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Matrix Estimation

Observe a N × N symmetric matrix Y given by

Y = G + X
where G is a noise. X is the signal that we will assume one dimensional

X = ρuuT

How can we estimate the signal X when the dimension N goes to infinity ?
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Asymptotic of the spectrum of the noise matrix

Take G to be symmetric, with centered independent entries with covariance
1/N and let (λi)1≤i≤N be its eigenvalues.

Theorem (Wigner ’56 , Komlos-Furedi 81’)
Almost surely, for any a < b

lim
N→∞

1
N#{i : λi ∈ [a, b]} = σ([a, b])

with σ the semi-circle law :

σ(dx) = 1
2π
√
4− x2dx

If E [|Xij |4+ε] <∞, the eigenvalues stick to the bulk :

lim
N→∞

max
1≤i≤N

λi = 2 a.s
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The Baik-Ben Arous-Péché phase transition ’05

Consider a N × N random matrix with independent centered entries with
covariance

Y = G + ρuuT

where u is a unit vector and ρ > 0.
I If ρ < 1, the largest eigenvalue converges almost surely towards 2, as
when ρ = 0

I If ρ > 1, the largest eigenvalue converges almost surely towards ρ + ρ−1.

If ρ > 1, the signal can be detected by the largest eigenvalue and moreover
Benaych-George-Rao ’12 showed that it can be weakly recovered in the sense
that the eigenvector v corresponding to the largest eigenvalue is such that

〈u, v〉2 → c(ρ) > 0 .
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Detection

Y = G + ρuuT

I If ρ > 1, signal can be detected and recovered by Principal Component
Analysis (cf Test by P. Bianchi, M. Debbah, M. Maida, J.Najim ’11)

I If ρ < 1 and the noise is Gaussian, %beginitemize No test based on the
eigenvalues can reliably detect the signal (Montanari, Reichman,
Zeitouni ’17)
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Minimal Mean Squared Error

Y = G + X0

Beyond PCA, a natural approach to estimate X is to minimize the mean
square error

MMSEN = minθ
1
N2ETr(X− θ(Y))2

= 1
N2ETr(X− E[X|Y])2.

because the minimum is achieved at θ(Y) = E[X|Y]

How can we estimate E[X|Y] and MMSE for N large ?
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Estimating E[X|Y]
Assume Gij is an array of independent variables with law eg(y)dy/Z . Then
with Xij =

√
Nρuiuj ,

Yij − ωij = Gij ⇒ P(Yij |X) ∼ eg(y−Xij )dy

By Bayes Theorem, if the law of X is known and equal to PX

P(X|Y) = P(Y|X)PX (X)∫
P(Y|X)dPX (X)

= e
∑

i<j g(Yij−Xij )dPX (X)∫
e
∑

i<j g(Yij−Xij )dPX (X)︸ ︷︷ ︸
ZN(Y )

.

If g(x) = −x2/2,
∂Yij lnZN(Y) = (E[Xij |Y]− Yij)

and one can retrieve the MMSE from the typical behavior of X under the
above measure. One can also retrieve the mutual information from the free
energy EY log ZN(Y ).
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The free energy

Assume Gij is an array of independent variables with law eg(y)dy/Z and set
Xij =

√
Nρuiuj , One wants to estimate

FN = 1
NEY log ZN(Y ) = 1

NEY log
∫
e
∑

i,j g(Yij−Xij )2
dPX (X).

Y is assumed to be distributed according to G0 + ρN−1/2x0xT
0 .

If the signal has rank one, and g(x) = −x2/2 then FN ressembles the free
energy of spin glasses that can be estimated by Guerra-Talagrand’s
techniques :
if Xij = N1/2ρuiuj , ui = N−1/2xi , xi iid law PX ,

FN = 1
NEY log

∫
eρN−1/2〈x,Yx〉dP⊗N

X (x) + C
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Mutual information in the homogeneous low rank case
Consider the Bayes optimal setting

Y = G0 + ρ

N x0xT
0

where G0 follows, as G, the Gaussian law (g(x) = −x2/2) and the x0(i) iid
with law P0 = PX centered.

