathbf{x}: \mathbf{x}^{0}, W\right)=\sum_{i<j}\left(\beta \frac{W_{i j}}{\sqrt{N}} x_{i} x_{j}+\frac{\beta_{S N R}}{N} x_{i} x_{j} x_{i}^{0} x_{j}^{0}+\frac{\beta_{S}}{2 N}\left(x_{i} x_{j}\right)^{2}\right)
$$

so that for $L$ large

$$
\begin{aligned}
& \frac{1}{L} F_{N}(\bar{\beta})=E_{W, \mathbf{x}^{0}}\left[\frac{1}{N L} \log \int e^{H_{N}^{\bar{\beta}}\left(\mathbf{x}: x^{0}, W\right)} d \mathbb{P}_{X}^{\otimes N}(\mathbf{x})\right] \\
& \quad \simeq \frac{1}{2} \operatorname{essup}_{x \in \mathbb{R}^{N}}\left\{\left\langle x,\left(\beta^{\prime} W+\beta_{S N R}^{\prime} x_{0} x_{0}^{T}\right) x\right\rangle+\frac{\beta_{S}^{\prime}}{2}\|x\|_{2}^{4}\right\}
\end{aligned}
$$

## Idea of the proof : Universality

We prove that for $A$ a measurable subset of $\mathbb{R}^{2}$

$$
F_{N}(g, A)=\mathbb{E}\left[\frac{1}{N} \log \int 1_{\left(R_{1,1}, R_{1,0}\right) \in A} e^{\sum_{i j}\left(g\left(Y_{i j}, \frac{x_{i} x_{j}}{\sqrt{N}}\right)-g\left(Y_{i j}, 0\right)\right)} d \mathbb{P}_{X}^{\otimes N}(\mathbf{x})\right]
$$

is close to
$F_{N}(\bar{\beta}, A)=\mathbb{E} \frac{1}{N} \log \int 1_{\left(R_{1,1}, R_{1,0}\right) \in A} e^{\sum_{i<j}\left(\beta \frac{w_{j j}}{\sqrt{N}} x_{i} x_{j}+\frac{\beta S N R}{N} x_{i} x_{j} x_{i}^{0} x_{j}^{0}+\frac{\beta_{S}}{2 N}\left(x_{i} x_{j}\right)^{2}\right)} d \mathbb{P}_{X}^{\otimes N}(\mathbf{x}):$

- by expanding $g$ with respect to its second variable (bounded by $1 / \sqrt{N}$ ) :

$$
g\left(Y_{i j}, \frac{x_{i} x_{j}}{\sqrt{N}}\right)-g\left(Y_{i j}, 0\right)=\partial_{w} g\left(Y_{i j}, 0\right) \frac{x_{i} x_{j}}{\sqrt{N}}+\frac{1}{2 N} \partial_{w}^{2} g\left(Y_{i j}, 0\right) x_{i}^{2} x_{j}^{2}+o\left(\frac{1}{N}\right)
$$

- Conditionally to $\mathbf{x}^{0},\left(\partial_{w} g\left(Y_{i j}, 0\right)\right)_{i<j}$ are independent variables with, by the consistent estimator hypothesis $\mathbb{E}_{P_{\text {out }}} \partial_{w} g(Y, 0)=0$

$$
\mathbb{E}\left[\partial_{w} g\left(Y_{i j}, 0\right)\right]=\frac{\beta_{S N R}}{\sqrt{N}} x_{i}^{0} x_{j}^{0}+O\left(\frac{1}{N}\right), \operatorname{Var}\left(\partial_{w} g(Y, 0)\right)^{2}=\beta^{2}+O\left(\frac{1}{\sqrt{N}}\right)
$$

- The usual universality techniques for spin glasses can be generalized to our setting.


## Idea of the proof of the Large deviations principle

- We show that

$$
\mathbf{x}^{0}, W \rightarrow F_{N}^{S K}(A)=\frac{1}{N} \log \int 1_{\left(R_{1,1}, R_{1,0}\right) \in A} e^{\sum_{i<j} \beta \frac{W_{i j}}{\sqrt{N}} x_{i} x_{j}} d \mathbb{P}_{X}^{\otimes N}(\mathbf{x})
$$

self-averages by concentration of measure, cf Talagrand (the difficulty being that it is not smooth in $\mathbf{x}^{0}$ )

## Idea of the proof of the Large deviations principle

- We show that

$$
\mathbf{x}^{0}, W \rightarrow F_{N}^{S K}(A)=\frac{1}{N} \log \int 1_{\left(R_{1,1}, R_{1,0}\right) \in A} e^{\sum_{i<j} \beta \frac{w_{i j}}{\sqrt{N}} x_{i} x_{j}} d \mathbb{P}_{X}^{\otimes N}(\mathbf{x})
$$

self-averages by concentration of measure, of Talagrand (the difficulty being that it is not smooth in $\mathbf{x}^{0}$ )