Theorem (Lelarge-Miolane ’17)
lim

N→∞
FN = ρ

4EP0[x2]− sup
q≥0
F(ρ, q)

The supremum in q is achieved at q∗(ρ) = max(0, 1− 1/ρ) and
F(ρ, 0) = 0. Moreover :

lim
N→∞

MMSEN(ρ) = EP0[X 2]2 − q∗(ρ)2 .

As for the BBP transition, the transition occurs at ρ = 1.

Here F(s, q) is the Parisi functional :

F(s, q) = −ρ
2

4 q2 + EZ'N(0,1)
X'P0

[log
∫
dP0(X ) exp{ρ√qZx + ρqxX − ρ

2qx
2}]
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Inhomogeneous Low Rank estimation
Y = ∆� G + X,X = xxT

FN(∆) = 1
NEY log ZN(Y ) = 1

NE log
∫
e
−
∑

i<j
1

2∆2
ij

(Yij− 1√
N

xi .xj )2

dP⊗N
X (x).

Theorem (Barbier-Reeves’20, Behne-Reeves ’22,
Ko-G-Zdeborova-Krzakala ’22)
Assume ∆ij = ∆st for i , j ∈ Is × It , |Is |/N 7→ αs , 1 ≤ i , j ≤ n so that
(∆−1

s,t )s,t ≥ 0 and P0 = PX . Then,
lim

N→∞
FN(∆) = sup

Q
ϕ∆(Q).

I If
∥∥∥∥∥√α 1

∆2
√
α

∥∥∥∥∥
op
< 1

9d4C6 then limN→∞MMSE = EX‖xxT‖2
2.

I If
∥∥∥∥∥√α 1

∆2
√
α

∥∥∥∥∥
op
> 1

EX‖xxT‖2
2
then limN→∞MMSE < EX‖xxT‖2

2.

Sharp if PX is Gaussian.
I same transition as BBP for ∆−2 �Y− 1

Ndiag(∆−21) (WIP Ko, Mergny,
Pak)
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Universality Questions

I Universality with respect to the law of the noise G,

I Universality with respect to the noise which may not be additive,

I Universality with respect to the distribution of u = x/
√
N and

u0 = x0/
√
N and G,G0 : in non-Bayesian (or mismatched setting), we

may have
P0 6= PX , Law of(G0|u0) 6= Law of(G|u)

This is a technical challenge as this destroys symmetry between replicas
(we are not on the Nishimori line anymore) so that classical spin glass
techniques do not apply.
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Universality Heuristics

Lesieur, Krzakala, Zdeborova ’17 : Study for general g the conditional law

dGY
N (x) = 1

Z g
X (Y)

∏
1≤i<j≤N

eg(Yij ,
xi xj√

N
) ∏

1≤i≤N
dPX (xi)

where
Law of(Y) = 1

Z0
e
∑

ij g0(yij ,ρN−1/2x0
i x0

j )dP⊗N
0 (x0)

∏
dyij ,

with g 6= g0 and PX 6= P0.
Predict by the so-called replica approach the limit of

FN(g) = EY[ 1N log Z g
X (Y)− 1

N
∑
i<j

g(yij , 0)] .

–> The goal of our recent research is to prove these results.
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Universality
I Assume that P0 and PX are compactly supported,
I The functions g(Y ,w), g0(Y ,w) are three times differentiable in w ,
I Consistent estimator : ∫ ∂wg(y , 0)eg0(y ,0)dy = 0.

Theorem (Ko-G-Zdeborova-Krzakala ’23)
Let

H β̄
N(x : x0,W ) =

∑
i<j

(
β
Wij√
N
xixj + βSNR

N xixjx0
i x0

j + βS
2N (xixj)2

)

and if Wij are iid N(0, 1), x0 iid law P0,

FN(β̄) = EW ,x0[ 1N log
∫
eH β̄

N (x:x0,W )dP⊗N
X (x)]

Then ∣∣∣FN(g)− FN(β̄)
∣∣∣ = O(N−1/2)

where, if P0
out ' eg0(y ,0)dy, β = EP0

out
[(∂wg(y , 0))2]1/2,

βSNR = EP0
out

[∂wg(y , 0)∂wg0(y , 0)], βS = EP0
out

[∂2
wg(y , 0)].
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Limiting free energy
Theorem (Ko-G-Zdeborova-Krzakala ’23)
For any real numbers β̄ = (β, βSNR , βS),

lim
N→∞

FN(β̄) = sup
S,M
{ϕβ̄(S,M)}, ϕβ̄(S,M) = ϕβ(S,M) + βSNRM2

2 + βSS2

4

The limit is given by

ϕβ(S,M) = inf
µ,λ,ζ,Q

(
E0[X0(λ, µ,Q, ζ)]− µS − λM − β2

4
r−1∑
k=0

ζk(Q2
k+1 − Q2

k)
)

where λ, µ ∈ R2 and for ζ−1 = 0 < ζ0 < · · · < ζr−1 < 1 and
0 = Q0 ≤ Q1 ≤ · · · ≤ Qr−1 ≤ Qr = S we defined recursively the random
variables Xr ,Xr−1, . . . ,X0 by

Xr = log
∫
eβ
∑r

j=1 zi x+λx2+µxx0
dPX (x),Xj = 1

ζj
logEzj+1eζjXj+1.

where zj are Gaussian random variables with variance Qj −Qj−1 and x0 is an
independent random variable with distribution P0.
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Quenched Large deviations for the overlaps
Recall H β̄

N(x : x0,W ) = ∑
i<j β

Wij√
N xixj + βSNR

2 NR2
1,0 + βS

4 NR
2
1,1 and let

dGN
β̄ (x) = 1

ZN(x0,W )e
H β̄

N (x:x0,W )dP⊗N
X (x)

where R.,∗ are the overlaps R1,1 := 1
N
∑N

i=1 x2
i , R1,0 := 1

N
∑N

i=1 xix0
i .

Theorem
For every β̄ = (β, βSNR , βS) ∈ R3, the law of (R1,1,R1,0) under GN

β̄
satisfies

an almost sure LDP with good rate function IFP
β̄

given by

IFP
β̄ (S,M) = −ϕβ̄(S,M) + sup

s,m
(ϕβ̄(s,m)) .

In other words, for any measurable subset B of R2, for almost all (W , x0),

− inf
(S,M)∈Bo

IFP
β̄ (S,M) ≤ lim inf

N→∞

1
N log GN

β̄ ((R1,1,R1,0) ∈ O) ≤

≤ lim sup
N→∞

1
N log GN

β̄ ((R1,1,R1,0) ∈ B) ≤ − inf
(S,M)∈B̄

IFP
β̄ (S,M)

Alice Guionnet Random Matrices 15 / 22



Comments on large deviations

I The large deviation for R1,1 under GN
β,0,0 was proven by Panchenko ’15,

The main point of our work is to extend it to R1,0.

I It is enough to prove the LDP when βSNR = βS = 0 by Varadhan’s
Lemma,

I If IFP
β̄

has a unique minimizer (S∗,M∗), they are the almost sure limit of
the overlaps under GN

β̄
.

I The large deviations can be extended to the original Gibbs measures

dGN
Y (x ∈ A) = 1

ZN
Y
e
∑

ij g(Yij ,
xi xj√

N
) dP⊗N

X (x)

and our results show they are universal given the parameters
β = EP0

out
[(∂wg(y , 0))2]1/2, βSNR = EP0

out
[∂wg(y , 0)∂wg0(y , 0)],

βS = EP0
out

[∂2
wg(y , 0)]. This shows universality of likelihood in a large

class of problems.
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Comments on phase transitions

I Phase transition are complicated to establish in general : it is open.

I Particular cases of mismatched studied by Pourkamali-Macris ’20,
Camilli, Contucci, Mingione ’22, Barbier, Hou, Mondelli, Saenz ’22.