- We use the interpolation trick to show that, for any $0<\zeta_{0}<\cdots<\zeta_{r-1}<1$ and $0=Q_{0} \leq Q_{1} \leq \cdots \leq Q_{r-1} \leq Q_{r}=S$, even though we are not on the Nishimori line, because the overlaps are fixed in $B_{\epsilon}(S, M)=\left\{\left|R_{1,1}-S\right| \leq \epsilon\right\} \cap\left\{\left|R_{1,0}-M\right| \leq \epsilon\right\}$ :

$$
\begin{aligned}
\mathbb{E}\left[F_{N}^{S K}\left(B_{\epsilon}(S, M)\right)\right] & \leq \frac{1}{N} \mathbb{E} \log \sum_{\alpha} v_{\alpha} \int_{B_{\epsilon}(S, M)} e^{\beta \sum_{i \leq N} z_{i}(\alpha) x_{i}} d \mathbb{P}_{X}^{\otimes N}(\mathbf{x}) \\
& -\frac{1}{N} \mathbb{E} \log \sum_{\alpha} v_{\alpha} e^{\sqrt{N} \beta Y(\alpha)}+o_{\epsilon, N}(1)
\end{aligned}
$$

where $v_{\alpha}$ are Ruelle probability cascades, and $Z(\alpha)$ and $Y(\alpha)$ centered Gaussian processes

$$
\mathbb{E} Z\left(\alpha^{1}\right) Z\left(\alpha^{2}\right)=Q_{\alpha^{1} \wedge \alpha^{2}} \quad \mathbb{E} Y\left(\alpha^{1}\right) Y\left(\alpha^{2}\right)=\frac{1}{2} Q_{\alpha^{1} \wedge \alpha^{2}}^{2}
$$

## Idea of the proof : Large deviations

- We use Cramer's tilting argument to bound the first term by

$$
\begin{aligned}
& \frac{1}{N} \mathbb{E} \log \sum_{\alpha} v_{\alpha} \int_{B_{\epsilon}(S, M)} e^{\beta \sum_{i \leq N} z_{i}(\alpha) x_{i}} d \mathbb{P}_{X}^{\otimes N}(\mathbf{x}) \\
& \leq-\mu S-\lambda M+\frac{1}{N} \mathbb{E} \log \sum_{\alpha} v_{\alpha} \int e^{\sum_{i \leq N}\left\{\beta z_{i}(\alpha) x_{i}+\lambda x_{i}^{2}+\mu x_{i} x_{i}^{0}\right\}} d \mathbb{P}_{X}^{\otimes N}(\mathbf{x})+o(1) \\
& \leq-\mu S-\lambda M+\mathbb{E}_{0} X_{0}-\frac{\beta^{2}}{4} \sum_{k=0}^{r-1} \zeta_{k}\left(Q_{k+1}^{2}-Q_{k}^{2}\right)+o(1) .
\end{aligned}
$$

## Idea of the proof : Large deviations

- We use Cramer's tilting argument to bound the first term by

$$
\begin{aligned}
& \frac{1}{N} \mathbb{E} \log \sum_{\alpha} v_{\alpha} \int_{B_{\epsilon}(S, M)} e^{\beta \sum_{i \leq N} z_{i}(\alpha) x_{i}} d \mathbb{P}_{X}^{\otimes N}(\mathbf{x}) \\
& \leq-\mu S-\lambda M+\frac{1}{N} \mathbb{E} \log \sum_{\alpha} v_{\alpha} \int e^{\sum_{i \leq N}\left\{\beta Z_{i}(\alpha) x_{i}+\lambda x_{i}^{2}+\mu x_{i} x_{i}^{0}\right\}} d \mathbb{P}_{X}^{\otimes N}(\mathbf{x})+o(1) \\
& \leq-\mu S-\lambda M+\mathbb{E}_{0} X_{0}-\frac{\beta^{2}}{4} \sum_{k=0}^{r-1} \zeta_{k}\left(Q_{k+1}^{2}-Q_{k}^{2}\right)+o(1) .
\end{aligned}
$$

- To prove the lower bound, we use the cavity computations and the standard procedure of the Aizenman-Sims-Starr scheme (but now we may have symmetry breaking and use Ruelle probability cascades). We then remove the indicator function of $B_{\epsilon}(S, M)$ by showing that tilting is optimal for some choice of $\mu, \lambda$ as in Cramer's proof. A difficulty is to deal with atypical $\mathbf{x}^{0}$.


## Conclusion

- The problem of estimating a vector from its noisy observation leads to exciting problems in random matrix theory and spin glasses theory,
- Studying transition and detectability from the formulas is not obvious.
- Constructing optimal algorithms is a natural question, see Krzakala, Ko, Pak '23.


## Joyeux anniversaire Elisabeth!