I When β = Lβ′, βSNR = LβSNR , βS = Lβ′S , and PX is invariant under
rotation, we find again the BBP transition since :

H β̄
N(x : x0,W ) =

∑
i<j

(
β
Wij√
N
xixj + βSNR

N xixjx0
i x0

j + βS
2N (xixj)2

)

so that for L large

1
LFN(β̄) = EW ,x0[ 1

NL log
∫
eH β̄

N (x:x0,W )dP⊗N
X (x)]

' 1
2essupx∈RN{〈x , (β′W + β′SNRx0xT

0 )x〉+ β′S
2 ‖x‖

4
2}
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Idea of the proof : Universality
We prove that for A a measurable subset of R2

FN(g ,A) = E[ 1N log
∫
1(R1,1,R1,0)∈Ae

∑
ij (g(Yij ,

xi xj√
N

)−g(Yij ,0)) dP⊗N
X (x)]

is close to

FN(β̄,A) = E
1
N log

∫
1(R1,1,R1,0)∈Ae

∑
i<j

(
β

Wij√
N

xi xj +βSNR
N xi xjx0

i x0
j +βS

2N (xi xj )2
)
dP⊗N

X (x) :

I by expanding g with respect to its second variable (bounded by 1/
√
N) :

g(Yij ,
xixj√
N

)− g(Yij , 0) = ∂wg(Yij , 0) xixj√
N

+ 1
2N ∂

2
wg(Yij , 0)x2

i x2
j + o( 1N )

I Conditionally to x0, (∂wg(Yij , 0))i<j are independent variables with, by
the consistent estimator hypothesis EP0

out
∂wg(Y , 0) = 0

E[∂wg(Yij , 0)] = βSNR√
N

x0
i x0

j + O( 1N ) ,Var(∂wg(Y , 0))2 = β2 + O( 1√
N

)

I The usual universality techniques for spin glasses can be generalized to
our setting.
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Idea of the proof of the Large deviations principle
I We show that

x0,W → F SK
N (A) = 1

N log
∫
1(R1,1,R1,0)∈Ae

∑
i<j β

Wij√
N

xi xjdP⊗N
X (x)

self-averages by concentration of measure, cf Talagrand (the difficulty
being that it is not smooth in x0)

I We use the interpolation trick to show that, for any
0 < ζ0 < · · · < ζr−1 < 1 and 0 = Q0 ≤ Q1 ≤ · · · ≤ Qr−1 ≤ Qr = S,
even though we are not on the Nishimori line, because the overlaps are
fixed in Bε(S,M) = {|R1,1 − S| ≤ ε} ∩ {|R1,0 −M| ≤ ε} :

E[F SK
N (Bε(S,M))] ≤ 1

NE log
∑
α
vα
∫

Bε(S,M)
eβ
∑

i≤N Zi (α)xi dP⊗N
X (x)

− 1
NE log

∑
α
vαe

√
NβY (α) + oε,N(1)

where vα are Ruelle probability cascades, and Z (α) and Y (α) centered
Gaussian processes

EZ (α1)Z (α2) = Qα1∧α2 EY (α1)Y (α2) = 1
2Q

2
α1∧α2.
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Idea of the proof : Large deviations

I We use Cramer’s tilting argument to bound the first term by

1
NE log

∑
α
vα
∫

Bε(S,M)
eβ
∑

i≤N Zi (α)xi dP⊗N
X (x)

≤ −µS − λM + 1
NE log

∑
α
vα
∫
e
∑

i≤N{βZi (α)xi +λx2
i +µxi x0

i } dP⊗N
X (x) + o(1)

≤ −µS − λM + E0X0 −
β2

4
r−1∑
k=0

ζk(Q2
k+1 − Q2

k) + o(1).

I To prove the lower bound, we use the cavity computations and the
standard procedure of the Aizenman–Sims–Starr scheme (but now we
may have symmetry breaking and use Ruelle probability cascades). We
then remove the indicator function of Bε(S,M) by showing that tilting
is optimal for some choice of µ, λ as in Cramer’s proof. A difficulty is to
deal with atypical x0.
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Conclusion

I The problem of estimating a vector from its noisy observation leads to
exciting problems in random matrix theory and spin glasses theory,

I Studying transition and detectability from the formulas is not obvious.

I Constructing optimal algorithms is a natural question, see Krzakala, Ko,
Pak ’23.
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Joyeux anniversaire Elisabeth !
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